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ON THE ARITHMETIC SIEGEL-WEIL FORMULA FOR GSPIN SHIMURA

VARIETIES

CHAO LI AND WEI ZHANG

ABSTRACT. We formulate and prove a local arithmetic Siegel-Weil formula for GSpin Rapoport—
Zink spaces, which is a precise identity between the arithmetic intersection numbers of special cycles
on GSpin Rapoport—Zink spaces and the derivatives of local representation densities of quadratic
forms. As a first application, we prove a semi-global arithmetic Siegel-Weil formula as conjectured
by Kudla, which relates the arithmetic intersection numbers of special cycles on GSpin Shimura
varieties at a place of good reduction and the central derivatives of nonsingular Fourier coefficients

of incoherent Siegel Eisenstein series.
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1. INTRODUCTION

1.1. Background. The classical Siegel-Weil formula (|Sie35) [Sie51l, [Wei65]) relates certain Siegel
Eisenstein series to the arithmetic of quadratic forms, namely it expresses special values of these
series as theta functions — generating series of representation numbers of quadratic forms. Kudla
(IKud97bl Kud04]) initiated an influential program to establish the arithmetic Siegel-Weil formula.
In particular, the nonsingular part of Kudla’s conjectural formula relates the central derivative of
nonsingular Fourier coefficients of Siegel Fisenstein series to the arithmetic intersection number of
n special divisors on orthogonal Shimura varieties associated to GSpin(n — 1,2). The arithmetic
Siegel-Weil formula was established by Kudla, Rapoport and Yang ([KRY99, Kud97b, [KROOD,
KRY06]) for n = 1,2. The archimedean part of the formula for all n was also known by Garcia—
Sankaran [GS19] and Bruinier—Yang [BY21]. However, for the nonarchimedean part for higher n,
the only known cases were when n = 3 due to Gross—Keating [GK93] (cf. [VGW™07]) and Terstiege
[Ter1l], and some partial results when the arithmetic intersection has dimension 0 (JKR99, KR00a!,
BY21]).

The main result of this paper proves a semi-global (at a prime p) version of the arithmetic
Siegel-Weil formula for all n. To achieve this, we formulate and prove a local arithmetic Siegel—
WEeil formula for GSpin Rapoport—Zink spaces, which is a precise identity between the arithmetic
intersection numbers of special cycles on GSpin Rapoport—Zink spaces and the derivatives of local
representation densities of quadratic forms. Such a local formula is an orthogonal analogue of the
Kudla—Rapoport conjecture for unitary Rapoport—Zink spaces ([KR11, Conjecture 1.3]) recently
proved in our companion paper [LZ]. Compared to the unitary case in [LZ], several new difficulties
arise in the orthogonal case and we highlight some of them in §I.4l In fact, the geometric difficulty
in the higher dimensional orthogonal case was one of the reasons Kudla and Rapoport shifted their
perspective to the unitary case [KR11].

Via the doubling method of Piatetski-Shapiro and Rallis, the arithmetic Siegel-Weil formula
is intimately tied to the arithmetic inner product formula, which relates the central derivative of
the standard L-function of cuspidal automorphic representations on metaplectic/orthogonal groups
to the height pairing of cycles on orthogonal Shimura varieties constructed from arithmetic theta
liftings. It can be viewed as a higher dimensional generalization of the Gross—Zagier formula [GZ86],
and an arithmetic analogue of the Rallis inner product formula. We hope to apply the main results
in this paper to study the arithmetic inner product formula in the future (cf. [LL, [LL21] by Liu
and one of us in the unitary case). It is also worth mentioning several other recent advances in
arithmetic Siegel-Weil formula in the unitary case, including cases of the singular term formula
[BH21] by Bruinier-Howard and the higher derivative formula over function fields [FYZ21] by Feng,
Yun and one of us, and it would be interesting to study the (arguably more difficult) orthogonal
analogues.

1.2. Local arithmetic Siegel-Weil formula. Let p be an odd prime. Let F' = Q, with residue
field x = IF,, and a uniformizer w. Let F be the completion of the maximal unramified extension of
F. Let m = n+1 > 3 be an integer. Let ¢ € {£1}. Let V = Hf, be a self-dual quadratic Op-lattice

of rank m with x(V) = e. Here x(V) = +1 (resp. —1) if the the discriminant disc(V) is a square
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(resp. nonsquare) in O} (see Notations §2.I)). Associated to V we have a local unramified Shimura-
Hodge data (G,b,pn,C), where G = GSpin(V), b € G(F) is a basic element, u : G, —» G is a
certain cocharacter, and C' = C(V) is the Clifford algebra of V. Associated to this local unramified
Shimura-Hodge data, we have a GSpin Rapoport-Zink space RZg = RZ(G, b, u, C) of Hodge type
constructed by Howard—Pappas [HP17] and Kim [KimI8a]. The space RZq is a formal scheme
over Spf O, formally locally of finite type and formally smooth of relative dimension n — 1 over
Spf O} (see .l for more details), and admits a decomposition RZq = | |, RZ(GZ) into (isomorphic)
connected components. Define N = N := RZg)) to be a connected component of RZg, a formal
scheme of (total) dimension n (Definition E.5.T]).

Let V = VZ, be the unique (up to isomorphism) quadratic space over F' of dimension m, Hasse
invariant €(V) = —e(V) = —1 and x(V) = x(V) = e. Then V can be identified as the space of
special quasi-endomorphisms V C End(X) ® Q, where X is the framing p-divisible group over &
for RZ¢ (§42]). For any subset L C V, the special cycle Z(L) (Definition [.6.]) is a closed formal
subscheme of N, over which all special quasi-endomorphisms x € L deforms to endomorphisms.

Let L C V be an Op-lattice of rank n (always assumed to be non-degenerate throughout the
paper, see Notations §2.1]). We now associate to L two integers: the arithmetic intersection number
Int*(L) and the derived local density ODen®(L).

Let xz1,..., 2, be an Op-basis of L. Define the arithmetic intersection number

(1.2.0.1) Int(L) := x(N, Oz(zy) @ - =@ Oz(,.),

where Oz(,,) denotes the structure sheaf of the special divisor Z(z;), ®% denotes the derived
tensor product of coherent sheaves on A/, and x denotes the Euler—Poincaré characteristic. It is
independent of the choice of the basis x1,...,x, and hence is a well-defined invariant of L itself
(Definition A.I1T4)).

For M another quadratic Op-lattice (of arbitrary rank), define Rep,,; to be the scheme of
integral representations, an Op-scheme such that for any Op-algebra R, Repy 1, (R) = QHom(L®o,
R, M ®0, R), where QHom denotes the set of quadratic module homomorphisms. The local density
of integral representations is defined to be

' _ #Repy (Op /@)
Den(M, L) = Nl_l)I}rloO pN.dim(RepM,L)F ’

Then Den(H;, 5., L) is a polynomial in p~ ¥ with Q-coefficients. Define the (normalized) local Siegel

m

series of L to be the polynomial Den®(X, L) € Z[X] (Theorem B.4.5)) such that for all £ > 0,

Den(HE +2k,L)

Den(p~F. L) = m .
w0 L) = Sen(iz, . 1)

Since L C V is an Op-lattice of rank n, it satisfies a functional equation relating X <« % (Theo-

rem [3.4.60] Lemma @),

1
Den®(X, L) = —X"@) . Den® (X,L> .
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Here val(L) is the valuation of L, see Notations §2.11 We thus consider the derived local density

ODen® (L) = —% X:1Den€(X, L).
Our main theorem in Part [Ilis the proof of a local arithmetic Siegel-Weil formula, which asserts

an exact identity between the two integers just defined.
Theorem 1.2.1 (Theorem AI51)). Let L CV be an Op-lattice of rank n. Then
Int*(L) = 0Den®(L).

