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Abstract

Protein engineering is defined as the design and production of
proteins which exhibit specified behaviors. Despite many advances,
both in theory and experiment, it is still impossible to predict the
structure and function of a protein given its primary sequence of
amino acids. The inverse problem, predicting the primary sequence
of amino acids which will produce a given structure or function, is
almost certainly even more difficult. This thesis presents two new
technologies to help bypass the need to solve the inverse protein
folding problem. The first is an experimental mutagenesis protocol,
Recursive Ensemble Mutagenesis, which performs a highly parallel
adaptive search of sequence space for proteins fitting a design
criterion. The second technology is Digital Imaging Spectroscopy
which is able to obtain the spectrum from every point in a two-
dimensional image. The spectrometer is used to analyze the in vivo
ground-state absorption spectra of the photosynthetic proteins of
the bacterium Rhodobacter capsulatus.

Sequence space is defined as the set of all possible proteins. If
we only consider proteins of 1000 amino acids or less, then there
are greater than 201.000 proteins contained by this space (more
particles than there are estimated to be in the universe!)
Presumably, each of these sequences is able to perform a given
function to a greater or lesser extent determined by some highly
non-linear relation. Searching such a space for the protein which
best fits a desired criterion can be shown to be at least NP-hard,
i.e., the optimum cannot, on average, be found in a reasonable amount
of time. Therefore, it is necessary to employ approximate
combinatorial optimization algorithms to search the space
effectively. Recursive Ensemble Mutagenesis (REM) is such an
algorithm. Similar in many respects to the artificial intelligence



technique of genetic algorithms, REM iteratively "evolves" a diverse
population of trial solutions to fit a specific design criterion.

REM employs combinatorial cassette mutagenesis to create a
randomized population of mutant proteins called an ensemble. The
ensemble is subjected to a selection or screen which identifies
mutants displaying desirable properties. The sequences (either DNA
or amino acid) of these "fit" mutants are analyzed and used to
calculate the nucleotide composition of a new combinatorial
cassette. A new ensemble is created by the introduction of this
cassette into the gene for a protein and the process begins again.
Simulations of this technique indicate that REM is able to produce a
large diverse set of proteins fitting an engineer's specifications
while examining only a miniscule portion of the sequence space
available to it. Methods for the calculation of a combinatorial
cassette from an ensemble of proteins are discussed along with the
the relevant experimental limitations.

One of the most important experimental limitations on REM, or
any combinatorial cassette experiment, is the maximum number of
mutants which can be screened in a reasonable amount of time. The
greater the proportion of the ensemble which can be examined, the
more information about the constraints on protein function can be
gleaned. The Digital Imaging Spectrometer (DIS) was developed in
anticipation of screening combinatorial libraries of mutants in the
photosynthetic apparatus of Rb. capsulatus. The VIS/NIR absorption
spectra of these membrane proteins are a sensitive indicator of
structure and function. Isolating the proteins in a form suitable for
a conventional spectrometer is a time consuming process, taking
more than a week in some cases. However, using specialized machine
vision techniques, DIS is able to obtain analytical ground-state
absorption spectra from more than 1,000 bacterial colonies
simultaneously in under twenty minutes. Spectra are recorded at a
maximum of S5nm resolution over the wavelength range from 930-
400nm. Noise in the spectra is on the order of 0.0005 OD to 0.005 OD
at low and high absorption extremes respectively. A suite of
algorithms is used to classify and display the large number of
resulting spectra.

Thesis Supervisor: Keith A. Nelson
Title: Professor of Chemistry

Thesis Supervisor: Douglas C. Youvan
Title: Associate Professor of Chemistry



Acknowledgements

Doug hates these things but I'm going to do one anyway! (So
there!) First thanks goes, of course, to my mentor Douglas Youvan
who provided much of the original thought which went into the
production of this thesis. | want to thank him for providing an
environment where controlled insanity could actually lead to
scientific progress and for being a great sparring partner and friend.

Thanks also goes to Keith Nelson, who first connected me to
Dr. Youvan and then allowed me to pursue the rather odd path
described in this thesis. | thank Keith for his enthusiasm and support
whenever we spoke.

| would also like to thank the Youvan Clan: Ellen, Steve, Bill,
Mary, Simon, and Christine. Ellen was my fellow traveller, a
wayward waif drawn from the fold of the '88 pchem subsection into
the realm of biological goop. Thanks go to her for walking this
confusing trail with me. Bill was the Snark Master. Thanks go to him
for many interesting discussions and, of course, meals. (Is it lunch
time yet?) Thanks also to Mary, Steve and, yes, Simon for providing
both reality checks and good humor. Finally, | want to thank
Christine for letting me tease her so unmercifully. | wouldn't have
done it if | didn't like her and respect her so much.

Special thanks goes to David Chasman. He is one of the only
true scholars | have ever met. | wish to thank him for the many
lengthy (and sometimes loud) argument over subjects which even a
theorist would call mental masturbation.

There are so many other people who were fundamental in
giving me confidence in myself, love and support: there is Thea who
is my greatest friend despite our distances, Carolyn who was my
companion for four years and who is the sweetest person | have ever
met. There is Dan Sodickson, James Myers, Steve Dinneen, Nat Case,
Don Owen, Will Cramer and Julie Thomas who provided an excellent
community of friends during my years of college and/or graduate
school. Special thanks to the latter two who were actually able to
live with me for over three years. | will miss our weekly pizza and
Star Trek dinners. Finally, thanks go to Aline Cornelius who has been
my pal since my start at M.L.T. and has slowly become one of my
closest friends. (Her fault!)



Finally, grateful thanks to my family for...well....being my
family. 1 can't think of another one to which | would like to belong. It
is to them that this thesis is dedicated.



Table of Contents Page

Chapter 1: Combinatorics in Sequence Space............ ~~~ ype ad

1.1 Adrift in Sequence Space..........
1.2 In Search of Proteins

Genetic Manipulations..........ceervueene-.
1.3 Combinatorial OptimizZation..........eeeeeeneereresessesesesesssessesesssnene-
1.4 Recursive Ensemble Mutagenesis.............
1.5 References...

~
PO ww @ 9dn

22

Chapter 2: Digital Imaging Spectroscopy.. 18

2.1 The Evolution of a Digital Imaging Spectrometer...................1 9
2.2 Digital Imaging Spectroscopy......c..... pes

2.2.1 SUMMATY cccrereerereerrrerenenrerersesesnnens essenssaseisesssensassnssed I

2.2.2 Machine Vision for Library Screening........ccecerreeenenn23
2.2.3 Construction of a Spectral "Tester" Strain................25
2.2.4 DIS Hardware Specifications........... reersrsassnesndO

2.2.4.1 The CCD Camera........ Cree30
2.2.4.2 The Light Source and Integrating
Sphere..nceeeeee.
DIS Software Specifications......cceoirrvrerevanenne
2.2.5.1 Image Analysis........cceeeuneen..
2.2.5.2 Spectral AcquiSition .........cceoeveveccoocrevvrnne-
2.2.5.3 Classification and Display.............

2.2.6 System Development.....ccese ccciet reernccnrereesnesssssenenned9
2.2.7 Conclusions...........ceu.. veeene00
2.2.8 AcKknowledgements.......ccreereererernernennreesernsneneseesnsneseansenen01

2.3 Epilogue............. reerrennnenns01
2.4 References...... renner66

Chapter 3: Optimized Nucleotide MiXtures.ooocoooevereeessonne.eee 9

3.1 Reducing Complexity..cceeeericiserreierireennnsseneressssesssesesasessesesssssesesnes1.0
3.2 Optimized Nucleotide Mixtures for Combinatorial
Cassette Mutagenesis............ J"A¢

3.2.1 SUMMATY coreverrnerernreners © reressesessessennee ceceverneennn-10

3.2.1 CCM to Search Sequence Space.............. 71
3.2.2 Results and DiSCUSSION ...ccccrrrereerrerenererernesesesssenseraeseessssene|9
3.2.3 Acknowledgement............ cvreessennnesnesnnennd4

3.3 Epilogue...... Cn 84

]



3.4 References.......uuee.. ....88

Chapter 4: Recursive Ensemble Mutagenesis .......ccueunn.c-- 92

4.1 Forward................ re chem sHspessennsonndD)3
4.2 Simulations of Recursive Ensemble Mutagenesis..................93

4.2.1 Summary............ seerssssseseesnasd 3
4.2.2 Reverse Engineering the Protein Folding
Problem.......... HEATER
4.2.3 Description and Results of Simulations.........ccceeeeeeeeeee97

4.2.3.1 Theory and Description of Algorithm..........97
4.2.3.2 General Aspects of REM Simulations.............101
4.2.3.3 REM Simulations Using an "Alphabetic"
Decision Algorithm............ccuue-e ..105
4.2.3.4 REM Simulations on an

Hydropathically Constrained Domain...........cceeeueuene...108
4.2.3.5 REM Simulation of a Complex Binding
SI uerrrrrreerereraenns veereensnesennnene108
4.2.3.5 REM Simulations Involving an Alpha
Helix ooieeeceerreenrccreenernenrennanna cereneenn110
4.2.3.6 Acceleration of REM........ weeeel 111
Conclusions
The Relation of REM to GAs. etc........

Acknowledgement......ceeeeeneennn...
—

SR

veel 18

4.2.5
4.3 Epilogue.....
4.4 References........  vw dw

Chapter 5: The Effects of DA Stringency and Library Complexity
on REM ....... 122

5.1 Forward
Experimental Limitations on REM... © ever 123

5.2 The Effects of DA Stringency and Librarv Complexity
on REM.....vrivvciee evreeernnes crvevesnnnenens124

5.2.1 SUMMATY ..ucucceeerrrerrerrerereeneeeresseesesessnnnn. eee 124

5.2.2 Complexity and Stringency......ceeeeees  cvvvvrvereennnn124
5.2.3 Mathematical Background.........cccceecesnerrrvineereriiceerecrinnennn125
5.2.4 Simulations........ceveerecervenen. wererenesesssnskh 2.8
5.2.5 AcCKNOWIEdZMENLS ....cueereerereneeereereneneeeseecssonsssesssossossssnsens]3 4

5.3 Epilogue............ eeereennnen 134
5.4 References..... ......137

J



Chapter 6: Towards a Practical Implementation of REM........ e140

6.1 Forward..........ccccceeureunenn. ween 14 1
5.2 REM Revisited......ccccoreveerenrnrnaennenaessensensanssens murine] 4 1

6.2.1 Summary .....cceeencencrncresennene cresenssnsnenens141
6.2.2 INtrOdUCHION ....ceeereccererereereneneresnsnsesasseseresseasonnsnsasnenssssssssnsnes142
6.2.3 Experimental Aspects of REM......vvnnrnrereneccennennnn144
6.2.4 Overview of REM Methodology......cccerrverererenrrercrnennenns145
6.2.5 Computer Simulations Using REM.......cuceevevrvrererernenn. 147
6.2.6 SSD versus pG.....coueunene. crensersnrenernens] 3 2
6.2.6 AcCKnowledgments..........cceereeeeserreeeneeneeresecssessesseesneseesessne13 5

6.3 Epilogue........ wees135
6.4 References............. weal 50

Appendix A: A Bibliography of Programs...  i eerensannnenn162

A.1 Post-Mortem... reeeesseesssnessssessssnasssnessssasssssassseesanaasss1O 3
A.2 Annotated List of Programs..... een 63



Chapter 1

Combinatorics in Sequence Space



1.1 Adrift in Sequence Space

The goals of a protein engineer are manifold, ranging from the
design of pharmaceutically active peptides and catalysts for organic
reactions to the production of organisms constructed for
bioremediation. However, given the current state of theory it is as

yet impossible to predict the function and three-dimensional
structure of a protein from its primary sequence of amino acids.
Even, if this were possible, the inverse problem would have to be
solved: how does one predict the protein sequence which best
produces a given biological function. The search for this postulated
protein constitutes a traversal of sequence space. Sequence space
has been envisioned as a discrete surface whose defining axes

enumerate the amino acids which may appear at each site in a

protein's primary sequence.! For example, for proteins of length
1,000, the space is a 1,000 dimensional hypercube wherein each of
the 201.000 possible proteins is represented by a single vertex. The
"height" of each point in this space indicates the fitness of the
protein for the performance of a specified task. Since, for example,
single point mutations in a protein sequence may destroy its
functionality the topography of sequence space is assumed to be

very rugged, composed of steeply defined ridges, valleys, and
plateaus. Thus, knowledge of the fitness of a specific protein
sequence will not, in general, give any information on the fitness of
its "nearest" neighbors. It has been shown that for any high-
dimensional parameter space with a highly non-linear objective
function, the search for a global optimum is, at best, NP-hard.3 This
implies that standard optimization procedures, such as gradient
algorithms, will almost certainly fail to consistently locate fit
proteins in sequence space in a reasonable amount of time and a

combinatorial, stochastic approach is required.

Naturally occurring proteins have evolved according to
spontaneous (non-Larmarkian) genetic mutation. Random mutants
are judged fit or unfit by the environment in which they were



generated. By virtue of the large number of organisms undergoing
these random perturbations and selections, it can be argued that
Nature has been employing combinatorial optimization techniques
for millions of years. In fact, by 1930 the mathematics of Mendelian
genetics had advanced far enough to prove that, given a geological
time-scale and at least a mild-selection, the very small observed

rate of spontaneous mutation of genes (&lt;1x10-7) was enough to
explain the accumulation of advantageous phenotypes.&gt;~’ Further,
since the turn of the century it had been recognized that the study of

these spontaneously occurring mutations could yield valuable insight
into biochemical processes. For example, as early as 1908,
observations of hereditary diseases in humans lead Garrod? to

propose the one gene-one enzyme hypothesis, a proposal which
motivated Beadle and Tatum 2: 10, in 1940, to attempt to increase

the rate of mutation in Neurospora, using UV light, in order to
isolate growth factor mutants and identify the enzymes responsible
for the metabolic deficiency. It thus became obvious that
mutagenesis, the production of man-made mutations, would be an
indispensable tool for understanding the mechanisms of life.

The balance of this chapter is dedicated to an abbreviated

history of the evolution of mutagenesis up until the time of the
inception of this thesis and a discussion of how the relatively new

methods of combinatorial optimization may be used to make the
necessary stochastic search of sequence space more efficient.

1.2 In Search of Proteins: Genetic Manipulations

Perhaps the earliest mutagenesis experiments were performed
after the observations by Muller'! and Stadler!?, in 1927, that X-
rays increase the rate of spontaneous mutation. Since large genes
are more likely to be hit by an X-ray, these genes are

commensurately more susceptible to mutation. Thus, X-ray
mutagenesis was used to provide a rough estimate of gene size. X-
rays are non-specific and induce random mutations throughout the
entire genome. This type of random mutagenesis. wherein the locus



and type of mutation are (initially) unknown, is representative of
the type of work which ensued for the next forty years. Much of the
biochemistry of metabolic cycles and reproduction was elucidated
by the combination of these mutagenesis experiments with standard
genetic crossing experiments. However, if the details of these
processes were to be investigated, finer control of the genetic

regulatory elements and proteins would be required.

The discovery of restriction enzymes in 1970 opened the
doorway towards this more exquisite control.!3 14 Class II

restriction enzymes recognize specific palindromic DNA sequences
(typically six bases in length) and cut at those locations. In

combination with the ability to utilize bacterial plasmids and phage,
these restriction enzymes allowed for the production of recombinant
organisms and, notably, an simple method for DNA sequencing. Once
the genes responsible for a given function could be isolated on

small, manipulable genetic elements it was plausible to think of
targeting those specific genes for mutagenesis. In fact, the most
obvious way to do this (in hindsight) is to chemically synthesize the
part of the gene one wished to mutagenize. The earliest experiments
involved isolating a gene of interest on a plasmid, cutting it with a

restriction enzyme at one site, removing nucleotide bases from the

end using nucleases then recircularizing the plasmid using a
chemically synthesized linker fragment and the enzyme ligase. It
wasn't until the late seventies that the technology existed for the
synthesis of entire genes and a method for rapid site-directed
mutagenesis was proposed.

Up until about 1978, site-directed mutagenesis was carried
out using chemicals which interacted with individual nucleotides.

For example, hydroxylamine reacts solely with cytosine,
hydroxylating it such that it may only base-pair with adenine. This
effects a GC to AT base-pair transition in the gene. Knowledge of the
gene sequence would allow the prediction of which sites would be

mutagenized. When the ability to chemically synthesize fragment of
DNA became feasible, another method presented itself,



oligonucleotide mediated mutagenesis.!&gt; When a small oligomer of
nucleotides is synthesized such that it is complementary to a target
region of the gene, it can then be expected to anneal specifically to

that section under the proper conditions. If a small number of bases
internal to the oligonucleotide are not complementary to those

naturally occurring in the gene section, the oligomer will still
anneal to the original locus albeit less stably. When the rest of the
gene is replicated from this small duplex, one half of the resulting
genes will contain complementary mutations at the mismatched
sites. This process is made very efficient by the use of the

filamentous E. coli phage M13 which expresses a single-stranded
form of its genome and by a technique, developed by Kunkell®,
employing mutant E. coli strains. Use of site-directed techniques and
methods relying on synthesis of sections of genes finally allowed
proteins to be engineered and produced in a rational fashion.

At this point the problems discussed in the introduction
became apparent. As a functional probe, mutagenesis is very useful,
but it is highly nontrivial to predict the effect a given mutation will
have in an organism or to design a protein to exhibit a specific

behavior. To circumvent this deficiency one could only try all
possible mutations at a given site and analyze each mutant. This was

accomplished by site-saturation mutagenesis wherein populations of
oligonucleotides were synthesized such that at certain positions
there was an equal chance that any of the four bases would be
incorporated.” However, single site-saturation experiments do not
admit to compensatory effects which occur when more than one site

is mutated at once. For example, there are many instances in which a

single amino acid change in a protein will restore activity to an
inactive mutant enzyme.18 Worse, compensatory mutations may
occur anywhere in the protein relative to the original inactivating
mutation. It was an obvious next step to randomly mutate more than

one site at a time. This was first accomplished by Matteucci and
Heyneker!® who explored the effects of randomizing a nine-base pair
region immediately 5' to the bovine growth hormone structural gene
initiation site. This was achieved by synthesizing a random



population of DNA duplexes (cassettes) with "sticky" ends which may
by ligated into DNA which has been cut with restriction enzymes.
This technique is called Combinatorial Cassette Mutagenesis (CCM)
and has since been used for a variety of tasks such as exploring
effects of hydrophobic packing in the internal core of globular
proteins? 21 and discovering the optimal sequence for a ribosome
binding site.2?2 Related targeted gene-randomizing methods have also
become popular and have had success, for example, in increasing the
catalytic efficiency of triose-phosphate isomerase?3 and producing
temperature sensitive variants of a cytochrome c.24

The largest problems with CCM are conservation of the library

complexity through many experimental steps (DNA synthesis,
ligation into a vector, transformation of the organism, etc.) and the
exaustive screening of the library once it is expressed. Thus, CCM is

only practical when the screening procedure is capable of
identifying and isolating a large number of the resultant genes. In
some cases, a lethal selection or a rapid in vivo phenotypic screen

may be employed (see Chapter 2), but in many instances, the gene or
gene-product must be individually isolated and examined. The advent
of phage-display libraries may ameliorate this problem.

Phage-display libraries were first reported in 1985 by George
P. Smith.2&gt; In his work, a random library of DNA fragments was

inserted into Gene Ill, which codes for a small coat protein of the

filamentous phage fi. The resultant random peptide library appeared
on the coat of the phage in immunologically active form without

significant disruption of native phage activity. The phage library
was affinity purified by exposure to an antibody and amplified more
than 1,000-fold over normal (wild-type) phage. The important
results are that insertion of a foreign peptide on the phage coat did

not disrupt activity, a large library of peptides could be screened for
activity, and successful members of the population could be
amplified by simple transfection and replication. Since 1985, phage-
fusion technology has become very efficient, allowing the
expression and screening of greater that 109 clones, and has

+ 2



extended to the fusion of whole, multi-subunit proteins into the
phage coat.2® It is not clear, however, what the upper limit on the

size of the fusion protein might be (it is limited to some degree, for
example, by the size of the F-pili). Further, even if a fusion protein
has a high affinity for a ligand, it is not obvious that it will
maintain its affinity in free form or that it will then exhibit

catalytic activity. Finally, the phage-display method may well be
inapplicable to membrane-bound proteins and proteins whose
activity does not involve binding a substrate (e.g. electron transfer
proteins).

It should be noted that when a combinatorial library is used to

produce mutant proteins the structure of the genetic code must be
taken into account. The genetic code is degenerate and thus complete
randomization of a codon results in inequivalent proportions of the

twenty-amino acids and a stop command. By choosing the
proportions of the nucleotides which are used at each codon

position, one may try and minimize the appearance of stop codons
and choose, to some degree, the relative proportions of the amino
acids. Traditionally, only the base composition of the third codon
position is limited in an attempt to increase the equiprobability of
the amino acids and express only one of the stop codons.27- 28

Recently, libraries which express limited sets of amino acids at a
site have also been designed.2° Chapter 3 discusses a mathematical
method for producing such libraries.30

Another approach to production of combinatorial libraries
bypasses genetic manipulation altogether. In 1984, before
combinatorial mutagenesis was fully established, Geysen et al.
described a method for direct chemical synthesis of peptides on a
solid support.31 These peptides were used to find the epitopes for a

given antigen. This allowed for the identification of the antigenic
regions of biologically important proteins by simple sequence
comparison. The chemical approach was recently improved by Fodor
et al. 32 using a light-mediated lithographic process and Lam et al.

using chemically produced peptide bead libraries. 33



An interesting technique was developed from this technology,
first by Geysen et al. 3% and then by Houghten et al.33 36, whose logic
may have application to the mutagenesis techniques described above
and in Chapters 4 and 6. These researchers constructed peptide
libraries to probe immunological affinities. In Houghten's work
(1991), for example, a six amino acid peptide was designed to

inhibit the interaction between a catalytic antibody and a specific
13-residue peptide. To reduce complexity, 324 libraries were
synthesized each of which contained a different pair chosen from a
set of 18 amino acids (tryptophan and cysteine were omitted from

the synthesis) in the first two positions of the peptide and a random
sequence in the final four positions. The library demonstrating the
greatest overall affinity (in this case a library with DV (single
letter code) initiating the peptide) is used to derive twenty more
libraries which conserve the first two peptide positions, set the

third position to one of the twenty amino acids, and randomize the
remaining three. The process is repeated until there are no more

sites to randomize. In this way, a peptide sequence with a very high

inhibition is obtained. This step-through method may, theoretically,
be applied to any CCM experiment by stepping through the gene in
pieces.

1.3 Combinatorial Optimizatiu )

All the above combinatorial methods have an upper limit to the

complexity they are able to produce and screen. This number is

usually much less than the size of the total sequence space available
around a given protein and thus it is possible that many optima,
including global optima, in the space will not be observed. If we are

interested in finding optima, then it would be advantageous to be
able to use information gained from examining a small subset of the
seqeuence space to direct the search into a more optimal region. If

the space is completely random, then this obviously cannot be done
and all possible sequences will have to be enumerated and tested, a
problem which grows exponentially with the length of the sequence.



