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Abstract

Heat is carried by different types quasiparticles in crystals, including phonons, charge
carriers, and magnetic excitations. In most materials, thermal transport can be un-
derstood as the flow of phonons and charge carriers; magnetic heat flow is less well-
studied and less well understood.

Recently, the concept of the flat band, with a vanishing dispersion, has gained
importance. Especially in electronic systems, many theories and experiments have
proven that some structures such as kagome or honeycomb lattices hosts such flat
bands with non-trivial topology. Even though a number of theories suggest that such
dispersionless mode exist in magnonic bands under the framework of the Heisenberg
spin model, few experiments indicate its existence. Not limited to these flat band
effects, magnetic insulators can assume a variety of nontrivial topologies such as
magnetic skyrmions. In this thesis, I investigate the highly frustrated magnetic sys-
tem Y0.5Ca0.5BaCo4O7, where the kagome lattice could potentially lead to nontrivial
thermal transport originated from its flat band. While we do not observe signatures
of the flat band in thermal conductivity, the observed anomalous Hall effect in electri-
cal transport and spin glass-like behavior suggest a complex magnetization-transport
mechanism.

Motivated by the rapid advancement of artificial inteligence, the application of ma-
chine learning into materials exploration is recently investigated. Using a graphical
representation of crystallines orginally suggested in Crystal Graphical Convolutional
Neural Network (CGCNN), we developed the ML-asssited method to explore mag-
netic compounds. Our machine learning model can, so far, distiguish ferromagnet or
antiferromagnet systems with over 70% accuracy based only on structual/elemental
information. Prospects of studying more complex magnets are described.

Thesis Supervisor: Joseph Checkelsky
Title: Associate Professor
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Chapter 1

Thermal conductivity in crystals

1.1 Introduction

Thermal conductivity is a measure of how heat is transported in a material. The roles

of thermally conductive materials are diverse in society: high thermal-conductive heat

sinks, for instance, are used in computers to release the heat generated in the CPU

while aerogels are useful as insulation due to their low thermal conductivity. In con-

densed matter research, the underlying mechanism of thermal conduction is usually

understood by the propagation of electrons/holes and the atomic vibration (phonons).

However, some compounds possess another type of heat mediator, magnons, which

represent the collective behavior of spins in a crystal. It is not always straightfor-

ward to identify the microscopic mechanism of heat conductivity. One reason is each

quasiparticle is not completely independent of each other but creates new quasiparti-

cles by their mutual interactions. Also, the magnitude of the contribution from some

quasiparticles to the net thermal conductivity is so small that it is not detectable by

typical transport probes. Owing to these complexities, not only thermal conductivity

experiments but also neutron scattering measurements or electrical transport data are

often necessary to understand heat transport in a given system. Below, we begin by

discussing the theoretical background of thermal conductivity for phonons, electrons,

and magnons.
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1.2 Thermal conductivity by phonons and electrons

The thermal conductivity of a lattice can be understood by the kinetic approach.

For simplicity, we consider a monoatomic Bravis lattices, where the phonon spec-

trum has only acoustic branches. Since we are concerned with qualitative features of

thermal conduction, we shall also make the Debye approximation, letting the phonon

dispersion relation be 𝜔 = 𝑐𝑘 for all three acoustic branches, where 𝜔 is the angular

frequency, 𝑐 is the wave’s speed and 𝑘 is the wavenumber. Suppose a small temper-

ature gradient is imposed in the x -direction in an electrically insulating crystal. We

assume the Drude model so that collisions maintain local thermodynamic equilibrium

in a simple manner. Those phonons emerging from collisions at position x are taken

to contribute to the nonequilibrium energy density an amount proportional to the

equilibrium energy density at density temperature 𝑢(𝑥) = 𝑢𝑒𝑞[𝑇 (𝑥)]. Each phonon

at a given point will contribute to the thermal current density in the x -direction an

amount equal to the product of the x -component of its velocity with its contribution

to the energy density. However, the average contribution of a phonon to the energy

density depends on the position of its last collision. Thus, there is a correlation be-

tween where a phonon comes from and its contribution to the average energy, which

results in a net thermal current.

Figure 1-1: Heat propagation by phonons in the presence of a uniform temperature

gradient along the x -axis. Each variables is defined assuming the collision occurred a

distance 𝑙 = 𝑐𝜏 from the point 𝑥0, in a direction making an angle 𝜃 to the x -axis.
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To estimate this thermal current 𝑗, we average the product of the energy density

and the x -velocity over all the places where the phonon’s last collision might have

occurred. Figure 1-1 shows the schematic of a collision of two phonons at 𝑥0 in one

dimesional space. Assuming, in the spirit of the Drude model, that the collision

occurred a distance 𝑙 = 𝑐𝜏 from the point 𝑥0, in a direction making an angle 𝜃 to the

x -axis we have

𝑗 = < 𝑐𝑥𝑢(𝑥0 − 𝑙cos𝜃) >=
∫︁
𝑐cos𝜃𝑢(𝑥0 − 𝑙cos𝜃)

2𝜋𝑑𝜃

4𝜋
sin𝜃, (1.1)

=
1

2

∫︁
𝜇𝑑𝜇𝑐𝑢(𝑥0 − 𝑙𝜇) (1.2)

If we consider only the linear term 𝑑𝑇
𝑑𝑥

,

𝑗 = 𝜅(−𝑑𝑇

𝑑𝑥
) (1.3)

where the thermal conductivity 𝜅 is given by

𝜅 =
1

3
𝑐𝑣𝑐𝑙 =

1

3
𝑐𝑣𝑐

2𝜏 (1.4)

Here 𝑐𝑣 is the specific heat of the phonons and is one of the quantities that determines

the temperature dependence of 𝜅. The other is the phonon collision rate 𝜏−1. The

collision rate is not straightforward to characterize in general, but we can discuss the

following two limits with respect to the Debye temperature 𝜃𝐷:

Case 1: (𝑇 >> 𝜃𝐷) At high temperatures the total number of phonons present in

the crystal is proportional to T because the thermal equilibrium phonon occupation

numbers reduce to

𝑛(𝑘) =
1

𝑒
ℎ̄𝜔(𝑘)
𝑘𝐵𝑇 − 1

≈ 𝑘𝐵𝑇

ℎ̄𝜔(𝑘)
(1.5)

Since a given phonon that contributes to the thermal current is more likely to be scat-

tered the more other phonons there are present to do the scattering, we should expect

17



the relaxation time to decrease with increasing temperature. Furthermore, since at

high temperature the heat capacity is independent of temperature, it is expected that

the thermal conductivity itself is decreasing with increasing temperature. Thus, we

find,

𝜅 ∝ 1

𝑇 𝑥
(1.6)

Case 2: (𝑇 << 𝜃𝐷) At any temperature T, only phonons with energies comparable

to or less than 𝑘𝐵𝑇 will be present in appreciable numbers. In particular, when 𝑇 <<

𝜃𝐷, the phonons present will have 𝑤(𝑘) << 𝜔𝐷, and 𝑘 << 𝑘0, where 𝑘𝐵𝜃𝐷 = ℎ̄
𝑘𝐵
𝜔𝐷

and 𝑘0 is given below. With this in mind, we consider a phonon collision mediated

by the cubic or quartic anharmonic terms. Since only a small number of phonons

are involved, the total energy and total crystal momentum of those phonons that

participate in the collision must be small compared with ℎ̄ and 𝑘0. Since energy

is conserved in the collision, the total energy of the phonons emerging from the

collision must continue to be small compared with ℎ̄𝜔. This is only possible if the

wave vector of each, and hence their total wave vector is small compared with 𝑘0.

