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Abstract

Rotary actuators have been widely used in the industry. This thesis investigates the design,
modeling, identification, drive, and control of an actuator with magnetic restoration. The design
considerations are explained, FEM is used in the analysis, and a prototype is built for lab
experiments. A design-oriented analytical model is developed for the actuator, in which the coil
torque is obtained using the solution of Laplace’s equation in the elliptical coordinates, and the
reluctance torque is derived by an approach named differential flux tubes. In addition, nonlinear
and linearized electromechanical models are developed for control system designs and dynamic
studies. To obtain higher accuracy, the eddy-currents in the laminations and the magnet are also
modeled using an analytical solution of 1-D and 2-D diffusion equation and extracting a lumped-
element circuit for system-level analysis. It adds to the accuracy of the model to a large degree.
The impact of the pre-sliding friction on the mechanical dynamic is studied as well. Then,
identification of the model is performed. Next, an op-amp-based drive circuit for the current control
loop is proposed, modeled, and designed. Then, three DSP-based position control techniques are
implemented: pole placement with voltage drive, pole placement with current drive, and nonlinear
control with feedback linearization. State observers are employed to estimate the unmeasured states.
The control techniques are evaluated and compared through time response indices such as rise time,
overshoot, steady-state error, and large-signal tracking, as well as by frequency domain indices like
bandwidth, robustness, phase margin, sensitivity, disturbance rejection. A method of eddy-current

plated is also proposed for inductance reduction. In the end, a new effectiveness index is proposed.
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Chapter 1

Introduction and Literature Review

1.1 Literature Review of Limited-Angle Rotary Actuators

Electric machines and electromagnetic devices have an important role in energy
conversion between electrical and mechanical forms. Limited-angle rotary actuators,
sometimes called limited-angle torque motors, have been employed widely in the industry,
from automotive manufacturing and biomedical applications to robotics, aerospace, fluid
valves, and 3D printers. Therefore, their study has been of great interest among researchers.

1.1.1 FEM-Based Studies of Electric Machines and Rotary Actuators

The finite element method (FEM) as a powerful technique has been employed widely
in the study and design of a range of electromagnetic devices from Eddy-Current Couplers
[1]-[3] and induction machines [4] to Line-Start Permanent Magnet Motors [5]-[7] and
Switched Reluctance Motors [8]- [10]. And Vernier motors [11]. The following studies
have been employed FEM in the analysis, design, and model verification of rotary actuators

and limited-angle torque machines.

In [12], the finite element method (FEM) is employed in the torque ripple suppression
of a 4-pole slotted limited angle torque motor. The configuration of the motor is shown in

Figure 1.1.
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Figure 1. 1: The configuration of the studied LATM.

In [13], the finite element method (FEM) is employed in the torque performance
improvement for 4-pole slotted limited-angle torque motors with concentrated winding
whose configuration and geometry are shown in Figure 1.2.

Figure 1. 2: The configuration of the studied slotted limited-angle torque motors.
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In [14], a slotless limited-angle torque motor for the reaction wheels torque
measurement system is proposed. The finite element method (FEM) is also employed in

the study. The configuration of the studied motor is shown in Figure 1.3.

Figure 1. 3: The configuration of the slotless LATM for reaction wheels torque measurement

In [15], finite element method (FEM) and basic formulations are employed in the
analysis of limited angle torque motors with irregular slot numbers for performance

improvement. The configuration of the motor is shown in Figure 1.4.

Figure 1. 4: The configuration of the studied LATM.
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In [16], torque performance improvement of a radial-flux slotted limited-angle torque
motor by tapered tooth-tip is studied. The finite element method (FEM) is also employed
in the analysis. The configuration of the motor is shown in Figure 1.5.

Tapered tooth-tip

_
@]

Figure 1. 5: The configuration of the studied LATM with tapered tooth-tip

Main flux  Flux leakage

1.1.2 Electric Machine Modeling Using Laplace’s Equation

The solution of Laplace’s and Poisson’s equations [17]- [18] is a powerful approach in
field calculation and modeling of electromagnetic devices from magnetic couplers [19] to
rotary actuators. Such studies have been done in elliptical coordinates in [20]-[24], in which
general frameworks for the solution of Laplace’s and Poisson’s equations in different

coordinates have been studies.

In [25], based on the solution of Laplace’s and Poisson’s equations, a voice coil having
a double-layer Halbach array is studied. The results are verified by FEM and an

experimental prototype. The configuration of the studied actuator is shown in Figure. 1.6.
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Figure 1. 6: The geometry of the studied LATM.

In [26], a solution based on Laplace’s equation is employed in the analysis and
estimation of the maximum angular operation range of a permanent-magnet slotted limited-

angle torque motor. The configuration of the studied actuator is shown in Figure. 1.7.

Figure 1. 7: The geometry of the studied LATM.
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1.1.3 MEC-Based Studies of Electric Machines and Rotary Actuators

Magnetic equivalent circuits (MEC) and flux tube-based approaches are powerful
modeling techniques that are widely used in a variety of electromagnetic devices and
electric machines from eddy-current couplers [27]-[31] and switched reluctances motors
(SRMs) [32]-[33] to permanent magnet synchronous motors [34]- [35] and magnetically-
geared machines [36]- [38]. In the following, some papers are reviewed in which MEC is
employed in the model and design of rotary actuators, voice coil motors, and limited-angle

torque motors.

In the old paper [39], performance prediction of a limited-angle rotary actuator, named
Law’s relay actuator, is studied using a simple magnetic equivalent circuit. The structure
and the employed MEC are shown in Figure 1.8. This actuator does not have any
permanent magnet and works based on the reluctance alignment of the rotor.

coil A
Rq Fa
—
I
Fb Rg1 Rgzm lpb
Rb
R Rg1
92 Rq Fa 9

Figure 1. 8: The geometry and magnetic equivalent circuit of a Law’s relay.

In [40], an equivalent magnetic circuit (MEC) is developed for a radial-flux slotted
limited-angle torque motor with asymmetrical teeth aimed at torque performance
improvement. The configuration of the studied actuator and the developed MEC is shown
in Figure. 1.9.
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Figure 1. 9: The geometry and the developed MEC of the studied LATM.

In [41], magnetic equivalent circuit (MEC) and finite element method (FEM) are
employed in the analysis, optimization, and design of a limited-angle torque-motor with
segmented rotor pole tip structure and toroidal winding. The configuration of the studied

actuator and the developed MEC are shown in Figure. 1.10.
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Figure 1. 10: The geometry and the developed MEC of the studied LATM.
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In [42], a nonlinear magnetic equivalent circuit is proposed for a permanent-magnet
slotted limited-angle torque motor. The model is also employed for multi-objective design
optimization of the device. The configuration of the motor and the developed MEC are
shown in Figure 1.11.

R, R: Rs Ry R R%t'
: .. i
A £ R:.; '+
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T A |
R R R =R R X
A -

Figure 1. 11: The configuration and the developed nonlinear MEC of the studied LATM.

In [43], a comprehensive magnetic equivalent circuit is developed for a toroidally-
wound limited-angle torque motor having Halbach permanent magnet array as the rotor.
The model is also employed for multi-objective design optimization of the device. The
configuration of the motor and the developed MEC are shown in Figure 1.12.
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Figure 1. 12: The configuration and the developed nonlinear MEC of the studied LATM.

In [44], a magnetic equivalent circuit (MEC) and FEM are employed in the analysis
and design of a limited-angle torque motor with a moving coil. The configuration of the

studied actuator is shown in Figure. 1.13.
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Figure 1. 13: The geometry of the studied limited-angle torque motor with a moving coil

The paper [45] presents simple calculations for the inductance prediction of a
toroidally-wound limited angle torque motor having a permanent magnet as the rotor. Its

configuration is shown in Figure. 1.14.
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Figure 1. 14: The geometry of the studied toroidally-wound limited-angle torque motor.
1.1.4 Restoration torque Techniques in Rotary Actuators

For many applications, for example, in fail-safe operations, the rotor is needed to return
to the initial position when the stator excitation is removed. This restoration force is

traditionally provided by a mechanical stiffness or spring. Also, there have been some
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actuator designs offering a magnetic mechanism to replace the mechanical spring with a
magnetic restoration force. It is more reliable and does not have the problem of traditional

springs like mechanical fatigue.

In the papers [46]-[47], simplified modeling and dynamic analysis of a Laws’s relay,
including a stiffness, is studied. The stiffness is a nonlinear function of rotor angular
position (tangent function of position) and provides a restoration torque that attempts to
bring the rotor back to the initial position. The geometry of the device and stiffness as a
nonlinear function of the angular position of the rotor is shown in Figure 1.15. The stiffness
is represented by a nonlinear equation as well. Finally, a nonlinear dynamic model is

established to study the dynamic behavior of the actuator.
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Figure 1. 15: The structure of Laws’s relay and the nonlinear stiffness function

In the papers [48], a self-aligning limited-angle rotary torque PM motor for the control
valve is studied. In addition to the stator poles, alignment poles are added to the device,
such that the rotor returns to its original position when the current is cut off without
requiring a separate mechanism to control the position. The structure of the device is shown
in Figure 1.16.
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Figure 1. 16: The structure of the LATM having self-alignment or restoration torque

In the papers [49], a zero-returner limited-angle torque motor is proposed, in which the
restoration torque is provided by a separate electromagnetic device connected to the LATM.
The structure of the device is shown in Figure 1.17. The restoration torque developed by

the zero-returner system is shown in Figure 1.18.

Figure 1. 17: Restoration torque mechanisms: the traditional mechanical spring (left) and magnetic spring
(right)
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Figure 1. 18: The restoration torque developed by the zero-returner system.

The patents, e.g., [50]- [55], provides a variety of structures of rotary actuators with
and without magnetic restoration torque. This thesis presents generalized studies applicable
to such actuators while certain aspects of the physical implementations of the actuator with
magnetic restoration described herein in this thesis, as well as other interesting topologies,
are covered by patents, among others. In Figure 1.19 and Figure 1.20 a number of such
actuators along with physical embodiments are presented.

O

Figure 1. 19: Topology and embodiments of an actuator with magnetic restoration.
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Figure 1. 20: Topology and embodiments of actuators with magnetic restoration.

1.1.5 Dynamic Behavior and Control Studies

High-performance control of electric machines requires accurate models and an
effective identification rather than conventional lumped models. The identification can be
offline [56] or even online [57] when there are variations in the parameters of the device.
Among modeling techniques, the finite element method (FEM), although powerful in the
numerical modeling and design of electromagnetic devices, is too slow to be used in
dynamic studies. Magnetic equivalent circuits [58]-[59] and subdomain models [60]-[61]
provide fast yet accurate analytical frameworks that can be employed in developing
electromechanical models. MEC-based models are developed to study the design of
LATMs [58] and magnetic cores [59]. The subdomain approach is employed to study the
diffusion in eddy current brakes [60] and cylindrical ferrite cores [61]. In [62], the finite
difference method is employed to find the numerical solution of 2-D diffusion in a
rectangular sheet. As eddy currents can highly impact the dynamic and thus control system
design of an electromagnetic device, incorporating their impact in the model can be very
crucial. In the interesting works [63]-[64], an analytical solution of 1-D diffusion in thin
laminations or magnetic materials is used to modify the electrical circuit of an
electromagnetic device. Friction is another factor affecting the mechanical dynamics of
electromechanical devices, whose impact can be studied by LuGre model [65]-[68]. High
bandwidth current loops are widely employed to drive actuators and electromagnetic
devices in order to eliminate the electrical dynamic so that the torque can be directly
commanded by the outer control loops. It also provides a faster response and higher
robustness by making the system independent of temperature-dependent elements like the

stator resistance. The current drives may be developed using analog architectures like op-
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amps circuits [69]-[71] or FPGA-based switching devices [72]. Advanced current

controllers are also studied in [73]. A push-pull-based drive is also implemented in [74].

The position control system of rotary actuators can be implemented by voltage drives
[75]-[76] or current drives [69]-[71]. The former, although cheap and simple, have
disadvantages like a slower response, weak robustness, and even more uncertainties in the
model. The latter, by eliminating the electrical dynamic of the actuator using a high-
bandwidth current loop, can offer a faster response, higher robustness, and even
simplicities in the model. Among others, feedback linearization has been employed as a
powerful yet simple nonlinear control technique for the control of electromechanical
devices if a precise model is available [77]-[78]. Also, unmeasured states can be estimated
using observers [79]-[80]. Model-based observers, especially those which are based on
state-space models, can be easily discretized to be implemented in a DSP [81]. In addition,
advanced observers can be developed for special purposes [82]. Advanced position control

techniques are implemented in [83]- [85].

1.2 Outline and Contributions of the Thesis

Analytical models are useful in the design of electromagnetic devices. In this thesis, a
model is developed for a rotary actuator whose stator curvature is elliptically shaped to
have a reluctance torque that restores the rotor to the maximum torque per ampere position.
The total torque is decomposed to the coil torque as well as a reluctance torque. The rotor’s
permanent magnet is represented by equivalent Amperian currents. The stator geometry is
simplified to an ellipse having surface current densities at the interpolar regions which are
equivalent to the stator currents. Then, the field solution within the ellipse is obtained using
Laplace’s equation in the elliptical coordinates, so that the coil torque can be obtained by
Lorentz force. The reluctance torque is derived by the energy method and an approach
named differential flux tubes, which is similar to the conventional flux tubes in magnetic
equivalent circuits. A rotating reference frame on the rotor is also adopted to simplify
mathematics. The finite element method is also used in the field analysis and development
of the proposed model. In the end, the actuator is prototyped whose experimental results
are employed to evaluate the results obtained from the analytical model and finite element

method.
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Modeling, identification, drive, and current control loop of a limited-rotation actuator
is studied. The stator pole faces are elliptically shaped to obtain a restoration torque. A
nonlinear electromechanical model is developed for analysis and nonlinear control for large
signals. It is also linearized to be used in the linear control for small signals. To get higher
accuracy and an efficient design, the eddy-currents in the laminations and the magnet are
included in the model by analytically solving the diffusion equation and extracting a
lumped-element circuit. The impact of the pre-sliding friction on the mechanical dynamic
is studied as well. Finite element analysis is also used in the study. The lab experiments are
performed using a prototype actuator. Torque-angle and back-emf characteristics are
obtained, and the identification of the model is carried out. Then, an op-amp-based drive
circuit for the current control loop is proposed and designed. Using a third-order model of
the op-amps, a very accurate model for the drive and the current loop is developed to be
used for prediction and evaluation purposes, while its simplified version is also obtained

for the design procedure.

Also, the accuracy of the modeling of the actuator and the drive circuit is evaluated in
control studies. The importance of eddy current modeling is shown as well. Also, the
effectiveness of the designed current loop and its practical trade-offs are investigated. Then,
three DSP-based position control techniques are implemented and compared: pole
placement with voltage drive, placement with current drive, and nonlinear control with
feed linearization. Full-order and reduced-order observers are also employed to estimate
the unmeasured states. The control system designs are evaluated through indices like rise
time, overshoot and steady-state error, and large-signal tracking in the step response as well
as bandwidth, robustness, phase margin, sensitivity, disturbance rejection, and noise

rejection in the frequency domain.

An eddy-current-based technique is proposed that may reduce the coil inductance at
high frequencies. However, it is an initial examination by two-dimensional FEM, while
more tests and optimizations may be done by researchers on various aspects of the
technique, how to optimize the strategy, what penalties do we pay for using this method,
the effectiveness of this approach, etc. It is just a conceptual study, for which a typical

geometry of the actuator is picked. The default values of the conductivity of laminations
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and the magnet given by the software are employed. Although close, they do not accurately

simulate experimental studies or even three-dimensional finite element analysis.

A new effectiveness index is proposed that may represent the effectiveness of an
actuator with oscillational behavior in a better way. Like the previous chapter, more

investigations and discussions can be done on the proposed effectiveness index herein.
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Chapter 2

Electromagnetics and Energy Conversion

2.1 Introduction

In this chapter, first, we start with an overview of electromagnetic field theory and
Maxwell’s equations [17]-[18]. Then, we continue with quasi-static field theory, i.e.,
magneto-quasi-static (MQS) field theory and electro-quasi-static (EQS) field theory. Also,
we review static field theory, i.e., magneto-static (MS) field theory and electrostatic (ES)

field theory. The, we talk about energy conversion and calculations of force and torque.

2.2. Maxwell’s Equations and Charge Conservation in Free Space

Differential and integral forms of Maxwell’s equations in free space or microscopic

formulation of Maxwell’s equations, as well as continuity equation are as in below:

Differential Form Integral Form Boundary Conditions
Ampere’s inz J o+ O¢,E (JS— dl = J’J‘( a50 ) Hy Mo
law Hy ot c Ho S i(B -B ):Kf
1t 2t
0
Gauss’s 3 n(B. -B.)=0
law of V.B=0 chf)B.dS—O (B~
magnetic B, =B,
Faraday’s VXE:_@ gSEd|——H—dS nx(E -E,)=0
law ot E,=E,
; n.(&E, —&E,) =0y
Gauss’s V.e,E=p, @goE ds = J.”pf dv
law vol 80(E1n - EZn) =0
Continui op n'(Jfl_Jf2)+v'Kf
ontinuity f_ It
equation Vi + ot 0 Cﬁs Jpds+ J;-L[ ~dv=0 _ 9oy
ot
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where B is magnetic flux density, E is the electric field, Js is free current density, K is free

surface current density, ps is free charge density, osf is free surface charge density. Also, t

and n stand for tangential and normal, respectively.

2.3. Maxwell’s Equations in Matter

Employing two new quantities of magnetic field intensity H and electric displacement

field D, constitutive relations are given below:

B=u,(H+M)

D=gE+P

J=cE

where M and P are magnetization and polarization vectors of the matter. Also, o is the

conductivity of the matter.

Then, the differential and the integral form of Maxwell’s equations in matter or

macroscopic formulation of Maxwell’s equations are as in below:

Differential Form

Integral Form

Boundary Condition

Ampere’s | g D q.DHdI J](J +_j S nx(H,-H,) =K,
law (3'[ Hy —Hy =K,
Gauss’s law VB=0 qﬁ_ﬁ B.ds=0 n(B,-B,)=0
of magnetic =T : B, =B,
Faraday’s VXE:—a—B gSE.dlz—J‘J. nx(E,—-E,)=0
o ot E.=E,
n(D -D ): o,
Gauss’s law V.D=p, SEJS D.ds = HI o\ 172 f
vl Dln - D2n =0y
Continuit 8,0 p n'(Jfl_Jf2)+V'Kf
ontinuity - P
equation v.Jq +?_O @‘] dS+J;£II dv=0 :_8%
ot
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2.3.1. Employing Charge Model of Magnetization

By substituting for B=po(H+M) and D=e,E+P from constitutive relations, we can get

a new formulation. It should be noted that, in this model, the equations and the boundary

conditions are in terms of H, and then we obtain B with B = z,(H +M) . Using the charge

model of magnetization, we have:

Differential Form

Boundary Condition

Ampere’s
law

VxH =3, + J&EFP)
VxH=1J, +6—P+808—E
a " a
OF

VxH=1J, +Jp+505

nx(H —H,) =K,
Hy —Hy =K,
note: boundary conditions

VXE:—IUOE—J;

magnetic-current density:

« oM
Jm:#o?

J=J;+J, are in terms of H
polarization current density:
oP
J,=—
ot
Viu,(H+M)=0= V. H =-V.. ;M n.(uH, — i H,) = o,
Gauss’s la_w V'UOH = P :uO(Hln - HZn) =0y,
of magnetic (surface) magnetic-charge density: note: boundary conditions
P =—tVM ; o, =—n(M;,-M,) are in terms of H
ot
Faraday’s nx(E -E,)=0
law oH E =E

1t — Eot

Gauss’s law

V(6E+P)=p, =
VegE=p,-V.P

V.gE=p+p,

(surface) polarization charge density:
p,=-V.P; o,=-n(P-PR)

n.(D,-D,) =0y +og,

Dln - D2n =04 + Oy
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0
V.J, +ﬁ=0
aat n.(J,—J,)+V.K
Continuity «  Opy
equation Vidn+ ot =0 __0o
ot
0
VJp+ﬁ=0
ot

2.3.2. Employing Amperian Current Model of Magnetization

Also, we can employ the Amperian current model of magnetization to get a new

) ) . x oM
formulation for Maxwell’s equation mater. In this case, we need to remove J,, = 4, 'y

and p,, =—x,V.M , and instead, employ J,, =V xM as a free current in Ampere’s law. It

should be noted that, in this model, the equations and_the boundary conditions are in terms

of B, and then we obtain H with H = E— M . We have:

Hy
Differential Form Boundary Condition
VxE:Jf +Jp+Jm+50§
Ho a nx— (B —B,)=K, +K
J=J;+J3,+J, g -2t
Amlgs\fe,s polarization curarle:r)nt density: By — By _ K, +K_
J b = — ILlO

ot note: boundary conditions

Amperian current model of magnetization: are in terms of B

J,=VxM ; K, =nx(M,-M,)
n.(B,-B,)=0
Gauss’s law B =B
H VB = 0 1n 2n

of magnetic note: boundary conditions

are in terms of B

VxE= —@
ot
’ nx(E —E)=0
Faraday’s or VXE:_a,uO(H +M) (E,-E,)
law ot E,=E,
or vxE=-21
ot
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Gauss’s law

Ve E=pi +p,
p:pf +pp

(surface) polarization charge density:

p,=-V.P; o,=-n(P-PR)

n.(D,-D,) =0y
Dln - D2n =0y

Continuity
equation

0
V., + g’tf -0 n(J,—J,)+V.K
oo
Vv.J +%=0 T ats
oot

The net electric current lenc enclosed in closed lines C encompassing surface S

corresponding to current density J, as well as the net electric charge Qenc enclosed in

volume vol corresponding to volume charge density p are as in below:

Current lene = HJ.ds

S
Charge Qunc = I”pdv

vol

Magnetic flux and electric flux through a surface S are defined as in below:

Magnetic flux

Qg = ﬂ B.ds
S

Electric flux Pe = J;J Eds, ¢, = _g D.ds

The macroscopic formulation of Maxwell’s equations is as in below:

Integral Form

Ampere’s law

dt

lne :“Jf.ds

q.)H.dI:Ienc+dﬂ
C

Gauss’s law of
magnetic

S
@B.ds:o
S
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Faraday’s law

qSE.dI __dos
! dt

Gauss’s law

<ﬁ> D.ds=Q, ..
S
Qeenc = H py av

vol

Continuity
equation

¢ as + B _g
: dt

Using the charge model of magnetization, we can also rewrite as in below:

Integral Form

Ampere’s law

pH.dl = | +g, 3%
! dt

electric current:
Lo = [[ (3¢ +3,).ds
S

Gauss’s law of
magnetic

@ﬂoH-dS =Q,
s

magnetic charge:

Qnene = J[] £ OV

vol

Faraday’s law

PE 9% -
! dt

magnetic current:
I = H J.ds
S

Gauss’s law

pa,Eds=Q,

S
Electric charge:

Qe = |[[ (P1 +pp) v

vol

Continuity
equation

459 ds+ e
- dt

<ﬁ>Jm.ds+%:O
g dt

Using the Amperian current model of magnetization, we can also rewrite as in below:
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Integral Form

B
p=—di=1,, +z, A0
dt

C IUO
Ampere’s law electric current:
e = [[ (3 +3,+3,,).ds
S
Gauss’s law of 4;5 B.ds=0
magnetic S
do
Faraday’s law g) Edl = _d_B
° t
peyEds=Q,
S
Gauss’s law electric charge:

Quere = |[[ (p1 +pp) v

vol

Continuity Cﬁﬁ‘]'ds+ dQgc —0
equation § dt

Notes:
e There is a duality in the four of Maxwell’s equations. The duality between Ampere’s

law and Faraday's law (in the charge model of magnetization) is as in below:

VxH—goﬁsz+Jp (2.1)
ot
VXE+,UO%:—J; (2.2)

The duality between magnetic and electric Gauss’s laws is as in below:

V.ioH = p, (2.3)

V.&E=p; +p, (2.4)
deg

e The rate of change of magnetic flux ot is the induced electro-motive force (EMF)

which can be seen in Faraday’s law.
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: doy . : .
e The rate of change of electric flux %0 s the displacement current or the induced

magneto-motive force (MMF), which can be seen in Ampere’s law.

e The coupling between electric and magnetic fields, i.e., the magnetic induction in
Faraday’s law (0D / 6t ) and the displacement current in Ampere’s law (0B / ot ), gives

rise to electromagnetic waves.

e Derivation of continuity equation: by employing Ampere’s law, Gauss’s law, and the

fact that divergence of the curl of a vector H is always zero, we have:

32 a(v.D)
ot

V(VXH):OW—*—R)V(J +%):O:V.J+ 0 V.D=p ,V.J+aa—fzo

(2.5)

e In Maxwell’s equations written using the magnetic charge model of magnetization, the
relationships and the boundary conditions are written in terms of H and then

B = 1,(H + M) . In Maxwell’s equations written using the Amperian current model of

magnetization in which the magnets are treated as free currents, the relationships and

. . . B
the boundary conditions are written in terms of B and then H =—-M .
Ho

2.3.3. Linear Isotropic Material

For magnetically linear isotropic homogeneous materials, magnetization M can be
buried in permeability 1 by using magnetic susceptibility ym. Also, for electrically linear
isotropic materials, polarization P can be buried in permittivity ¢ by using electric

susceptibility ye.
magnetization permeability
B=u,(1+y, )H=uH
M =x.H M= ot =1+ 7) Holl+ 2 = 1
polarization permittivity B B
P:goleE g:gogr, gr :(1+Ze) D_80(1+ZG)E_8E
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The equations B=xH and D=¢E are helpful in media like iron and can be

employed instead of B = x,(H+M) and D=¢,(E+P).

For example, it is true for iron in the linear region, i.e., when field H is small. Figure 2.1
shows a simple comparison of permeability for ferromagnetic, paramagnetic, and

diamagnetic materials.

Figure 2. 1. Comparison of permeability for ferromagnetic, paramagnetic, and diamagnetic materials
[source: wikipedia].

For nonlinear isotropic homogeneous materials, [, ¢, and ¢ depends on the field as in

below:
B=u(H)H
D=¢(E)E
J=0o(E)E

In anisotropic material, p(H), ¢(E) and o(E) are independent of the direction of the field,

while in anisotropic material [, ¢ and o depend on the direction as in below:

B, Ly Mot || H,
By |=|#a M My || H, (2.6)
B, Uy My Mg || H,

In a homogeneous material, i, ¢ and ¢ do not depend on position, while in an

inhomogeneous material, they do as in below:

= pu(xy,z)
e=¢(xY,2)
o=0(XY,2)
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2.4. Vector and Scalar Potentials

The fields can be obtained in two ways:

e Maxwell’s equations can be solved directly for the fields. In this case, we deal with
four coupled first-order field equations. Maxwell’s equation in a stationary,
homogeneous, isotropic and linear medium with constitutive relations B=pH, D=¢E
and J=oF are as in below:

VxH:J+%E-
ot

Magnetic VB=0

B=1y(H+M)

V><E:—§§
ot

VeE=p
D=¢,(E+P)

Electric

e Also, it might be more convenient to employ scalar and vector potentials. In this case,

we deal with two uncoupled second-order field equations.

Magnetic Vector Potential:

It is worth noting that the divergence of the curl of a vector is zero V.(VxA)=0. In

other words, if the divergence of a vector is zero, it can be defined by a vector potential.
According to magnetic Gauss’s law in the Amperian current model of magnetization, a

magnetic vector potential can be defined as in below:

VB=0 = B=VxA 2.7)

As shown in Figure 2.2(a), the net flux passing through a surface S enclosed by closed
line C is the surface integral of magnetic flux density vector B over surface S, or is the

closed line integral of the magnetic vector potential A over line C as in below:

o=qp Bds = A.dl (2.8)
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It is obtained by substituting B in terms of A and employing Stokes’ theorem. In a 2D

problem where A is only in the z-direction, flux is easily calculated as in below:
p=L(A;—A,)=LAA (2.9)

where A;1 and A1 are values of A; at the two points in the xy-plane as shown in Figure 2.2(b),
and L is the axial length of the problem in the z-direction. In case of having a uniform

magnetic flux density B or in approximations, we have:
p=LwB,, (2.10)
Combining the last two equations, we have:

AA, =WB,, (2.11)

et

' |
w

(a) (b)
Figure 2. 2. Closed line C enclosed by open surface S in (a) 3D problem and (b) 2D problem.
Magnetic Scalar Potential (current-free region):

In a current-free region, the magnetic field is solenoidal. We know that the curl of
gradient of a scalar function is zero, so according to Faraday’s law, a magnetic scalar
potential can be defined as in below:

VxH=0—> H=-Vy (2.12)

By employing the identity V.V =V?y in the magnetic Gausses’ law with charge
model of magnetization and substituting the fields in terms of the potentials, we obtain a

second-order scalar Poison’s equation governing as in below:

V,u(—V l//) =Pn = VZV/ =P (213)
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Electric Scalar Potential:

Also, the curl of gradient of a scalar function is zero, i.e., the rotation of the maximum
variation of the scalar field at any point in space is zero. In other words, if the curl of a
vector is zero, it can be defined by a scalar potential. According to Faraday’s law, an

electric scalar potential can be defined as in below:

vxE=-B _B=VXA G B 0+ Bl v Eove- R
ot ot ot ot
(2.14)

Two Uncoupled Equations in Terms of Potentials:

Magnetic: By substituting B=VxA and E=-V@—-0A/dt in Ampere’s law and
Gauss’s law, we obtain uncoupled equations in terms of vector and scalar potentials. By

employing the identity VxV x A=V(V.A)-V?A in the Ampere’s law, we have:

VXA a(-Ve-oAldt)

\% J+
Y7, ot
VEA-V(V.A) = —ud + ue a(_wa_taA/ N (2.15)
0°A o
VZA- ue——V(V.A+ ue ——) = —uJ
He ( H 6'[) H
By imposing the Lorentz gauge condition V.A= —,ug%o, we obtain:
o°A
VZA— us pe =—ud ;JI=3,+J,+J, (2.16)

In the Cartesian coordinates, it can be simplified in terms of the vector components as

in below:
82
V2A<_ILI6‘ até‘ :_:u‘]x
_ - o°A,
A=AX+AJ+AZ, J=3%+]+1,2= VA — e e =—ud, (2.17)
82
VA, - pe atéz =—pd,
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Electric: By employing the identity V.Vp=V?p inthe Gausses’ law and substituting

the fields in terms of the potentials, we have:

Va(-Vo-2)=p

By imposing the Lorentz gauge condition V.A=

2

o _p

R
&

ot

oV.A) _ p

= Vip+ -

&

— g_’
Heqt

op

we obtain:

(2.18)

(2.19)

Using the charge model of magnetization, the potential relationships and their solutions

can be summarized as follow:

Potentials Poison’s equation Solutions
current model of
magnetization i | X—X |)
Magnetic _ 2A 12 21
V.B=0 B=VxA VAA- pe— = A(x,t)— J' dv’
a’ 7y Ix=X |
J=J,+J,+J,
Magnetic charge model of
(current free) H=-Vy magnetization
VxH =0 Viy=VM=-p_
Electric b X=X
oA O’ p (X, t— )
OA E = —V(D—— V QO—UE—F =—— _ 1 u ’
Vx(E+—)=0 X,t) = dv
<(E+20) ot o o | e(xD) 47&9va x|
0
Lorentz gauge V.A= —,ugg(p

where u=1/./¢ u =3x10° m/s s the speed of light in the medium.

2.5. Quasistatic Field Theory

Quasi-static fields are obtained by ignoring either the magnetic induction in Faraday’s

law (0B / ot) or the displacement current in Ampere’s law (0D / ot ) when the dimension

of the studied device is small enough compared to the wavelength (1=c/f) of the
electromagnetic wave.

Magnetoquasistatic (MQS) fields: by ignoring the displacement current in Ampere’s
law (6D / ot), we have:

53




VxH=1J (2.20)
V.B=0 (2.21)

B
vxE=-B (2.22)
ot

According to magnetic Gauss’s law, a magnetic vector potential is still B=V xA . By

employing Ampere’s law and the fact that divergence of the curl of a vector H is always
zero, we have:

v.(vxH)=0—H=J g5_0 2.23)

In other words, the current density distribution of magnetoquasistatic is solenoidal, that is,

it does not have sources or sinks.

By employing the identity VxV x A=V(V.A)—V?A in Ampere’s law, we obtain one
second-order equation governing magnetoquasistatic fields:
Vx LA o VPASV(V.A) = — 1)
U

To determine a vector A uniquely, we need to know both the curl and divergence of it.

In MQS systems, we take the vector a to be solenoidal for the sake of convenience, i.e.,
zero divergences V.A =0, which is called the Coulomb’s gauge. It is worth noting that this
choice is arbitrary. By imposing Coulomb’s gauge condition, we obtain the second-order

vector Poison’s equation governing magnetoquasistatic fields:

VZA=—ul (2.24)
In the Cartesian coordinates, it can be simplified in terms of the vector components as
in below:
VA =—pd,
A=AR+AJ+AZ, J=JR+1,9+3,2 = VA’ =—u], (2.25)
VA, =-ud,

Electroquasistatic (EQS) fields: by ignoring the magnetic induction in Faraday’s law
(oB/ét), we have:

VxE=0 (2.26)

VeE=p (2.27)
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The continuity equation is there with full terms because we only ignored (0B / ¢t ), not

(0D /t).

V.(VxH)= o—o*>V(J+—) 0= V.J+

VxH=3+2

o(V.D)
at

_0_ v vy 4 9P g
at

(2.28)

We know that the curl of gradient of a scalar function is zero, so according to Faraday’s

law, an electric scalar potential can be defined as in below:

VxE=0- E=-Vop

(2.29)

By employing the identity V.Vp=V?p in the Gausses’ law and substituting the fields

in terms of the potentials, we obtain the second-order scalar Poison’s equation governing

electroquasistatic fields:

Ve(-Vo)=p=Vip=-

P
P

(2.30)

The equations governing quasistatic fields can be summarized in the table below:

... dD ... 0B
Magnetoquasistatic i 0 Electroquasistatic P 0
VxH=J , VJ=0 VxE=0
i V.B=0 VeE=p
Field B
equations VXE=-— v+ 0
ot ot
J=J(E,B) J=J(E)
5 ol B=VxA E__v
otentials current-free: H =-Vy e
Poison’s ViA=—ud Vig=—F
equation | current-free: Vi =V.M =—p_ P
Potential A1) =2 _[ I o(x.1) = J',O(X 1)
solutions v X=X Are 5| X=X |
Coulomb’s VA—O
gauge
Note:
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Conservative Vector Field: Closed-line integral of an irrational field is zero, and it can be
represented by the gradient of a scalar potential, e.g., E in EQS and H in a current-free
region. Such fields are called conservative because the line integral of the field vector

between two points in space is path independent. In EQS where VxE =0,E=-Vpwe

have:
b b
@Emzo: j Edl = j E.dl = o(b) — p(a) (2.31)
C a,path A a,pathB
In current-free MQS where VxH =0,H =V, we have:
b b
$HAI=0= [ Hdl= [ Hdl=p(®b)-y() (2.32)
Cc a, path A a,pathB

2.6. Static Field Theory

In static field theory, there are no time variations, and the time-dependent terms
(o/ot=0) will be removed from Maxwell’s equations. The currents are steady in

magnetostatic (MS), and the charges have stationary distributions in electrostatic (ES).

Magnetostatic Electrostatic
VxH=1J VxE=0
Field V.B=0 VeE=p
equations B=u,(H+M)or B=uH D=¢,(E+P)or D=¢E
v.J=0 v.J=0
Potential B =VxA E=-V
otentials =-
current-free: H =-Vy v
Poison’s V2A=—,UJ qu)——ﬁ
equation | current-free: Vi =V.M =—p_ P
Potential A(X) :ﬁ ‘](XI) dv’ (0( ):Lj p(X’) '
solutions Az 5| x=X'| Are 3| X=X
Coulomb’s V.AZO
gauge
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2.7. Toque Calculations Using Maxwell Stress Tensor

Maxwell stress tensor is usually employed in microscopic field description of forces—
the way Poynting’s theorem is used in field discretion of energy flow. Maxwell stress
tensor is the rewritten form of Lorenz law and is solely in terms of magnetic fields, so it
can be used to calculate the force in situations in which the currents (charged particles) are
not available or hard to calculate to be used in Lorentz force. In cylindrical coordinates

(r, 6, 2), the Maxwell stress tensor is as in below:

Trr Tr49 Trz
T= Ter Taa Taz (2.33)
Tzr Tze Tzz

where stress tensor Tjj in electromagnetics is as in the following:

1 1 1
T, =gOEiEJ.+—BiBj—§(50E2+—BZ)§ij (2.34)

) Ho

where i and j can be r, 0 or z, and djj is the Kronecker’s delta which is 1 if i=j, otherwise 0.