We refer to Int®(L) as the geometric side of the identity (related to the geometry of Rapoport—
Zink spaces and Shimura varieties) and dDen®(L) the analytic side (related to the derivatives of

Eisenstein series and L-functions).

1.3. Semi-global arithmetic Siegel-Weil formula. Next let us describe a semi-global applica-
tion of our local theorem. We now switch to global notations. Let ' = Q and A = Ap its ring
of adeles. Let m = n+ 1 > 3 be an integer. Let V be a quadratic space over F' of dimension m
and signature (n — 1,2). Let G = GSpin(V'). Associated to G there is a Shimura datum (G, {hg})
of Hodge type. Let K = [[, K, € G(Af) be an open compact subgroup. Then the associated
Shimura variety Shx = Shg (G, {hg}) is of dimension n — 1 and has a canonical model over its
reflex field F' = Q.

Assume that p is an odd prime such that K, is a hyperspecial subgroup of G(F}), or equivalently
K, = GSpin(A,) for a self-dual lattice A, € V,, := V ®@p F),. Then by Kisin [Kis10], there exists a
smooth integral canonical model M of Shg over the localization Op ().

Let V be the incoherent quadratic space over A of rank m nearby V', namely V is positive definite
and V,, 2V, for all finite places v. Let px € .& (V?) be a factorizable Schwartz function. We say
that pk is p-admissible if pg is K-invariant and pgp = 1(p,)n. Let T' € Sym,,(F)~o be a positive
definite symmetric matrix of size n. Associated to (T, px) we construct semi-global special cycles
Z(T, pKr) over Mg (§I2.5)). Analogous to the local situation (L.2Z.0.1]), we may define its semi-global
arithmetic intersection numbers Intz ,(px) at p (§I2.8]).

On the other hand, associated to ¢ = px ® Yoo € .7 (V"), where o, is the standard Gaussian
function, there is a classical incoherent Eisenstein series F(z,s,pr) (§11.4]) on the Siegel upper
half space

H, ={z=x+1iy: x€ Sym,(Fx), y € Sym,,(Fs)>0},

where Fi,o = F ®g R ~ R. This is essentially the Siegel Eisenstein series associated to a standard
Siegel-Weil section of the degenerate principal series (§11.1]). The Eisenstein series here has a mero-
morphic continuation and a functional equation relating s <> —s. The central value E(z,0, px) =0
by the incoherence. We thus consider its central derivative

. d
OEis(z, pi ) = P E(z,s,¢K).
s=0

4



Associated to the standard additive character ¢ : A/F — C*, it has a decomposition into the
central derivative of the Fourier coefficients

OEis(z, pK) = Z OEist(z, k).
TeHerm, (F)

When T is nonsingular, the Euler factorization of T-th Fourier coefficients further gives a decom-
position (§I1.3])
OEisr(z, oK) = Z(‘)Eisﬂv(z, VK ).
v

Now we can state our application to the semi-global arithmetic Siegel-Weil formula, which as-
serts an identity between the semi-global arithmetic intersection number of special cycles and the
derivative of nonsingular Fourier coefficients of the incoherent Eisenstein series.

Theorem 1.3.1 (Theorem [2ZJ1]). Assume that ox € #(V}) is p-admissible. Then for any
T e Symn(F)>0,

IntT,p(QDK)qT =CK - aEiST,p(Zv SDK)’

where g7 = woo(%tr Tz) = emit Tz o — % is a monzero constant independent of T and g,
and vol(K) is the volume of K under a suitable Haar measure on G(Ay).

Remark 1.3.2. In the unitary case, we also proved a global version (including terms for all 7" and
all places v) of the arithmetic Siegel-Weil formula [LZ, Theorem 1.3.2], at least for test functions ¢x
with nonsingular support at two split places. This global version is more difficult in the orthogonal
case due to several complications, most notably the lack of the analogue of split places and the
inevitability to treat the place p = 2. We hope to return to these questions in the future.

Remark 1.3.3. The assumption F' = Q, (p odd) in Theorem [[L21] is required to apply results
from [HP17] and [Kim18a]. It would be very interesting to relax this assumption to more general
p-adic fields F' by generalizing [HP17] and [Kim18a] to “relative” GSpin Rapoport-Zink spaces
and proving a comparison between the relative and absolute GSpin Rapoport—Zink spaces of Weil-
restricted groups Resp,g, GSpin. Once this is done, one should also be able to relax the assumption
F = Q in Theorem [I.31] to more general totally real fields.

1.4. Strategy and novelty of the proof of the Main Theorem [1.2.1l. Our general strategy is
parallel to the unitary case proved in [LZ] (see also several simplifications in [LL21]). More precisely,
fix an Op-lattice L” C V of rank n — 1 and denote by W = (L}.)~ C V. Consider functions on
L x Wan
Inty,(z) = Int* (L’ + (z)), ODeny,(z) = dDen®(L’ + (z)),
where W2 := {x € W : (z,x) # 0} is the set of anisotropic vectors. Then it remains to show the
equality of the two functions Int;, = dDen;,. To show this equality, we find a decomposition
IHtLb = IntLb’Jf + IHtLbJ/, aDean = 8Dean7% + 8Dean77/

into “horizontal” and “vertical” parts such that the horizontal identity Int;, , = ODenj, , holds

and the vertical parts Int;, , and 0Den 1>,y behaves well under Fourier transform.
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In the unitary case, the hermitian space W is 1-dimensional over F' and we found that both
Int;» 4 and ODenj, , are Schwartz functions on V, and satisfy the remarkable properties that

(1.4.0.1) Int, , = —Int;s ., supp(@Deny, ,) C V°,
where ~ denotes the Fourier transform on V, and V° := {z € V : (z,2) € Op} is the integral

cone. Equation (LZO.J]), together with the induction on the valuation of L” and the uncertainty
principle, allows us to conclude that Inty, ,, = dDeny, 4.

In the orthogonal case, the quadratic space W is 2-dimensional over F'. When W is anisotropic,
both Int;, 4 and ODen, , are still Schwartz functions on V. But when W is isotropic, both Int;, ,
and dDenj, , in general have singularities near the isotropic cone of W and are no longer Schwartz
functions on V. On the geometric side this reflects the fact that Z(L?) is no longer quasi-compact
when W is isotropic. Nevertheless we may still show that Int, . is locally integrable and show
its Fourier invariance (up to a sign) as in (LZ0I), but now understood as a distribution on V.
However, on the analytic side the singularities seem to cause essential difficulty in directly extending
the argument in [LZ] or [LL21] for controlling Supp(ﬁD/en;y) as in (LA0J]).