In any case, as mentioned above, optimization in any high-
dimensional space with non-linear constraints can be shown to be
NP-hard.3 That is, the problem can only be solved in greater than
polynomial time, a constraint which makes exact algorithms
intractable. Since the function which determines optimality in
sequence space is, in general, quite non-linear, there is little hope
of solving the inverse protein folding problem exactly. Thus.
approximate algorithms must be employed.

Two very general and popular approximate combinatorial-
optimization procedures are simulated annealing? and genetic
algorithms.38 Interestingly, both these methods derive from
analogies to natural physical processes. The use of annealing in
combinatorial optimization was introduced independently by
Kirkpatrick, Gelatt &amp; Vecchi? 49 and Cerny“! during the early
1980's. Simulated annealing begins with a trial solution to a

problem. This trial solution, S, is randomly modified by a relatively
small amount and if the resultant guess, S°, is more optimal than

the original it is accepted, otherwise it is only accepted based on a
Boltzmann factor. This factor is of the form exp(B(E(S)-E(S")))
where PB is, metaphorically, an inverse temperature and E(S) is the
function to be optimized (typically, minimized) evaluated with the
trial solution, S. If a random number is less than this factor, the
new solution is accepted otherwise it is rejected. As PB tends

towards infinity it becomes less likely that an "up-hill"
modification will be accepted and when B nears infinity a simple

descent algorithm is obtained. The algorithm is initialized with
small B (high temperature), and over many iterations the trial
solution is modified according to the above protocol as PB is

gradually increased. This is analogous to cooling an initially hot
substance until it reaches a frozen configuration. If this process is

performed slowly enough, the final configuration should be the one
lowest in energy. Otherwise, disorder will be "frozen in" and a sub-

optimal solution will be obtained. Metaphorically, this is what
occurs to the solution of the optimization function. Simulated
Annealing has gained much support because of its simplicity and



because analytic theories allow the derivation of optimal
"annealing" schedules and have proven that the annealing processes

are ergodic ( a property related to the ability to sample the problem
space efficiently).37 Despite it's popularity, there does not seem to
be any feasible way to integrate this methodology into an
experimental search of sequence space. A more naturally adaptable
algorithm, and one which may be proven to have many of the same
convergence properties of simulated annealing®? is called a Genetic

Algorithm.

By 1960, a substantial bestiary of mutagenic mechanisms was
known. These included, spontaneous single-base mutation, cross-
over, deletion, insertion, inversion, etc., all caused by different
malfunctions in the cellular machinery of replication. Inspired by
arguments that these types of mutations were somehow optimal for
producing fit organisms over many evolutionary generations, John
Holland, who had been working in the theoretical computation field
of adaptive systems theory, designed an optimization procedure
which came to be known as the genetic algorithm (GA).#3-45 In this

algorithm an initial population of randomly generated trial solutions
(chromosomes) is constructed. Each member of the population is
passed to the optimization function and assigned a "fitness". For
example, if the function were to be maximized then the fitness could

be the value of the function evaluated at the trial solution. Once

fitnesses are assigned, pairs of trial solutions (parents) are chosen
and "mated" to produce members of the next population (children).
The parents are chosen stochastically such that those with higher
fitness are more often selected. The two classic mating operators
for GAs are analogies for genetic processes, "cross-over" and
"mutation". To demonstrate these procedures, assume that a trial

solution is represented as an /-bit binary number. The simple cross-

over operator randomly chooses a number, n, between 1 and 1 then

creates children by concatenating the first n bits from one parent
and the second /-n bits from the second parent and vice versa (to
produce two children). This process is shown below for n=3 and /=9:

 {| O°



Parent 1: 100100|110
Parent 2: 011101]101

Child 1: 100100101

Child 2: 011101110

The rate of cross-over is generally greater than 0.5. The mutation
operator merely flip bits at a low rate, typically 10-3. Many other
types of genetic operators, such as n-point and uniform cross-over,
have also been used with success. Once a specified number of

children are produced they replace the lowest fitness parents. The
new list of trial solutions are then passed to the optimization

function and the process is repeated. Holland proved that schema
(patterns of bits or whatever defines the form of the trial solution)

which appear frequently in chromosomes of above average fitness in
a given generation are exponentially more frequent in subsequent
generations. Further, he proved that O(N3) (read: order N-cubed)
schema are usefully processed by a GA operating on a population
containing N members. This lead to the concept of implicit
parallelism which was used to explain the efficiency of the GA at

finding optima. The underlying hypothesis of genetic algorithms is
that the cross-over operation has a high chance of producing fitter

children. This is certainly the case when there is linear
independence between sites in the chromosome, but when there is a
degree of interaction it becomes harder to prove. In fact, there is

much theory as to what types of interaction make a problem GA-
hard.4% 47 Obviously, similar factors are responsible for the sub-

optimality of other algorithms. Anecdotally, however, GAs have been
very successful with many non-linear problems. 48-50

Since GAs are based on a genetic metaphor it is easy to see

how they might be applied to genetic problems. However, to date,
they have never been applied to such problems. Chapters 4-6
describe an algorithm for the experimental search of sequence space
for proteins fitting a specified criterion, Recursive Ensemble
Mutagenesis (REM). Though, REM was designed independently of GAs,



it bears many similarities to these algorithms (as well as

significant differences). Therefore, many of the parameters which
are important to the efficiency of GAs will be important to REM.
Similarly, the same problems which afflict the functioning of GAs
will afflict REM as well.

1.4 Recursive Ensemble Mutagenuus.s

In this discussion and in most instances, REM is assumed to be

employed in the engineering of a protein. REM, however, may be used
to operate upon any genetic element whose functionality may be
screened efficiently (e.g. a ribosome binding site or a promoter) REM
is initiated by generating a random population of DNA using
combinatorial cassette mutagenesis. The DNA is passed into an
organism and a functional selection or screen is performed. For

example, if a B-lactamase is randomly mutagenized, the selection
may be survival on a B-lactam antibiotic plate. Those members of

the population which pass the screening are sequenced and a new

combinatorial cassette is constructed based on the analysis of the
resulting sequences (see Chapters 3,4 and 6). This cassette is used
to produce the "child" population and this population undergoes
another screening. lterating this procedure results in a diverse set
of DNA (or proteins) satisfying an engineer's specifications. All that
is required is an efficient method of producing libraries and
screening them. REM essentially attempts to evolve a solution to the

inverse protein folding problem by a highly parallel, adaptive walk
through sequence space. A discussion of differences between REM
and GAs and a computer based investigation of its detailed behavior
is presented in Chapters 4 and 5. Chapter 6 describes a modification
of REM such that it may be used with current DNA synthesizer

technology.
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Chapter 2

Digital Imaging Spectroscopy

1 R



2.1 The Evolution of a Digital Imaging Spectrometer

The Digital Imaging Spectrometer (DIS) has undergone a
rapid evolution in the last six years. In its initial incarnation (pre-
1987)! it was meant to automatically identify fluorescent bacterial

colonies of Rhodobacter capsulatus (Rb. capsulatus) without the need

for special infrared (IR) sensitive film. (Rb. capsulatus colonies

fluoresce when the light-harvesting antennae, energy transfer

proteins, are decoupled from the reaction center. (See below)) As

such, it was a rapid functional assay for mutants made in the

photosynthetic proteins. However, much of the functional and

structural information of these proteins is encoded in the ground

state absorption spectra of the intrinsic pigments (carotenoids,

bacteriochlorophyll, and bacteriopheophytin) which are bound to

these complexes.2

The next obvious step, then, was to convert the

spectrometer into an absorption mode machine capable of obtaining
spectra from colonies on a petri dish. The existing geometry of the
light-source and camera made it reasonable to operate the machine
as a reflectometer.
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Figure 2.1. Filter Array Spectrometer (after reference 1, This
spectrometer utilized an complex image-processing chassis
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controlled by a high-end Silicon Graphics computer. Different
configurations of optical filters placed in front of the silicon-target
video camera (fl) and/or the light source (f2) allow the
spectrometer to obtain fluorescence emission, fluorescence
excitation or ground-state reflectance spectra.

In this mode, a light-source (a 450W tungsten-halogen slide
projector bulb) is filtered through fabry-perot interference filters
and is used to illuminate a nitrocellulose lift of colonies from a

petri dish. The lift technique was used to minimize glare and optical
problems associated with colonies on agarose. A video camera,

interfaced to a computer-controlled image processing chassis, was
employed to image the nitrocellulose filter illuminated under
different wavelengths and store the results on a hard disk. In the
first report of the machine 1 images obtained under three different

wavelengths of light were used as the red, green and blue

components of a computer-constructed, pseudo-color image. Those
colonies which absorbed equally at all three wavelengths appeared
as a shade of gray, and those which absorb any wavelength

preferentially appeared colored. This technique composed a
sophisticated version of the standard colorimetric assays commonly
used in molecular biology such as the IPTG/XGal system.3

In order to extend the number of wavelengths available to

the spectrometer an array of fabry-perot interference filters was

constructed and a complicated motion-control mechanism for

sequentially placing each filter in front of the light-source was

contrived. This arrangement might have worked but seemed

unnecessarily complex. Further, the motion control device was prone

to malfunction and the problems associated with light-field

homogeneity and nonuniform reflectance properties of the blotted

colony morphology seemed, at the time, intractable.

The second paper written about this instrument? reported a

transmission mode device in which the interference filters dropped
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into the light source like a standard projector slide. A pair of back-

to-back opal glass diffusers were used to approximate a lambertian

light field to illuminate a petri dish from behind.

filter array I
. =2 Silicon-Target

 1 Camera

diffuser ¥ . Camera
petn :
dish Filter

) Video Contrast{
Ni ___Enhancer -

Monitor -— Image Processing '
Chassis

Fs”
TET -

High Resolution
3-D Display

Analog Controller:
Filter Motion and
Light Intensity Control!

Figure 2.2. Hardware for the first generation Digital Imaging
Spectrometer. The diffuser here is composed of a pair of back-to-
back opal glass diffusers. Calibration for instrument response is
achieved by setting light-source intensity such that a small "blank"
region of the image always has a given grayscale. Calibration was
performed by a computer-controlled, high-resolution dimmer
attached to the light-source.

This turned out to be a poor approximation and the transmission of

the pair was very low. Worse yet, the video camera was essentially

capable of producing only eight bits of information per picture
element (pixel). Aside from the fact that images had to be averaged

because of noise in the camera, the silicon target tube and

electronics had a highly non-linear response in the different optical

density ranges.
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Intensity Response Curves for DIS
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Figure 2.3. A family of response curves obtained with different
video thresholds. The traces are averages of 100 acquisitions of a
single pixel densitometric trace across the (0.0-2.0 OD) neutral
density gradient. They demonstrate that the instrument response
may be optimized to different optical density ranges. The setting of
the video threshold has been decreased from curve (a) to curve (e).
The flat portion at the far left and the spike at the far right of each
response is a result of the densitometric trace extending beyond the
ends of the gradient.

This made calibration very difficult and resulted in qualitative

“grayscale” spectra instead of analytic absorption spectra.
Nonetheless, the basic design logic shown in Figure 2.2 hasn't

changed to the present date.

The following paper is a description of the current

instrument, its technical specifications and its basic software. The

paper is to appear in The Photosynthetic Reaction Center (J.
Deisenhoffer, J.R. Norris, eds.) within the next year. A discussion of
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the ongoing development and the current experimental application of
the machine will be given in the epilogue.

2.2 Digital Imaging Spectroscopy

2.2.1 Sum 11 I V

Imaging spectroscopy is defined as the combined

analysis of both spatial and spectral information. Here we describe a

second generation Digital Imaging Spectrometer (DIS) that can be

used to determine the absorption spectrum (from the near-infrared

to blue) of every picture element (pixel) within a two dimensional

target. Using a 384 x 576 charge-coupled device as a detector, this

instrument is operationally equivalent to 200,000 conventional

spectrometers running in parallel. Image processing techniques are
used to extract features for spectral determination and comparison.

For example, from a single petri dish, over 1000 colony spectra can

be acquired at 5 nm resolution from 400 to 930 nm. Relatively

noiseless spectra have been obtained on colonies expressing very

low levels of pigments (&lt;0.01 OD peak absorbance). A Light
Harvesting | antenna mutant from Rhodobacter capsulatus, which

undergoes spectral "splintering", is used to demonstrate the utility
of this new instrument in the field of molecular genetics.

2.2.2 Machine Vision for Library Screening

In response to an inability to predict the effects of a

given mutation, random mutagenesis has been gaining prominence as
a method to explore thousands of mutants in parallel’? Artificial

intelligence (Al) methods have been proposed to guide the
construction of quasi-random mutant libraries.10: 11 (see Chapters



3,45 and 6) In order to assay complex libraries of mutants, rapid

screening techniques must be developed. Screening petri dishes by
optical spectroscopy 1,4 is perhaps the most rapid and informative

method for assaying the phenotypes of mutants that express

chromogenic substances (e.g. pigmented proteins) or react with

extrinsic indicator dyes. Al based mutagenesis and machine vision

techniques are currently being applied to the reaction center (RC)
and light harvesting (LH) antennae of photosynthetic bacteria.12-14

Since the ground state absorption spectra of the RC and

LH antennae are excellent indicators of expression and functionality

of these pigment-protein complexes, we have developed an

instrument capable of obtaining spectra from all of the colonies on a

petri dish in less than 20 minutes. Prior to the invention of the

Digital Imaging Spectrometer (DIS), the protein from each colony
would have to be isolated separately in order to obtain its spectrum.

This conventional process takes months of microbiological and

biochemical preparation time, in addition to the time required to

record and compare thousands of individual spectra.

Digital imaging spectroscopy relies on image
processing!’ and radiometric calibration techniques to reconstruct

spectra from features within a two-dimensional target imaged at a

number of wavelengths. This instrument has evolved considerably
since it was first described. # This chapter includes a detailed

description of the hardware and software used in the 2nd generation

device. To date, DIS technology has been used to determine the

spectra of a variety of biological targets, including highly pigmented
colonies from photosynthetic bacteria. Here, we also describe the

construction of an ideal "tester strain" for DIS analysis that rapidly

mutates to produce a variety of spectrally distinct phenotypes.



2.2.3 Construction of a Spectral "Tester" Strain

The central (LHI) antenna of Rhodobacter capsulatus is
composed of two transmembrane a-helices labelled a and B which

are 58 and 49 amino acid residues in length, respectively.1® The

hydrophobic regions of these helices are approximately 20 residues

long, sufficient for one transmembrane domain. An o-B peptide dimer

binds a pair of electronically coupled bacteriochlorophylls (BCHs)
and at least one carotenoid.!” A conventional ground state

absorbance spectrum of LHI can be found in reference 18. The BCH

pair absorbs at 870nm and the carotenoids absorb between 400 and

500nm. The wild-type sequences for the a and B subunits of LHI have

been tabulated for a variety of species.1? The BCHs are thought to be

bound at Alanine-X-X-X-Histidine motifs (where the X's represent

hydrophobic amino acid residues) within the transmembrane regions
of the a and B subunits.

In the vicinity of the BCH binding site, five amino acid

residues were changed to leucine, resulting in a run of 14 residues

of which only two are not leucine (Figure 2.4). The putative axial

histidine ligand and the -4 alanine residue were conserved to

preserve the BCH binding site motif. These mutations were

considered conservative since leucine appears frequently in the

phylogeny.

Light Harvesting | a~
Wild Type
MSKEYKIWLVEFDPRRVEVAQGV I FIFTLAVLIHLILL STPAFNWLTVATAKHGYVAAAQ
MSKEYKIWLVFDPRRVEVAQGV STPAFNWLTVATAKHGYVAAAD
Poly-Leu Mutant Bch Binding Site

Figure 2.4. LHI Wild-Type and Mutant Sequences. The single
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letter code for the amino acid residues is used to indicate the
sequence of the LHI a subunit from Rb. capsulatus and a mutant
derivative. Five simultaneous mutations in the "poly-Leu"” mutant
result in 12 out of 14 leucine residues in the vicinity of the putative
binding site for the bacteriochlorophyll dimer (B870). The poly-Leu
mutant is unstable and "splinters" into a variety of colorful
segregants that can be used as a test target for the digital imaging
spectrometer.

All standard cloning procedures were essentially as

described by Sambrook et al.?® M13 phage were maintained in E. coli

strain MV1190 and all plasmid pU292521: 22 derivatives were

maintained in the conjugal E. coli strain S17-1. Plasmid pU2925

mutant was conjugated from S17-1 donors. Mutagenesis was

performed on M13(Aa28E), an M13mp18 derivative containing the

490 base-pair Hind lll - EcoR | fragment from pU2925. Success of

the mutagenesis was confirmed by the loss of the Xho|site (present
in the DNA sequence encoding the Aa28E mutation) and by DNA

sequencing. After cloning the fragment from M13 to pU2925, the

plasmid was electroporated into S17-1. The transformed plasmid

was verified by the absence of the marker Xho | site. The plasmid

containing the LHI leucine mutations will hereafter be referred to as

pU2925(a-poly-Leu) or the "poly-Leu" plasmid.

Following conjugation of the poly-Leu plasmid into Rb.
capsulatus, strain U43%21: 22 the transconjugants were selected on
RCV/kan media under dark conditions at 31°C. Spectra from

approximately 500 colonies were obtained using the DIS. All colony
spectra were pseudo wild-type, i.e. normal [RC] and LH | absorption
bands were observed at [760 + 800 nm] and 870 nm, respectively.

Wild-type carotenoid spectra were also observed in the

transconjugants. Spectral splintering was observed only after the
second plating of these transconjugants. At least six distinct
phenotypes were observed (see below). Table 2.1 lists the
phenotypes for these mutants. The peaks observed at 630nm and
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670nm were tentatively identified as two different BCH

precursors.?3 Plasmids from each of these phenotypic categories of
segregants were isolated and re-conjugated into virgin U43 to
identify the locus of diversity. None of the segregant (i.e. spectrally
splintered) phenotypes were carried on the isolated poly-Leu
plasmid. This was verified by sequencing the Hind lll - EcoR | region

of each mutant type and showing that only the engineered poly-Leu
mutations were present.

Mutant crt LHI RC bch(630) bch(670)

Poly-Leu
Segregant-1
Segregant-2
Segregant-3
Segregant-4
Segregant-5
Seqgregant-6

Table 2.1. Phenotypes of Spectrally Splintered Mutants. At least six
phenotypically distinct segregants of the poly-Leu mutant have been
identified after replating this unstable strain. A variety of
bacteriochlorophyll or carotenoid biosynthesis mutations occur in
the segregant backgrounds which apparently stop the coexpression
of the poly-Leu structural motif in the presence of carotenoids. The
exception to this observation is segregant #4 which appears to be a
stabilized form of the poly-Leu mutant with an unmapped pleiotropic
mutation in the chromosomal background.

Colonies resulting from the conjugation of the poly-Leu
plasmid into a carotenoidless background (U43b)24 did not segregate

into the spectrally splintered phenotypes upon replating. These
transconjugants expressed both LHI and RCs in the absence of any

carotenoid. Furthermore, photosynthetic growth of U43(pU2925(a-
poly-Leu)) did not exhibit splintering and showed a crt, RC+, LHI+

J
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phenotype. When these bacteria were resuspended, replated, and

grown under aerobic, dark conditions, no splintering occurred;

however, expression of the proteins was low. The splintering

behavior, therefore, is thought to be due to a severe growth

disadvantage (under permissive conditions) for strains expressing
both the poly-Leu mutation and carotenoids. Upon repurification, the

background mutates to block carotenoid expression, or LHI

expression is lost due to bch mutations. However, one category of

segregants (i.e. "segregant-4", see Table 2.1) appears to have

stabilized and is pseudo wild-type in appearance.

The splintering of the poly-Leu mutant into

spectroscopically distinct phenotypes makes it an ideal tester

strain for demonstrating DIS analysis. The remainder of this chapter
is concerned with the technical characteristics of the DIS.

2.2.4 DIS Hardware Specification L

1) schematic representation of the DIS is shown in Figure
SB
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Figure 2.5. DIS Schematic. The digital imaging spectrometer
uses a variety of off-the-shelf hardware components in conjunction
with a complex computer program. Image processing and
spectroscopy are combined such that the spectrum of any feature
(e.g. bacterial colony) can be obtained from the near-infrared to the
blue at 5 nm resolution. Very smooth spectra can be obtained on
chromogenic substances with as little as 0.01 OD peak absorbance.

In this geometry, a Peltier cooled Photometrics Star | CCD camera

(384x576 pixels) is used to image a petri dish mounted in the exit

port of an 12 inch diameter integrating sphere. The sphere is used as

a high throughput, flat diffuser to provide a uniform light field

across the petri dish. The sphere transmits approximately 30% of

the light entering its rear port over the entire spectral range. The

light source is a modified Kodak slide projector which contains a set

of Fabry-Perot interference filters mounted in blank slide holders.
Custom filters were constructed with either 5 nm or 10 nm

bandpass (full width at half the transmission maximum (FWHM))
between 930 and 400 nm. Filters were selected with greater than

50% transmission at the center wavelength and less than + 1 nm

error in the wavelength of maximum transmission. The light source
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provides at least 2.5 mW/cm2 per nanometer bandpass at the exit

port of the integrating sphere. Both the distance between the

entrance port of the sphere and the projection lens, and the distance
between the exit port of the sphere and the CCD are 40 cm. The CCD

camera and the light source are controlled by a Silicon Graphics

Personal Iris (4D/25TG). Data are transferred from the CCD

controller through an IEEE 488 (GPIB) interface. A full image is

transferred to the computer in 6 seconds.

2.2.4.1 The Cc Cameird

The 1st generation instrument reported in reference 4

employed a Dage model 68 silicon target video camera. Advantages

of a cooled, low-light CCD camera over the silicon target camera are

numerous:

(1) The major advantage is that the CCD camera is a photon counter

that has a linear response.23 After an a image is subtracted

(representative of dark current and variation in the pixel mosaic),

the number of electrons read are directly proportional to photons

reaching the detector (within noise limits; see below). The

proportionality constant is the wavelength dependent quantum yield
of the CCD (data available from manufacturer). This yield is rather

good over the visible and near-infrared (VIS/NIR) range, but

extended ultra-violet sensitivity requires the deposition of a
special coating on the CCD. While the response of the DIS to

wavelength can be normalized, it is essential that the CCD provide a

linear correlation between photons counted and light dose (intensity
x time) for a given wavelength. In our application, ratioing the

photons counted for pixels within a feature (such as a colony) to the

photons counted from a "blank" area is analogous to to the

calculation of I/Ip in a double-beam absorption spectrometer.
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Previously, when using silicon-target cameras, it was necessary to

repeatedly adjust the light source's intensity until the selected

"blank" pixels matched a pre-determined grayscale value. This

required up to 20 time consuming adjustments per filter in the first

generation instrument. This was necessary because the response of

the silicon-target camera was highly non-linear, making it difficult
to accurately calculate the light intensity necessary to achieve the

target grayscale.

