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Abstract

The catalytic enantioselective synthesis of α-chiral olefins represents a valuable strategy for rapid 

generation of structural diversity in divergent syntheses of complex targets. Herein, we report a 

protocol for the dual CuH- and Pd-catalyzed asymmetric Markovnikov hydroalkenylation of vinyl 

arenes and the anti-Markovnikov hydroalkenylation of unactivated olefins, in which readily 

available enol triflates can be utilized as alkenyl coupling partners. This method allowed for the 

synthesis of diverse α-chiral olefins, including tri- and tetrasubstituted olefin products, which are 

challenging to prepare by existing approaches.

Graphical Abstract

The development of transition-metal-catalyzed methods for enantioselective Csp3–Csp2 

cross-coupling is a vibrant area of research due to the ability of these reactions to rapidly 

generate structural diversity through the strategic construction of carbon–carbon bonds.1 
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Specifically, asymmetric arylation and alkenylation reactions with alkylmetal nucleophiles 

allow access to important substructures present in many pharmaceuticals and biologically 

active natural products. However, these approaches often necessitate the use of 

stoichiometric quantities of organometallic reagents.2–6 Owing to the numerous subsequent 

functionalization reactions olefins can undergo, the enantioselective installation of an 

alkenyl fragment represents a particularly valuable synthon for divergent synthesis.7–8 A 

conceptually straightforward way to access α-chiral olefin products is through 

hydroalkenylation of olefin precursors. Although numerous approaches for the racemic 

hydroalkenylation of olefins exist,9–12 a general method for the analogous asymmetric 

variant of this transformation remains underdeveloped.

Pioneering work on enantioselective hydrovinylation, by RajanBabu13,15–21 and others,
14,22–23 demonstrated an atomeconomical coupling of ethylene with vinyl arenes. However, 

attempts to expand this strategy to additional unactivated olefins often led to mixtures of 

products.24 The prototypical approach for asymmetric olefin hydroalkenylation, which 

avoids these regioisomeric product mixtures, involves the coupling of a preformed 

stoichiometric organometallic reagent to an alkene (Figure 1A, top).25–27 To circumvent 

specific limitations of these prior methods, Zhu and Gong recently reported a NiH-catalyzed 

enantioselective migratory olefin hydroalkenylation to prepare 1,2-disubstituted olefins from 

alkenyl bromides and vinyl arenes (Figure 1A, middle).28 Complementary syntheses of 

enantioenriched 1,1-aryl, alkenyl alkanes, including stereospecific reductive cross-coupling 

of racemic benzylic halides and β-bromostyrenes,29–32 asymmetric allylic alkylation,33–39 

and stereospecific cross-coupling of activated phenethyl derivatives,40–42 have also been 

developed.

Our group’s continued interest in exploring the propensity of a stereodefined organocopper 

intermediate to engage various electrophiles in catalytic hydrofunctionalization 

reactions43–44 led us to propose a complementary approach for asymmetric olefin 

hydroalkenylation. As an alternative to preformed stoichiometric organometallic reagents 

and vinyl halides, which are generally prepared through multi-step sequences,45–47 we 

sought to leverage a copper hydride (CuH) and Pd dual catalyst system (Figure 1A, bottom) 

to effect the enantioselective hydroalkenylation of olefins. This approach would utilize an in 
situ generated Cu(I)-alkyl species (I) and widely available enol triflates (2). Although the 

proposed synergistic CuH and Pd catalytic cycles involve similar elementary steps to olefin 

hydroarylation (Figure 1B),48–52 we anticipated several unique challenges for the dual-

catalytic olefin hydroalkenylation (Figure 1C). It was evident that the enol triflate (2) could 

undergo facile hydrolysis or reduction to the corresponding olefin (V), which may then be 

subject to further hydrofunctionalization reactions. A similar outcome, such as reduction, 

olefin isomerization, or oligomerization, is also conceivable for the product (3) of this 

transformation. Therefore, construction of the critical C–C bond of the α-chiral olefin would 

necessitate the design of a synergistic catalyst system in which the rates of key steps in both 

catalytic cycles, hydrocupration (1→I), oxidative addition (2→II), transmetallation (I + 

III→IV), and catalyst regeneration, are well aligned.