To overcome this difficulty, we instead perform a partial Fourier transform along L'}; and consider
new functions on W2,

Intéb,fzx(l’) = /Lb Intz, (y + z)dy, 5D€Hfby(l’) <= /Lb ODenp, 4 (y + x)dy.
F

F
On the geometric side, the Fourier transform Intib 4 of Intib , on W agrees with the restriction of

L
b,y
the action of the orthogonal group O(W)(F) and the scalars O. Using the Weil representation

I@V to W. Now the advantage is that the new function Int enjoys extra invariance under
and the theory of newforms for SLo(F), we completely classify certain subspaces of invariant
distributions on W to which IntJL‘b , belongs (Proposition [0.1.3] which may be of independent
interest). In particular, we observe that a certain recurrence relation is satisfied for the values
of Intiw/ (Proposition [0.2.3). On the analytic side, we directly verify that the same recurrence
relation is also satisfied for aDenib >

which occupy §8. Finally, the induction on the valuation of L’ supplies the same initial values for

(Proposition BI2) via involved lattice-theoretic calculations

the recursions on both sides, and allows us to conclude that Int;, , = 0Den [IRZ

The strategy outlined above is a reminiscence of the uncertainty principle when W is anisotropic,
but is more refined when W is isotropic. We end by mentioning several technical complications
compared to the unitary case when executing this strategy. There are two (instead of one) relevant
ambient quadratic spaces V = V5 of a given dimension m, which we have emphasized with the
superscript € € {1}. On the analytic side, we extend the results of [CY20] and [Tkel7] to treat
both cases ¢ € {£1} uniformly in §3] and the numerology is more complicated than the unitary
case. On the geometric side, the GSpin Rapoport—Zink spaces is of Hodge type (instead of PEL
type) which makes several proofs more technical. In particular, we provide proofs of two results on
the vertical parts which are even new for the unitary case (see Remarks and [.4.3)). Also the
horizontal parts of special cycles are indexed by certain lattices of type < 2 (instead of type < 1),

which we call horizontal lattices (see Definition B.8.1]), and cause more complicated numerology as
6



well. In particular, the horizontal identity eventually reduces to the case n = 3 and ¢ = +1 (instead
of n =2).

1.5. The structure of the paper. In Part[Il we first prove necessary background results on both
the analytic side (§3) and the geometric side (§41-86]) of the local arithmetic Siegel-Weil formula.
The Fourier invariance on the geometric side is proved in §7l The recurrence relations satisfied by
the partial Fourier transform on the analytic side is proved in §8 Finally in §9] we establish results
on invariant distributions on 2-dimensional quadratic spaces and prove the main Theorem [[.2.1]
In Part [2] we first review incoherent Eisenstein series (§I1I), semi-global integral models of GSpin
Shimura varieties and their special cycles (§12]). We then apply the local results in Part [l to prove
the semi-global arithmetic Siegel-Weil formula (Theorem [L.3.1]).

For the sake of readability, we make an effort to ensure that the notations and the structure of
this paper are parallel to those of the companion paper [LZ] in the unitary case. We always write
out the complete statements, and include details when a proof differs from the parallel proof in
ILZ] or point it out when the same proof of |[LZ] applies verbatim.

1.6. Acknowledgments. C. L. was partially supported by the NSF grant DMS-1802269. W. Z. was
partially supported by the NSF grant DMS-1901642.

Part 1. Local arithmetic Siegel-Weil formula
2. NOTATIONS AND CONVENTIONS

2.1. Notations on quadratic lattices. Let p be an odd prime. Let F' be a non-archimedean
local field of residue characteristic p, with ring of integers O, residue field x = [F, of size ¢, and
uniformizer w. Let val : F' — Z U {oo} be the valuation on F' and |- | : F' — R>¢ be the normalized
absolute value on F. Let F be the completion of the maximal unramified extension of F', and O
its ring of integers. Let o € Aut(Op) be the lift of the absolute g-Frobenius on . We further
assume that F' = Q, when dealing with the geometric side (the exceptions are §3] §8, §9.11 which
concern only the analytic side).

Let L be a quadratic Op-lattice of rank n with symmetric bilinear form ( , ). We say L is
non-degenerate if the extension ( , ) on the quadratic space Ly := L ®o, F' is non-degenerate.
Unless otherwise specified, all quadratic Op-lattices are assumed to be non-degenerate throughout
the paper. We denote by LY := {z € Lg : (z,L) C Op} its dual lattice under (, ). We say that L
is integral if L C LV. If L is integral, define its fundamental invariants to be the unique sequence
of integers (a1, ...,a,) such that 0 < a; < .-+ < a,, and LY/L ~ @& ,0p/w% as Op-modules;
define its valuation to be val(L) := Y"1 | a;; and define its type, denoted by ¢(L), to be the number
of nonzero terms in its invariant (ai,...,a,). Denote by val(z) := val((x,z)) for any x € L. A
standard orthogonal basis of L is an orthogonal Op-basis {ej,...,e,} of L such that val(e;) = a;,
which always exists. Say L is self-dual if L = LY. Say L is minuscule or a vertex lattice if it is
integral and LY C w~'L. Note that L is a vertex lattice of type ¢ if and only if it has fundamental
invariants (0("_t), 1(t)), if and only if L C* LY C w 'L, where C! indicates that the Op-colength is

equal to t. Notice that L is self-dual if and only if L is a vertex lattice of type 0.
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The determinant of L is defined to be
det(L) := det((ws,25); j=1) € F*/(O%)?
where {z1,...,z,} is an Op-basis of L, and the discriminant of L is defined to be
dise(L) := (—1)(2) - det(L) € F*/(0})>.

Notice that val(L) = val(disc(L)).
Let x = (£)p : F*/(F*)? = {£1,0} be the quadratic residue symbol. Define

X(L) := x(disc(L)) € {£1,0}.

Notice that x(L) = 0 if and only if val(L) is odd. If L is self-dual, then x(L) € {£1} is the image
of disc(L) under the isomorphism Oy /(05)?* = {£1}.

Let W be a (non-degenerate) quadratic space over F' of dimension m with symmetric bilinear
form (, ). Similar invariants are defined for quadratic spaces over F'; and we denote them by

det(W) € F*/(F*)?, disc(W) € F*/(F*)?, x(W) € {£1,0}.

Then x (W) = +1 if and only if disc(W) = 1. Also x(L) = x(W) for any Op-lattice L C W of full
rank. Define the Hasse invariant of W to be

eW):= [ (uiiuj)r € {£1},
1<i<j<m
where (, )p : F*/(F*)? x F*/(F*)? — {£1} is the Hilbert symbol, and u; = (e;,e;) for an
orthogonal basis {e1,...epn} of W.

Recall that quadratic spaces W over F' are classified by its dimension m > 1, its discriminant
disc(W) and its Hasse invariant ¢(W). When m > 3, disc(W) and €(W) can take arbitrary values.
When m = 2, the case disc(WW) = 1 and (W) = —1 is excluded. When m = 1, the case e(W) = —1
is excluded. The space W admits a self-dual lattice if and only if €(W) = +1 and x (W) # 0.

For k € Z, denote by

Wk .= {z e W :val(z) >k}, W .= {zecW:val(z)=k}.

Denote by
we :=w=20 wee.=w=2l W.={recW: (z,z)#0},

the integral cone, the positive cone and the set of anisotropic vectors of W respectively. For a
quadratic Op-lattice L, define L° := L N (Lp)® and L°° := LN (Lr)®°.

The set of vertex lattices of type ¢ in W is denoted by Vert!(W).

For € € {1} and m > 1, denote by HE, the self-dual Op-lattice of rank m with x(HS,) = ¢ (for
m = 0, only H;\ =0 is allowed by convention). Denote by V¢, the quadratic space over F' with

x(Ve) =¢c and €(V5,) = —1.
8



2.2. Notations on functions. Let W be a (non-degenerate) quadratic space over F. Fix an
unramified additive character ¢ : F — C*. For an integrable function f on W, we define its
Fourier transform f to be

fla) = /Wf@w((x,y))dy, v e W

We normalize the Haar measure on W to be self-dual, so f(z) = f(—x). For an Op-lattice A C W
of full rank, we have

(2.2.0.1) Tp = vol(A)1yv, and  vol(A) = [AY : A]7V/2 = ~ValN)/2,

Note that val(A) can be defined for any lattice A (not necessarily integral) so that the above equality
for vol(A) holds.