(2) The dynamic range of the CCD camera is 12 bits (0-4095

grayscale), increasing the range of the camera 16 times over the

silicon target camera, which utilized an 8-bit (0-255 grayscale)

analog-to-digital frame-grabber.OtherCCDcamerasarecurrently
available with 16 bits of dynamic range.

(3) Using a video camera, noise is apparent even on an 8 bit

grayscale. With the exposure levels and integration times we

currently use, the expanded 12-bit grayscale of the cooled CCD is

essentially noiseless. There are four basic sources of noise in the

CCD system: a) Photon Shot Noise (PSN) is a direct result of the

quantum nature of light. It is well-known that the total number of

photons emitted by a steady-source fluctuates according to the

Poisson distribution. The number of photoelectrons collected by a

CCD follows the same statistics. For relatively short integration

times (and/or low-light levels), the PSN is lower than preamplifier
noise and the dark-current error. For a given CCD (and thermal

conditions), a crossover point occurs where PSN becomes the

limiting factor at higher light doses. In our DIS application, we are

in this latter domain, wherein PSN dominates. The Star | CCD?2%

stores up to 160,000 electrons/pixel, yielding 39 electrons per

grayscale unit. Approximately 117,000 photoelectrons per pixel
(grayscale ca. 3000), yields about 342 electrons of noise per pixel
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by the N1/2 law. b) Preamplifier noise can be reduced by cooling the
on-chip preamplifier to -45 °C. This type of noise can be reduced to

a few electrons/pixel/sec. It is therefore much less than the PSN

and not significant in our application. ¢) Read-out noise of the D/A

converter is dependent on the readout rate. In our system, this noise

is approximately 25 electrons RMS/second; again, less than the PSN.

d) Dark-current with a Star | CCD cooled to -45 °C is approximately

15 electrons/pixel/second. Integration times for our application

rarely exceed 15 seconds. Under these conditions, the error

associated with the dark current is (15 x 15)0.5 = 15

electrons/pixel. Accounting for all sources, we estimate the total

noise per pixel in our system at 400 electrons, which converts to a

grayscale error of approximately £5. Noise is further reduced by the

square-root of the number of pixels averaged. Thus, if the grayscale
values of 100 pixels within a certain feature are averaged, then the

noise is reduced by a factor of 10. This converts to an error of about

1 part per 4096.

(4) The 4096 levels of grayscale can be used to obtain a

differential sensitivity of less than 0.001 OD up to 1 OD total
absorbance. Using the Beer-Lambert Law: 10-A=I/Ip = 4095/4096 =

0.0001, while at 1 OD, I/Igp = 408/409 = 0.001 OD. Noise inherent in

the average of 100 pixels (ca. 1 grayscale unit) is calculated in a

similar manner and yields 0.0004 OD noise at 0 OD and 0.004 OD at 1

OD. Experimentally, we have observed noise levels that are

consistent with these calculations. Very smooth spectra have been

obtained from colonies expressing LH antennael? and RCs!3 with

peak absorbances of 0.01 OD.

(5) Variable integration times are a feature of the CCD

camera that can be used in conjunction with predetermined light-

levels (as a function of wavelength) to partially equalize the

32



response of the system. System response is determined by the

transmission profile of the filtered light source and the CCD. We use

a standard tungsten source whose spectrum is that of a black-body.

Light intensity for such a source is much lower in the blue than the

red, therefore integration times are commensurately longer for blue

wavelengths.

2.2.4.2 The Light Source and Integrating Sphere

Monochromatic light is generated in the DIS by using a

series of Fabry-Perot interference filters in a modified slide

projector (102mm f/2.8 projection lens). This source is essentially
as described in reference 4. However, the voltage to the WKO

tungsten-halogen lamp is now set to a constant 62 volts. The

projector's heat filter has been removed to increase throughput in

the NIR. It was therefore necessary to protect the filter holders

with an aluminum backing to minimize the effects of the increased

heat. The filters are Fabry-Perot interference filters spaced at

either 10 nm increments with a 10 nm bandpass or at 5 nm

increments with a 5 nm bandpass (FWHM). Wavelengths between 930

nm and 400 nm are routinely scanned. Light passing through the

filters is focused onto the entrance port of the integrating sphere.
The power of the light source at the entrance port is about 400

mW/cm2 (measured at 640 nm for a 10 nm bandpass filter with a Li-

COR. inc. PAR meter, model LI-185B using a "QUANTUM" detector).

Since the absorption spectra of colonies are calculated

by the ratio of the intensity of light within a colony to that of a

reference area somewhere on the petri dish, the uniformity of the

light field is an important variable. A custom designed 12" diameter
integrating sphere serves as a uniform diffuser for the light source.

The inside of the sphere is coated such that between 400 nm and
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1100 nm, the surface has a reflectance value above 97%. The sphere

contains two diametrically placed ports; a 3.81 cm diameter
entrance port and an 8.26 cm exit port in which a petri dish may be

seated. A circular baffle is placed between the entrance and exit

ports to block direct illumination of the exit port by the light

source. The baffle sits approximately 10 cm away from the entrance

port. Without the baffle in place and assuming perfectly uniform
reflectance within the sphere, the theoretical throughput?’ of the

sphere may be calculated by:

I =
_ Pl

1-p(1-f)) Eq. 2.1

where t is the throughput, p is the sphere reflectance, fe is the area

of the exit port divided by the surface area of the sphere and fj is the

sum of all the port areas divided by the surface area of the sphere.

For p = 0.975, equation 1 predicts a 55% throughput for the sphere

geometry described above (minus the baffle). For the 640 nm filter

approximately 4.5 mW enters the sphere. At the exit port, the light
intensity was measured at 25 mW/cm2 (i.e. 1.4 mW exited the

sphere). This yields a throughput of 31%. The 24% deficit in

throughput is most probably due to the placement of the baffle in the

integrating sphere. When light enters the sphere, it immediately hits

this Lambertian surface and some light is reflected back out the

entrance port. In addition, the baffle adds to the internal surface

area of the integrating sphere.

2.2.5 DIS Software Specifications
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The control and analysis software used to obtain a

spectrum is written in the C language. This program can be divided

into three major parts: 1) Image Analysis (lA), 2) Spectral
Acquisition (SA), and 3) Classification and Display (CaD). A flow
chart of the experimental procedure is shown in Figure 2.6.

Image
Analysis )
Spectral

Acquisition

Classification and Display

yy

)

An image showing all colonies is
obtained. The image is binarized and
features (e.g. colonies) are identified.

Transmission data at each wavelength
are obtained for all colonies and

reference areas. Run-tim
calibration is achieved by setting CCD
integration times such that a "blank"
area on the image remains at a near
constant apparent intensity.

Absorption spectra are calculated
from the raw transmission data.
Spectra are sorted and displayed. The
colony responsible for each spectrum
may be easily determined within
user-interactive software windows.

Figure 2.6. DIS Experimental Flow-Chart. Hardware and
software functions act in conjunction to yield processed spectra
from a series of monochromatic images. This process can be divided
into three logical stages as shown in the flowchart. Each of these
stages is described in more detail in the text and the figures which
follow.

Initially, a petri dish is placed in the exit port of the integrating

sphere. Using IA software, an image of the plate is taken under
illumination with a filter at which all the colonies absorb or
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scatter. The IA software identifies the center, average radius, and

perimeter of each colony. The SA program then uses this information

to obtain data only from these areas of the image. Data are collected

for each colony at every wavelength within the filter set. Reference

and instrument response corrections are performed during run-time

as described below. The CaD program processes the raw data from

the SA program and calculates the absorption spectra of every

colony. It then classifies, sorts, and displays the spectra. The colony

responsible for each spectrum may be easily identified. The entire

process from IA to CaD takes about 20 minutes.

2.2.5.1 Image Analysis

A screen dump of the lA user interface is shown in Figure

2.7. The set of software buttons on the lower right are used to

perform various functions. The image section on the lower left

contains the current image undergoing processing. Finally, the upper

portion of the window contains a. graphical representation of the

gamma function. This function maps intensity to grayscale: input
data on the x-axis and output grayscale on the y-axis. Thus, a linear

ramp from one corner of the window to the other does nothing to the

image. However, if the shape of this curve is changed, image data are

remapped to new values specified by the new function.

A flow chart of the IA procedure is shown in Figure 2.8.
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Figure 2.7. Image Analysis Interface. This photograph shows a
"screen dump" of the workstation's monitor. These three windows
establish a user interface for basic image processing techniques
that are used to extract features such as bacterial colonies. This
interface is used as described in the text and by the flowchart given
in Figure 2.8.
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Image
Acquisition

EE

Image Binarization
and

Editing

Feature Identification

»

An image of the petri dish is obtained.
The dish should be illuminated by a
wavelength of light at which all the
colonies show significant absorbance.
Blue wavelengths are generally used
since all the colonies will exhibit
relatively high scattering.

A "gamma function” is used to map all
the grayscale values which make up
the images of the colonies to white
and all other grayscale values to
black. The resulting binary (black
and white) image is then edited to
eliminate background artifacts and to
separate overlapping colony features.

A "feature extraction" algorithm is
used which identifies the perimeter
of each colony. The colony center and
average radius are calculated. This
information is used by the spectral
acquisition and CaD programs tc
calculate spectra.

Figure 2.8. Image Analysis Flow-Chart. Used in conjunction
with the user interface displayed in Figure 2.7, this flow-chart
establishes the procedure by which features are extracted from raw
image data. The logic for the feature extraction algorithm used in
DIS (i.e. the lower box in this flow-chart) is expanded upon in the
text and Figures 2.10 and 2.11.

The goal of IA is to identify the location of colonies on the petri

dish. This is achieved in three steps: 1) image acquisition, 2) image

binarization and editing, and 3) feature extraction. The image to be

processed should be acquired from a petri dish illuminated under a

wavelength of light at which all the colonies have high contrast

against the background. Generally, this occurs at shorter

wavelengths where the scattering component is largest. In this case,

the features will appear dark against a white background.
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Once an image has been obtained it is automatically

mapped from twelve to eight bits for display in the image section of

the user interface. The gamma function is then modified by the user

such that the range of intensities contained within the colonies is

mapped to white (255) and everything else is mapped to black (0).

This process is called "binarization", since it produces a binary

(black and white) image (Figure 2.9). The image can then be edited to

remove background artifacts and to separate connected colonies.

Algorithms are now under development which will fully automate

this procedure. (See epilogue.)

A simple, recursive feature extraction algorithm is then

used to identify the perimeter of the white colonies against the

black background of the binary image.

s00000O0O®
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Figure 2.10. Pixel Level Image of a "Colony" for Feature
Extraction. After binarization, a colony appears to be a group of
white pixels on a black background. Tracing the edge of the colony
and generating a list of the coordinates of these perimeter pixels
constitutes a feature extraction. The algorithm for feature
extraction is described in the text and summarized by the flow-
chart in Figure 2.11. The first edge pixel found in the trace is
designated by an "@"; the perimeter of the feature is closed by the
algorithm at pixel "*"
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Figure 2.9. Binary Image. Feature extraction algorithms typically
process "binary images", wherein grayscale images are mapped to
black-and-white images by application of a gamma function. In this
figure, the monochromatic image of the petri dish shown in Figure
2.7 has been binarized. Software buttons to the right also provide a
user interface for manually removing artifacts and for isolating
overlapping colonies.
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Figure 2.11. Feature Extraction Flow-Chart. The feature
extraction routine outlined in this flow-chart is specially suited for
tracing "blobs" such as colonies. The edge pixels around a colony, and
all of the pixels within this perimeter constitute a "feature". DIS
utilizes the spatial coordinates of each feature to process data from
pixels within a single object (e.g. a colony).
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A flow-chart for the algorithm is shown in Figure 2.11.

The extractor begins by searching for an edge point, i.e. a white

point who has at least one (of a possible eight) black neighbor. If it

hasn't visited this pixel before it looks for all neighboring edge

points and then all their neighboring edge points and so on, until it

can find no more edge neighbors. The set of connected edge points

starting with the first is called a feature. This procedure continues

until all edge points have been located. The center-of-mass, average

radius, and perimeter of each feature is stored on disk and passed to

the SA program. In some cases, where a substance is excreted by the

colonies, it is a ring around the feature which is of interest. A

reference area on the image (i.e. a region of clear agar) is also

chosen and passed to the SA Program.

2.2.5.2 Spectral Acquisition

The spectral acquisition display is shown in Figure 2.12.

The three sections are: 1) wavelength vs. reference intensity region

in the lower left, 2) wavelength vs. integration time region in the

upper left, and 3) the raw spectrum region at the right. This program

requires a number of simple parameters. First, the target reference

grayscale intensity is set. The intensity of the reference area must

achieve this value, within specified limits (the target range), before
data from the colonies are downloaded. The higher this blank value is

set, the larger the possible dynamic range of the spectra; however,

acquisition time will be proportionately longer. At this point it is
decided by the operator whether to use a single reference or a small

area around each feature as the reference for each object. Using

local references corrects for global inhomogeneities in the light

field. The number of pixels to be averaged in each object is also
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Figure 2.12. Spectral Acquisition Interface. This screen dump of
the. acquisition interface shows a partially completed DIS run,
wherein unnormalized "Map mode" spectra are shown to the right, lg
grayscale values are shown at the lower left, and run-time
wavelength dependent instrument response (i.e. integration times) is
shown in the upper left window. Data from one wavelength
correspond to a vertical column in all three windows. Each row in
the Map is the unnormalized, partial spectrum of a single feature.
The algorithms summarized in Figure 2.13 run as this interface is
updated for each filter.
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A complete set of data for a single DIS run consists of

one 12 bit image for every filter used. The camera's integration time

is automatically adjusted by an efficient search algorithm until the

average digitized value of the pixels in the reference region reaches

the target range. Each guess is shown in the lower left of the SA

display (Figure 2.12). The program can perform run-time corrections

to make the search procedure more rapid. If a petri dish similar to

the one currently in the instrument was last examined, then no

search for the integration time will be necessary. Because the CCD
camera is a linear photon counting device, the target range can be

large. Adjusting the reference area to the same value for every

wavelength normalizes the overall response of the system, including

the wavelength sensitivity of the CCD chip and spectrum of the light

source. After the target range has been reached, the image data from
the reference area(s) and the colonies are stored in the computer.

Finally, the integration time, reference region value, and raw
spectral data are plotted in the SA interface window. After all the

relevant wavelengths have been examined the 12 bit data are passed

to the CaD program. This process is summarized in Figure 2.13.

2.2.5.3 Classification and Display

There are two basic windows in the CaD interface and a

number of optional windows (Figure 2.14). The largest window on the
right is divided into three sections: 1) The upper left section
displays the spectral information in either Tile or Map mode (see
below); 2) The upper right section contains a series of useful
software buttons; 3) A command entry port is found at the bottom of
the CaD window. The other window (lower left) is a display of the
original image used for the feature extraction. One may point to a
single spectrum in the Map or Tile and the corresponding object on
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Figure 2.13. Spectral Acquisition Flow Chart. Consistent with
user defined parameters (e.g. wavelength range) this set of
algorithms is running while individual monochromatic images are
recorded for each wavelength. Feature extraction has already been
performed, so data are grouped by feature (e.g. each colony).
Integration times are varied as a function of filter number such that
a target grayscale value is achieved (within a specified range) for
reference pixels.
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Figure 2.14. Classification and Display Interface. Immediately
after opening this series of windows, macro functions are used to
convert unnormalized grayscales to absorbances and to sort spectra
by similarity. The results are shown here. The lower left window
displays the raw image of colonies on a petri dish. A small circle in
this window correlates the position of any single colony to a
conventional type spectrum shown in the upper left window and to a
"Map" mode row shown in the window on the right (indicated by a
small white bar). As colonies or spectra are selected with the
mouse, all three windows are simultaneously updated. Pseudo-color
displays are typically used to highlight differences between spectra.
This particular example displays data from spectrally splintered
poly-Leu segregants. The cursor is currently on a pseudo wild-type
colony, wherein LHI absorption can be observed at 870 nm. Smaller
bands are also observed at 760 and 800 nm, characteristic of
reaction centers. Carotenoids also absorb strongly in the spectrum
currently selected. Within the Map mode, all six of the spectrally
splintered segregants have been grouped by row using a similarity
sort. Spectral data from 450 to 900 nm (left to right) are displayed
at low (10nm) resolution.
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the image is circled. Similarly, if one points to an object on the

image, the corresponding spectrum is indicated. The upper left

window is continuously updated in real-time to display a

conventional spectrum for the currently selected colony.

A ground state absorption spectrum can

using the Beer-Lambert law:

A=log10 ( Io/1)

be calculated

Eq. 2.2

where Ig is the reference intensity, determined by the average value

of the reference area pixels at each wavelength and Iis the object

intensity calculated by the average value of pixels within the

feature's perimeter. Grayscale values can be entered directly into

this equation because the CCD is a linear photon counter.

The spectra may displayed in two modes. The Tile mode

(Figure 2.15) draws each spectrum as a single graph within a box.

Each box may be rescaled as desired. Figure 2.16 demonstrates the

second mode which is called Map mode. Here, each colony spectrum

is shown as a horizontal line across the window; each point on the

line corresponds to a specific wavelength. The color (remapped to a

grayscale for this publication) at each point in the line is

determined by the absorption value at the corresponding wavelength

(white for high absorption, black for zero absorption). Map mode

allows for very rapid identification of spectral class (demonstrated

below). In any mode, the spectra may be scaled either on: a) an

absolute scale, where the spectra are plotted relative to the

maximum [log10(4095/1)] and minimum [log10(4095/4096)]

absorbances measurable by the spectrometer; b) a scale relative to

the lowest and highest absorbances found anywhere in the image, or

c) “"full-deflection® where each spectrum is scaled
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Figure 2.15. Tile Mode. As an alternative to Map mode, the Tile
mode can be used to display all of the colony spectra from a petri
dish. The Tile mode normally appears as an option within the CaD
user interface. This figure shows a screen dump of 81 poly-Leu
segregants. All spectra are from 450 to 900 nm (left to right). Tiles
in the lower row are similartothe pseudo wild-type segregant
displayed in Figure 2.14. The roughness of the spectra is an artifact
of data transfer to a laser printer.
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Figure 2.16. Since there is no correlation between the position of a
colony on a petri dish and its spectrum, spectral sorting routines are
important in grouping colonies for display. Figures 2.14 and 2.15
have already employed this technique: note that similar spectra are
grouped either in the Map or Tile mode. The three Map spectra shown
in this figure display data on the poly-Leu segregants from 500 to
900 nm (left to right). The Map on the left shows raw, unsorted data.
The middle Map uses a sort based on maximum absorbance (see text).
The Map on the right redisplays the sorted Map after each colony (i.e.
row) is sorted by spectral similarity and rescaled to full deflection
(black to white). Again, pseudo-color techniques are helpful for
distinguishing colony types in these displays (not reproduced here;
see Scientific American, May 1991, page 123).2°
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between its own maximum and minimum absorption. These display

modes may affect the behavior of the classification algorithms.

Once the spectra have been calculated they are generally

in a disordered ensemble (Map mode) as shown in Figure 2.16a. These

spectra are from a petri dish containing the results of the

mutagenesis experiment described above (i.e. replating the poly-Leu
mutant). The "venetian blind" effect occurs because there are many

different types of colonies and each type is probably next to a

dissimilar segregant. To order the Map and classify each spectrum,
spectra are sorted from colonies of highest absorbance to those of

lowest absorbance (Figure 2.16b). This type of sort can be limited to

particular wavelengths. Next, a similarity sort is performed. The

action of this sort depends strongly on the specified wavelength

range and on the. scaling mode of the data. Generally, the full-

deflection mode is employed. The similarity sort essentially

calculates the sum of squares of differences (SSD) between a given

spectrum and each of the remaining unsorted spectra. The unsorted

spectrum producing the smallest SSD is then placed directly above
the current spectrum. This procedure is then repeated for the newly

placed spectrum until all the spectra have been sorted. Figure 2.16¢c

displays the results of such a similarity sort.

These are only two of a number of sorts which may be

performed. Other sorts can be based on: peak ratios, wavelength of

maximum absorbance, peak widths, colony size, etc. Spectra can be

added, subtracted, divided and averaged. Spectral ensembles from
different runs may be combined and edited.
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2.2.6 System Development

Each component of the DIS system may be improved to

some extent. The laws of physics place definite limits on the

precision of the system: photon shot noise will always be a problem.

Narrow bandwidths are inconsistent with counting more photons, so

improved differential sensitivity and improved wavelength
resolution involve competing factors. However, practical

improvements in the DIS are still feasible by minimizing the time

expended in analyzing a given number of mutants. The current

generation DIS is capable of processing on the order of 104 mutants

per day. We expect than this can be increased by one order of

magnitude if, for example, the system is fully automated and
memory mapped cameras are employed.

Camera parameters that may be altered to improve

system performance are: 1) camera shutter speed, 2) CCD readout

and data transfer rate, and 3) CCD array size. Currently, the shutter

times may be set with 0.1 second resolution. However, faster

shutters (0.01 second) are commercially available. Using a faster

shutter, target grayscale levels could be obtained in 1/10th the time

(with the same precision as currently possible) by opening the lens
two f-stops. Furthermore, readout rates 25 times faster than the

current IEEE 488 interface (20k pixels/second) can be achieved by

using a memory mapped VME interface to the CCD controller.

Increasing the size of the CCD chip will obviously increase the

readout time, but if a 2048 x 2048 format chip is used, PSN is

reduced by (4,000,000 / 200,00)0-5 or about four times. Digitization

to 16 bits would be required to see this improvement, since the

present level of PSN is approximately one grayscale unit on a 12 bit

scale.

SO



The light source currently has a maximum resolution of 5

nm and a throughput of approximately 2.5 mW/cm2 per nanometer. At

room temperature, a resolution of 1 nm is more than adequate to

obtain accurate spectra of vibrationally broadened substances. This

additional resolution might be achieved through tilting the Fabry-
Perot filters.2® Further, our system currently operates efficiently

over the spectral range from 930 to 400 nm. Extension of this range

into the UV would allow the spectrometer to detect a wider range of

organic compounds which may be produced and/or secreted by
microorganisms. In order to extend the spectral range of the DIS into

the UV all optics would have to be replaced with either silica or

quartz.

2.2.7 Concius.o...ow

Any system which relies on the identification of colored

substances on a two dimensional surface may be amenable to digital

imaging spectroscopy. DIS is an excellent tool for obtaining in vivo

colony spectra. Over 1000 spectra may be obtained simultaneously

at a sensitivity greater than or equal to a conventional

spectrometer. This makes the DIS an excellent device for screening

combinatorial cassette libraries, providing that an intrinsic or

extrinsic colorimetric assay is available. Recently, DIS spectra of

sperm whale myoglobin and cytochrome b5 have been obtained in E.

coli. (Unpublished results) Both these proteins have absorption in the
heme Soret band around 400-420 nm. In the context of this thesis,

the intrinsic pigments of the RC and LH antennae are amenable to DIS

analyses for a variety of protein structure and function problems.
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2.3 ED No) . |J

When the full implementation of DIS was initially

conceived, it was designed to be able to rapidly screen the

absorption spectra of thousands of colonies of Rb. capsulatus. This

would only be interesting, of course, if there were great variability

in the spectra from colony to colony. Obviously, if this variability
occurred when all the colonies were expressing the same protein the

data would be very hard to analyze and we would have to focus on

the metabolic differences do to the growth conditions under which a

colony developed. Luckily and expectedly, colonies expressing the
same proteins had essential identical spectra.

