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KNOWLEDGE PARTITIONING IN THE INTER-FIRM DIVISION OF LABOR:

THE CASE OF AUTOMOTIVE PRODUCT DEVELOPMENT

ABSTRACT

This paper demonstrates the importance of knowledge for effective
management of outsourcing. Drawing on an empirical study on automakers’
management of supplier involvement in product development in Japan, this paper shows
that the level of own knowledge is critical for automakers to gain better outcome from
engineering outsourcing. While the actual tasks of designing and manufacturing
components could be outsourced, automakers should retain the relevant knowledge to
obtain better quality of component design. Knowledge partitioning should be
distinguished from task partitioning.

Furthermore, the results indicate that effective pattern of knowledge
partitioning differs by the nature of component development project in terms of
technological newness. For regular projects, it is more important for automakers to have
a higher level of architectural knowledge (how to coordinate various components for a
vehicle) than of component-specific knowledge, which is supposed to be provided by
suppliers. However, when the project involves new technology for the supplier, it is
important for the automaker to have a higher level of component-specific knowledge to
solve unexplored engineering problems together with the supplier. In innovative
projects effective knowledge partitioning seems to demand some overlaps between an
automaker and a supplier, rather than efficient and clear-cut boundaries.

This paper further reveals that some automakers manage knowledge better than
others by combining various organizational mechanisms, including career development
policies, extensive documentation of technological information, internal training
programs, and incentive schemes. Difficulty of implementing those mechanisms in a
consistent and complementary manner seems to explain why there is a significant
variance among automakers in knowledge level.

(254 words)
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INTRODUCTION

Outsourcing has become an important strategy for many firms. Collaboration

with external organizations could bring the firm benefits like reducing the fixed costs,

gaining flexibility, and capitalizing on specialists’ expertise (Miles and Snow 1984;

Jarillo 1988; Johnson and Lawrence 1988; Dertouzos, Lester and Solow 1989; Kanter

and Myers 1991). Product development is no exception. The Wall Street Journal (April

22, 1997) reported that with many large companies scaling back internal research and

development, small product-development companies were seizing a chance to pick up

the slack, and large companies preferred to farm out their research and development to

smaller companies. According to a survey with leading Western companies (Misawa

and Hattori 1998), approximately 80% of their engineering tasks were carried out

internally in 1998, whereas about 50% will be outsourced in 2000 according to their

plans.

However, outsourcing has some downside risks. A firm dependent on external

organizations’ engineering capabilities may lose some negotiation power and become

vulnerable in technological capability. Fine and Whitney (1996) and Fine (1998)

suggested that it is important, therefore, to distinguish dependence for capacity and

dependence for knowledge. In the former case, the company can carry out the task in

question, but for some reasons extends its capacity by means of a supplier. In the latter

case, the company needs the item but does not know how to do the task, and thus relies

on a supplier. They argued that if a company is dependent for capacity but not for

knowledge, it could live with outsourcing without substantial risks.

This argument implies that we should distinguish task partitioning (von Hippel

1989) — who does the tasks of design and manufacturing among organizations — from
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knowledge partitioning —who has knowledge for the tasks among organizations. It is

knowledge partitioning, not task partitioning, that might matter more in effective

outsourcing. Attention to the role and management of knowledge for outsourcing

echoes growing interests in knowledge in current management research.

However, there has been little empirical investigation on the relationships

between knowledge and outsourcing. Many questions have yet to be explored. How

much is knowledge indeed critical for effective outsourcing? What types of knowledge

are particularly important to retain? How could firms maintain knowledge while

outsourcing the actual tasks of manufacturing and design? In an attempt to answer these

questions, this paper empirically examines the importance of knowledge in the

management of inter-firm division of labor for product development, and explores how

firms manage critical knowledge internally. The field is the Japanese automotive

industry. A typical passenger car consists of more than 30,000 components and many

suppliers are heavily involved in development of new vehicles. Effective and efficient

management of this complicated division of labor with suppliers is a challenging task

and critical for an automaker’s competitive advantage.

The remainder of this paper is organized as follows. First, I briefly review what

previous studies have discussed on the role of knowledge in outsourcing. The next

section, drawing on a set of questionnaire survey data, analyzes whether knowledge is

related to the performance of component development with suppliers. The paper further

goes on to explore, primarily based on interviews, why some automakers outperform

others in managing knowledge for effective outsourcing. A focus is put on

organizational mechanisms for enhancing and maintaining engineering knowledge. The

results provide some implications for sources of inimitable competitive advantage. The
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paper concludes with a discussion of implications of this study and future research.

BACKGROUND

Most companies cannot design and manufacture their products without the help

of external organizations. How to manage the division of labor with outside companies

has long been a central issue for managers and researchers. A growing number of

researchers have studied inter-firm relations since a newly conceptualized mode of

economic organization began to attract attention in the early 1980s. This new mode is

typified by cooperative, interdependent, and long-term relations among independent

organizations and it contrasts with the modes of markets and of hierarchies. Many

studies in a variety of disciplines have addressed the actual or potential advantages of

the new mode of inter-firm relations (Williamson 1991; Powell 1990; Piore and Sabel

1984; Saxenian 1994; Miles and Snow 1984; Johnson and Lawrence 1988; Jarillo

1988). In recognition of the potential benefits from collaborative outsourcing, such as

combining different competencies, sharing fixed costs, and gaining economies of scale,

firms have been encouraged to outsource more activities. Growing pressure towards

downsizing in the 1990s has further accelerated such initiatives.

In the case of automotive product development, Clark and Fujimoto (1991)

revealed benefits from the so-called “black-box system,” a practice of inter-firm

division of labor in which a supplier is involved in detailed engineering of individual

components to be installed into a new vehicle based on an automaker’s requirements.