However, both initial and final total wave vectors can be small compared with 𝑘0

(the Umklapp process) only if the additive reciprocal lattice vector 𝑘 appearing in

the crystal momentum conservation law is zero. Thus, at very low temperatures,

the only collisions occurring with appreciable probability are those that conserve the

total crystal momentum exactly, and not just within an additive reciprocal lattice

vector. This Umklapp process represents backscattering, indicating a reduction to

the net thermal conduction. The number of phonons that can participate in the

Umklapp processes drops exponentially as temperature drops. Without the Umklapp

processes, the thermal conductivity would be infinite, and we, therefore, expect that

the effective relaxation time appearing in the thermal conductivity must vary as

𝜏 ∝ 𝑒
𝑇0
𝑇 (1.7)

where T is well below 𝜃𝐷 and the order of 𝑇0 is at 𝜃𝐷.
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Combining those two temperature limits, the temperature dependence of thermal

conductivity is understood as shown in Figure 1-2. When the temperature reaches a

point where the exponential increase in the thermal conductivity sets in, the conduc-

tivity increases so rapidly with decreasing a temperature that the phonon mean free

path soon becomes comparable to the mean free path due to the scattering of phonons

by lattice imperfections or impurities, or even to the mean free path describing the

scattering of phonons by the sides of the finite specimen. Once this happens, the

mean free path ceases to be the intrinsic one due to anharmonic terms, and must be

replaced by a temperature-independent length determined by the spatial distribution

of imperfections or the size of the specimen. The temperature dependence of 𝜅 then

becomes that of the specific heat, which declines as 𝑇 3 at temperatures well below

𝜃𝐷.

Figure 1-2: (a),(b) Typical temperature dependence of phonon mean free path and

thermal conductivity, respectively. (c) An example of experimental thermal con-

ductivity: temperature dependence of the thermal conductivity of Ge samples with

different isotopic compositions. All figures are from [1].

In the thermal conductivity of a metal, the Wiedemann-Franz law states that the

ratio, 𝜅/𝜎, of the thermal to the electrical conductivity is directly proportional to

the temperature. The ratio is approximately constant over many metals and is given

within the regime of kinetic theory. The kinetic thermal conductivity of electrons 𝜅𝑒
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is given by

𝜅𝑒 =
1

3
𝑐𝑒𝑣𝑙 =

1

3
𝑐𝑒𝑣

2𝜏 (1.8)

where 𝑐𝑒, 𝑣, 𝑙 and 𝜏 are specific heat, velocity, mean free path of electrons, respectively.

Since the DC conductivity in Drude model is 𝜎 = 𝑛𝑒2𝜏
𝑚

, the Wiedemann-Franz ratio

is given within the regime of kinetic theory. The kinetic thermal conductivity of

electrons is given by

𝜅𝑒

𝜎
=

𝑐𝑒𝑚𝑒𝑣
2

𝑛𝑒2
(1.9)

By taking the Fermi sphere, the specific heat 𝑐𝑒 = 𝜋2

2
(𝑘𝐵𝑇

𝜖𝐹
)𝑛𝑘𝐵 and electron velocity

(fermi velocity) 𝑣2𝐹 = 2𝜖
𝑚

yields to

𝜅𝑒

𝜎𝑇
=

𝜋2𝑘2
𝐵

3𝑒2
= 2.4 × 10−8WΩ/K2 (1.10)

1.3 Magnon heat transport

In a magnetically ordered crystal the propagating excitation of the spin system, known

as magnons, can transport heat in a manner analogous to the more familiar lattice ex-

citations. It was suggested early on that, at a few hundred Kelvin, the heat transport

by collective excitations of coupled paramagnetic ions might exceed that transported

by phonons. On the other hand, in a ferromagnetic dielectric, where spins are strongly

coupled to their neighbors, the spin-wave heat transport is most relevant at few K. In

this range, the magnon systems can have a specific heat equal to or greater than that

of the phonons. The velocities of the excitations are comparable, and at sufficiently

low temperatures their mean free paths are equal since both are limited only by the

boundaries of the sample. Thus, a large fraction of the thermal conductivity could

be due to the magnons. In the most simple case, magnon conductivity has been

recognized by a deviation of the thermal conductivity from 𝑇 3 behavior expected for

typical phonon conduction behavior as described above [10, 11]. One of the most
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well-known systems of magnon conduction is observed in ferrimagnetic yttrium iron

garnet (YIG)[12].

Figure 1-3: (a) Temperature dependence of the thermal conductivity of yttrium-iron-

garnet in log scale. From [2]. (b) The relative decrease of the thermal conductivity of

YIG in an external magnetic field. The drawn lines correspond to different theoretical

calculations from [3].

The thermal conductivity of YIG exhibited the expected dependence on the tem-

perature and magnetic field as shown in Figure 1-3. At low-temperature the con-

ductivity is nearly proportional to 𝑇 2. By measuring the conductivity in magnetic

fields that are large enough to remove the magnon contribution completely, it was es-

timated that about two-thirds of the zero-field conductivity was due to the magnons.

Not only does the thermal conductivity decrease with increasing the field, but it also

saturates in high fields. The thermal conductivity decrease in the field can be also due

to phonons, because an external field changes the energy of magnons and phonons. It

is shown that the magnetic field dependence of the thermal conductivity of yttrium

iron garnet can be accounted for if the coupled magnon-phonon modes are present.

We have studied thermal conduction behavior in magnetically frustrated systems,

in particular where the magnonic flat band resides in zero energy. The kagome lattice

in a quantum magnetic system tends to support exotic transport phenomena; several

Cu-Kapellasites have the transverse component of thermal conductivity originating
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from their non-trivial spin texture [13] [14]. On the other hand, the classical magnetic

kagome system also remains one of the most interesting platforms where the large

manifolds of magnon states caused by its characteristic geometric structure create a

flat magnonic band. Even though such a flat band is confirmed in Co-based kagome

magnet, Y0.5Ca0.5BaCo4O7, by inelastic neutron experiments, there has not been any

direct observation of its consequences in transport experiments. We conduct thermal

transport experiments along with electrical transport measurements to understand

the nature of this classical kagome magnet.