Accordingly, we focused on finding a suitable dual catalytic system for the asymmetric 

olefin hydroalkenylation, using styrene (1a) as a model substrate and 1-cyclohexenyl 
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trifluoromethanesulfonate (2a) as the alkenyl coupling partner (Table 1). Utilizing our 

previously described conditions for dual CuH/Pd-catalyzed hydroarylation of olefins in this 

reaction system,48–49 we observed minimal hydroalkenylation product 3a (see Table SI1–3 

for further details on the reaction optimization). Investigation of the optimal reaction 

conditions identified the air-stable Pd-precatalyst, Pd(cinnamyl)(dppbz)(Cl) (P1), CuI, (S)-

DTBM-SEGPHOS (L1), NaOTMS, and Me2PhSiH as crucial to form 3a in high yield and 

enantioselectivity (entry 1, 96% 1H NMR yield and 96:4 er). An alternative ligand, (S)-

DTBM-MeO-BIPHEP (L2), performed with similar efficiency to L1 (entry 2). The use of a 

vinyl bromide (2b) or iodide (2c) furnished 3a in moderate yield but low enantioselectivity 

(entries 3, 4). However, when the corresponding enol tosylate (2d) was employed in the 

olefin hydroalkenylation, 3a was formed with increased enantioselectivity and minimal 

reduction of the alkenyl coupling partner (entry 5, 69% 1H NMR yield and 92:8 er). 

Substituting L1 with L2 in conjunction with an enol tosylate further increased the 

enantioselectivity (entry 6). This suggested that enol tosylates may be suitable substrates for 

the olefin hydroalkenylation if the analogous enol triflate undergoes facile reduction or 

hydrolysis (see Table SI3 for additional experiments comparing the efficiency of enol 

triflates and tosylates). Evaluation of a series of Cu salts demonstrated a dependence on the 

counterion (entries 7–9), with CuBr and CuI performing similarly. Variation of the Pd ligand 

scaffold, from dppbz (L4) to other bisphosphine or biarylphosphine ligands, resulted in a 

substantially diminished yield of the olefin hydroalkenylation adduct 3a (see entry 10 and 

Table SI2), further demonstrating the importance of tuning the rates of the two catalytic 

cycles. When the reaction was run in the absence of P1 (entry 11) or Cu and L1 (entry 12), 

minimal or no 3a was observed, respectively.

Having established excellent reaction conditions for the asymmetric olefin 

hydroalkenylation, we investigated the scope of olefin products which could be prepared by 

this protocol (Scheme 1). Cyclic, benzofused (3b), and heterocyclic (3g, 3j, 3p, and 3v) α-

stereogenic olefin products could be accessed in good yield and enantioselectivity. 

Additionally, tetrasubstituted (3d, 3n), acyclic trisubstituted (3c, 3f, 3h, 3k, 3l, and 3m), and 

1,1-disubstituted olefins (3i), which are challenging substrates to prepare by complementary 

methods,25–28 were obtained in high yield and enantiopurity. We were also able to 

synthesize a cyclic 1,3-butadiene (3s) diastereoselectively (>20:1 dr) through the use of a 

dienyl-triflate. When an E/Z-mixture (6.5:1 E:Z) of the alkenyl coupling partner was 

utilized, the olefin product was isolated as a single olefin isomer (3c). A geometrically pure 

Z-alkenyl coupling partner resulted exclusively in Z-3e in similar yield and 

enantioselectivity (78%, 97:3 er) to E-3e. These experiments suggest that the reaction of an 

E-alkenyl coupling partner outcompetes the corresponding Z-substrate. Notably, despite 1,2- 

and 1,1-disubstituted olefin products (3e, 3i) being common substrates for copper hydride-

catalyzed hydrofunctionalization reactions, we detected no significant dimerization or 

oligomerization of the product with excess enol triflate.