This practice, widely diffused in Japan, reduced overall development lead time and

engineering hours, and thus contributed to Japan’s competitive advantage (Clark and

Fujimoto 1991; Womack, Jones and Roos 1990). In recognition of such advantages,
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American and European automakers have adopted a similar approach and shifted more

engineering responsibilities toward suppliers (Bertodo 1991; Ellison, Clark, Fujimoto

and Hyun 1995; Liker, Kamath, Wasti and Nagamachi 1995; Dyer 1996).

Yet, however close relations a corporation builds with its partners, outsourcing

always involves certain risks. Clark and Fujimoto (1991) pointed to major risks of the

black-box system. Automakers dependent on suppliers’ engineering capabilities may

lose some negotiation power (Pfeffer and Salancik 1978; Porter 1980). Basic design and

styling ideas may leak to competitors through shared suppliers. Losing engineering

expertise in core component areas can render the firm vulnerable in technological

capability over the long term.

At the center of this dilemma lies the issue of how to manage knowledge in

outsourcing. Fine and Whitney (1996) and Fine (1998) identified two categories of

dependency: dependency for capacity and dependency for knowledge. In the former

case, the company presumably can make the item in question and may indeed already

do so, but for reasons of time, money, space or management attention, chooses to

extend its capacity by means of a supplier. In the latter case, the company presumably

needs the item but lacks the skill to make it, and thus seeks an expert to fill the gap. Fine

and Whitney (1996) argued that if the firm retains knowledge, then outsourcing poses

few risks. They described Toyota as an example of a company that is very conscious of

the risk of outsourcing. Toyota has historically been dependent on its affiliated supplier,

Denso, for knowledge about electronic subsystems, but as electronics becomes more

critical for vehicle development it has moved to develop electronic subsystems

internally to regain knowledge of them. It is knowledge, not capacity, that determines

the degree of risks in outsourcing.
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Their argument implies that we should distinguish knowledge partitioning from

task partitioning between firms. Von Hippel (1989) pointed out the importance of task

partitioning in innovation, that is, how an innovation project is divided into tasks and

subtasks that can then be distributed among a number of individuals and perhaps among

a number of firms. Task partitioning generally affects the costs of problem-solvers’

efforts to achieve communication and coordination across task boundaries, thus

influencing the efficiency and effectiveness of the innovation project. To paraphrase

Fine and Whitney’s (1996) claim, firms need consider not only how to partition tasks

and distribute them among firms, but also how to partition sets of required knowledge

and distribute them among firms to reduce potential risks of outsourcing and improve

the efficiency and effectiveness of the innovation project. When a firm divides one

innovation project into two tasks and outsources one to a supplier, for example, it may

be important for the firm to keep the knowledge for the outsourced task within the

organization, rather than outsourcing the knowledge together with the task.

Building on this argument, this paper aims at probing into knowledge

management for outsourcing, a research theme that has attracted limited attention. There

has been little empirical analysis of the relationships between outsourcing and

knowledge. I would like to fill this void, though partially, by addressing two research

questions. First, how much is knowledge indeed important for effective management of

outsourcing? Second, how do firms manage knowledge internally while outsourcing

relevant tasks to external suppliers? The subsequent two sections deal with these

questions, respectively.

IMPORTANCE OF KNOWLEDGE IN OUTSOURCING
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Research Setting and Data

In this section, I analyze the importance of automakers’ knowledge in

managing suppliers’ involvement in product development. In the practice of a “black-

box system” (Clark and Fujimoto 1991), as described above, actual tasks of detailed

design of individual components are carried out by outside suppliers based on the

customer automaker’s requirements. The degree to which an automaker retains relevant

knowledge for developing the component, however, varies by company. Liker, Kamath,

Wasti and Nagamachi’s (1995) survey reported that about 22 percent of U.S. subsystem

suppliers complained that their customer lacked technical knowledge. About 9 percent

of the Japanese suppliers made this complaint, and only about 5 percent of Toyota’s

suppliers mentioned such a complaint.

Component development projects with a “black-box approach” therefore

provide an interesting research setting to examine the relationships between knowledge

partitioning and the effectiveness of outsourcing management. I examine if the level of

an automaker’s knowledge about the component is related to the output quality of

component development, based on quantitative data analysis.

A primary data source was a questionnaire survey to Japanese suppliers. The

purpose of the supplier survey was to collect data on automakers’ knowledge level, their

patterns of supplier management, and component development performance, as

observed by suppliers with multiple customers.1 Each supplier was asked to select one

component development project that was recently done for a new vehicle with the

black-box approach, for each of its major customers. Those suppliers were a preferable

data source to measure the level of each automaker’s knowledge since they could

comparatively observe their customers through everyday interactions. The survey was
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filled in by the person who was actually in charge of, and most familiars with, the

selected development project, such as the Chief Engineer for the project. Table 1 reports

the final responses. Nine suppliers participated in the survey. Each supplier gave five

cases on average, providing 45 cases in total.

** INSERT TABLE 1 ABOUT HERE **

I also conducted interviews both before and after the survey. The preliminary

interviews were conducted to design the survey, and follow-up interviews to

supplement the survey data and further probe into the background behind the survey

results. In particular, the follow-up interviews with automakers focused on the

organizational mechanisms each automaker employed to manage knowledge for

component development within its engineering department. More than 100 managers

and engineers at both automakers and suppliers were interviewed.

Variables

Derived from the survey data, I constructed variables to be used in the

following statistical analysis. Details of variable construction and measurement are

shown in Appendix 2. Each variable is briefly described below.

Dependent variable

CDQ (component design quality) is this study’s dependent variable. It

measures the design quality of the developed component (output performance), based

on multiple items, including performance, costs, conformance quality and structural and

functional coordination with other components. Each item was evaluated by the
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respondent in terms of his/her satisfaction with the outcome, and the relative position in

comparison with the same type of component used for competing vehicle models in the

market, to capture both engineering excellence and market competitiveness.