For magnetic fields, e.g., in electric machines, we have:

T, =iBiBj _i |325ij (2.35)
Ho 24,
where
B*=B’+B,”+B,’
_ A A . (2.36)
B=B,a +B,4,+B,4,
Maxwell stress tensor can be rewritten as in below:
(R2 _Rp2_Rp?2 T
B -B B B, B, B, B,
2
2 _p2_pe
T= 1 B, B, B -8B -8B B, B, (2.37)
Hy 2
2_p?2_p2
B, B, B, B, w
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Similar to the role of Poynting vector S in field description of energy flow in Poynting’s
theorem, the divergence of the sensor in cylindrical coordinates is the vector of volume

force density (with the dimension of N/m®) as in the following:

fVIV.TI(aAr+£8A0+8Arz+Ar_A€6jér
or r 00 01 r
+(6Agr JLoA, A, A+ AQJ 8 (2.38)
or r 06 0z r
+£6AU+18AM+6AU+&JQZ
or r 06 0z r

Then, force (with the dimension of N) on an object surrounded by closed surface S

having the volume vol can be obtained as in below:

F

r

F=|F,|= ﬂ _VTdv (2.39)
F

z

Using Stokes’ theorem, we have:

Fr

F=|F,|= SE]ST.ﬁ dA (2.40)
Fz S

As shown in Figure 2.3, the stress on a surface has two components: the normal

component, which is called normal stress, and the parallel component, which is called shear

stress. There are actually three stresses operating on a surface, two of which are parallel to

the surface, whose resultant is the shear stress. The normal stress, which is actually the

normal force per unit area, will be as in below:

G =(6.n)h (2.41)

n

The shear stress, which is actually the tangential force per unit area, is then remaining as

in below:

7=G-(6n)A (2.42)

58



Figure 2. 3. Stress, shear stress, and normal stress
Then, the developed torque on a lever arm vector r is as in below:

T° = Jprx(T.A)dA (2.43)

Generally, for a surface having the normal unit vector of n=(nr, ns, n;), the surface force

density (with the dimension of N/m?) is as in below:

T, T n T
T,48+T,4,+T,4 (2.44)

r

fr TI‘
f=|f,|=TA=|T,
fZ TZ

r 20 7z z r

In a two-dimensional analysis of radial-flux rotating machines having an internal rotor,
the magnetic field does not have any z-component (B,=0), so Ti;:=T;=0. As shown in
Figure 2.4, for a cylinder of radius R encompassing the rotor, normal vector of the side
surface (Sr+), top surface (Sz+) and bottom surface (S-) are n=(1, 0, 0), n=(0, 0, 1) and n=(0,
0, -1), respectively.

Sz+

S,

Figure 2. 4. Stresses on a cylinder encompassing the rotor of a radial-flux rotating machine.
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The force density on the closed surface integral over a cylinder surrounding the rotor
can be separated into three open surface integrals of the side surface, the top surface, and

the bottom surface as in below:

I::4ﬁﬂimdA:J]Gii)Rdez+”XTéerrd6+J]Gﬂ—é)rdrd9 (2.45)

As shown in Figure 2.4, the tensor (force density vector) operating on the three surfaces

of the cylinder are calculated as below:

2 2
Trr :ﬁ TreziBr 89 0
24, Ho
_, 1 B 2 B 2 1 Trr
fs, =T.8, =|T,, =—B,B, T, =—" : 0 {0|=|T, [=T,8,+T,4,
" Hy 24, 0 0
2
0 0 B
L 2;“0 |
(2.46)
_ , ) _
Trr = Br BG Tre = i Br B@ O
2, Hy
~ 1 B2 g2 0 0
fs, =T8, =T =—B,B Tp=-"— 0 ||o|=| 0 |=T,4 (2.47)
Ho Ho 2 1 T
0 0 T, = —B
L 2/10 |
_ , ) _
Trr = Br Bg Tre - i Br Bg 0
24, Hoy
- 1 B 2 B 2 0 0
fSZ_ :T _é‘z = THr __89 Br THE’ = 02 - 0 O = O = _Tzzéiz
Hy Ho 2 1 T
0 0 T, = B
i 211 |
(2.48)

Therefore, the three integrals can be rewritten as in below:
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F=[[(T,&+T,4)Rdodz+[[T,4rdrdo+[[(-T,4,)rdrdo (2.49)
S Suv S,

The last two terms will cancel. In fact, the negative sign in T, shows that the last two

terms are just the forces that tend to keep the rotor within the stator region, produced by

fluxes that tend to take the shortest path with minimum reluctance. These normal stresses

on these top and base surfaces are as in below:

—B?
S,.,: 0,= a, (2.50)
244,
2
S G -2 4 (2.51)
24y

The stress on the side surface of the cylinder has two components: Ty, in the tangential
direction the contributes to the torque production and T, whose spatial average around the
cylinder is zero because the normal force at any point on the cylinder will be canceled by
a negative value on the opposite side. On the side surface, the shear stress and the normal

stress can be obtained as:

2 2

S,.: o,=(n)n=[T,a +T,48,)4]4a =T,4 = ﬁér (2.52)
214,

S,,: 7T=0—-(cN)n=(T, 4 +T,48,)-T,8 =T, 4,= £l B,B, 4, (2.53)

Therefore, the developed electromagnetic torque is as in below:

T° = [[Fx(T.A)dA (2.54)

It leads to the following:

L 27z

2r
Te:££RB,HeRdez:RZL'([Br(e)Ha(H)dH (2.55)
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where C can be any closed circle of radius R in the air-gap, as shown in Figure 2.5. In

certain conditions where the shear stress on the surface has a spatial average of
1 2z
<t>=— [ B,(0)H,(6)do (2.56)
27

the average toque will be
T*=27R’L<7> (2.57)
Observation:

e The clear observation in the above equation is that the developed torque is just the
average shear stress <z> (average force density) times the surface area 2zRL times the

torque leg R.

e We know that this equation leads to the same torque regardless of the circle path C of
radius R we take, so the stress should be larger for lower radii.

R <R, = r,>7, (2.58)
e The torque is independent of R and can be calculated from the closed line integral over

ANY circle C in the air-gap region.

1
<r>=5§‘>3r (O)H,,(6)dI (2.59)
T° =R°L$ B, (O)H,(6)do (2.60)

e Since the shear stress and the torque are independent of the radius of the cylinder, they
can be obtained from averaging over air-gap volume (or air-gap area in 2D analysis).
It is useful in FEM when the meshed air gap is not very fine.

1 L
R—RJ;

(o] i

P

o 27T

Te = [rB.(O)H,(0)rdrdodz (2.61)

o)

SO

2r
L
rB . (OH (O rdrd@dz =
! (O)H,(6) o

0

e _ 1 ;
! _R—R.-([

0 1

0 e O

gthBr(e)Hg(e)rzdrde (2.62)

9
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where Rij and Ro can be inner and outer radii of the air-gap region (hollow cylinder).

The arbitrary circle C in the air-gap and the air-gap surface area Sy (yellow area) is
shown in Figure 2.5.

e If the normal and tangential components of the field are orthogonal, the average shear
stress will be zero. The following trigonometric pairs are orthogonal:

> sinp@ and sinp,@ where p, #p,
sinp,@ and cosp,@ where p, #p,
sin p@ and cos péd

Therefore, the pair that results in nonzero average shear stress is:

> sinpd and sin(pd-6,) where .90;&%

Figure 2. 5. Arbitrary closed line C and air-gap surface area Ag employed in torque calculations using
Maxwell stress tensor.

It is worth noting that the developed electromagnetic torque can be obtained from the
shear stress on either the stator or the rotor. As illustrated in Figure 2.6., it can be shown
that the shear stresses on the two sides of the air gap are in opposite directions. The normal

unit vector of the rotor surface is in +r direction, so we have:

Trr é\‘r +Tr6 ée
0 (2.63)

r 0 7z 0

rr TrH rz

rotor 4
T™a =T, T, T
T

o O -
I
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The normal unit vector of the stator surface is in -r direction, so we have:

Trr ro Trz -1 _(Trr ér +Tr9 ég)
T 4 =|T, T, T,||0|= 0 (2.64)
Tzr Tz€ Tzz 0 0

Figure 2. 6. Maxwell stress tensor and shear stress on the surfaces of rotor and stator

We should be careful about the fact that a minus sign comes in if the torque is calculated

using the shear stress on the stationary part—the stator, so

T*=27R’L<r,, >=—27R°’L<7,, > (2.65)

rotor stator

The point is that we take the one whose calculation is easier according to the situation
we have. For example, in the case of having a surface current density on the surface of an
infinitely permeable iron, the tangential magnetic field intensity is just equal to the surface
current density. Since the calculated torque is constant regardless of the radius, the shear
stress is larger on the surface of the rotor than on the surface of the stator for an inner-rotor

radial-flux machine:

R<R, = |roul>lr (2.66)

rotor stator|

It is also consistent with the fact that the fields Br and Hy are larger on the rotor surface
(smaller radii) than on the stator surface (larger radii). Also, in cases where the air-gap
length is very small compared to rotor radius (g<<R;)), the torque can be calculated using
the average radius, and the shear stress on either side, and also the shear stresses have equal

amplitudes but opposite directions.
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T°=27R,’L<7,, >=-27R,’L<Typ > (2.67)

rotor stator

< Troor > R = < Tguior > (2.68)

rotor

2.8. Carter’s Coefficient and Slot Modeling

In a slotted-stator machine, the slots can be modeled by carter’s coefficient. Figure 2.7
shows the flux lines and magnetic flux density distribution in an air-gap having a slotted-
stator on the bottom side and surface-mounted permanent magnets for the sake of modeling
on the other side. It is seen that the flux lines which are facing the stator teeth take a shorter
path—almost the air-gap length—, while those facing the stator slots take a longer path;
therefore, the effective air gap is larger than the physical air gap.

Flux lines Flux lines and magnetic flux density

A (Wb/m) B (tesla)
1.09e-5 | g1

B B

-3.02e-4 I I 0.0

Figure 2. 7. flux lines and magnetic flux density distribution in an air-gap having slots.

In order to account for the effect of the two mentioned regions, we employ a slot pitch
of the stator, including a tooth and a slot. The associated region is also modeled with proper
boundary conditions as in Figure 2.8 to solve Poisson’s equation for magnetic vector

potential A in a region without any current. In a 2-D problem, vector potential as in below:

52@ +82A2~z 0 (2.69)
OX oy

VA =

It is worth noting that in a two-dimensional problem, magnetic vector potential Az(X,y)
only has a z-component while magnetic flux density and magnetic field intensity have x-

and y-components. We have:

A=A a (2.70)
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B=B,a +B,a =VxA = é:(ai,—ai,O) (2.71)

0) (2.72)

We have Neumann boundary conditions on the iron boundaries because the flux lines
are perpendicular to the iron edges. In other words, magnetic field intensity H is zero in an
infinitely permeable iron, and due to the continuity of the tangential components Ht where
there isn’t any surface current density on the boundary, Ht is also zero in the air gap and on

the iron boundaries.

Hiron -0 = Htair — Htifon =0 > aa;AnZ: 0 (273)

where n is the normal component of the boundary. We also have Neumann boundary
condition the bottom edge of the problem to which the flux lines, as well as the magnetic
field intensity, are perpendicular.

H=0 = % (2.74)
oy

There is a Dirichlet boundary condition on the left and right sides of the air gap. As in

below:

Az ||eft = Azl (275)
Al g = A2 (2.76)
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Neumann
0A.
—=0

y /_\/1 oy
I Dirichlet
” A = A»l 1 Dirichlet
. — - Az = A:Z
Neumann
0A.
= -0
Neumann I o
% =0 \f—/ Neumann
ox Neumann 04, _ 0
oA, o
—=0
o

Figure 2. 8. (a) Dirichlet and Neumann boundary conditions of the problem

To solve the problem, it is needed to choose two reasonable values for Az and Az.
Assuming an average magnetic flux density of 1 Tesla in the air gap, it will be possible to
come up with fine values. As shown in Figure 2.9(a), the net flux passing through a surface
S enclosed by closed line C is the surface integral of magnetic flux density vector B over
surface S, or is the closed line integral of the magnetic vector potential A over line C as in

below:
o= g‘g%s B.ds = qS A.dl (2.77)

It is obtained by substituting B in terms of A and employing Stokes’ theorem. In a 2D

problem where A is only in the z-direction, flux is easily calculated as in below:
p=L(A;-A,)L=LAA (2.78)

where A;1 and Az are values of A; at the two points in the xy-plane as shown in Figure 2.9(b),
and L is the axial length of the problem in the z-direction. In case of having a uniform

magnetic flux density B or in approximations, we have:

@=LwB,, (2.79)

Combining the last two equations, we have:

AA, =WB,, (2.80)
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where w=ws+Ww; in our case.

n yn
¢
A
Azl A

C (z)_ /® /
: i

L Sm——

w
Z
(@) (b)

Figure 2. 9. Closed line C enclosed by open surface S in (a) 3D problem and (b) 2D problem.

We take ws=4 mm, wi=5 mm, and g=4 mm, so for Bay=1 Tesla in the air-gap, we have
A4,=0.009%1=0.009 wb/m. We assign A,1=0 to the left side and A,,=0.009 wb/m to the
right side of the air gap. As shown in Figure 2.10, flux lines have the expected values and
behave the way that we expected, magnetic vector potential is in the z-direction, average
magnetic flux density distribution in the air-gap is 1 Tesla, and magnetic flux density

vectors have a downward direction that matches the flux pathing through the surface which
is -0.009 wb per unit length.

0410y =0
TTTTTTIT TTT]o A(Wb/m) 3333
(=] [=]
S 0.009 334
] | = I P2
< | o84
] % o0
- 1224
kI hd L d
/ 4l 11 o3
s é4./8y=0
I T
= | =
< 53
Q I
oA /ey=0 0

(a)

| B (tesla) [
1.3 SERERRRRRE

(b)

Figure 2. 10. Field simulation in one slot pitch region: (a) flux lines and magnetic vector potential and (b)
magnetic flux density distribution and vectors.
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It is worth noting that the slot depth hs is large enough that no flux reaches the bottom
of the slot, and all flux lines are attracted to the sides. Based on the flux lines in the region,
the flux tube model is shown in Figure 2.11(a) is offered to determine the reluctance in an
air gap facing a slotted stator. The permeance Pg; is calculated as in below:

wg /2

u,Ldl
Pe= | O—”| (2.81)
0 . +—
9+
We have:
P, = 2tk 1 (1+ W, j (2.82)
7 49,

The permeance Py is calculated as in below:

Mo W L

P =" (2.83)
The total permeance is:
P =2P,+P, (2.84)
We have:
P - L{W—t+iln(l+”ws j} (2.85)
g IUO '
9 49,

In case of ignoring the fringing effect due to the slots, the air-gap permeance is:

' 2 wL
p =t (2.86)

Therefore, Carter’s coefficient is:

’ -1
=no B g W 40, 1 W (2.87)
R' P, W W 49

g i
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It is seen that as long as the slot is deep enough, kc is independent of hs and is only a
function of slot opening ws, slot pitch w, and air-gap length gie. Finally, as shown in
Figure 2.11(b), an equivalent slotless stator with efficient air-gap length gie can be
employed where

gie = kc gi ; k 21 (288)

(a) (b)

Figure 2. 11. (a) flux-tube modeling of an air-gap having slotted stator and (b) equivalent slotless stator
with efficient air-gap length.

2.9. Modeling of the Stator

In this section, magnetomotive force, equivalent surface current density, and tangential
magnetic field intensity of a stator are obtained. In the studied structure, the stator is the

inner part, and the rotor is the outer part.
2.9.1. MMF Produced by Stator

In this section, we will obtain the magnetomotive force produced by the stator, which
will be used in the calculation of the radial component of the magnetic field density in the
air gap. Figure 2.12(a) shows a typical 2-pole (Ps=1) three-phase stator with concentrated
windings. The positive direction of the pulsating fluxes produced by each phase is also
depicted (negative currents produce flux in the opposite direction). The resultant of these
three pulsating fluxes is a rotating field in the air gap.

Figure 2.11(b)-(d) show the flux lines (closed path of Ampere’s law) and the
corresponding spatial distribution of the magnetomotive forces (pulsating fluxes) for the
three phases at time t=0 where ia=ls, ib=-1s/2, and ic=-1s/2. The resultant magnetomotive
force, as shown in Figure 2.11(e), is a traveling wave for t>0. The amplitude of the MMF

of each phase is obtained from Ampere’s circuital law as in below:

70



PHA =1, = gH+gH =N - - Nk (2.89)
C ps ngs

Also,
Ni,
2p,

MMF =gH = MMF = (2.90)

where N is the number of turns per phase and N/ps is the number of turns per phase per

pole, and phase currents are:

i,(t) =1, cos(at) (2.91)
I, (t) =1, cos(at — 2{) (2.92)
i.(t) =1, cos(wt + 2?7[) (2.93)

The Fourier series representation of the spatial distribution of the three magnetomotive

forces are as in below:

F.(0,1) = —ii%sin (np,0) (2.94)
Fb(H,t):—inA' Nzlb(t)sm(nps(e—?)J (2.95)
E =32 Nk (t)sm(nps(eJr—)j (2.96)

odd

The Fourier representation series of the spatial distribution of the total magnetomotive
forces can be obtained directly from the step-wise waveform in Figure 2.11(e) directly or

by mathematical calculations as in below:
F.(0,t)=F,(0,t)+ F(0,t)+ F.(6,1) (2.97)

By substitution of the magnetomotive forces and the currents, we have:

71



F(6,t)= —ii I;I E cos(wt)sin(np,0)

=. s
odd

=4 NI 27, . 27
— 2o np, (6 —— 2.98
> . [ p.( 3)] (2.98)
odd
27, . 27
np,(0+—
> : ( 0+ )j
odd
We have,
F,(0,t)=—— Z{sm np,0 — wt)+sin (np,0 + wt)

S

+sin (npse—a)t —(n-1) 2?ﬂ)}rsin (npséhra)t —-(n+1) 2?”)]
+sin (npsé’—a)t +(n-1) 2?ﬂ)}rsin (np56’+ ot +(n+1) 2?”)}}
(2.99)

For n=1, 7, 13, etc., we have the first part of each pair in the three lines of the equation
above, resulting in a forward traveling wave in the air gap. The n'" component is as in

below:

3 4 NI,

F,(0,t)= in(np,6—ot) (2.100)

S
while for n=5, 11, etc., we have the first part of each pair in the three lines of the equation
above, resulting in a backward traveling wave in the air gap. The n" component is as in the

following:

F.on=—>4N

>sin(np,0 + wt) (2.101)

Therefore, the fundamental component (n=1) is:

F.(0,1) = —S% g'ps in(p,0-ot) (2.102)
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In reality, usually, we do not employ full-pitched concentrated windings, so to account
for the winding configuration, the winding factor kw can be included in the above

relationship as in below:

F,(6,t) = Fysin(p,0 — ot -5) (2.103)
F-—sANL (2.104)
21 2p,

where ¢ is the current angle, and the winding factor is defined as in below:

k, =k k, (2.105)

where kp and ky are pitch and distribution factors, respectively. In a short-pitched winding,

the pitch factor for the n™ harmonic is as in below:

. Na
Kon :sm7 (2.106)

where « refers to the angular displacement between the two sides of a coil in electrical
degrees. For a full-pitched coil a=x.
In a distributed winding, the distribution factor for the n'" harmonic is given below:

..nm
sin—~

K, = (2.107)

msinn—y
2

where y is the slot angular pitch in electrical degrees and m is the number of slots per pole
per phase. For a concentrated winding, m=1 and so kq=1.
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Figure 2. 12. A typical three-phase two-pole stator with concentrated windings: (a) stator phases and field
axis of each phase, (b) flux lines and MMF produced by phase a, (¢) flux lines, and MMF produced by phase
b, (d) flux lines and MMF produced by phase c, and (e) the resultant traveling MMF in the air-gap

2.9.2. Equivalent Surface Current Density of Stator

In this section, we obtain the equivalent surface current density of the stator that plays
the role of the stator winding embedded in the slots in the slotless winding after employing
the carter’s coefficient. It will be used in torque calculations on the stator as well as in
extracting the tangential component of the magnetic field intensity on the surface of the

stator. Using Ampere’s circuital law for the closed curve C in Figure 2.13, we have:

¢_H.dI =K, RA6
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Magnetic field intensity is zero in infinitely permeable irons, so it leads to:

Hr - Hr
r _ Kz RiAH - Kz :_g |9+A9/2
0+A012 R AB

0-A0I2 (2 109)

g9 HF|H—A9/2 -gH

The limit of the difference quotient above as 46 approaches to zero leads to the
derivative of Hr with respect to 4 as in below:

K, =lim 9 Mels.ae =Ml o __g N, (2.110)

860 R AO R 06

On the other hand, we know that

F.=gH, (2.111)
Combining the two leads to:
-10F
K,(6,t) =—— 2.112
00 =255 (2.112)
By substitution of Fs, we obtain the fundamental component as in below
34 NI
K,(0,t)==———k, cos(plf—at—5 2.113
z( ) 2 T 2RI w ( pS ) ( )
It can be written as in below:
K,(8,t) =K, cos(p,d—wt—5) (2.114)
K, = 34N Kk, (2.115)
27 2R
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H

Figure 2. 13. Closed line of Ampere’s law enclosing the surface current density of the stator.

2.9.3. Tangential Component of Field Intensity on Surface of Stator

The tangential component of the magnetic field intensity on the surface of the stator
will be used in determining the shear stress on the stator surface using the Maxwell stress
tensor. Using Ampere’s law over the contour C shown in Figure 2.14, and knowing that

magnetic intensity within infinitely permeable iron of stator is zero, we have:
H,-0=K, = H,=K, (2.116)

By substituting K, we obtain the fundamental component as in below:

H,(6,t) = H,, cos( p,d —wt—5) (2.118)
34 NI

=27 sk 2.119

01 272'2R| W ( )

Figure 2. 14. Closed line of the Ampere’s law around the boundary of stator surface
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2.10. Permanent Magnet Modeling

This part is devoted to the calculation of the magnetomotive force, equivalent magnetic

charge, and equivalent Amperian current of the PMs.
2.10.1. MMF Produced by PMs

The magnetomotive force produced by permanent magnets, which will be used in the
calculation of the radial component of the magnetic flux density distribution, can be written

as in below:
F.(@)=h,M(9) (2.120)

where hp is the PM height and the magnetization density of permanent magnets M, shown

in Figure 2.15(a), is related to PM’s residual flux density By as in below:

M-18 (2.121)

Ho

We also know that

H = s (B + M) (2.122)

The permanents magnets are alternating in the polarity and have an arc angle of 0, so
Fourier series representation of the demagnetization density distribution can be written as

in below:
M(©@) =3 2 2 sin 1 Pubin cosnp (6-6,) (2.123)
n=1 /uo nz 2

odd

Then, the fundamental component leads to a continuous magnetization sheet, as shown

in Figure 2.16(a). It can be represented as in the following:
M (@,t) =M, cos p,(6-6,) (2.124)

where
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MoziﬂsinmeHm (2.125)

T Hy
In the case of rotating magnets, we have:
O, =0t+¢ (2.126)

where wm is the mechanical speed of the rotor and ¢ is the initial position at time t=0. When

the modulators are the rotating part, and PMs are stationary, we have 6o=0 and then,

M (8) =M, cos p,,60 (2.127)

2.10.2. Coulombian Magnetic Charge Model of PMs

Using the so-called Coulombian model, the permanent magnets can be represented by
fictitious magnetic charges that can be used in torque calculation by employing Kelvin
magnetization force density. The magnetization density M results in the fictitious charge

density pm as in below:

P, ==V.1,M (2.128)

In radially magnetized permanent magnets, we have:

oM

P =~y , r (2129)

In a permanent magnet having a uniform magnetization, the divergence of M is zero
throughout the volume. In this case, a magnetic surface charge density is defined as in the

following:
o, =-Nu(M*-=M") (2.130)

where n is the normal unit vector of the surface boundary. It is worth noting that positive
and negative magnetic surface charge densities should be assigned to the surface
boundaries of a permanent magnet such that M vectors originate from negative charges and

terminates on positive charges—the rule. As shown in Figure 2.15(b), the surfaces
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magnetic charges on the two sides of PMs, whose normal vectors are in the radial direction,

are obtained as in below:
o, =tu,M (2.131)

The fundamental component, as shown in Figure 2.16(b), obtained from the
fundamental component of the surface charge density distribution shown in Figure 2.16(a),

is obtained as:
o, (0,t)=—-p,M,cos p,(0—-6,) (2.132)
When modulators are the rotating part, and PMs are stationary, we have 6o=0 and then,
o, (0) =—u,M,cos p,0 (2.133)
Torque on PMs using Kelvin force and magnetic charge model of PMs:

Kelvin magnetization force density can be used in finding the force on a magnetic
charge in the presence of a magnetic field. Force density acting on magnetic charge density

pm in @ magnetic field of H can be obtained as in the following:

f=p H (2.134)

Also, force density acting on magnetic surface charge density om in a magnetic field of

H can be obtained as in the following:

f=o_H (2.135)

F =M, 4 +H,4, (2:136)
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2.10.3. Amperian Current Model of PMs

Magnetization of permanent magnets can be modeled by an equivalent current density
called Amperian currents which can be used in torque calculations by employing Lorentz
force. The equivalent current density of magnetization M can be extracted as in below:

J =VxM (2.136)

m

For radially magnetized PMs, the equivalent current is in the z-direction is obtained as

in the following:

L (2137)

" r oo
In a permanent magnet having a uniform magnetization, the curl of M is zero

throughout the volume. In this case, a surface current density is defined as in the following:
K. =M xn (2.138)

where n is the normal unit vector of the surface boundary. It is worth noting that positive
(in +z direction) and negative (in -z-direction) surface current densities should be assigned
to the surface boundaries of a permanent magnet such that they produce flux in the same
direction as M—right-hand rule in Ampere’s law. As shown in Figure 2.15(c), the surfaces
current densities on the two sides of PMs, whose normal vector are in the @ direction, are

obtained as in below:

K =+M (2.139)

m

This is a singularity at the side surfaces of a radially-magnetized PM. The radius r in
the curl representation of Amperian currents can be seen by looking at the nature of an
impulse. If 6o is the left side position of the right PM, on which there is a singularity,

according to the definition of an impulse, we have:
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‘90+ 190+ ‘90+
[3,@d =M= [3,@)rdo=-M = ij(e)de=¥ 2.140)

Op. 0. Op.

The fundamental component, as shown in Figure 2.16(c), obtained from the
fundamental component of the magnetization density distribution shown in Figure 2.16(a),
is obtained as:

1M Mgp,

Jm(r,H,t):—FE—TSin pm(9—6’0) (2141)

When the modulators are rotating part and PMs are stationary, we have 8,=0 and then,

JMnm=B%%mnme (2.142)

Om A

T 1.

(c)
Figure 2. 15. Permanent magnet modeling: (a) magnetization, (b) equivalent fictitious charge and (c)
equivalent surface current density
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Figure 2. 16. Permanent magnet modeling using the fundamental component: (a) magnetization, (b)
equivalent fictitious charge, and (c) equivalent surface current density

2.10.4. Tangential Component of Field Intensity on Surface of PMs

The tangential component of the magnetic field intensity on the surface of the PMs will
be used in determining the shear stress on the surface of PMs using Kelvin force density.
The tangential component of the field Hy can be approximated based on the radial
component of the field H,. The field is perpendicular to the surface of the infinitely
permeable iron, so

(9|r:R0+hm = 0 (2143)
As shown in Figure 2.17, using a linear approximation of Hy in the PM region, Hy can

be represented as a linear function of r with the rate of 0H/06.

oH
He|r:R0 _H9|r:R0+hm = 8r9 [R, = (R, + )] (2.144)
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It leads to:

Ampere’s law in a current-free region says that:

oH, 10H

VxH =0 = (0-0)a, +(0-0)a, +( o ra—H’)azzo
SO,

oH, _10H,

or r 06

We obtain Hy as a function of H, on the surface of the PM (r=Ro):

h, oH,
=R G0

Figure 2. 17. Linear approximation of the flux lines at the surface of PMs
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Chapter 3

Flux Tubes and Magnetic Equivalent Circuits

3.1 Introduction

Both numerical or analytical techniques may be used in the analysis of electrical
machines. Numerical approaches like the finite element method [86], although accurate,
are usually expensive and too time-consuming to be used in the design optimizations, while
analytical models by providing fast yet accurate solutions are a very good trade-off between

accuracy and the required time—useful in preliminary design stages.

Analytical frameworks for analysis of electrical machines may be performed using the
solution of Laplace’s and Poison’s equations, or by employing flux-tube-based techniques
[87] The former, although very powerful, might be complicated for many geometries,
incapable of taking iron saturation into account, while the latter is usually simpler and
effective in many configurations without any symmetry and is able to account for iron
saturation and most material properties, e.g., both PM characteristics. In this chapter, flux-
tube-based models for eddy-current couplers and switched reluctance motors, as very good
examples, have been developed. Analytical models are the best candidates for design
optimization and parametric analysis of electric machines. In this chapter, this method is
studied for two topologies od electric machines.

3.2. Example I: Eddy Current Couplers

In this section, a flux-tube model for axial-flux eddy-current couplers is offered [31],
which is on the basis of a three-dimensional magnetic equivalent circuit combined with
Faraday’s and Ampere’s laws to account for the reaction field produced by induced eddy-
currents. The proposed framework provides good flexibility and simplicity and is able to
consider all geometrical parameters and material properties, e.g., saturation and

permeability of the iron parts, remanence and coercivity of PMs, and actual current paths.
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Moreover, it is capable of handling complicated geometries since there is no need for
boundary conditions. A number of design-related considerations are analytically derived
as well and accounted for practical concerns. Three-dimensional FEM has also been
employed in the analyses of the device as well as evaluations of the model. Advantages of

the proposed model in terms of accuracy and effectiveness are shown.

3.2.1. Proposed model

Geometry and specifications of the studied axial-flux eddy-current coupler are
illustrated in Figure 3.1 and Table 3.1. Axially-polarized surface-mounted PMs alternating
in the direction of magnetization are placed on the surface of the primary rolled back-iron,
and the conductive sheet (CS) is located on the surface of the secondary part. The prime
mover is attached to one part while the load is fixed to the other. Currents are induced in
the CS due to a relative speed between the two parts, from which the reaction field is
developed that produces an electromagnetic torque from the interaction with the primary
magnetic field. The active region associated with PMs and back irons are limited by R; and
Ro, while the conductive sheet is extended by overhangs of length H from both sides to

provide a return path for the induced current.

nonmagnetic
frame

/

Figure 3. 1. Geometry of the studied eddy-current coupler
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Table 3. 1 Specifications of the case-study coupler

parameter value parameter value
active inner radius, R; 30 mm primary-yoke, Ly, 6.5 mm
active outer radius, R, 50 mm secondary-yoke, Ly 6.1 mm
PM height, hym 7 mm PM grade N35
air-gap length, g 1mm PM remanence 1197
CS thickness, Les 1mm PM corecity -872 kA/m
overhang length, H 10 mm CS conductivity (Cu) 58 MS
PM arc, 6 30 deg steel grade M15
number of PMs, Nom 8 frame material Aluminum

To simplify some calculations, the device geometry may linearly be expanded along
with the average radius of the active part given below:

RaV = (Rl + RO) /2 (31)

Then, the pole pitch, the equivalent effective length and the translational speed of the
linearized structure could be defined respectively as in the following:

rp:Ravé’p : L:RO—Ri ;v:RaVa) (3.2)

3.2.2. Field Calculations:

First, the magnetic flux produced by PMs is determined using the implemented
nonlinear MEC. The induced current in the conductive sheet is then calculated through
Faraday’s law. Finally, the impact of the reaction field on the original air-gap field is taken
into account by Ampere’s law. The flux paths and the 3D MEC of one flux loop associated

with the machine are depicted in Figure 3.2.
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Figure 3. 2. Magnetic equivalent circuit: (a) Flux paths within the machine, (b) Flux paths within the
machine, (c) The corresponding 3D MEC

The equivalent MMF of a PM is as follows:

Fo=Hc Ny (3.3)

The reluctance of a PM, and the total reluctance of the effective air-gap (including CS)

are calculated as follows:

Ry=—m o (3.4)
m O Ry - R 2 R-2 0 '
,Llo,urj-_[rdrde luOlur( 0 |)m
0 R

R -—9tbks __ 20+L.) (35)
’ f Hy (Ro _Ri )em

Ly I J rdrdé

0 R

where ge=g+Lcs IS the effective air-gap, and pr=-B+/Ho Hc is the relative recoil permeability
of PMs through which both PM characteristics are accounted for in the proposed model. It
is worth noting that only By is accounted for in the models that are based on Laplace’s
equations. The flux tube associated with the leakage permeance between the two adjacent

PMs is shown in Figure 3.3(a), whose corresponding permeance can be found as follows:
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o R, —R)d
¢ zl+(1-a,)7, (3.6)

Finally, we obtain:

P :ﬂO(RO_Ri)ln(1+7[(g+LCS)]
T

m 1-a,)7,

(3.7)

According to Figure 3.3(b), the magnet to iron leakage permeance can be calculated

from the following:

ILl(R R)dl (3.8)

rl+h, '
Executing the integration yields:

ot (R~ R)Ln[ nLi] (3.9)
/s hon

where the thickness of the flux tube L; is the minimum of half of the inter-polar length and

the effective air gap as follows:

Li(a,) =min(g, ,(1-a,)7,/2) (3.10)
According to Figure 3.3(c), magnet leakage from the top surface is calculated as:

Ige /JO(R ' /2)dl (311)
+h

pm

We obtain

4 m

P“ /uO Roem Ln [1 3;Zhge j
(3.12)

According to Figure 3.3(d), the bottom leakage flux is obtained as:
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- Ige ,uO(R /2)dl (3.13)
+h

pm

We obtain

R, =F o °3R'9"‘ Ln [1 3;99 j (3.14)
T m

(b)

(d)

Figure 3. 3. Flux tubes: (a) PM to PM leakage permeance, (b) PM to iron leakage permeance in the
interpolar region, (c) PM to iron leakage permeance on the top surface, (d) PM to iron leakage
permeance on the bottom surface

Since the flux density within the iron yokes are higher behind the inter-polar regions,

to obtain higher accuracy, as shown in Figure 3.4(a) and Figure 3.5(a), reluctance of either

primary or secondary iron yokes are considered to be formed from three separate

components. In addition, a mean area, defined as the average of the areas through which

the flux paths as shown in Figure 3.4(b)-(d), is considered to calculate reluctances of the

primary iron as in below:

! |
e 0.5 (R +R,)(6,/2) (3.15)

ypl yp3 Onl2 R
Ho H;
o Himt At O.Syoyiypl{(Ro—Ri)Lyp+ [ jrdrde}
0

Ri
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05(R+R,)6,

Rypp = Ryps = (3.16)
TPy i {(R—R)L, +(R2-R?)E, 14}
| 05(R+R) (6 -6
yp2 = yp2 — ( j o) ( p m) (317)
Hy :uiypZAypZ 05:”0 :uiypz {(Ro - Ri)Lyp + (Ro - Ri)Lyp}
0.5 (R +R,) (6,-6,)
w2 = : (3.18)

Hy ﬂiypz (Ro - I:zi ) Lyp

According to Figure 3.5(b)-(d), reluctances of the secondary iron is obtained similarly

as in below:
I 05(R +R)@, 12
R =Ryg=—2—= (R +R)(0n72) (3.19)
6,/2 R,
Ho /uiyslAysl
Ho 11 059 (R, —R)L, + [ [rdrde
0 R
_ _ 0.5 (Ri + RO)Qm (320)
I:stl ys3 2 2
Ho ﬂiysl{(Ro_Ri)Lys+(Ro _Ri )em/4}
_ IysZ _ 05 (R + Ro) (ep -0,) (321)
e Ho /’tiyszA/sz OSIUO Hiyso {(Ro - Ri)Lys + (Ro - Ri)Lys}
05 (R, +R,) (6, -0,)
s2
! Ho Hiyso (R, —R; )Lys (3.22)
[4R, +R+R, +R+R 0 2R, 0]
0 2Rm + Ran Rm _ZRIiRII Rlb 0 Py 0
RiRy + Ry Ry, + RRy, RiR: + RiRy + RyRy, Pn | | 2F,
—Rin “RAR, 2Ry +Rypp +Ryps + _ZRRR, +R,,) 0 P 0
RiRie +RiRy + Ry Ry RiR; + RiRy, + RR,, Pys 0
1 0 0 2)
(3.23)

where, Mip1, Mip2, Mip3, Mist, Mis2, and is3 are relative permeabilities of the iron components
determined by the B-H characteristic of the utilized steel. Finally, solving the circuit shown
in Figure 3.2(c) yields the system of equations in (3.23), from which circuit fluxes can be

calculated.
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Figure 3. 4. Reluctances calculations for the primary iron: (a) Reluctance elements, (b)
Calculations of Ryp1, (c) calculations of Ry, (d) Calculations of Ryps

(c) (d)
Figure 3. 5. Reluctances for the secondary iron: (a) Reluctance elements, (b) Calculations

of Rys1, () Calculations of Rys,, (d) Calculations of Ryss
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An iterative procedure is employed to calculate the permeability of the saturable
permeances. The unsaturated values are initially assigned to the relative permeability of
iron reluctance to determine the reluctance network and solve the circuit. Afterward, the
associated magnetic flux densities are calculated as in the following:

=B, = = L (3.24)

ypl yp3 Aypl {(Ro _ Ri)Lyp +(R02 — Riz)em /4}/2

B,y Py _ Pyo
Aype (Ro_Ri)Lyp (3.25)

- Pys (3.26)

B
UUEUAL R -RIL+(RF-RDE, 14}2

— ¢ys ¢y5 (3 ) 27)

BysZ =
A/sz (Ro - Ri)l-ys

Then, through the B-H curve of the utilized iron, new permeabilities are updated. To

this end, auxiliary permeabilities are obtained by:

) _ g (kD) (k-1)
Fhypr =Bypy " L 1H (3.28)

0O _ g (k1) (k1)
Fhypz =Bypy " [ 1H o (3.29)

A =B pH & (3.30)

A =B T pgH (Y (3.31)

Then, new permeabilities are calculated through:

(k) _[A(k)

/uiyp 1]d [/'liglkpll) ]17d

Hiyp1 = (3.32)
(K) _r~k)tdr, (k-1)id

Hiyp2 _[luiypz] [:uiypZ | (3.33)
(k) _rpk)yd (k -1)1-d

Hiys1 = [:uiysl] [/uiysll ]1 (3.34)
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(k) (k) (k 1) 71-d
/u|y52 [Iulysz] [luinZ ] (335)

where K is the iteration number, and d denotes a damping constant set to 0.1. The process
lasts until the following criterion is independently satisfied for all permeabilities as in

below:

(k)

‘[/uiypl lulypll)] / /u|ypll)‘ -

(3.36)
Ly, — i 01 gl < e (3.37)
el = w11 s < & (3.39)
L), — 01 1l < e (3.39)

where ¢ is the termination factor assigned based on the required accuracy (0.01 herein).
The distribution of the radial component of the flux density produced by PMs in the air gap

and the CS can be expressed as below:

0 Ty 1 2<x<—a,T, 12
B, (X) ={B, =— 2 g7, 12< x<ay, |2 (3.40)
a,7,L
0 sant, [2<x<7,12

3.2.3. The Induced Currents

Once the flux density is calculated, the induced current density in the conductive sheet

is determined by Ampere’s law as in below:

J(X)=0 VxB=0VB,(x)=R,, 6 @B, (x) (3.41)

where v, @, B, and B; are respectively the relative velocity vector, relative angular velocity,

and the total magnetic flux density vector and its axial component.
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3.2.4. The Reaction Field
The resultant flux density distribution in air-gap and the conductive sheet is defined as
the resultant of the fields produced by PMs and the reaction field as in below:

Bz (X) = Bpm (X) + Bcs (X) (342)

where Bcs(X) denotes the reaction flux density issued from the induced current in the
conductive sheet, whose associated flux lines are shown in Figure 3.6. This can be

calculated by applying Ampere’s law to the depicted path, as in below:
2(h, +9+ Ly )Ba(¥/ sty = [ [, (o' R,y @B, (x)) dzlx (3.43)

where, x1 and x. are the positions of the left and right sides of the path, respectively.
The term after the equality is the total current enclosed in the closed path. Since the reaction
flux mainly flows across the unsaturated iron parts, the corresponding MMF drops are
negligible, and PM recoil permeability is assumed unity compared to the iron parts, all of

which help avoid excessive calculations. Finally, the substitution of (3.42) yields:

B, (x) =~ A0 Vb [ 7B, (0 + B (0]dx (3.44)

2(9+L,+ hpm) X

Differentiating (44) with respect to x yields an ordinary differential equation as in the

following:

dB(x) MoVl
dx 2(9+ L+ hpm)

{Byn () + B ()] (3.45)

whose general solution can be obtained according to the definition intervals of Bym(X) given

in (40), as follows:
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B =k exp #y OV Ly X : I <X< “%nTp
2(g+L + hpm) 2 2
B, =By =k oxp] = #0TVhs yl g TonTe oy Ol (3.46)
2(g+ L, +h,,) 2 2
BcsS = k3 exp Ho av LCS X ;_amz-p < X< T—p
2(g+L,+ hpm) 2 2

Given in the Appendix, constants ki, k2, and ks are determined by the conditions below:

X0 Lcs Tp/2 Lcs
B.,(%)=0 = .[—rp/z.[o JdA=[""[ " JdA (3.47)
a,T a,.T
Bcsl(x == : ) = Bcsz (X == : ) (3.48)
2 2
B, (x= a”‘zfp )=B,,(x= “"‘ZTP) (3.49)

where the first equation denotes the main condition referring to the point x=xo where total

currents enclosed in the intervals [-7p/2,X0] and [xo, 7p/2] are the same, so the magnetic field

at the point xo is zero. Equations (3.48) and (3.49) denote the continuity of Bes(x) at the

margins of the PMs. The significant point xo is thus determined through the following

equation:

Xo Les 7,012 ol
R, aa)Lp/zJ.O B,(x)dzdx=R,, aa)LO _[O B, (x)dz dx (3.50)
Xo is obtained by solving the above equation as in below:

mr m
®1/ cosh[

2

1 7,
X, =——Ln| cosh[(1-¢«,,)
m 2

]J (3.51)
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Reaction field

X=-Tp/2 x=0
Figure 3. 6. Flux lines of the reaction field

3.2.5. The Developed Torque

Finally, the developed torque is calculated by the total ohmic losses dissipated by the

induced currents in the conductive sheet, as in below:
2
T=Plo= (L/ow)ﬁcsp ()| dxdz (3.52)

3.2.6. The Actual Current Distribution

Here, a 3D correction of the equivalent 2D model is carried out to consider the actual
current paths in the conductive sheet, including the return paths in the overhangs.
Figure 3.7 illustrates the induced current paths in the conductive sheet. Figure 3.7(a)
illustrates the condition in which return paths are neglected, and induced currents are
considered to flow only in the r-direction, while actual induced currents, including the
return paths, are depicted in Figure 3.7(b). Finally, Russel’s coefficient, given below, is

employed in order to take into account the actual current paths.

1o tanh(pL/4R,,) (53.3)
(pL/4R,,)(1+ 1)

where A is the overhang coefficient defined as in below:

A=tanh(pL/4R,,) tanh(e, pL/4R,,) (3.54)
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where a.=2H/L is the ratio of the total overhang length to the active length. The developed

torque is finally modified by the correction of the CS conductivity, as in below:

o =K, o (3.55)

return current path
induced current
return current path

(a) (b)
Figure 3. 7. Induced currents in the conductive sheet: (a) Simplified current paths in the conductive-sheet
by neglecting the return paths, (b) Real current paths by considering the return paths in the overhangs

3.2.7. Design Considerations

A constraint should be placed on the maximum current density in the conductive sheet
to avoid an excessive temperature rise that substantially affects the PMs and the adhesive
holding them to the rotor surface. The average current density is calculated as in below:

Les TPIZ
J, = jo Lp/zJ (x)dxdz/Lg 7, (3.56)

Also, the following relationship should also be satisfied to limit the flux flowing into

the back irons and avoid saturation.

L, > ¢,/LBg. ; L B

knee

Moreover, it is essential to limit the ratio of the field intensity inside the PMs to its
coercivity in order to keep the operating point conservatively above the knee of the
demagnetization curve to prevent irreversible demagnetization due to the reaction field or

high temperature. A Hm/Hc ratio of 0.75 is acceptable. We have:
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H,/H,=1-B,/B, (3.58)

where Bn is the flux density within PMs.

3.2.8. Evaluations

This section is devoted to the evaluation of the main characteristics of the device
obtained by FEM, the implemented analytical model, and the prototyped coupler.
Figure 3.8 shows the B-H characteristic of the utilized steel. Figure 3.9 illustrates the
resultant magnetic flux density in the air-gap and the current density distribution in the
conductive sheet, from which a close agreement with FEM is seen as well. A full-meshed
model of the utilized 3D FEM is shown in Figure 3.10(a), in which relatively smaller
elements are considered in the CS and the PMs wherein there is a higher field variation. As
flux density on the surface of iron parts and PMs is shown in Figure 3.10(b), the flux
density within the secondary iron behind the inter-polar region corresponding to Ryp1 and
Rys1 is 1.5 T, i.e., the knee point of the B-H curve, as designed, and the adjacent portions
associated with Ryp2 and Rys2 magnetically operate at a lower flux density, as expected. Flux
density distribution on the air-gap side of the conductive sheet is presented in
Figure 3.10(c).

‘I.SKI
% 1

o HKkAm) 10
Figure 3. 8. B-H characteristic of the utilized steel grade M15.
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(a) (b)
Figure 3. 9. Field calculations at speed of 400 rpm: (a) Air-gap magnetic flux density and (b) Current
density distributions
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overhang area

(a) (b)
Figure 3. 10. 3D FEM: (a) Full meshed model, (b) Flux density distribution on the surface of iron parts
and PMs, (c) Flux density distribution on the surface of the conductive sheet

The torque-speed characteristic of the coupler is shown in Figure 3.11, from which a
maximum torque limitation of 4.4 N.m via the allowed maximum current density of 50
A/mm? can be determined. Also, it can be observed that a close agreement between the
analytical, the experimental, and the FEM results are obtained. It is worth noting that in the
eddy-current couplers since the induced current only exists in a solid conductive sheet
without any insulation, the current density can be much higher (here 50 A/mm?) compared

to conventional machines (about 5 A/mm?).
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Figure 3. 11. Torque-speed characteristics of the machine

3.3. Example I1: A Switched Reluctance Motor with Hybrid Excitation

In this section, modeling, design, and experimental study of a two-phase SRM with
Hybrid excitation and self-starting capability is accomplished. The geometry of the motor
is based on C-core modules, whose advantages are shortened flux paths leading to smaller

core losses and reduced hysteresis losses as the direction of the flux within the stator core
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do not reverse; the required MMF is also smaller, resulting in a reduction in the copper
losses. Thanks to this configuration, a number of PMs can be incorporated into the motor
to get the hybrid excitation leading to a higher torque density. In addition, by adding several
teeth on the two poles of the C-cores, the desired number of stator/rotor teeth can be
obtained, as well as the winding area, and thus, the electrical loading of the motor goes up.
Also, a new technique is employed to bring a self-starting capability and a pre-determined
direction of rotation, which has superiorities over the previously proposed methods. A
MEC-based model for analysis and design of the motor is implemented. It includes precise
flux tubes for modeling the air gap and the core permeances by dividing the rotation range
into five different regions according to the observed flux pattern. To attain higher accuracy,
core saturation is also considered. Another superiority of the proposed model over the
previous techniques is that it provides a continuous analytical model over the five regions
as well as on the boundary between them, whose merit is clear in the numerical
differentiation in torque calculations. Also, FEM is employed in the design and the analysis

of the motor, as well as verifications of the model.

3.3.1. Proposed SRM

As shown in Figure 3.12, in the proposed two-phase SRM (Nph=2), the stator is made
up of separated C-cores called modules, there are a number of teeth on each pole of a C-
core, and PMs are embedded in the structure to provide a hybrid excitation. Also, a
technique is used to obtain a self-starting capability. Table 3.2 summarizes the
specifications of the proposed structure with and without PMs, i.e., hybrid-excited modular
SRM (HEMSRM) and modular SRM (MSRM).
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Figure 3. 12. Topology_of the proposed HEMSRM.

Table 3. 2 Dimensions of HEMSRM and MSRM

Parameter Symbol|HEMSRM | MSRM
Number of phases Nopn 2 2
Number of stator teeth N, 16 16
Number of rotor teeth N, 18 18
Number of C-core per phase n 2 2
Number of teeth per pole of a C-core m 2 2
Rotor pole pitch (deg) O 20 20
C-core angle (deg) y 40 40
Stator pole arc (deg) A 8 8
Stator tooth arc (deg) Ps & fsto | 84&11.9 |84&11.9
Rotor pole arc (deg) Pr 8.4 8.4
Stator outer diameter (mm) D, 94 94
Stator yoke thickness (mm) by 4.7 4.7
Stator inner diameter (mm) D; 51.2 51.2
Stator pole length (mm) hs 10.7 10.7
Stator tooth yoke thickness (mm) by 3 3
Stator tooth length (mm) hy 3 3
Air-gap length (mm) lg 0.3 0.3
Rotor outer diameter (mm) d 50.6 50.6
Rotor pole length (mm) hr 4.55 4.55
Shaft diameter (mm) Dgy 20 20
Stack length (mm) L 20 20
PM width & length (mm) Wew &lpm | 5 & 10 -
Available windings space (mm?) ac 112 112
Fill factor F+ 0.64 0.64
Current density (A/mm?2) Je 55 55
Number of turns per pole of a C-core Toole 90 90
Type of PM - NdFe42 -
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3.3.1.1. C-Core Stator
Each stator phase is made up of a number of C-cores. Each C-core has two poles. There

is a concentrated winding around each pole. The stator flux goes to the rotor from one pole
and returns from the other pole. There are three main advantages compared to the

conventional structures:

1. Compared to conventional SRMs, the flux path in the rotor and stator back irons is
shorter, so the required magnetomotive force and the following copper and core
losses are reduced.

2. The direction of the flux in the C-cores does not reverse and is always the same,
which results in a significant reduction in the core losses.

3. As the C-cores are magnetically isolated, we can incorporate PMs to have a hybrid-
excited stator.

We know that each C-core produces an attraction force on the shaft, so an important
point is the number of C-core per phase. As it will be explained later, having only one C-
core per phase (n=1) results in a radial force on the shaft of the motor, which is destructive,
can damage the ball bearing, and can cause eccentricity. Therefore, n=2 is picked so that

the radial forces on the shaft are canceled out.

3.3.1.2. The Stator and Rotor Teeth Design
The stator is designed such that there are m teeth on each pole of a C-core. The number

of stator teeth Ns is the number of phases Npn times the number of C-core per phase n times

the total number teeth per C-core 2m:

Ns:NphanZm (3.59)

The number of rotor teeth Ny is given as follows, where 2m is the number of teeth
required for the aligned phase, and 2m+1 is the number of teeth required for the unaligned

phase.

N, =n[2m+(2m+1)] (3.60)
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3.3.1.3. Hybrid Excitation by Embedding PMs
By adding PMs between the C-core modules of the MSRM, we obtain a HEMSRM.

The direction of the magnetization of the PMs should be determined such that the direction
of the PM flux is the same as the direction of the stator flux in the air gap when a phase is
excited. Consequently, the air-gap flux is strengthened, resulting in higher torque.
Therefore, the direction of the PMs should be clockwise or counterclockwise, which is
based on the direction of currents in the stator windings. Here, the clockwise direction is

selected.

3.3.1.4. Self-Starting Capability
A big drawback of two-phase SRMs is that they do not have a self-starting torque and

thus a pre-determined direction of rotation. To obtain a starting torque, one of the left or
the right tooth of each pole of a C-core needs to be extended by an amount of o from one
side. It can be seen that when phase B is aligned (the right flux loop), phase A (the left flux
loop), which is in an unaligned position, can develop a starting torque if excited. This
technique of developing a staring torque by making an asymmetry in the torque-angle
characteristic can be observed in Figure 3.13. If the extension is made on the right side of
the teeth, the direction of the rotation of the rotor is counterclockwise; also, if the extension

is made on the left side of the teeth, the direction of the rotation of the rotor is clockwise.
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attraction force determining the direction of rotation

Figure 3. 13. Teeth extension in the proposed self-starting technique.

3.3.1.5. Flux Analysis
Figure 3.14(a) shows flux loops and flux density distribution due to only stator

excitation (MSRM). It can be seen that, compared to conventional SRMs, there are no flux
reversals and the flux paths are shorter (smaller required MMF), resulting in lower core
and copper losses. As flux paths and flux density distribution due to only PM excitation
are shown in Figure 3.14(b), it is observed that nearly all of the PM flux closes its pass
through the stator C-cores at zero current, resulting in almost zero cogging torque. As
shown in Figure 3.14(c), as the current goes up in HEMSRM, the stator core gets close to
the knee point of the saturation, and core reluctance goes up, thus more PM flux tends to
pass the air-gap and close its path through the rotor; it is how the PM flux reinforces the
air-gap flux density, leading to an increase in the developed torque. It is worth noting that
the thickness of the C-cores should be designed such that they get close to the knee point
of the saturation curve at the nominal current so that most of the PM flux passes the air gap

to contribute to the energy conversion.
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Figure 3. 14. Flux paths, flux lines, and flux density due to (a) only current (MSRM), (b) only PMs, and (c)
both current and PMs (HEMSRM).

3.3.2. Flux Tube Modeling

This section is devoted to MEC and torque derivation.

3.3.2.1. Magnetic Equivalent Circuit
The implemented MEC, is given in Figure 3.15. The circuit, which has 32 nodes, can

be solved using Kirchhoff’s current law to obtain the node MMFs. It leads to the following
32-by-32 system of equations:
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':P'J ]32><32 [Fl ]32><1 - [(Di ]32><1 (3.61)

where the node MMFs F; are the unknowns. The flux sources ¢i are obtained using the
Norton equivalent of the MMF sources of the stator Fs and the PMs Fpm as in below:

9, = (2P, + P )(2F,) (3.62)

Pom = (2P +P,)(2F,,) (3.63)

Then, the flux source ¢i is psp for i=2 and 31, -psp for i=3 and 30, ¢pm for i=1 and 32,
and -gpm for i=4 and 28. Otherwise, ¢i is zero. The element P;; is the sum of the permeances
connected to the node i if i=j, and it is minus the permeance between the nodes i and j if
i#.

-Pﬂir-gnp(Ph Pla PS and PJ)
=P, =P, mmp, 6 =mP, B8P P, =EP, B8P, 1P,
Figure 3. 15. Magnetic Equivalent Circuit.

3.3.2.2. Air-Gap Flux Tubes and Permeances
As shown in Figure 3.16, based on the observation of the flux lines and the fact that the

flux pattern changes as the rotor rotates from an unaligned position (6=0) to a fully-aligned
position (6=6:p/2), five different regions are considered for the flux tube modelling and
permeance calculation of the air-gap. The boundary between the regions is also specified.

The highest number of flux tubes (the most complicated model) exists in region one, and
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this number decreases with disappearing some flux tubes as the rotor gets close to the end

of region 5 (the simplest model). Each flux tube can be calculated using:

b 44, dX
Py =], 70 (3.64)
gi

where the integration interval [a,b], the flux tube length lgi, and the obtained permeance
relationships are given in Table 3.3. For simplicity, k=uoL/z is used. Other geometrical

parameters are given in the Appendix.

Comparing the MEC in Figure 3.15 and the air-gap flux tubes in Figure 3.16, we
understand that the four air-gap permeances P1, P2, P3, and P4 shown in Figure 3.15 are

constituted from several parallel flux-tubes (Pg1 to Pg13), calculated as in below:

P=P.+PR,+P;+PF

912 (3.65)
P, =P, +P;s+Ps (3.66)
P =P, +Pg+Po+Pys (3.67)
P, = Pgs + Pglo + Pgll (3.68)

It is worth noting that the value of Pg; is zero in some regions, as shown in Table 3.3.

3.3.2.3. Core and PM Permeances
The permeances of the rotor and the stator cores, as well as the PMs, as shown in

Figure 3.16, can be obtained using the following relationship:

p_ HA (3.69)

where the values of permeability 4, length |, area A, and the obtained relationships are given
in the Table 3.3.
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Table 3. 3 Permeance Calculations for Different Regions

Air-gap Permeances
Integration Flux tube
Pgi | Region (Ri) interval length Permeance Relationship
a b li(x)
Ry 01-0 | wt01-0 | lgt(m/2)x 2xin(L+(7r,)/(21,+7(6,-6)))
Pa: Rz R3 R Rs| 0 wt0i-0 | lg+(n/2)x 2xin(l+7(z, +6,-0)/(21,))
Py R1 0 01-0 lg+mx kxIn(1+7(6,-0)/(1,))
Rz, R3, R4 Rs| - - - 0
R 0-0 | w2+00 | lgt@2)x | 2kxIn((41+7(7, +26))/(41,+27(6,-)))
Pgs| Rz Rs 0 w/2+01 | lg*+(n/2)x 2xIn(L+7 (7, +6)/(21,))
R4, Rs 0 r+01-0 lg+(m/2)x 2k><|n(1+;r(r, +6,-0)/(21,))
Pes RLReRs [0140] /2401 | lgt@2)x [2kxIn((41,+7(z, +26,))/(41,+27(6,+0)))
Rs Rs - - - 0
Pes R1 Rz R3 0 01+6 lg+mx kxIn(1+7(6,+0)/(1,))
Rs, Rs - - - 0
b Ry Rz | O1H+0 [1e-1a/2+300/2] lg+(m/2)x | 2xIn((41,+ 7 (27, -,+34,))/(41,+27(6,+6)))
Rs3, R4, Rs - - - 0
Ry R: 0 | w1s0/2+00/2 | lgt(w/2)x 2xIn(1+7(27, 7, +6)/(41,))
Pg|  RsRs 0 | 2o-ta+601-0 | lg+(@2)x | 2kxIn(l+7(2r, —7,+6,-6)/(21,))
Rs - - - 0
- RuRaRsRs| O | ta-tr-0116 Iy ok (7 =7, ~6,+0)/(1,)
Rs 0 Tr Iy /’DL(Tr )/(Ie)
P R1, Rz, Rs 0 w2401 | lg+(m/2)x 2k><|n(1+;r(r, +251)/(4|g))
R4, Rs 0 w00 | lg+(a/2)x 2kxIn(1+7(z, +6,-0)/(21,))
P RLReRs [0i40| /2401 | lgt(m2)x |2kxIn((41+7(7, +26))/(41,+27(6,+0)))
Ra Rs - - - 0
R O+0| o0 | lgt@2)x | 2kxIn(l+(ar,)/(21,+7(6,+0)))
Pui  ReRs  |6i46| 4261 | lg+(/2)x | 2kxIn(2l,+7(z, +26)/(21+ 7(6,+0)))
Ra Rs - - - 0
Py R1 - - - 0
Rz, R3, R, Rs| 0 0-01 Iy L (0-6,)/),
R1, Rz, Rs Ra| - - - 0
Pg13
Rs 0 | ta-21-01+0 | lg+(m/2)x 2kxIn(L+7(z, -2, -6, +0)/(21,))
Core and PM Permeances
Pecore H Area A Length | Permeance Relationship
Psy | usy bsy L 7 (Dobsy)/2 gy (b, L)1 ((7)(D, =by,) 1 2)
Psp Lisp L hs Hy(z,L) 1,
Pro | ol hr Hp(z L)1,
Pry Iy bry L Trp 4y, O L)/ 7
Pst1 MUstl Tl ht Uy (ToL) Ty
Pst2 | stz 2L ht Mo (7,L) Ty
Py | pyu by L (TrptTr-Ts1)/2 My (O, L) (7 + 7, —74) 1 2)
Py | py2 by L Trpl2 (0, L)/ (7,1 2)
Pem | pem wem L lem Hopg (Wepy L) /gy,

3.3.2.4. Core Saturation
The core saturation is accounted for using an iterative procedure in which the

permeabilities of the core permeances updates in each iteration as in below:
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A (K) A (k)
Hi = Bi(k_l) /,uoHi(k_l)’ /ur(ik) = (u,; )d-(/lr(ik_l))l_d (3.70)
where Biron and Hiron are obtained from the BH curve. The damping d is set to 0.1. This

iterative process repeats until the following stop criterion is satisfied for £=0.001.

=<6 (3.71)

3.3.2.5. Torqgue Calculation
Having the node MMFs calculated, the flux passing a pole of a C-core ¢sp, and then the

flux linkage and the inductance of a phase can be obtained as in below:

L(o,i) =22
(3.72)
A(0,1)=2nT . 0, (6,1)
Then, the coenergy and the torque are obtained as in below:
W, (6,i) = % L(6,i)i’ (3.73)

Having the coenergy, the developed torque can be obtained by numerical

differentiation using the following relationship:

W,(0,)]  _1.,dL(@.)

T(0,1)=
©.1) 00 2 déo

(3.74)

i=const

109



Blu Region 1 9|1 Region 2 elz Region 3 ela Region 4 9|4 Region 5 °|5

>

*

half of rotor pole pitch

Il Pgl . 2 sz 3 Pg_: ¥ Pg.; . 5 ng
6 Psg 7 ng | 8:ng [ 9: ng [ 10: Pgll)
Ew 1P, WWI2:P,, WEI13P, [ 114P, ®EI5P,,

0=0i

(a) Region 1
unaligned

(b) Region 2
overlapping boundary

(c) Region 3
overlapping I

(d) Region 4
overlapping I1

PM
Ppy

(e) Region 5 Stator

overlapping ITT

(f) End of Region 5§
aligned

9=95=tr+91=trp/2
Figure 3. 16. Flux tubes for permeances calculations in different regions.
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3.3.3. Results and Discussions

As shown in Figures 3.17(a)-(b), there is a starting torque in both HEMSRM and
MSRM. The PMs have increased the torque in HEMSRM. As summarized in Table 3.4,
the higher the current, the larger the impact of PM deployment on the torque increase; as
it was shown in Figure 3.14, as the current goes up, the core gets closer to the knee point
of saturation and the core reluctance goes up, so more PM flux tends to pass the air-gap so
as to contribute to the energy conversion and finally torque production. Figures 3.19(c)
illustrates the total torque (Tremsrm) at the nominal current of 6 A and its components, i.e.,
the parts produced by stator flux (Tmsrm) and PM flux (Tem), respectively; it is seen that
almost half of the total torque is produced by the PMs. As shown in Figures 3.17(d), the
magnitude of the cogging torque is almost zero (less than 5 mN.m) as almost all of the PM
flux passes the C-cores, as can also be observed in Figure 3.14(b). Also, a great correlation
is observed between analytical, FEM, and experimental results, proving the accuracy of the
model. As given in Figure 3.18, the rate of change of flux linkage versus position is higher

in HEMSRM compared to MSRM, which is the reason behind its larger torque capability.

— [ MIiC = o]
1.5
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g 5 056 / B
a a j‘(
03p T
0
0 36 72 108 144 180 0 36 72 108 144 180
Rotor position (electrical deg) Rolor position (electrical deg)
6
(d) HEMSRM
4 Cogging Torque

3]

Torque (N.m)

)

"ogging Torque
THEMSRM=TMSRM+TPM
00% 43.5% 56.5%

0 36 72 108 144 180 0 5 0 15 20
Rotor position (electrical deg) Rotor position (deg)

Figure 3. 17. (a) and (b) torque-angle characteristics at different currents for HEMSRM and MSRM, (c)

total torque of HEMSRM and its components at the current of 6A, and (d) cogging torque of HEMSRM.
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Table 3. 4 Comparison of Mean and Peak Torque

Phase Torque of Torque of  |Mean torque of| Peak torque of
corase | HEMSRM MSRM HEMSRM | HEMSRM
*) (N.m) (N.m) compared to | compared to
Mean | peak | Mean | peak | MSRM (%) MSRM (%)
1 0.038 | 0.056 | 0.038 | 0.054 0.00 3.70
2 0.150 | 0.212 | 0.140 | 0.206 7.14 291
3 0.328 | 0.471 | 0.234 | 0.392 40.17 20.15
4 0.534 | 0.797 | 0.291 | 0.496 83.50 60.68
5 0.704 | 1.116 | 0.330 | 0.570 113.33 95.79
6 0.833 | 1.374 | 0.363 | 0.628 129.47 118.79
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Chapter 4

A Rotary Actuator with Magnetic
Restoration and an Experimental Prototype

4.1 The Topology of the Actuator

In this chapter, an electromechanical model incorporating eddy currents is developed
for a limited-angle rotary actuator with a magnetic restoration torque to be employed in
identification, drive, and control studies. By elliptically shaping the stator curvature, the
reluctance torque is produced to restore the rotor to the maximum torque position if the

coil current is removed.

The geometry and the exploded view of the actuator, whose specifications are listed in
Table 4.1, are shown in Figure 1(a)-(b). The rotor PM has diametral magnetization. The
interaction of stator flux and the magnet produces the main torque. The stator inner surface
is shaped to have an elliptical curvature whose interaction with the magnet produces a
reluctance torque which tends to restore the rotor back to the maximum torque per ampere
position (MTPAP).

Table 4. 1 Specifications of the Studied Motor

parameter value parameter value
outer diameter, D, | 13.716 mm PM remnant, B, 1.37 Tesla
lamination height d 0.35 total turns, N 100
# of laminations, m 12 wire gauge AWG33
stack length, L 4.191 mm_ | torgue constant, ki [1.906 mN.m/A
pole width, w, 4.72 mm Mag. spring ks 0.636 mN/rad
PM length, Lom 9 mm total stiffness, K 1.3 mN/rad
rotor diameter, D, 3.048 mm total damping, k¢ | 4.49e-7 Ns/rad
minor radius, Ry 1.71 mm inertia, J 1.65e-9 kg.m?
major radius, R, 1.9665 mm inductance, L¢ 280 uH
PM conductivity 0.6 MS/m resistance, R; 1.76 ohm
lamination conduct. 2 MS/m sense resistor, R, 0.1 ohm
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4.2. Design Considerations

In this section, some design aspects of the actuator are explained:

1. The rotor radius Ry and thus the overall sizing is obtained based on torque/power

requirements.

2. Theinner radius of the stator is designed to provide enough space for the stator winding

according to the required electrical loading (Ampere turn).

3. The outer diameter of the stator D, is designed such that the back iron operates at the

knee point of the magnetic saturation curve; too small values result in saturation while
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a large value causes the excessive use of iron and oversizing. A value around half of

the pole face is a good design.

4. There is a compromise between k: and kres; a larger restoration can be achieved by a
higher saliency, but ki goes down as the saliency increase the effective air-gap length,
which causes a reduction in the average flux density of air-gap; therefore, the saliency

should be designed to provide the minimum required restoration.

5. There are two auxiliary slots to divide the pole faces into two sections in order to aid
in restoration by suppressing hysteresis effects. As the rotor goes back and forth around
MTPAP, the direction of the flux produced by the PM within each half of the stator
pole faces changes without the auxiliary slots. By separating the two halves of a pole
face, the magnet flux turns the auxiliary slot; thus, one section always stays North and
the other one always stays South, guaranteeing that the rotor restores to the MTPAP
when the current is removed from the coil. As illustrated in Figure 4.2, without the
auxiliary slots, there could be a hysteresis effect making one-half of the pole face more
or less North/South if the current is removed when the rotor is not at the MTPAP; as a
result, the rotor restores to position with a small deviation from MTPAP. The opening

of these two slots should be small enough so that its fringing effect can be ignored.

; B =20""
(a)without auxiliary slots 0.0 (b)with auxiliary slots

Figure 4. 2. PM flux and hysteresis effect: (a) without and (b) with auxiliary slots.

4.3. Field Analysis

Figure 4.3(a) shows flux lines, flux density distribution, the radial component B, and
its fundamental Br1 on the rotor surface due to the stator current. The left sides of
Figures. 4.3(b)-(d) show the magnetic flux density distribution due to the PM at different
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rotor positions, while the right sides illustrate the PM Amperian currents Kn, together with
Bri—the torque producing. At =0, KnBr1 integrates to zero, so Tceoii=0; also, Trest=0,
because the PM is faced with the minimum permeance, which is an unstable equilibrium
as the slope of the curve is positive. At =45, Trest IS maximum. At MTPAP, i.e., =0,
KmBr1 integrates to a maximum value; also, Trest=0 as the PM is faced with the maximum
permeance, which is a stable equilibrium as the slope of the curve is negative. The meshed

models used in finite element analysis are shown in Figure 4.4.
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Figure 4. 3. (a) 2D distribution of magnetic flux density and flux lines (left), and radial component of
magnetic flux density B, and its fundamental By; due to stator current of 1A, and (b)-(d) 3D distribution of

magnetic flux density (left), and Amperian current distribution of PM together with By, (right) at rotor
positions =0, f=45° and f=90°.

o
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Figure 4. 4. Meshed models for original geometry used for FEM.

4.3. Experimental Prototype

Figure 4.5 shows the prototyped actuator and the torque-angle measurement setup. The
torque-angle characteristics at zero coil currents (the restoration torque) as well as the coil
torque and the total torque at a current of 1A are given in Figure 4.6(a). The torque constant
is obtained as ki=1.906 m N.m/A by experiment and 1.953 m N.m/A by 3D FEM and, i.e.,
less 2.5% of error. Also, the restoration constant is obtained as krest=0.318 by experiment
and 0.28 by FEM and, i.e., an error of 11%. Among the sources of the discrepancies might
be prototyping issues, misalignments, inaccurate material characteristics, etc. The coil
torque is obtained by subtracting the restoration torque from the total torque as it cannot
directly be measured. The back-emf waveform at a velocity around 100 rad/sec is shown
in Figure 4.6(b), where the peak divided by the velocity is obtained as k,=1.91 volt.sec/rad
by experiment and 1.96 volt.sec/rad by FEM and, i.e., an error of less than 3%. It is seen
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that all waveforms have a sinusoidal pattern, as expected from the nonlinear

electromechanical model that will be explained in a future chapter.
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Figure 4. 6. (a) Coil, restoration and total torques, and (b) back-emf waveform

4.4. Conclusions

In the studied actuator, the coil torque is produced by the interaction of the fluxes
produced by the coil current, and the restoration torque is produced by the interaction of
the magnet with the saliency of the stator poles. The penalty of having the restoration torque

is that the coil torque goes down to a small degree, which is a point to have in mind for the
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design of such devices. In some applications, the restoration torque might not be needed,
and so a circular crosssection might is adopted for the stator pole faces. It is also true for
the auxiliary slots; if the restoration does not matter, they may be eliminated from the

topology of the actuator.

119



120



Chapter 5

Electromagnetic Model

5.1 Introduction

Modeling of electric machines and provides very useful tools for design, analysis, and
optimization purposes. Due to advantages like simple structure, cheap maintenance, high
reliability, low cost, and uncomplicated control, rotary actuators have been employed
widely in the industry from automotive manufacturing and biomedical applications to
robotics, aerospace, fluid valves, optical scanning, and 3D printers. They are sometimes
called limited-angle torque motors, especially when designed to provide a constant torque

over an angular region. VVoice coil motors have the same behavior.

The finite element method (FEM) is a very powerful numerical technique in the
analysis of electromagnetic devices, e.g., in limited-angle torque motors and actuators;
however, FEM can be expensive and time-consuming, making them very slow in the design
optimizations. On the other hand, analytical approaches, by providing closed-form
solutions, are very fast yet accurate alternatives for preliminary designs and optimizations.
Electric machines may be successfully modeled based on the solution of Laplace’s and
Poisson’s equations; this powerful approach provides precise field solutions and torque
calculations, yet their major drawback is that several boundary conditions are required to
solve the system of equations, so severe challenges can be faced in complicated geometries.
This approach has been used in the modeling of many electromagnetic devices in different

coordinates, e.g., magnetic couplers in cylindrical coordinates [19], a voice coil actuator in
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cartesian coordinates [25], and limited-angle torque motors in cylindrical coordinates [26].
General solutions in cartesian, cylindrical, and spherical coordinates can be found in [17]
-[18]. However, Laplace’s equation in elliptical coordinates, whose general solutions can
be found in [20] and [24], have rarely been used in the modeling of electric machines. In

[21]-[23], such studies have been done in the realm of physics and accelerator magnets.

In this chapter, an analytical model is developed for a rotary actuator with a magnetic
restoration torque that replaces the traditional mechanical springs having a shorter lifetime
and mechanical fatigue problems. The rotor is a permanent magnet (PM) with diametral
magnetization. The restoration torque is produced by shaping the stator to have an
approximately elliptical curvature such that a reluctance torque is obtained. To model the
actuator, the stator geometry is simplified to an ellipse having surface current densities on
the interpolar regions which are equivalent to stator coils. Also, the PM is represented with

Amperian currents on the surface of the rotor.

To obtain the coil torque, the field solutions within the stator are obtained by solving
Laplace’s equation in the elliptical coordinates in which the equivalent surface current is
used as a boundary condition. Afterward, the magnetic flux density on the PM boundary
are obtained and converted to the cylindrical coordinates. Then, the coil torque is calculated
by the Lorentz force operating on the Amperian currents. As the stator boundary is an
ellipse and the rotor boundary is a circle, the reluctance torque cannot be derived by solving
Laplace’s equation in one coordinate system, so the flux tube method is employed. Also, a
rotating reference frame on the rotor is adopted to simplify the mathematics. It is shown
that the conventional flux tubes used in lumped-element MECs do not work, and thus a
method named differential flux tubes is adopted in which, instead of lumped permeances
for different regions, differential permeances are utilized. Then, the corresponding
differential co-energy is integrated to calculate the co-energy at any rotor position, whose

derivative with respect to rotor position gives the reluctance torque.

The finite element method is also employed in the field analysis and development of
the proposed model. Field distribution, flux lines, and torque profiles are obtained and

analyzed. The actuator is also prototyped. Finally, it is shown that there is close agreement
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among the results obtained from the analytical model, FEM in the simplified geometry,

FEM in the original geometry, and experimental results obtained from the prototype.