This thesis consists of the following: the 2nd and 3rd chapters describe the ex-

perimental approach and results of thermal conductivity in frustrated systems. In

the 4th chapter, we study possible machine learning-assisted exploration of magnetic

materials. In the 5th chapter, we provide a summary and outlook.
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Chapter 2

Experimental methods

2.1 Sample prepation

This chapter presents the techniques used in crystal growth of YxCa1−xBaCo4O7.

Samples studied in this thesis and its preparation methods are listed in Table 2.1.

Y0.5Ca0.5BaCo4O7, CaBaCo4O7, and YBaCo4O7 are prepared as both single crystals

by the Optical Floating Zone method (FZ) and polycrystals by solid state reactions

(SS).

Sample type method conditions

Y0.5Ca0.5BaCo4O7 Single crystal FZ 0.2 O2 0.8 Ar gas pressurized

Y0.5Ca0.5BaCo4O7 Polycrystal SS Quench at 700∘C

YBaCo4O7 Single crystal FZ 0.2 O2 0.8 Ar gas

YBaCo4O7 Polycrystal SS Quench at 700∘C

CaBaCo4O7 Single Crystal FZ 0.2O2 0.8 Ar gas pressurized

CaBaCo4O7 Polycrystal SS Quench at 700∘C

Table 2.1: The series of compounds YxCa1−xBaCo4O7 synthesized in this study.
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2.1.1 Optical Floatng Zone Method

The single-crystal samples listed in Table 2.1 were synthesized from the powder ob-

tained by quenching and then melted using a floating zone furnace. Powder with

a stoichiometric composition is pressed into a rod, to be used as a seed, and also

as a feeding rod. The schematic of the setup is shown in Figure 2-1. Growth in a

floating zone furnace is done inside a pressurized quartz cylinder. The seed rod is

set on the bottom and the feed rod is set on the top and is set to rotate around its

axis. By moving the rods closer to the focus point of the radiative heaters a melted

zone between the rods is achieved. The rods are slowly moved down to change the

temperature gradient in the material, which crystallizes the material at the end of

the seed rod.

Figure 2-1: Schematic of the floating zone furnace: the radiative heating is used to

melt the zone at the focal point from the four lumps. The growth is done under the

pressurized environment.

The sample rod of the floating zone method is typically 4 to 8 cm long as shown

in Figure 2-2. The growth speed is from 0.2 to 1.5 mm/sec. Figure 2-3 shows a piece

of a single crystal cut out from the rod with a diamond cutter.
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Figure 2-2: The rod produced by the floating zone method. The compositions

of the feeding and seeding rods are the stoichiometric sintered compounds of

Y0.5Ca0.5BaCo4O7.
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Figure 2-3: Single crystal separated from the original rod from Figure 2-2.

2.2 Crystalline sample evaluation

Crystalline solids are studied by the means of diffraction of electrons, neutrons, and

photons to characterize their crystal structure, mechanical and magnetic properties.

This chapter presents the theory of the diffraction of waves by crystals.

2.2.1 Diffraction of waves from crystals

To understand the x-ray diffraction and neutron scattering experiments, as well as

the structure factor calculations, an introduction to wave diffraction by crystals is

required. Waves with wavelength much greater than the interatomic spacing incident

on a solid follow optical reflection and refraction relations. When the wavelength is of

the same order as the interatomic spacing in the solid, diffraction must be considered.

Suppose a wave with wave vector k is incident on two differential volumes separated

by a distance r, and the outgoing wave vector 𝑘′. The angle between k and 𝑘′ is

denoted 2𝜃. For the incident wave, the difference in path length between the two

points is 𝑟 sin 𝜃, so the phase difference is 𝑘 · 𝑟. Similarly, the phase difference coming
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from the diffracted portion is −𝑘′ · 𝑟. Therefore the phase factor can be written

as 𝑒𝑥𝑝[𝑖(𝑘 − 𝑘′) · 𝑟]. Assuming that the amplitude of the scattered wave from the

differential volume is proportional to the electron density, the total amplitude is then

given by the integral,

𝐹 =
∫︁
𝑐𝑟𝑦𝑠𝑡𝑎𝑙

𝑛(𝑟)𝑒𝑥𝑝(−𝑖𝐺 · 𝑟)𝑑𝑉 = 𝑁𝑆𝐺 (2.1)

where 𝑆𝐺 is called the structure factor, and r can be chosen to be zero at one corner

of the cell. Suppose the cell contains 𝑠 atoms that contribute to the electron density

at r such that 𝑛(𝑟) =
∑︀

𝑛𝑗(𝑟− 𝑟𝑗) where 𝑛𝑗 is the contribution of the jth atom 𝑗 = 1

located at 𝑟𝑗. Then the structure factor is given by

𝑆𝐺 =
∑︁

𝑓𝑗𝑒𝑥𝑝(−𝑖𝐺 · 𝑟𝑗) (2.2)

where

𝑓𝑗 =
∫︁

𝑛𝑗(𝑟0)𝑒𝑥𝑝(−𝑖𝐺 · 𝑟0)𝑑𝑉 (2.3)

𝑓𝑗 is an atomic property and depends on the type of scattering experiment considered.

For x-rays, the form factor is not very sensitive to small redistributions of the electrons

in comparison to a free atom, and thus it is close to the form factor for electrons

localized at the atom, giving the simple form 𝑓𝑗 = 𝑍 where Z is the atomic number.

2.2.2 X-ray powder diffraction

The PANalytical X’Pert Pro Multipurpose Diffractometer is used to determine the

phases in a sample of this study. The powderized samples before and after the floating

zone are evaluated with x-ray measurements (see Figure 2-4). The blue peaks are the

calculated values from a previous report [15], and are consistent with the observed

signals of this study.
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Figure 2-4: Powder x-ray measurement of powder, single crystal, and calculated value

of Y0.5Ca0.5BaCo4O7.

2.2.3 Laue back scattering

The Laue x-ray measurement is used to align a single crystal. Figure 2-5 is the Laue

pattern of the piece of the crystal shown in the Figure 2-3, which indicates that this

piece of crystal is the large single domain with the c-axis is out of the page direction.
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Figure 2-5: Laue x-ray backscattering measurement of the single crystal of

Y0.5Ca0.5BaCo4O7.

2.3 Magnetization and electric transport measure-

ments

Magnetization and electronic transport properties were measured by use of Magnetic

Property Measurement System (Quantum Design) and Physical Property Measure-

ment System (Quantum Design). A conventional four-terminal method was used for

the resistivity measurement. Typical size of the samples are 1 × 0.5 × 0.5 mm3 for

Y0.5Ca0.5BaCo4O7 and 1.5 × 1.5 × 0.5 mm3 for CaBaCo4O7 and YBaCo4O7. We

used Indium as a contact adhesive to reduce contact resistances. We removed the

anisotropic biases from the longitudinal resistivity 𝜌𝑥𝑥(𝜇0𝐻) and calculated antisym-
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metric component 𝜌𝑦𝑥(𝜇0𝐻) of the Hall resistivity by the following equations.