Denote by . (W) the space of Schwartz functions (i.e., compactly supported locally constant
functions) on W. Denote by Z(W) := Hom(. (W), C) the space of distributions on W (the linear
dual of .(W)). Any Schwartz function is integrable. The Fourier transform preserves .(WW) and
induces a Fourier transform on 2(W) such that T(f) = T(f) for any T € 2(W), f € L (W).
Denote by supp(7') the support of the distribution 7' (the complement of the largest open subset
on which 7' = 0).

For any open dense subset  C W, denote by L}

1 (§2) the space of locally integrable functions on

Q (i.e., integrable on any compact open subset of 2). A function ¢ € Llloc(W) gives a distribution
Ty € (W) represented by ¢, i.e., Ty(f) = [, ¢(z)f(@)dz for any f € .#(W). By abuse of notation,

we often view ¢ € LL () as a distribution on W and write ¢ (resp. ¢) instead of Ty (vesp. Ty).

2.3. Notations on formal schemes. Denote by ANilpOﬁ the category of noetherian O ;-algebras
in which w is nilpotent. Denote by AN ilpfoﬁ the category of noetherian adic O j-algebras in which
w is nilpotent. Denote by ANilpfOS’;1 C ANilplz)F the full subcategory consisting of O ;-algebras
which are formally finitely generated and formally smooth over O/ w” for some k > 1. Denote by
Algoﬁ the category of noetherian ww-adically complete O ;-algebras.

Let X be a formal scheme. Denote by X*? the underlying reduced scheme. For closed formal
subschemes Z1,--- , Z,, of X, denote by U™, Z; the formal scheme-theoretic union, i.e., the closed
formal subscheme with ideal sheaf N” 7z, where 7z, is the ideal sheaf of Z;. A closed formal
subscheme on X is called a Cartier divisor if it is defined by an inwvertible ideal sheaf.

Let X be a formal scheme over Spf Op. Then X defines a functor on the category of Spf O -
schemes (i.e. O p=schemes on which w@ is locally nilpotent). For R € ANilpfOﬁ with ideal of definition
I, write X (R):= lim X (Spec R/I"). For R € Algo, write X(R) := lim X (Spec R/w™).

When X is noetherian, denote by K (X) the Grothendieck group (modulo quasi-isomorphisms)
of finite complexes of coherent locally free Ox-modules, acyclic outside Y (i.e., the homology
sheaves are formally supported on Y). As defined in [Zha21l (B.1), (B.2)], denote by FIK} (X) the
(descending) codimension filtration on K} (X), and denote by Gr’ K (X) its i-th graded piece.
As in [Zha21l Appendix B], the definition of K} (X), FIK} (X) and Gr’ K (X) can be extended
to locally noetherian formal schemes X by writing X as an increasing union of open noetherian
formal subschemes. Similarly, we let K (X) denote the Grothendieck group of coherent sheaves of

Ox-modules. Now let X be regular. Then there is a natural isomorphism K} (X) ~ K}(Y). For
9



L L L L
closed formal subschemes Zy,--- |, Z,, of X, denote by Z1 Nx --- Nx Z,, (or simply Z; N--- N Z,,)
the derived tensor product Oz, ®H@X R « 0z,,, viewed as an element in KZMNem(X).

For F a finite complex of coherent O x-modules, we define its Euler—Poincaré characteristic

X(X,F) = (1) lengtho H'(X, H;(F))
1,J

if the lengths are all finite. Assume that X is regular with pure dimension n. If F; € F"™ K(‘)Z (X)
with 32, 7; > n, then by [Zha21], (B.3)] we know that x(X, ®* F;) depends only on the image of F;
in Gr'" KOZ “(X). In fact, we will only need this assertion when X is a scheme (cf. Remark [7.6.11]).
When X is a formal scheme, the assertion holds trivially when one of the r; is dim X; this special
case will be used repeatedly.

2.4. Conventions. Unless otherwise specified, we will denote by L an Op-lattice of rank n, L” an
Op-lattice of rank n — 1, and A an Op-lattice of full rank m in a quadratic space of dimension m.
Unless otherwise specified, all Op-lattices are assumed to be non-degenerate.

Starting from §4l we fix m = n+1 > 3 and € € {£1}. For brevity we will suppress the superscript
e and the subscripts m and n when there is no confusion, so V.= V¢ . N = N, Int(L) = Int°(L),
dDen(L) = dDen®(L), Den’(1, L) = Den’ (1, L), Hor(L”) = Hor®(L") and so on.

3. LOCAL DENSITIES OF QUADRATIC LATTICES

3.1. Local densities for quadratic lattices.

Definition 3.1.1. Let L, M be two quadratic Op-lattices. Let Rep,, ;, be the scheme of integral
representations, an Op-scheme such that for any Op-algebra R,

(3.1.1.1) Repyy 1 (R) = QHom(L ®o, R, M @0, R),

where QHom denotes the set of quadratic module homomorphisms. The local density of integral
representations is defined to be

‘ . #Repy; (O /o)
Den(M, L) = Nl_lgrlC>O N AImERepas e

Note that if L, M have rank n, m respectively and the generic fiber (Rep M.L)F # D, then n <m
and

- o9m —n—1
(3.1.1.2) dim(Rep,; 1) r = dim O, — dim Oy, = (?) - <m 5 ”) = %
Our next goal is to obtain an explicit formulas for Den(H,, L) (Lemma[3:3.2)). To do so we need

some preliminaries on quadratic spaces over finite fields.
10
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3.2. Quadratic spaces over finite fields. Let V be a non-degenerate quadratic space over s
of dimension m. Let x(V) € {41} be the image of its discriminant disc(V) € x*/(x*)? under
the isomorphism x> /(k*)? = {#1}. By convention, if V' = 0 then det(V) = disc(V) = 1 and
X(V) = +1. Denote by O(V) the orthogonal group of V. Then we have the well-known formula

m/2—1

20(2)(1—x(V) - 72 TI (1—q7%), mis even,
_ i=1
#OMIW =0 e |
2‘1(2) [T 1—q¢?), m is odd.
i=1
This can be uniformly written as
(3.2.0.1) #0(V)(r) = 20 (1 —sgn(V)g™?) T] (1 —a%)
1<i<m/2
(3.2.0.2) — 2¢(3) (1 4+ sgn(V)g—™/2)"! I (-¢%
1<i<m/2
where we define
san(V) = x(V), mis even,

0, m is odd.

Notice the formula is true even for m = 0 when interpreted as (3.2.0.2]).
More generally, for a possibly degenerate quadratic space U over k, we take an orthogonal
decomposition

(3.2.0.3) U=UyU,

where Uj is non-degenerate and U; is the radical of U, and define

x(Up), dimUy is even,

(3.2.0.4) sgn(U) := sgn(Uy) =
0, dim Uy is odd.

This is independent of the decomposition ([3.2.0.3]). Similarly, define

0, dim Uy is even,

(3.2.0.5) sgn’(U) ==
x(Up), dimUy is odd.

These two definitions can be written uniformly: for any integer m, define

x(Uy), dimUy=m (mod 2),

(3.2.0.6) sgn,, (U) ==
0, dimUp=m+1 (mod 2).

Then sgn = sgn,.,, and sgn’ = sgn, 4.
The following lemma is a generalization of [Kit93 §5.6 Exercise 4].