5.2. The Actuator and The Proposed Model
5.2.1 The Actuator

The geometry and the exploded view of the actuator are shown in Figure 5.1. The
specifications are also listed in Table 5.1. For this study, the length of the magnet is shorter
than the one used in the previous chapter and the one used in the dynamic studies. It is a
two-pole machine. The stator has two coils that are in series, and each of them includes
half of the total number of turns. The rotor PM has diametral magnetization. The magnetic
field developed by the stator current interacts with the PM to produce a torque which will
be obtained by Lorentz force. Changing the direction of stator current results in back and
forth rotation of the rotor. The stator inner surface has an elliptical shape to create a
reluctance difference seen by the PM to develop a reluctance torque to bring the rotor back
to the maximum torque per ampere position. Also, there are two auxiliary slots in the pole
faces to aid in rotor restoration to maximum torque per ampere position by suppressing

hysteresis effects in the stator laminations.

The total developed torque of the actuator is constituted from the coil torque, which is
the interaction of the field produced by the stator current with the PM, and the restoration
torque, which is a reluctance torque developed from the interaction of the PM with the
variable reluctance of the air-gap. The total torque is a function of stator current and rotor

position as in below:

Tt (ﬂ’ iC) :TCO" (ﬂ’ ic)+Tres (ﬂ) (51)

The coil torque is obtained by solving Laplace’s equation in simplified geometry of the
stator in the elliptical coordinates, and the restoration torque is derived by differential flux
tubes.
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Figure 5. 1. Geometry (top) and exploded view (bottom) of the actuator.

Table 5. 1 Specifications of the Studied Motor

parameter Value
stator outer diameter D, 13.716 mm
stack length L 4.191 mm
outer diameter of rotor D,=2R, 3.048 mm
minor radius of elliptical surface of stator R, 1.71 mm
major radius of elliptical surface of stator R, 1.9665 mm
PM remnant flux B, 1.37 Tesla
total number of turns, N 100
wire gauge AWG33
interpolar angle 6. 38 degrees
fringing angle 6 50 degrees
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5.2.2 Equivalent Geometry of Stator in Elliptical Coordinates

The solution of Laplace’s equation cannot straightforwardly be obtained for the
complicated geometry of the stator where the boundary conditions cannot easily be applied.
As shown in Figure 5.2, in the proposed model, the stator is simplified into a hollow ellipse
whose semi-major and semi-minor axes are Rz and Ri. The two foci F1 and F are also

located at (£c, 0). The ellipse is represented in Cartesian coordinates as in below:

X" IR +y?IR?=1; c=4/R>—R? (5.2)

The advantage of the simplified geometry is that the boundaries of Laplace’s equation
can be easily applied in elliptical coordinates (7, v, z). However, the main challenges are
how to form the boundary conditions and how to reproduce the stator coils in the new
geometry. As shown in Figure 5.2, the stator coils are represented as equivalent surface
current densities Kc=+Kem with an angular span of d; on the boundary of the ellipse where
the interpolar region is located in the original geometry. It will be shown that this new
boundary produces the same field distribution in the region inside the ellipse with very

good accuracy.

a s B
i ~ statorcoil

Oy

—" %
ellipse --- ] 3 . K

Figure 5. 2. An ellipse as an equivalent geometry for the stator curvature and a surface current density
K. in the interpolar region as an equivalent for the coils.

Figure 5.3 shows the new geometry in the elliptical coordinates (,,z) whose

relationship with cartesian coordinates (x,y,z) iSx+jy =ccosh(n+ jy) in the complex plane

and. Deriving real and imaginary parts leads to:
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X = ¢ coshrncosy
y=csinhnsiny ; ne[0,+x], w €[0,27]

£=12 (5.3)

where constant # gives elliptic cylinders and constant y gives hyperbolic cylinders, as
shown in Figure 5.3 with the green lines. A line between the two foci is obtained by #=0.
With the simplified geometry, the flux lines and the flux density vectors have the same
behavior on the ellipse boundary, i.e., perpendicular to the iron surface (zero tangential
component B,=0) where the is no surface current, and non-perpendicular to the boundary
on the interpolar region where there is a surface current density (B,=-Kc). The small impact

of auxiliary slots on the field distribution is also ignored.

The stator boundary can be represented as an ellipse #=no where no=tanh*(R1/R>)

which is obtained from R, = csinh 7, divided by R, = ccoshz,.

Now, the interpolar region angular span & in the cylindrical coordinates need to be
translated into yc in elliptical coordinates. According to point A(xc,yc) in Figure 5.3, the

angular span in the cylindrical coordinates can be obtained x_ /vy, =tan(g, /2). Also, dividing
the two equations (3) at the point A results in x_/y, = cothz, cot(pi/ 2—y, / 2) . Mathematical

manipulations result in:

=2 tanl(tan(ec /2)}

coth Ty (5 4)

The equivalent current density of the stator coils K¢, assumed to be uniformly

distributed, is the total current Nic over the length Ic in the interpolar region is obtained as:

KC = NIC /IC (5.5)

The length I¢ is obtained by integrating over the differential length dl=h: dy where ht

is the scale factor given in the appendix. The length Ic is obtained as in below:

pil2+y 12 pi/2+y 12

I, = J hdy = J' cyJcosh? i, —cos’ w dy

pil2=y, /2 pil2=—y, 12 (5.6)
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It could also be determined in cartesian coordinates but with much more calculations.

Figure 5. 3. Simplified geometry of the actuator in elliptical coordinates.

5.2.3 Amperian Current Representation of PM in Cylindrical
Coordinates

As the PM has a circular shape, it is easier to be modeled in cylindrical coordinates (r,
6, z). The magnetization vector M in the PM region in terms of azimuth 6 and rotor angular

position B can be represented as in below:
M (8, 8) =M cos(@— ) F+Msin(@—p) 9; r <R, 5.7)

Having the residual flux density By, magnetization is obtained as M=Br/uo. A
magnetization vector can be represented as Amperian current density Jm, and since the
magnetization is uniform inside the PM, there is only a surface current density Km on the

surface of the rotor as in below:
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J =VxM; K =Mxnh (5.8)

where n=r is the unit vector normal to the surface of the rotor. By substituting the

magnetization M in (7), Km on the surface of the PM is obtained as in below:

K, (0,8)=Mxf=-Msin(@—-p) 2; r=R, (5.9)

As shown in Figure 5.2(b), it is also seen that the Amperian currents are in the z-

direction because the magnetization vector is always in the ro-plane.

5.3. Coil Torque

To obtain the coil torque using the Lorentz force, the flux density distribution produced
by stator current on the surface of the rotor, where the Amperian currents exist, is obtained

through the solution of Laplace’s equation in elliptical coordinates.

5.3.1 Laplace’s Equations in Elliptical Coordinates

As inside the ellipse is a current free region and the surface currents can be employed
as boundary condition of flux density B or field intensity H, the Ampere’ law can be

reduced as:
VxH=J —225VxH =0 (5.10)

As the curl of gradient of a scalar field is zero, a magnetic scalar potential can be
defined as in below:
H=-Vo (5.11)

By employing the identity V.Vp=V?p in the magnetic Gausses’ law results in the

Laplacian equation below:
VB=0 —24" 5 v (-Vp)=0 - Vip=0 (5.12)

Laplace’s equation in elliptical coordinates is [20]:
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1 D’p 0
Vielny) = ¢’ cosh? 77 —cos’ [6 ¢2J+6 (/Zj=0
n yion v (5.13)

Employing the separation of variables o(7,v)=T(#)¥(v) leads to the following

relationships:

LT _ 1 de)

Te) dn’ W) dy? (5.14)

This equation can be satisfied independent of » and v if they are constant and equal to
a separation constant p? where p is usually the number of pole pairs of the electric machine
(here p=1). Then, this PDE is reduced to two ODEs as in below:

" 2+ " AN
For p£0, as ¥ must be periodic in y, the solutions of (i) are the followings sets:

e™ e ™ or sin(py), cos(py) (5.16)

The exponential ones are helpful for problems with infinite half-space. Also, the

solutions of 7'(y) are as in below:

e?, e ™ or sinh(pn), cosh(pn) (5.17)

For p=0, the solution for uniform fields is as follows:

o) =a,+b, 77, ¥o(yw)=1 (5.18)

However, it is not the solution to the problem as it is not periodic in . It is shown in
[21]-[23] that, due to the Green’s function of the potential, the solution of Laplace’s

equation in elliptical coordinates is comprised of either odd or even functions as in below:

sinh(pz)sin(py), cosh(pz)cos(py); p=1,2,3... (5.19)

In other words, odd functions come together, and even functions come together as well.
The flux lines originate from the positive potentials at the left side of the ellipse (centered

at w=rx) and end in the negative equipotential line at the right side of the ellipse (centered
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at w=0), showing an even function ¢(#,w). As the potential is an even function of y, the
second term in (5.19) is picked and thus pn=An cosh(npn) cos(npy) where p=1. Finally,

the general solution of ¢n(#,) can be written as:
p(n.y)= Y.~ A, cosh(nn)cos(ny) (5.20)

5.3.2. Boundary Conditions and the Solution

At the ellipse boundary (7=#0), the boundary condition for the solution of the vector

field H can be obtained as in below:

ﬁ)( (l:'iron - Hqair

): Kc = H://,iron - H(// = KC (521)

As the field intensity Hy,iron inside infinitely permeable iron is zero, the tangential

component of the field intensity inside the ellipse at the boundary is obtained as

Hw(’]O’V/)Z_KC(V/) (5.22)

In Figure 5.4, the flux lines and the distribution of K¢ and H,, on the boundary of the

stator ellipse are shown.

+K: 72—y 12<y < 7wl2-y 12

cm

Kw)=<-K,:—-7l2-y 12<y <-7ml2—-y_ [2
0 iow (5.23)
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Figure 5. 4. Flux lines as well as surface current density K, tangential field intensity H,, and scalar
potential ¢ on the surface of ellipse n=no.

The field intensity H can be obtained as:

~ . R 1(0p . Op .
H=H,7+ HWV/Z—V(PZ——[—ﬂJr—V/J

h\on " oy (5.24)

Thus, the normal and tangential components H, and H,, are obtained as in the following:

H = -1 D nA sinh(nz)cos(ny)

" ¢c|Jeosh? 5 —cos? y (5.25)

H = ! Y .nA, cosh(nn)sin(ny)

" cyJeosh? - cos? y o (5.26)

From the boundary condition (21), the following equality is obtained.

1 & .
: — > "nA, cosh(nz,)sin(ny) =K, (v)
c\/cosh 7y —COS” i n=1

(5.27)

It is worth noting that a big mistake would be trying to calculate the coefficients An
based on the Fourier series expansion of -K¢(y) because the coefficient of sin(ny) in the

left side should not be a function of y; any coefficient of sin(ny) which is a function of

131



should be taken to the right side before finding the Fourier series coefficients. Taking

cy/cosh? 53, —cos? i to the right side, the following Fourier series expansion is obtained:

—c\/cosh2 1, —cos’ w K (w) =D a,sinny
n=1

(5.28)
whose Fourier coefficients are obtained as in below:
a, = gr—c\/cosh2 1, — 08> w K_(w)sinny dy
70 (5.29)
AsnA, cosh(nr,) =a,, the coefficients An are obtained as:
_ wl2+y 12
A, _ %K \/coshzno—coszz//sin ny dy
nz cosh(n,) i2oy 12 (5.30)

It can easily be obtained by numerical integration. Having the tangential component
H,(170,) at the ellipse #=70, the scalar potential ¢(#0,) can be obtained by integration as

follows:

_1 a_¢
h (15, ) Oy

H, (75.v) =

(15, ) =—T h (e, w)H,, (5, 9) dw + 4 ()
vo (5.31)
For simplicity, the initial point can be taken at the middle of the surface current density
where the potential is zero, i.e., po(po=7/2)=0. As shown in Figure 5.4, it is also seen that
the flux lines originate on positive potentials and terminate on negative potentials. The field
direction can also be observed by the right-hand rule. The relationship (5.31) is very useful
for obtaining the scalar potential from magnetic flux density vector B obtained from FEM

to be compared to analytical results (Figure 5.5).
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Figure 5. 5. Normal and tangential components of magnetic flux density distribution as well as the scalar
magnetic potential (a) on the stator boundary, i.e. ellipse #=no, (b) in the air-gap, i.e. ellipse #=0.9 o, and
(c) on PM boundary, i.e. circle r=R;.

As given in the Appendix, instead of the magnetic scalar potential, field solutions can

be obtained using Laplace’s equation in terms of the z-component of magnetic vector

potential A;. Unlike the scalar potential ¢, A, must have a sine behavior, so the general

solution of A;(5,w) can be written as:

A (ny)= Y. D,cosh(nz)cos(ny)

(5.32)

The relationship between the coefficients A, and Dn is as:

Dn = _:uOA1

133

(5.33)



5.3.3. Torque Calculation by Lorentz Force

To calculate the developed torque, the radial component of magnetic flux density

distribution B on the surface of the PM is required. The circle r=Ry is represented as:
x=R, cosf, y=R singd; 0<0<2x (5.34)

This trajectory can be translated into elliptical coordinates as:

n=Re {cosh‘1 (%j} 5.35)

w = Im{cosh‘1 [%J} (5.36)

After obtaining the vector fields (B,, B,) on the circle r=Ry, it can be converted into

cartesian coordinates as in below:

B, + 'BY=M(B +iB)
csinh(p+jw) 7 v (5.37)

After obtaining Bx and By through real and imaginary parts, it can be converted to

cylindrical coordinates as follows:

B, | | cosd sing B,
B,| [-sind cosé | B, (5.38)
Having the radial component of the magnetic flux density By on the surface of the PM,

the developed torque can be obtained by Lorentz force over the Amperian currents as:

T (Bi) =L[, "R K, (6.5)B,(O)R, d& (5.39)

Since Km is a sinusoidal waveform, only the fundamental component of the magnetic

flux density By1 participates in the torque production.

B.,(6,i,) = B, c0s&; Bl(ic)=1j2”5,(9,ic)cosede
70 (5.40)
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By substituting for Br1 and Kn in (5.39) and expressing the trigonometric product in

sums, the torque equation is obtained as in below:

T (B.1) = R’Lz B M sin 8 (5.41)

where the torque constant, i.e., the maximum coil torque at a stator current of 1 A, is

obtained ask, = R’LzBM /i .

5.3.4. Field Analysis

Figure 5.5 illustrates normal and tangential components of magnetic flux density
distribution as well as scalar magnetic potential on the stator boundary (ellipse #=#o), in
the air-gap (ellipse #=0.9 no) and on PM boundary (circle r=Ry). The results derived from
the analytical model, FEM in the simplified geometry, and FEM in the original geometry,
are compared. A great agreement is observed between the analytical and numerical results
with a very small discrepancy. The analytical results from the model and those extracted
from FEM in the simplified geometry exactly match with almost zero error. As shown in
Figure 5.5(a), a small discrepancy is observed between the simplified geometry (analytical
or FEM) and the original geometry on the stator surface (y=#o) at the interpolar region,
which makes sense as this section was the most challenging part of generating the
equivalent geometry. The boundary condition B,,=-K. can also be observed on the stator
surface (n=no). A very small bump is also observed at the auxiliary slots, as expected. As
shown in Figure 5.5(c), very good accuracy is observed in the analytical results for the

torque-producing component of the magnetic flux density, i.e., the radial component By.

It is worth noting that the employed FEM is based on the solution of the z-component
of vector magnetic potential Az and only produces the normal and tangential components
of the B or H. To obtain the FEM results for the magnetic scalar potential ¢ in the elliptical
coordinates, the relationship (30) is used to numerically integrate over B,. To obtain scalar
magnetic potential in cylindrical coordinates ¢(r,6) from the tangential component By, the
relationship of a gradient in cylindrical coordinates is employed as follows:

H,(R,.0) =‘—12—Z:¢(Rr,e) —[tH,R0)d0+0,(6)
6

' (5.42)
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where the initial point po(6o=7/2)=0 is taken for simplicity. As expected, the scalar
magnetic potential is positive on the left side of the y-axis, zero on the y-axis, and negative
on the right side of the y-axis. It is +=50 on the left pole face of the stator and ¢-=-50 on
the right pole face of the stator. At the interpolar region, where there is a surface current
density, there is a transition between ¢+ and ¢- which is equal to the integration of the
surface current density (or minus tangential component of field intensity) times the scale

factor of the coordinate system.

Figure 5.6(a) shows flux density vectors B and scalar potentials contours ¢ obtained by
the analytical model. It can be seen that the flux density vectors are perpendicular to the
equipotential lines ¢ as expected from the gradient relationship (5.24). Also, the field
vectors depart from the positive equipotential lines and end on the negative ones. It is also
seen that flux density vectors and flux lines are perpendicular to the infinitely permeable
iron where there is no surface current density. As shown in Figure 5.6(b) and Figure 5.6(c),
the field distribution within the stator curvature obtained from the equivalent geometry is
the same as the one extracted from the original geometry (inside dotted ellipse). It is how
geometry simplification is useful by simplifying the field solution in the region where the

field distribution is important to perform torque calculations.
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Figure 5. 6. Fields produced by stator current: (a) flux density vectors and scalar potentials contours obtained
by model, (b) flux density distribution and flux lines in the simplified geometry obtained by the model and
FEM, and (d) flux density distribution and flux lines within the original geometry obtained by FEM.

5.4. Reluctance Torque

The stator pole faces elliptically shaped such that the air-gap permeance seen by the
PM varies by the rotation of the rotor, producing a reluctance torque that restores the rotor
to the maximum torque per ampere position. It acts as a magnetic spring. Since the stator
boundary is an ellipse and the PM boundary is a circle, neither elliptical coordinates nor
cylindrical coordinates can be employed to solve Laplace’s equation; thus flux tube method

is employed to calculate the reluctance torque by energy method.

5.4.1. Differential Flux Tubes

Figure 5.7 presents magnetic flux density distribution and flux lines due to the PM in
equivalent and original geometries at rotor positions of =0 (M is aligned with major axis),
p=45, and =90 (M is aligned with minor axis). It can be observed that, within the PM, the
flux lines are parallel to the magnetization. The flux lines deviate at the PM boundary due
to the Amperian currents as H;o-H>=Km (counter-clockwise turn at positive currents and

137



clockwise turn at negative currents). Also, the flux lines are perpendicular to the infinitely
permeable boundary of the stator (Hs=0). No energy is stored within the infinitely
permeable iron. The flux within the PM and the air-gap lines are approximated with straight
lines. In Figure 5.8, the Amperian currents and the flux lines employed in the modeling are
illustrated at the same rotor angles of 0, 45, and 90 degrees. The air-gap flux tubes and the

corresponding permeances of the air-gap and the PM are also shown.
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Figure 5. 7. Magnetic flux density and flux lines due to the PM in equivalent (top) and original (bottom)
geometries at rotor positions of: (a) =0 (M is aligned with major axis), (b) =45 and =90 (M is aligned
with minor axis).

In the conventional MEC methods, to develop a lumped-element model, flux tubes are
employed for different regions, and MMF sources are adopted for the regions having
magnetization or current. The conventional flux tubes are not useful in our case as,
according to the flux lines shown in Figure 5.8, the conventional flux tubes do not
incorporate the variation of stored co-energy whose derivative with respect to S is the
reluctance torque. Integrating the flux lines and Amperian currents of the PM gives
permeance and an MMF for the PM. However, it can be seen that integrating over the flux
lines within the air-gap leads to equal air-gap permeances if the PM magnetization is
aligned with either the major axis or the minor axis. As shown in Figure 5.8, the lumped-

element values of the permeances Py and Pgeo are equal; visually describing, just relocate
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the bottom right part of Pggo to the top of its left part to obtain Pgo. In other words, this

lumped MEC model does not reflect the rate of change of co-energy, which is the torque.

What is missing in this lumped model? It can be observed in Figure 5.8 that the total
current enclosed in the closed path of Ampere’s law for different flux loops is different,
which is ignored in the lumped permeances in which it is integrated over flux lines. For
example, looking at Figures 5.8(a) and (b) carefully, it can be observed that the currents
enclosed in the flux loops with the shortest length in the air-gap are different for =0 and
£=90; this fact, which is missing in the lumped MEC model, makes a difference in the
stored co-energy in the two cases, resulting in a reluctance torque. When the PM
magnetization is aligned with the minor axis ($=90), the enclosed current and thus stored
co-energy is larger; it can also be seen that the magnitude of the flux density distribution

is relatively larger.

ﬂux Ioops with sho rtest
N ’

Figure 5. 8. Flux lines due to PMs at rotor positions of: (a) £=0 (M is aligned with major axis), (b) f=45
and (c) =90 (M is aligned with major axis).

In Figure 5.9, a differential flux tube having a differential thickness dyr, i.e. a
differential area L dyr, enclosing a current as a function of y" is depicted. Its total length is

I(y"). Two strategies can be taken here:

In the conventional flux tubes, integrating over y" from 0 to R, gives a lumped
permeance to be employed in a lumped-element MEC to obtain the co-energy, multiplied
by 2 for the other half, gives the total co-energy at the rotor angle £. It was explained that
it does not reflect the reluctance torque as this lumped permeance is the same for =0

degrees and =90 degrees.
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With a strategy that we would name differential flux tubes (DFT), differential
permeance is employed in further analysis, and it is not integrated over y' to get a lumped
permeance. This differential flux tube encloses a total current which is a function of y".
Next, the differential co-energy associated with this differential permeance is calculated as
a function of y'. Afterward, integrating this differential co-energy with respect to y" from 0
to Ry, multiplied by 2 for the other half, gives the total co-energy at the rotor angle .
Contrary to the conventional method, the DFT-based approach makes a difference between
the two cases of =0 or =90 degrees as it understands that the total currents enclosed in
the flux loops with the shortest length in the air-gap are different for =0 and =90 (refer
to Figures 8(a) and (b)). The whole process can be performed over a rotor rotation to obtain
the stored co-energy W as a function of . Finally, the reluctance torque can be determined

as the derivative of the co-energy with respect to f.

enclosed
current

\ Ao

Figure 5. 9. Differential flux tubes to calculate reluctance torque: (a) within the ellipse boundary and (b)
including fringing length at the interpolar regions.
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5.4.2. Rotor Reference Frame

To simplify calculations, a rotating reference frame {(x", y"); (»,6r)} on the rotor is used,
as shown in Figure 5.9. The axis x" is set parallel to the magnetization vector M, and thus
the perpendicular axis y" is the integration variable for the DFTs. The rotation angle of the

rotating frame with respect to the stationary frame {(x, y), (,0)} is g and thus 6=p5+6".

The following relationships are obtained for any point on the PM boundary:

{x =R cosd =R, cos(f+0") {xr =R, cos®"
y=R sind=Rsin(f+6") |y =R sind (5.43)

By converting the sine and cosine of A+6 to products, the transformation matrix

between the two frames is obtained as:

{x}_{cosﬁ —sinﬂ}{x':l
Yy B sinfg cospg yr (544)
5.4.3. Current Enclosed by the Differential Flux Tubes

In the rotor reference frame, the Amperian current density (5.9) is independent of rotor

rotation 3 and can be simplified to:

Then, the total magnetomotive force Fmn associated with the DFT at y' or 6 is obtained

by the total current enclosed in the closed path of the Ampere’s law obtained as in below:
70"

F.(6") = K,(@")|Rd6" =2R M cosd"

0= KL (0)IR : (5.46)

It can be written as a function of y" as in below:

Fm(gr)ZZM\erz_(yr)2 (5.47)
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5.4.4. Differential Permeance, Differential Co-energy, and Reluctance
Torque

The co-energy associated with a differential permeance dg is:

dgp = L dy" /1(y") (5.48)

The differential energy associated with the DFT is:

2 r
aw, =22y ) dp=1 el = oy

where I(y") is the total length of the flux tube within the PM and air-gap regions. By
substituting Fm and dg, and integrating over y" from 0 to Ry, the total co-energy stored in

the system (icoii=0) at any rotor angle f is obtained as in below:

W, (Y =R,) R, 1 F2 r
Wc,tot (ﬁ) =2 _.‘ dWc = 2J. E:uOL Im (}/ ) dyr
W,(y"=0) 0 ) (5.50)
Then, the developed restoration torque is obtained as follows:
T = ach,tot (:B) _ 1 E 2 a@(ﬂ)
rest aﬂ 2 m aﬂ (551)

Its frequency is double the frequency of the coil torque as the PM faces the stator

saliency twice per revolution. It is simplified to the fundamental component as in below:

Trest = Tl Sin Zﬂ, Tl = %J.O”Trest (ﬂ)sm Zﬂdﬂ (5 52)

5.4.5. Length of the Differential Flux Tubes

The total length of the flux tube I(y") needs to be calculated as a function of y" as in the

following:

I(yr)z(Lg1+Lf,Lgl)+Lm +(L92+Lf1L92) (5.53)
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where L is the length within the magnet, Lg1 and Lg2 are the lengths within the air-gap,

and LsLg1 and Ly g2 are the lengths due to the fringing effect at the interpolar regions.

The length of the line L inside the PM, which is between the points m; and mz is
obtained as below:

L. (y")=2x"=2R cosd =2,/R*—(y")’ (5.5)

Obtaining the coordinates of the point pairs m:-s1 and me-sz in the stationary frame, the

lengths Lg1 and Lg2 in the air-gap can be obtained as:

Lgl = \/(Xml - Xsl)2 +(ym1 - y51 )2 (555)

Ly, = \/(sz —Xs2 )2 +(ym2 ~Ys2 )2 (5.56)

However, these lengths are required to be obtained in terms of y" to be employed in co-
energy calculations (5.50). The point mi(Xm1,ymi) in which 67, =6" and 6,,=p+6" is

obtained in the stationary and rotor reference frames as:

{xml =R.cos(B+6") » .{xnﬁl =R, cos6"

R ry 1 ro_ H r
Y m= R, sin(s+0") Ym =R siné (5.57)

The point m2(Xmz, ym2) wWhere @', =z-6" and 6,,=p+z-6" is obtained in the

stationary and rotor reference is as follows:

o Xn, =—R.cos(f-60") "y X, =—R, cosé"
’ Yo, = —R. sin(B-6") ’ Ymo =R, sING"

(5.58)
The points s; and s, are the intersections of the ellipse with the lines Lq: and Lg2, which
are determined based on the fact that the flux lines are perpendicular to the infinitely

permeable boundary of the ellipse. The normal vector to the ellipse is the gradient of the

ellipse trajectory as in below:
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Aovi= gy 12X Y

R, R/ R} R’ (5.59)
Thus, the slope of the perpendicular line at point (x,y) is as:

ny_Rz?y

n, R12 X (560)

Having the slop and the two points mi(Xm1,ym1) and si(Xs1,Ys2), line Lg1 is obtained as:

R2
Ya = Ym = _22& (Xsl - Xml)
Rl Xsl (561)
By writing ys1 in terms of Xs1, and substituting it into the ellipse equation

x5 /R +y24 I R? =1, the following polynomial is achieved.

a4)(;.11 + a‘3X31 + azxs.21 +a X, +a, =0 (5.62)
whose coefficients ap to a4 are given in the Appendix. Two of the four roots of the above
polynomial are complex conjugate which is not the solution. One of the two remaining
roots is positive, and the other one is negative, one of which should be picked based on the
sign of Xm, 1.e., if xm1>0, then Xs1>0, and if xm1<0, then xs1<0. Afterward, ys: is obtained as

in below:

Ya = iRl\/l_ stl / Rz2 (5.63)

The sign of ys1 is picked based on the sign of yma, i.e. if ym1>0, then ys1>0, and if ym1<0,
then ys1<0. The general rule is that s; is in the same quadrant as m;. The same procedure
is taken to obtain the line Ly and its intersection with the ellipse, i.e., point S2(Xs2,Ys2).

5.4.6. The Fringing Lengths in the Interpolar Regions

As observed in Figure 5.7, in the original geometry, the flux produced by the PM
includes a fringing effect in the interpolar region which is not is incorporated in the
equivalent elliptical geometry. It was negligible in the derivation of the stator field and the
coil torque, but it needs to be accounted for in the calculation of the PM flux and the
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reluctance torque a reach higher accuracy. As shown in Figure 5.9, the fringing length Lt
is model as a circular arc with a fringing angle 6 if the point is in the interpolar region;

otherwise, Lsis zero. We have:

RO x|0,12-16-712| ;|6-712|<6,12
L (0)=4{R 6, x|6,12-|0-3x12|;|0-37/2]< 6,12

0; ow. (5.64)

in which 6 is substituted with &my for Lsig1, and Omz for Lsig2. Also, Om1 and Om2 can be

obtained in terms of y".

5.5. Experimental Study and The Results

The actuator is prototyped whose experimental results are compared with those
obtained from the analytical model and FEM. Figure 5.10 shows the component of the
prototyped actuator and the torque-angle measurement setup. Figure 5.11 presents the coil
torque, the restoration torque, and the total toque extracted from the model, FEM, and
experiment. It can be seen that there is a close agreement among the analytical, numerical,
and experimental results. It is observed that the frequency of the reluctance torque is twice
the coil torque, and the equilibrium point of the restoration torque is at the maximum torque
per ampere position, i.e., f=90 degrees. In other words, the reluctance torque acts as a
magnetic spring that restores the rotor to the maximum torque per ampere position. The
meshed models used for FEM are given in Figure 5.12 and Figure 5.13.
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ball bearing

PM
assemble

Figure 5. 10. The prototype (top), and torque-angle measurement setup (bottom).

|—Model - - FEM, Orig Geo - - FEM, Simp Geo % Expr

T(m N.m)

0 45 90 135 180

. p(deg)
Figure 5. 11. Restoration, coil and total torque profiles obtained by model, FEM in the original
geometry, FEM in the simplified geometry and experiment.
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Figure 5. 13. Meshed models for simplified geometry used for FEM.
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5.6. Conclusion

In this chapter, an analytical model is developed for an actuator whose stator curvature
is nonuniformly shaped to have a reluctance torque in addition to the coil torque. The
rotor’s permanent magnet is incorporated in the model through equivalent Amperian
currents. To model the actuator, the complicated geometry of the stator is substituted with
an equivalent ellipse having a surface current density representing the stator current. The
coil torque is obtained using the Lorentz force and the solution of Laplace’s equation in
terms of both scalar and vector potentials in the elliptical coordinates. The reluctance
torque is obtained using the energy method and differential flux tubes that incorporate the
variation of current enclosed in the flux loops. In addition to the detailed explanations, an
attempt is made to visualize the modeling procedure and the field distributions so that the
readers can clearly understand the ideas and utilize them in their research. Also, the finite
element method is employed in the field analysis and development of the model. In the end,

the actuator is prototyped.

The model produces the results in a few seconds while, depending on the desired
accuracy, it could take a couple of hours up to a few days using a FEM. It is shown that the
equivalent geometry produces the same field solution within the rotor area as the original
geometry. Normal and tangential components of magnetic flux density, flux lines,
magnetic scalar potential, magnetic vector potential, coil torque, reluctance torque, and
total torque are extracted and analyzed. A very close agreement is observed among the
results obtained from the analytical model, FEM in the simplified geometry, FEM in the

original geometry, and experimental results from the prototyped device.
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Chapter 6

Electromechanical Model, Eddy-Currents
and ldentification

6.1 Introduction

Rotary actuators have been widely employed in the industry, from robotics and
aerospace to fluid valves and optical scanning, due to advantages like simple structure,
cheap maintenance, high reliability, low cost, and uncomplicated control. They are
sometimes called limited-angle torque motors (LATMs) when designed to provide a
constant torque over an angular range. In many applications, such as fail-safe operations,
a restoration torque is required to return the rotor to the initial position, such as a nonlinear
stiffness used in Laws’s relays, and a magnetic restoration created by adding alignment
poles to the stator. This paper presents generalized studies applicable to such actuators
while certain aspects of the physical implementations of the actuator described herein are

covered by patents.

High-performance control of electric machines requires accurate models and an
effective identification rather than conventional lumped models. The identification can be
offline [56] or even online [57] when there are variations in the parameters of the device.
Among modeling techniques, the finite element method (FEM), although powerful in the
numerical modeling and design of electromagnetic devices, is too slow to be used in
dynamic studies. Magnetic equivalent circuits [58]-[59] and subdomain models [60]-[61]

provide fast yet accurate analytical frameworks that can be employed in developing
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electromechanical models. MEC-based models are developed to study the design of
LATMs [58] and magnetic cores [59]. The subdomain approach is employed to study the
diffusion in eddy current brakes [60] and cylindrical ferrite cores [61]. In [62], the finite
difference method is employed to find the numerical solution of 2-D diffusion in a
rectangular sheet. As eddy currents can highly impact the dynamic and thus control system
design of an electromagnetic device, incorporating their impact in the model can be very
crucial. In the interesting works [63]-[64], an analytical solution of 1-D diffusion in thin
laminations or magnetic materials is used to modify the electrical circuit of an
electromagnetic device. Friction is another factor affecting the mechanical dynamics of

electromechanical devices, whose impact can be studied by LuGre model [65]-[68].

In this chapter, an electromechanical model incorporating eddy currents is developed
for a limited-angle rotary actuator with a magnetic restoration torque to be employed in
identification, drive, and control studies. By elliptically shaping the stator curvature, the
reluctance torque is produced to restore the rotor to the maximum torque position if the
coil current is removed. The relationship of the restoration torque is obtained using the co-
energy method and a lumped-parameter model of the magnet, while the relationship of the
torque component developed by the coil current is obtained using the Lorentz force and the
Amperian current model of the magnetization. The back-emf relationship is also obtained.
Then, a nonlinear electromechanical model, including governing electrical and mechanical
equations and its nonlinear state-space representation, is developed for large-signal studies
and nonlinear control. Then, the nonlinear model is linearized around the preferred
equilibrium point, i.e., the maximum torque position per Ampere, to reach a linear

electromechanical model and a linear state-space model for linear control system designs.

As the eddy-currents in the laminations and the magnet largely distort the electrical
dynamic from a simple RL circuit, in order to obtain a higher precision and a more efficient
control system design, the eddy-currents are included in the model by solving 1-D diffusion
in the laminations and 2-D diffusion in the magnet; then, from the microscopic field
solutions, lumped-element magnetic and electric circuits having frequency dependant
reluctance and inductance are obtained which are more useful for system-level designs and

control purposes. It brings a near-zero discrepancy in estimating the phase margin of the
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current loop, while this error could be very large if eddy currents are ignored. Its accuracy
is much better compared to the case where only 1-D diffusion in laminations is considered.
The impact of the pre-sliding friction on the mechanical dynamic is also studied using the
LuGre model. Also, 2D and 3D FEM are employed in the analysis, and the actuator is
prototyped. Torque-angle and back-emf characteristics are obtained. The identification of
the model is carried out as well. A close agreement is observed between the results obtained

from the experiment, model, and FEM.

6.2. The Actuator

The geometry and the exploded view of the actuator, whose specifications are listed in
Table 6.1, are shown in Figure 6.1. The rotor PM has diametral magnetization. The
interaction of stator flux and the magnet produces the main torque. The stator inner surface
is shaped to have an elliptical curvature whose interaction with the magnet produces a
reluctance torque which tends to restore the rotor back to the maximum torque per ampere
position (MTPAP).
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Figure 6. 1. (a) exploded view of the actuator, (b) geometry of the actuator, (c) Amperian current model
of PM, and (d) lumped-element models of the PM

Table 6. 1 Specifications of the Studied Motor

parameter value parameter value
outer diameter, D, | 13.716 mm PM remnant, B, 1.37 Tesla
lamination height d 0.35 total turns, N 100
# of laminations, m 12 wire gauge AWG33
stack length, L 4.191 mm_ | torque constant, ki [1.906 mN.m/A
pole width, w, 4.72 mm Mag. spring ks 0.636 mN/rad
PM length, Lyn 9mm total stiffness, Ks 1.3 mN/rad
rotor diameter, D, 3.048 mm total damping, ks | 4.49e-7 Ns/rad
minor radius, Ry 1.71 mm inertia, J 1.65e-9 kg.m?
major radius, R, 1.9665 mm inductance, L 280 uH
PM conductivity 0.6 MS/m resistance, R¢ 1.76 ohm
lamination conduct. 2 MS/m sense resistor, Rs 0.1 ohm
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6.3. Torque and Back-EMF Calculations

6.3.1. Permanent Magnet Models

The magnetization vector M of the PM in terms of azimuth ¢ and rotor angular position

/5 can be represented as in below:

M (¢, 8) = —Msin(p - ) f ~M cos(p - B) ¢; r <R, 6.1)

A magnetization M can be represented as Amperian current density Jm. As shown in
Figure 6.2(a), since M is uniform inside the PM, there is only a surface current density Km

as:

J. =VxM; K_ =Mxn

(6.2)

where n=r is the unit vector normal to the surface. Thus:

K (r,p,f)=Mxf=Mcos(p—p) 2; r=R, 6.3)

As shown in Figure 6.2(b), the lumped-element model of the PM consists of a
permeance gpm and a magneto-motive force Frn which is the total current enclosed in the

Amperian loop as:

F =

Ko(0. )| Rdp=2R M

J‘¢>=7r/2+/3
p=—mnl12+f (64)

Figure 6. 2. (a) Amperian current and (b) lumped-element models of the PM.
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6.3.2. Stator Field

Through Ampere’s law, the current in the stator coils produces a magnetic field as in

below:

VxB= ,Uoﬂrj (6.5)

The radial component of magnetic flux density distribution on the surface of the PM,
which is the torque-producing component, can be represented in Fourier series as in below:

B.(9) =2, ,:B.siNnp =B sing+B,sin3p+... 6.6)

As long as the stator iron is not saturated, the coefficients By, are linearly proportional

to the coil current is, so:

B.(9) =2 sKiicsinng =k i sing+kyi sin3p+.. 67)

6.3.3. Coil Torque

The stator flux interacts with the PM to produce an electromagnetic torque which is

obtained by Lorentz force as:

2z
Tcoil = LIO Rer (§D, ﬂ) Br (Q’) Rr d(D

(6.8)
By substitution of Ky and By, we have:
X =X =1
X, = {—Ky X, +k X;sinx +K sin2x -T }/J =1, (6.9)
Xy ={-R, X, =k X, sinx +v, } /L, = f,

Except for n=1, the integration of the product of cos(p-f) and sin ng is zero, i.e., only
the fundamental component of B, contributes to the torque production. It simplifies as in

below:

T (B) = LREMK, [ cos(p— B)sin(p)de 610
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By expressing the trigonometric product in sums, it yields:

Tcoil(ﬁ’ic):ﬂ-Ler klMOic Sinﬁ:kt ic sin B (6.11)

where k; is the torque constant [Nm/A].