Independent variable: Knowledge

The level of engineers’ knowledge about component development is the key

independent variable. Eighteen elements of knowledge that automakers’ engineers are

expected to have were identified through my interviews with automakers and suppliers.

They were then categorized into two types.2 One is component-specific knowledge and

the other is architectural knowledge. EKN1 (engineers’ component-specific knowledge)

measures the level of knowledge specific to a component, including technology, cost,

and manufacturing process. EKN2 (engineers’ architectural knowledge ) measures the

level of knowledge about structural and functional coordination with other components

and design for manufacturing. This variable indicates the level of knowledge about the

engineering coordination between the component and other related components, and

was thus named architectural knowledge (Henderson and Clark 1990).3 EKN

(engineers’ knowledge) is the mean of those two variables, thus indicating the level of

total knowledge of the automakers’ engineers to develop the component for vehicles.

Other independent variables

In addition to knowledge, there are some other factors that are likely to have

impact on the performance of component development projects. One area is the pattern

of interaction between an automaker and a supplier during the project, including

problem-solving pattern and communication. Problem solving in a manner that
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integrates across different functions from the early stages has been identified critical for

effective product development (Clark and Fujimoto 1991, Iansiti 1998). PSP measures

the level of early, integrated problem-solving processes with a supplier. This variable

scores high when, for example, the supplier’s initial price/cost estimate was examined

very carefully by the automaker from the beginning of the project, and the automaker

examined the supplier’s manufacturing process and design for manufacturing at the

earlier stage. Communication is another important factor for effective product

development (Allen 1977; Ancona and Caldwell 1992; Brown and Eisenhardt 1995).

COM (the frequency of face-to-face communication between the automaker and the

supplier) measures the frequency (in days per year) of mutual visits by the automaker’s

engineers and purchasing staff and the supplier’s engineers and sales staff.

The nature of relationships between the automaker and the supplier might also

affect component design quality. Two variables were constructed for inter-firm

relations. SLD (the supplier’s sales dependency on the automaker) measures the

supplier’s sales dependency on the automaker. STK (the automaker’s ownership of the

supplier’s stock) is a dummy variable set to 1 if the automaker owned a part of the

supplier’s stock; otherwise 0.

In addition, two variables were constructed to control for task nature and

engineering tools. NWT (technological newness of the project) is set to 1 if the supplier

used a new technology in the component or its manufacturing process for the project;

otherwise 0. CMP (computer system usage) measures the level of three-dimensional

CAD (Computer-Aided Design) and CAE (Computer-Aided Engineering) usage for the

project.

Note that the performance of component development is likely to be affected
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by the level of supplier’s capability. Also, the relationships between the performance

and independent variables might be mediated by the type of components in question. In

order to control for those factors, the score of every variable used in the following

analysis was normalized across responding suppliers. It was normalized by removing

each supplier’s mean, which varies across suppliers reflecting the differences in

suppliers’ capabilities and the nature of component types. The mean was removed, as

shown below, either by taking a difference from the mean, or a ratio to the mean in the

case where the magnitude of a variable’s score differs substantially across suppliers:

X *ij = Xij − Xj    or    X *ij = Xij / Xj

where

X *ij = the normalized score of indicator X by supplier j about the project with automaker i

Xij = the original score of indicator X by supplier j about the project with automaker i

X j = the mean score of indicator X by supplier j

Analysis: Knowledge and Outsourcing Performance

Table 2 reports the regression results for CDQ. Model (1) includes all the

independent variables other than that for knowledge. The result shows that integrated

problem-solving (PSP) and communication frequency (COM) have both significant

effect on CDQ, implying that management of interaction with the supplier is critical. A

supplier’s sales dependency on the automaker (SLD) has a positive and statistically

significant coefficient. A higher sales dependency on the automaker would motivate the

supplier to make more extensive efforts to satisfy that important customer, for example,

by assigning more capable engineers to the project.
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** INSERT TABLE 2 ABOUT HERE **

Model (2) adds the key research variable, EKN (engineers’ knowledge). The

result basically indicates that engineers’ knowledge (EKN) plays a significant role to

gain a better component design. Model (3) estimates the effect of sub-components of

EKN. It turned out that engineers’ architectural knowledge (EKN2) has a larger effect

on CDQ than component-specific knowledge (EKN1). EKN1’s coefficient is not

statistically significant at the 10% level, and its standardized coefficient (beta) is 50%

smaller than EKN2’s.

Further analysis has uncovered a vital role of engineers’ knowledge when a

project involves new technology. Model (4) adds the interaction term of NWT and EKN

to Model (2). While NWT has a negative sign, the interaction term has a positive sign.

A change in R2 from Model (2) to (4) is statistically significant at the 5% level. This

seems to indicate that, while it is difficult to develop technologically new components,

engineers’ knowledge plays an important role to improve CDQ in such cases. It is even

more interesting to observe in Model (5) that the magnitude of the interaction

coefficient is larger for component-specific knowledge than for architectural

knowledge. Again, a change in R2 from Model (3) is statistically significant at the 5%

level. This seems to indicate that engineers’ component-specific knowledge plays a

more positive effect than architectural knowledge in the case of using new technology.4

Overall, the results support that having a higher level of knowledge is

important for automakers to manage supplier involvement in product development. This

implies that knowledge partitioning should be separately designed from task
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partitioning. Between the two types of knowledge, architectural knowledge seems to be

more important than component-specific knowledge. If we understand that component-

specific knowledge is provided by the supplier, who is involved in the project because

of its expertise in the specific component, then a more critical role for architectural

knowledge, which is supposed to be the automaker’s domain and beyond the supplier’s

reach, would be a natural consequence. This finding is consistent with the following

comment from my interviews:

Sometimes a component developed for one automaker is better than for another.
One reason is the difference in their level of knowledge of component
coordination. A good component needs effective coordination, which is not the
area of suppliers’ expertise, but automakers’ (supplier sales manager).