𝜌𝑥𝑥(𝜇0𝐻) =
𝜌𝑒𝑥𝑝𝑥𝑥 (𝜇0𝐻) + 𝜌𝑒𝑥𝑝𝑥𝑥 (−𝜇0𝐻)

2
, (2.4)

𝜌𝑦𝑥(𝜇0𝐻) =
𝜌𝑒𝑥𝑝𝑦𝑥 (𝜇0𝐻) − 𝜌𝑒𝑥𝑝𝑦𝑥 (−𝜇0𝐻)

2
(2.5)

where 𝐻 is applied magnetic field and 𝜇0 is magnetic permeability in vaccum.

In the magnetization measurements, crystal rods are used as the mounting stage

and powder samples are put in a capsule. Magnetization was measured as a function

of temperature over the range 2 K - 350 K at several applied fields ranging from 0

Oe to 70,000 Oe. Measurements were performed with the field applied both parallel

and perpendicular to the kagome plane for single crystals. Measurements were per-

formed under both field-cooled and zero-field-cooled conditions. Also, the isothermal

measurements were performed under different temperature range with a variety of

applied field magnitude.

2.4 Thermal transport and heat capacity measure-

ments

2.4.1 Heat capacity measurement

Specific heat was measured by a commercial system. When the heat power 𝑄 is

provided to the sample which is attached to the heat bath of the temperature 𝑇𝑏𝑎𝑡ℎ,

the following relation holds:

𝑄 = 𝜅(𝑇 − 𝑇𝑏𝑎𝑡ℎ) + 𝐶
𝑑𝑇

𝑑𝑡
(2.6)

where 𝜅 is the thermal conductance between the sample and the heat bath. The

temperature difference between the sample and heat bath after the heater is switched
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off and is expressed by the relaxation relation:

𝑇 − 𝑇𝑏𝑎𝑡ℎ = (𝑇1 − 𝑇𝑏𝑎𝑡ℎ)𝑒𝑥𝑝(− 𝑡

𝜏
) (2.7)

where 𝑇1 is the temperature of the sample after time t passed since the heater was

turned off. As a result, the heat capacity 𝐶 can be estimated from the relaxation

time 𝜏 by,

𝐶 = 𝜅𝜏. (2.8)

2.4.2 Thermal conductivity and thermal Hall measurement

The schematic of the experimental setup for the thermal conductivity is shown in

Figure 2-6. It consists of an electrical heater and thermocouples attached to a crystal

mounted on a heat bath.

Figure 2-6: Experimental setup for thermal transport measurement.

The thermal conductivity tensor is the linear response about the heat current 𝐽𝑄
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across the sample to the temperature gradient ∆𝑇 :

𝐽𝑄 = 𝜅̄ · (−∆𝑇 ) =

⎛⎜⎝ 𝜅𝑥𝑥 𝜅𝑥𝑦

𝜅𝑦𝑥 𝜅𝑦𝑦

⎞⎟⎠ · (−∆𝑇 ) (2.9)

and the thermal resistivity tensor is the inverse, 𝜔̄ = 𝜅̄−1. Using these, the longitudi-

nal thermal conductivity 𝜅𝑥𝑥 and the thermal Hall conductivity 𝜅𝑥𝑦 are obtained by

the following relation:

𝜅𝑥𝑥 =
𝜔𝑥𝑥

𝜔2
𝑥𝑥 + 𝜔2

𝑥𝑦

= − 𝑗𝑄
𝜕𝑇
𝜕𝑥

, (2.10)

𝜅𝑥𝑦 = − 𝜔𝑥𝑦

𝜔2
𝑥𝑥 + 𝜔2

𝑥𝑦

=
𝜅2
𝑥𝑥

𝜕𝑇
𝜕𝑦

𝑗𝑄
(2.11)

where 𝑗𝑄 is the density of 𝐽𝑄. In the same way as the electric measurement, we

extracted the longitudinal symmetric component and the transverse antisymmetric

component of temperature gradient under the magnetic field. The modified temper-

ature gradients are calculated as:

𝜕𝑇

𝜕𝑥
=

∆𝑥𝑇 (𝐵) + ∆𝑥𝑇 (−𝐵)

2𝑙𝑥
, (2.12)

𝜕𝑇

𝜕𝑦
=

∆𝑦𝑇 (𝐵) − ∆𝑦𝑇 (−𝐵)

2𝑙𝑦
(2.13)

where ∆𝑖𝑇 and 𝑑𝑖 are the observed temperature difference and distance between

thermometers in each direction (𝑥: longitudinal, 𝑦: traverse). In semiconducting

system as studied here the contribution from charged particles is small enough only

to consider phononic and magnetic excitations.
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Chapter 3

Thermal transport in kagome

frustrated magnets

3.1 The Kagome lattice

In condensed matter physics, collective phenomena in strongly correlated electron

system have attracted great interest. The collective behavior of electrons can be un-

derstood by the excitation of quasiparticles, which leads to exotic phenomena distinct

from those of bare electrons [16]. We are particularly interested in the system whose

structure (e.g. the geometry of the underlying crystal structure) is strongly corre-

lated to their physical properties. The magnetic insulators are often understood by

the spin localized picture. The kagome lattice, where the basis is arranged such that

the lattice tiles the plane with corner-sharing triangles as shown in Figure 3-1, hosts

many exotic behaviors.
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Figure 3-1: The kagome lattice.

In real materials, the crystal lattice is three-dimensional but often can be viewed as

effectively two-dimensional if it consists of layers of kagome planes that are separated

such that interactions between the layers are weak.

3.1.1 The Ferromagnet Kagome Lattice

The special geometry of kagome lattice leads to a wide range of interesting magnetic

phenomena both in ferromagnets and anti-ferromagnets. In a ferromagnet, the flat

band (localized mode) is observed at a finite energy level as seen in Figure 3-2.
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Figure 3-2: Localized band at finite energy level from [4].

This can be understood as follows. Consider Heisenberg spins on a ferromagnetic

kagome lattice. The ground state is a simple collinear arrangement of all the spins

facing the same direction (see Figure 3-3). Rather than having a large manifold of

degenerate ground states, the kagome ferromagnet has a single ground state, up to

a global spin rotation. This degeneracy of global rotation is also suppressed by the

symmetry in crystals.

Figure 3-3: The ground state of a ferromagnet on the kagome lattice.

While the ground state has a rather simple appearance, the excited states are more
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interesting. Figure 3-4 shows the localized excited states, where each of the six spins

is rotated by 30 degrees so that the total change in angular momentum is equivalent

to that of reversing one spin, with nearest-neighbor spins around the hexagon rotated

in opposite directions.

Figure 3-4: The excited localized state on the kagome lattice.

This excitation costs finite energy because the six bonds connecting these rotated

spins as well as the twelve bonds connecting the rotating spins to their six unrotated

nearest-neighbor spins. One can see these excitations in the momentum space in

Figure 3-4, representing the flat band on the top of the dispersive bands. In real

materials, different factors, such as the Dzyaloshinskii–Moriya (DM) interaction or

the distortion from perfect kagome lattice, can easily distort this picture, leading to

relaxation of the flatness of the band.