Lemma 3.2.1. Let U be a quadratic space over k of dimension n whose radical has dimension t.

Let V' be a non-degenerate quadratic space over k of dimension m > n. Let O(U,V) be the set of
11
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isometries from U into V. Then O(U,V') has size
n(2m—n—1) —m —(m—n— — —21
#OWU,V)=q = (1-sgn(V)-¢ ™) (1—x(V)sgn,, (U)-qg~"—=D/2)~L. 1T (1-q7%).
(m—n—t)/2<i<m/2
Namely,

n(2m—n—1)

#O(U,V)=q 2  (1-sgn(V) ¢ ™?)

(14 x(V)sgn(U) 'q_(m_"_t)/z) : II (1 —g%—m), m is even,
1<i<(n+t) /2

(1+ x(V)sgn'(U) - g~ (m=n=0/2).. [T (Q—¢* ) m is odd.
1<i<(n4t+1)/2

Proof. The group O(V)(k) acts transitively on O(U,V). Fixing an isometry ¢ € O(U,V) and
identifying U as a quadratic subspace of V' using ¢, we find the stabilizer of O(V') on ¢ is isomorphic
to
{geO(V):glv =1} = {gc O(Uy) : glv, = 1} = H.

Here Uy, U; are as in decomposition (203 and Uy C V is the orthogonal complement of U.
Notice that U; C UOl is totally isotropic. Let Us be the orthogonal complement of Uy in Uol. Let
P=MN C O(UOL) be the parabolic subgroup stabilizing the flag 0 C U; C Uy C UOL. Then
H = M'N C P, where M/ C M ~ GL(Uy) x O(Uy/Uy) is the subgroup 1 x O(Uz/U;). Notice
that we have an isomorphism as affine varieties N = Hom(Uy, U /Uy ) x A2(Uy). It follows that the
number of isometries is equal to
o v) = FOVE) _ #OV)(x) |

#H(k)  #O0(Uz/Ur) (k) - # Hom(Uy, Uz/Uh)(k) - # A (Ur)(k)
Notice that dimV = m, dimUs /Uy = m —n — t, and

# Hom(Uy, Uy/Ur)(k) = ¢/ 70, 4 A% (Uh)(k) = ().

We compute

(I—sgn(V)-¢™?) I (1—¢%)

#OV)(k) n@mAh) 1<i<m/2
#H(k) (1 —sgn(Uz/Uy) - g~ (m=n=0/2) [ (=g
1<i<(m—n—t)/2
n(2m—n—1) —m —(m—n— —21
=q¢ 7 (L—sgn(V)-q ™)1 +sgn(Us/U1) -q~ " 7/2) I1 1—q*)

(m—n—t)/2<i<m/2

Notice that

[T (1—¢*™, m is even,
—2i <i<(n+t)/2
[I -a=¢"" . |
(m—n—t)/2<i<m/2 ‘ I1 (1 — ¢ m+D) " mis odd.
1<i<(n+t+1)/2

Moreover,

x(V)-sgn(U), m is even,
sgn(Us/Un) = sgn(Uy") = (V) sen () ,
X(V) -sgn’(U), m is odd.

12
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This completes the proof. O

We deduce the following (well-known) counting formula for totally isotropic subspaces.

Lemma 3.2.2 (number of totally isotropic subspaces). Let V' be a non-degenerate quadratic space
over k of dimension m. Let Sy(V') be the set of totally isotropic k-subspaces of dimension b in V,
and Sp(V') := #8y(V). Then

(@™ — x(V)) (@™ + x(V)) TI2Z1 (™% — 1)

b i
S0 = s g
Hli)=1(qi -1)

Proof. The group O(V')(k) acts transitively on the set Sp(V). Fix a totally isotropic subspace

, M 1S even,

, m s odd.

U € §(V), then we have a surjection
O, V) = S(V), ¢+— (U)

with each fiber in bijection with GL(U)(k). Hence Sy(V') = %. Therefore by Lemma [3.2.1]
we know that Sp(V') equals

b(2m—b—1)

(1 = sgn(V) - ) (1 = (V) s (U) - g~ (1 )
¢ Tl (1 - a7)
which simplifies to the desired formula, as in this case x(V')sgn,,(U) = sgn(V) is equal to x(V)

)

when m is even and is equal to 0 when m is odd. O

We record some consequences of Lemma [3.2.2] which will be used throughout this article often
without explicit reference.

Corollary 3.2.3. Let V be a non-degenerate quadratic space over K of dimension m.

(i) The number of isotropic lines in V' is equal to

(@™ = x(V) (™7 + x(V))

1 , M 1§ even,
Sl(V) N m—1 7=
q -1 .
- m s odd.
q—1
In particular,
(2, m=2, x(V) = +1,
07 m = 27 X(V) = _17
SiV)=<9q¢+1, m=3,
(¢+1)% m=4, x(V)=+1,
(P +1, m=4, x(V)=-1
(ii) The number of isotropic vectors in V is equal to

¢ (Vg™ = x(V)g™ P, mis even,

m—1

(=15 (V) +1=

, m s odd.
13
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3.3. Formulas in terms of weighted lattice counting: Theorem of Cho—Yamauchi.

Definition 3.3.1. Let L be a quadratic Op-lattice of rank n. Denote by L, := L®o,, k, a (possibly
degenerate) quadratic space over k, and

sen(L) = sgn(Ly), sen'(L) = sgn'(La),  sgn,,(L) = sgny, (L)

as in Equations (3:20.4), (32.0.5) and (3.2.0.6). By definition, if L is self-dual, then sgn,, (L) =
X(L).

We have the following explicit formula for local densities in terms of weighted lattice counting,
generalizing the theorem of Cho—Yamauchi.

Lemma 3.3.2 (Cho—Yamauchi). Let L be a quadratic Op-lattice of rank n. Then

(3.3.2.1) Den(H;,,L) = Z g HI=mUE L) (g sgn(HE,) - ¢~ ™/2)
LCL/ICLY

(1+ esgn,, (L) - g~ M HED)/2) 11 (1—q72).
(m—n—t(L"))/2<i<m/2

Here the sum runs over all integral lattices L' C Lp such that L C L', and
((L'/L) :=lengthy, L'/L.

Proof. By [CY20, Equation (3.4)] (replacing 2k there by m), we have

_n@m-—n-1)

Den(H:,,L)=q = - Z g D O (L (HE) ).
LCL'CLY
Here O(U,V) denotes the set of isometries from U to V as in Lemma B2l Strictly speaking,

[CY20] only treats the case m is even and € = +1, but the same proof goes through as Hj, is
self-dual.
It follows from Lemma [3:2.1] that

Den(Hp L) =y gm0 (1 —sgn(Hy,) - g™?)
LgL/gL/V
(1= esgn,, (L) - g~ (= =ED/2) =1 11 1—q%)
(m—n—t(L"))/2<i<m/2

= Z q(n+1_m)£(L//L) . (1 — Sgn(Hﬁl) . q_m/2)

LCL'CLY
(14 esgn,, (L) - g~ (m—n=tLD)/2y. I1 (1= q2),
(m—n—t(L"))/2<i<m/2
This completes the proof. 0

We have the following induction formula for local densities, generalizing the results of Cho—

Yamauchi and Katsurada.
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Lemma 3.3.3 (Induction formula). Let L’ be a quadratic Op-lattice of rank n—1 with fundamental
invariants (a1, ,an—1). Let L = L’ +(x) and L = L’ + (w'x) where x L L” with val(z) > an_;.
If m is even, then

Den(HE,, L) = ¢"t'™ . Den(HS,, L) + (1 — eq”™?)(1 4+ eq~™=2/2) . Den(HE, ,, L°).

m—2>
If m is odd, then

Den(HS,, L) = ¢"t'=" . Den(HS,, L) + (1 — ¢~ ™ V). Den(HE, ,, L°).

m—2>

Proof. When m is even and ¢ = +1, this is proved in [CY20, Corollary 4.10] (see also [Kat99,
Theorem 2.6 (1)]). The general case can be proved similarly. More precisely, consider the terms in
B32ZT) indexed by lattices L C L’ C L'V depending on L C I or not.