Yet, when we distinguished technologically new projects from regular ones, it

turned out that component-specific knowledge is more critical to gain a higher CDQ for

innovative projects. If an automaker wants to introduce vehicles with new component

technologies ahead of competitors, it is important that its engineers have a high level of

both architectural and component-specific knowledge. This finding echoes the

following comment:

Automaker X has recently changed their policy and has us involved in component
development to a greater degree. It relies on us for designing the component and
we have tried to satisfy their expectation. However, one big difference between this
automaker and some other leading ones lies in the capability to evaluate the
component. Automaker X seems to lack some knowledge and cannot deal with the
state-of-the-art technology of our component. Inevitably this automaker has always
lagged behind other leading automakers in installing technologically new
components (supplier sales manager).

KNOWLEDGE MANAGEMENT

The foregoing findings raise a next critical question for managers. Given the
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importance of knowledge, how could automakers create and maintain a higher level of

knowledge than others? This is this paper’s second question and addressed in this

section.

Maintaining knowledge advantage over competitors is by no means an easy

challenge particularly when the related tasks are outsourced to suppliers. First,

knowledge is more than often obtained through doing things (learning by doing). When

actual tasks of detailed design are carried out by outside suppliers, automakers miss

substantial opportunities to gain relevant knowledge. Table 3 provides evidence,

compiled from another set of our recent questionnaire surveys with Japanese suppliers.

It shows that as more tasks of engineering are shifted to suppliers, from a “detail-

controlled system” to a “black-box system,” the level of automakers’ knowledge tends

to decline. This tendency was also witnessed in the following comment of an

interviewee.

In the past we shifted design responsibilities of some components to suppliers. We
generally came up with some very good designs for a few years, immediately after
suppliers got involved in component design. However, as our engineers’
knowledge about the component faded away, the design quality seemed to fail to
improve as expected. I think that we can achieve better designs when both the
supplier and our engineers have extensive knowledge (automaker engineer).

** INSERT TABLE 3 ABOUT HERE **

Second, even if an automaker could have a high level of knowledge, it may be

diffused to competitors through shared suppliers. According to my interviews, some

suppliers intentionally transfer technological and managerial information from one

automaker to another, and some automakers try to learn new technology and effective
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practices from others through the common suppliers.5

When we recognize the inherent difficulty to keep knowledge advantage while

outsourcing actual tasks to shared suppliers, it is intriguing to find in the data set

analyzed in the previous section that some automakers have a higher knowledge level

than others despite the fact that they shared the same suppliers with competitors. What

mechanisms lie behind better management of knowledge at some automakers? This

question is particularly interesting from the viewpoint of strategy research, which has

been concerned with inimitability of competitive advantage. My interviews, in

particular with automakers, have hinted at the following answers.

One approach to enhance architectural knowledge and thus to improve

coordination among engineering functions is to rotate individual engineers across

different types of component over time.6 Through own hands-on experiences in

designing other related components in the past, individual engineers could obtain a high

level of architectural knowledge and coordinate effectively with other engineers. It has

been reported that in Japanese companies engineers are more frequently transferred

across different functional areas than in the U.S (Lynn, Piehler and Kieler 1993; Aoki

1990). This difference was sometimes attributed to the better capability of internal

coordination in the innovation process (Nonaka and Takeuchi 1995; Kusunoki and

Numagami 1997).

Figure 1 exhibits career patterns of Japanese automakers’ engineers. This is

based on my questionnaire survey with eight automakers in Japan, which was carried

out in summer, 1997. Eight types of components were specified and individual

engineers in charge of those components at each automaker were asked how long they

had been involved in engineering those and other types of components over his/her
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career. The figure plots the number of years of experience in designing components by

individual respondent engineers. The vertical axis measures the number of years for

engineering the particular component specified. The horizontal measures the number of

years for engineering any types of components. In this scatter plot, when engineers tend

to stay with the same components however long they work at the firm (engineers as

specialists), we should observe most cases closer to the diagonal. If engineers tend to

change their assignments over time (engineers as generalists), in contrast, cases should

be found closer to the horizontal axis.

** INSERT FIGURE 1 ABOUT HERE **
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Due to small sample size (8 for each automaker, 63 in total), it is difficult to

find distinctive patterns, if any, among automakers. Yet, my observation of this plot and

interviews with each automaker together seem to suggest some differences in policies

on engineer rotation. While some automakers such as Companies C and G rotate their

engineers relatively frequently (few engineers stay with the same component more than

seven to ten years), others such as Companies A and F have their engineers devoted to a

particular component for many years.

Why is it that the latter automakers do not rotate their engineers more

frequently in order to improve their architectural knowledge? According to my

interviews, automakers cannot pursue individual engineers’ broader experiences too

much. Rotating individual engineers across many components quickly may impede their

accumulation of component-specific knowledge. Many automakers recognize the

importance of rotating engineers but cannot implement such a policy consistently

because functional managers do not want to have their engineers transferred to other

areas of components. To lose experienced engineers may lead to lower efficiency and

poor output quality. In fact, an estimated correlation coefficient between EKN1

(engineers’ component knowledge) and EKN2 (engineers’ architectural knowledge), -

0.152 (p=.320), indicates a slight, though not statistically significant, trade-off relation

between the two types of knowledge. It is not easy for automakers’ engineers to have a

high score for the both types.

However, there is an automaker whose engineers score higher for both

architectural and component-specific knowledge on average. My comparative

interviews with eight automakers indicate that this automaker took the following

approach.
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On the one hand, this firm had a definite policy of rotating engineers across

different components over a certain period of time. This helped their engineers build

architectural knowledge through hands-on experiences. Note that this policy was

implemented rather strictly — those engineers who had never been rotated across

different engineering functions were not eligible for promotion to managers, with the

exception of those who chose to be a specialist (see below). Such strict implementation

was necessary to overcome functional managers’ protest to rotation policy.7

On the other hand, this automaker established other mechanisms to improve

and maintain component-specific knowledge. First, the range of rotation was limited.