6.3.4. Restoration Torque

The elliptical curvature of the stator causes a reluctance torque. The PM is faced
maximum permeance at MTPAP (5=90). The total permeance can be expressed as in

below:

9(B) = o —§,C0S 28 (612)

The stored co-energy and the restoration torque are as:

W,(0) =, 0(5)

(6.13)
7 2MB) 12000\ Gnopk - oF?
ap 2 op (6.14)
where Krest iS the maximum restoration torque.
6.3.5. Total Torque
The total electromagnetic torque can be expressed as:
T.(B.i) =k i sin f+K.sin2 (6.15)
whose small-signal model around MTPAP (6=p-7/2) is:
T.(0,i,) =k i, — k.0 (6.16)

where ks=2 krest can be defined as the magnetic spring constant.

6.3.6. Back Electromotive Force

The flux linked by the stator coil is:
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A(Bii) = Ly i+ 4, (B); A, (B) =—A,cos B (6.17)

where /m and Ao are PM flux and its maximum, and Lo is the frequency-independent coil
inductance. As PM flux is in the opposite direction of the unit normal vector of coil area at
S=0, there is a negative sign. The back-emf is as in below:

di, di,dp  dA

E(a)r'ﬂ)z dtm - dﬂa_a)r dﬂm :AUwrSinﬂ (618)

where f = wrt and wr=din/dp is the angular velocity of the rotor. Defining the back EMF

constant ky [volt.sec/rad] as the amplitude of the back EMF at 1 rad/sec, we have:

E(o,, ) =k,o, sinj (6.19)
In the linearized model around MTPAP, E=ky wr. Due to energy conservation in the
conversion of electrical power (E is) to mechanical form (Tcoil wr), SO Ko=k.
6.4. Electromechanical Model

6.4.1. Nonlinear Electromechanical Model

The governing electromechanical dynamic, whose block diagram is shown in
Figure 6.3, is as in the following:

w®=RL0+ OB e R i, O
(6.20)
By 98 1 T
a2 e (k)= (6.21)

where kg is the viscous damping constant, and Tv is the load torque. It leads to a nonlinear

differential equation as in below:

JB+K, K. Sin2B =k i_sinp (6.22)

The states are defined as angular position, angular velocity, and coil current. The inputs

are coil voltage and load torque:
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X(1) =[x, %, %] = [, @i T u(®) =[u,u, 1 =[v., T, T (6.23)

Substitution for E and T yields the nonlinear system below:

=X =f
XZ = {_kd X2 + kt XS Sin Xl + krest Sin 2Xl _TL} / J= f2 (624)
X3 ={-R, X, —k X, sinx +v, } /L, = f,

____________________________ I
'8
1 : S
14 > :
! I
15w |
|§.E |
1=3 ) Nonlinear |[!
: g3 N0n|lnea_|' Magnetic Spring :
jui Y | Mechanical Y[ o sin20 I
! Dynamic |

Figure 6. 3. The developed nonlinear electromechanical model.

6.4.2. Equilibrium Point

The equilibrium points, i.e., the solution of the system of equation [f1=0; f>=0; f3=0] at

zero input, are obtained as:

p=0,7127,3712; @ =0; 1 =0 (6.25)

where 7/2 and 3z/2 are stable equilibriums, and 0 and 7z are unstable ones. The position

p=n/2 is taken as MTPAP.

6.4.3. Electromechanical and State Space Models

The system is linearized around the equilibrium point below:

X=[X, %, %] =[z/2,0,0]'; 0=[q,q,] =[0,0] (6.26)
Then, the states and the inputs are as in the following:

X=X+0X=[B, o, i.] =[z12+3B, dw,, 5i.] (6.27)
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u=o+6u=I[v,T.1 =[6v,oT ] (6.28)

All variables are the same as their deviations except g, for which new variable = is

defined as deviations of angular position around MTPAP. The linearized state-space

system is:

d

—ox(t) = Aox(t) + Bou(t); y)=Cox()

dt (6.29)
oy o oh | o ]
oX, OX, OX, ou, au,
of, of, of of, of

A=| L2 P2 T g 1% o igr xoxu=0 _
oX, OX, 0OX%, ou, ou, b x=xu=t (6.30)
oy oy Oy Ay oy
| OX,  OX, OXg | | Ou, ou, |

It leads to the following linear state-space system:
0 0 1 0 0 0 0 -,
o, |=| -k I kI kIJ ||eo |+ O -1/J {T} (6.31)
I, 0 —k/L, -R/L,|i | [1/i, O -

The linear electromechanical dynamic is as in below:

di .
v, = ko, +Lcd—t°+ R. i

a0 . do (6.32)

J F'i‘kd E+k56’=kt ic _TL

where ks=2krest. The output is angular position, so C=[1 0 0]". The block diagram of the

linearized model is shown in Figure 6.4.
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Figure 6. 4. The linearized electromechanical model.
6.4.4. Transfer Function of Electrical and Mechanical Dynamics
The mechanical dynamics of the actuator is as in below:
o(s k k /J
I.(s) Js“+k;s+k, s +2fw,s+m, (6.33)

where natural frequency and damping ratio are o, =.k./J and &=k, /2Jw, . The

electrical dynamic can be written as:

H,(S)_I—C_ Js? +Kk,s +k,
) V. L, Js?+(RJI+Lk,)s’+(Rk, +kk, +k?)s+RKk, (6.34)

where R is the total resistance of coil Rc and current sensor Rs. It includes an anti-resonance
at the natural frequency of mechanical dynamic. Ignoring the back-emf leaves an RL circuit

as:

H (s):|—°: !
T Ve LyseR (6.35)

The back-emf is treated as a disturbance in the current loop. The electrical time constant

is TezLCO/ R.
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6.5. Eddy-Current Impact on the Electrical Dynamic

To obtain higher accuracy in the electrical dynamic, eddy currents in the laminations
and the magnet are modeled, which adds two more degrees of freedom in addition to Lco
and R¢. As shown in Figure 6.5, according to Ampere’s law, the stator current Nic produces
an initial flux po whose time variations induce eddy currents in the iron laminations and
the magnet (le; and lem) according to Faraday's law which causes a secondary flux
attenuating the initial flux. It reduces the coil inductance. A combination of Ampere’s and

Faraday’s laws leads to the diffusion equation VB = ucdB/ét.

bl o~
3 % ||[® JAE lE——
1
vi 20 32|on T3 |Ireri;
s Yo s v L K
~ R; 9 9 i F
\IQ o &\f ! [ P G, ]um e
N 9% N Rm m S| Ry =
> ™~ £ ‘Eé T(pO R R M |Po Ry
7% %34 FoOw Too 1|5 -
QDGT N ! Q:?ﬂ 0 N e :
@-‘a (5N, N : |
N2 (L 1 T )| Lo
b} . C;: Ampere’s Law
_ ] Lo i& I,y eddy currents 1
%-ZR#IRJZ/Z in iron and magnet C;& Cy: Faraday’s Law

Figure 6. 5. (a)-(b) MEC and simplified MEC without eddy currents, (c) simplified MEC with eddy
currents, and (d) paths of Ampere’s and Faraday’s laws.

To avoid unneeded complexities, the magnet cylinder is simplified to a cube with a
rectangular cross-section. The width of the rectangle is the same as the pole width wp. The
length of the magnet I, along the flux loop is obtained such that the cross-sectional areas
and thus the volumes are kept the same:
wl, =7R? = | = 7R} /w,

p

(6.36)

The average air-gap length is as follows:

ly =2x{(R—R)+(R, ~R)}2=R +R, - 2R, (6.37)

The average length of the flux loop within the iron core li can be approximated as a
half-circle plus pole lengths as in below:
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(3B e 4)

The reluctances of air-gap, magnet, and iron are obtained as:

IQ Im Ii
R = ‘R = R = ;(Ap=WpL)

HA /qu’ L Mot A (639)

where i is the relative permeability of iron. The area of the left and right return paths,
including half of the air-gap flux ¢o/2, is almost wpL/2. The total reluctance Ry and its
approximation based on the low-frequency inductance Lco is as follows:

L+ (1, +1 2
Rto=R§1+Rm+Ri=I 4, m); RtozN_

/uoluri Ap Lco (640)

The initial flux and flux density are obtained as po=Nic/Rw and Bo= poAp. Employing

Ampere’s law over a flux loop leads to:

Bl, BI BI. .
Sf)E.dl=IenC:>—g+—m+—'=N|C+Ie_i+le_m (6.41)
‘u Hy  Ho  Hol

It can be rewritten to obtain the effective permeability to solve diffusion in the

laminations and magnets as in below:

INT oo HoHl; I liLeo
BIi = Hegt (Nlc+|e.i+|e.m)’ Heit :I +,UO(I +1 ): RtA ~ NZA (642)
i r\’g m p p

ﬂO/uriIm _ Im ~ Im Lco
- ~ N\ 2
L+, (0, +10)  RA, NTA (6.43)

Blm :;ugf]f (Nic+|e.i +Ie.m); :u(:f]f =

6.5.1. 1-D Diffusion for Eddy Currents in the Laminations

As shown in Figure 6.6(a), since the laminations are thin, the eddy-currents in the
laminations can be modeled by one-dimensional diffusion as in below:
o°B, 0B,

i
— 7 MO —

oz at (6.44)
B,(z,t) = Re{éy(z)ej“"}
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In phasor domain, it leads to:

o>

y

o° o
= jouy 0B
oz° g (6.45)

The solution is obtained as in below:

s=+/jou, o =ta = B,(2)=Ae”" +Ae”’ (6.46)

As the initial field Bo on the boundaries of the magnet is not disturbed by the flux

produced by the eddy currents, the boundary conditions are B, (x,z =+d /2) = B, which result
in:

ead/Z e—ad/Z A B A+ — ead/Z / 1+ead/2
~ad/2 an || A |= U= 412 ( d,z) (6.47)
e e” A B, A =e*" [ (1+e*?)

By substituting A+ and A-, the solution is obtained as:

|-5>y (2. 0) =B, coshaz
coshad /2 (6.48)

The flux passing all lamination is obtained as follows:

w, /4

) 14 cdl2 A _ tanhaz/2
&(®) = 2m prm L“Z B, (2, @) dxdz =g, — 2

_Ni, (6.49)
R

Dy

where m is the number of laminations such that L=md, and 2 is for the two flux loops.
Using the approximation tanh x=1/(1+x) and substituting for ¢o, the following MEC is

obtained:

NI (jo)

R )

(6.50)
R, (i) =R, Q (@) ; Qie)=05djoulyo,
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The eddy-impedance Re; is a half-order complex reluctance that is zero at w=0. It goes
up with frequency, causing a magnitude reduction and a phase lag in the flux ¢(t) with
respect to the magnetomotive force or coil current. The associated magnetic circuit is
shown in Figure 6.7(a). The induced eddy current density in one lamination is obtained as

follows:
. . oB i
Jo)= L vxB =3 =+ Dy _pg @ sihaz
et Mg O Mg COshat /2 (6.51)
(a) 1-D Diffusion
B=B, .By .J, By B=B, .J,
- < Z = 7 N . < 2 x c
dl L ®------- @-VM\ ~~~~~~~ @) = d1~-~® ~~~~~~ Ry ------- ®--1
"1 ignore J, B=By & B B=B, R
h W,/2 ' - Wp/2 '
b) 2-D Diffusi
(b) iffusion A VA
b, B=0 b! B=B,
i !
-q al g rtlef 4 o __--(gf_"f-qqg
'38: 3 | mg CID 1 (=]
I I ] M ! 1 1l
@ ! @ @ : @
[} ]
-b' B=B, -b' B=0 -b' B=B,
Problem Problem 1 Problem 2

Figure 6. 6. (a) 1-D diffusion in laminations, and (b) 2-D diffusion in magnet.

6.5.2. 2-D Diffusion for Eddy Currents in the Magnet

As shown in Figure 6.6(b), the eddy-currents in the magnet can be modeled using two-
dimensional diffusion as in below:
0°B, 0°B oB

Yy~ Yo" —Y: B, (X,z,t)=Re{B, (x,2)e
o o Henn g Bz (B, (x e (6.52)

where B, is a complex number. In phasor domain, it leads to:
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o’B, 0°B R
— * = jopy o,B,

+ —_—
ox* ot (6.53)
Using the separation of variables, we have:

” "

B, (x,2) = X (x) Z(2) :X7+Z? = joul o, (6.54)

The boundary conditions are B (xa,z)=B,(x,b)=B, where a=wp/2, b=L/2. By

superposition, the problem can be divided into two problems as shown in Figure 6.6(b)
with boundary conditions:

P1: B, (+a,2)=B,; B,(x,z=%b)=0

(6.55)
P2:B,(+a,2)=0; B,(x,z=1tbh)=B (6.56)
The solution of equation (54) for problem 1 is as follows:
X”_kfn = s =1k, = X(X) ~sinhk,x, coshk,x
P1 ZZ” __(_) _—J(—):> Z(2) ~SIHEZ cosg—zz (6.57)
G~ (Go) = [0ty =k, = W
Satisfying B, (x,+b) =0, the solution is obtained as follows:
B (x.2,0) = ;a o053 % (6.58)

where a, is obtained as the coefficients of the Fourier series of the boundary condition

B, (+a,z) = B, as follows:

=—j B,C —dz—ismn—7Z

nz 2 (6.59)

The solution of equation (6.48) for problem 2 is as follows:
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X" nz., . N7 . Nz nrz
—=—(—)"=s=—j(—) = X(X) ~sin—Xx, cOS—X
X (Za) J(Za) ) 2a 2a
P2 Z? =kZ = s=+k, = Z(2) ~sinhk,,z, coshk, z (6.60)

nz . ’ nz .
_(5)2 + k22 = JOU0, = an = (Z)z + Ja)/uen;f On

Satisfying B, (+a,0) =0, the solution is obtained as follows:

B,(xz,0)= > b, cos I x GOSN KznZ
3. 2a coshk, b (6.61)

where bn is Fourier series coefficients of the boundary condition B, (+a,z) =B, as bh=an.

Thus By=By1+By» is obtained as:

B,= Y A in D7 {17, COSI X o1z, Coshky,2 (6.62)
wm. T 2 2b  coshk,a 2a  coshk,b

By integrating over the area, the flux is obtained as follows:

&8 {tanhklnaganhkmb} (6.63)

b a
o) = | [ B, (x,z,w)dxdz =
¢(m) :[)—-‘; Y( a)) nzﬂ.z (po I(1na anb

n=13,..

where ¢, = 4abB, . As a~b, for simplicity of calculations, the rectangle is approximated with
a square whose side width w is picked such that the area is the same, i.e. w=./ab . Only the
fundamental component (n=1) is employed to obtain a lumped-element model. The
approximation tanh x=1/(1+x) is used as well. As the series terms for n=3,5,... are ignored,

the DC gain should be matched such that ¢(w=0)=go. Substituting for @o=Nic/Ry and
writing the rest in format 1/(1+func(w)) leads to:

v Nl (jo)
#) Ro +R.m(j@) (6.64)

W\/(ﬂ'/ 2w)? + joult o, —xl2
1+7/2 (665)

R.m(10) =R Q,(j@); Q,(je)=

The eddy-impedance Rem is zero at w=0. The associated magnetic circuit is shown in

Figure 6.7(b). The induced eddy current density in the magnet is as follows:
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m y m
/ueff :ueff

. . B B
J(X,z,w) = L VxB, = L {&é —a—yézJ
(6.66)

El b c] W/ =
—_ = —- t =
— = f— 3 - X
2 € 2 g 3 g
g
Diffusion in iron Diffusion in magnet Diffusion in iron & magnet
dl M = AW
R¢ I (jw) 2 . R.
—_ S 5 combine ) - 5 ~.§
2 +\ ¢ - = =
> 3 it £
= 3
g
Electrical Circuit Magnetic Circuit Electrical Dynamic

Figure 6. 7. (a)-(c) MEC with eddy current in iron and magnet, and (d) coupled electric-magnetic
circuit to obtain electrical dynamic including eddy currents.

6.5.3. The Coupled Electric-Magnetic Circuit

As shown in Figure 6.7(c), the MEC incorporating eddy currents in both laminations
and the magnet, whose total reluctance is Ri(jw)=Rw+Rei(jw)+Rem(jw). Combining

magnetic and electric circuits as in Figure 6.7(d) results in the system of equations below:

{chRCIc+ja)N(o - {RC joN Mlc}{vﬂ (6.67)
Nlc :(Rt0+Re.i +Re.m)¢ -N F'zto—'_Re.i +Re.m @ 0

The electrical dynamic can be obtained by solving the above system of equation, or
simply by finding ¢ from the magnetic equation and substituting it into the electric
equation:

1+Q(jw)

H(jw)=
U9 = % oL, +RQ(@)

(6.68)
Qj®) = Q (@) +Q, (j)

166



where Q(jw)>0. The low-frequency inductance is Lco=N?/Rio, as expected. There are four

parameters to be found in identification: Rc, Lco, 4,0, and o, . The frequency-dependent

inductance can also be obtained as:

_ N.2 _ NZ- RO:NZ/R‘ch(ja)):#o. (6.69)
R(jo) Ro1+Q(jw)) 1+Q(jw)

L. (jo)
Using the above relationship, (35) can be rewritten as:

1

H (jo)=—————
L) R. + joL (jo) (6.70)

Figure 6.8 illustrates the distribution of the flux density as well as current density
vectors within the laminations and the magnet. It is seen that, at zero frequency, no eddy
current is induced, and flux density distributions are uniform, while eddy currents are
induced at higher frequencies, causing a reduction in the flux density at the center of the

material.
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Figure 6. 8. Flux density distribution, current density distributions and current density vectors within
magnet (top) and laminations (bottom).
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6.5.4. Fractional-Order System

The square roots, including s=jw, illustrate a fractional dynamic which may be written

as in the following:

) = {2 bys” }{>1 a8 | (6.72)

where s* and s? correspond to fractional derivatives. Here Qi is in the above format, and Qm

can be rewritten using Taylor expansion as in below:

Q) = %,/u;ﬁ o, s

W ams+§(ﬂ:2fam)2 5}~
Qu(s) =

1+7/2

(6.72)

z
2

6.6. Experimental Evaluation and Identification

Figure 6.9 shows the prototyped actuator and the torque-angle measurement setup.
Figure 6.10 shows the experimental setup, including the drive and the current control loop.

i light blocker
I of sensor

Figure 6. 9. The prototype actuator (left), and torque-angle measurement (right).
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Figure 6. 10. The setup for identification and analysis of actuator and current loop.

6.6.1. Torque and Back-EMF Profiles

The torque-angle characteristics at zero coil currents (the restoration torque) as well as
the coil torque and the total torque at a current of 1A are given in Figure 6.11(a). The torque
constant is obtained as ki=1.906 m N.m/A by experiment and 1.953 m N.m/A by 3D FEM
and, i.e., less 2.5% of error. Also, the restoration constant is obtained as krest=0.318 by
experiment and 0.28 by FEM and, i.e., an error of 11%. Among the sources of the
discrepancies might be prototyping issues, misalignments, inaccurate material
characteristics, etc. The experimental values are used in the identification. The coil torque
is obtained by subtracting the restoration torque from the total torque as it cannot directly
be measured. The back-emf waveform at a velocity around 100 rad/sec is shown in
Figure 6.11(b), where the peak divided by the velocity is obtained as k,=1.91 volt.sec/rad
by experiment and 1.96 volt.sec/rad by FEM and, i.e., an error of less than 3%. It is seen

that all waveforms have a sinusoidal pattern, as expected from the nonlinear model.
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Figure 6. 11. (a) Coil, restoration and total torques, and (b) back-emf waveform

6.6.2. Identification of the Mechanical Dynamics and Friction Impact

The actuator is excited with the current control loop as a current source to obtain the
frequency response of the mechanical dynamic Hm. In Figure 6.12(a)-(d), the waveforms
of the coil current ic and the rotor position 6, as well as frictional hysteresis loops in the
torque-position plane for different amplitudes of coil current, are extracted. The hysteresis
loops can be approximated as a straight line whose slope is almost the total stiffness seen
by the system. It is observed that, for smaller amplitudes of current, the total stiffness is
larger, and the hysteresis band is wider. Figure 6.12(e) shows the frequency response of
Hm for different amplitudes of the injected signal. A value of 10 mv at the input of the
current loop corresponds to a coil current of about 20 mA as the DC gain of the current
loop is almost 2. The DC gain of Hr, is smaller than the value of ki/ks, i.e., the total stiffness
of the system is a bit larger than the stiffness of the magnetic spring. It is caused by

hysteresis behavior of the pre-sliding friction as described by LuGre model [20]-[21]:

Fi=0,2+0,12

dz o, | V|

—=V-

dt g(v)

g(v) =F, +(F,—F,)e ™

(6.73)
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where o5 is the bristle stiffness, oq is the bristle damping, z is the internal state of bristle
deflection, v=d6/dt is the relative velocity between the two surfaces. Also, g(v) is the
Stribeck curve for steady-state velocities, Fc is the Coulomb friction force, Fs is the static
friction force, and vs is Stribeck velocity. A term for viscosity may also be added to F+.

Linearization around z=0 and v=0 results in [65]- [68]:

F, =0,0+0,0 (6.74)

In other words, the friction looks like a stiffness os and a damping oq. Thus, the
mechanical dynamics is modified to:

L _ K
16+k,0+kO=ki,—F, = H (== %
I, " +K s+K,

c

(6.75)

where Kq=kq+o4 and Ks=ks+os are the total damping and stiffness. As expected, the DC
gain of Hm in Figure 6.12(e) is smaller for smaller amplitudes. There is also a phase delay
at low frequencies, which is caused by the frictional hysteresis. This delay gets smaller for
larger amplitudes of current as the hysteresis band gets smaller. The profiles of the total
stiffness and the low-frequency lag versus current are shown in Figure 6.12(f). The
identification is performed using the frequency response for currents around 80-120 mA
where the actuator operates, and the values of Ks and Kq do not have big variations. Having
the DC gain Gmo from the magnitude response and k; from the previous section, the spring
factork, =k, /G, is obtained. At a high-frequency wn where the slope is -40 dB/dec, the

inertia dominates the dynamic as H, (s)=k, /Js°s0J =k, /&% | H, (e, )| Which is also close to

the value obtained by Solid Works. Then, the natural frequency wn is obtained by

w, =+Jk, /3 . According to the resonance peak, an initial value for 'is guessed. Finally, the

parameters are re-adjusted such that the closest match is obtained. Having ¢, the damping

factor is derived as k, =2Jw,& . A close agreement between the model and the experimental

results is observed up to a sufficiently large frequency.
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Figure 6. 12. Mechanical dynamic: (a)-(d) profiles of the coil current ic and the position 6 as well as
frictional hysteresis loops in the torque-position plane for different amplitudes of current, (e) frequency
response of the mechanical dynamics Hr, for different amplitudes of injected signal, and (f) total stiffness
and low-frequency lag due to the hysteresis loop for different amplitudes of injected signal.
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6.6.3. Identification of the Electrical Dynamics

In Figure 6.13(a), the 2-DoF conventional RL model of the electrical dynamic and the
proposed4-DoF model including eddy currents are compared with experimental results.
The parameters of the RL model are simply measured by an LCR meter, as given in
Table 6.1. From the DC gain, the resistance R= Rc+Rs and then R¢ is obtained. At high
frequency, the dynamic is reduced to the inductance as H (s)=1/L,s, SO at a higher

frequency wnt where the slope is -20 dB/dec, the inductance can be obtained as

L=1/w, |H,(®,)|. These are pretty close to those obtained by LCR meter. The accuracy

of this model drops drastically at mid frequencies, causing problems in the design of the
current loop. As observed, the phase asymptote of the experimental result, instead of -90°,
gets close to -45° due to eddy currents which affect the frequency response by nature of
half order (45 degrees).

The phase error at a frequency of 20 kHz (crossover frequency of the current loop) is
around 15 degrees in the 2-DoF RL model, while it is reduced to 9 degrees for the 3-DoF
model with eddy currents in only laminations, and 0.4 degrees for the 4-DoF model with
eddy currents in both laminations and magnets. The approximated parameters of the 3-

DoF model are Rc=1.76 Q, Lo=295 uH, u, o, =6.4071. The approximated parameters of
the 4-DoF model are Rc=1.76 Q, Lco=295 uH, #o, =3.2035and x5 o, =2.8227 . The

magnetic reluctance without and with the impact of eddy currents in the laminations and
the magnet are shown in Figure 6.13(b), illustrating that the reluctance of the flux loop
goes up due to eddy currents at higher frequencies, resulting in an inductance reduction.
The ratio of the flux to the initial flux is also shown in Figure 6.14, due to eddy currents,

from which it can be observed that the flux goes down at high frequencies.
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6.7. Conclusions

Nonlinear and linear modeling of the actuator is developed. The eddy currents in the
laminations and the magnet are included in the model by extracting a lumped-element
framework from the analytical solution of the diffusion equation, which provides very high
accuracy for dynamic and control studies of the device. As the field solutions are not

preferred for system-level designs, a lumped-element model is extracted that incorporates
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eddy currents. Without including the eddy-current in the model, it could result in large
inaccuracies in the frequencies around the crossover frequency of the current loop, which
can cause misleading predictions of the phase margin design. By including the eddy current
in the laminations using the solution of 1-D diffusion, a part of the inaccuracy issue is
solved, and by including the eddy current in the magnet using the solution of 2-D diffusion,
most part of the inaccuracy issue is solved. The impact of friction on the mechanical
dynamic is investigated. The friction acts like stiffness and damping in the pre-sliding
regime. The lab experiments are performed using a prototype actuator, whose results
illustrate a very good correlation with the results obtained by modeling and FEM. Torque
and back-emf profiles are obtained, and the identification of the model is carried out, which

will be used in the control system designs.
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Chapter 7

Modeling and Design of Drive Circuit and
Current Control Loop

7.1 Introduction

High bandwidth current loops are widely employed to drive actuators and
electromagnetic devices in order to eliminate the electrical dynamic so that the torque can
be directly commanded by the outer control loops. It also provides a faster response and
higher robustness by making the system independent of temperature-dependent elements
like the stator resistance. The current drives may be developed using analog architectures
like op-amps circuits [69]-[71] or FPGA-based switching devices [72].

In this chapter, n op-amp-based drive circuit for the current control loop is proposed,
modeled, and designed. Using a third-order model of the op-amps estimated from the
datasheet, a very accurate model for the drive and the current control loop is developed to
be used for prediction and evaluation purposes. In addition, the simplified version of the
model is obtained for design purposes and high-level intuitive analysis. The accuracy and
effectiveness of the modeling of the actuator and the drive circuit are evaluated in control
studies. The importance of eddy current modeling is demonstrated as well. Also, the
effectiveness of the designed current loop and various practical trade-offs are investigated.
The control system designs are evaluated and compared through indices like rise time,
overshoot, and steady-state error in the step response, as well as bandwidth, phase margin,

sensitivity, disturbance rejection, and noise rejection in the frequency domain.
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7.2. Drive Circuit and Modeling Approach

The electromagnetic torque is proportional to the current which is developed in the coil
within an electrical time constant. By implementing a high bandwidth current loop as the
most inner loop, the whole electrical dynamic can be eliminated. Thus, instead of coil
voltage, the current or torque can be commanded directly from the outer loops. Also, the
complexities such as fractional dynamics of eddy currents are removed, resulting in the
simplicity and accuracy of the position control. In addition, the robustness of the drive is
increase by making the system independent of temperature-dependent elements such as
coil resistance. As the drive circuit is shown in Figure 7.1, an analog control system is
employed for the current loop whose advantage is that an immediate response to the current
command is achieved. The desired closed-loop response is obtained by a lead-lag

compensator.
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Figure 7. 1. Drive circuit and current control loop
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A very accurate model for the drive circuit is developed using a non-ideal model of the
op-amps. According to the frequency response of the op-amps given in the datasheet, a

third-order model for the gain A(s) can be approximated as in below:

A(s) = A
(+s/ 27 f)A+s/ 27 f,)A+s/ 2xF,) (7.1)

f, ~GBP/A,

where the open-loop gain Ao, gain-bandwidth product GBP, fi=GBP/AoL, and
frequencies f, and f3 can be approximated from the datasheet. The approximated
specifications and frequency responses of LM3886 and OP1652 op-amps used in the drive
are shown in Figure 7.2. Lower order models can also be obtained by ignoring the
dynamics of f> and f3. Then, by writing the differential input voltage Vq in terms of output

voltage Vo and inputs V+ and V., the op-amp circuit can be modeled.

V, = A@G)V
A (8)Vy (72)
V, =V, -V
A A
50T im3sse | © L5 op1653]°
~cgp 0 N =GBP |-50 _
g 9 10 8@ 100 &
§ | LG ageas g
= z ol o GBP=18 MHz Q
%-100-1’1*14-2H2 -150 £l s -100 fi=35.9 Hz -150 &
= =3 MHz 50 ol = ,~15 MHz 200 x
f354 MHz ) f3729 MHz )
2007 §, f21s 250 2001 g, f -250
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Figure 7. 2. (a) Torque and (b) back-emf waveforms

The developed model is very precise for simulations and performance prediction.
However, for the design procedure, an ideal model is obtained when the gain A(S)

approaches infinity. This simplified version is written in terms of conventional control
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system architectures. There are two main points on how to pick mid-range resistances for
op-amp circuits. First, the resistances should not be too small to avoid drawing a large
current that causes heating and loss. For example, if Rp: and Rp2 are too small, they can
draw a big current from the output of the power op-amp to the ground. Second, the
resistances should not be too large to cause non-ideal op-amp behavior as input impedances
are not infinite in reality. Also, bypass capacitors of 0.1uF are used for power rails of op-

amps connected very close to the power pins.

7.3. Modeling of the Power Op-Amp and Voltage Divider

To drive the actuator, an LM3886 power op-amp with an open-loop gain of A(s) is
used, which can provide a current of 10 A and a large instantaneous and continuous power
capability. Generally, in op-amp circuits, the higher the closed-loop gain, the lower the
bandwidth; thus, the lowest possible gain is preferred. Based on the datasheet of LM3886,
the lowest closed-loop gain to have a stable circuit and to get a phase margin of around 15
degrees in open-loop gain A(s) is 10. In smaller gains, the phase margin gets lost. Therefore,
mid-range values for Rp1 and Ry2 are picked to have a gain of 10.53. Another consideration
is that the impedances at the inverting and noninverting inputs (10[|64.9 and 10]|95.3)
should be close; it is satisfied as the 10 kQ resistance dominates the large parallel ones. A
voltage divider with a gain of 0.133 is used to adjust the maximum output of the
compensator (x14.7) to the maximum output of the power op-amp
(x14.7 voltx0.133x10.53=+20.6 volt). The transfer function of the voltage divider is just a

gain as in below:

Hvd(s):\ﬁz RVZ

Vu va + sz (7.3)

The differential input voltage of the power op-amp is:

R
Vo =V _—plvc
Ru + Ry (7.4)
Vc = AJ.(S) Vdp

The transfer function of the ideal model is just a gain as follows:
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@Yo AG)

4L N A
R Ry (7.5)

. Rp2
lim H (s)=1+——
A (s)>e0 o1

The block diagrams of the ideal and non-ideal models are shown in Figure 7.3. Its
bandwidth is large enough compared to the current loop bandwidth that can be treated as a

gain in the design process.

Power Op-Amp: Hy(s)

Voltage Divider:
Hvd

Voltage
Divider: H4

Figure 7. 3. The non-ideal (top) and the ideal (bottom) models of the power op-amp

7.4. Modeling of the Current Sensor

A low-noise high-bandwidth OP1652 op-amp with an open-loop gain of Ax(s) is used
for compensator and current measurement. The coil current is measured by the voltage
across a Metal Element 5-watt resistance Rs =0.1 Q in series with the coil, whose voltage
is buffered so that it is not loaded. The advantage of this open-air resistor is to keep the hot
spot safely off the PCB and improve the heat dissipation. Its parasitic inductance is much

smaller than the metal film resistors. Also, the sense circuitry should be as close as possible
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to the sense resistor to avoid large loop areas by the PCB tracks, which can form parasitic

inductances. The buffer gain is set to 1/Rs, i.e., Rs2/Rs1=10, so the DC gain of Hs is unity

(Vs=i¢). The differential input voltage of the op-amp is:

R R
Ves = R—Sl{vrs - _51\/5}
sl + RsZ RSZ
Vrs = Rsic
Vs = AZ(S) Vds

The transfer function of the ideal model is just a gain as follows:

Rsl

V, Ry +R,
HS(S):I_:RS 1R 2

R
c 14+ 82 st S
R51+R52 R52 AZ( )

Ay (s)

RSZ =1

sl

lim H (s) =R,

A(s)—>o

(7.6)

(7.7)

As its bandwidth is large enough compared to the current loop, it is treated as a gain in

the design process. The block diagrams of the non-ideal and ideal models are shown in

Figure 7.4.

[ 7 pe—— T p— T T T T T 1
I Vs :
] Aus) et Dol R, et
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[

I

[

Current Sensor H=1

Figure 7. 4. The non-ideal (top) and the ideal (bottom) models of the current sensor
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7.5. Modeling of the Lead-Lag Compensator

The lag compensator provides a large low-frequency gain to eliminate steady-state
error. The lead compensator provides a fairly large phase margin to limit the overshoot of
the time response and to increase the robustness of the control system.

The lead compensator is put in the feedback path so as to reduce overshoot and thus
saturation in the output of the power op-amp. The differential input of the op-amp Vqc is as

follows:

Z. ||z Z. ||z
oz oz 2z,
242,12, " 2,+2,1Z,° Z,+Z]IZ,

(7.8)

It can be simplified to:

lezzf Vset Vs Vu
Vie =~ —_—t—+—
272,+272,+2,Z2, |Z, Z, Z,

Vu = AZ (S)vdc

(7.9)

The transfer function of the lag compensator is obtained as:

2,2,Z,
A, (s)

v, 27,+2,Z,+7,7Z,
€ - + 22,7, i
22,+2,2,+2,7, Z,

(7.10)

ng (S) =

A, (s)

With the ideal model of op-amps (A2(s)—), it reduces to:

H =2, = 2
R,Ci,s+1 (7.11)

. 1
lim H,,(s) :C—

Rig > Ig S

The role of very large resistor Ryg is to limit the DC gain of the closed-loop system to
avoid overcurrent in the coil in unexpected scenarios. However, if Rig is very large, a pure
integrator is obtained as 1/CigS. As the value of Rig=2 MQ is picked, the pure integrator
approximation can be used in the design process. The transfer function of the lead

compensator using the ideal model of the op-amp is:
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H (s)—i_i(RZ+Rld)clds+l_ia"[3+l
Id Z, R, R, C,s+1 R, 7s+1 (7.12)

where the time constant is z=RidCi4, and the pole-zero ratio is a=1+R2/Ris. The lead

compensator provides a maximum phase of ¢ at the frequency of wm as in below:

A, :sinl(a—_l) at o, = L
1 o (7.13)

The value of «is set according to the required phase compensation. Too big values can
amplify high-frequency noise. The value of wm is usually set at the gain crossover
frequency . of the loop transmission so that the highest phase margin is obtained. The

non-ideal and the ideal model of the compensator are shown in Figure 7.5.
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Figure 7. 5. The non-ideal (top) and the ideal (bottom) models of the compensator
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7.6. Model of the Drive Circuit and Current Control Loop

In Figure 7.6, the non-ideal and the ideal models of the drive circuit and the current
control loop are shown. The non-ideal model is employed for simulations and predictions,
while the ideal model can be used for initial discussions and design purposes, as in the
following section.
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—————————————————————————————————————————————————————————————————— 1 | ey | Fe=s=s=ss======== 1
Yiyg 1 ]
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— "1 oo [ ] + 2
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I | I — | I
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(b) simplified current loop model with ideal op-amps

Figure 7. 6. The non-ideal (top) and the ideal (bottom) models of the drive circuit and the current control
loop

7.7. Design of Lead-Lag Compensator

The design steps are as in below:

1. The closed-loop DC gain is almost R2/R1, whose value is picked such that bounds of
Vset (£5V from DAC of DSP) are matched to the current capability of the power op-
amp (£5x10/5.1=%+9.8A). The resistor Ry should not be smaller than 1 kQ as it can
cause heating and damaging the DAC with overloading and drawing a large current.
Picking R1=5.1 kQ, leaves R>=10 kQ.
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2. Next, the typical pole-zero ratio of a=10 is used, which provides a maximum phase of

¢#=55° to the loop. Therefore, Riq is obtained as:

a=1+R,/R, = R;=R,/(a-1)=11kQ (7.14)

3. The 10%-90% rise time of the closed-loop response is t~2.2/wbw, Where wnw 1S the
closed-loop bandwidth in rad/sec. To have a t,<50us, at least a bandwidth of 7 kHz is
required. The crossover frequency must be much larger than 1/ze to provide a very fast
time response with a small rise time. The crossover frequency of the loop transmission
is set to fc=20 kHz which gives a closed-loop bandwidth around fyw=7.8 kHz. Setting

wm=wc=27fc, the value of Ciq is obtained as follows:

1 1
w,=——= = C, = ~2.2nF
RiCu “/E @, Ry ‘/; (715)

4. The last component to be determined is Cig which is set such that the gain of loop

transmission is unity at wc.

iHm(jwc)He(jwc) Ry [1+R”2J =1 = C, ~100pF (7.16)

jwcCIg va + R\/Z Rpl

where Hy, Hp, and Hs are just the simple gains of the ideal models of the voltage divider,
power op-amp, and current sensor. The electrical dynamic, including eddy currents, is

used here.