The sum of terms in 3.21) with L’ satisfying L C L’ evaluates to

q(n+l—m)(Z(L’/L)—Z(L’/Z)) -Den(an,Z) _ qn+1—m . Den(an,I}).

Now we consider those L"’s satisfying L ¢ L'. In this case the image of z in L/, is nonzero, hence
by Nakayama’s lemma, there exists a quadratic Op-lattice M’ of rank n—1 such that L' = M’ + (z)
and L = M + (x), where M = L N M’. Since val(z) > a,_1, we know that M and L’ has the
same fundamental invariants and moreover Den(H¢,, M) = Den(HZ,, L) (J[CY20, Remark 4.3 (5)]).
So by [CY20, Proposition 4.8] (specialized to d =1 in the notation there), the sum of terms in
@320) with L' satisfying L ¢ L’ evaluates to

S QD) D) (1 Sgan(HE,) - g2

LbcMm/CMm!V
L/=M'+(z)

(1+esgn,, (L) - g~ tED)/2). 11 (1-q72).
(m—n—t(L"))/2<i<m/2

Since t(M') = t(L') — 1, 6(M’/L?) = £(L' /L) and sgn,,_5(M') = sgn,,,(L'), this evaluates to

(1= sgn(Hs,) - q~™/?) I1 (1—q%)

(m—2)/2<i<m/2 ) c b
(1 —sgn(HE,_,) - q—(m—2)/2) Den(Hy, 5, L").
Notice that the extra factor evaluates to
1 —sgn(HE,) - q~™/? 1—qg*
( ) ) (m—2)/12_£i<m/2( ) B (1 —eq ™?)(1 +eq~m=2/2), m is even,
(1—sgu(Hy, o) - g~ (m=2/2) (1—q 1), m is odd.
This finishes the proof. O

Our next goal is to define normalized local Siegel series and derive explicit formulas for them
(Theorems B.45, B.5.4 and B.6.T]). We distinguish two cases depending on the parity of the corank
of L in H},.
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3.4. Odd corank case.

Definition 3.4.1. Let L be a quadratic Op-lattice of rank n. Define the normalizing polynomial
(in the odd corank case) Nor®(X, L) € Q[X] to be
(3.4.1.1) Nor®(X,L) = (1 —sgn(Hz,,) ¢ ™2X) [ @-q¢%X?).
1<i<(n+1)/2
Notice that the dependence of Nor®(X, L) on L is only its rank n. By Lemma B.3.2] we have for
all k > 0,
Nor*(¢~", L) = Den(Hy | 1 o1, Hy,)-

Definition 3.4.2. Define the (normalized) local Siegel series of L (in the odd corank case) to be

the polynomial Den®(X, L) € Z[X] such that for all £ > 0,
Den5(q—k L) = Den(Hy | o, L) _ Den(H; 149y, L)

Nor(¢~%,L)  Den(H: t1gomHE)

Define the central derivative of the local density or derived local density to be

d
ODen®(L) = ~Ix X:1Den€(X, L).
Notice that if L is not integral then Den®(X, L) = 0 and hence 0Den®(L) = 0.
Remark 3.4.3. By definition Den®(M, L) only depends on the isometry classes of M and L, and

hence Den®(X, L) and dDen®(L) only depends on the isometry class of L.

Definition 3.4.4. Let ¢t > 1, s € {£1,0}, ¢ € {£1} such that if £ — 1 is odd then s = 0. Define
weight polynomials

mt,s;X) = (1+s-¢"V2X)  J] (1-¢"X?), m(t sX):=m(tseX).
0<i<(t—1)/2
By convention, define m?(0, s; X) = 1. Define weight factors
0, t =0,
m(t,s; X) =< —es, t=1,
2(1 +es - ¢t=1/2) [hcici1y21—¢%), t>2.

Now we have the following explicit formula for the local Siegel series Den®(X, L), generalizing
[CY20L Corollary 3.16] (the case n is odd and € = +1).

me(t, 3) = —d—X
X=1

Theorem 3.4.5. Let L be a quadratic Op-lattice of rank n. Then
Den*(X,L) = Y X*F/B . m (L)), sgn, 4 (L); X).
LcrcLY
Proof. Take m =n+ 1+ 2k in Lemma [3.3.2] we obtain that

Den(H; 4o, L) = Z g 2HULIL) (1 — sgn(HE,,) - g (TD/2k
LCLICLY

(1 + esgny (L) - gD II (1—q%).
—(t(L)~1)/2+k<i<(n+1)/2+k
16
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Taking the ratio we obtain

I)en(}{5+1+2er)

Nor®(¢=*, L)

= 3 s, (1) (D2 T (g )
LCL/CLY — (L") —1)/2+k<i<k

= 3 TR esgn, (1) M) L (=gt
LCL/CLVY 0<i<(t(L/)—1)/2

= Z X2 IL) e (L), sgn,, 1 (L); X)‘ .
LCL/CLY X=qFk

This completes the proof. O

We have the following functional equation for Den® (X, L).

Theorem 3.4.6 (Ikeda). Let L be a quadratic Op-lattice of rank n. Then
1
Den®(X, L) = w®(L) - X"*@) . Den® (E’ L) \

where the sign of functional equation is equal to

1+1

(3.4.6.1) w (L) == (det L, —(—=1){"2 D) g e(Lp) € {£1},
where u € O, such that x(u) = e.

Proof. This is [Ikel7, Theorem 4.1 (2)] when n is odd and ¢ = +1. The same proof works in
general. O

Corollary 3.4.7. If Den®(X, L) has sign of functional equation w®(L) = —1, then
Dens(L)= S m(H(L'), gm0 (L)),
LcL'CLVY

Remark 3.4.8 (A cancellation law for 0Den®(L)). For a self-dual Op-lattice M of rank r and an
Op-quadratic lattice L” of rank n — r, by Theorem BZ.5 we have

Den®(X, L’ @& M) = Den® (X, L)
for the unique ¢’ € {1} such that HS_, ., & M = HE . Therefore we obtain a cancellation law:
(3.4.8.1) dDen®(L> & M) = dDen’ (L).

Remark 3.4.9 (Relation with local Whittaker functions). Let A = HZ, be a self-dual quadratic
Op-lattice of rank m. Let L be a quadratic Op-lattice of rank n. Let T' = ((x;,%}))1<i j<n
be the fundamental matrix of an Op-basis {x1,...,2,} of L, an n x n symmetric matrix over
F. Associated to the standard Siegel-Weil section of the characteristic function g = 1p» and
the unramified additive character v : FF — C*, there is a local (generalized) Whittaker function
Wr(g, s, ¢0) (see §I1.2] §IT.3] for the precise definition). By [Kud97bl, Proposition A.6], when g = 1,
it satisfies the interpolation formula for integers s = k > 0 (notice v(V) = 1 in the notation there),

Wr(1,k, o) = Den(A @ H,, , L).
17
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Assume m = n + 1. By Definition 3.4.2] it follows that its value at s = k is

WT(17 k) (100) = Den(Ha-i-l-i-Zkv L) = Dena(q_k7L) : Nora(q_k7L)7

n

and when w®(L) = —1, its derivative at s = 0 is
Wi1(1,0,9) = 0Den®(L) - Nor®(1, L) - log q.