- Other research in the laboratory focussed on producing

large, diverse populations of proteins using modifications of

combinatorial cassette mutagenesis (see Chapters 3-6). Application
of these techniques to the photosynthetic proteins (now being
performed in the laboratory) results in bacterial colonies whose

spectra are determined by which of the population of proteins they

express. DIS is a perfect device for screening these millions of

colony types. However, as mentioned above, DIS can currently screen

up to only 10,000 colonies a day (i.e. about 10-20 plates).

Automating the system, along with the other improvements
discussed above, will do much to increase the throughput and

decrease the tedium involved in processing DIS data. The first major
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step towards this goal would be to automate feature extraction.

Approximately one third of the time needed to obtain a DIS spectrum

is dedicated to the binarization of the petri dish image and editing

the resultant picture to reject extraneous noise and separate

"merged" colonies. An algorithm, the Binarization Algorithm with

Hysteresis (BAH), is now under development to perform these

operations automatically. Figure 2.17 shows the basic concept
behind the process.

Figure 2.18 shows the result of operating on a petri dish image. Once
this algorithm is optimized it might be used as part of an overall

robotic system in which many petri dishes are automatically
examined without the need for an operator being present. be

separated.
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Figure 2.17 One trace from the Binarization Algorithm with
Hysteresis (BAH). A single colony is assumed to have a symmetric,
singly-peaked shape. Thus, the smooth, double-humped graph
represents a densitometric trace through an image of two colonies
(centered at pixel numbers 20 and 35) which have grown into one
another. The dotted trace superimposed on the graph is a
representative of a left-to-right sweep of BAH. When this trace is
non-zero, a white pixel is written to a tempory image otherwise a
black pixel is written. The single parameter for this procedure is the
hysteretic width (HW). In this case, HW is set to 50. When a positive
intensity change of HW between two pixels is encountered, the
algorithm switches "on" (returns a non-zero value.) Then, when a
change of -HW from the maximum intensity observed after switching
on is obtained, the algorithm switches "off" (returns a zero value).
This process is performed both from left-to-right and right-to-left
for every line in the image. Another tempory image is created from
traces run from top-to-bottom and bottom-to-top. The two resultant
images are then AND-ed together to produce the final binary image.
The hysteretic effect will cause many types of merged colonies to
be separated. Figure 2.18 shows the effects of this algorithm on a
nathological image of a petri dish.
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Figure 2.18 An example of automated binarization using BAH. The
left half of the figure is an image of poorly spread bacterial
colonies on a petri dish. The right region is the image after the
operation of BAH. Note that the portion of the petri dish outside the
the rim of the petri dish is not generally used in a DIS spectrum.
Note that all colonies have been binarized and that there are at least
two examples where connected colonies were separated. Further
optimization of the hysteretic width (see caption to Figure 2.17) in
combination with standard separation techniques such as shrinking
and expanding, convolution, etc. should yield reproducibly editted,
binary images suitable for automated feature extraction. The
wavelength under which the original image is obtained is also an
important consideration. It should be chosen such that colony
profiles are as steep as possible.
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Chapter 3

Optimized Nucleotide Mixtures
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3.1 Reducing Complexity

Historically, the development of the following procedures, a

modification of traditional combinatorial cassette mutagenesis

(CCM) came after the material in Chapter 4. However, it may be

argued that the material presented here logically comes earlier. In

CCM, many sites in a protein are mutagenized at once and in a

random fashion in order to produce a library of proteins which may

exhibit novel properties. (Throughout the following chapters we also

use the terms "population" and "ensemble" for diverse sets of

proteins) The complexity of these libraries grows exponentially

with the number of sites being mutagenized, thus, the ability to

screen all the members in the library rapidly diminishes. As early as

19871, thought was being given to methods of reducing the number

of amino acids expressed at each mutagenic site, and thus the

library complexity, by exploiting properties of the genetic code. The
search for intelligent ways of limiting the amino acid sets one

wished to be present at each site lead to the following paper? and to

the methods presented in Chapters 4 and 6.

3.2 Optimized Nucleotide Mixtures for Combinatorial

Cassette Mutagenesis

3.2.1 Sum ind lo

In random mutagenesis, synthesis of an NNN triplet (i.e.

equiprobable A, C, G, and T at each of the three positions in the
codon) could be considered an optimal nucleotide mixture because all

20 amino acids are encoded. NN(G,C) might be considered a slightly

more intelligent "dope" because the entire set of amino acids is still

encoded using only half as many codons. Using a general algorithm
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described herein, it is possible to formulate more complex doping

schemes which encode specific subsets of the twenty amino acids,
excluding others from the mix. Maximizing the equiprobability of
amino acid residues contributing to such a subset is suggested as an

optimal basis for performing semi-random mutagenesis. This is

important for reducing the nucleotide complexity of combinatorial
cassettes so that "sequence space" can be searched more efficiently.

Computer programs have been developed to provide tables of

optimized dopes compatible with automated DNA synthesizers.

3921 CCM to Search Sequence SOdodd

Protein design aided by molecular genetics has progressed
towards very complex mutagenesis schemes.3-6 This complexity

arises because of an inability to accurately predict the structure

and function of proteins from their primary amino acid sequences.’

Techniques such as combinatorial cassette mutagenesis (CCM)
explore large numbers of mutations in a protein.8-14 However, even

for a small subset of sequence space, the complexity of the protein

library resulting from random CCM is too large to be completely

screened for functional proteins. For example, mutagenesis of 12
amino acids using NNN triplets results in a DNA complexity of 436

and a protein complexity of 2012. Furthermore, because different

codons may translate to the same amino acid, each protein sequence

does not appear equiprobably in the CCM library. In this example,
poly-leucine would appear 612 times more frequently than poly-

methionine.

To increase screening efficiency, it is desirable to reduce

the total number of proteins in the CCM library and to make the

probability of observing each protein equal. In addition to reducing
the complexity, one would also like to minimize the number of

 }



proteins which are nonfunctional. As a first approximation, the

search can be limited to sequences related to wild-type in some

space of physical parameters or by phylogeny. In the latter case, an

optimized doping scheme would be calculated for each position
mutagenized using a subset of the twenty amino acids. In addition,

the doping scheme would be optimized for equiprobable expression
of each amino acid within the subset. We define an optimized dope as

a nucleotide mixture which maximizes the probability of observing

the entire subset of desired amino acids and expresses the members

of this subset equiprobably.

Consider the grid-like representation of the genetic code

shown in Figure 3.1. For certain subsets of amino acids, a doping

scheme can be developed by inspection. For example, it is possible to

construct a dope that includes all three aromatic residues (F, Y, and,

W) while minimizing all other amino acids. We proceed by circling
all occurrences of these three residues in Figure 3.1. A pattern is

immediately obvious in that all occurrences of codons encoding the

aromatic amino acids fall in the top "plane" of the code which means

that only T is needed in the first position of the codon. Next, we

draw a line through all four serine codons to indicate that C is to be

avoided in the second position. An A in the third position is also

avoided. This yields the dope [T(A,G,T)(C,G,T)] which includes 2 Phe,

1 Leu, 2 Tyr, 1 Trp, 1 stop, and 2 Cys codons. Further inspection

shows that C can also be omitted from the third position, such that

[T(A,G,T)(G,T)] encodes 1 Phe, 1 Leu, 1 Tyr, 1 Trp, 1 stop, and 1 Cys

codon. This latter dope might be judged optimal because the three

aromatic residues occur equiprobably. However, the probability of

observing all the desired amino acids decreases from 55.5% to 50%.

Generally, our definition of "optimal" prescribes choosing the first

dope over the second. Below, we describe an algorithmic approach to

7)



Figure 3.1. Three-dimensional representation of the genetic code
using the single letter designation for amino acids. Axes 1, 2, and 3
correspond to the first, second, and third positions in the codon.
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this problem that is amenable to computer calculation at high
resolution.

3.2.2 Results and Discussion

An exhaustive computer search of all possible single codon
dopes with a fractional resolution of 0.1 (10%) in nucleotide

probability was performed. Because there are 286 ways for four

ordered fractions from the set (0, 0.1, 0.2 ... 0.9, 1.0) to sum to 1.0

(without depletion), and because we also include the NNN

equiprobable dope, there are 2873 different dopes. For each of these

23,639,903 dopes, codon probabilities were calculated by
multiplying the base probabilities at each of the three positions in

the codon together (the denominator is equal to one):

J)

I1 p(C;B,)

i=1n=1 Eq. 3.1

where pcjis the probability of codon C; (enumerated by index i) and

p(Ci,Bn) is the probability of base B at the nth position of codon i.

For example, p(CAT,C1) is the probability of base 'C' in the first

position of the histidine codon CAT.

The probability of a specific amino acid (pa) was calculated

by summing the probabilities of all codons for that amino acid:

2
i={codon« for AY

Pa= —

dr
i={ all codons?! Ea. 3.2
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The average physical properties of the CCM library of amino acids

can be calculated by weighting physical parameters, for example:

H= Y pa Hy
{all acids}

M= Y paM,
Iall acids} Egs. 3.3, 34

where H and M are the average hydropathy!3 and molar volumel® of

residues encoded by the dope, respectively, and Hp and Mp are the

actual hydropathy and molar volume values of each acid. In this

study, the molar volumes are the apparent molar volumes of the
amino acid residues as calculated in reference 16. Note that the pas

used in these last two equations are renormalized to exclude the

probabilities of stop codons.

We

PG= [] Pa
{subset acids}

have found that the equation for group probability (pg):

Eq. 3.5

where the product is taken over all the amino acids in the targeted

subset has the desirable properties of: 1) directly measuring the

probability of observing all the amino acids in the target subset, 2)
producing a maximum value when all amino acids in the subset are

equiprobable and the sum of their probabilities is equal to one (proof

given below), 3) generating a value of zero when any amino acid in

the subset has a probability of zero, and 4) remaining defined for all

possible subsets of amino acids. The properties of the group

probability equation are highly analogous to the simple inspection
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technique described in the introduction. Alternative equations, such
as for Shannon entropy!” (SE) or the sum of square of differences

(SSD) are pathological with respect to at least one of these stated

points. For example, SE is not defined if a subset of the total

alphabet is used. SE and SSD equations tend to zero certain members

of the alphabet and regain favorable values by compensatory changes

in the other probabilities (data not shown).

Group probabilities (pg) were calculated for eleven

different subsets of targeted amino acid residues. Data are

displayed as gray scale maps in hydropathy-molar volume space (H-M
space) in Figure 3.2. This plane was chosen because recent studies,

both theoretical and experimental, indicate that hydropathy and

molar volume are perhaps the most important factors governing the
packing of a protein.®&gt; 17-20 These maps show that there is a

distribution of dopes around the calculated optimum which have

nonzero group probability. These suboptimal dopes might be

examined by an expert for specific properties (e.g. the minimization
of the probability of an unwanted amino acid.)

For the group probability (pg) panels displayed in Fig. 2, the
physical parameter planes are composed of approximately 10,000
bins (100 divisions per axis). The maximum pg value falling within

each bin is displayed in the figure by ramping the gray scale

according to the bar at the lower right. Gray values range from black

(minimum pg is zero) to white (maximum pg for that panel). At this

resolution of doping and binning, some portions of H-M space are

inaccessible using any combination of amino acids (background gray

areas). Certain areas of H-M space, such as the one containing

tryptophan, can only be reached using one specific codon.

7 7



Figure 3.2. High resolution contour maps of group probabilities (pg)
displayed in hydropathy-molar volume space. Group probabilities
within each panel are scaled from the lowest value (zero = black) to
the highest value (maximum pg = white) with intermediate pg values
scaled according to the map shown in the lower right panel. The
upper left panel (labeled "all 20") displays results from high
resolution calculations involving NNN dopes (see text). All twenty
amino acids are labeled in this panel; (EQ) and (DN) are over-struck
because of similar H-M values. The next three panels display three
separate calculations based on fixing the second position of the
codon. Amino acids DEHKNQY are encoded by NAN; SPAT are encoded
by NCN; FILMV are encoded by NTN. Amino acids R, W, C, and G lie
outside of any of these three contours because NGN shows no
correlation in H-M space. The remaining panels show seven examples
of different subsets of amino acid residues pooled according to the
phylogenetic example given in the text. All data displayed in this
figure have been calculated at high resolution, as compared to the
low resolution data presented in Table 3.1.
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The upper-left panel in the Figure 3.2 shows a maximum

group probability map for all twenty amino acids. This plot indicates

that the best dopes are found in the center of the plane (as
expected), because codons similar to NNN produce average values for

hydropathy and molar volume and have a non-zero group probability.

In this map, pg values decrease sharply away from the center

because if any one of the 20 p4 values equals zero, then pg is zero.

Table 3.1 lists data related to the maximum pc values in this plot.

The tabular data are simpler than the plotted data because only 153

possible dopes are analyzed (synthesizer resolution). These
correspond to dopes that are readily made on a commercial DNA

synthesizer: 25% (each) A,C,G, and T, or 33% of any three

nucleotides, or 50% of any two nucleotides, or 100% A, C, G, or T.

This totals 1 + 4 + 6 + 4 = 15 different mixes per each position of

the codon. The higher resolution data displayed in Figure 3.2 can be
recalled from extensive computer files.

The next three panels in Figure 3.2 display data from three

separate calculations involving NAN, NCN, and NTN which encode

D,E,HK,N,Q,)Y, and S,P,AT, and F,,L,M\V (single letter code),
respectively. These particular dopes were chosen because the second

codon position is a direct determinant of the hydropathy and molar
volume of the encoded amino acid residue.?1-23 An 'A' in the middle

position codes for hydrophilic residues; 'C' codes for small,

amphiphilic amino acid residues; 'T' codes for hydrophobic residues.

Fixing the composition of the 2nd position in the codon reduces the
total number of high resolution dopes searched from 2873 to 2872.

Background gray bins indicate that much of H-M space was

inaccessible. Maximum group probabilities for these three subsets of

amino acids are given in Table 3.1 at synthesizer resolution.
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Table 3.1. Numerical parameters for 19 different "synthesizer
resolution” doping schemes. Columns are grouped according to the
targeted amino acid subsets (in single letter code). Each group of
columns has two headings: one describing a general classification of
the target set and a specification of the target set itself. The first
four groups are labeled by the general class 'C2=X', where X=
{N,A,C,T}, indicating the constraint on the middle position. The fifth
group contains an aromatic dope and the last six groups are labeled
by the position in the example peptide described in the text. The 37
rows are grouped in five sections: 1) H, M, and P enumerate average
hydropathy, average molar volume, and normalized group probability
of the amino acid subset (pg is normalized by the theoretical
maximum of n-N, where n is the number of acids in the subset); 2)
Al, C1, G1, T1 are the fractional (dope) probabilities for these four
nucleotides in the first codon position; 3) second position dopes; 4)
third position dopes; 5) fractional probabilities of the resulting
amino acid residues (X represents stop codons).
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0.062 0.000 0.000 0.000 0.000 0000 0.000 0.111 0.111 0.333 0.000 0.000 0.000 0.000 0.000 0.083 0.083 0.000 0.000
0.031 0.125 0.125 0.000 0.000 0.000 0000 0.000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.031 0.000 0.000 0.000 0.167 0.167 0000 0.056 0.056 0.000 0.167 0.167 0.000 0.000 0.000 0.042 0.042 0.000 0.000
0.031 0.125 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.042 0.167 0.167
0.094 0.000 0000 0.000 0.167 0.167 0.111 0.056 0.056 0.000 0.167 0.167 0.000 0.125 0.250 0.042 0.042 0.000 0.000
0.031 0.000 0.000 0.000 0.167 0.167 0000 0.056 0.056 0.000 0000 0.000 0.000 0000 0.000 0.042 0042 0.000 0.000
0.031 0.125 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0000 0000 0.000 0000 0042 0042 0.167 0.167
0.062 0.000 0000 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.167 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.031 0.125 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0000 0.000 0000 0.000 0.000
0.054 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.056 0.000 0.000 0000 0.000 0.000 0.000 0.042 0.042 0.167 0.167
0.094 0.000 0.000 0.250 0.000 0.000 0.000 0.167 0.167 0.000 0.000 0.167 0250 0.250 0.250 0.125 0.128 0.167 0.167
0.062 0.000 0.000 0.250 0.000 0.000 0.000 0.111 0.111 0.000 0.167 0.167 0.000 0.000 0.000 0.081 0.083 0.333 0.333
0.062 0.000 0.000 0.000 0.333 0.333 0.000 0.111 0.111 0.333 0.167 0.167 0.250 0.250 0250 0.083 0.083 0.000 0.000
0.031 0000 0.000 0.000 0.000 0.000 0.111 0.056 0.056 0.000 0.000 0000 0000 0.000 0000 0.042 0.042 0.000 0.000
0.031 0.125 0.125 0.000 0.000 0.000 0222 0.000 0.000 0.000 0.000 0000 0000 0.000 0000 0.042 0.042 0.000 0.000
0.031 0.125 0.12% 0000 0.000 0000 0.111 0000 0000 0000 0000 0000 ©0000 O0.000 0.000 0042 0.042 0.000 0.000



As a practical example of the utility of this method,

consider the design of a combinatorial cassette for a

bacteriochlorophyll (bch) binding site in the B-subunit of the light

harvesting Il (LHI) polypeptide from Rhodobacter capsulatus. The
bch binding site is modeled as a histidine residue within a

transmembrane alpha helix?4. In other LH antennae, mutagenesis data

indicate that this histidine residue is essential for the coordinate

covalent bond to the Mg of the bch and that the residue at position N-
4 must be small and at least moderately hydrophobic?&gt;. The wild-

type Rhodobacter capsulatus sequence is: GAMALVAHILSAIA

I.Inthis example, we consider mutagenesis along the histidine (N =
0) side of the helix, at positions: N-7 = Gly, N-4 = Ala, N-3 = Leu, N+3

= Ser, N+4 = Ala, and N+7 = Thr. Phylogenetic data?* from 29 known

sequences of the B subunits reveals other functional residues at

these sites (single letter code): N-7 = G,F,ILLLM,S,T,V,W; N-4 = AG,V;

N-3 = VALLL; N+3 = SAV; N+4 = F,I|ILMW,AY; N+7 = K,N,R,S.T. The

central histidine is conserved in all 29 sequences.

For all six sites showing phylogenetic sequence variation, a

doping is engineered which maximizes the group probability of the

known substitutions while minimizing all other amino acids. Since

equiprobable A, C, G, and T in all three positions of the codon yields

all 20 amino acids, we are guaranteed a solution for any subset of

amino acids. Figure 3.2 and Table 3.1 display and enumerate the best

dopes for these six subsets of amino acid residues at high resolution

and synthesizer resolution, respectively. These solutions can be

rationalized by inspection of Figure 3.1.

Nucleotide dopings yielding the same group probability are
referred to as degenerate solutions. Several examples are shown in

Table 3.1. Breaking such degeneracies might involve expert rules.
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such as accepting only G and C in the third position of the codon for

G-C rich organisms. As the resolution of doping increases (given

constant size of H-M bins) degeneracies become more frequent. In

the program that generated Figure 3.2, only the most recently
calculated high value of pg is stored. This has no effect on the

display.

Full implementation of the high resolution dopes used in

Figure 3.2 must await the construction of automated DNA

synthesizers capable of doping at an accuracy of at least 0.1 (i.e.

10%). Over 23 million different dopes are possible at this resolution

as compared to only 3375 on current synthesizers. These two

numbers should be compared to the 220-1 possible subsets of amino

acids (1,048,575). It should be noted that the dopes which can be

implemented on current synthesizers are in general sufficient to

provide better dopes than NN(G,C) for most of these subsets.
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3.3 Ei }i.0 4 J «ot

The phylogenetic dopes defined in the above paper have been

used by Ellen Goldman in the Youvan laboratory. The very preliminary
results indicate that use of such a dope significantly increases

throughput of functional mutants. This is useful for applications in

which one is fine tuning the function of a given protein. However,

phylogenies are not always available and may not be the best way of

R A



choosing the target amino acids. Further, the choice of which sites

to mutagenize is also extremely difficult and relies on expert

knowledge. The choice of target sites may be facilitated by using

molecular dynamics and energy minimization packages, crystal
structures, or sequence analyses like those of Garnier?®, Chou and

Fasman2?7-29 and Eisenberg3® 31, and by compiling previous
mutagenesis data. The choice of which amino acids to use in the dope

may be made by, for example, grouping amino acids by physical
class, phylogeny or evolutionary distance, or by the form of feedback

described in Chapter 4. In each case an assumption is made that the

restriction of the amino acid set discards more uninteresting

proteins than desired ones.

The last topic to discuss here is the choice of the

optimization function pg. This function was chosen to maximize the

probability of observing all the amino acids in the target set at as

close to equal probability as possible. No amino acid in the set is

allowed to be discarded. This property of equation 3.5 may be proven

in a manner analogous to the method used to prove that

equiprobability of appearance of the alphabet characters maximizes
Shannon's entropy.l? In this proof we assume that the probabilities

of the targeted amino acids sum to one, i.e. that the dope produces

only acids in the target set (see, for example, the SPAT dope). This

assumption may be relaxed by noticing that however probability is

distributed within the target set, this portion of the total

probability may be renormalized to one. To facilitate the proof we

take the logarithm of Eq. 3.5 noting that this will not change the

position of the maximum of the function, only its value. Equation 3.5
then becomes:
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log(pg(P1:P2:"**»Pn)) = Dloge)
Pay Eq. 3.6

where we have used the property that log(AB)=log(A)+log(B). Next we

use an inequality which is true for any continuous convex function ¢
32.

: Yo
JE n i=1{134 Eq. 3.7

where the aj are positive numbers, and n is the number of a; in

question. The simple geometric interpretation of this equation is
that a function ¢(x) must always lie below the linear function

defined in the range spanned by the aj. We assign aj=pj and ¢(x)= -log(x)

and remembering that the p; sum to one we have:

f=) ~tog( = }- Ztogpo( 3702 " =) &gt; 0p)=—= O. log(p)=——-logPG(P1.P2."* Pu)
i=1 i=1

Ea. 3.8

‘rom which we find:

 So SS (P1:P2:"*" Pn)tog po +++ »— )|Z 10g(P6(P1.P2:"** Pn
Eq. 3.9

Thus, the maximum value of our function is obtained when all the

subset probabilities are the same and sum to one. Another proof is

easily obtained using a LaGrange parameter for the constraint that

the probabilities must sum to one. In this case one once again uses

the logarithm of the pg; and simply sets the derivative equal to zero.