Engineers in the chassis design division, for example, were usually transferred within

the division and rarely transferred to other divisions, such as the engine and body design

divisions. Component-specific knowledge obtained in previous assignments hence

remained somewhat relevant for a newly assigned component.

Second, this firm recently introduced a new career path in which individual

engineers could stay, if they want, with the same component over a very long period of

time as a specialist. Before this policy was introduced, opportunities for promotion at

this company opened up only for those who had been rotated across different functions.

The new policy provided engineers with two different paths for promotion, and

promoted two types of knowledge within the organization.

Third, this automaker attempted to accumulate component-specific knowledge

through design standards and know-how reports. When engineers were assigned to a

new component, they could refer to those documents prepared by their predecessors as a

source of component-specific knowledge and also could take internal training classes

for the component. Such training classes were not frequently offered at other
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automakers.

Forth, individual engineers were evaluated by their superiors in terms of their

contribution to advancing component-specific technologies, rather than to coordination

for particular vehicle development projects. According to my questionnaire survey and

interviews with automakers, this automaker, in sharp contrast with others, put heavy

emphasis on components over the final product in the incentive structure, thus

financially encouraging engineers to deepen their component-specific knowledge. One

reason for this incentive scheme is that it is generally more difficult for superiors to

evaluate individual engineers’ contribution to a vehicle than to a component.8

By combining those organizational mechanisms, this automaker seems to have

been able to enhance both architectural and component-specific knowledge. Individual

mechanisms identified above are relatively simple and straightforward. They do not

require unique devices or special investment. However, engineering rotation with long-

term consistency calls for strict implementation to overcome objections from functional

managers. Also accumulating component knowledge constantly and transforming it into

explicit information to be passed on to colleagues requires the everyday effort of

individual engineers. When individual engineers are immersed with problem solving for

current projects under extensive time pressure, such activities are often given lower

priority and easily ignored. Even more difficult is to put these mechanisms together in a

systematic and complementary manner to fully capture the benefits and improve two

types of knowledge, which are in trade-off relationships with each other. It is these

obstacles and difficulties that prevent some automakers from catching up others in

knowledge management for outsourcing. It is only with extensive internal efforts that

automakers can somehow maintain knowledge advantage over competitors even when



19

tasks of engineering are outsourced to shared suppliers.

CONCLUSION

This paper has demonstrated the importance of knowledge for effective

outsourcing. While the actual tasks of designing and manufacturing components could

be outsourced, the relevant knowledge should be retained internally to obtain better

quality of component design. Knowledge partitioning should be distinguished from task

partitioning, thus requiring careful management, as argued by Fine and Whitney (1996)

and Fine (1998).

Furthermore, the results indicate that an effective pattern of knowledge

partitioning differs by the nature of component development project in terms of

technological newness (Table 4). For regular projects, architectural knowledge is more

important than component-specific knowledge. This is probably because the latter type

of knowledge is supposed to be provided by the supplier specialized in the component.

Knowledge could thus be partitioned efficiently between an automaker and a supplier

based on the specialty of each party.

** INSERT TABLE 4 ABOUT HERE **

However, when the project involves new technology for the supplier, it is

important for the automaker to have a higher level of component-specific knowledge to

solve unexplored engineering problems together with the supplier. Also, although this

study cannot provide statistical evidence, my interviews suggest that for projects

involving new technologies, suppliers also needed a higher level of architectural
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knowledge to solve problems jointly with the automaker. Building up architectural

knowledge about the component — knowledge on how the component should be

integrated for a particular vehicle — was recognized as a critical success factor for

suppliers to win design competition. In innovative projects, these findings imply that,

effective knowledge partitioning seems to demand some overlaps between an automaker

and a supplier, rather than efficient and clear-cut boundaries. As Nonaka (1990) pointed

out, the innovation process may often require redundancy and overlapping in

organizational structure and processes.

Of course, some automakers could choose to follow other automakers’

leadership in component technologies because of limited capabilities or strategic choice.

They could rely on suppliers’ expertise and focus on, for example, frequent

communication and integrated problem solving with suppliers to obtain a better

component design within the existing technologies. But for those automakers that want

to be a leader in the technological race, effective management of their own knowledge

is critical. As described above, the approach taken by an automaker indicates that

effective knowledge management involves a wide range of organizational mechanisms,

including career development policies, extensive documentation of technological

information, internal training programs, and incentive schemes. The difficulty of

implementing these mechanisms in a consistent and complementary manner seems to

explain, at least partially, why there is a significant variance among automakers in

knowledge level. Organizational mechanisms that are designed and implemented well to

improve both architectural and component-specific knowledge thus could be an

important source of competitive advantage for automakers even when they outsource

substantial tasks of engineering to shared suppliers.
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While this study provides the foregoing insights, we need further research to

deepen our understanding of effective management of knowledge in the inter-firm

division of labor. Two issues are particularly important. First, the importance of

knowledge and effective patterns of knowledge partitioning may depend upon the

design architecture of the product (Ulrich 1995; Fine 1998). We need empirical studies

in other industries where product architecture is based on modular design, for example.