5. Figure 7.7 shows the loop transmission and its components as designed in part | of the
paper, as well as the Nyquist of the loop. The results of the developed model are in very
close agreement with the experiment. A sufficient phase margin of gn=72.5° is
obtained. It is seen that the phase margin is estimated with an error less than 1° with
the electrical dynamic including eddy current, while the error is around 16° if eddy

currents are ignored in the RL model. The Nyquist is a well far away from -1.
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Figure 7. 7. Frequency response of loop components: (top) loop transmission, compensator, and
rest of loop (loop transmission excluding compensator), and (bottom) Nyquist

7.8. The Six Gangs: Design Trade-Offs of Drive and Current loop

The design trade-off of the current control loop is studied in this section. As shown in

the block diagram given in Figure 7.8, the three important inputs of the current loop are

reference R (current command Vset), disturbance D, and measurement noise N. Also, the
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three outputs are the plant output x (position 6), measured output y, and drive output u. The

loop transmission is L=PCH. It can be represented as a MIMO system as follow:

P  -PCH PCF
.1 |1+PCH 1+PCH 1+PCH |p
P 1 PCF
- N
Y|7|T+PCH 1:+PCH 1+PCH o (7.17)
! PCH CH CF
|1+PCH 1+PCH 1+PCH |

There are six district transfer functions known as the six gangs [88]. The experimental
frequency responses are obtained by SR785 Digital Signal Analyzer, whose maximum
frequency is 100 kHz. Easily obtaining the frequency responses of loop transmission
L=PCH, Gang 1, Gang 2 and Plant P, the Gangs 3-6 can easily be obtained as G3=P/(1+L),
G4=1/(1+L), G5=(L/P)/(1+L) and G6=L/(1+L). The high precision of the developed
models for the actuator and the drive circuit is illustrated in comparison with the
experimental data. It is also shown that the RL model of the electrical dynamic in which

the eddy currents are ignored may cause misleading inaccuracies in the design process.

Disturbance Ntl)\;'se
Reference D
R=V,; F C |u P [x Clj .
LRy HigH\aHo \ H. \/ Measured
Drive Output Physical Output

Output

H

HsHiqg

Figure 7. 8. The six gangs: block diagram, inputs and outputs

7.8.1. Gang 1: Reference Tracking
This is the reference tracking transfer function from the current command (DAC) to the

coil current as in below:

T-r_ T 7.18
R 1+PCH (7.18)
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Toe :ng(O):@:%zs.%dB (7.19)

H(0)

Frequency and step responses of T are shown in Figure 7.9 and Figure 7.10. Provided
by the crossover frequency of w.=20 kHz, as www « wc, a sufficient bandwidth of around
fow=7.86 kHz is obtained, which provides a fast response with a small rise time
t~2.2/wpw=45 us as expected. Also, the bandwidth is not excessively large to introduce
high-frequency noise to the system. Thanks to the sufficient phase margin of the loop, the
closed-loop response is well damped ({= ¢m/100) without a significant resonance peak.
Provided by the lag compensator, if the loop gain at low frequency is large enough, the
steady-state error converges to zero, and the D.C. gain is R»/R1=1.961, that is, a current
command of Vest=1 produces a current of 1.961 A in the coil.

7.8.2. Gang 2: Voltage Capability of the Drive

This is the transfer function from the current setpoint R to the output of the power op-

amp U as in below:

9__F¢ 7.20
R 1+PCH (7.20)
im—FC ___FO R 112608 (7.21)
¢»1+PCH POH(©) R

A design criterion is the D.C. gain which converts the current setpoint (DAC voltage)
to the steady-state coil voltage. The DC gain of 11.26 dB converts the £5 volt at the DAC
to £18 volt at the coil terminal—a bit below the maximum voltage capability of drive. Also,
a comparison is made with a case where the lead compensator is placed in the forward path.
As shown in Figure 7.9, it can be observed that the resonance peak of the frequency
response and the overshoot of the step response is larger, which can result in saturation of
the voltage op-amp whose output voltage cannot go beyond £20.6 volts. Therefore, putting
the lead compensator in the feedback path is a wise decision that enhances the voltage
capability of the drive in the transient regime. The step response is also shown in
Figure 7.10.
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7.8.3. Gang 3: Disturbance Rejection or Load Sensitivity

This is the transfer function from the disturbance D to the output y (coil current) as in

below:
Y =
D 1+PCH (7.22)
. =
lim =0
c-»1+ PCH (7.23)

The disturbance operates at low frequency as the reference command. The back-emf
E=koar is treated as a disturbance in the current loop. A large loop gain in low frequencies
provided by the lag compensator brings a good disturbance rejection whose capability
needs a compromise with reference tracking capability and robustness as increasing the
low-frequency gain comes at the expense of a decrease in the magnitude slope and thus in
the phase margin of the loop transmission around the crossover frequency. In other words,
pushing down the output response to the disturbance (Gang 3) comes at the cost of an
overshoot in the output response to the setpoint (Gang 1). The disturbances are effectively
attenuated at low to high frequencies, as it can be observed in Figure 7.9 that the magnitude

peak is around -30 dB.

To obtain time responses of Gangs 3 to 6, extra equipment is not required to inject D
and N signals to the specified locations. As the input impedance of the power op-amp is
very large and the output impedance of the compensator op-amp is very low, according to
the circuit shown in Figure 7.10(c), approximated responses of Gangs 3 and 4 can be
obtained by injecting the input signal to the non-inverting input of the power op-amp
through a 10 kQ resistor. If the inverse gains of the voltage divider (vin to v+) and power
op-amp (v+ to v¢) are applied to the responses, ic and v¢ give the approximate responses for
G3=P/(1+PCH) and G4=1/(1+PCH), respectively. The inverse of the total gain from vin
to vc is 0.2, so if the magnitude of injected signal vin is 0.2 volt, the signals ic and v give
the unit step responses of Gangs 3 and 4. It is seen that the unit step response to the

disturbance signal is effectively suppressed to 6 mv.
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7.8.4. Gang 4: Sensitivity

The sensitivity is the transfer function from the noise N to the output y, or reference R

to the error for F=1.

Y 1

N 1+ PCH (7.24)

Typically, S is zero at low frequencies, has a peak Ms at a mid-frequency wms, and
converges to unity at high frequencies. Sensitivity is a measure of the robustness of the
control system to the variations of the parameters of the plant He as the impact of variations

of T to P is proportional to sensitivity S as follows:

aT T
—=5— =
P P

dr _ dp

TP (7.25)

If the sensitivity curve is harshly pushed down at low frequencies to obtain a smaller
steady-state error and robust disturbance rejection, it pops up at mid frequencies resulting
in a larger Ms; it is called waterbed effect and needs a trade-off. It is also reflected in the
fact that S+T=1 if F=H=1. Usually, a value of Ms smaller than 2dB or 3dB shows a
satisfying design. Thanks to the sufficient phase margin of the loop, Ms=1 is obtained, as
shown in Figure 7.9. It can also be seen that if the RL model without eddy current dynamic
is used, the value of Ms has a significant discrepancy which can be misleading in the design
trade-offs. According to Figure 7.10, the unit step response to the noise signal is effectively
suppressed to 10 mv. It is also a measure of steady-state error elimination, which is largely

satisfying.

7.8.5. Gang 5: Noise Sensitivity

The noise sensitivity is the transfer function from the noise N to the drive output U.

_ CH
1+ PCH (7.26)

Sy =

z|C

The system should be designed such that noise sensitivity is as small as possible so that

the measurement noise is not amplified by the power op-amp, causing loss and drive
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saturation. As Sp=CHxS, at high frequencies S=1 and so S,=CH; thus, the pole-zero ratio

of the lead compensator « should not be very large to avoid noise amplification. As shown

in Figure 7.9, a sufficient noise attenuation is obtained at high frequencies by a value of

a=10.

7.8.6. Gang 6: Complementary Sensitivity

Complementary sensitivity is the transfer function from the disturbance D to the drive

output U.

u_
cm D

1+

PCH
PCH

(7.27)

If F=H=1, Scm=T. As S+Scm=1, there is a compromise between S and Scm. It is shown

in Figure 7.9.
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7.9. Conclusion

An op-amp-based analog drive circuit is proposed, designed, and precisely modeled by
a third-order model of the op-amps. It provides a very accurate simulation platform to
predict the performance of the drive circuit and the current control loop. In addition, an
ideal model using the ideal model of op-amps is then developed to be employed in the
design of the current control loop. The accuracy of the ideal model is a bit lower than the
non-ideal model, but its diagram is in the form of the conventional lea-lag control systems,
which provides a good platform for the design of the current loop. The design trade-offs
are analyzed through six important performance indices called the six gangs, including
tracking capability, voltage capability of drive, disturbance rejection, sensitivity, noise
sensitivity, and complementary sensitivity. Among the six gangs, the first four are the most
important ones. Tracking with sufficient bandwidth (small rise time) and enough phase
margin (small overshoot) is significant. The sensitivity is the second important one whose
peak needs to be smaller than 2 or 3 dB to have good robustness. A good disturbance
rejection is also helping to suppress the back-emf in the current control loop. Checking the
saturation level of the power op-amp is important; for example, by placing the lead
compensator, a larger head room is provided for the overshoot of the output of the power

op-amp.

The accuracy of the drive modeling, as well as the effectiveness of the actuator model,
are studied in the tests of the current control loop. The developed models for the actuator
and the drive are employed in position control studies, and the significance of eddy current

modeling in the effectiveness and accuracy of the control system designs and predictions
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is demonstrated. Also, various aspects and practical trade-offs of the current loop are

investigated. Then, three DSP-based position control techniques are implemented.
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Chapter 8

Pole-Placement Position Control with Voltage
Drive

8.1 Introduction

The position loop can be digitally implemented in a DSP. The Zero-Order-Hold (ZOH)
sampling is performed at the frequency of fs up to 160 kHz. Bipolar ADCs with 16 bits of
resolution is employed. If unipolar ADCs are used, it is required to deal with an offset by
an extra op-amp circuit. The position sensor returns a voltage as a function of position, and
its inverse function is implemented in the DSP. As the bandwidth of the position loop
should be around or not much larger than the bandwidth of the actuator to avoid drive
saturation, pole placement position control is employed for desired poles having a natural
frequency of wn=27500 rad. The experimental control setup is shown in Figure 8.1. As
shown in Figure 8.2, the pole placement control is performed using the power op-amp as a
voltage drive. To effectively use the resolution of the DAC, a voltage divider with a gain
of 0.4 is used such that +5v at the DAC translates to +21v at the output of power op-amp
(£5%0.4x10.53=%21). The coil voltage is measured by ADC through a voltage divider.
Also, the current can be measured using the output of the buffer sent to an ADC, or it can
be estimated by a state observer. The circuits gains are canceled out in the DSP by their
inverse values so that the physical model of the actuator can be used for control system

design without requiring any gain modification.
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Figure 8. 1. Experimental control setup

M ok 7 1T v

: Lo Rt 24" Actuator

: ? | P :Mm I\_,‘:A —>i. sensor,
] | | xN :Q_| - : : R Lc +0 wkKyw, e:
i " B L N I e € 4
i Position Control | | "L g5 at T, ™ K
[ 1 Tt -

i (DSP) ! Voltage £,

! ! Divider 2|

! fc v, [76a) 2

: é gw 3 2 e@

: LR 2 4 -{ 8

1 Pole ~|27 0 <L

[ placement W 9=f-l(v ) g

(7l Ty M\ el

Figure 8. 2. Pole placement with voltage drive

8.2. Employed Model

By ignoring the fractional-order dynamic of eddy currents, an integer-order linearized
model, whose block diagram is shown in Figure 8.3, is obtained to be used in pole

placement control:

H 2
Vc:ktwr+Lco%+Ric; JZTf+Kd?j_t9+K50:kti° (8.1)

It can be represented as a third-order state-space model as:

196



0 0 1 0 o1 [ o
o |=|-K 13 K, 13 kII ||e |+ 0 |v, 82)
i 0 -k /Ly, —R/Lgli | [1/L,
_Eisa digturb?ncl:? in r==--- Mtecfrlar&i(l:)al dyn,aémi(:f is
in current control loop| ' controlled by position loop
] kb I:l kbl Rl 1

I
: | k :Tcoil: 1 W 1 9:\
T : T | JS S :I
e e |
Elec-Mech i |
Coupling | Kq maghetic 1
(ko=ke) 1 & spring |
' |
Electrical dynamic can be eliminated : K, :
' |

by a high-bandwidth current loop

= ——————————

Linearized Electromechanical Model of Actuator
Figure 8. 3. Block diagram of the linearized electromechanical model.

8.3. Full-State Feedback Control in Time Domain

As shown in Figure 8.2, full-state feedback is obtained by substituting u=r-K Jx and
r=G bref as in below:

%5x(t) = (A-BK)&x(t) +Br(t) (8.3)

The eigenvalues of matrix Aq=A-BK determine the closed-loop dynamic. The gain
vector K=[ky, ko, kn] is obtained by pole-placement using Ackermann’s formula as in

below:
K= [0 0 1]lx3 Mc’1 ¢, (Az); M, =[B AB AZB] (8.4)

where M is the controllability matrix and ¢q is the desired characteristic polynomial whose
roots are the desired eigenvalues 41, 42 and 43 of closed-loop dynamic Aq=A-BK which are

chosen to be on a circle with a radius of wn=2zf, and with damping of { as —wn and

¢, * jo,\1- & . It leads to the following desired characteristic polynomial:
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03 (A1) = (A=) A= 21) (A~ %) = (A° + 20w, A+ 0,")(A + @,) (8.5)
The input gain for position tracking (C=[1 0 0]") is obtained as:
G=-[C(A-BK) BJ" (8.6)

8.4. Full-Order State Estimator

Position and current can be directly measured or estimated, and velocity is estimated.
When there are noise problems and unmodeled dynamics, as in our case where eddy current
dynamics are ignored, a full-order observer might be preferred over a reduced-order one.

The estimator dynamics are as follows:

%ma) = ASR(®) + Bu(®) + L(y(t) - J(t) 8.7)
y(t) = CoX(t) (8.8)

Substituting for Yin (15) results in:

d . , u(t)
—oX(t)=(A-LC)oX()+[BL
o x(t) =( )oX(t) +[ ][y(t)} (8.9)
where A.=A-LC forms the closed-loop dynamics of the estimator. The pole placement can

be done for the estimator using Ackermann’s formula to obtain the gain vector
L=[L: Lo L3]-
C
L=¢.(AM;*[001],,; M, =| CA (8.10)
CA?

where Mo is the observability matrix, and ge(4) is the desired characteristic polynomial
whose roots are the desired eigenvalues of estimator dynamic Ae=A-LC which are chosen
to be around 5 to 10 times faster than the controller. For example, locating them at —10cwn,
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can be a good choice as it is still within the bandwidth of the sensors. It leads to the

following characteristic polynomial:
9, (1) = (A +100,)° (8.11)

Using the Forward Euler method, by substituting d/dt with (z-1)/Ts, the Z-transform

and the discrete-time equation of the estimator is obtained as in below:
X(K)=(1+T,A)X(K-1)+TBv (k-1 +T.Lyk-1) (8.12)

where Ts=1/fs is the sampling time. It can be easily implemented into the DSP. Another
state estimation technique is to employ a full-order observer where only the unmeasured
states (velocity) are taken from the observer and the measured states (position and current)
are directly taken from the sensor. In this method, model uncertainties can be more

efficiently suppressed in velocity estimations.

8.5. Design of the Compensator

The compensator is the combined controller and estimator with input y(t) and outputs
u(t). If r=0, the dynamics is obtained by substituting U =—K X and ¥ =C oXin (15) as

in below:

%52(0 =(A-BK-LC)dX(t)+ L y(t); u=-KoX(t) (8.13)

where Ac=A-BK-LC, Bc.=L and C.=-K. Its dynamics are obtained as eigenvalues of
Ac=A-BK-LC, which need to be checked for stability. The closed-loop dynamic is as

follows:

d | ox(t) B A -BK oX(t)
dt| s%(t)| |LC A-BK-LC || 5%(t) (8.14)
The characteristic polynomial of the compensator is |1/-(A-BK)|x|A/-(A-LC)|=0, and so
the 6 eigenvalues of the above system are the same as the 3 eigenvalues of Aq=A-BK and
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the 3 eigenvalues of Ac=A-LC taken together. This fact is called the separation principle

that enables us with the independent design of controller and estimator.

8.6. Design, Simulation, and Experiment

The plant is controllable and observable as M¢ and M, are full rank matrices. The
eigenvalues of Ac are chosen by wn=2znfn=21500 rad/sec and damping of {=0.8. The
feedback and the input gains are obtained as K=[5.3636, 0.0031, 0.3437] and G=6.8664.
The eigenvalues of estimator dynamic Ae are chosen to be around 5 to 10 times faster than
the controller. For a response that is 10 times faster, the value of estimator gain L is
obtained as [8.73e4, 2.34e9, 1.15e7]. Also, the compensator is stable as the eigenvalues of
A-BK-LC are -42069 and -26703+11066i.

Figure 8.4(a)-(d) shows both simulation and experimental results for a square wave
reference with a magnitude of +5 degrees and a frequency of 20 Hz. The steady-state error
is almost zero, voltage and current are within limits, and the experimental results are close
to those expected from simulations. As shown in Figure 8.4(a), a small discrepancy is
observed in the reference tracking results; the simulation predicted a small overshoot which
is expected from the desired damping, while the experiment does not illustrate any
overshoot. It can also be explained by the closed-loop frequency response given in
Figure 8.5(a) that the experimental result shows a more damped system. This discrepancy
can probably be explained by non-modeled dynamics such as friction as well as eddy-
currents; as shown in Figure 8.5(b), the phase margin of the real system is a bit larger than
the model, i.e., a smaller overshoot. Although the obtained phase margin looks good, the
closed-loop response is a function of temperature-dependent elements such as coil

resistance.
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8.7. Extra Math

The relationship of the closed-loop transfer function (r to 6) is obtained as:
T =GC(SI -[A-BK])'B (8.15)

Also, the loop transmission, which is the transfer function from u to the comparison

point & is obtained as:

6, 1
L:I—k: K(SI-A)'B (8.16)

ref

Corrections of the delays due to ADC and computation time can be performed by the

T,
term e

where Tq is the delay. The dynamic of the current loop can be reduced to a
simple gain for controller design; however, it can be included in the model to gain a higher
accuracy in the designs and simulations. If the transfer function Hcy is the closed-loop
response of the current loop (Gang 1) multiplied by the inverse of its D.C. gain to have a
unity D.C. gain on total, the control effort, instead of being U= Gbret -K 0.X, will be
U=HcL(R-K ¢X). The transfer function of the plant from u to the states as outputs is the 1-
input 2-output system Gn=C(SI-A)*B where C=I2x,. The difference between Gn and Hp is
that Gm is a 2-by-1 matrix that outputs both position and velocity. Thus, a closed-loop

system incorporating the current-loop dynamic is obtained as:

X -
X =G, H¢ (GO _Kx):>9_:(|2><2 +G, He K) 1Gm He G (8.17)

ref

8.8. Conclusion

In this chapter, a pole placement position control with voltage drive is developed. The
drive circuit is cheap and simple. It shows acceptable performance for simple applications,
but it lacks accuracy and robustness for advanced control requirements. The source of
inaccuracies could be uncertainties or unmodeled dynamics like eddy-currents. A source
of the lack of robustness could be the fact that the control system is dependent on the

temperature-dependent resistor of the coil. In the next chapter, this issue is solved by

202



employing a high-bandwidth current loop which eliminates the electrical dynamic,

including uncertainties like eddy-currents.
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Chapter 9

Pole-Placement Position Control with
Current Drive

9.1 Introduction

As shown in Figure 9.1(a), using a high-bandwidth current loop as the most inner loop,

the electrical dynamic of the actuator, including its time constant and complicated

dynamics such as eddy currents, can be eliminated, leaving a faster plant having fewer

complexities. Then, instead of the coil voltage, the current or torque can instantaneously

be commanded by the position loop. The bandwidth of the current loop is around 7.86 kHz,

while the desired bandwidth of the position loop is less than 500 Hz. Therefore, as shown

in Figure 9.1(b), the current loop can be seen as its D.C. gain from the position loop. This

gain is canceled out by its inverse in the DSP to avoid requiring to add extra gain to the

plant.
DSP-based Position Loop Analog Drive and Current Loop
C I o e r L T T g e ——— Ty i
8= lref N R.2 Rp2 |V < 2]
Ryi*R,2 1+R_pl He(s) Hm(s)
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Figure 9. 1. Pole placement with current drive: (a) current and position control loops, (b) simplifying the

high bandwidth current loop to its DC gain
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9.2. Employed Model

As shown in Figure 9.2, eliminating the electrical dynamic by the current loop and
canceling its DC gain in the DSP, the model is reduced to the second-order mechanical

dynamic as follows:

6| [ O 1 e 0 .
o, {—KS/J —Kd/JMa)r}{kt/J}C ©.1)

E is a disturbance in [----= Mechanical dynamics is
in current control loop| controlled by position loop

[}

N J
1 key |:: e e |
! 1 1 1

‘= DA LN

1 N JS S :
[ |
Elec-Mech | !
Coupling | kq |
(ko=k:) ! Linear Magnetic| |
' k Spring H
Electrical dynamic is eliminated by ' : '
[} [}

a high-bandwidth current loop

I.[g 2 T eoil 1 wr 1 9\
d JS S i
ki
Linear Magnetic
k I: Spring
S

Figure 9. 2. Order reduction of the electromechanical model from three (top) to two (bottom)

9.3. Full-State Feedback Control in Time Domain

The feedback gains K=[ki k2] and the unitary input gain G are obtained where C=[1 0]".

K=[01] ,M ¢ (A,,); M, =[B AB] (9.2)

G=-[C(A-BK) BI* (9.3)
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9.4. Reduced-Order Estimator

The available states do not need to be estimated by the observer. Reduced-order
observers are computationally more efficient, may converge faster, and have higher
bandwidth. For the current drive, a reduced-order observer is employed to estimate velocity.
The model can be partitioned based on the measured states X;=6 and unmeasured ones

Xo=wr as follows:

X, | [A A[X] [B]
{XZHAA AZJ{XZHBJ% (9.4)
a O]{ﬂ 9.5)

The estimator in terms of the new state z can be expressed as:

Z=AZ+By+Fi, (9.6)
X,=Z+Ly (9.7)

whose parameters are obtained as:

A=A, -LA, (9.8)
B=AL+A,-LA, (9.9)
F=B,-LB, (9.10)

Thus, the characteristic polynomial of A=-ke/J-L has been obtained whose
characteristic polynomial is ¢(1)=|AI-4|=1+ks/I+L. Also, the bandwidth of the estimator
is Ao, o the desired pole is -40 and the desired characteristic polynomial is pe(1)=1+40. Thus,
the estimator gain is obtained as L=Ao-kd/J. Also, Ackermann’s formula can be used to

obtain estimator’s gain by substituting A with A22 and C with Ai> as:

L =4.(A,)M,[1] (9.11)
M, =[A,] (9.12)
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It gets to the same value for L. Substituting L in (29) leads to:

A=—2, (9.13)
B=—(4>—k A /3 +k, 1) (9.14)
F=k/J (9.15)

Finally, the velocity is obtained as wr=z+L#. Using the Forward Euler, the discrete-
time equations are obtained for DSP implementation as in below:

Z(k)=(1+T,AZ(k-1)+T.BOK -1)+T,Fi, (k -1) (9.16)

o, (K)=2(k)+Lo(Kk) 9.17)

The estimator bandwidth is set to A0=10wn.

9.5. Compensator

It can be shown that the characteristic equation of the compensator |1/-(A-BK)|x|AI-
(A22-LA12)|=0, so the controller dynamic Aq=A-BK and the estimator dynamic A= Ax-LAs2
can be designed independently.

9.6. Design, Simulation, and Experiment

The desired closed-loop poles A1 and 4> are chosen to have a natural frequency of
on=2rfn=10007 rad/sec, and damping of {(=0.8 as —éw, + jw,1-&* , SO the desired

characteristics polynomial is as follows:

0 (A)=(A=21)(A-2) = 22 + 2w )+ », (9.18)

The feedback gains and the unitary gain are obtained as K=[7.124, 0.0037] and
G=7.806. Then, the estimator gain L is obtained as 31118.

The step responses of position, velocity, current command (scaled DAC output), and
coil current are shown in Figure 9.3. The reference tracking and the performance of the

current loop are very good. Not only are the results as expected from the experiment, but
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also, they correlate well with the simulations from the model. It can be observed that,
compared to voltage drive control, the control system design using the current drive is more
accurate, which is due to the elimination of electrical dynamics, including eddy currents
and back-emf impact. Also, the elimination of the temperature-dependent resistance of the

coil adds to the robustness of the system.
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Figure 9. 3. Step response of the pole placement with current drive: (a) position, (b) velocity, (c) current
command, and (d) coil current.

As shown in Figure 9.4, the performance of the system is checked in the frequency
domain, illustrating a sufficient phase margin of 70 degrees and a -3dB bandwidth of
455 Hz, which is higher than the bandwidth of the pole placement control with voltage

drive.
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Figure 9. 4. Frequency response of (a) loop transmission, and (b) closed-loop system

As shown in Figure 9.5, there is a steady error and a bit larger overshoot in the large-
signal reference tracking result of the control system for a reference amplitude of 10
degrees. It is expected as the control system was designed using the linearized model of
the actuator to be employed for small-signal maneuvers. This issue can be solved using a

nonlinear control system.
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9.7. Conclusion

The pole placement position control using the current drive is more accurate and more
effective compared to the position control with voltage drive. It is also more robust. Also,
the current or torque can be commanded directly. These advantages are provided by the
high bandwidth current control loop that eliminated the electrical dynamic. Therefore,
implementing a current loop as the most inner loop is always recommended. The only
significant problem with the control system was large-signal control in which showed some
lack of performance like steady-state error and a larger overshoot. It was expected because
the linear control system design was carried out using the linearized version of the
electromechanical model for small-signal deviations around the equilibrium point. The

issue is solved by nonlinear control in the next chapter.
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Chapter 10

Nonlinear Control by Feedback Linearization

10.1 Introduction

The linear control system techniques, as in the previous sections, work well for small-
signal setpoints while, for large-signal maneuvers, they can result in unwanted inaccuracies
like steady-state error, large overshoots, and even instability in severe cases. Nonlinear
control provides an opportunity to work with large-signal inputs. Feedback linearization is
a nonlinear technique that can be powerful in eliminating the nonlinearities of the system,
yet it requires a very accurate model of the plant as well as measuring or estimating the
state variable. Thanks to the accuracy of the developed nonlinear model, effective
nonlinear control can be established. The current loop is employed to get a faster response
and to get rid of the complexities and fractional-order elements of the electrical dynamic.
Then, we only deal with the nonlinear model of the mechanical dynamic, including the
nonlinear profiles of the electromagnetic torque and the magnetic spring, as shown in
Figure 10.1. As the restoration torque and the electromagnetic torque are functions of the
position, by substituting 6=4-z/2, the nonlinear electromechanical model is obtained as
follows:

: di
Elec: v, =k @, cos@+R i, + L, d_ltc

2 (10.1)
Mech: J d—f+ K, d—9+ K. SIN20 =Kk, i, COSO
dt dt
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10.2. Feedback Linearization

Feedback linearization can be implemented for a plant if its state-space model can be

written in the companion form as follows:

X =X,
X, = X,

(10.2)

X, = F(Xg,o0 X, ) 09X, X ) U(E) = V(D)
where functions f(x) and g(x) are nonlinear functions of the states. u(t)=ic(t) is the input.
In addition to a very accurate model, all of the states need to be measured or estimated in

order to evaluate functions f and g. Then, the following nonlinear transformation is used at

the input to cancel out the nonlinearities.

1
U(t):m[va)— f(Xl""’Xn)] (103)

1100 Ry
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It results in a linear system having n poles at the origin and with the new input v(t), to
which linear control techniques can be applied. The nonlinear mechanical dynamic can be

written as in below:

0=
r_—kda)r+kf95‘5|n20+k‘coseic:f+gic:v (10.4)
J J
Where functions f and g are obtained as:
kyo, +K. SN 20
f(0,0)=—-2 ] . (10.5)
k 0
9(0,0,) = tC;S (10.6)
The nonlinear transformation at the input is as follows:
() =———[v() - £ (0.0,)] (10.7)
T g(0m) o '

Then, the remaining system is a double integrator with the new input v(t), which can
be designed using linear control technigques yet having a good performance in large-signal
analysis and maneuvers. The new linear system is as follows:

o(s) 1

0=v = H;:V(S)—S—z (108)

The state-space form is obtained as follows:

Lo ool o

The block diagram of the feedback linearization control is shown in Figure 10.2. The
current loop is treated as its D.C. gain because its bandwidth is much larger than the
bandwidth of the position loop. However, like pole placement with current drive, its

dynamic is accounted for in the simulations to get higher accuracy.
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Figure 10. 2. Block diagram of the nonlinear control system using feedback linearization and pole-
placement: (a) current and position control loops, (b) simplifying the high-bandwidth current loop to its DC
gain

10.3. Pole Placement in Time Domain

The desired closed-loop poles /1 and A2 are chosen to have a natural frequency of
wn=27nfn and damping of {as —éw, + jo,/1- &% , S0 the desired characteristics polynomial is
as follows:

9, (1) =2"+20w, A+ o, (10.10)

The matrices A, B, and C are obtained as:

01
- 0 0 (10.11)
5 - 0
11 (10.12)
C=[L 0] (10.13)
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The feedback gains K=[ki k2] for position and velocity obtained by Ackermann’s

formula as well, as the unitary input gain is obtained as follows:

k=44, =, (10.14)
k, ==(4 +4,) = 28w, (10.15)
G=0, (10.16)

The velocity observation is done using a derivate plus a low-pass filter which is kind

of like the reduced-order observer used in the pole placement with the current drive.

10.4. The Equivalent System

Also, as shown in Figure 10.3, it can be proved by mathematical manipulations that the
transfer function of the loop transmission is almost the double integrator (linearized system
from v to 0) in series with a P.D. compensator in the feedback loop as in below:

0, o +2lwm,s

L 2= T
y . (10.17)

Therefore, the closed-loop system is obtained as:

0 GIs® . °

n
Oy 1+L s +2fm,5+w,

(10.18)

Simplified Dynamic
of Nonlinear Control

Figure 10. 3. Equivalent system of double integrator plus a PD controller in the feedback path
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10.5. Design, Simulation, and Experiment

The desired closed-loop poles have a natural frequency of wn=27f1=1000x rad/sec and
damping of (=0.8. The step responses of position, velocity, current command (scaled DAC
output), and coil current for a large-signal command with an amplitude of 10 degrees are
shown in Figure 10.4. A comparison is also made with the simulations obtained using the
model. Thanks to the accuracy of the developed nonlinear model, the nonlinear control
technique works as expected, and it correlates well with the simulation results. Contrary to
the linear control system, the developed nonlinear control technique works well with a

large-signal input without any steady-state error.
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Figure 10. 4. Nonlinear control: (a) time responses, and (b)-(e) full-period waveforms and comparison

with model for position, velocity, current command, and coil current.
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The system performance is also checked in the frequency domain given in Figure 10.5.
The frequency response of the system from the signal v to the position is very close to a
double integrator given in Figure 10.5(a); it should be noted that its gain is attenuated for
measurements by SR785 digital signal analyzer, and also a delay is observed in the phase
which due to sampling and computations. It can also be seen in Figure 10.5(b)-(c) that the
loop transmission is kind of a double integrator in series with a P.D. compensator. A
sufficient phase margin of 59 degrees is obtained as well. As shown in Figure 10.5(d), a
bandwidth of 413 Hz is obtained, which is closed to the one obtained by the linear control
system with the current drive as the sensitivity is shown in Figure 10.5(e), the maximum

sensitivity of the control loop is Ms=2.4 dB, showing sufficient robustness.

10.6. Conclusion

Thanks to the accuracy of the developed model, the feedback linearization technique is
then used in nonlinear control for large-signal applications. It showed almost zero steady-
state error. Full-order and reduced-order observers are also employed to estimate the
unmeasured states. The control system designs in the thesis are evaluated through indices
like rise time, overshoot, and steady-state error in the time response, as well as bandwidth,
phase margin, sensitivity, disturbance rejection, and noise rejection in the frequency
domain. In Table 10.1, the three position control systems are compared and ranked for

different indices.

Table 10. 1 Comparison and Ranking of the Position Control Techniques

Voltage Current Nonlinear
Drive Drive

Bandwidth 2 1 1
Robustness 2 1 1
Accuracy 3 2 1
Small Signal 2 1 1
Large Signal 3 2 1
Simplicity/Cost 1 2 3
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Chapter 11

Eddy-Current Plates to Reduce Leakage
Inductances

11.1. Introduction

An eddy-current-based technique is proposed that may reduce the coil inductance at
high frequencies. However, it is an initial examination by two-dimensional FEM, while
more tests and optimizations may be done by researchers on various aspects of the
technique, how to optimize the strategy, what penalties do we pay for using this method,
the effectiveness of this approach, etc. It is just a conceptual study, for which a typical
geometry of the actuator is picked. The default values of the conductivity of laminations
and the magnet given by the software are employed. Although close, they do not accurately

simulate experimental studies or even three-dimensional finite element analysis.

11.2. The Design Strategy

There are three rules on where to place eddy-current plates:
Rule 1: Place eddy-current plates in the regions where there exists a leakage flux that does
not contribute to the torque production and only adds to the coil inductance. The

plates should be placed perpendicular to the leakage fluxes to kill them through

the opposing flux produced by eddy-currents induced in them.

The slot areas and the region between the edges of the two stator poles seem to be

such areas.

Rule 2: Do NOT Place eddy-current plates in the region where the main flux exists. Main

flux is the portion of the flux that interacts with the magnet to produce torque.

Rotor area or pole faces of the stator are such regions. A shorted turn around a pole

of the stator lamination would do the same thing: killing the main flux.
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Rule 3: Do NOT place eddy-current plates in regions where there is a varying flux from

the rotor because it causes an eddy-current brake that acts as a damper on the rotor.

The region between the edges of the two stator poles seems to be such an areas.
Also, pole faces of the stator are such regions.

11.3. Leakage Fluxes of Stator: Where to Place Eddy-Current Plates

Figure 11.1 shows the flux lines within the motor due to the coil current (no PM). It
helps us find the leakage fluxes: the portion of the flux that does not interact with the
magnet to produce torque and only adds to the inductance value.