RA



The property of pg to be maximum for equiprobability and to

conserve all amino acids in the target set may be undesirable in

some cases. For example, in Chapter 6 it is demonstrated that using

the SSD function may be optimal when Recursive Ensemble

Mutagenesis (Chapter 4) is made consistent with DNA synthesizer
resolution dopes. SSD better preserves the observed amino acid

distribution and thus, hypothetically, will reproduce amino acids

sequences more consistent with the data used to generate the choice

of target amino acid set for each site. However, amino acids may be

lost from the target set to achieve a minimum SSD.

The next Chapter defines a way of automatically choosing

the target set by starting from a small random sampling of sequence

space and using the information gained to create a positive feed-

back loop to refine dopes until a library encoding a large set of

proteins fitting a desired criterion are produced. In Chapter 6, the

work from this chapter will be merged with the method described in

Chapter 4 to define a practical experimental protocol for Recursive

Ensemble Mutagenesis.
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Recursive Ensemble Mutagenesis
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4.1 Forward

The following paper has been communicated to the

Proceeding of the National Academy of Sciences.

4.2

4.2.1

Simulations of

5uil 1 o.

Recursive Ensembie Mutagenesis

A new algorithm for protein engineering, termed Recursive

Ensemble Mutagenesis (REM), has been developed to produce diverse

populations of phenotypically related mutants whose members differ

in amino acid sequence. This method uses a feedback mechanism to

control successive rounds of combinatorial cassette mutagenesis.

Starting from partially randomized "wild-type" DNA sequences, a

highly parallel search of sequence space for peptides fitting an

experimenter's criteria is performed. Each iteration uses

information gained from the previous rounds to search the space

more efficiently. Simulations of the technique indicate that, under a

variety of conditions, the algorithm can rapidly produce a diverse

population of proteins fitting specific criteria. In the experimental
analog, genetic selection or screening applied during REM should
force the evolution of an ensemble of mutants to a targeted cluster

of related phenotypes.

4.2.2 Reverse Engineering the Protein Folding Problem

One might envision the solution to the protein folding

problem as a complex algorithm that accurately predicts the 3-

dimensional structure and function of proteins from primary amino

acid sequence data. Although some progress has been made in

predicting the secondary structure of proteins!-?, no algorithm
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exists that can decode an amino acid sequence into a 3D structure

and predict the chemical properties of the resultant protein. If such

an algorithm did exist, one could design and engineer proteins to
solve problems in fields as diverse as industrial catalysis!?,

bioremediation 1! and medicine.l? Though much progress has been

made towards a semi-empirical solution to the protein folding

problem, a complete solution to this quandary seems to lie in the
distant future.

From the viewpoint of a molecular geneticist, and in the

absence of a solution to the protein folding problem, how does one

effectively search for new proteins with desired structures and

functions? In this communication, we present computer simulations

of an algorithm that efficiently searches "sequence space"!3 for
proteins with specified properties, while treating the protein
folding problem as a black box. Each step in this simulated process

is exactly analogous to standard laboratory processes: DNA

synthesis, cloning, expression, screening, and sequencing. Both the
simulated process and the putative experimental process are termed

"recursive" because information gained in one round of mutagenesis

is used to control the next. We have been successful in simulating

recursive ensemble mutagenesis (REM) on as many as eight

interactive amino acid sites and have embarked upon analogous

experiments with model proteins.

Simultaneously randomizing eight amino acid positions
in a protein leads to a sequence complexity of 208, or over 25 billion

different sequences. The principle advantage of REM over other

mutagenesis methods is that one can assay a relative small volume

(e.g. 10,000 mutants) in this large sequence space, find a few

"positives", and generate a much larger fraction of acceptable

sequences in the next round of mutagenesis. As such, REM is based on
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repeated use of combinatorial cassette mutagenesis!4-17 (CCM)
directed by an algorithm that actively adjusts nucleotide
compositions for DNA synthesis.

While most of this communication focuses on complex

simulations of parameters that might affect the technique, the

experimental flowchart for REM is relatively simple. First, several
(e.g. eight) positions within a protein are selected for random

mutagenesis, possibly by the criterion of proximity to an "active"

site thought to be of mechanistic importance. These positions need

not be contiguous. The zeroth iteration of REM begins by

simultaneously replacing all eight codons with NNN (ie.
equiprobable A,C,G,T in all three positions of the mutagenized

codons). Second, the CCM library is expressed and screened

according to specific phenotypic criteria. It is important that at
least a few "positives" are found in the zeroth round of REM. This

depends on how many different amino acids are acceptable per site,

the number of sequences (i.e. colonies) screened, and the stringency

of the screening or selection criteria. In the third experimental step

of REM, DNA from the positive colonies is extracted and sequenced.

Clearly, some of the sites may tolerate only a few amino acid

substitutions, making it possible to restrict the "doping" of codons

in the next cycle of mutagenesis to something less complex than
NNN18-21 For example, a site that requires hydrophobic residues

could be redoped with NTN.13: 19. 2I' The mechanisms by which REM

successfully adjusts nucleotide "dopes" is the subject of much of
this communication

Our simulations show that REM is very robust in finding

sequences that fit a variety of selection algorithms. In some cases,

we have attempted to make such algorithms physically realistic,

incorporating data from wild-type and physicochemical parameters

.
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known to be of importance in protein structure and function:

hydropathy?2, molar volume?3, and parameters related to
propensities for forming various types of structures.! REM

simulations using physically irrelevant (e.g lexographic) rules also
demonstrate convergence (albeit weaker) through adaptive feedback.
This strongly suggests that the method is experimentally viable

regardless of the form of the solution to the protein folding problem.

In both simulated and experimental REM, it is very

important to count only "unique" mutants, those with different

combinations of amino acid residues at the mutagenized sites. This

avoids the problem of the entire ensemble of mutants becoming

identical, which is termed a clonal jackpot by molecular geneticists.

As the size and diversity of the ensemble of mutants increases, it

becomes more probable that the experimenter will find a mutant

with exceptional properties. Thus one circumvents the problems

associated with the de novo design of proteins and effectively

reverse engineers the protein folding problem.

In hindsight, we have recognized that the mathematical

format of REM resembles techniques developed in the field of

Genetic AlgorithmsZ4-26 (GAs). To date, and despite their name, GAs
have not been applied to problems in genetics.2&gt; In the discussion,

we shall elaborate on the non-trivial differences between the

mathematical basis of REM and GAs, and give reasons why the former

converge more rapidly in this domain.
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4.2.3 Description and Results of Simulations

4.2.3.1 Theory and Description of Algorithm

We define sequence space as the set of all possible protein

sequences that can arise through random mutagenesis of N amino

acid residues. For purposes of REM, four subsets exist: 1) The wild-

type subset, a set of cardinality one which contains the sequence of

the protein being mutagenized. 2) The selection subset, which
contains all protein sequences fitting selection or screening

criteria. 3) The pseudo-wild-type subset, which phenotypically
resembles wild-type to some specified degree. 4) The null subset,

containing all remaining protein sequences, including those which do
not fold or express. In special cases, the pseudo-wild-type subset

can become the selection subset, yielding diverse sequences which

are iso-functional with wild-type.

The genetic engineer (in this simulation) knows only the
wild-type sequence and has no way of knowing the sequences within

the selection subset. Based on expert opinion, the engineer first

reduces the search volume by choosing a relatively small number of

amino acids to mutagenize (commensurate with the fraction of the

population to be screened). Typically, this might include all of the

residues in an active site. However, this reduced volume (20N for N

sites) is still too large to search thoroughly if N is greater than

about six amino acid residues. As will be shown, REM efficiently

finds a path from the wild-type set to the selection subset.

A mechanical analogy for the algorithm is shown in Figure
4.1. The input cylinder at the left of the figure is partitioned into S
columns each containing a DNA sequence. Each sequence represents
the 3N nucleotides needed to mutagenize N amino acids in the wild-
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Figure 4.1. An iteration of the Recursive Ensemble Mutagenesis
"machine" starts with an ensemble of S nucleotide sequences of
length 3N written down a column of the input cylinder. Each column
is then read and passed to a translation table which converts groups
of three nucleotides to one amino acid on the translation cylinder.
The resulting peptide sequences are then examined by a decision
algorithm (DA) and, if a given sequence is found acceptable, the
buffer allows its nucleotide sequence to be written to the output
cylinder. After all S sequences have been evaluated, and S' (&lt; S)
sequences appear on the output cylinder, the cylinder is passed
though a scrambler whose output is fed back to the input of the
machine. All of the mechanical steps depicted in this figure have
exact analogy to both theory (i.e. simulations) and experiment (i.e
combinatorial cassette mutagenesis).
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type protein. These sites are not necessarily contiguous. The

population is generated by assigning probabilities for nucleotides at
every one of the 3N positions and then randomly creating S

sequences based on this distribution. This population is called the

test set. These probabilities are initially set to 25% for all four

nucleotides at each codon position, producing a maximally random

(DNA) population. As the algorithm progresses, these probabilities
are biased away from equiprobability and so the informational

entropy?’ of the ensemble is lost (i.e. information is gained).

Experimentally, the population is generated by synthesizing a
combinatorial cassette with base concentrations proportional to

these probabilities.

In the next step of the simulation, all DNA sequences in the

test set are translated through a table which converts codons to

amino acids. The translation cylinder, which contains these recoded

sequences, is analogous to the ensemble of proteins produced by

ribosomal translation of each gene. In a biological organism this

translation uses the genetic code, but in the simulation alternative

(nonbiological) tables may be used. Simulations that compare the

genetic code with randomized translation tables yield information

on how to best exploit any special features present in the genetic
code.

Each "protein" from the translation cylinder is examined by

a decision algorithm (DA) and is either accepted or rejected based on

a set of rules we term a protein grammar. This grammar can be a

combination of heuristic rules for protein folding 7 energy
minimization? 3, or whatever specific criteria the engineer wishes
to apply. [For purposes of this discussion, whether or not the protein

grammar is biophysically correct is irrelevant]. If the peptide is

accepted by the DA (equivalent to experimental "positives"), then the
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gene is passed through the buffer and is written to the output

cylinder (see Fig. 4.1). Otherwise, the gene is discarded. Once all S

peptide sequences have been examined, the output cylinder will
contain S' (&lt; S) DNA sequences (acceptance set) and the cylinder is

passed to a "scrambler". The number of different peptide sequences

in S' is designated UM, for unique mutants. Experimentally, UM is an

important parameter for the geneticist to maximize relative to the

total number of colonies (i.e. sequences) screened.

To start a new REM iteration, the scrambler routine

calculates the percentages of each nucleotide at every position in

the output cylinder and then uses these percentages as probabilities

to generate a new input cylinder. Since S' can be a relatively small

number (depending on S and the stringency of the DA), the final

distribution of bases per position on the new input cylinder may be

slightly different than the output cylinder. Note that this method of

generating the new test set is very different than in genetic

algorithms which typically recombine "chromosomes" by pairwise
crossings (see Discussion). The scrambler is an analogy for two

experimental steps: 1) combining nucleotide data from the
mutagenized sites by either batch!3: 28 or standard DNA sequencing,

and 2) constructing a new library of combinatorial cassette mutants

through DNA synthesis and cloning.

4.2.3.2 General Aspects of REM Simulation.

The DAs used in the REM simulations are not designed to

mimic the biophysics of protein structure and function in a way that

requires a solution to the protein folding problem. REM simulations

are important because insight can be gained into parameters that are

important for efficient feedback and amplification of the number of

unique mutants falling within a selection subset. For example, if
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REM decision algorithms involve constraints on amino acid

hydropathy, then we expect strong biasing in the second position of
the codon.18 20 In fact, since the REM algorithm is meant to function

under any DA, physically irrelevant rules that are very simple (e.g.

requiring amino acids to be in alphabetic order within a octapeptide)

can be employed to test REM behavior under a variety of

experimentally relevant parameters (such as sampling size).

Figure 4.2 shows plots of UM vs. iterations of REM for four

different DAs. Each simulation uses at least three different classes

of translation tables. The most general class is termed a random

code class, wherein codons are randomly selected without

replacement from the 64 possible triplets. The first 21 selections

are assigned to the twenty amino-acids and a stop. Thereafter, the

codons are assigned at random to the 21 possible elements of this

set. The next class of translation tables contains shuffle codes,

which keep the codon groupings intact (relative to the genetic code)
but randomly reassign the amino acids and the stop command to each

grouping. This maintains the codon degeneracies found in the genetic

code but removes any other structuring (e.g. NTN codes for

hydrophobic residues). The genetic code is more closely related to

shuffle codes than random codes. An alphabetic code* maintains the

number of codons assigned to each amino acid but assignment is

made in alphabetic-order. Thus, alanine (single letter code A) is

assigned AAA, AAC, AAG, AAT, while tyrosine (Y) is assigned TTG
and TTT.

* The alphabetic translation table is as follows: A: AAA, AAC, AAG, AAT; C: ACA, ACC; D: ACG,
ACT; E: AGA, AGC; F: AGG, AGT; G: ATA, ATC, ATG, ATT; H: CAA, CAC; I: CAG, CAT, CCA: K:
CCC, CCG; L: CCT, CGA, CGC, CGG, CGT, CTA; M: CTC; N: CTG, CTT; O (Stop): GAA, GAC, GAG;
P: GAT, GCA, GCC, GCG; Q: GCT, GGA; R: GGC, GGG, GGT, GTA, GTC, GTG; S: GTT, TAA, TAC,
TAG, TAT, TCA; T: TCC, TCG, TCT, TGA: V: TGC, TGG, TGT, TTA: W: TTC: Y: TTG, TTT.
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Figure 4.2. REM simulations using four different decision
algorithms. The plots show the number of unique peptide sequences
(i.e. unique mutants, UM) accepted by the decision algorithm versus
iteration number. Each simulation ran for twenty iterations on an
octapeptide. There are three panels (left to right) for each
simulation. The first panel shows seed plots for ten initial
populations for all translation tables studied (see text). The second
panel shows performance plots for each translation table. The third
panel shows performance averages for various translation classes:
random codes in green, shuffle codes in blue, the genetic code in red,
and an alphabetic code in yellow. The four DAs used in a-d require: a)
an alphabetic-ordering of the amino acids names (one letter code, no
more than one out-of-order allowed), b) residues with Kyte and
Doolittle hydropathy values less than zero at sites 1 and 4 and
residues with hydropathy greater than zero everywhere else, c) a
spectrally-shifted bacteriochlorophyll binding site constructed
according to expert rules (see text), and d) a Chou-Fasman predicted
alpha helix.
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Each REM simulation displayed in Figure 4.2 was run with 45

different random codes (green), 45 different shuffle codes (blue),

and the genetic code (red). In the upper set of panels, the alphabetic
code (yellow) was also included. Simulations were run for twenty

iterations with the test set size, S, equal to 10,000 or 20,000 (see

labeling on the y-axis). In all cases the number of mutational sites

was eight (i.e. octapeptide) and the initial nucleotide probabilities
for all 24 nucleotide sites were equiprobable (A,C,G,T = 25%). To

determine the effects of the initial test set on the algorithm, ten

different initial populations (seeds) were randomly generated.

In Figure 4.2, the three panels shown for each simulation

represent different degrees of data averaging. The first panel shows
plots of simulations of every translation table run with ten

different seeds, yielding seed plots. The second panel shows
performance plots which are an average of ten seed plots each run

with the same translation table and DA. Performance plots can be

used to rate the overall performance of the algorithm independent of

the initial ensemble. Finally, the third panel displays performance
averages which are averages of performance plots over a specific

code class. Performance averages can be used to rate the overall

performance of the algorithm as a function of the translation class:

alphabetic, genetic, random, or shuffle. Performance plots and

performance averages are identical for the alphabetic and the

genetic code classes because there is only one example of each.

4.2.3.3 REM Simulations

Algorithm
Using an "Alphabetic" Decision

Figure 4.2a displays simulations using a DA that requires

the single letter codes for the amino acid residues in an octapeptide

to be in alphabetic-order. The DA allows one out-of-order residue
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after which the order may start over again. Thus, the algorithm

allows sequences like ACDFGHMQ and ADCDFGHM but not AACDFHGM

or AEDAGHMQ. This simulation was run to highlight several

important issues which bear on REM in general. First, notice that in

all cases the packing of seed plots is fairly tight. This occurs

because the numerous ways an alphabetic sequence may be formed

results in very little epistasis between sub-motifs. Epistasis 25: 29

is defined as mutual competition between sequence motifs. The

alphabetic DA appears to require a single, almost non-exclusionary

motif. Thus, the limitation on the entropy due to selection of one or

another specific sub-motifs is lifted and maximum amplification

(i.e. gain in UM as a function of iteration number) can be achieved. As

expected, the alphabetic code (yellow curves) demonstrate the
highest amplification of all translation classes. This may be

attributed to the excellent match between the alphabetic DA

grammar and the alphabetic translation table.

The alphabetic REM simulation enables us to explore a

general feature of the algorithm pertaining to the match between

the DA grammar and features within the translation table. The REM

algorithm partially relies on the formation of new acceptable

sequence patterns from the cross-products formed by the averaging
action of the scrambler. A cross-product is defined as a new pattern

created by the statistical recombination of two or more codons, e.g.

cross-products of CAC and CTG are CAG and CTC. Cross-products

create recombinant sequences in the next test set. Scrambling is

more likely to produce new and acceptable motifs if codons with

similar nucleotide compositions translate to amino acids with

similar properties. Inherent structure in the translation table would

affect the efficacy of the scrambling step for optimization. For the
alphabetic code, recombinations which occur within a codon of two

accepted sequences are likely to produce an alphabetically-close
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codon and amino acid. Recombinations which also cause swaps of

alphabetic runs are more likely to be acceptable because position in

the gene is correlated to position in the alphabet.

The genetic code and shuffle codes for the alphabetic DA

behave very differently than the random codes. Initially, the

amplification is greater, but the UM quickly reaches a maximum and

then decays rapidly. This implies that the way codons are assigned

to the amino acids in the genetic code lends some initial advantage

for amplification. For genetic and shuffle codes, the third codon

position retains its "wobble" property, i.e. changing the identity of

the third position base is unlikely to change the identity of the

coded amino acid. This partial loss of a degree of freedom for the

algorithm to employ in biasing the dopes results in a rapid

determination of a consistent mutational scheme. The algorithm is

forced to strongly bias the first two positions in the codon to fulfill

the requirements of the DA. It is this rapid loss of complexity in
combination with a strict rule which would cause a final over-

biasing of the ensemble and a descent to a clonal population (i.e all

sequences in the acceptance set are identical).

Finally, it is important to observe that REM simulations

with random codes show significant amplification of the UM.

However, the loss of intentional structure in these codes reduces

the magnitude to which the DA can effectively bias the dopes. This

means that sampling error is relied upon to select one type of motif

over another. The properties of the selected motif will determine

the efficiency of the amplification. These simulations show a

greater spread in the seed plots, since information inherent in the

initial test set becomes relatively important in determining the

feedback pattern.
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4.2.3.4 REM Simulations on an Hydropathically Constrained Domain

The REM simulations displayed in Figure 4.2b were

performed with a simple hydropathy constraint which requires
hydrophilic residues (Kyte and Doolittle hydropathy value less than

zero) at octapeptide positions 1 and 5 and hydrophobic residues

(values greater than zero) at the remaining six positions. A
screening size of 10,000 was found to be too small for efficient

functioning of the algorithm (often only one or two acceptable

mutants were found), so S was increased to 20,000. It is noteworthy

that the simulations using the genetic code perform differently than
other translation classes with this DA.

For the hydropathic DA, simulations using the genetic code

amplify more rapidly than any other translation class. It is well

known that the A/T disparity in the second position of a codon is

predictive of the hydropathy of the coded amino acid. This rather

simplistic DA, requiring the selection of either hydrophobic or

hydrophilic amino. acids at specific positions, leads to a rapid

biasing of the second codon positions of the codons (data not shown)

and rapid amplification. Furthermore, if all eight codons were

initially set to either T or A in the second position (hydrophobic and

hydrophilic sites, respectively), the protein motifs produced from
such an ensemble would very likely be acceptable by the DA, since

only amino acids with similar hydropathy values would be produced

by the cross-product mechanism.

4.2.3.5 REM Simulation of a Complex Binding Site

Figure 4.2c shows simulations of a grammar devised to

select for sequences that might create a spectroscopically

perturbed bacteriochlorophyll (BCH) binding site.30 Our interest in
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this particular grammar stems from our technical capability to

screen large numbers of colored colonies on petri dishes for

spectroscopic shifts in the absorption spectra of light harvesting
proteins. This grammar was constructed by examining phylogenetic
data3! from numerous species and from mutagenesis data for

Rhodobacter capsulatus.3? Based on these data, a complex DA was

formulated: 1) The octapeptide must contain the motif (a x x x H),

where a is a small amphiphilic residue (G, A, S or C) four sites to

the left of the histidine (H) binding site. 2) One or two charged

residues must be present in the octapeptide which may generate an

electrochromic shift in the BCH near-infrared absorption
spectrum.33 3) The average hydropathy and molar volume of the

octapeptide must be similar to the wild-type sequence (LAVLIHLL).

The rejection Jreshold was based on the formula:

D= {[(H\~HL)AH+{(M,-M.)/AM]?)
i=1

where H is the hydropathy, and M is the molar volume. The subscripts

m,w refer to mutant and wild-type sequences, and the superscript

refers to the position in the peptide, respectively. AH and AM are the

maximum hydropathy and molar volume differences between pairs of

amino acids, which is used for normalization. Sequences were

rejected for D values greater that 2.0.

£q. 4.1

Since there are specific positional requirements for

charged residues, hydrophobic residues, moderately sized residues,
and a histidine, the selection set for the BCH DA is relatively small.

This should lead to very strong biasing and epistasis. The seed plots

for these simulations (4.2c) show greater spreads for UM (for a

single translation table) than for the alphabetic (4.2a) or

amphipathic (4.2b) rules. This is not surprising given the relative
complexity of the rules used for selection. Both the location of the
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binding site and the number and position of the charges are variable,

therefore the initial population will almost certainly determine the

final dominant sequence motifs. The minimal sequence differences

in the ensembles resulting from one seed plot (data not shown),

implies that during an actual experiment, it would be advantageous

to run a number of populations through the mutagenesis protocol in

parallel. Once again, simulations employing the genetic code are

amplified more rapidly than other translation classes due to

hydropathy-molar volume constraints on the DA. However, all

translation classes show significant amplification.

4.2.3.5 REM Simulations Involving an Alpha Helix

It is of interest to consider a physically realistic DA in

which no correlation is expected with the genetic code. Such is the

case for a DA which attempts to produce an ensemble of

octapeptides that fold into a specific conformation. The Chou-

Fasman DA uses modified code from the program described in

reference 8 and their 64 protein database. Each amino acid residue is

assigned a probability of being in an a-helix, a B-sheet, or a turn. To

predict whether a given residue belongs to a given secondary
structure, the propensity of the residue being in one of these three

categories is averaged over four residues (tetrad propensity). A

peptide is defined as "helical" and accepted by our DA if: 1) four or

more consecutive helix tetrad values are greater than 100, 2) no

residues in this helix nucleation site have higher tetrad values for

sheet or turn, 3) no proline residues are found in the helix nucleation

site. 4) no stop codons are encountered.