3.1.2 The Antiferromagnet Kagome Lattice

Geometric Frustration

Frustration in magnetism refers to a class of magnetic crystals where there exists no

spin configuration that will satisfy all pairwise spin interactions simultaneously (in
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Figure 3-5: The 1-D Heisenberg chain.

which multiple configurations have the same energy) [17]. There are a number of

possible sources of magnetic frustration. One of the simplest examples of frustration

can be seen in the 1-D chain Heisenberg model [18] in Figure 3-5, where the nearest

exchange interaction is ferromagnetic while the next-nearest interaction is antiferro-

magnetic. In this case, the competing interaction is the origin of the frustration.

Frustration can also be a result of the disorder, as is the case in many spin-glass

systems [19]. Geometric frustration refers to systems where the underlying geometry

of the crystal lattice is the source of the frustration. In other words, geometrically

frustrated materials are inherently frustrated, even in the absence of competing in-

teractions or disorder.

To illustrate the concept of geometric frustration, let us first consider the non-

frustrated case of antiferromagnetism on the square lattice, as shown in Figure 3-6.

To clarify the difference between geometric frustration and the case of competing

interactions, we assume that only the nearest interaction exists. Once the first spin

(marked as 1) is placed, the nearest 2 and 3 are naturally determined to be the

opposite sign of spins, resulting in the last node 4 having the same sign as the first

spin. This logic applies to the other squares, which also meet the global energy

minimum.
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Figure 3-6: Antiferromagnetism on a square lattice.

In the case of the triangular lattice, on the other hand, spin configurations are

not uniquely determined, as shown in Figure 3-7. Even though the other neighboring

spins have the opposite sign compared to the first spin placed at 1, to meet the local

energy minimum on 1-2 and 1-3 interactions, the other bond, 2-3 must have a higher

energy combination. This cannot be resolved even if we start with different signs of

spins in 2 and 3 and therefore no spin configuration can stabilize the system. This

illustrates inherent geometric frustration, which is fundamentally different from the

case of Figure 3-5, where the competition of the different interactions (the nearest

and next-nearest interaction, in this case) is the source of the frustration.

In the above example, we implicitly assumed that spins can only point either up

or down, that is the Ising model, but the Heisenberg model can relax the frustra-

tion. Figure 3-8 illustrates how the frustration of the Ising model is resolved in the

Heisenberg model. All the spins have the exact 120∘ degrees rotation relative to each

other: this configuration is not ideal locally since the opposite spins have the lowest

exchange interaction but if we count all the exchange interaction in lattice the sum

in the case of this 120∘-degree configuration is smaller than that in Figure 3-7.
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Figure 3-7: Antiferromagnet on triangular lattice: Ising model.

Figure 3-8: Antiferromagnet on triangular lattice: Heisenberg model.
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Frustration in an anti-ferromagnet kagome system

The lesson from the previous section is the nearest neighbor antiferromagnetic system

that has triangles is likely to be geometrically frustrated. The nearest neighbor anti-

ferromagnet system on 2D kagome lattice, which consists of a triangular network

of corner-sharing triangles, also has geometric frustration. Moreover, looking at the

number of nodes connected to the node of the triangle, the kagome lattice has fewer

nodes than that of the triangular lattice, which means more frustration energy is

accumulated in each node. In terms of entropy per spin site in the Ising model, a

kagome lattice has 0.502𝑘𝐵 [20], while a simple triangular lattice as shown in Figure

3-7 has 0.323𝑘𝐵 [21] at zero temperature.

To see how the structural difference between triangular and kagome structure

affects the entire spin system, we focus on the neighboring two triangles as shown

in Figure 3-9. In the Heisenberg scheme, the most energetically stable states in

both triangles are the configurations where the neighbors share 120∘ degrees between

them. Keeping this in mind, we consider fixing one spin (for example, 1). To lower

the energy, the spins on 2, 3 and 4 in edge-sharing triangles are uniquely determined

while spin 4 and 5 can still move around within the circle (marked as red in Figure

3-9) without changing the total energy. This arbitrary rotation of the two spins on

the kagome lattice creates larger manifolds of ground states.

Weathervane mode in the kagome lattice

The large manifolds in the ground states of the kagome antiferromagnet in the Heisen-

berg model yield to the localized state which is also called the ’weathervane mode’

[15]. This is the direct consequence of the arbitrary rotational freedom of the ground

states (see Figure 3-9). If we constrain the spin configuration to be coplanar, all spins

in the same triangle should point to any of the other two spin sites as shown in Figure

3-10. We can therefore describe the spin configuration in terms of three sublattices,

one for each spin orientation. Consider a closed-loop or infinite open path formed by

spins of our two chosen sublattices. We can rotate the spins along this loop, com-
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Figure 3-9: The corner-sharing triangles on kagome (left) and edge-sharing triangles
on triangle lattice. In the case of edge-sharing triangles, once any spin (for instance
1) is fixed the other spins are uniquely determined. The corner-sharing triangles do
not have this restriction: they still have other freedom of rotation of spins on 4 and
5 while keeping 120∘ degrees against their neighbors.

Figure 3-10: 𝑞 = 0 spin configuration (left) and
√

3×
√

3 (right). The plus and minus
sign in each triangle stand for the chirality of spins as defined in the main text. The
red rhombus is the unit cell of each spin configuration. From [5].
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Figure 3-11: The crystal structure of Y0.5Ca0.5BaCo4O7 from [5].

pletely independent of the rest of the lattice. Because these modes are localized in

real space they will be dispersionless in momentum space.

3.2 Magnonic flat band in Y0.5Ca0.5BaCo4O7

Y0.5Ca0.5BaCo4O7 is one of the candidates that may host the flat band from its

structure shown in the Figure 3-11. One can see kagome layers consisting of Co sites

(light blue atoms) and the spacer layers consisting of Y, Ca, Ba, and the other Co

(dark blue atoms) between the neighboring kagome layers. According to a previous

report [5], the dimensionality of the magnetic network of Co is 2-dimensional while

another report [22] suggests that the Co in the spacer layer magnetically mediates an

interaction between the kagome layers, creating a 3-dimensional network. According

to inelastic neutron experiments [5], there is a flat band observed around the zero

energy level (see Figure 3-12).

3.2.1 Magnetization Properties

As inferred from the geometry of Co atoms on the kagome layers, Y0.5Ca0.5BaCo4O7

has frustrated magnetism. The first report of magnetization of Y0.5Ca0.5BaCo4O7
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Figure 3-12: Spin-incoherent scattering of Co; the separated nuclear coherent scat-
tering has been rescaled. From [5].

shows a multiple anomaly in the magnetization-temperature dependence and the

Curie-Weiss temperature Θ𝐶𝑊 = −2200 K [23], which indicates that the systems is

very strongly frustrated system and its spin configuration in each temperature window

is complex. Another report [5] suggests that a spin glass picture may be relevant given

the discrepancy between field cooling and zero-field cooling.