Second, this study’s evidence on organizational mechanisms for effective knowledge

management remains anecdotal. It seems fruitful to explore more cases in different

industries and settings with more systematic data and analysis in order to understand

organizational mechanisms for effective knowledge management for outsourcing.
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Table 1: Questionnaire Survey Responses

Supplier # of projects Automakers in responses (company code)
(company code) in responses AA AB AC AD AE AF AG AH AI NA

SA 6 6

SB 5 1 1 1 1 1

SC 5 1 1 1 1 1

SD 7 1 1 1 1 1 1 1

SE 5 1 1 1 1 1

SF 4 1 1 1 1

SG 5 1 1 1 1 1

SH 3 1 1 1

SI 5 1 1 1 1 1

Total 45 6 6 8 6 2 3 1 5 3 6

The names of the suppliers and the automakers in the sample cannot be disclosed due to
a confidentiality agreement with the respondents.
Sample components include those related to engine, brake, chassis, body, and electrical systems.
NA = not available because SA did not reveal the name of the automakers in its sample.
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 Table 2: Regression Results for Component Design Quality

Model # (1) (2) (3) (4) (5)

Intercept -0.115 0.157 0.160 -0.087 -0.088

PSP : Integrated problem- 0.304 ** 0.256 ** 0.247 ** 0.381 *** 0.376 ***
solving pattern (0.113) (0.111) (0.113) (0.113) (0.118)

COM : Communi- 0.017 *** 0.021 *** 0.022 *** 0.018 *** 0.018 ***
cation frequency (0.004) (0.005) (0.005) (0.004) (0.005)

SLD : Sales dependency 0.158 ** 0.145 ** 0.146 ** 0.113 ** 0.117 *
on the automaker (0.064) (0.061) (0.062) (0.058) (0.061)

STK : Stock ownership by -0.200 -0.174 -0.177 -0.092 -0.101
the automaker (0.120) (0.115) (0.116) (0.111) (0.120)

NWT : New technology -0.134 -0.199 -0.204 -0.315 * -0.310 *
(0.172) (0.167) (0.169) (0.161) (0.177)

CMP : CAD/CAE usage -0.124 -0.179 -0.160 -0.196 -0.168
(0.330) (0.316) (0.321) (0.293) (0.303)

EKN : Engineers' 0.297 ** 0.132
knowledge (0.137) (0.142)

EKN1 : Component- 0.115 0.019
specific knowledge (0.095) (0.089)

EKN2 : Architectural 0.173 ** 0.092
knowledge (0.081) (0.082)

NWT xEKN 1.274 **
(0.484)

NWT xEKN1 0.683 *
(0.352)

NWT xEKN2 0.579
(0.476)

Adjusted R  square 0.366 0.422 0.412 0.502 0.481

R square change (4)-(2) (5)-(3)
0.078 ** 0.080 **

N=45.
Standard errors in parentheses.
* : p-value < 0.1; ** : p-value < 0.05; *** : p-value < 0.01.
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Table 3: Level of Automakers’ Knowledge on Component and
Suppliers’ Role in Component Development

Source: A questionnaire survey with Japanese first-tier suppliers. The survey was conducted in
March 1999. Suppliers were asked to answer how much their main customer (automaker) knew
about the component (scale: 5= very much; 1= not very much).
Detail-controlled: components developed entirely by automakers. Black box: basic design was
done by automakers and detail engineering was by suppliers. Proprietary: developed entirely by
suppliers.
Component-specific knowledge is about product technology, manufacturing quality, costs, and
production technology. Architectural is about coordination with other components and ease of
installation at automakers’ assembly line.
For the details and results of the survey, see Fujimoto, Matsuo, and Takeishi (1999).

supplier's role n component- architectural
in component specific knowledge
development knowledge

detail-controlled 16 4.24 4.22

black box 128 3.61 3.89

supplier 6 2.71 3.09
proprietary

total 151 3.61 3.78
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Table 4: Suggested Pattern of Effective Knowledge Partitioning

Project type Effective pattern
of partitioning

Automaker should
have

Supplier should
Have*

Regular project
(using established
technologies)

 Efficient (clear-cut)
 partitioning

 Architectural
 knowledge

 Component-specific
 knowledge

Innovative project
(using new
technologies)

 Overlapping
 partitioning

 Architectural and
 component-specific
 knowledge

 Architectural and
 component-specific
 knowledge

Note: * Based on my interviews with automakers and suppliers, not derived from the statistical
analysis of this paper’s data set.
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Figure 1: Engineers’ Career Pattern by Make

Source: A questionnaire survey with eight Japanese automakers. The survey was conducted
in July 1997. I specified eight types of components, and an engineer at each automaker in
charge of each of those components answered how many years he/she designed the
component (vertical axis) and how many years he/she designed any types of components
(horizontal). Due to a confidentiality agreement, the names of components and respondent
automakers cannot be disclosed.

Years of experience in developing components

Years of experience 
in the sample component

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��0

10

20

30

0 10 20 30

A

B

C

D

E

F

G

H

automaker 
company code



29

APPENDIX 1: Survey Procedure and Data

Based on IRC’s (1994) data on component transactions in the Japanese auto
industry, I selected 15 suppliers that satisfied the condition that at least seven Japanese
automakers and four of the top five (Toyota, Nissan, Honda, Mitsubishi, and Mazda)
purchased a component from the supplier in 1993. After I contacted and visited them,
nine suppliers agreed to participate in the survey with a strict confidentiality agreement,
and I distributed the survey to them in April 1997.

Each supplier was asked to select one component development project which
was recently done for a new vehicle, for each of its major customers. While the
component for each supplier was specified by me, sample automakers and projects were
selected by the respondents. The survey was filled in by the person who was actually in
charge of and most familiar with the selected development project, such as the Chief
Engineer for the project.

After having collected the survey, I made a second visit to the respondent
suppliers to review the responses, resolve any questions and inconsistencies, and discuss
preliminary results of the data analysis. One concern was whether I could compare
automakers within each supplier’s responses since different individuals answered about
different automakers and some might have adopted a different standard to describe an
automaker’s pattern. To handle this potential problem, I asked the survey coordinator at
each supplier, who was in most cases a head of the supplier’s engineering group and
thus familiar with most automakers, or other appropriate persons in the company, to
review if there were any “strange” answers, and if detected they were corrected.