A variety of heterocycle-containing vinyl arene and enol triflates could be coupled to yield 

the corresponding hydroalkenylation products, including pyrimidine (3f), benzothiophene 

(3g), furan (3h), thiomorpholine (3i), 7-azaindole (3k), carbazole (3n), pyrazole (3o), 

pyridine (3p, 3t), benzothiazole (3q), and quinoline (3v). Substrates containing an ester (3g), 
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aryl chloride (3l), thiomethyl (3m), carbamate (3t, 3v), or a tertiary amine (3u), were well 

tolerated under the reaction conditions and resulted in good yields and enantioselectivities of 

the olefin products. However, when a substrate bearing a ketal was employed, hydrolysis of 

the corresponding product (3r) was observed, resulting in diminished yield (37%). A 

sterically congested vinyl arene containing an alkyl ortho-substitution was effectively 

converted to a trisubstituted olefin (3h) in high yield and 95:5 er. While electron deficient 

vinyl arenes (3g, 3r) could be readily converted to the hydroalkenylation product, an 

electron-rich vinyl heteroarene (3j) necessitated a lower Pd-catalyst loading to minimize 

competing reduction of the enol triflate.

1,2-Disubstituted olefin substrates, which have higher barriers to hydrocupration relative to 

vinyl arenes,53–54 were equally competent substrates for the hydrofunctionalization reaction 

(3p–3r). A cinnamyl amine substituted with a basic −NMe2 group furnished 3x with 

moderate enantioselectivity (81:19 er). The enantiomeric ratio could be increased (92:8 er) 

by employing the corresponding enol tosylate and L2. Moreover, when the −NBn2 derivative 

was employed under analogous conditions 3w was isolated with 99:1 er, suggesting that the 

pendant −NMe2 group present in 3x may be competing as a ligand or slowing the 

transmetallation step.

In cases where highly activated enol triflates were employed, such as 3d, 3i, and 3m, 

reduction of the alkenyl coupling partner competed with the desired olefin hydroalkenylation 

reaction. This undesired pathway could be suppressed by utilizing the corresponding enol 

tosylate in conjunction with L2. Contrary to our observation that unactivated vinyl halides, 

such as 2b (Table 1), were poor substrates for this method, we found that a β-bromostyrene 

provided an enantioenriched 1,2-disubstituted α-stereogenic olefin with excellent yield and 

selectivity (3e). Additionally, when cycloalkyl enol triflates were utilized, the catalyst 

loading could be significantly decreased (3o, 3q, 3t, and 3u). Employing an α-substituted 

cyclic enol triflate resulted in an unexpected regioisomeric mixture of the Markovnikov and 

anti-Markovnikov hydroalkenylation products (3n).

To further demonstrate the utility of this enantioselective olefin hydroalkenylation method 

we subjected several medicinally relevant molecules to the hydroalkenylation reaction to 

afford derivatives of cholesterone (3s), loratadine (3t) and chlorpromazine (3u). 

Pharmaceutical intermediates, including a precursor to a Cephalon FASN inhibitor (3v)55 

and 3x, could readily be synthesized with high enantioselectivity by this approach. 

Subsequent hydrogenation of 3x to (S)-Gamfexine, an antidepressant,56 represents a net 

formal enantiospecific Csp3–Csp3 coupling. The hydroalkenylation process could be easily 

conducted on 5.0 mmol scale with vinyl arene 1b and commercially available enol triflate 2a 
(eq 1). Using reduced catalyst loading, 1.5 mol% Cu and Pd catalysts, 3y could be 

synthesized in 74% isolated yield with high stereoselectivity (93:7 er).
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(1)

Given the general reactivity we observed while studying the hydroalkenylation of vinyl 

arenes, we were interested in extending the scope of this transformation to include 

unactivated olefins. Typically, these products are accessed using the B-alkyl Suzuki-Miyaura 

reaction, which represents a robust way to couple olefins to alkenyl (pseudo)halides in a 

regiospecific manner.57 However, these reactions rely on the generation of stoichiometric 

quantities of alkyl-boron species from olefin precursors, limiting their step and atom 

economy. As an alternative, we reasoned that the catalytic generation of a terminal 

organocopper species would allow us to extend our protocol to the hydroalkenylation of 

unactivated olefins. Without significant modification of the reaction conditions, we could 

achieve a regioselective hydroalkenylation of terminal olefins (Scheme 2). A variety of 

important structural elements were tolerated in this process, including a basic quinuclidine 