Plugging in (B:41.1]), we obtain

(34.9.1)  Wp(1,0,¢0) =Den(1,L) - (1 —sgn(H5 ) -¢ "2 [ (1-¢7),
1<i<(n+1)/2

(34.9.2)  Wi(1,0,0) = ODen*(L) - (1 —sgn(Hyy) - ¢ ") T (1—¢7%)+logg.
1<i<(n+1)/2

3.5. Even corank case.

Definition 3.5.1. Let L be a quadratic Op-lattice of rank n. Define the mormalizing polynomial
(in the even corank case) Nor’® (X, L) € Q[X] to be

Nor’(X, L) = (1 —sgn(H;) - ¢ "?X)(1 —ex(D)X)~" J[ (1—¢7%Xx?).
0<i<n/2

Notice that the dependence of Nor®(X, L) on L is only its rank n and x(L).

Definition 3.5.2. Define the (normalized) local Siegel series of L (in the even corank case) to be
the polynomial Den’* (X, L) € Z[X] such that for all k& > 0,

Den’ (¢=*, L) := Den(HZHk,L)'
: Nor* (¢, L)
Definition 3.5.3. Let t > 1, s € {£1,0}, x € {£1,0}, € € {£1} such that if ¢ is odd then s = 0.
Define weight polynomials
W (s, X) = (L+s-¢2X) (1= x-X) [[ (1=¢¥X?), w*(tsxX) =w(ts x;eX).
0<i<t/2

By convention, define m*¢(0, s, x; X) = 1.

Similar to Theorem B.45] we have the following explicit formula for Den"a(X , L), generalizing
[CY20l Corollary 3.16] (the case n is even and € = +1).

Theorem 3.5.4. Let L be a quadratic Op-lattice of rank n. Then
Den(X,L) = Y (¢"2X)*F/B) . m"(#(L'),sgn,, (L), x(L); X).
LcL'cLY
Proof. Take m = n + 2k in Lemma [3.3.2] we obtain

Den(Heyg, L) = 3 qU=204E/D) (1 _son(HE) - q~/2h)
LcrL'cry

- (1+esgn, (L) - ¢"/27F) 1T (1—-q%).
_H(L') )2+ k<i<n/2+k
18
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Taking the ratio we obtain
Den(Hy o5 L)
Nor(¢*, L)

= > U G esgn, (1) - PR (1 —ex(L) g 7F) 11 (1
LCL/CLY —t(L')/24+k<i<k

—4q

—22')

= Y DA s (D) PR —ex(D)-0h) [ (- )

LCL/CLVY 0<i<t(L')/2

. <q1/2X>2“L’/L>-m“(t(f/),sgnn<L’>,x<L>;X>\

LCL/CLY X=qk

This completes the proof.
We have the following functional equation for Den® (X, L).

Theorem 3.5.5 (Ikeda). Let L be a quadratic Op-lattice of rank n. Then

Den’ (X, L) = (¢"2X)?1 ™) . Den' <LXL> |
q

Proof. This is [Ikel7, Theorem 4.1 (1)] when n is even and € = +1. The same proof works in

general.

Corollary 3.5.6. Let L be a quadratic Op-lattice of rank n. Then

(L) L, t(L,) =0,
Den”(L,L)= Y ¢ 2 - {(1—ex(L)g™), L) =1,
e (1 + esgn, (L)1 —ex(L)g™Y), (L) =2

Proof. By Theorem [3.5.5] we have

val(L)

Den”*(1,L) = ¢l 2 1Den**(¢7%, L).

By Theorem B.5.4]

Den”(q~',L)= > ¢ "B (t(L)),sen, (L), x(L);¢ 7).
LcrcLy

Notice that the weight polynomial evaluates to

1, t=0,
_ (1—exqg™), t=1,
me(t s, x;q ) = )
(14es)(1—exq ), t=2,
0, t > 2.
val / val( /)
This completes the proof since gl el g i) = qL%J.
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3.6. Induction formula.

Theorem 3.6.1 (Induction formula). Let L’ be a quadratic Op-lattice of rank n — 1 with fun-
damental invariants (ay,--- ,an—1). Let L = L’ + () and L = L’ + (w'x) where x L L’ with
val(xz) > ap—1. Then

(3.6.1.1) Den®(X,L) = X?-Den®(X,L) + (1 — ex(L")X)"}(1 — X?) - Den’* (X, L").

Proof. Tt follows immediately from Lemma [3.3.3 by evaluating both sides at X = ¢~* (k > 0) using
the definition of Den®(X, L) (Definition BZ.2) and Den’* (X, L) (Definition B.5.2)). O

Corollary 3.6.2. Assume the situation is as in Theorem [F.6.1. Assume that w*(L) = —1. Then

—ex(L’) - Den’(1, L"), x(L")#0

dDen® (L) — ODen® (L) =
2 - Den’ (1, L"), x(L*) = 0.

Proof. Take —%b{:l on both sides of (B.6.1.T). O

3.7. Lemmas on quadratic lattices.

Lemma 3.7.1. Let W = W1©W,, where W; is a quadratic space over F' of dimension m; (i =1,2).
Then

(1) det(W) = det(W7) det(Wa).
(ii) disc(W) = (—1)"™"2disc(W1)disc(W2). In particular, x(W) = x(W1)x(Wa) if mimqy is even
and at least one of x(W;) is nonzero.

(iii) €(W) = e(W1)e(Wa)(det(W1), det(Wa)) p.

Proof. (i) It follows from the definition.

(ii) It follows from () and (™37%) = ("5}) + (52) + mimo.

(iii) Choose an orthogonal basis {ey, ..., en, } of Wi and an orthogonal basis {€m,+1,- - €m,+ms |
of Wy. Let u; = (e, €;). Then

(W) = I wwr

1<i<j<mi+me
s | R I1 (i, uj)p - I (e
1<i<g<ma m1+1<i<j<mi+ma 1<i<my

m1+1<j<mj+mg

= c(W)e(W2) <H15i§m1 i Hm1+15j5m1+m2 uj)F
= E(Wl)e(Wg)(det(Wl),det(Wg))F.

This completes the proof. O

Lemma 3.7.2. Take m =n+1 and ¢ € {£1}.

(i) Let L C V5, (resp. L C Hy ) be a quadratic Op-lattice of rank n. Then the sign of functional
equation (BA6.T) w*(L) = —1 (resp. +1). In particular, a quadratic Op-lattice of rank n cannot

be simultaneously embedded into Hf;l 7 and Vi, as quadratic submodules.
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11) Let e a quadratic Op-lattice of rank n—1. Assume that can be simultaneously embedde
Let I b d OFp-l f rank 1. A hat L’ b l l bedded
into Hy, p and V3, as quadratic submodules. Then X(L) =0 or x(L’) = —«.

Proof. (i) Let L C V, (the case L C Hy p is parallel). Write Vi, = Lp & L#. Then by Lemma
B7I @) (@) and (a,a)r = (a,—1)F for any a € F*, we obtain

1= €(V5,) = e(Lp)e(L) (det(L), det(V5,) det(Lr)) = e(Lr)e(Li) (det(Lr), - det(V5,)).