Figure 4.2d displays REM simulations using a Chou-Fasman
prediction! for an alpha helix as the DA. Again, the seed curves are

packed very tightly indicating a low sensitivity to initial conditions.
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Simulations with all three classes of translation tables exhibit

amplifications on the order of 22 times the initial population. This

strongly suggests that REM leads to some amplification without

correlation between the DA and the structure of the genetic code.

Amplification is also minimized because the stringency of the Chou-

Fasman DA is relatively low (compared to the other DAs we have

investigated) and allows a large initial population through the
selection.

4.2.3.6 Acceleration of REM

All the REM simulations shown in Figure 4.2 were run for

20 iterations. In many of the simulations, peak UM is reached
between 10 and 20 iterations. Experimentally, each mutagenesis

cycle will take from two weeks to a month, so the simulations are

run for the experimental equivalent of two years. Obviously, a

method for accelerating the rate at which the algorithm maximizes
UM is desirable. An acceleration of the Chou-Fasman helix DA was

simulated using an equation which extrapolates nucleotide dopes

according to two parameters (A and s):

LL. : : (-GH )
B oynli, j+11= Bi, J] + (Bgeili, j1-Byalis J1) x A x EXP} ———

\ S Eq. 4.2

This simulation was run with values of s ranging from 1 to 128 in

powers of 2 and values of A ranging from 1 to 64. B[i,j] is the

fraction (0.0 - 1.0) of nucleotide B at position i and iteration j. The

subscript 'syn' applies to synthesized DNA whereas the subscript 'gel”
refers to the average nucleotide fractions read from the last set of

sequencing gels on positive mutants. After the new nucleotide

densities are calculated, the sum of A,C,G.T densities are

normalized to one. The best parameters for this REM simulation



(Chou-Fasman alpha helix; same as Figure 2d) are: A=4 and s=1. Peak

UM is achieved in only three iterations (data not shown).

Our accelerated REM simulations reveal that the best values

for the pre-exponential and exponential factors in Eq. 4.2 correspond
to a moderate initial acceleration which is sharply damped in later

iterations. Damping prevents severe biasing which results in the

formation of a clonal population. In this specific case, it is

noteworthy that the peak UM under acceleration is greater than the
UM for the unaccelerated population.

4.2.4 Conclusions: The Relation of REM to GAs, etc.

The application of artificial intelligence (Al) techniques
in molecular genetics requires that researchers in both areas

develop a mutually understandable language. We have attempted to
present REM by using simulations directly related to experimental

techniques that can be implemented by molecular geneticists

conducting CCM. For further development of the algorithm itself,
however, it is advantageous to also present REM in a form

recognizable to the Al community.

Genetic Algorithms (GAs) are well known to the Al

community as very powerful computational optimization techniques.
GAs utilize cross-over and mutational operators to recombine

chromosomes in a recursive manner such that the fitness of the

population increases. An elementary GA might, for example, "evolve"
a population of initially random 8 character capital letter strings

(chromosomes) towards a target chromosome: "GENETICS". There are

268 possible strings of this length. With a 50% probability, one

could find this specific chromosome by randomly generating and
checking about 100 billion different strings. The power of GAs is

2
&gt;.
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that one can reduce this search significantly by recombining and

mutating chromosomes. For example, chromosomes can be ranked

according to a "fitness" criterion (F), by counting the number of

correct characters in the chromosome as a function of position.

Chromosomes are allowed to mutate at a specified frequency,

recombine pairwise by cross-over events, and be propagated into the

next generation (by a variety of techniques) according to their

fitness value. With a total population of 100 chromosomes, an

efficient GA can converge on "GENETICS" in about 30 iterations, i.e.

only 3000 strings are evaluated. GAs tend to preserve schemata. In

this example, a single crossover between two chromosomes with

F=4 (GENEWXYZ and ABCDTICS) in the penultimate iteration brings
together the schemata "GENE" and "TICS". The mutational operator

might have played an important step in a previous iteration by

mutating the chromosome "PENEWXYZ" (F=3) to "GENEWXYZ". The

explicit form of the fitness criterion need not be known for the GA

to work. Molecular geneticists might draw an analogy between the

GA "schemata" and a protein "structural motif", while chromosomes,

mutations, and cross-overs convey similar concepts in both

languages. Ironically, GAs have not been used in the field of genetics.
25

REM differs from elementary GAs in several important

ways: 1) The REM decision algorithm evaluates one type of string

(protein sequence) while optimizing another string (nucleotide
sequence). The protein sequence (length = N) utilizes an alphabet of

20 characters, while the nucleotide sequence is 3N in length and
uses 4 characters. In contrast, the GA characterized above

regenerates and evaluates only one type of string: a chromosome

constructed from the 26 characters of the alphabet. 2) REM

generates the next test set by a stochastic process based on the

probabilities of each character in the 3N string (i.e. probability of A,
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C,G, and T at each position in the synthetic gene). In REM, all

members of the population are scrambled with each other as opposed

to the pairwise matings in GAs. 3) REM does not assign fitness
values to sequences other than one (retain) or zero (discard). 4)

Since no dependent probabilities are maintained between positions

within a codon, the cross products that are generated in REM are

dependent on the structure of the translation table (e.g. genetic

code) as compared to the random mutagenesis found in GAs.

We have already shown that the rapid convergence of REM is due to

similarities between the structure of the DA and the translation

table. This process is missing from elementary GAs, which use a

stochastic process to introduce mutations. REM is also superior to

GAs from the standpoint of acceleration, which suggests only a few

rounds of CCM are required in an actual experiment. Very recent

simulations suggest that a novel acceleration algorithm can be

developed which uses nucleotide "dopes" (see Chapter 6) compatible
with commercial DNA synthesizers."
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4.3 Eniiouu E:

REM uses a feedback mechanism analogous to that operating

in GAs, thus similar phenomena are likely to apply. When the REM
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recombination operator is employed, schema (schemata) which
appear with a certain probability in the acceptance set will appear

with the same probability in the next test set. [Schema probabilities

in REM may be calculated using the group probability equation 3.5.

(Note that, like GAs, the shorter and less complex the schema the

higher its probability is likely to be.)] Thus, fit schema will be

enriched each generation. In fact, if a REM recombination operator is
used in place of the crossover operator in a standard GA, GA

performance is apparently not significantly impaired (data not
shown).

The fitness function used by REM has no local optima per se;

and a sequence is simply either acceptable or is rejected. Thus,

REM's sequence space is a set of plateaus and flatlands. The goal of

REM is not necessarily to find a global optimum, but to cover as

many plateaus as evenly as possible. In practice, REM will generally

cluster sequences on a single plateau (i.e. will find a population of

highly related sequences). If REM is restarted with a different

initial population then "convergence" to a different plateau is likely.

Experimentally, then, it will be advantageous to perform a number of

REM experiments in parallel or to split acceptance sets into

independent entities for REM calculations. There may be a rational

way of recombining populations from these different experiments in

order to conserve complexity and avoid premature convergence to a

clonal population. However, the theories for convergence which have

been developed for GAs do not directly apply to REM; nonetheless

many of the considerations which are necessary to achieve the

optimal functioning of a GA have their counterparts in REM. For

example, screening size (number of members in a GA population),

selection criteria and epistasis (GA-hardness) are all important

parameters which must be discussed in connection to REM's

functioning. (See Chapters 5 and 6.)
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An important point must be discussed with regard to the

extrapolative acceleration described in Chapter 4.2.3.6. The
parameters, A and s, cannot be absolutely determined in advance of a

REM experiment. If the numerical trend in base probabilities at a

given site after the zeroth iteration is obvious, then a strong

extrapolation may be applicable. On the other hand, when the trend is

caused solely by "noise" introduced by sampling error or if the

magnitude of the probability differences is small, then perhaps
extrapolation should be foregone. The decision on which trends are

significant can only be learned by the analysis of the base

probability fluctuations resulting from purely experimental
limitations. Since obtaining quantitative estimates of these

statistics could involve more work than not using an acceleration at

all, a degree of intuition will be necessary to choose the

extrapolation parameters.

Finally, it should be noted that the dopes used in the

simulations above were calculated to six significant figures.

Obviously, in an experiment this resolution is unobtainable. Each

phosphoramidite derivative of a nucleotide base, the substrates

experimentally used to synthesize oligonucleotides, have different

coupling efficiencies which are dependent upon the previous base

used in the synthesis. This fact, in combination with other

experimental errors (e.g. weighing errors, sequence-dependent
transcription and mRNA degradation), will significantly reduce the

resolution at which dopes may be constructed and expressed.

Simulations have shown that REM performance is not unduly

degraded as long as resolution is kept at or above 10% (data not

shown). The effects of using dopes calculated at the resolution

available with most DNA Synthesizers is discussed in Chapter 6.
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The rest of this thesis is dedicated to the investigation of

the many points raised in the above paper. The body of the next two

chapters are concerned with the experimental implementation of
REM. However, a number of theoretical points and extensions to REM

will be addressed in the epilogues to these chapters.
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Chapter 5

The Effects of DA Stringency and Library Complexity on REM
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5.1 Forward: Experimental Limitations on REM

Recursive Ensemble Mutagenesis, as described in Chapter 4,

assumed an experimentally reasonable library complexity (eight

sites) and screening size (10,000-20,000 mutants). These variable
were chosen somewhat arbitrarily such that more than two

acceptable sequences were observed in the zeroth iteration of REM,

regardless of which of the four DAs were employed. In practice, the

number of proteins which may be reasonably screened is limited by

the technology used to produce the library and examine each member.

In our laboratory, cloning efficiency is currently limiting population
complexity to approximately ten million and of these, approximately

10,000 may be screened per day by the Digital Imaging
Spectrometer.

Another parameter arbitrarily chosen in the REM simulations is

the stringency of the DA (i.e. how many proteins in the sequence

space fit the DA criterion). The DAs used in Chapter 4 span a broad

range of stringencies. In an actual protein the DA stringency may

vary radically with the choice of doping region.! The following

paper, which is submitted to the Parallel Problem Solving in Nature

Il Conference?, attempts to investigate the effects of DA stringency

and library complexity on the functioning of REM. The alphabetic DA ,

described in chapter 4, is employed not only because of its tunable

stringency (it can allow different numbers of out-of-order

characters) but also because it evaluates the fitness of a sequence

based on a highly site-site dependent criterion and thus is expected

to mimic much of the behavior of a DA one might encounter

experimentally.
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5.2 The Effects of DA Stringency and Library Complexity on REM

5.2.1 Sum 11) al

The effects of both decision algorithm (DA) stringency and

library complexity on Recursive Ensemble Mutagenesis (REM) are

examined by computer simulation. REM generally demonstrates

maximum gain when the number of unique acceptable proteins
observed in the zeroth iteration is very small relative to the

screening size. This occurs under conditions of high stringency and

moderate complexity.

5.2.2 Complexity and Stringency

Recursive Ensemble Mutagenesis is a method for engineering a

diverse population of mutants expressing genetically altered
proteins with desired properties. For a full exposition of REM, see

Chapters 4 and 6. Experimentally, REM utilizes iterative rounds of

combinatorial cassette mutagenesis (CCM)3-10 to maximize the

number of unique mutants (UM). In this paper, we investigate

conditions under which REM maximizes UM as a function of

parameters involving protein library complexity and DA stringency.

For various protein engineering tasks, the number of possible
sequences which can be examined is limited by practical constraints

on the experiment. We define the total number of unique mutants

(TUM) as the set of all mutants (or genetically altered protein

sequences) acceptable by the DA. The ratio of TUM to the size of the

sequence space being searched is defined as the DA stringency.

Furthermore, the number of mutagenesis sites (within a protein

sequence) and the degree to which these sites are initially

randomized defines the complexity of the CCM library.
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Many parameters which are important to REM (e.g. the

population size necessary to conserve genetic diversity) are also

important to the optimal functioning of genetic algorithms (GAs).3
II REM is most similar to GAs that use redundant coding.12: 13

However, theories! which govern the choice of population size for

GAs are not directly applicable to REM, because REM is not a GA.

5.2.3 Mathematical Backgrou yd

In the calculations described below, an "alphabetic" DA is used.

A sequence is acceptable if the one letter codes (Table 1 in

reference 2 (Table 6.1 in Chapter 6)) for the amino acids appear in

dictionary order, e.g. AACDE is acceptable, whereas CACFE is not.

The stringency of this DA may be adjusted by allowing out-of-order

amino acid pairs, e.g. CACFE has two out-of-order pairs (OOOPs): CA

and FE. The alphabetic DA is biologically unrealistic, nonetheless it
is informative, since we can calculate stringency analytically. For a

sequence of length L composed of letters from an alphabet of

cardinality C (21 in this case, 20 amino acids plus one stop

command), there are:

0 L+C-1
Nc(L) = ( . )

Eq. 5.1

alphabetically ordered sequences, where the 0 superscript specifies
zero OOOPs. To calculate the number of sequences with one or more

out-of-orders, we use the number of ordered sequences within the

variable characters m and n (beginning and ending the alphabetic

sequence, respectively). This number is given by:

1248



1

ND AL) = CL
(“ne m+1) ) NC, (1-2)L-2

L=1, n=m

L&gt;1

Eq. 5.2

Then the number of alphabetically ordered sequences beginning with

character m of an alphabet of cardinality C is simply the sum over

all ending characters of Eq. 5.2:

m

Noel) = 4 C

2Novas H(L-2)

L=1

L&gt;1

Eq. 5.3

Finally, we can find the number of single OOOP sequences by

calculating the number of all ordered sequences of length A&lt;L, which

begin with m and end with n, and then multiplying by the number of

ordered sequences beginning with a character less than n. The

resulting product is then summed over all possible beginning and
ending characters and all A&lt;L.

IL-1 C r.C n-1 7

Ne(L) = &gt;&gt; 2Now M2Nyc)
Eq. 54

To calculate sequences with two OOOPs, one simply replaces the

final sum over all sequences of length L-A by a another term similar

to the one contained by the brackets in Eq. 5.4. This term is then

summed over lengths from one to L-A-1. For each additional OOOP, one

simply adds another sum.
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The stringency of a DA is the sum of all the numbers of

sequences having up to O OOOPs (i.e the TUM) divided by the library

complexity. The smaller the resulting number, the more strict the

DA. Table 2.1 shows stringencies for zero to five allowed OOOPs for

sequence lengths of two to eight. Since REM usually starts with

completely random DNA, the complexity of the protein library is 21L

The last thing to note is that the distribution of proteins

resulting from a completely randomized DNA library (25% A,C,G, and
T at each position in the DNA fragment) is inhomogeneous. This is a

direct consequence of degeneracy in the genetic code.!®&gt; 16 Since

leucine is assigned six times as many codons as methionine, it will

appear more often in the protein library. For highly complex

libraries, a reasonable approximation is to assume that all

sequences appear equiprobably at a frequency of one over the

theoretical complexity. In this case, one can calculate the chance of

seeing any given sequence:

PS(H)= 1-(1-HS £q. 5.5

where Pg(f) is the chance that one will see a specific protein

sequence, which appears at a frequency f, after screening S

sequences. Alternatively, since we assume that all the sequences

appear at approximately the same frequency, Pg(f) may be interpreted

as the fraction of the library which has been observed after

screening S sequences.
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8

0 i = od tA lo

0.5238 1.00
0.1911 0.8563 1.00

0.0546 0.5476 0.9692 1.00

0.0130 0.2706 0.8166 0.9950 1.00 -

0.0027 0.1091 0.5653 0.9426 0.9994 1.00

0.0005 0.0374 0.3232 0.7963 0.9855 0.9999
0.0001 0.0113 0.2237 0.6216 0.9413 0.9998

Table 5.1 This table lists stringencies for DAs allowing zero to
five OOOPs in sequences ranging from two to eight amino acids in
length. The heading over each column is the number of OOOPs allowed
by the DA, and the label for each row is the length of the sequence.

5.2.4 Simulations

REM performance plots are calculated as described in

reference 16, which is briefly discussed in the context of the

REMNUC program in Chapter 6, For simulations on the effects of

library complexity in REM, the stringency was set to one OOOP and

the length of the sequence was varied between two and eight amino

acids. The upper limit for sequence length was set to eight, since

this is compatible with experiments currently being performed in
our laboratory. Simulations on the effects of rule stringency fix the

sequence length to eight and vary the number of allowed OOOPs from

two to five. Figure 5.1 and Figure 5.2 show plots resulting from REM

simulations on libraries of different complexities and stringencies,

respectively. These data are compiled in Table 5.2 and Table 5.3.

One may estimate the expected UMs observed for the zeroth

iteration of REM (for a given screening size) by using Equations 5.1,
4, and 5 (see Table 5.2). The largest initial amplification (1.65) and
the maximum overall amplification (39.28) occurs when L equals
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eight. In this case, we are screening a very small fraction (2.26 X

10-7) of the total library. Only a small UM is initially observed. As

shown in Figure 5.1, this number is rapidly amplified to more than

half the total screening size.

For REM to initiate successfully, more than two different acceptable

sequences must be found on the zeroth iteration. These plots

demonstrate that when the DA becomes too strict (e.g. zero OOOPs),

REM is unable to achieve a significant UM. At the opposite extreme,

nonstringent DAs (e.g. five OOOPs) allow too many sequences through
the zeroth iteration. At moderate stringency, REM demonstrates

significant amplification and produces an experimentally desirable
UM. Maximum amplification is achieved for the strictest DA, but a

higher UM is achieved by less stringent DAs. Table 5.3 shows

analytical and computer calculations for REM for DA stringency
simulations.

Experimentally, it is important to estimate how library size,

DA stringency, and sampling size interact. Using phage display
libraries17- 18. 19. 20, 21 34 peptide bead?? methods, up to 1010

sequences can be screened. One may wish to estimate how many

amino acid sites can be simultaneously mutagenized using REM. If

the experimental stringency for finding a functional mutant were

similar to the stringency of a zero OOOP DA, then the following

equation can be maximized for L while maintaining a finite (&gt;2) UM:

NJ. (L 010 N21) pro
y1L Ea. 5.6

which vields L= 14.
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Fraction
Complexity Screened

441 1.00

194481 | 005

4084101 ' 0.0025

85766121

Expected
UM

441

4839 |

5324 |

2763 |

Observed| Initial | MaximumuM Amplification Amplification
440 I 1.00 r 1.00

4281 | 1.00 | 1.00

5257 | 1.04 1.16
2827 1.11 2.30

1191 1.241417x1074 1091 |

1801088541 | 424 | 1.44

— 10]  .7 7378°10 © | 26x107 | 110 | 132 | 16s

14.14

39.28

Table 5.2. This table contains numerical data relevant to
plots shown in Figure 5.1 (screening size of 10,000). The complexity
values (first column) are calculated by 21L. The approximate
fraction of the library screened, shown in column 2, is calculated by
P10,000(1/21L). The expected number of uniques accepted on the
zeroth iteration is P10,000(1/21L) multiplied by [NO(L) + N1(L)]. The
column labeled "Observed UM" lists the number of acceptable
proteins found during the zeroth iteration of the REM simulations.
Finally, the initial and maximum amplifications are calculated by
dividing the UMs observed in the first iteration and the UMs observed
in the iteration of maximum throughput by UMs observed in the
zeroth iteration.
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Stringency A Initial Maximummplification ! Amplification
0.0001 1 2 21.0 57.5

0.0113 11 132 165 39.29
02237 2200 | 1706 ! 1.11

06216 6113!6009| 1.01
0.9413 ' 9256 !' 9301 | 0990.9998 | 9832 1 9975 0.99

Table 5.3. This table contains numerical data relevant to plots
shown in Figure 5.2 (screening size of 10,000). The stringencies in
the first column are identical to the stringencies appearing in the
seventh row of Table 5.1. The approximate fraction of the library
screened is 2.6x10-7
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The results of the calculation using Eq. 5.6 suggest that one

could simultaneously mutagenized 14 sites in a protein if the
screening size were 1010 and the selection criteria were about as

stringent as the alphabetic DA we have simulated. However, the

stringency of the experimental selection criterion can only be

determined by observing the UMs in the zeroth iteration of an actual

REM experiment. If no positives are found, then the number of sites

mutagenized (i.e. L) should be decreased.
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5.3 ED. O) wu

Perhaps this chapter raises more questions than it answers.

First, how does one determine the stringency of the DA when it

depends on which, and how many, sites are selected for

mutagenesis? Further, for stringent DAs epistasis is expected to
become important. How many parallel REM experiments must one

carry out in order to probe this variable? Obviously, the most

general answer to the first question is that the stringency must be

observed by actually performing the experiment. But some estimate

of the stringency might also be gleaned by examining phylogenetic
and mutagenesis data. For example, a very rough. approximation of

the stringency for forming the B-subunit of Light Harvesting Il of Rb.

capsulatus might calculated by assuming that every amino acid
appearing in the phylogeny at a given site is allowed at that site
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regardless of the amino acids appearing at every other site. (Note

that this type of calculation is highly dependent on the number

known members of the phylogeny.) If we calculate the approximate

stringency for the sites discussed in Chapter 3, we find a stringency

of 0.00018 (roughly 11,340/206). So for the six sites mutagenized,

approximately 23,000 proteins would have to be screened to observe

four positive mutants. In reality, amino acids other than those which

appear phylogentically may be acceptable at each site and epistatic
effects will govern which combinations of amino acids may appear

simultaneously in the protein. The experimental stringency will,
therefore, differ unpredictably from the above estimate.

If the observed stringency is too severe, then methods for

"boot-strapping” into a population size acceptable to REM are

required. The technique, described in Chapter 1.2, used by Geysen et
al.23 and Houghten et al?* may be applicable to this problem when

translated for use with DNA. Essentially, this technique reduces the

complexity of the library by breaking the problem into smaller

pieces and optimizing each separately and then combining the
results. Many variations on this scheme are possible but the final

choice of protocol will likely be motivated by experimental results.

Finally, it is possible in many cases to initially reduce the

stringency of the screening in order to obtain an acceptable

population size. The stringency may then be increased in subsequent

iterations.

As a final note, an easy demonstration of epistasis can be

given using the alphabetic rule. Consider the sequence "ACDETVWY"

and suppose that three contiguous sites are to be randomized. If the

first three sites are chosen, then the acceptance set for a zero OOOP

DA includes all ordered sequences whose first three positions form

an ordered sequence composed of amino acids whose single letter
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code is less than or equal to E (A,C,D, or E) and end with "ETVWY" (20

sequences). The constraint on the first portion of the sequence by

the acids in the latter half and vice versa is an example of the

epistasis mentioned in Chapter 4. If positions 3-5 had been

mutagenized first, then the acceptance set is composed of ordered
sequences composed of characters between D and V at that locus.