(6a), indole (6c), amide (6d), morpholine (6e), dioxolane (6f), and thiopyrimidine (6h). This 

Csp3–Csp2 coupling facilitated the synthesis of tetrasubstituted olefins (6b, 6g) and a vinyl 

arene (6f). Further, this approach to generate vinyl arenes may be a viable strategy for the 

synthesis of starting materials for ensuing hydrofunctionalization reactions.43–44

In summary, we have developed a method for asymmetric olefin hydroalkenylation that 

allows access to a wide variety of α-stereogenic olefins using widely available starting 

materials. Our dual CuH- and Pd-catalyzed approach allowed entry to olefin classes that are 

difficult to synthesize by complementary strategies, including tri- and tetrasubstituted olefin 

products. The reaction conditions tolerated a variety of medicinally relevant substructures 

and enabled the synthesis of several pharmaceutical intermediates. This protocol was 

expanded to the anti-Markovnikov hydroalkenylation of unactivated olefins.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Previous approaches to asymmetric olefin hydroalkenylation and our approach. B. 
Proposed dual CuH/Pd catalytic cycles. C. Potential side reactions for the 

hydrofunctionalization process involving an enol triflate (2).
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Scheme 1. 
Substrate scope of the asymmetric Markovnikov hydroalkenylation of vinyl arenes.a

aAll yields represent the average of at least two isolated yields with 0.5 mmol alkene (1); the 

corresponding enol triflate was used unless otherwise noted, enantioselectivity determined 

by chiral SFC or HPLC. Yield in parenthesis determined by 1H NMR spectroscopy of the 

crude reaction mixture using 1,1,2,2-tetrachloroethane as an internal standard. b An E:Z 
mixture (6.5:1) of the enol triflate was employed. c Enol tosylate was employed with 7.0 mol

% L2. d E-Vinyl bromide was employed with 7.0 mol% L2. e Z-Vinyl bromide was 

employed with 7.0 mol% L2 and 0.2 mmol 1. f Enol tosylate was employed under standard 

reaction conditions. g 2.0 mol% P1. h 3.0 mol% CuI, 3.5 mol% L1, and 3.0 mol% P1. i 7.0 

mol% L2.
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Scheme 2. 
Scope of the anti-Markovnikov hydroalkenylation of unactivated olefins.a

aAll yields represent the average of at least two isolated yields with 0.5 mmol alkene. b6.0 

mol% CuI, 7.0 mol% (±)-L1, and 4.0 mol% P1 were used. c45 °C
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Table 1.

Optimization of the enantioselective hydroalkenylation of styrene (1a) with alkenyl coupling partner (2).
a

entry variation from standard conditions yield (%) er

1 none, 2a (X= OTf) 96 96:4

2 2a (X= OTf), L2 92 96:4

3 2b (X= Br) 60 67:33

4 2c (X= I) 34 65:35

5 2d (X= OTs) 69 92:8

6 2d (X= OTs), L2 55 98:2

7 CuOAc 49 95:5

8 CuCl 54 96:4

9 CuBr 93 96:4

10 BrettPhos (L3) and [Pd(cinnamyl)(Cl)]2 (4 mol%) 6 N.D.

11 no Pd and dppbz 11 N.D.

12 no CuI and L1 0 –

a
Reaction conditions: 0.2 mmol styrene (1a) (1.0 equiv), alkenyl coupling partner (2) (0.3 mmol, 1.5 equiv), yields were determined by 1H NMR 

spectroscopy of the crude reaction mixture, using 1,1,2,2-tetrachloroethane as internal standard. Enantiomeric ratio (er) was determined by chiral 
SFC. N.D.: not determined.
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