The result then follows as ¢(L) = +1 (L7 is 1-dimensional).
(ii) If not, assume that y(L’) = . Write HY p & L& W and V¢, = L) & W', where W and W’
are quadratic spaces over F' of dimension 2. By Lemma B.7.1] (i), we have

e(Hy, p) = e(Lp)e(W)(det(Ly), det(W)r,  e(V5,) = e(Ly)e(W’)(det(Lip), det(W')) .

Since x(H;, p) = x(V5,) = ¢, and X(L?) = ¢, we know that det(W) = det(W’) and x(W) =
X(W’') = +1 by Lemma B.71] [{) (@). Since W and W’ are of dimension 2, we know that ¢(W) =
e(W') = +1. It follows that €(H;, ) = €(V},), a contradiction. O

3.8. Horizontal lattices. Take m =n + 1 and € € {£1} in this subsection.

Definition 3.8.1. Let L’ C V¢, be an Op-lattice of rank n — 1.

(1) Say L’ is co-isotropic (in V%), if the 2-dimensional quadratic space (L5,)+ C V¢, is isotropic
(i.e., x((L5)*) = +1); and co-anisotropic otherwise. By Lemma B.71] (), we know that L is
co-isotropic if and only if y(L?) = .

(2) Say L’ is horizontal (in VE)), if L’ is integral and one of the following is satisfied:

(2) H(L?) <1,
(b) t(L?) = 2 and esgn,,_(L?) = +1.

Definition 3.8.2. Let L’ € V¢, be an Op-lattice of rank n — 1. Denote by Hor®(L") the set of
horizontal lattices M” C sz such that I’ C M".

Such horizontal lattices parametrize the horizontal parts of the special cycle Z(L), hence the
name (see Theorem [(.3.T]).

Corollary 3.8.3. Tuke m =n+ 1 and € € {*1}. Let L’ C V¢, be a quadratic Op-lattice of rank

n — 1 with fundamental invariants (ai,- -+ ,ap—1).
(i) If LY is co-isotropic, then Denbe(l,Lb) =0 and Hore(Lb) =g.

(ii) Assume that L’ is co-anisotropic. Let L = L’ + (z) and L = L’ + (w™'z) where x L L with
val(z) > an_1. If X(L") # 0, then

(M%) . t(Mb) -
dDen®(L) — dDen® (L) = Den’*(1, L") = Z g (1+qY, M) =1,
MPeHor® (L") 2(1 + q—1)7 t(Mb) -9
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If x(L?) = 0, then

Lval(Mb)J 1, t(Mb) =
2 .
b

~ 1
dDen®(L) — dDen® (L) = 2Den’* (1, L") = 2 q ’
(L) (L) (1,L%) > % HMY) =2

MP€eHor® (L")

Proof. (i) Since x(L’) = ¢, by LemmaB.7.2] () we know that L’ cannot be embedded into HE, as a
quadratic submodule. Hence Den® (1, L?) = 0 by Definition By definition, if +(M®) = 2, then
1 +esgn, (M) =2 when M is horizontal, and 0 otherwise. Then the summation in Corollary
can be written as over M” € Hor®(L”), and hence Den’ (1, L”) = 0 implies that Hor*(L’) = @.

(ii) Since x(L”) # ¢, we know that

1+q7% x(L°) #0,

L—ex(L)g " = X
1, x(L7) = 0.

Moreover, if x(L°) = 0, then L%, does not admit self-dual lattices, so ¢(M”) # 0. By Lemma
(@), we have w®(L) = —1. The result then follows from Corollary and Corollary O

Lemma 3.8.4. Take m =n+1 and e € {#+1}. Let M” be an Op-lattice of rank n—1 which embeds
simultaneously into V<, and HE, as quadratic submodules. Assume that M° = My N HE, (under the
embedding of M” into HE,). Then M" is horizontal (in V).

Proof. To simplify notation, write M = M® and H = H¢, for short. Since M = Mp N H, we know
that H/M is a free Op-module of rank 2. We can choose e, e,+1 € H whose images in H/M form
an Op-basis of H/M. Then H = M + {e,,e,+1). Choose an orthogonal basis {eq,...,e,_1} and
let u; = (e;,e;) € F*. The fundamental matrix of the Op-basis {e1,...,e,+1} of H has the form

uq 0 0 (e1,¢€n) (e1,€n+1)
0 Uo 0 (e2,en) (e2,€n+1)
T= 0 0 : :
(ense1) (ense2) -+ (e en) (ens €nt1)
(ent1,€1) (ent1,€2) -+ (en+1.€n) (ent1,ent1)

If t(M) > 3, then at least three of u;’s have strictly positive valuation, and hence the rank of T'
mod w is at most n, contradicting that H is self-dual. Hence t(M) < 2.

Now assume t(M) = 2. We would like to show that esgn,, (M) = 1. Let M,,_3 = (e1,...,en_3),
M’ = {ep_2,en—1) and H = M’ + (ey, ep11). Then we may choose the basis {eq,...,e,4+1} such
that val(u;) =0fori=1,...,n—3, val(u;) > 0 for i =n—2,n—1, and M, _3 is orthogonal to M’
and H'. Then esgn,,_;(M) is equal to

X(H/ S Mn—3) Sgnn—l(M/ S Mn—3)
(H') sgny (M) (as M,,_3 is self-dual)
(H") (sgny(M') =1 as M’ has rank 2 and type 2).

22
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On the other hand, the fundamental matrix of Op-basis {€,_2,...,en+1} of H' has the form

Up—2 0 (en—27 en) (en—2, en—l—l)
T/ _ 0 Up—1 (en—la en) (en—17 en—i—l)
(eru en—2) (ena en—l) (erw en) (ena en-‘,—l)

(en—l—la en—2) (en—l—l, en—l) (en—l—la en) (en—l—h en—l—l)

Since val(u;) > 0 for i =n — 2,n — 1, we know that
det(T") = (det B)> (mod w)

is a square, where

B— (en—27 en) (en—27 en—l—l)

(en—la en) (en—la en—l—l)
4
2

Hence x(H') = X((—l)( ) det T') = 41 as desired. O

4. SPECIAL CYCLES ON GSPIN RAPOPORT-ZINK SPACES

In this section we take F' = @Q,. From now on we fix m =n+1> 3 and € € {£1}. To simplify
notation we will suppress the superscript € and the subscripts m and n when there is no confusion
(see Convention §2.4)). Let V = V£ be a self-dual quadratic Op-lattice of rank m with x(V') = eﬁl

4.1. GSpin Rapoport—Zink spaces RZq. Associated to V we have a local unramified Shimura-
Hodge data (G, b, 1, C) (in the sense of [HP17, Definition 2.2.4]) constructed in [HP17, Proposition
4.2.6], where G = GSpin(V), b € G(F) is a basic element, y : G,, — G is a certain cocharacter, and
C = C(V) is the Clifford algebra of V' (which has rank 2"). See [HP17, §4.1] or |[LZ18| §2.1] for a
review on GSpin groups. Let D = Homg,, (C,OF) be the linear dual of C. By [HP17, Lemma 2.2.5],
this local unramified Shimura-Hodge data gives rise to a (unique up to isomorphism) p-divisible
group X over & whose contravariant Dieudonné module D(X)(Op) is given by Do, with Frobenius
F = bo 0. Moreover, the Hodge filtration Fil'D(X)(%) C Ds is induced by a conjugate of .

Let (8a)acs be a finite set of tensors s, in the total tensor algebra C® cutting out G from GL(C).
Then we ob