Due to my confidentiality agreement with the respondents, I cannot disclose
the names of firms and component types in the sample. There are eight types of
components, with one answered by two suppliers. The components include those related
to the engine, brake, chassis, body, and electrical systems. Most suppliers were either
the largest or second largest supplier in Japan in production volume for the component.

The year of market introduction of the sample vehicles ranges from 1989 to
1997, with most introduced during the past five years (mean: 1995). All the sample
suppliers had designed and manufactured the components for each automaker in the
sample for more than ten years. All the suppliers stated that they expected that the
automaker would continue to procure the component from them as long as production
of the vehicle continues (that is, until the next model change). Thus the inter-firm
relationships in the sample could be regarded as long-term. The mean of the supplier’s
design ratio is 73%, implying that approximately three-quarters of the detailed drawings
were made by the supplier. In summary, the sample provides appropriate data to
empirically examine recent practices of supplier involvement between Japanese
automakers and suppliers with long-term relationships.
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APPENDIX 2: Variable Construction

Most variables used in the statistical analysis were constructed based on data
set from the supplier survey. Multiple items (indicators) were designed to measure
various aspects of each construct and were included in the survey questions. Items used
for each variable are shown in the following Appendix Table.

To examine if there are underlying key dimensions within a set of indicators
for a construct, a principal component analysis was conducted. When I found multiple
dimensions that are both statistically significant and conceptually meaningful,
subcomponent variables were constructed, as in the case of EKN (EKN1 and EKN2).
For each dimension for a construct, the items having a higher coefficient with the
dimension were grouped, and the mean of those items’ original scores was defined as a
subcomponent variable (e.g. EKN1 and EKN2). The mean of those subcomponent
variables was defined as the main variable (e.g. EKN) for the construct.

Another possible approach is to use the principal component scores, instead of
original scores. In order to check the robustness of the analysis, I have constructed
another set of variables using this approach and conducted another series of regressions
for sensitivity analysis. It has turned out that the basic results for the main research
variables remain the same. Thus the primary results and discussions presented in this
paper remain unchanged when the second approach is adopted.

It should be noted that many variables are based on the respondents’
perceptions. Perceptual measurement raises a concern with bias and reliability of the
responses. However, those variables for the automakers’ knowledge level and supplier
management patterns are otherwise difficult to measure, and the respondent suppliers
are in the best position to observe the level and patterns through everyday operations.
Also, the respondents were asked to evaluate outside organizations (customers) rather
than own organization and colleagues, mostly about recent projects, with the strict
confidentiality agreement. These conditions and procedures are expected to have
reduced the risk of bias and improved the reliability.
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Appendix Table: Variable Specification and Measurement

Variable Specification Measurement

CDQ: Component
Design Quality

The mean score
of 13 items for
both satisfaction
and
relative position

Q: How would you evaluate the component developed in this project in terms of (1)
your satisfaction with the outcome of the project; and (2) relative position in
comparison with the same type of component used for competing vehicle models in
the market? (Responses on 5-point scale for “satisfaction” with 1= unsatisfied; 3=
somewhat satisfied; 5= very much satisfied, and 6-point scale for “relative position”
with 1= much worse (the bottom quarter in rank); 2= below average (the third quarter
in rank); 3= average; 4= above average (the second quarter in rank); 5= much better
(the top quarter in rank); 6= the best)
1. Functional performance
2. Structural simplicity (fewer constituent parts)
3. Technological innovativeness
4. Structural coordination with other parts
5. Functional coordination with other parts
6. Lower costs
7. Light weight
8. Durability
9. Design for manufacturability (for your process)
10. Design for manufacturability (for assembly)
11. Manufacturing quality
12. Maintainability
13. Fit to the target customers’ needs
(Cronbach’s alpha: 0.858)

PSP: Integrated
problem solving

The mean score
of 18 items

Q: How much would you agree with the following statements as the description of the
project’s development process? (Responses on 5-point scale with 1= strongly
disagree; 5= strongly agree) (*=scale was reversed)
1. The automaker’s early engineering requirements were too vague and your

company didn’t have a clear direction for design*.
2. The automaker’s requirements started with a certain range of design tolerance

and then the range gradually narrowed.
3. The initial requirements were not stable and changed substantially in the

subsequent stages.*
4. The target price initially given by the automaker took full consideration of

engineering requirements.
5. The automaker’s cost data on which the initial target price was based was

accurate and updated.
6. Your initial price/cost estimate was examined very carefully by the automaker

from the beginning.
7. Engineering activities and price setting were not linked well and conducted

independently.*
8. When the automaker changed its requirements, the target price was also

revised accordingly.
9. The automaker examined your manufacturing process and design for

manufacturability from earlier stage (before the first prototype).
10. The automaker’s earlier engineering requirements took full consideration of

structural and functional coordination with other components.
11. The automaker’s earlier engineering requirements took full consideration of

manufacturability for their assembly process.
12. Structural and functional coordination of the component remained as critical,

unsolved problems until later stage (after the first mass trial).*
13. Earlier examination of foreseeable problems enabled smooth engineering

activities after starting prototype reviews
14. Earlier examination of foreseeable problems enabled smooth engineering

activities after starting mass trial reviews
15. Design changes after the first mass trial were for seeking further perfection and

were within a foreseeable range.
16. Cost reduction for achieving the target price caused unforeseeable, major

design changes after the first mass trial.*
17. Problems with manufacturability for assembly caused unforeseeable, major

design changes after the first mass trial.*
(to be continued)

18. Component coordination problems caused unforeseeable, major design
changes after the first mass trial.*

(Cronbach’s alpha: 0.812)
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Variable Specification Measurement

COM:
Communication
Frequency

The mean number
of days per year for
mutual visits
between the
automaker and the
supplier