Leakage flux

B [teslal

3. SERQE-001
. 3. 1500E-001
2.9400E-001
2.7300€E-001
2.5200€-001
2.3100E-001

2.1000E-001

1.8920E-001
1.6800E-001
1.4720E-001
1.2600E-001
1.052QE-001
8. YORRE-002
6. 3000E-002
4. 2000E-002
2. 1000E-002
0. 0000 +000

Figure 11. 1. Leakage fluxes within the actuator due to coil current: where to put eddy current plates

Most portion of the flux goes through the magnet to contribute to torque production.
However, it is seen that a part of the flux lines is only a leakage flux that does not pass the
magnet and close their path through the slots—that is to say, they do not contribute to the
torque production and only add to the coil inductance. We can place eddy-current plates
perpendicular to these leakage fluxes to kill them through the opposite flux produced by
eddy currents induced in the plates.
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11.4. Magnetic Field Produced by Rotor

Figure 11.2 shows flux lines within the motor due to the magnet (zero current) at
different directions (0, 45, and 90 degrees). Watching the stray fluxed of the PM helps us
to find the wrong locations to place the eddy-current plates. The eddy-current plates should
not be placed where there is a varying flux from the magnet because it causes eddy-current

brake, which is like extra damping on the rotor.

Figure 11. 2. Fluxed to the PM: where NOT to put eddy current plates

11.5. The Inductance-Frequency Profile without Eddy-Current Plates

The stator coil inductance versus frequency up to around 1 MHz is in Figure 11.3.
It is seen that the inductance is about 225 uH at low frequencies while it goes down as
frequency goes up. It is seen that the inductance is about 227 micro Henry which is close
but smaller than the experimental result we obtained by LCR meter. Among the sources of
discrepancy could be ignoring the 3-D effects, end turns, and inaccuracy of material
properties. It is observed that the inductance goes down to around 5 micro Henry in very
high frequencies. What is the reason for inductance reduction at higher frequencies? Eddy-
currents in the motor elements, i.e., the magnet, the laminations, the copper coils (skin and
proximity effects). In the next section, it is compared with the cases including eddy-current

plates.
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Figure 11. 3. The inductance-frequency profile without eddy-current plates obtained by FEM

11.6. Eddy-Current Plates

11.6.1. Case 1: Placing Eddy-Current Plates in Slots

In case 1, as shown in Figure 11.4, the eddy-current plates are placed in the slots
perpendicular to the leakage fluxes to Kill the leakage flux in the slots. The inductance
versus frequency up to 1 MHz is obtained as in Figure 11.5. Some reduction is observed in

the inductance profile of the device just by placing the four plates.
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Figure 11. 4. Placing the eddy-current plates in the slots obtained by FEM
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Figure 11. 5. The inductance-frequency profile when eddy-current plates are placed in the slots

11.6.2. Case 2: Placing Eddy-Current Plates in Slots and Interpolar
Regions

In case 2, as shown in Figure 11.6, two more eddy-current plates are placed in the
interpolar region to kill the leakage fluxes between the two edges of each of the two-pole
faces. The inductance versus frequency up to 1 MHz is shown in Figure 11.7. There is not
a significant improvement compared to case 1 by adding these to plates. As shown in
Figure 11.8, the two eddy-current plates are thickened and moved toward the center such
that they have more interaction with the leakage fluxes in the interpolar region. Almost no

impact on inductance reduction is observed.
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Figure 11. 6. Placing the eddy-current plates in the slots and the interpolar regions
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Figure 11. 7. The inductance-frequency profile when eddy-current plates are placed in the slots and the
interpolar regions obtained by FEM
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Figure 11. 8. Increasing the thickness of eddy current plates and moving them toward the center
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11.7. Conclusion

An elementary conceptual study is carried out to study the feasibility of reducing the
coil inductance using eddy current operations in some conductive plates called eddy-
current plates. A strategy is explained on where to or not to place the plates. It is observed
that it can kill the leakage fluxes and reduce the inductance. The penalty for placing the
eddy current plates can be limiting the coil area or producing more heat due to the induced
eddy currents. One may study the impact of the material and thickness of the plates, the
best locations to places the, etc. Performing several experiments could also be helpful. In
an elementary test that we performed, there was a difference ib the results. The inductance
reduction happened at higher frequencies compared to simulations. However, optimations

and more concrete experiments are needed to test and verify the idea.
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Chapter 12

A Proposed Effectiveness Index

12.1 Introduction

A new effectiveness index is proposed that may represent the effectiveness of an
actuator with oscillational behavior in a better way. Like the previous chapter, more

investigations and discussions can be done on the proposed effectiveness index herein.

13.2 Power Flow Inside an Electric Motor

In the motoring operation, the electrical power is the input to the coil terminals. Then,
energy conversion from electrical to mechanical occurs in the air-gap through the magnetic
field media, and finally, mechanical power is produced on the shaft as the output. We also

have losses with the path from input to output. The electric power terms are as in below

Instantaneous power:

Pe(t) = v(t) i(t) (12.1)
Apparent Power Se:

1

|Se| = EVm Iy = Vims Lrms (12-2)
Vin Im

Vims = Vz and Vips = 2 (12.3)

The apparent Power has two components: active power P and reactive power Q.
Active Power Pe:

It is the portion of power flow that, averaged over a complete cycle of the AC waveform,
results in a net transfer of energy in one direction is known as real power (also referred to
as active power). This is the real power (average power) we usually talk about and is the
component that does the work. It is the power in the resistive part of the circuit. The unit
of P is Watt.

P, =[] pe(t)dt = [ v(t) i(t)dt = 1Vy, Iy coso, (12.4)

where the angle ¢ is the angle between voltage and current
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P, = |S| cosp, = %Vm Ly cos@, = Vims Lrms COS@, (12.5)
Reactive Power Qe:

That portion of power flow due to stored energy that returns to the source in each cycle
is called reactive power. It is the power in the reactive part of the circuit (inductor or

capacitor). The unit of Q is Var.
. 1 . .
Qe = [Sel sing, = EVm Iy sing, = Vims Trms sing, (12.6)

Note:
- For aresistive load, ¢=0 and so cosg=1, sing=0, i.e., we only have active power

- For areactive load (inductor or capacitor), ¢=+90 or -90 and so cosg=0, sing=1, i.e.,

we only have reactive power—no work is done.

12.3. Traditional Notion of Mechanical Power:

In linear-motion systems, mechanical power is force (N) times linear speed (m/sec):
Pm(t) = F(t) v(t) (12.7)

In rotational systems, mechanical power is torque (N.m) times rotational speed
(rad/sec):

Pm(t) =T(1) a(t) (12.8)

Average Mechanical Power:

We know that p(t) oscillates with time. The average power is the average of p(t) over a

period as in below:

P, = %fOT pm()dt = %fOTT(t) o(t)dt = %Tm W COSP,, (12.9)

where ¢n is the angle between torque and velocity.
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12.4. New Definition: Apparent, Active and Reactive Mechanical Power

e Problem: For evaluating an actuator with oscillating rotation, the traditional
power definition might not always reflect the satisfactory performance of the

actuator.

e For example, when a torque T is applied to a pure inertia J, the output velocity @
is lagging the torque by 90 degrees. Thus, the average mechanical power, which is
the integration of a sine waveform times a cosine, is zero. However, it is doing
something for us by rotating the rotor, so we may define a new power index!

P =2 J) pm(®)dt = = [ sin(2t) cosE vy (12.10)

e As another example, when there is a lag (e.g., 20 degrees in an inertia plus damper
system) between the torque and velocity, there are instances when instantaneous
power is negative. What should we think about that? Should we take the absolute
value before calculating the average?!

e Proposed Solution: To solve this issue, we can define the counterpart of apparent
electrical power for mechanical power. Then, we can calculate the efficiency as the
ratio of apparent mechanical power on the rotor shaft (output) to apparent electrical
power at the coil terminal (input).

Apparent Mechanical Power:

1
Sm = ETm Om = Trms Orms (12-11)
Tm
Trms =75 and Opps = % (12.12)

Apparent Power S has two components: active power Py and reactive power Qm

Active Mechanical Power:

It has properties as in below:
- The portion of power flow that, averaged over a complete cycle, results in a net transfer
of energy in one direction, which is known as real power (also referred to as active

power)
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This is the real power (average power) we usually talk about and is the component

that is doing work.

=27 dt = = [ dt =~ 12.13
Pn=2Jy pm@®dt = ~ [ T a(t) dt =Ty op cosp,, (12.13)
where the angle ¢n is the angle between torque and velocity.

It is the power in the damper part of the circuit. A damper in a mechanical circuit is

like a resistor in an electrical circuit. They both dissipate energy.
Pn =Spcosp, = %Tm O €0SQ = Trps Opms COSQ, (12.14)

The unit of Py, is Watt.

Reactive Mechanical Power:

That portion of power flow due to stored energy that returns to the source in each
cycle is known as reactive power.

It is the power in the reactive part of the circuit (inertia or spring).
. 1 . .
Qm = Sm Sing, = ETm Oy SINQ = Trms Opps SINQ, (12.15)

The unit of Q is Var.

12.5. The Traditional Efficiency and the New effectiveness Index:

Traditional Definition of Efficiency:

Efficiency is the ratio of output power to input power.

Efficiency = % (12.16)

mn

By substitution, we have:

1
5 Kt Im om cosg, K, coso,
2 M= SLm m (12.17)

1
5 Vim Im cosg, Vm cosg,

i,
7 im Om COS Py,

Efficiency = 2ot =

1
Pin > Vin Im cosg,

Here, Pin is the Average Electrical Power (Active Electrical Power) at the coil terminals,
and Pout is the Average Mechanical Power (Active Mechanical Power) on the shaft
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Issue: For evaluating an actuator with oscillating rotation, the traditional power

definition might not always reflect a satisfactory performance of the actuator.
For example, when a torque T is applied to a pure inertia J, the output velocity @ is
lagging the torque by 90 degrees (cosg, = 0). Thus, the average mechanical power,

which is the integration of a sine waveform times a cosine, will be zero. However, it is

doing something for us by rotating the rotor, so we may define a new efficiency index!

The Proposed Definition for Effectiveness:

The solution we propose for the mentioned problem is to define efficiency as the ratio
of the apparent mechanical power to the apparent electrical power, i.e., removing

cosg, and cosg, from the traditional notion of efficiency.

Effectiveness = Ilsé!l—"“t (12.18)

It may be called Apparent Efficiency or Apparent-Power Efficiency.
By substitution, we have:

1 1
. S = Tm om > Kt Im om K,
Effectiveness = S"—”t= 2 =2 = —Lom

1 1
in EVm Im EVm Im Vm

(12.19)

It is seen that it leads to efficiency as the ratio of back-EMF over terminal Voltage

because E = K; o.

Effectiveness = VEm (12.20)

rms

This is very interesting because the back-EMF is also zero at zero velocity, where

mechanical power is also zero.

It can also be represented with RMS values as in below:

Effectiveness = Ke @rms (12.21)

rms
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12.6. Frequency-Domain Analysis of Efficiency (New Definition by
Reactive Power):

For the new definition of effectiveness defined as the ratio of the amplitude of back-EMF

(ki) to the terminal voltage amplitude, a transfer function can be defined whose input and
output are terminal voltage and back-EMF, respectively.

Effectiveness = Im - K Orms (12.22)

rms Vrms

We can obtain the transfer function from terminal voltage to the position as follows:
0(s) _ K¢

V(S)  LJs3+ (RJ+LK,) s2+(R Kg+Ks Kg+ke?)s+R K

(12.23)

Therefore, just by taking a derivative (multiplying numerator by S), we can get the transfer

function from terminal voltage to the velocity:

o(s) _ ks
V(S)  LJs3+ (RJ+LKy) s2+(R Kg+Ks Kg+ke?)s+R K

(12.24)

Then by multiplying by torque constant ki, we can get the transfer function from terminal
voltage to the back-EMF, which is the proposed effectiveness index as follows:

E (S) _ ktz N
V(S) LJs3+ (RJ+LKg) s2+(R Kq+Ks Kg+ks?)s+R K

Effectiveness(s) = (12.25)

If we multiply the two sides by current, it gives effectiveness as the ratio of the input

power to the converted power.

E(s)I(s) _  input power
V(S)I(s)  converetd power (12.26)

Effectiveness(s) =

The absolute and logarithmic values of the new effectiveness index as a function
frequency are shown in Figure 12.1. It is seen that the peak happens at a mid-frequency
around the natural frequency of the mechanical dynamic. It makes sense as the back-emf
gets its peak value around that frequency. At zero frequency, where the velocity and so
back-EMF are zero, there is no output mechanical power, and thus the effectiveness value
is zero. At a mid-frequency, a resonance happens, which corresponds to the maximum

power conversion and maximum effectiveness.
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This frequency can be understood by Maximum power transfer theory if we define an

equivalent impedance for the back-EMF as in below:

E(s) _ ks

Zg(s) = 1(S) ] S2+Kgs+Ks

(12.27)

The maximum happens around a frequency where Zcoii=Zems . In other words, if coil
resistance is close to the equivalent back-emf resistance (Rc=Remf), and coil reactance is
close to the negative back-emf reactance (Xc= -Xems), i.€., emf reactance looks capacitive.
In Figure 12.2, the magnitude-phase, as well as the real-imaginary components of the

impedances of the coil (Zcoil=R+jm), back-emf and total impedance, are plotted.

1 0
0.8 10
— -20
» 0.6 ~
8 )
& 2 -30
S 04 =
-40
0.2
-50
0
10° 10" 102 10° 10* 10" 102 108 10t
frequency (Hz) frequency (Hz)

Figure 12. 1. Effectiveness index versus frequency
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12.7. Conclusion

In this chapter, an effectiveness index is proposed that may evaluate the performance
of oscillating actuators in a better way. However, more analysis and experiments may be
carried out about it. To this end, apparent mechanical power is defined whose concept is
like apparent electrical power. Therefore, the effectiveness index is defined as the ratio of
apparent mechanical power as the output of the actuator to the apparent electrical power as
the input of the device. A new parameter is defined as the equivalent impedance of the
back-emf, representing the converted energy. Then, a discussion is made with the theory

of maximum power transfer.
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Chapter 13

Conclusion and Future Works

13.1 Conclusions

An electromechanical model is developed for an actuator whose stator curvature is
nonuniformly shaped to have a reluctance torque in addition to the coil torque. The rotor’s
permanent magnet is incorporated in the model through equivalent Amperian currents. To
model the actuator, the complicated geometry of the stator is substituted with an equivalent
ellipse having a surface current density representing the stator current. The coil torque is
obtained using the Lorentz force and the solution of Laplace’s equation in terms of both
scalar and vector potentials in the elliptical coordinates. The reluctance torque is obtained
using the energy method and differential flux tubes that incorporate the variation of current
enclosed in the flux loops. In addition to the detailed explanations, an attempt is made to
visualize the modeling procedure and the field distributions so that the readers can clearly
understand the ideas and utilize them in their research. Also, the finite element method is
employed in the field analysis and development of the model. In the end, the actuator is
prototyped. The model produces the results in a few seconds while, depending on the
desired accuracy, it could take a couple of hours up to a few days using a FEM. It is shown
that the equivalent geometry produces the same field solution within the rotor area as the
original geometry. Normal and tangential components of magnetic flux density, flux lines,
magnetic scalar potential, magnetic vector potential, coil torque, reluctance torque, and
total torque are extracted and analyzed. A very close agreement is observed among the
results obtained from the analytical model, FEM in the simplified geometry, FEM in the

original geometry, and experimental results from the prototyped device.

In addition, a nonlinear and linear electromechanical model of an actuator with
magnetic restoration is developed for dynamic and control studies. The eddy currents in
the laminations and the magnet are included in the model by extracting a lumped-element
framework from the analytical solution of the diffusion equation, which provides very high
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accuracy for dynamic and control studies of the device. The impact of friction on the
mechanical dynamic is investigated. The design considerations of the actuator are
explained as well. The lab experiments are performed using a prototype actuator,
illustrating a very good correlation with the results obtained by modeling and FEM. Torque
and back-emf profiles are obtained, and the identification of the model is carried out. Then,
an analog drive circuit is proposed, designed, and precisely modeled by a third-order model
of the op-amps, whose ideal version is then employed in the design of the current control
loop. The accuracy of the drive modeling, as well as the effectiveness of the actuator model
in the current loop, is studied, and the design trade-offs are analyzed. Then, three DSP-
based position control techniques are implemented. First, a pole placement position control
with voltage drive is developed, showing acceptable performance for simple applications
but lacking accuracy and robustness for advanced control requirements. Second, by
employing the developed current control loop, the complexities of the electrical dynamic
are eliminated, and then a pole placement position control with the current drive is
implemented whose accuracy and robustness are improved while still lacking effectiveness
for large-signal purposes. Thanks to the accuracy of the developed model, the feedback
linearization technique is then used in nonlinear control for large-signal applications. Full-
order and reduced-order observers are also employed to estimate the unmeasured states.
The control system designs are evaluated through indices like rising time, overshoot, and
steady-state error in the time response, as well as bandwidth, phase margin, sensitivity,
disturbance rejection, and noise rejection in the frequency domain. The three-position

control systems are compared and ranked for different indices.

Also, an elementary conceptual study is carried out to study the feasibility of reducing
the coil inductance using eddy current operations in some conductive plates called eddy-
current plates. A strategy is explained on where to or not to place the plates. It is observed
that it can kill the leakage fluxes and reduce the inductance. The penalty for placing the
eddy current plates can be limiting the coil area or producing more heat due to the induced
eddy currents. One may study the impact of the material and thickness of the plates, the
best locations to places the, etc. Performing several experiments could also be helpful. At
the end, an effectiveness index is proposed that may evaluate the performance of oscillating

actuators in a better way. However, more analysis and experiments may be carried out
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about it. To this end, apparent mechanical power is defined whose concept is like apparent

electrical power. Therefore, the effectiveness index is defined as the ratio of apparent

mechanical power as the output of the actuator to the apparent electrical power as the input

of the device. A new parameter is defined as the equivalent impedance of the back-emf,

representing the converted energy. Then, a discussion is made with the theory of maximum

power transfer.

13.2 Future Works and Recommendations for the Designers

Other control techniques for position control might be studied. Input shaping or
prefilters to make the step setpoint smoother to avoid overshoots and thus saturation in
the power op-amp can be a good investigation.

Design and implementation of a loop-shaping control with higher bandwidth for the

position loop can be studied. Its design procedure is presented in the Appendix.

Developing a switching drive would be an interesting subject. It can provide a higher
voltage and current capability, plus a smaller copper loss compared to the op-amp-

based analog drive. However, it may introduce noise and switching ripple to the system.

Modeling the switching drive would be an interesting case study as well. It provides a
simulation platform to study the input shaping and prefilters and auto-tuning systems.
Then, it can be compared with the modeling and design of the op-amp-based current
control loop and drive.

The switching drive can be implemented by an op-amp-based current control loop just
by substituting the power op-amp with an H-bridge, including an extra circuit to
convert the output of the compensator to a PWM to drive the gates of the MOSFETS.
It can be done by comparing the output of the compensator with a sawtooth wave. Also,

filters may be used at the H-bridge to filter out the high-frequency stuff.

The switching current control loop may also be implemented digitally by DSPs or
FPGAs. For example, both current and position loops may be implemented in one DSP,
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or the current loop may be implemented by an FPGA to have a faster dynamic while

the position loop is implemented in a DSP as the outer loop.

A high-precision friction model may also be important, especially if the device is going
to work in low frequencies where the stiffness of the system matters. It can also be an

interesting research direction.

If the device works at a sufficiently high frequency where the inertia is dominant, the
magnetic spring and the friction stiffness might not be a significant matter in the
dynamic behavior of the device. However, the magnetic spring might still be required
as a fail-safe operation. For example, in laser projection applications, the magnetic
spring provides safety for situations when the current is removed from the stator or
when the actuator is going to start from turn-off mode; it avoids projecting the laser

beam at unwanted locations that can damage the people or the equipment.

Flux feedback can be an interesting control strategy that may be studied. Actually, in
electric machines, the coil current produces a magnetic flux in the air gap, then the
magnetic flux interacts with the rotor (here the PM), and finally, a torque is produced.
If eddy currents are ignored, there is no phase shift between flux and torque. Therefore,
by eliminating the electrical dynamic using a high-bandwidth current loop, torque is
related to the current with a torque constant k.. Then, the current loop is just the torque
loop, and commanding the current is just commanding the torque. However, if we have
significant eddy currents in the device, torque and current are not related by just a
simple gain ki because the reluctance is a function of frequency. Therefore, the torque
constant ki, instead of being a simple gain, will be frequency-dependent. The torque
constant ki will have a frequency response that relates torque to current with magnitude
and a phase at any frequency. In this case, the current loop might not be as effective as
the normal cases. As a solution, having a flux loop can be helpful because commanding

the flux is like commanding the torque. The diagram is given in Figure. 13.1.
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Figure 13. 1. Impedances of coil Zei, back-emf Zg and the total Z;

Measurement or Estimation of Magnetic Flux:
Four methods for estimating or measuring the flux are proposed, as given in Figure. 13.2,
1. Measurement by an extra coil around pole faces

Having an extra coil (maybe one or two turns) around the pole faces can be used for

flux measurement to be employed in feedback control.

? (Pd_

de 1

2. Flux Estimation by the Eddy-Current Model

A method to estimated flux would be the eddy current modeling using the diffusion
equation. In chapter 6, we obtained the relationship of flux and current as a function of

terminal voltage as n below:

V. =R I _+ joN '
{ c C C+Jw (D = |:Rc JC()N j||:|cj|=|:vc:| (132)
Nlc :(Rt0+Re.i +Re.m)¢ -N I:ztO—FRe.i +Re.m @ 0
According to the above equation, a model-based flux estimator can be implemented if

the coil current is available.
3. Flux estimation by Coil Current

Current can be directly measured or estimated by the last equation. To clarify, having
the terminal voltage measured, the coil current and the core flux can be estimated using

the above equation.
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N1 (5)

"Ry 1R, (8)+R..(9) (13.3)

@(s)

4. Flux Estimation by voltage and current of the coil

Also, if identification of the frequency-dependent reluctances were difficult, a flux
estimator may be implemented using the measured values of the terminal voltage and

the coil current as follows:

vc(t):Ric(t)+N(jj—f = go:%j[vc(t)—Ric(t)dt (13.4)

Having the flux measured or estimated, a flux loop may be implemented around the
current loop to eliminate the frequency-dependent torque constant or the delay between
current and flux. Then, the output of the position loop is just the torque input to the
mechanical dynamics of the device. It will be a simple yet accurate flux estimation.

Just the value of the coil resistance is required.

P
v, {R( j@N }F] {V{] —
| -N +R.+R 0
\ \ Rro e.i enm |LP ca
e o 4
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Coil Current Voltage and Current

Figure 13. 2. The methods for measurement or estimation of the flux
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Appendix A

Experimental Results of Identification of
Mechanical and Electrical Dynamics

Identification of Mechanical Dynamics and Friction Test

The current loop is used as a current source to excite the transfer function of the
mechanical dynamic Hm, and the voltage from the sensor is measured. The result obtained
from Dynamic Signal Analyzer SR785 is shown in Figure A.1. The sensor voltage is
10 volt/25 degrees. In other words, there is the following extra gain in the magnitude of the

frequency response that needs to be subtracted at the end:

10vol 1 r
G, = 20log,, Ovolt N 80deg ees (A1)
25degress  zradians
0TI RS232 | swk| A ]AC -20 dBVpk | EE=——= Entar | Source
SRQ | Mo Gap. { M.L] A _|[ac] 50 dBvpk |[EE==1|| - | AutoLevel Ref

Analog { Done 100 kHz Trig LT
AOffLine 54051 Hz 40.335? dB
10t

3% Source Ramp Rate
1 VIS

gRies Offset
: 0.0 mV

:1Hz

¢ Freq. Resp.Log Mag

B Off-Line | 13154051 Hz
150 3

A1157  deg

Figure A. 1. The Mechanical Dynamic obtained by SR785

Friction Test:

The impact of the friction in the pre-sliding regime can be modeled by damping and
stiffness. This impact is a function of the amplitude of the position. Figure A.2 shows the
bode plot and the time responses of the mechanical dynamics of the actuator, i.e., coil
current as input and position as output. It can be observed that for smaller amplitudes, the
DC gain goes down. In other words, as the torque constant k; is constant, the total stiffness

goes up for smaller amplitudes. It can be seen that, for a very small amplitude of 10 mv,
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the friction of bearing becomes significant as the rotor stops rotating at some frequencies.
In the plots, when the amplitude is decreased, the faint curve is the one from the previous
test, which is left there for comparison. The time profiles of coil current (almost double the
setpoint of the current loop) and position for different amplitudes of current are shown in
Figure A.3. There is a voltage offset at the position sensor, which is caused by

misalignment of the light blocker of the sensor on the rotor, which should be canceled out.
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Figure A. 2. The frequency response of the mechanical dynamic for different amplitudes of the injected
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() all together.
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Figure A. 3. The frequency response of the mechanical dynamic for different amplitudes of the injected
signal which is the setpoint of the current loop: (a) 200 mA, (b) 100 mA, (c) 50 mA, and (d) 25 mA.

Identification of Electrical Dynamics

The result is shown in Figure A.4. For frequencies above 10 kHz, the magnetic
coupling between the position sensor and coil comes in, which ruins the frequency response.
When the rotor is free to move, the resonance frequency is exactly at the natural frequency
of the mechanical dynamic, as it is caused by the effect of back-emf, which is proportional

to the mechanical velocity.
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Appendix B

Experimental Results of Drive and Current Loop

Frequency Response of Compensator and Loop Transmission

To obtain the frequency response of the loop transmission, the total gain of the loop
needs to be attenuated so that the coil winding is not damaged by a very large current. This
attenuation can be obtained by attenuator pads or adding a parallel resistor to the grounded
resistor of the voltage divider. This attenuation gain should be canceled out at the end. The

results are given in Figure B.1.
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Figure B. 1. Frequency response of compensator (left) and loop transmission (right).

Frequency Responses of Gangs 3 to Six Using the Frequency

Responses of the Loop Transmission and the Plant

Having the experimental results for the loop transmission L=PCH and the plant P=He,

the gangs 3 to 6 can be obtained as:

P P

G3=— = (B.1)
1+L 1+PCH

1 1 (B.2)
1+L 1+PCH
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_(L/P) CH (B.3)

G5= =
1+L 1+PCH

G6=_ - _PCH (B.4)
1+L 1+PCH

The results obtained using the above method are given in Figure B.2. However, they
can directly be measured or approximated by injecting signals to the appropriate points. It
is possible with op-amp circuits as the input impedance of an op-amp is infinite, and the
output impedance is zero. However, in our drive circuit, calculating them using the loop

transmission and the plant was more accurate.
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Figure B. 2. Frequency response of compensator (left) and loop transmission (right).

Frequency and Step Responses of Gang 1 and Gang 2
The inverted input of the current loop is excited. The coil current is measured at the

output of the current sensor buffer to get Gang 1. The output of the power op-amp is
measured to get Gang 2. The results for locked and unlocked rotor cases are shown in
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Figure B.3 and Figure B.4. For the unlocked case, there is a hump at the natural frequency
of the mechanical dynamic, which is caused by back-emf as observed in the electrical

dynamic of the actuator when back-emf is included:
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Figure B. 4. Frequency Response of Gang 1 (left) and Gang 2 (right) when the rotor is free to move.

The time responses are sent to the DAC of DSP and measured, so the conversion ratios

should be applied. The results for locked and unlocked rotor cases are shown in Figure B.5

and Figure B.6.
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Figure B. 6. Step Response of Gang 1 and Gang 2 when the rotor is free to move.

Frequency and Step Responses of Gang 3 and Gang 4

To measure the frequency responses of Gang 3 and gang 4, a resister Rq=10k is
connected to the positive input of the power op-amp to inject disturbance. It is fine as the
power op-amp input has a high impedance. Also, the output of the compensator op-amp is
very low (almost zero), so the voltage dividers are paralleled, which, together with Rq form
a voltage divider whose middle voltage is V+ of the op-amp. This gain should cancel out at
the end. The Gang 3 (Disturbance Rejection) is measured at the coil current (output of
current sensor op-amp). Gang 4(sensitivity) is measured at the output of power op-amp,
but the gain of Power op-amp should be canceled out at the end. The frequency and time
responses are shown in Figure B.7 and Figure B.8. If the inverse gains of the voltage

divider (vin to v+) and power op-amp (v+ to vc) are applied to the responses, ic and v give
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the approximate responses for G3=P/(1+PCH) and G4=1/(1+PCH), respectively. The
inverse of the total gain from vin to v is 0.2, so if the magnitude of injected signal vin is 0.2
volt, the signals ic and vc give the unit step responses of Gangs 3 and 4. This injection
method has distortions in the obtained bode plot and step response, so the results calculated

based on the frequency response of loop transmission and the plant are more accurate.
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Figure B. 8. Step respnse of Gang 3 and Gang 4.

Frequency Response and Step Response of Gang 4, Gang 5, and Gang 6

The input signal is injected into the positive input of the current sensor op-amp with a
resistance of R,=10k (the same feedback resistance) so that we have the same signal at the
output of the op-amp (gain=1). Gang 4 (sensitivity) can be measured at the output of the
current sensor op-amp as an alternative method. The Gang 5, i.e., CH/1+PCH, can be
obtained by measuring the output of the coil voltage (output of power op-amp). The Gang 6,
i.e., PCH/1+PCH, can be obtained by measuring the coil current. As we exited the buffer

op-amp, the coil current could not be measured at the output of the buffer op-amp or at the
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top of the sense resistor. Solution: We measure the coil current with a "current probe.” The

gain of the current probe should be canceled out, which is 0.1 Volt/A. The results are shown

in Figure B.9. The time responses are also given in Figure B.10.
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Appendix C

Initial Designs of Drive and Control Loops

The initial design on the breadboard, together with a Texas Instrument LAUNCHXL-
F28379D, as well as the final PCB, including the DSP, are given in Figure C.1. It is seen
that the results obtained from the PCB-based circuit match better with the model as there

are all kinds of parasitic like capacitors in the breadboard circuit.

Pige 0250’5 B DAC 1o

Figure C. 1. Initial design and test of the drive, current loop and position loop

More pictures from the experimental setup, the prototypes, and the equipment are given
in Figure C.2 and Figure C.3.
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Figure C. 2. More pictures from experimental setups and tests
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19 952.623 Hz
=S

32.7597
-71.9938 deg

Figure C. 3. More pictures from experimental setups and tests
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Appendix D

Experimental Results of Position Control with
Voltage Drive

Step Response
The step reference of position for the small signal of 5 as well as the step responses
position, velocity, and current are given in Figure D.1. and Figure D.2. The quantities are

measured at the DAC of the DSP, so the conversion ratios should be applied.

22 PN

Figure D. 2. Step response results: reference position (x5 derees), and coil voltage
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Frequency Response of Gang 1 and Gang 2
The reference position is excited. For Gang 1, the output position is measured. The gain
of the position sensor needs to be canceled out. For Gang 2, the output of the power op-

amp (coil voltage) is measured. The results are given in Figure D.3.
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Figure D. 3. Frequency responses of Gang 1 (ieft) and Gang 2 (right)

Frequency Response of Gang 3 and Gang 4

A resister Rg=10k is connected to the positive input of the power op-amp to inject
disturbance which is fine as the power op-amp input has high impedance. The power op-
amp gain, which is around 20dB, needs to be canceled out at the end. Gang 3 (Disturbance
Rejection) is measured at the position sensor. The position sensor gain should also be
canceled out. The measured output is position sensor voltage (25 degrees/10 volt), so this
gain should be considered, which is 20*log10((25/10)*(pi/180)) = -27.2037. The Gang 4
(sensitivity) is measured at the output of power op-amp. Note that the gain of power op-

amp should be canceled out. The results are shown as in Figure D.4.
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Figure D. 4. Frequency Response of Gang 3 (left) and Gang 4 (right)

Frequency Response of Gang 5 and Gang 6

The input signal is injected into the positive input of the current sensor op-amp with a
resistance of R,=10k (the same feedback resistance) so that we have the same signal at the
output of the op-amp (gain=1). The Gang 5, i.e., CH/1+PCH, can be obtained by measuring
the coil voltage (output of power op-amp). Gang 6, i.e., PCH/1+PCH, can be obtained by
measuring the coil current. By exciting the buffer op-amp, the coil current cannot be
measured at the output of the buffer op-amp or at the top of the sense resistor. Solution: the
coil current can be measured with a "current probe.” The gain of the current probe should

be canceled out (0.1Volt/A). The results are given in Figure D.5.
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Figure D. 5. Frequency Response of Gang 5 (left). Gang 6 missing.
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Having loop transmission L and the plant P=He, the gangs 3 to 6 can be obtained as:
P P

_P (D.1)
1+L 1+PCH
11 (D.2)
1+L 1+PCH
o5 (L/P)_ CH (D.3)
1+L 1+PCH
Ge__L __PCH (D.4)
1+L 1+PCH

These results are more accurate than the method of injecting to the high-impedance
inputs of the op-amps.
Frequency Response of Loop Transmission of the Position

The results are given in Figure D.6.
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Figure D. 6. Frequency response of the loop transmission for the pole placement with voltage drive

Frequency Response of VVoltage to Position

The frequency response of the plant, i.e., voltage to position, for different amplitudes
of the injected signal is given in Figure D.7. The gain of the position sensor (27.2 dB)
should be canceled out. It can be observed that as the amplitude of the injected signal goes
up, the DC gain goes up; it is the impact of variations of stiffness Ks due to the friction. As
we know that the DC gain is (1/R)*(ki/Ks). For larger amplitudes, the stiffness goes down,
and thus the DC gain goes up. For the last case (200 mv), the expected DC gain is
20*10og10((1/R)*(kt/ks)) + 20*1og10( (180/pi)*(10/25) ) = 25.1384 which is close.
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Figure D. 7. Frequency response of voltage to position for amplitudes of injected signal as 20 mv, 30
mv, 40 mv, 50 mv, 65 mv, 80 mv and 200 mv
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Appendix E

Experimental Results of Position Control with
Current Drive

Frequency Response of Gang 1 and Gang 2

The reference position is excited. For Gang 1, the output position is measured, so the
gain of the position sensor needs to be canceled out. The results are given in Figure E.1.
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Figure E. 1. Frequency response of Gang 1 (left) and Gang 2 (right)

Frequency Response of Gang 3 and Gang 4

An Rq=10Kk resister is connected to the positive input of the compensator to inject the
input signal. Gang 3 is measured at the position. The position sensor gain should also be
canceled out. Gang 4 is measured at the coil current. The DC gain of the current loop should
be canceled out. The results are shown as in Figure E.2. Note that these results can also be

obtained using the frequency responses of the loop transmission and the plant, which are
more accurate.
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Figure E. 2. Frequency response of Gang 3 (left) and Gang 4 (right)

Loop Transmission
The loop is broken at the DAC. Then, the power op-amp inpu

voltage is measured at the DAC. The results are given in Figure E.3.
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Figure E. 3. Frequency response of Gang 5 (left). Gang 6 missing.

Having loop transmission L and the plant P=He, the gangs 3 to 6 can be obtained as:

Ga-_P P
1+L 1+PCH
1 1
1+L 1+PCH
L/P

o5 (LIP)__cH
1+L 1+PCH

G- __PCH
1+L 1+PCH

These results are more accurate than the method of injecting to the hig
inputs of the op-amps.
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Appendix F

Experimental Results of Nonlinear Position
Control with Feedback Linearization

Step Response
The step reference of position for the large signal of £10 as well as the step responses
position, velocity, and current are given in Figure F.1. and Figure F.2. The quantities are

measured at the DAC of the DSP, so the conversion ratios should be applied.

86 mividiv)
116 s

TELEDYNE LECROY

Figure F. 1. (top) Step response (plus zoomed-in version) of reference position (10 degrees), position,
velocity, current, and (bottom) the zoomed-in version of the step response of position
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Figure F. 2. Step response results: reference position (5 degrees), and coil voltage

Frequency Response of Gang 1 and Gang 2
The reference position is excited. For Gang 1, the output position is measured. The gain

of the position sensor needs to be canceled out. The results are given in Figure F.3.
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Figure F. 3. Frequency Response of Gang 1 (left) and Gang 2 (right)

Frequency Response of Gang 3 and Gang 4

A resister Rg=10k is connected to the positive input of the power op-amp to inject
disturbance which is fine as the power op-amp input has high impedance. The power op-
amp gain, which is around 20dB, needs to be canceled out at the end. Gang 3 (Disturbance
Rejection) is measured at the position sensor. The position sensor gain should also be
canceled out. The measured output is position sensor voltage (25 degrees/10 volt), so this
gain should be considered, which is 20*log10((25/10)*(pi/180)) = -27.2037. The Gang 4
(sensitivity) is measured at the output of power op-amp. Note that the gain of power op-

amp should be canceled out. The results are shown as in Figure F.4.
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Figure F. 4. Frequency Response of Gang 3 (left) and Gang 4 (right)

Having loop transmission L and the plant P=He, the gangs 3 to 6 can be obtained as:

Ga-_P P
1+L 1+PCH
1 1
1+L 1+PCH

L/P

GS=( )= CH
1+L 1+PCH
L PCH
1+L 1+PCH

(F.1)
(F.2)
(F.3)

(F4)

These results are more accurate than the method of injecting to the high-impedance

inputs of the op-amps.