Figure 3-14 shows the temperature dependence of magnetization of a single crystal

of Y0.5Ca0.5BaCo4O7 grown by the floating zone method. Figure 3-15 shows the field

dependence of the effective magnetic moment per Co atom. From these, we can see

that remnant magnetization persists up to 400 K.

3.2.2 Electric Properties

As seen in the Figure 3-16, each compound is an insulator at all compostions 𝑥 = 0, 0.5

and 1. The calculated band gap from 𝑅 = 𝑅0 * 𝑒−Δ/𝑘𝐵𝑇 is ∆Ca0.5Y0.5 = 52 meV,

∆Y = 440 meV and ∆Ca = 570 meV, respectively. Figure 3-17 implies that the mean
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Figure 3-13: The difference of the intensity measured at 150 K and 40 K in time-of-
flight mode reveals a loss of elastic signal (blue) and a relaxation one (red), which is
consistent with the predicted flat band of the ground states of AFM kagome crystals.
The quasi-elastic broadening at zero energy is considered to be from thermal spin
fluctuations. From [5].

Figure 3-14: The effective magnetic moment per Co as a function of temperature for
Y0.5Ca0.5BaCo4O7. The red line is measured with an out-plane magnetic field and
the blue is with an in-plane field. Zero-field cooling measurement is dotted line while
field cooling is the solid line. From [5].
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Figure 3-15: Magnetic field dependence of magnetization of Y0.5Ca0.5BaCo4O7 at
selected temperatures

free path of charged carriers is very short since the change of magnetoresistance (MR)

is very small at all temperatures. The hysteresis observed below 100 K suggests the

magnetic property also has hysteresis behavior, such as spin glass or ferromagnetic.

In this case, the hysteresis of spin-glass behavior also causes the butterfly-like shape

in magnetoresistance.

3.2.3 Anomalous Hall coefficient

Figure 3-19 shows that the coercive field in the Hall resistivity in the Figure 3-18 is

related to that of magnetization-temperature dependence in Figure 3-14. The hall

component can be extracted by the following [24]:

𝜌𝑦𝑥(𝜇0𝐻) = 𝜌0 + 𝜌𝐴𝐻𝐸, (3.1)

𝜌𝐴𝐻𝐸 = 𝜇0𝑀𝑅𝑠, (3.2)

𝑅𝑠 = 𝜌𝛽 (3.3)
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Figure 3-16: Temperature dependence of resistivity of each compound. The extracted
band gaps are ∆Ca0.5Y0.5 = 52 meV, ∆Y = 440 meV and ∆Ca = 570 meV.

Figure 3-17: Magnetoresisitance of Y0.5Ca0.5BaCo4O7 at different temperatures. The
change is lower than 1 percent at all temperatures.
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Figure 3-18: The Hall resistivity of Y0.5Ca0.5BaCo4O7 from 350 K to 100 K. The
carrier density is calculated from the slope where the strength of the field larger than
2 T.

where 𝜌0 is the normal Hall term, that is the linear part as a function of the field

at a higher magnetic region (> 2 T). The anomalous component is extracted by

the intersection between the 𝑦-axis and the normal Hall term extrapolated from the

higher field. Furthermore, as suggested in [24], 𝜌𝐴𝐻𝐸 is characterized by its resistivity

corresponding to its underlying Hall mechanism. The side jump, where the electron

is deflected in the opposite directions by the opposite electric fields experienced on

approaching and leaving and impurity, is characterized by 𝛽 = 2, while the skew

scattering, caused by the spin-orbit coupling between electron and impurity, is 𝛽 = 1.

In the case of Y0.5Ca0.5BaCo4O7, as illustrated in the Figure 3-20, the side jump

mechanism is corresponding the temperature window between 200 K and 300 K.

3.3 Thermal properties of Y0.5Ca0.5BaCo4O7

The thermal properties of Y0.5Ca0.5BaCo4O7 is investigated here in single crystal

specimens.
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Figure 3-19: The coercive field of Y0.5Ca0.5BaCo4O7. The coercive field is estimated
as the 𝑥-coordinate of the intersection of the 𝑥-axis and each measurement curve.

Figure 3-20: Anomalous coefficient 𝑅𝑠 as a function of 𝜌 for Y0.5Ca0.5BaCo4O7. 𝑅𝑠

is calculated by Eq. (3.1).
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Figure 3-21: Thermal conductivity of Y0.5Ca0.5BaCo4O7 from 200 K to 7 K.

3.3.1 Thermal conductivity

Figure 3-21 shows the thermal conductivity from 200 K to 7 K. Throughout the

temperature window, there is no anomaly other than measurement errors around 100

K and 20 K due to the change of the power of the heater. The insensitivity against

the applied magnetic field in Figure 3-23 indicate that no conventional heat transport

originated from the magnetism exists. In particular, the weathervane mode is not

observed in Y0.5Ca0.5BaCo4O7. Moreover, the scaling at low-temperature as shown

in Figure 3-22 indicates a complex phonon mechanism.

3.3.2 Heat Capacity

The temperature dependence of heat capacity in Figure 3-24 also has no anomaly

at the temperature range between 230 K to 7 K. The characterization by temper-

ature suggests a 3-dimensional phonon excitation. From this, we conclude that no

signatures of the flat band is observed in Y0.5Ca0.5BaCo4O7.
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Figure 3-22: Scaling of 𝜅𝑥𝑥𝑡 by 𝑇 𝛽 for Y0.5Ca0.5BaCo4O7Y0.5Ca0.5BaCo4O7. 𝛽 ≈ 1
indicates that, unlike 𝛽 = 3 for a typical insulator, complex phonon scattering controls
the thermal conduction at low temperature.

Figure 3-23: The field dependence of thermal conductivity of Y0.5Ca0.5BaCo4O7.
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Figure 3-24: (a) Heat capacity of Y0.5Ca0.5BaCo4O7 as function of temperature from
5 to 200 K. (b) The scaling by 𝑇 at low temperature, 𝑇 3, indicates an absence of a
conventional magnetic band contribute to the heat capacity.

3.3.3 Summary

We showed the experimental approach to test if the series of the compounds,

YxCa(1−x)BaCo4O7, have an exotic thermal transport originated from magnon flat

band. Y0.5Ca0.5BaCo4O7 has a flat magnonic band at zero energy level as observed

by the inelastic neutron scattering [22]. This flat band is considered to be generated

by the geometric frustration on kagome layers where Co ions antiferromagnetically

interact with each other. In our transport and specific heat measurements, however,

we do not observe any signatures of the flat band. The anomalous Hall effect, instead,

is observed in electrical transport experiments. By comparing the temperature de-

pendence of magnetization with that of the Hall transport as seen in Figure 3-19, we

can infer that the observed AHE is correlated to the magnetization, possibly to the

spin configuration on the kagome layer. More advanced experiments such as neutron

scattering are needed to confirm the spin texture at each temperature range to discuss

the relation between the AHE and the intrinsic magnetization on the kagome layer.
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Chapter 4

Material Informatics

4.1 Introduction

4.1.1 Advent of data-driven materials discovery

Innovations in materials have brought productivity and prosperity to society. In turn,

modern technology relies on the discovery of new materials. However, the creation

and development of novel materials with desired properties is a difficult and slow

process. This is because a large part of the material discovery process is still driven

by experimental trial and error; in fact, many milestone materials were discovered by

accident rather than careful strategy. For example, the growth method of the blue

LED host, GaN film, was accidentally discovered by using a mulfunctional furnace

[25]. The first high temperature superconductor, the copper oxide superconductor,

was not expected and remains a challenge to model as it cannot be explained by the

conventional BCS theory [26].