The set is 48.45 times larger than that defined by the variation of

the first three positions. Thus, if there is strong interaction

between sites in a protein, the stringency of the DA can be very

dependent on which sites are mutagenized. Dunn et al.'s experiments

on the a-fragment of P-galactosidase clearly demonstrates this

region specific stringency.!
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Chapter 6

Towards a Practical Implementation of REM:
REM and Optimized Nucleotide Mixtures

Collaborator: Dr. Mary Yang

140



6.1 Forward

In Chapters 4 and 5, nucleotide dopes were constructed

assuming practically unlimited resolution in setting the nucleotide

probabilities. As mentioned in the epilogue to Chapter 5, there are

physical limitations to the accuracy of the nucleotide mixtures used

to synthesize a combinatorial cassette. Further, if REM were to

implemented on current DNA synthesizers a separate solution for

each doped position would have to be made and the automated

synthesis interrupted at the appropriate steps. This is a tedious

process at best, thus, it may be best to employ the technology
described in Chapter 3 to construct dopes consistent with the

limited nucleotide solutions available on a standard machine. The

following paper, which is submitted to the Parallel Problem Solving
in Nature Conference Ill, is a discussion of REM implemented with a

number of variations on these "intelligent" dopes.

5.2 REM Revisited

B.2.1 Summary

Genetic algorithms (GAs), which are based on classical

genetics, are not easily converted from metaphors to useful

algorithms for molecular geneticists. To work at the molecular level

and engineer proteins de novo, we have developed a new

combinatorial optimization technique, termed Recursive Ensemble

Mutagenesis (REM). The experimental implementation of REM
produces sets of proteins fitting an experimenter's selection

criteria. As such, REM forms the basis of a new technology which

could obviate the need for a solution to the protein folding problem,

i.e. the prediction of structure and function of a protein from the
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primary amino acid sequence. Here, we investigate (through

computer simulation) optimization techniques and parameters that
are fundamental to the experimental implementation of REM.

5.2.2 Introduction

Before 1980, geneticists used "classical" techniques to modify
protein sequences. This technology relied on the chance that an

uncontrolled mutation or recombination event might yield a mutant

organism expressing a novel form of a protein that could be

recognized through extensive screening and/or selection. With the

advent of recombinant DNA technology and the capability to

synthesize small fragments of DNA of a defined sequence

(oligonucleotides), it became possible to alter a gene's sequence in a

controlled and predetermined fashion.2 Unfortunately, to design

proteins de novo using such technology, one requires a solution to

"the protein folding problem”, wherein protein structure and function
is calculated from the primary amino acid sequence.3"&gt; The

difficulty associated with a solution to this problem is enormous,

since the number of possible protein sequences grows exponentially
with the length of the protein in amino acid residues. For a

relatively small protein (e.g. length=100) there are 20100 possible
sequences. [There are only about 1080 particles in the universe!]

Using REM, we shall attempt to bypass the protein folding problem.

Oligonucleotide-mediated site-directed mutagenesis
techniques that were developed in the early 1980's enabled

geneticists to change only one amino acid residue in a protein at a

time. More recently, combinatorial cassette mutagenesis (CCM)
techniques have been developed®® which enable one to

simultaneously change several residues. Using this latter procedure,
a molecular geneticist can replace an entire segment of a gene
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(encoding a specific domain within the protein) with a cassette of

synthetic DNA. Since molecular cloning techniques can produce up to

1010 different recombinant mutants, the cassette's DNA sequence

can be defined in a statistical fashion, such that many different

combinations of mutations (i.e. amino acids) are present in the

library. This depends in detail on how the DNA cassette is actually

synthesized, i.e. various sites can be "doped" with DNA nucleotides

(A, C, G, and T in different ratios).

Screening an entire CCM library becomes impossible as the

number of mutagenized sites increases. If eight amino acid residues

(not necessarily contiguous) are simultaneously mutagenized, over
25 billion possible protein sequences result. Since there are 20

naturally occurring amino acids (Table 1), this number increases by
a factor of 20 every time an additional residue is mutagenized. Of

these possible sequences, only a. small fraction may actually be

functional or possess properties which are desirable in the

engineered protein. REM provides a new theoretical basis on which

the information gained from sampling a small volume of this

"sequence space" can be used in a recursive manner to isolate an

ensemble of uniquely different proteins with desired
characteristics.

The use of REM in the genetics laboratory is more than a

computer simulation, since each step in the simulation has a direct

experimental analog. The reality of conducting experiments
establishes pragmatic constraints on the parameters and methods

that are simulated. One can easily simulate the affects of changing

simple parameters (e.g. sample size, or an error function used in

optimization) that would otherwise require thousands of people-

vears of experimental labor.
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Table 6.1 Genetic Code and Abbreviations

Amino Acid 3 letter 1 letter Codons

Alanine
Arginine
Asparagine
Aspartic acid
Cysteine
Glutamine
Glutamic acid
Glycine
Histidine
Isoleucine
Leucine
Lysine
Methionine
Phenylalanine
Proline
Serine
Threonine
Tryptophan
Tyrosine
Valine
Stop

Ala
Arg
Asn
Asp
Cys
Gin
Glu
Gly
-lis
1

Leu

LYS
Met
Phe
Pro
Ser
Thr
Trp
Tyr
Val

\

 32
\

A

A

N

5.2.3 Experimental Aspects of 1 i.=J

GCG, GCA, GCC, GCT
AGA, AGG, CGG, CGA, CCC, CGT
AAT, AAC
GAT,GAC
TGT, TGC
CAA CAG
GAA GAG
GGG, GGA, GCC, GGT
CAT,CAC
ATT, ATC, ATA
TTA, TTG, CTG, CTA, CTC, CTT
AAA AAG
ATG
TIT, TTC
CCG, CCA, CCC, CCT
AGT, AGC, TCG, TCA, TCC, TCT
ACG, ACA, ACC, ACT
TG
TAC, TAT
GTG, GTA, GTC, GTT
TAG. TAA. TGA

DNA encodes the information to make protein by using 64

codons (or triplets of nucleotides) to encode 20 amino acids and one

stop signal (Table 1). This 64 to 21 mapping (3N — N, in length for

DNA — protein) indicates that the genetic code is degenerate. We

have already discussed the experimental implications of a

"structured" code, wherein amino acids with similar

physicochemical properties are grouped in nonrandom ways”: 10
using the degeneracy for added degrees of freedom in coding.!!

In the laboratory, a geneticist might pick several amino acid

residues in a protein to subject to random or semi-random

mutagenesis. Sites are picked based on expert rules: a) proximity to

active sites shown by X-ray structures, b) phylogeny, c¢) previous
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mutagenesis data, d) chemical modification data, e) chemical
insight, etc. In picking the number of sites and the extent of

randomization for REM, the experimenter must succeed in getting a

few "positive" mutants out of a reasonable number screened in the

zeroth iteration. Sequence data from the zeroth iteration are used to

calculate intelligent nucleotide dopes!? (see Chapter 3) for the next
iteration of REM.

Selection or screening criteria are established to determine

whether a particular CCM mutant is "positive". Positive mutants may

include: 1) pseudo wild-types that are phenotypically (functionally)

indistinguishable from the original wild-type, 2) mutants expressing
higher levels of a particular activity, or 3) mutants expressing novel

activities. Selection criteria are dependent on the protein of

interest. For example, replica plating onto several sets of plates

could be used to assay enhanced resistance against an inhibitor (e.g.

antibiotic) or new activity against a different inhibitor. If a

colorimetric indicator is available, then digital imaging
spectroscopy (DIS) can be used as a rapid screening tooll3-13. In

addition, novel selection techniques have been recently developed

that directly purify a "positive" protein linked to the DNA which

encodes it (so-called phage display libraries!®).

6.2.4 Overview of REM MethodoisAE q
Lex

ub

J

REM is based on the recursive use of CCM which in turn relies

on DNA synthesizers to generate DNA cassettes. Current day

commercial DNA synthesizers are only capable of integer mixtures

of subsets of the four nucleotides: pure A, C, G, or T; 1:1 mixture of

any two; a 1:1:1 mixture of any three; or a 1:1:1:1 (equiprobable

mixture, designated "N") of all four nucleotides. Since there are only
15 possible mixtures at any nucleotide site, there are 153 = 3375
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possible "synthesizer resolution” dopes for a triplet nucleotide
(codon)!?(Chapter 3). For example, if the following dope were

entered into the DNA synthesizer:

Gti AT T1 C1 G2 A2 T2 C2 G3 A3 T3 C3

05 0.0 00 O5 0.0 00 1.0 0.0 0.0 0.0 0.50.5

we would expect G ; C each at a probability of 0.5 in the first codon

position, T with a probability of 1.0 in the second codon position,

and T ; C with a probability of 0.5 each in the third codon position.

At the protein level, such a dope would generate leucine (L) and

valine (V) with equal probability. [See Table 6.1 for the genetic code

and single letter amino acid notation.]

A typical dope that has been used in CCM assigns equal

probability to all four bases at each position in the codon. We define

such a dope as "random": NNN. The other most commonly used dope is

NN(G,C). This is a more intelligent dope, since it is less complex at

the DNA level (32 versus 64 codons) but still encodes all 20 amino

acids. In order to take advantage of the enhancement properties of

REM, the complexity of the possible peptide sequences arising from
this CCM mutagenesis should be calculated and shown to be far in

excess of the screening size.ll (Chapters 4,5) Screening sizes are

dependent on the difficulty of the molecular cloning techniques and

the efficiency of screening or selection. At present, screening sizes
can vary from 104 for difficult systems, where detailed information

is obtained on each mutant, to 1010 where "on/off" phenotypes (e.g.

nhage display libraries binding to a column) are limited only by

molecular cloning technology.)

The first step of experimental REM begins by expressing and
screening a CCM library according to the rules described above.
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Greater than two positive mutants are then picked and sequenced.

Unless one is using "batch" or other rapid but non-standard

sequencing methods, a maximum of 50 positive mutants is a

reasonable number to pick, because DNA sequencing is a very tedious

and time consuming job. Next, a list of unique protein sequences is

determined by translating DNA sequences to protein. A "unique
sequence” is defined at the protein level: if more than one protein

has the same sequence, only the first occurrence of this sequence is

retained and counted as unique. For each mutagenized position in the

protein, a target set of acceptable amino acids is compiled from this

list of uniques and the most appropriate dope is determined either

by 1) the maximum group probability (pg) or 2) the minimum sum of

the squares of differences (SSD). These alternative algorithms are

discussed in the following section on computer simulation. The next

iteration of REM proceeds by using these intelligent dopes to
generate the next population of mutants. All simulations in this

manuscript are experimentally feasible since synthesizer resolution
dopes are used.

6.2.5 Computer Simulations Using REM

Using very conservative experimental parameters, our

computer simulations of REM employ a population size of 10,000, i.e.

the maximum number of mutants to be screened in any iteration. For

the zeroth iteration, we use a random dope of NNN for each codon.

The DNA sequences are translated to protein using the biological

genetic code and the protein is evaluated by a decision algorithm

(DA). The DA is functionally analogous to gene expression and

screening in the laboratory. DAs are a necessary construct in this

simulation because of the inability to solve the protein folding and
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Generate population of mutants:
List of random strings created

Synthesize random CCM cassettes

- Oth Iteration

Translate to protein:
Simple string conversion by genetic code

ExpressDNAinclones

Select positive mutants:
Decision algorithm

Screenclones

Determine unique protein sequences:
Simple string comparison

DNAsequencing

Determine a nucleotide doping:
SSD or Pg Calculation
SSD or Pa Calculation

Regenerate population:
Randomize strings based on new dope

Synthesizenewcassettes

Figure 6.1. Flow chart of computer simulated versus experimental
REM. The C-program REMPEP performs the operations shown in
italics in this diagram. New dopes are based on an analysis of the
deduced protein sequences of "unique" mutants. Another C-program
(REMNUC) has been described!!* 17 which calculates new dopes based
solely on the DNA sequences of "positive" mutants. REMPEP
simulations are directly analogous to actual laboratory procedures
(underlined).
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structure/function problem. DAs can incorporate expert rules which

are guesses at a solution to this problem, or they can incorporate

nonphysical rules to test the behavior of REM algorithms. The

positive feedback observed in REM is enhanced when the DA uses

criteria that match structure present in the genetic code. In

addition, rule stringency and library complexity!l* 17 must be in a

range where some positives are obtained in the zeroth iteration, and

simple over-screening of the library is not possible. These

constraints lead to high initial gain, i.e. unique mutants increase

rapidly as a function of iteration number.

Calculations were performed on four different DAs using

synthesizer resolution dopes. An earlier publication used "high
resolution dopes" to simulate these DAs.l! High resolution doping

(i.e. fractionally accurate to several decimal places) is not currently

feasible. The following DAs were picked because they incorporate

rules using various levels of stringency and range from biophysically

realistic to "linguistic" in nature. We find that REM functions well

under all of these DAs, which strongly suggests that the unknown

"DAs" present in the experimental analog (i.e. the protein
structure/function problem) are also amenable to REM. Our purpose

here is to establish valuable guidelines for setting parameters and

for determining the best method to calculate dopes.

1) Alphabetic DA: This decision algorithm takes as positive, any

protein whose single letter amino acid codes are arranged in

alphabetic order. This is a biophysically irrelevant rule which was

chosen to demonstrate that the general behavior of REM is not

peculiar to certain expert rules that might be applied to proteins.
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2) Alpha Helix DA: This decision algorithm takes as positive, any

octapeptide which has a high likelihood of forming an alpha helical

structure as predicted by Chou-Fasman parameters.

3) Hydropathy DA: This decision algorithm exploits the
relationship between the genetic code and hydropathy (i.e. a

molecule's tendency to hydrogen bond with water). For a given amino

acid, this physical property may be predicted based on the A/T

disparity in the second position of the codon. This DA operates on an

octapeptide and constrains the hydropathic character of the peptide

at selected positions. Hydropathy is known to be a very important

factor in the structure and function of proteins. 19+ 20

4) Binding Site DA: This is a complex DA based on expert rules

that model possible sequence constraints on a protein binding a

spectroscopically-shifted chlorophyll molecule. This DA includes

specific constraints on hydropathy, molar volume, and protein

grammar (deduced from phylogenetic and mutagenic studies?!: 22).
Octapeptides are selected if they pass three requirements: a) one or

two charged residues are present, b) the schema axxxH is present,

where a is a small amphiphilic residue, x is any residue, and H is

histidine, and c¢) the average hydropathy and molar volume of the

octapeptide must be similar to wild-type sequence (LAVLIHLL) as

previously described (Chapter 4).11

In the REM simulation, a maximum number of 50 positives are

picked. The unique protein sequences derived from these positives
are then used to determine the nucleotide dopes for the next

iteration of REM. Simulations were performed with 10 cycles (re-

runs) of REM with 10 iterations each. Each cycle began with 10

independently seeded and randomly generated initial populations of
10,000 sequences. The C-program REMPEP outputs the number of
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Figure 6.2. Number of unique mutants (UM) versus iterations of
Recursive Ensemble Mutagenesis for 5 different simulations using
the Binding Site decision algorithm. Qualitatively similar plots have
been obtained for the other three DAs under a variety of parameters
(extensive data not shown). In this figure, the following parameters
were set constant: 1) Maximum screening size = 10,000, 2) Maximum
number of positives selected to determine next dope = 50, 3) %Target
= 100. Plot A was generated using NNN dopes for each iteration. The
number of positives from 10,000 screened is less than 10 for all
iterations. This is representative of what one might find if no
positive feedback and/or non-intelligent dopes are used. Plot B uses
pg as defined by Eq. 6.1. Plot E uses SSD as defined by Eq. 6.2. Plot C
uses equally weighted SSD terms (see text). Plot D uses SSD as
specified by Eq. 6.2 and information from a running list of unique
sequences from all earlier iterations.
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positives (NP) and the number of unique mutants (UM) for the total

population screened from each iteration. We plot the average of NP

or UM taken over the 10 cycles, which is similar to GA performance

plots.23

5.2.6 SSD versus pg

Two of the equations that we have studied for adjusting

nucleotide dopes (for codons used at each mutagenized amino acid
site) are described below:

1) Group probability (pg):

PG = Ir
Eq. 6.1

where pa(i) is the probability of the ith amino acid in a target set (i.e.

a subset of the 20 amino acids) occurring based on a specific doping

scheme.12

2) Sum of squares of the differences (SSD):

SSD= Y(padi) — pr(i))?
Eq. 6.2

where PT(i) is the fractional representation of the ith amino acid (i.e

all 20).

The best dope is determined from the 3375 possible

synthesizer resolution dopes by either maximizing pg or minimizing

SSD. depending on which method is being simulated. In cases where

more than one dope satisfies the criterion, one out of the degenerate

set of dopes is picked randomly. The calculation of each pa(i)
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accounts for the degeneracy of the genetic code and uses equations
that we have previously described. 12

An additional constraint that we have considered in both SSD

and pg analyses is to create a more robust target set by neglecting

members that occur infrequently. This increases the likelihood that

a dope more specific than NNN will be chosen, hence REM is

"accelerated". This methodology is best shown by example. The

members of the target set can be ranked in decreasing order

according to their frequency of occurrence. Thus, seven unique

mutants might yield three occurrences of glycine (GGG, GGA, GGT or

GGC), three occurrences of alanine (GCG, GCA, GCT or GCC), and

only one occurrence of proline (CCG, CCA, CCT or CCC) at one

mutagenized position. Taking into account the ranking order, we
define %Target to be the frequency of occurrence of one or more amino

acids in the target set. This parameter can be used to adjust the

diversity of the next generation. For example, a %Target of 100 would

include all three amino acids. Whereas a %Target of 85 would only

utilize codons encoding alanine and glycine. The resultant dope for

this residue would contain G in the first codon position with 1.0

probability. Proline would never again be generated in subsequent

iterations. By incrementing %Target and keeping other parameters
constant, we find that the optimum value is 65 += 10 regardless of

the decision algorithm applied when using pg (extensive data sets
not shown).

If instead of ranking the occurrence of each amino acid in the

target set, we gave each an equal weighting, we find that the number

of positives and uniques for these calculations are lower than if we

had simply used Eq. 6.2. This comparison is shown in Figure 6.2 in

plots C and E, respectively. An explanation for this drop may be
found in the structure of the genetic code and its codon

1 §1



degeneracies. By giving each amino acid equal weighting, we do not

take advantage of these inherent properties.

A similar argument can be made when comparing SSD and pg

calculations. From Eq. 6.1 and Eq. 6.2, we see that the frequency of

occurrence is only taken into account by the %Target chosen when

using pg . On the other hand, SSD incorporates this information into

the pr term. This can explain the observation that SSD calculations

are less sensitive to changes in %Target than pg (extensive data not

shown). Furthermore, simulations using SSD generated a higher UM by
a factor of two or more for all four DAs discussed above.

Some REM simulations show UM increasing on the first few

iterations, reaching a maximum, and then dropping to a clonal

population at later iterations. The corresponding NP plot increases

and then reaches a plateau at a value close to the number screened

(data not shown). In a typical GA, one might vary the mutation rate

or increase the frequency of the cross-over operator to generate

more diversity. In REM, much of this functionality is determined by

the translation code used, the codon degeneracies, and the

independent scrambling of adjacent nucleotides. In an attempt to

prevent the population from "going clonal", it is of interest to study

the effects of compiling the unique mutant sequences from all

previous iterations and using this information to determine the next

dope. The result using SSD and a %Target of 100 is shown in Figure 2D.

We find that UM and NP of iteration number two and above are less

than UM and NP from similar calculations where previous iteration

results were not incorporated. Although the population does not go

clonal at higher iterations, many of the same mutants are generated

and the number of uniques and positives level off.
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In conclusion, we have found that the gain in the number of

uniques screened is usually highest in the first iteration. Since our

aim is not to converge to a single solution, but to acquire a diverse

population of positives, our current results suggest that cycles of

REM should be initiated in parallel and performed only a few

iterations. In addition, the use of SSD equations (rather than pg

equations) appears to yield higher REM gains under a variety of DAs

and parameters. This strongly suggests that SSD (Eq. 6.2) should be
used in the experimental implementation of REM.
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Figure 6.2 shows a comparison of simulations performed with

two different important REM recombination operators, REMNUC and

SSD. This graph shows both the standard REM plots and a new type of

plot derived from an important experimental parameter, Overall

Uniques (OU). OU is the number of unique mutants obtained during a

given iteration which have never been observed before. REMNUC (the

operator described in Chapter 4) outperforms SSD both in the

standard and OU plots though all plots converge, at high iteration, to

a clonal population. The success of REMNUC may be attributed to its

ability to conserve complexity at the nucleotide level (compare

curve "O" to curve "0"). Both SSD and pg rely on DNA Synthesizer

resolution dopes, thus, base probabilities are often set to zero

rather quickly. Further, SSD strongly minimizes the appearance of
amino acids not observed in the acceptance set. This results in the

{ 4



5000

5000-
»
@ 4000-
=

= 3000-
 QD
o
g 2000-
&gt;

1000-—

AR

—8— Full Resolution REM

—o— Full:Overall Uniques

~B- REM w/ SSD

-d- SSD: Overall Uniques

0 -
' L b i J

0 2 4 6 8 101214 1618
iteration

Figure 6.2 Comparison of Full REM and SSD. Each graph is a
performance plot of REM simulations using a Bch Binding Site DA. For
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strategies for counting unique mutants is employed: 1) The standard
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simulations at high resolution and using counting method 1(see
Chapters 4 and 6.2.5). O) Same as @® but using counting method 2. H)
A performance average resulting from simulations using SSD
operator and counting method 1. 0) Same as WM but using counting
method 2.
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production of fewer novel sequences through the cross-product

mechanism. Practically, barring any unexpected advances in

synthesis and cloning technology, only one or two iterations of REM

will be experimentally performed. These iterations demonstrate the
highest gain. All of the recombination operators described above

amplify at approximately the same rate in early iterations.

REM may be likened to an evolutionary process wherein a

population of organisms undergoes selection and reproduction based
on the tenets of a survival-of-the-fittest mechanism. As such, the

genetic diversity of the population must be maintained to allow for

the production of superior mutants. Descent to a clonal population

occurs in two cases: 1) the global optimum has been reached and this

sequence out-competes all the others and 2) a local optimum has

been found and sampling error allows this sequence to "jackpot". It

is obviously desirable to avoid the occurrence of the second case,

however, it is tempting to be satisfied with the results of the first

case. But when the population is "evolving”™ in a changeable

environment (e.g. in complex ecological systems or when the design

criteria for protein engineering changes slightly due to new

experimental results) then the former global optimum may well be

demoted on the newly defined fitness surface. Clonal populations
will not be able to adapt to the new constraints.

Therefore, when the design criteria are fuzzy (i.e. when they
are subject to change or are ill-defined as is the case when

determining whether a ground-state absorption spectrum is pseudo-
wild-type or not), the goal of the recombination operator must be to

maximize the average fitness of the population while assuring that

diversity is maintained. A genetic algorithm conserves complexity,
in part, through the random mutation operator. REM, which doesn't

have a formal randomization operator, employs the cross-product
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mechanism for the generation of novel sequences. Because REMNUC is

slower to zero base-probabilities than SSD or pg, cross-products are

afforded a greater time to form and be observed.