Q: How frequently did the following visits for the project happen during the
development process? Please indicate the average frequency during the project, by
circling one number. (0= never; 1= once per two or three months or less; 2= monthly ;
3= twice, three times, or less per month; 4= weekly; 5= twice, three times, or less per
week; 6= almost everyday)
1. The automaker’s engineers visited your engineering site
2. The automaker’s engineers visited your production site
3. The automaker’s buyers visited your engineering site
4. The automaker’s buyers visited your production site
5. Your engineers visited the automaker
6. Your sales people visited the automaker

EKN: Engineers’
knowledge

The mean of
EKN1 and EKN2

EKN1: Component-
specific knowledge

The mean score
of 15 items

Q: How would you describe the level of knowledge of the automaker’s engineers, with
whom you and your colleagues worked for the project, compared with the level of
your and your colleagues’ knowledge? (Responses on 5-point scale with 1= much
lower; 3=about the same; 5= much higher)
1. Materials of the component
2. Functional design of the component
3. Structural design of the component
4. Durability design of the component
5. Core technology of the component
6. Design for manufacturing (for your company’s process)
7. Customers’ needs and preference about the components
8. Manufacturing process of the component
9. Production management of the component
10. Quality management of the component
11. Constituent parts costs of the component
12. Material costs of the component
13. Manufacturing process costs of the component
14. Labor costs of the component
15. Other costs of the component
(Cronbach’s alpha: 0.932)

EKN2: Architectural
knowledge

The mean score
of 3 items

Q: the same as above.
1. Design for manufacturing (for the automaker’s assembly)
2. Structural coordination with other components
3. Functional coordination with other components
(Cronbach’s alpha: 0.764)

SLD: Sales
dependency on the
automaker

The supplier’s
sales volume to
the automaker/
the supplier’s total
sales volume of
the component (%)

Based on industry data on 1996 transactions, published by IRC (1997).

STK: stock
ownership by the
automaker

Set to 1 if the
supplier’s stock is
owned wholly or
partially by the
automaker

Based on the supplier’s annual report.

NWT:
Technological
newness

Set to 1 if one of
the answers to
the two questions
at right is “4”;
otherwise 0.

Q: How would you describe the engineering newness of the project? Please circle one
number?
1. Minor modification (changes were less than 20%) of a component design that

had been already developed at your company.

(to be continued)
2. Major modification (20-80%) of a component design that had been already

developed at your company.
3. Completely new design (more than 80%), but its design was based on a

technology that had been demonstrated in another project.
4. Technologically new to your company and a completely new design.
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Variable Specification Measurement

Q: How would you describe the process newness of the project? Please circle one
number?
1. Existing process layout and equipment with minor modification of dies and

tooling.
2. Existing process layout and equipment with new dies and tooling.
3. New process layout and equipment, but based on established process

engineering, in your company.
4. Technologically new process to your company and completely new process

layout and equipment.

CMP: Computer
usage

Ratio (%) of “yes”
for the answers to
the four questions
at right;.

Q: Did your company use the following computer and information systems for the
project? (1. yes; 2. no)
1. Drawing by 3-D CAD
2. Simulation and evaluation by CAE
3. Provide engineering drawings by 3-D CAD data to the automaker
4. Receive engineering information by 3-D CAD data from the automaker
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1 The survey procedure is described in Appendix 1.
2 See Appendix 2 for the procedure to categorize the elements of knowledge.
3 A component needs structural and functional coordination — fitting and working well together
— with other components within the vehicle to achieve a high level of product integrity (Clark
and Fujimoto 1991). Structural coordination is necessary to achieve, for example, efficient
packaging of components in a given space. Functional coordination is necessary to achieve
various functional targets, such as maximizing handling and ride performance, and minimizing
noise and vibration. The key is that better coordination cannot be achieved by merely putting
good individual components together; related components should be integrated with mutual
adjustments. Component coordination and product integrity of a vehicle are, therefore, in a
sense, two sides of the same coin, although product integrity requires more than component
coordination; it also requires, for example, good styling and fit with customer’s
needs.�Architectural knowledge generally includes knowledge about the entire architectural
structure of a product, whereas in this study it refers only to knowledge about the linkage
between a component and other components in a product.
4 The standardized coefficient for NWTxEKN1 (component-specific knowledge) is 50% larger
than for NWTxEKN2 (architectural knowledge). When only one interaction term was entered,
rather than two together, the difference in R2 between the equation with the interaction term and
without (Model (3)) is significant at the 5% level for NWTxEKN1, but not at the 10% level for
NWTxEKN2. These results also indicate that component-specific knowledge plays a more
important role than architectural knowledge for those projects involving new technology.
5 Automakers may want to procure exclusively from dedicated suppliers, which supply the
component to a single customer. Yet in this approach automakers cannot benefit from suppliers’
economies of scale.
6 Another well-known approach to improve architectural knowledge within an engineering
division is to have a capable and influential product manager who could coordinate and solve
problems across engineering functions for a vehicle development project, the so-called
“heavyweight product manger” (Clark and Fujimoto 1991). For the importance of capable
product managers and the difficulty to nurture them, see Clark and Fujimoto 1991.
7 This automaker was one of those companies whose cases were mostly found closer to the
horizontal axis in Figure 1.
8 Note that, according to my interviews, at all the automakers, individual engineers’
performance evaluation is done by their functional managers, not product managers.


	Akira Takeishi
	
	INTRODUCTION

	BACKGROUND
	Research Setting and Data


	** INSERT TABLE 1 ABOUT HERE **
	
	
	Dependent variable
	Independent variable: Knowledge
	Other independent variables



	Analysis: Knowledge and Outsourcing Performance
	** INSERT TABLE 2 ABOUT HERE **
	** INSERT TABLE 3 ABOUT HERE **
	** INSERT FIGURE 1 ABOUT HERE **
	** INSERT TABLE 4 ABOUT HERE **
	Table 1: Questionnaire Survey Responses
	Figure 1: Engineers’ Career Pattern by Make