The history of the computational approach for material exploration started with

the development of quantum mechanics in the early 20th century. Solid-state physics

shifted the paradigm to use physical laws and semi-empirical models to guide the

design of new materials. Up to today, exploring neighboring elements in the peri-

odic table is still one of the most efficient ways to achieve target physical properties.

In the late 20th century, increasingly powerful computers began to allow the direct
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computing of material properties by solving the Schrödinger equation. The success

of ab-initio simulations, especially density functional theory [27], motivated the com-

putational exploration of the vast data of materials.

Many expect that data-driven approaches including machine learning will lead to

a new paradigm for materials discovery [28]. This trend was brought about partly

by the remarkable improvement of computation power and also by the advent of

large-scale open data sources. For example, a recent review paper summarized 10

computational databases and 11 experimental databases that are publicly accessible

[28]. These open databases provide a new guideline for materials synthesis by utilizing

a large number of datasets.

Computational material exploration especially in materials such as inorganic crys-

tals and molecular substances is called materials informatics. Recently, in materials

informatics more researchers are trying to incorporate a large amount of datasets into

first principle calculation or machine learning models to predict materials properties.

Following the rapid advance of deep learning methods used in image recognition,

and natural language processing, many deep learning techniques have been applied

to materials systems [29, 30]. Even though these new generations of computational

approach can potentially capture the features of materials which cannot be caught

by the classical approaches and realize better performance, the range of target prop-

erties is still limited. One of the reasons many deep learning models can only predict

limited physical properties is that an open database of materials [31] cannot provide

sufficient examples and often they are calculated rather than experimental values. In

this chapter, I study classical and modern deep machine learning models to predict

magnetic properties with experimental data.

4.1.2 Classical machine learning

Before going to the machine learning architecture, it is helpful to introduce the broader

concepts of machine learning. The concept of machine learning is usually defined as

the schematic in Figure 4-1 [32].
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Figure 4-1: Comparison between traditional programming (A) and machine learning

(B). The schematic is from [6].

The type A flowchart in Figure 4-1 describes the traditional programming paradigm

where a programmer develops a set of rules, feeds it to the computer and observes the

output. If the outputs are not satisfactory, the programmer goes back to the program

and adjusts the rules to improve the results. Therefore, the action of modification is

done by humans.

Unlike the traditional programming paradigm, machine learning is usually re-

ferred to as the process of letting the computer discern such non-trivial input-output

relationships. As summarized in the type B flowchart in the 4-1, the difference be-

tween the traditional programming paradigm and machine learning is that the latter

is a computer algorithm with the task we want to solve, and it will generate the

decision-making program that optimizes the decision making.

4.1.3 Deep learning

The first deep machine learning algorithms appeared in the 1950s and were designed

to mimic the networks of neurons in the human brain [7] as seen in Figure 4-2. In the

following decades, neural networks with multiple neurons and layers were developed
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as well as algorithms to train them effectively.

Figure 4-2: Flowchart of perceptron. From [7].

Due to the rapid development of deep learning methods recently, as well as im-

provement of calculation power, the branch of machine learning that does not concern

deep neural networks is now referred to as conventional machine learning. The rela-

tion between deep learning and machine learning is represented in Figure 4-3.

Figure 4-3: The overlap between machine learning and deep learning.
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4.2 Data driven materials exploration of new mag-

nets

Magnetism in crystals is generally understood by two different pictures: one is by the

spin localized picture where the local spins tied to the magnetic nodes interacting with

each other yield macroscopic magnetism, while the other is by band structures where

the intrinsic magnetization lowers the band energy. In this study, we are interested

in the former cases because local spin-based magnetic compounds tend to show a

high structure-properties correlation and will be compatible with large data-driven

machine learning architecture for the following reasons.

1. The data quality other than structure data such as bandgap, formation energy,

and other physical properties is less reliable.

2. There are many structure data such as cif data files available in many open

databases (e.g. [31]).

3. Some magnetic properties such as magnetic order (anti-ferromagnet or ferro-

magnet) are strongly related to its structure and chemical information.

In this work, among the variety of magnetic properties, we will focus on two: the

type of magnetic order and the critical temperature. The type of magnetic order

usually consists of three types: ferromagnetic, where the atomic spins align along the

same direction, anti-ferromagnetic, where the atomic spins lower their energy most

by aligning antiparallel, and paramagnetic. A magnetic order disappears above a

certain temperature, and that is known as the critical temperature 𝑇𝐶 ; these are the

Curie temperature in the case of ferromagnets and the Neel temperatures in the case

of anti-ferromagnets.

4.3 Crystal Graphical Convolutional Neural Networks

To extract critical information effectively from the original structural information of

crystals (e.g. cif format), we use the Crystal Graphical Convolutional Neural Net-

works (CGCNN), which was originally suggested by Xien Tian [8], to create a graphi-
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cal representation based on the atomic sites and bond length between them. The core

idea of CGCNN is illustrated in the Figure 4-4 ([8]): a crystal graph 𝐺 is an undirected

graph that allows multiple edges between the same pairs to reflect the periodicity of

the crystals. Each node is denoted by a vector 𝑣𝑖 which is designed to represent the

atomic features in the periodic table. In the same way, an edge between the site i and

j is represented by a feature vector 𝑢(𝑖,𝑗)𝑘, where k is the k -th bond connecting i and j.

Figure 4-4: Graphical representation of crystal structure in the CGCNN. (a) Nodes

and edges in the graph are represented by vectors corresponding to the atomic sites

and bonds, respectively. (b) The architecture of the CGCNN on the top of the crystal

graph. 𝑅 convolutional layers and 𝐿1 hidden layers create a new graph with each node

representing the local environment of each atom. After being pooled, the new graph

is connected to 𝐿2 hidden layers and then to the output layer. Figure adapted from

[8].

To encode the similarity/difference of different elements in a node feature vector,

the atomic properties in Table 4.1 are selected for each component of the initialized

vector. This enables CGCNN to distinguish different atoms.
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Table 4.1: Tables of properties used in the node feature vectors

The original CGCNN paper proposes two possible methods to define the connec-

tivity of the edge 𝑢𝑘
(𝑖,𝑗). The first only considers the strong bonding interaction while

the second method tracks the nearest neighbors in the original structure. Through-

out this work, we use the second method to define the connected nodes. After the

connectivity is defined, the edges are defined from the distance between them as,

𝑢𝑖𝑛𝑖
(𝑖,𝑗) = 𝑒𝑥𝑝(−(𝑑(𝑖, 𝑗) − 𝜇)2/𝜎2) (4.1)

where 𝜇 = 0.2 and 𝜎 = 0.2.