The design of each of the REM operators was motivated by the

experimental constraints of DNA synthesis, cloning, expression, and
screening. However, there are many variations on the REM operators

which have not been tried. The most obvious example is the inclusion

of a simple random mutation operator which adds "noise" to a dope

at some low rate. Random mutation at the DNA level is made

difficult by the same factors as REMNUC; the resolution at which

dopes can be constructed is limited by physical constraints. At the

peptide level, however, the random inclusion of unobserved amino

acids in the target sets used by SSD or pg, may be a viable

implementation which would conserve population complexity.

It is important to note, however, that REM succeeds in
amplifying the number of unique fit sequences in all cases examined.

This is a simple result of the recursive nature of the REM process.

The actual amplification achieved by a REM experiment will be

dependent on the nature of the sites chosen for mutagenesis and the

recombination operator used to construct the nucleotide dopes. Each

doped amino acid will have a different degree of interaction with

other sites in the protein (due to either proximity or pleiotropic

effects) and will contribute different amounts of epistasis to the

feedback process. Therefore, REM trajectories may, perhaps, be a

probe of amino acid interaction if the above effects are better

guantified.

Further modification of the REM parameters will most likely

be derived from actual experiments. This will certainly be the case

when new methods are needed to "boot-strap" the initial population
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into the REM regime as discussed in the epilogue to Chapter 5. In any

case, the REM theory presents a number of testable hypotheses

which must be verified by experiment.
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A.1 Post-Mortem

The following is a relatively brief annotated list of the most
developed programs | wrote during my time at MIT. Many of the
programs which are listed below are the result of aborted forays
into unknown territory during lulls in the research described above.
As such, these programs are undocumented and tend to be half-
baked. They are listed here ‘as a record for the laboratory and
myself and are to be used as a library of useful subroutines and
ideas for future research.

All the basic software for DIS, in both its video and CCD
incarnations is listed herein. Perhaps the most important relevant
annotation describes how to activate the CCD based DIS following
compilation. Finally, a list of all the programs used to test REM
and Optimized Nucleotide Mixtures is given. These include not only
the actual REM and ONM programs themselves, but also programs
which plot and analyze their output.

A.2 Annotated List of Programs

DIS/: Contains two implementations of DIS

CCD/ : Contains the Star | CCD implementation of DIS. All Dis
programs should be compiled as in the shell "makeit". The
resultant programs, dis.lock,dis.y,dis.info,main,ip,acq, and dsp
should be placed in the dis home directory. Environmental
Variables should be set as indicated in the DIS manual or as in the
file ".login" in the /usr/people/adam account.

HomeDir/: Contains all files which must be present in the
directory in which the DIS binary files reside

IDFILE- File used to make internal tags in DIS.
blank- Contains values obtained for the blank area during
the last run of DIS.
dummy/- An empty spectrum directory used to create new
spectra.
params- Acquisition Parameters used during the lastrun of
DIS.
slides- Filter Number to Wavelength Conversion.
times - Previous integration times.
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Menus/: Source Code for the Menus, Buttons and Queries in DIS.
Queries, Buttons and Menus use structures defined in
includes/Menuing.h

ACQQueries.c- Questions asked by the acq (acquisition)
program.
IPButtons.c- Buttons used in the ip.c program (image
processing).
MainMenus.c- Menus use in the main.c program
DSPButtons.c- Buttons used by dsp.c (Display)
IPQueries.c- Queries used by ip.c
MainQueries.c- Queries used by main.c

includes/: Header files for the DIS programs. Many of these
are duplicated in the library directories. (see below).

GeneralBuffers.h- Memory allocated for important data
such as spectra, features, references, etc.
Menuing.h- Structures which define user interface gadgets.
hotmap.h- Color Map used by DIS for displaying spectra.
GlobalControl.h- Definitions for user interface variables.
libexternals.h- External definitions used by the DIS
library.
FileManagement.h- Header file for programs utilizing the
DIS file management routines (image and spectral files,
acquisition parameters, etc.)
GpibControl.h- Header files for programs utilizing the
National IEEE 488 (GPIB) controller for the Star | CCD
camera.

SpectrumStructures.h- Structures to define a spectrum
GC.h- Header file used by the global control routines.
InterProcessControl.h- Defines variables necessary for
DIS programs to communicate with each other. Used also for
machine locking the binary code.
WindowManagement.h- Definitions for user interface.

library/: Contains all the source code to construct the DIS
library

LFM/: File Management routines for reading and writing DIS
data (spectra, images, parameters)
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FileManagement.c- DIS library routines for data I/O.
FileManagement.h- Header file for programs using data
1/10.

LGC/: IEEE 488 GP.B con.rol
CCD

rodt.ries inEr.ace to Star

GC.h- Header files for GPIB control routines.
GpibControl.h- Header file for programs using GPIB
GpibControl.c- DIS library routines for GPIB control

LGLC/: Interface to CSHELL environment

GlobalControl.c- Library for interface to unix environs.
GlobalControl.h- Header files for all DIS programs.

LIPC/: Interprocess communication routines. Used both for
security reasons and so each program knows which other
DIS programs are currently active.

InterProcessControl.c- Library routines for message
1/0.
InterProcessControl.h- Header file for all DIS
programs.

LM/: Holds basic routines for gadgets (text boxes, buttons,
sliders, menus, queries, etc.) used by user interface.

Menuing.c- Library routines for menuing.
Menuing.h- Menuing definition for programs using
gadgets.

LWM/: Window Management routines for determining
window focus, SGI graphics environment, mouse actions.
ete.

WindowManagement.c- Library routines for WM.
WindowManagement.h- DIS program definitions for
WM.
hotmap.h- Color Map for TG series SGI computers
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program/: Spectrometer source code for image analysis,
acquisition and display. Also includes machine locking facility.

dis.info.c- Program to get machine locking information.
dis.y.c- Program to output machine key given dis.info.
dis.lock.P- Program to activate newly compiled DIS with
machine key.

After making DIS with "makeit" see below, type "dis.info |
dis.y | dis.lock” in the DIS home directory. This will unlock
DIS for use on a specific SGI machine.

ip.c- Image Analysis Program.
acqg.c- Acquisition Program.
dsp.c - Classification and Display Program

The above three programs can only be run by main.c.

main.c- Main control program. usage: main.

spectra/: Contains a spectrum (newtype) which runs with this
version of DIS

utilities/: Contains utilities to be used only by DIS guru.

ConvertSToDRefs.c- Converts short format CCD DIS
references files (files from pre-february, 1992) to a double
format suitable for analytic absorption spectra.
c31300ld.c- Converts SGI 3130 spectral data to FG-100
type 1 spectra.
makeit- Compile DIS library, DIS and all sub-programs.
ConvertShortToDouble.c- Converts short format CCD DIS
spectratothedouble format as stated above.
compile- Compile source to object code.
scvt.c- Converts type 1 FG-100 files to type 2 FG-100.
CON2.c- Convert type 1 (pre-june 1991) CCD DIS file to
type 2.
cvt.c- Convert FG-100 type 1 image files to type 2.
CON3.c- Modified version of CON2 (use for files which
CON2 seems to fail on.)
archive- Construct a library from object code.
doit- Compile and construct a library.
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ConvertSToDBlanks.c- Converts short to double format
for local refs.
bi.c- Automated Binarization program. Compile with:

cc -O -s -x -Llib bi.c -IDIS $LIBS -o0 bi
usage: bi dis_image hysteretic_width

load- Optimize object files.

Video/: Contains IT FG-100 video camera implementation of DIS

FromHannoway/: Source code from GW Hannoway &amp;
Associates for driving FG-100 board.

dumpfg- Shell to display FG-100 registers.
initluts- Shell to init FG-100 color look-up tables.
ll.c- Source for look-up table control.
mem- Modification for memory map used by unix kernel.
snap- Shell to snap a picture on FG-100.
clear- Clear FG-100 frame buffers.
grab- Save FG-100 frame-buffer to disk.
io.c- Basic control routines for FG-100.
luts- Lut control shell.
save- Save FG-100 configuration.

HomeDir/: Contains files which must be present in DIS home
directory.

DONTMOVEFILE- Used to generate shared memory tags in
DIS.
dummyspec/: An empty spectrum used to create new
spectra.
norm.gam- Gamma file for displaying images.

Source/: Source code for FG-100 DIS.

dis.c- The DIS source code....really horrendous!
hotmap.c- Color Map used by spectra display routines.
nrutil.c - Numerical Recipes memory management routines.
nrutil.h - Numerical Recipes memory management header.
popup.h - Popup menu definitions.

shmdefs.h- Shared Memory Definitions.

Compile DIS with:
cc -q dis.c $LIBS -o0 dis
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Spectra/: Contains spectra which are usable by this DIS
implementation.

a28andrev4/. Reaction Center spectra.
splinter/: First Splintering poly-leucine mutants.

Utilities/: Utilities and tester programs for Video DIS.

c31300ld.c- Convert SGI 3130 files to dis type 1 spectra.
cvt.c- Converts type 1 spectra to type 2 spectra.
fastdump.c- Dumps FG-100 data to disk.
idle- Turns off Slo-Syn Servomotor.
iread.c- Reads an image file.
program- Programs the Slo-Syn Servomotor Controller.
simil.c- Performs a similarity sort on type 2 spectra.
click.c- Sends signal to projector motion control.
dump.c- Another FG-100 dumping program.
fastio.c- Sends data to Slo-Syn Servomotor controller.
imgcvt- Shell to convert 3130 spectra to type 2 spectra.
iview.c- Displays images in a window.
scont.c- Displays a Map mode spectrum.
step- Causes Slo-Syn to move stepper motor one step.
cmak.c-
equalize.c- Performs simple base-line correction on type
2 spectra.
gamma.c-
imkgm.c-
makegam.c-
scvt.c- Converts a type 1 spectrum to a type 2.
adump.c-
f.c- Feature Extraction Algorithm.
home- Send Stepper-motor to its home position.
interp.c- Smooths spectra by polynomial interpolation.
on- Turn on stepper-motor.
seek- Moves stepper motor N steps from Home.

Doping/: Contains programs which investigate different methods
for Combinatorial Mutagenesis.

OptNuc/: Contains Files necessary to reproduce the work in
Chapter 3.
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datafiles/: Data Files used by the "ent" programs (see
below).

MACHINE- Machine Resolution Dopes.
NEWCODE- Genetic Code.
NEWHPMVS- Amino Acid Physical Properties.
P4.1P.25- High-Resolution Dopes.

src/: Source code for Optimized Nucleotide mixtures and
plotting.

Dolt-
TestON.c- Newest optimized Nucleotide Mixture
program.
nwentp.c- Analyze ouput from optnuc.c.
pient.c- Plot output from optnuc.c in H-M space.
pmt.c- Print master table from multiple nwent.c
outputs.
subroutines/: Contains definitions for amino acids
groups used by nwentp, plent, nwent, optnuc, pent, ppent.

subfilmway.c
subgfilmstvw.c
subnan.c
subntn.c
subfwy.c
subknrst.c
subncn.c
subsav.c
subagv.c
subga.c
subknst.c
subnnn.c

Sort- Sort output from nwent according to an objective
function.
nwent.c- Another version of nwentp.c.
opthuc.c- Calculate Optimized Nucleotide Mixtures in
H-M space.
pent.c- Plot optnuc.c output in H-M space.
ppent.c- Plot optnuc. ¢ ouput in H-M space.
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REM/: Contains Newest version of rem routines.

Clustering/: REM with heirarchical clustering. The purpose of
this algorithm was to minimize the effects of epistasis
caused by competing amino acid motifs. Acceptance sets were
partitioned according to how they clustered on a heirarchically
clustered tree. Similar Sequences should occupy the same
branch of the tree. Thus, each partition should contain a single
motif suitable for further REM amplification without epistatic
interference. Preliminary results indicate that though
epistasis is minimized, the overall diversity of the ensemble
is drastically reduced.

Synonomy/: Contains data for amino acid synonomy which
is used to calculate distances between sequences.

HPSyn- Hydropathy based Synonomy.
MPSyn- Molar Volume based Synonomy.
NSyn- Nucleotide Synonomy.
PSyn- Conservative synonomy.

data/: Data files used by REMhc (clustering REM).

DOP8- Eight Position Random Dope.
DaHoff.obs- The DaHoff amino acid
substitution matrix.
HPMVS- Amino acid properties.
Seeds- Random Seeds for population generation.
WTCODE- The genetic code.
WTDNA- A wild-type BCH binding site.

src/: Source code for clustering REM

Accept.c- Program to generate test set and
acceptance set given DA.c.
OldBchDA.c- A BCH Binding Site DA.
Partition.c- Program to partion and acceptance set
into n smaller acceptance sets. Used to test
population splitting in REM.
Scramble.c- The REMNUC recombinations operator
described in Chapter 4. Works on Output from Accept
or Partition. Will do an extrapolative acceleration if
asked.
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Union.c- Combines results of partitioned REM
simulations. Used to gauge overall diversity obtained
by the splitting procedure. .
partition- Shell for performing heirarchical
partitions.
OptNuc.c- Calculate an optimized nucleotide mixture
based on the acceptance set.
Report.c- Compiles a report on the efficacy of
parallel REM simulations resulting from acceptance
set partitioning.
SimpleShell- A shell to demonstrate how all the
programs work together and to generate data on
clustering effects.
rhe.c- A graphical heirarchical clustering program.

REM/: Contains the newest implementation of REM (May, 1992)
All REM programs compile with:

cc -O prog.c $LIBS -0 prog
Usage is given by:

prog -u

datafiles/: Contains DataFiles used by the REM program.

ACODE- Alphabetic Translation Table.
CODESEEDS- Random Number Generator seeds used to make
randomized translation tables.
Dampings- Values used to test the s parameter in the
extrapolative acceleration routine.
SampleSizes- Values used to test the effects of screening
size on REM.

WT- Wild-Type peptide for Bch Binding Site.
WTDNA- Wild-Type DNA for Bch Binding Site.
ALPHADNA- DNA for Bch Binding Site when the Alphabetic
Translation Table is used.
DOP8- Eight Position NNN dope.
HPMVS- Amino Acid Physical Properties.
Slopes- Values tested for A parameter in the extrapolative
acceleration routine.
WTCODE- The genetic code.
WildType- Wild-Type Bch Binding Peptide.

src/: Contains source code relevant to REM.

—
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BchDA.c - Binding Site DA.
HAlphaDA.c - Zero OOOP Alphabetic DA.
TestDA.c - Program to test decision algorithms.
arem.c - The REM program.

CFADA.c - Chou-Fasman Alpha-Helix DA.
OldBchDA.c- Standard Bch Binding DA.
TestON.c- Program to test if the optimized nucleotide
mixture routines are working.
genseeds.c- Randomly generate seeds for a random number
generator.
protein.dat- Header File for Chou-Fasman DA.
AlphaDA.c- 1 OOOP Alphabetic DA.
RANDOM- Shell to test Random Translation Tables with
REM.
TestUngqg.c- Program to test whether the unique mutant
counting routine is working.
jumbl.c- Program to generate random translation tables.
shuffle.c- Program to generate shuffled translation tables.
AlphaSDA.c- Variable Stringency Alphabetic DA.
H2DA.c- Hydropathic DA.
SHUFFLE- Shell to test Shuffle Tables with REM.

EnergyMinimization/: Contains simple molecular energy
minimization algorithms. These algorithms are very rough and were
used to contruct a hybrid genetetic algorithm to be used in protein
energy minimization.

GAmin/ contains a working prototype of the procedure with a very
simplistic energy function. In effect, a population of protein
structures are maintained. The genetic operators are:

1) random mutation- randomly change a structure based on a
simulated annealling type criterion. The temperature is lowered
every iteration of the GA.

2) cross-over: Two structures are cut at a point on the protein
backbone. Two new protein structure are constructed from
swapping the resultant structure fragments and matching the
dihedral angles at the point of recombination.

3) Conjugate gradient minimization may be be performed on a given
structure for a random number of steps.
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Preliminary results suggest that this procedure is far more
effective that conjugate gradients alone and may well be faster
than simulated annealing. Nonetheless, since Charmm parameters
are not implemented, rigorous testing was not performed. It is of
interest however to analyze the relative contribution of the three
genetic operators on the success of the algorithm. The best
structures were obtained with a cross-over rate of 100%.
Reducing the rate to below 50% severely reduced the efficacy of
the algorithm. Since the kinetic pathway of protein folding is
currently considered to occur by minimization of local regions in a
peptide sequence followed by packing of the resultant secondary
structures, it may be of interest to trace the evolution of the GA
minimized structure to investigate if cross-over somehow packs
locally minimized sub-structures.

ConjugateGradients/: Contains a simple
minimization procedure.

cli ugate-gradient

cgmin.c- Conjugate gradient minimization prograin

GAmin/: Contains files necessary for the hybrid GA minimizer.

datafiles/: Contains files used by gamin.c

Params- Values for testing
parameters.

genetic recombination

include/: Header file for GA minimizer programs.

dbio.c - UCSD MMS database I/O routines.
mmsdef.h- UCSD MMS database definitions.
nrutil.c- Numerical Recipe memory management routines.
nrutil.h- Numerical Recipe memory management
definitions.

molecules/: Test Molecules, in MMS format, used by gamin.c.

aminos.pic- Polypeptide using all amino acids.
np.pic- Polypeptide of phenylalanine.

src/: Source code for GA minimizer and other algorithms.
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PERFSHELL- Shell to investigate how recombination
parameters affect minimization.
gamin.c - GA minimizer which plots ten best structures
for a given iteration.
gaminT.c- GA minimizer which simply prints the energy of
the ten best structures.
plotga.c- Plots results from PERFSHELL.

MolecularDynamics/: Contains the source code for a very simple
molecular dynamics program. This program can use either Verlet,
Leap-Frog, or Beeman algorithms for integrating the equations of
motion and contains a very primitive self-consistent, electrostatic
relaxation routine for modelling charging effects in proteins. This
program is only a toy.

coul.c- Molecular Dynamics Program.
Compile: cc -O coul.c $LIBS -0 coul
For usage type "coul -u"

Photography: Contains programs which are useful for
nhotographic data from SGI monitors.

center.c- Places a centering pattern on the screen so data may
be accurately placed on the screen and the the camera will have a
useful focus.
label.c- Makes a window containing a text label of any size and
font rotated to any angle. This program is a bit buggy but it will
work if one is patient.
mat.c- Makes a large borderless window displaying a specified
color. Useful for making a neutral background placement of
figures and such.
rulers.c- Places a vertical and horizontal ruler on the screen
which may be used to align multiple figures.

ProteinModelling/: Contains random routines which may be used
for the modelling of polymers or proteins. These are basically "toy"
programs.

Lattice/: Contains programs which simulated a chain of beads
with interaction between them on a lattice. The program was
inspired by similar simulations carried out by Dr. K.A. Dill. The
programs essentially use a simulated annealing algorithm to
"fold" the chain into a low-energy conformation consistent with
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the arbitrarily defined interactions. In their simplest form the
prorgams were meant to investigate how well a protein could
bury its hydrophobic amino acids and to determine the degeneracy
of each of the packing arrangements. The programs are also
designed to be able to deal with arbitrary lattice geometries.
Lattice geometry may be restricted to simulate simple
scaffolding which effects how the beads will fold. This research
is motivated by the existence of chaperonines and the like which
may determine how certain proteins fold.

lattice.c- A program to find low energy packings of a chain of
interacting beads.
UnderDevel.c- Allows specified beads to be held stationary
and marks the end of the bead chain.

MMS/: Contains a program built from the UCSD Molecular
Modelling System which was used to determine the format of the
MMS database.

db.c- Displays an MMS database file to a window.
dbio.c- MMS database I/O routines.
mmsdef.h- MMS database definitions

SequenceAnalysis/: Contains programs for odd analyses of DNA
or peptide sequences

Clustering/: Contains programs to perform heirarchical
clustering on character sequences (DNA,Protein, or Alphabetic).

Synonomy- Conservative amino acid synonomy file.
rhc.c- Heirarchical clustering program.

Mutagen/: Contains Programs for finding
restriction sites in a DNA seauence.

and designing

CODE- Genetic Code.
CONSERVE- Definitions of conservative amino acid
substitutions.
apl1- gene for alpha-subunit of the LH | poly-leucine mutant.
enzymes/: Contains lists of restriction enzymes and their
restriction sites.

mpi8uniq - Restriction Enzymes w/ unique sites in
M1i3mp18.
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neb - Restriction Enzymes Available from New England
BioLabs.
pu27uniq- Restriction Enzymes w/ unique sites is plasmid
pU27.

src/- Programs for performing search and design.

conserv.c- Program to report: 1) all naturally occuring
restriction sites, 2) restriction sites which may be created
if silent mutations are acceptable and 3) restriction sites
which may be created if conservative amino acid
substitution is acceptable. Output may be sorted using the
unix grep facilities.
res.c- Same as conserv.c but also reports non-conservative
mutations.

SVD/: This directory contains programs which use the SVDcov.c
program written by Dr. Mary Yang. The other programs are
designed to analyze a set of related protein sequences, each of
which has a value assigned to it based on its phenotype. The
programs use a Singular Value Decomposition analysis to
determine which amino acids at each site in the protein are most
important in determining the phenotype of that protein. For
example, if phylogenetic data from bacterial light-harvesting
antennae is used, each sequence may be assigned a value of 1 or -
1 for LH I-like and LH Ill-like spectra respectively. An SVD
analysis should yield an estimate of which sites are most
important in determining the absorbtion spectra. The problem is
highly underdetermined in most cases since all possible proteins
are not examined.

MakePhyloSVD.c - Takes a set of sequences in the format of
PHYLO2 (see below) and makes a file suitable for use with
SVDcov. (See PhyloSVD.)
backcalculate.c- Uses the output from SVDcov and an SVD
input matrix to back-calculate values which may be compared
to the SVD solution vector (e.g. the phenotypic value vector
mentioned above.)
data/: data used by MakePhyloSVD and SVDcov

PHYLO2- MakePhyloSVD input file example.
PhyloSVD- An ouput from MakePhyloSVD. May be used as
input for SVDcov.

{
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svdmvol.in- An SVDcov input file to test correlation of
genetic code with molar volume.
SVDcov.c- Dr. Mary Yang's SVD analysis program.

SequencingGel/: Contains programs which simulate a simple
sequencing gel based on end-labelled dideoxy-nucleotide DNA
techniques. Designed to be a very simple calculation of relative
band intensities based on sequence dependent effects.

dna- A sample DNA fragment.
sed.c- Sequencing gel simulator. (Toy program.)

Utility/: General utilities for /usr/people/adam

color.c- Changes a color in the color map.
hip.c- A modification of the SGI utility "ipaste". Allows images
to be plotted as a photonegative.
printer.c- Basic program for interacting with the SGI font
manager.
ramp.c- Create a color ramp in the color map.
sizeof.c- Prints the size of the standard C data types in bytes.
slidept.c- Plots graphs from REM data files. This has many
options!
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