4.4 Design of Magnetic Graph Representation

As illustrated in the previous section, the application of the CGCNN itself is very

general. We consider here modifying the original crystal graph representation into

the magnetic graph representation. The magnetic graph is the specific graph repre-

sentation where the non-magnetic atoms are removed and only magnetic atoms exist

so that we enable the CGCNN to make better predictions on spin localized mag-

netic systems. The definition of the nodes of the magnetic graph is the same as the

original CGCNN. The edge of the magnetic graph should reflect the strong magnetic

interaction between different magnetic sites. One of the examples of the edges is the

exchange interaction in the Heisenberg model. In this work, we use the bond length
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as the edges of the magnetic graph.

4.5 Performance of Magnetic CGCNN

To test the performance of the magnetic CGCNN, we use the experimental prop-

erties scraped from published papers. The scraping method used in this work was

previously reported [33]; it collects the critical temperature of ferromagnets and anti-

ferromagnets from 50 journal articles. The profile of the collected data is shown in

Figure 4-5. There are two rules used in this work to cleanse the original dataset. (1)

The chemical formula should have an integer form (ones that have fractional stoi-

chiometric values have been removed) and (2) the compound should have magnetic

atoms (ions).
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Figure 4-5: The profile of the dataset (a) The dataset of Neel temperature. (b) The

dataset of Curie temperature. (c) The dataset used in the literature [9].
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After these cleansing processes, the remaing dataset of each magnetic type is 973

anti-ferromagnets and 1169 ferromagnets. The database used in this work generally

has atoms across the entire periodic table. Several tendencies are observed: more com-

pounds have the transition metals than other magnetic atoms and many compounds

are oxides (284 out of 1169). This implies the dataset can be a good training set

because magnetism of transition metal compounds and oxides are usually understood

as the spin localized picture, thus, within the range of the magnetic CGCNN.

Figure 4-6 is the performance of the regression predictions in each model. Figure

(a) in 4-6 is the conventional random forest regression with the typical structural and

elemental features listed in Table 4.2, showing the best performance. Figure 4.2 (b)

and (c) are the CGCNN with original and magnetic graph representation, respectively.

The CGCNN with the magnetic graph has smaller Mean Absolute Error (MAE) and

loss for the test dataset than the original CGCNN.

Table 4.2: The feature vector used in the literature [9]. The total dimension of the

vector is 129, each component of which is uniquely determined once the chemical

formula is given.

Figure 4-7 shows the classification of anti-ferromagnets and ferromagnets in each

CGCNN model. As well as the regression of 𝑇𝐶 , the CGCNN with magnetic graph

shows a better result than the original CGCNN.
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Figure 4-6: The predicted 𝑇𝐶 for the test dataset in each regressor: (a) random forests

with features vector listed in 4.2 (b) The original CGCNN (c) The modified CGCNN

with the magnetic graph representation.

Figure 4-7: The ROC (Receiver operating characteristic ) curve for the classification

of ferromagnets and anti-ferromagnets for (a) conventional CGCNN and (b) magnetic

CGCNN.
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Overall, even though the CGCNN does not outperform the conventional machine

learning approach, the magnetic graph representation slightly improves the perfor-

mance of the CGCNN both in regression and classification, indicating that the idea

of removing non-magnetic atoms in graph representation is effective. In the context

of the spin localized picture, these results imply that the structure of magnetic sites

is more influential to the macroscopic magnetism than that of non-magnetic ones.

4.6 Future directions

Uncorrelated input data in training datasets often reduce a model’s performance. In

the case of this study, there are metallic magnets and insulating magnets included

in the same dataset, which possibly affects the model as the underlying mechanism

of magnetism is different for the two. For instance, the ferromagnetism of elemental

Fe is understood by the band structure near Fermi energy rather than localized spin

models. Furthermore the element of the magnetic ion itself is strongly correlated to

magnetism. For example, compounds which have the Mn elements as the magnetic

ions are more likely to be anti-ferromagnet compared to the ones with elemental Fe.

One of the possible ways to resolve this issue is to use a filter for preprocessing.

For example, by separating insulators from metals or Mn-included compounds from

Fe-included ones, the model can learn the features within each category without being

disturbed by uncorrelated samples. Another possible way is to use the technique of

attention in a model. The Graph convolutional neural networks with global attention

(CrabNet) [34] is one of the CGCNN models which introduce an attention mech-

anism to distinguish the compositional difference, which could help the predictive

performance of magnetic properties.

Finally, of great interest is the future appreciation of these methods to discover

new frustrated magnetic systems that may be explored experimentally for flat band

related phenomena.
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Chapter 5

Summary and Outlook

In summary, we showed the experimental approach to test if a series of the compounds,

YxCa(1−x)BaCo4O7, have an exotic thermal transport originated from a magnon flat

band. Among this family, Y0.5Ca0.5BaCo4O7 has a flat magnonic band at zero energy

level as observed by inelastic neutron scattering [22]. This flat band is considered to be

generated by the geometric frustration on kagome layers where Co ions antiferromag-

netically interact with each other. In our transport and specific heat measurements,

however, we do not observe any signatures of the flat band. The anomalous Hall

effect, instead, is observed in electrical transport experiments. By comparing the

temperature dependence of magnetization with that of the Hall transport as seen in

Figure 3-19, we can infer that the observed AHE is correlated to the magnetization,

possibly arising from the spin configuration on the kagome layer. More advanced

experiments such as neutron scattering are needed to confirm the spin texture at

each temperature range to discuss the relation between the AHE and the intrinsic

magnetization on the kagome layer.

The above approach to find the magnetic compound with the flat band is based

on the following observations. Firstly, the magnetic ions (Co) form a kagome network

which is expected to host a weathervane mode as discussed in chapter 3. Secondly,

the Curie-Weiss temperature is very high (over 1000 K), could lead to large magnon

thermal transport. Another factor is the growth method of the single crystal is fea-

sible in our laboratory. These considerations can be dealt with more systematically,
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motivating the data-driven materials discovery approach. The CGCNN deep learning

model was applied to magnetic systems, in particular, to make the regression model

of the transition temperatures and the classification (ferromagnetic or antiferromag-

netic) model. Magnetic CGCNN is the model which only focuses on the magnetic ions

with removing non-magnetic ions from original structures. In the classification pre-

diction, the magnetic CGCNN has better accuracy than that of the CGCNN, which

indicates that the magnetic properties could be predicted only from the structure

of the magnetic ions. Within the framework of this thesis, I only consider a very

broad category of the magnetic properties but, in future work, more granularized

material properties (for instance, magnon thermal conduction, magnetic frusration,

or topological magnetic compounds) could be the target of the prediction.
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