Frequency Response of Double Integrator from v to position 0

The frequency response of the system from the signal v to the position is very close to

a double integrator. It should be noted that its gain is attenuated for measurements by

SR785 digital signal analyzer, and also, a delay is observed in the phase due to sampling

and computations. The results are given in Figure F.5.
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Appendix G

Extension on Formulations of the Electromagnetic
Model in Chapter 5

G.1 Coefficient of Polynomial (5.62)

The coefficient of the polynomial (5.62) are as below:

a, = —RJX2, (G.1)
a = 2Ry %, (R; —RY) (G.2)
a, = Ryxq, + RIRJym, —RI (R’ —R7)? (G.3)
a, = 2R X, (R’ —R7) (G.4)
a, = (R? —R;)’ (G.5)

G.2. Scale Factors of Elliptical Coordinates

The scale factor hi=h,=h,, can be obtained using orthogonal curvilinear theory. Having
the coordinate system (u,v,w) expressed in cartesian coordinates (x,y,z), the scale factor hy,

hyv, and hy can be obtained as:

SEHEHISEE)
ou ou oV ov oW ow

The differential lengths, differential area, and differential volume are obtained as:

(G.6)

dl, =h,du; dl, =h,dv; dl, =h,dw (G.7)

dA, =hh, dvdw; dA =hh, dudw; dA, =h,h, dudv (G.8)
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dv =h,hh, dudvdw (G.9)

In elliptical coordinates, for example, h, is obtained as:

32 ET R

Manipulations leads to:

— — — 2 — 2
h =h, =h, =cycosh? p—cos’y (G.11)

It is also clear that h,=1.
G.3. Solutions by Magnetic Vector Potential

Instead of using magnetic scalar potential y for a current-free region, field solutions
within the ellipse could be obtained based on the magnetic vector potential. As the
divergence of the curl of a vector field is zero, according to Ampere’s law, a magnetic

vector potential A can be defined as in below:

By employing the identity VxVxA=V(V.A)-V*A in Ampere’s law, we obtain one

second-order equation governing magnetoquasistatic fields:

VxA

VxH=J - Vx =J > VPA-V(V.A) =—p,J

Ho (G.13)

To determine the vector A uniquely, its curl and divergence are required to be known.
In magnetoquasistatic systems, the vector is taken to be solenoidal for the sake of
convenience, i.e., zero divergence V-A=0_which is called the Coulomb’s gauge. It is worth
noting that this choice is arbitrary. By imposing Coulomb’s gauge condition, a second-
order vector Poison’s equation is obtained. Since it’s a 2D problem, the vector A only has

a z-component. Also, as the region within the ellipse is current-free, and the surface
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currents are treated as boundary conditions, the Poison’s equation is reduced to Laplace’s

equation as:
VA=) —2RL VA =1 ), —202 5 VA =0 (G.14)

In elliptical coordinates, the solution can be one of the expressions in (5.19). The net
flux passing through a surface S enclosed by closed line C is the surface integral of
magnetic flux density vector B over surface S, or according to Stoke’s theorem, is the

closed line integral of the magnetic vector potential A over line C as in below:

={p Bds = Adl
¢ #s Cﬁc (G.15)
In 2D problems, the flux is easily calculated as in below:

¢=LA,,-A,) (G.16)
where A;1 and Az are values of A; at the two points in the xy-plane. As shown in Figure G.1,
according to Ampere’s law for the surface currents, the magnetic flux is flowing within the
ellipse from left to right. Then, as the curl of vector potential is the B, A, must have positive
values above the x-axis and negative values below the x-axis. Also, as minus gradient
scalar potential is the magnetic field, the magnetic flux flows from positive potentials to
negative potentials. In other words, unlike scalar potential ¢, which is an even function
with a cosine behavior, the vector potential A, must be an odd function with a sine behavior,
so the first term is in (5.19) is picked and thus Az;=Dn sinh(nz) sin(ny). Finally, the general

solution of A;(5,) can be written as:

400

A, (,w) = " D,sinh(nz)sin(ny) (G.17)
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Figure G. 1. Sine behavior of vector potential A and cosine behavior of scalar potential ¢.

The boundary condition can be applied by finding B or H field as in below:

LT LU
B=B,j+B,y=—|0/dn 0ldy ol
hx0 hx0 A

(G.18)
Thus, the normal and tangential components H, and H,, are obtained as in the following:

1& .
B, = EZ n D, sinh(n7)cos(ny)

n=1

(G.19)

-1& .
B, EZn D, cosh(nn)sin(ny)

n=1

(G.20)
The boundary condition B, (17,,%) = -1,K, () leads to:

3™ nD, cosh(n7,)sin(ny) = uh K, (v)

(G.21)

The term nD, cosh(nz,) is the coefficients of the Fourier series expansion of the right
side as in below:

2 .
nD, cosh(n,) = ;IO 11 (70, ) K (w)sin ny dy

(G.22)
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As NDicosh(nie) =a, the coefficients Dy are obtained as:

7l2+y 12

2/uOCKcm

=0 em \/coshzno—coszz//sin ny dy
nz cosh(nz,)

wl2-y 12 (623)

It is seen that the solutions of scalar potential ¢ and vector potential A; are exactly the
same with the following relationship between the coefficients A, and Dn:

D, =—1,A, (G.24)

G.4. Transformation Matrix

x=R cosd@ =R, cos(f+6") |x" =R cosd
y=R, sin@=R, sin(f+6") "y = R, sin@" (G.25)

For cos(3+6")and cos(B+6"), we substitute the products as:

x =R, [cos B cos@" —sin B sinf"]
y =R [sin B cos@" +cos B sinf"]

(G.26)
It can be rewritten as in below:
x =cos B[R, cos " ]—sin B[R, sin6"]
y =sin B[R, cos@']+cos B[R, sin0"] (G.27)
By substituting the terms in the bracket in x" and y', we obtain:
{x =cosf X" —sinB y"
y=sing x"+cos Sy (G.28)

The transformation matrix is obtained as:
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x| |cosp —sinpg| x'
y| [sing cosp ||y’

It can be observed that, for =0, the rotor reference frame falls on the stationary

(G.29)

reference frame, i.e., x=x" and y=y".
G.5. Obtaining the Polynomial Coefficients

Having the slop and two points m1(Xm1,ym1) and si(Xs1,ys2), the line Lp1 is obtained as:

R2
Y= Ym = R_22 y81 (Xsl - Xml)
T Xa (G.30)
Then, ys1 can be obtained in terms of xs1 as in below:
y — I:\)12 ymlxsl
T O(RE-RI)Xy +RIXy, (G.31)
By substituting ys1 into the ellipse equation:
2 2
X
1y Yo
R, R (G.32)
Leads to:
2 2 2
Xsl 1 Rl ymlxsl _
Y 2 2 2 =1
Rz R1 (R1 - Rz )Xsl + Rz Xin1 (G.33)
Simplifying results in the following polynomial:
a X +axd +a,x; +ax, +a,=0 (G.34)
whose coefficients are:
6
a, =—R, Xril (G.35)
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4 2 2
a = 2R2 Xml(RZ - R1 )
a, = R)xz, + RIR}ya, —R7(R? —R})?

a, = 2R2x,, (R? — R%)

ml

a, = (R12 _R22)2
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Appendix H

Loop-Shaping Position Control in Frequency
Domain

An advantage of the control in the frequency domain is that the stability and robustness

of the system can be evaluated.

Control Architecture

As shown in Figure H.1, the position loop can be digitally implemented in a DSP
around the current loop, which had analog implementation using op-amps. The current loop
is much faster than the position loop so that the current loop is seen as a D.C. gain from
the position loop; the inverse of this DC gain is placed before the DAC so that the output
of the position compensator is exactly the current command irer Sent to the current loop. In
other words, the bandwidth of the current loop should be designed to be much larger than
the bandwidth of the position loop. Also, the sampling frequency is large enough that the

time delay (computational time and sampling by ZOH) can be ignored.

The desired bandwidth of the position loop is around fow=500 Hz; this bandwidth
provides a fast response with a rise time around t-=2.2/wnw. The phase compensation is
around 55 degrees, providing a small overshoot in the step response, good robustness, and
enough stability margin. The position sensor returns a voltage as a function of position,
and its inverse function is implemented in the DSP so that they cancel out in the loop
transmission. There can be a low-pass filter in the loop to reject the high-frequency content
of the position sensor and other elements; its break frequency should be greater than the
crossover frequency such that it does not add a negative phase to the system. The crossover
frequency wc is related to the desired bandwidth of the closed-loop system, so it is set at
wvw =10007 Hz or higher.
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Position Controller Current Control Loop (DC gain =-R»/R1)

0.  enr— F— | [ ~LagComp.+Drive s Coil I
1 C

Hig S, (51, (ST}JH.(5)

Lead Comp.

for advanced
control purposes

_________________ T Position Sensor Function

jm-—=----S=========z=======z==- EE (_53'[‘ _Of Cur"_e_nE ECLOP Mechanical

------------------- ! . Dynamic H(s)

]
1+ﬁ arsS+1 .= il =) > Ry e k; 0
S |7 t5+1 | RISl V] Ry | | IS +k,S+k,

]
| Wp [w] Vps _
( S'HJJh Vps_fps(e)

| Inverse of Position Position Sensor Function
DSP Sensor Function LPF 1

Figure H. 1. Position loop in the frequency domain: (a) with full dynamic of the current loop (top), and by
replacing the current loop with its DC gain when its bandwidth is much larger than position loop (bottom).

A Pl compensator, including an integrator, is used to null any steady-state error. A lead

compensator is employed to achieve enough phase margin.

Design of Compensator and Low-Pass Filter

The transfer function of the lead-lag compensator is as in below:

Co(s) =k,Cyg(s)C (5) = K, (14—%)(&_’_1)

rs+1 (H.1)

The lead compensator can provide a maximum phase compensation ¢m at the frequency

of wm as in below:

o (H.2)

The typical pole-zero ratio a=10 is picked for the lead compensator to get a maximum

phase compensation of around pm=>55 degrees. Setting om=wc, leads to 7=10.
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The integrator gain is set to one decade before the crossover frequency, i.e.,
ki=we/10=100r, so that its impact on the reduction of the phase margin is limited to around

5 degrees.

The transfer function of the low-pass filter is as follow:

H er () =
STy (H.3)

The break frequency should be well below the noise frequency as well as at least one
decade above wc to limit its impact on the reduction of the phase margin. Since the

bandwidth of the position sensor is sufficiently high (100 kHz), it can even be removed.

Finally, the loop gain kp is determined based on the fact that the gain of the loop

transmission at wc should be unity:

kp :1/|Clg(ja)c)cld(ja)c)Hm(jwc) HLPF(ja)c)

(H.4)

whose unknown kp can be obtained. Even the transfer function of the low-pass filter Hipr
can be ignored in the above equation as its magnitude is almost unity at w¢. The DC gain
of the current loop and its inverse, as well as the position sensor function and its inverse

function, do not appear in the loop transmission as they are canceled out.

Digital Implementation of the Compensator

The sampling time Ts=1/fs where ;=160 kHz is the sampling frequency of the DSP.
Using the Tustin transformation, the z-transform of the discrete-time lag compensator is
obtained as:

Lk G o @ KT 2
C'g(s)_1+s — C'g(z)_Xlg(z)_1+ > 71 (H5)

The discrete-time implementation of the lag compensator is
Y €+ =y, () +[KT, / 2+1]x, (t+1) + [k T, / 2-1]x, (1)

(H.6)
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By using shifting theorem, it leads to:

Vig ) = Yy (=D +[KT, /240, © +[KT, /2%, (t-1) (H7)

The z-transform of the discrete-time lead compensator is obtained as:

_ars+l

Y, (z Z+12
CId(S)_—TS-i-l =Cy(@)= u(?) =k E

X @ " z+z, (H.8)

where z1, 22, and kiq are as follows:

T, +2ar . T, —2ar T, -27
Kig = = =

T, +2r Zl_TS+2ar’Zz_TS+2r (H.9)
The discrete-time implementation of the lead compensator is:

Yo C+D +2, v, (t) =Ky [Xg T+ + 2, X, (t)] (H.10)
By using shifting theorem, it leads to:

Yo () =-2, ¥, -1 +Kk,[x, ) +2 %, -] (H.11)

Nonlinear Control by Feedback Linearization
Nonlinear control provides an opportunity to work with large input signals. Feedback
linearization is nonlinear technique which can be a powerful in eliminating the

nonlinearities of the system, yet it requires a very accurate model of the plant.

Since the inductance is a function of frequency due to eddy-currents and proximity
effects, obtaining an accurate model for the electrical dynamic is complicated, so
employing the current control loop is very useful to eliminate the electrical dynamics and
all its nonlinearities. Then, for feedback linearization, we only deal with the mechanical

dynamic whose model is relatively more accurate.

Feedback Linearization

If a nonlinear state space can be written in companion form as in below:
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(H.12)

X, = T (X, X)) +9(X,, 0 X ) U(Y) = v(t)

where functions f(x) and g(x) are nonlinear functions of the states, and u(t) is the input; it
can be seen that all states should be measured or estimated to be able to evaluate f and g.
Then, the following nonlinear transformation can be used at the input to cancel the
nonlinearities.

1

= — (X,
" g(Xl,...,Xn)[V(t) & Xn)] (H.13)

The result is a linear system with new input is v and n poles at the origin, to which

linear control techniques can be applied.

As the restoration torque and the electromagnetic torque are functions of the position,
by substituting #=p-/2, the nonlinear electromechanical model is obtained as follows:

. di
Elec: v, =k, cos6+ R, i, (t) + L, d_'t

, (H.14)
., d%e do . .
Mech: J F-ﬁ- Ky E+ Kie SIN 260 =k, i, COSO
The nonlinear state-space form of mechanical dynamic is as:
0=,
ko, +K, SiN20  k coso. :
== + i,="f+gi =v
J J (H.15)
The nonlinear transformation at the input is as follows:
_ 1
Ic (t) = [V(t) - f (91 wr )]
9(0,0,) (H.16)

Then, the remaining system with the new input v is a double integrator linear system

as in below:
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d=v = Hé:@—i2

v(s) s (H.17)

The state-space form is as follows:

ol ool o

Any kind of linear control can be designed for this system.

Nonlinear Control by Loop Shaping in Frequency Domain
The block diagram of the control architecture is shown in Fig. 6. The same lead-lag
compensator as in section Il is used. However, since the plant is changed, the loop gain kp

needs to be redesigned as in below:

k, =1/|C,y (@,)C,y @) H,, ()

(H.19)

It is assumed that the state observer is fast enough that it does not have a big impact on
the loop phase at the crossover frequency. The digital implementation of the controller is

the same.
H =8/v=1/s
Position Control ¢~ c 1 N Dl}llneacnhq?cni_cla{)\
' ~~ T - - T~ —-o——-—-—----—----"""%-"""7 o~ _--- I. ulld
:Bref C 'R2 1l 9 - (2]
p 2 Ry |l o, = frei.
| - ‘Current’ order=2
' Loop
:
|
)
1DSP

Figure H. 2. Nonlinear control by loop shaping
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Appendix |

Matlab Code for the Electromagnetic Model

Chapter 5

The code is as in below:

% Actuator Model by Elliptical Coordinates and Differential Flux Tubes

% Sajjad Mohammadi, EECS, MIT, August 2021

%% [1] Parameters

N = 100; % Number of turns

ic =1; % current [A]

u0 = 4*pi*le-7;

Rl = 1.71e-3; % semi-major axis of ellipse [m]

R2 = 1.15%1.71e-3; % semi-minor axis of ellipse [m]

Rr = 1.524e-3; % Rotor radius [m]

Br = 1.37; % residual flux of PMs (T)

M = Br/u0; % PM Magnetization

LL = 4.191e-3; % axial length of actuator (m), 0.165 inch

o)

theta ¢ = 38* (pi/180); % Interpolar angle Cylindrical [rad],

atand(0.564/1.63816169)

% Rotor Rotation
db = pi/1000; % Increament of rotor rotation: beta
beta = 0:db:pi; % Rotor rotation: beta

)

% Elliptical Coordinates
etal0 = atanh(R1/R2); % Reference ellipse
c = sqgqrt(R272-R1"2); % Ellipse foci +c and -c

o)

psi ¢ = 2*atan(tan(theta _c/2)/coth(etal)); % Interpolar angle Ellipticalll

% Coordinates of point A, right side of surface current Kc
x A = c*cosh(etal).*cos(pi/2 - psi c¢/2)*1000
y A = c*sinh(etal).*sin(pi/2 - psi _c¢/2)*1000

% Calculation of 1c

% Method 1: Cartesian Coordinates
tl = atan((R2/R1) *cot (theta c/2));
tt = linspace(tl,pi/2,1000);

Lc = 2*trapz(tt,sqrt((R2*sin(tt)) .”"2+(R1l*cos(tt)).”2)) % verttical ellipse

% Method 2: Ellipticals Coordinates

si L = linspace(pi/2-psi _c/2,pi/2+psi c/2,1000);

c = trapz(psi L, c*sqrt(cosh(etal)”2-cos(psi L)."2))
Lc=1.140186e-3; % measured from FEM

do = 'O

% Load FEM data
run FEMresult B Current etal eta9 Rr

282



%% [2] Field calculations, eta and psi components of B on elliplse eta=etal

o)

% The ellipse to calculate fields on it
eta = 0.999*%etal; % stator boundary

o©

Test for get point A

x ¢ = c*cosh(etal) *cos (pi/2-psi c/2)
y _c = c*sinh(etal)*sin(pi/2-psi c/2)
theta ¢ = 2*atand(x c/y c)

o° oo

o\°

)

psi = linspace (0,2*pi,10000); % 2*pi range of elliptical angle psi

phi = zeros (l,length(psi)); % Magnetic Scalar Potentian
Az = zeros(l,length(psi)); % Magnetic Vector Potentian
B eta = zeros(l,length(psi));% eta-component of B (normal)

( ( ))

B psi = zeros(l,length(psi

for n=1:2:300
% Caculation of Fourier Coefficients An

o)

;% psi-component of B (tangential)

psii = linspace(pi/2-psi c/2,pi/2+psi c¢/2,10000); % for integration

An = - (N*ic/Lc) * (2*c./ (n*pi*cosh (n*etal))) ...

*trapz (psii, sgrt(cosh(etal)”"2-cos(psii).”2).*sin(n*psii) );

)

% Scalar Potential: phi=A cosh(n eta) cos(psi)

phi = phi + An.*cosh(n*eta).*cos(n*psi); % Magnetic scalar potential

% Vector Potential: phi=A sinh(n eta) sin(psi)
Dn = -uO*An;
Az = Az + Dn.*sinh(n*eta).*sin(n*psi);

% Scale Factor
ht = c*sqgrt(cosh(eta) .”2-cos(psi).”2); % Scale factor

% Flux Density Vectors
_eta = B_eta+u0*(—l./ht)*n.*An.*sinh(n*eta).*cos(n*psi)
_psi = B_psi+u0*(1./ht)*n.*An.*cosh(n*eta).*sin(n*psi);

W w

end

)

% Magnetic Flux density: B eta and B psi
subplot (3,1,1)

plot (psi* (180/pi),B eta, ... % Model
psi B etal orig*(180/pi), Beta B etal orig,'--',...
psi B eta0 simp*(180/pi), Beta B etal simp,'--',...

'LineWidth',1); grid on
legend('Model', 'FEM original', 'FEM simplified")
xlabel ("\psi (deg) ")
ylabel ('B \eta (tesla)')
x1im([0,360])
title('Ellipse Boundary \eta=\eta 0'")
subplot (3,1, 2)
plot (psi* (180/pi),B psi, ...
psi B etal orig*(180/pi), Bpsi B etal orig,'--',...
psi B etal simp* (180/pi), Bpsi B etal simp,'--',...
'LineWidth',1); grid on
legend('Model', '"FEM original', 'FEM simplified')
xlabel ("\psi (deg)')
ylabel ('B \psi (tesla)')
x1im([0,360])
subplot (3,1, 3)
plot (psi* (180/pi),phi, ...
psi B etal orig*(180/pi), phi B etal orig,'--',...
psi B etal orig*(180/pi), phi B etal simp, '--',...

283

’

o

oe

oe
W w
0]
or
Q

o

FEM original
FEM simplified



'LineWidth',1); grid on
x1im([0,360]); ylim([-55,55])
legend('Model', 'FEM original', 'FEM simplified")
xlabel ("\psi (deg)'); ylabel ('Scalar Potential \phi')

plot (psi* (180/pi) , Az, ...
'LineWidth',1); grid on

o)

% Scalar Potential from H psi
B psii =B psi;
psii = psi;

o° o oo

o

% zz = c*sqrt(cosh(eta).A2—cos(psii).A2).*B_psii/uO;
% phii = -cumtrapz(psii, zz); % Cumulative Integral
% phi0 = (1/ (psii(end)-psii(l)))*trapz(psii, phii); % Averaging to find DC

value
BB = phii - phiO; % Subtract DC value

o0 o

oo

plot (psii*(180/pi), BB)
xlabel ("\psi'); ylabel ('Scalar Potential \phi')

o

oo

o

Magnitude of B

plot (psi* (180/pi),sqrt (B_eta.”2+B psi.”2))
x1im ([0, 3601])

xlabel ("\psi')

ylabel ("|B|")

o o0 oo

o

o

% Test: H psi = (1/ht)*dphi/dt
db=psi(2)-psi(l);
for kk=1: (length (psi)-1)

T (kk) = (phi (kk+1) -phi (kk)) /db;

o0 o

oo

% end

% plot(psi(l:length(psi)-1)*(180/pi), u0*1./(c.*sqgrt((cosh(etal)"2-
cos (psi(l:length(psi)-1)).7%2))) .*T)

% Converting (B eta, B psi) to (Bx, By) and (Br, B theta)

% ht = c*sqgrt(cosh(eta).”2-cos(psi)."2);

% Bx = imag( (ht./(c*sinh(eta+j*psi))) .* (B _psi+j*B eta));

% By = real( (ht./(c*sinh(eta+j*psi))) .* (B_psi+j*B _eta));

o

oo

x = c*cosh(eta).*cos (psi);
y = c*sinh(eta) .*sin(psi);

o oo

o

for jj=1:length (x)

if x(35)<=0

theta (jj)=atan(y(Jj)./x(jJ))+pi; % pl because atan in Matlab is in [-
i/2,pi/2]

else
theta(jj)=atan(y(33)./x(33));

end

end

oo

o

B r = Bx.*cos(theta)+By.*sin(theta);
B theta = -Bx.*sin(theta)+By.*cos (theta);

figure
subplot (3,1,1)
plot (theta* (180/pi),B r)

A0 00 A° A0 A° A° A° A° A° o° o T
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o\

xlabel ('"\theta'), ylabel('B r')

subplot (3,1, 2)
plot (theta* (180/pi),B theta)
xlabel ('\theta'), ylabel('B_\theta')

subplot (3,1, 3)
plot(theta*(l80/pi),sqrt(B_r.A2+B_theta.A2))
xlabel ('"\theta'), ylabel('|B]|")

o d° o° o oP

o\©

%% [3] Field calculations, eta and psi components of B in air-gap (elliplse
eta=0.9*etal)

% The ellipse to calculate fields on it
eta = 0.9*etal;

% For FEM, to measure fields on this line
R2p = c*cosh(eta)
Rlp = c*sinh(eta)

oo

Test for get point A

x ¢ = c*cosh(etal) *cos (pi/2-psi c/2)
y ¢ = c*sinh(etal)*sin(pi/2-psi c/2)
theta ¢ = 2*atand(x c/y c)

o oo

o

o

psi = linspace (0,2*pi,10000); % 2*pi range of elliptical angle psi

phi = zeros(l,length(psi)); % Scalar Magnetic Potentian

Az = zeros(l,length(psi)); % Scalar Magnetic Potentian

B eta = zeros(l,length(psi));% eta-component of B (normal)
))

B psi = zeros(l,length(psi));% psi-component of B (tangential)

for n=1:2:300
% Caculation of Fourier Coefficients An
psii = linspace(pi/2-psi c¢/2,pi/2+psi c¢/2,10000); % for integration
An = - (N*ic/Lc) * (2*c./ (n*pi*cosh(n*etal))) ...
*trapz (psii, sqgrt(cosh(etal)”"2-cos(psii).”2).*sin(n*psii) );

% Scalar Potential: phi=A cosh(n eta) cos(psi)
phi = phi+An.*cosh(n*eta) .*cos(n*psi); % Magnetic scalar potential

% Vector Potential: phi=A sinh(n eta) sin(psi)
Dn = -uO*An;
Az = Az+Dn.*sinh (n*eta).*sin(n*psi);

ht = c*sqgrt(cosh(eta) .”2-cos(psi).”2); % Scale factor
% Flux Density Vectors

_eta = B_etatuO*(-1./ht)*n.*An.*sinh(n*eta).*cos(n*psi); % B
_psi = B psi+ul0*(1./ht)*n.*An.*cosh(n*eta).*sin(n*psi); % B psi

W w

end

% Magnetic Flux density: B eta and B psi

subplot(3,1,1)
plot (psi* (180/pi),B eta, ...
psi B eta9 orig*(180/pi), Beta B eta% orig,'--',...
psi B eta9 _simp* (180/pi), Beta B _eta9 simp,'--',...
'Llnerdth' 1); grid on
legend ('Model', '"FEM original', 'FEM simplified')
xlabel ('"\psi (deg)'); ylabel('B \eta (tesla)'); x1im([0,360])
title('air-gap \eta=0.9\eta 0'")

subplot (3,1, 2)
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plot (psi* (180/pi),B psi,...

psi B eta9 orig*(180/pi), Bpsi B eta9 orig,'--',...

psi B eta9 simp* (180/pi), Bpsi B etal simp, '--',...

'LineWidth',1); grid on

legend('Model', 'FEM original', 'FEM simplified")

xlabel ('\psi (deg)'); ylabel('B \psi (tesla)"')

x1im ([0, 360])

subplot (3,1, 3)

plot (psi* (180/pi),phi, ...
psi B eta9 orig*(180/pi), phi B eta9 orig,'--',...
psi B eta9 simp*(180/pi), phi B eta% simp, '--',...
'LineWidth',1); grid on

x1im([0,360]); ylim([-55,55])

xlabel ("\psi (deg)'); ylabel ('Scalar Potential \phi'")

o\°

Magnitude of B

plot (psi* (180/pi),sqrt (B _eta.”2+B psi.”2))
x1im ([0, 360])

xlabel ("\psi')

ylabel ("|B|")

o o0 oo

o

o

)

% Cylindrical coordinates
theta = linspace(0,2*pi,1000);
r = Rr;

% Cylindrical to Cartesian coordinates
XX = r.*cos (theta);

yy = r.*sin(theta);

% Cartesian to elliptical coordinates
eta cr = real (acosh ((xx+j*yy)./c));

psi_cr = imag(acosh((xx+j*yy)./c));
phi = zeros(l,length(psi cr));
Az = zeros(l,length(psi cr));
B _eta = zeros(l,length(psi cr));
B psi = zeros(l,length(psi cr));

for n=1:2:299
% Caculation of Fourier Coefficients An

psii = linspace(pi/2-psi c¢/2,pi/2+psi ¢/2,10000);
An = - (N*ic/Lc) * (2*c./ (n*pi*cosh(n*etal))) ...

*trapz (psii, sqgrt(cosh(etal)”"2-cos(psii).”2).*sin(n*psii)
% Scalar Potential: phi=A cosh(n eta) cos(psi)
phi = phi+An.*cosh(n*eta cr).*cos(n*psi cr); %
% Vector Potential: phi=A sinh(n eta) sin(psi)
Dn = -ulO*An;
Az = Az+Dn.*sinh(n*eta cr).*sin(n*psi cr);

% Scale Factor
ht = c*sqgrt(cosh(eta cr).”2-cos(psi _cr).”2); % Scale factor

B eta
B psi

B etatu0* (-1./ht)*n.*An.*sinh(n*eta _cr).*cos(n*psi cr);
B psi+u0* (1./ht)*n.*An.*cosh(n*eta_cr).*sin(n*psi cr);
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% [4] Torque Calculations, eta and psi components of B on PM boundary (r=Rr)

);

Magnetic Scalar Potential

o
°

eta

Bi
% B psi



end
% acosh gives [0,pi], so it needs to be modified to get [0,2pi]
psi crr = [psi_cr(l:length(psi_cr)/2) ,
2*pi+psi cr(length(psi cr)/2+1l:length(psi cr))]l;
% B eta and B psi on boundary of PM
subplot(3,1,1)
plot (psi crr*(180/pi),B _eta, 'LineWidth',1); grid on
xlabel ('\psi (deg)"); ylabel('B \eta (tesla)"')
x1im ([0, 360])
title('PM Boundary r=Rr')
legend('Model', '"FEM original', 'FEM simplified')
subplot (3,1,2)
plot(psi_crr*(lSO/pi),B_psi,'Linewidth',l); grid on
xlabel ('\psi (deg)'); ylabel('B \psi (tesla)"')
x1im([0,360])
legend('Model', 'FEM original', 'FEM simplified")
subplot (3,1, 3)
% Scalar potential phi on boundary of PM as a function of psi
plot (psi crr*(180/pi),phi, 'LinewWidth',1); grid on
x1im([0,360]); ylim([-55,55])
xlabel ("\psi (deg)'); ylabel('Scalar Potential \phi')
legend('Model', '"FEM original', 'FEM simplified')

oo

plot (psi_crr*(180/pi),sqgrt (B eta.”2+B psi.”2), 'LineWidth',1); grid on
x1im([0,360])

xlabel ("\psi (deg) ')

ylabel ('|B| (tesla)')

o° oo

o

o

Plot Ellipse and PM boundaries

x el = c*cosh(etal) .*cos (psi);
y el = c*sinh(eta0l) .*sin(psi);
x _cr = c*cosh(eta cr).*cos(psi cr);
y_cr = c*sinh(eta cr).*sin(psi_cr);

figure; plot(x el,y el,x cr,y cr,'LineWidth',1); grid on
legend ('Ellipse boundary', 'PM boundary')
axis equal

)

% Covert Vector B from Elliptical to Cartesian

ht = c*sgrt(cosh(eta cr).”2-cos(psi cr)."2);
Bx = imag( (ht./(c*sinh(eta cr+j*psi cr))) .* (B_psi+j*B eta));
By = real( (ht./(c*sinh(eta cr+j*psi cr))) .* (B_psi+j*B eta));

% Covert Vector B from Cartesian to Cylindrical
B r = Bx.*cos(theta)+By.*sin(theta);
B theta -Bx.*sin (theta) +By.*cos (theta) ;

% Fundamental Component of Br, Torque-Producing Component

Brl model = (2/(2*pi))*trapz(theta,B_r.*cos(theta)) % Model

Brl FEM orig =

(2/(2*pi)) *trapz (theta B Rr orig,Br B Rr orig.*cos(theta B Rr orig)) % Original
Geometry

Brl FEM simp =
(2/(2*pi))*trapz(theta B_Rr_ simp,Br B _Rr_ simp.*cos(theta B _Rr_simp)) %
Simplified Geometry

% Bt and B theta
figure
subplot(3,1,1)
plot (theta* (180/pi), B r,...
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theta B Rr orig*(180/pi), Br B Rr orig,'--',...

theta B Rr simp*(180/pi), Br B Rr simp,'--',...

theta* (180/pi), Brl model*cos (theta), ... % fundamental

theta B Rr orig*(180/pi), Brl FEM orig*cos(theta B Rr orig),'--',... %
fundamental

theta B Rr simp*(180/pi), Brl FEM simp*cos(theta B Rr simp),'--',... 3%
fundamental

'LineWidth',1); grid on
xlabel ('\theta (deqg)'); ylabel ('B r (tesla)')
x1im ([0, 360])
legend('Model', '"FEM original', 'FEM simplified')
title ('PM Boundary r=Rr')
subplot (3,1,2)
plot (theta* (180/pi),B theta,...
theta B Rr orig*(180/pi), Btheta B Rr orig,'--',...
theta B Rr simp*(180/pi), Btheta B Rr simp, '--',...
'LineWidth',1); grid on
xlabel ('\theta (deg)'); ylabel('B \theta (tesla)"')
legend('Model', '"FEM original', 'FEM simplified')
x1im([0,36017)
subplot (3,1, 3)
% Scalar potential phi on boundary of PM as a function of theta
plot (theta* (180/pi),phi, ...
theta B Rr orig*(180/pi), phi B Rr orig,'--',...
theta B Rr simp*(180/pi), phi B Rr simp, '--',...
'LineWidth',1); grid on
x1im([0,360]); ylim([-55,55])
xlabel ('"\theta (deg)'); ylabel('Scalar Potential \phi')
legend('Model', '"FEM original', 'FEM simplified')

o

plot (theta* (180/pi),sqrt(B_r.”2+B theta.”2), 'LineWidth',1); grid on
xlabel ('"\theta (deg)'); ylabel ('|B| (tesla)"')
x1im([0,360])

oo

o

o

Torque Method 1 (General)

T coill = zeros(l,length(beta));

mm=1;

for betaa=beta
Km = -M*sin (theta-betaa); % Amperian Surface Current Density of PM
T_coill(mm) = LL*RrAZ*trapz(theta,Km.*B_r) * le3; $ m N.m
mm = mm+1;

end

% Torque Method 2 (Using B1)

T coil = pi*Rr"2*LL*M*Brl model * sin (beta) * 1le3;
T coil FEM orig = pi*Rr”"2*LL*M*Brl FEM orig * sin(beta) * le3;
Geometry, m N.m

T coil FEM simp = pi*Rr”"2*LL*M*Brl FEM simp * sin(beta) * le3;
Simplified Geometry, m N.m

oe

Model, m N.m
FEM, Original

oe

oe

FEM,

o)

% Coil Plot Torque

figure

plot ((180/pi)*beta , T coil,...
(180/pi) *beta , T coil FEM orig,'--',...
(180/pi) *beta , T coil FEM simp,'--',...

'LineWidth',1); grid on
xlabel ("\beta (deg) '), ylabel ('Torque (m N.m)"')
legend ('Model', 'FEM, Original Geometry','FEM, Simplified Geometry')
ylim([0,1.6])
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%% [5] Vector Fields B and Equipotential Lines phi
% Meshgrid in elliptical coordinates

etaa mesh = linspace(0,eta0,20);

psii mesh = linspace(0,2*pi,70);

[eta mesh,psi mesh] = meshgrid(etaa mesh,psii mesh);

% Elliptical to Cartesian Conversion

x mesh = c*cosh(eta mesh) .*cos(psi mesh);

y mesh = c*sinh(eta mesh).*sin(psi mesh);

phi = zeros (length (psii mesh), length(etaa mesh)); % Scalar Potential
Az = zeros (length (psii mesh), length(etaa mesh)); % Vector Potential
B eta = zeros(length(psii mesh),length(etaa mesh)); % B eta

B psi = zeros(length(psii mesh),length(etaa mesh)); % B psi

for n=1:2:500
psii = linspace(pi/2-psi c¢/2,pi/2+psi ¢/2,10000);
An = - (N*ic/Lc) * (2*c./ (n*pi*cosh(n*etal))) ...

*trapz (psii, sqgrt(cosh(etal)”"2-cos(psii).”2).*sin(n*psii) );

o)

phi = phi+An.*cosh(n*eta mesh) .*cos(n*psi mesh); % Scalar Potential

Dn = -uO*An;
Az = Az+Dn.*sinh(n*eta mesh).*sin(n*psi mesh); % Vector Potential
ht = c*sgrt(cosh(eta mesh).”2-cos(psi mesh).”2); % Scale factor

B eta = B_eta+u0*(—1./ht)*n.*An.*sinh(n*eta_mesh).*cos(n*psi_mesh); % B eta
B psi = B_psi+u0*(l./ht)*n.*An.*cosh(n*eta_mesh).*sin(n*psi_mesh); % B psi

end

% Field Vectors B in Cartesian Coordinates

Bx = imag( (ht./(c*sinh(eta mesh+j*psi mesh))) .* (B psi+j*B eta));
By = real( (ht./(c*sinh(eta mesh+j*psi mesh))) .* (B psi+j*B eta));

Bxy = sqgrt (Bx.”2+Bx.”"2); % Magnitude |B|

% Flux Density Vectors and Equipotential Lines

figure; hold on

quiver (x _mesh,y mesh,Bx,By) % vectors

contour (x_mesh,y mesh,phi,21); colormap winter % phi contours

)

% contour (x mesh,y mesh,phi, 20, 'ShowText', 'on') % contours

xxX = c*cosh(etal).*cos (psi mesh); yy = c*sinh(etal).*sin(psi mesh);

o

plot (xx,yy,'k')% Plot Ellipse boundary

hold off; axis equal; axis off

% Flux Density Distribution

figure; hold on

contourf (x mesh,y mesh,Bxy,100, 'LineStyle', 'None'); colormap Jet
contour (x_mesh,y mesh,Az,21, 'Linecolor', 'k', '"LineWidth',0.7); %

title('B (Tesla)'); axis equal; axis off

caxis([0,0.2]); hold off

% Distribution of Vector Magnetic Potential Az

figure; hold on

contour (x_mesh,y mesh,Az,21,'--", 'LineWidth',1); colormap cool
title('Az (Wb/m)")

contour (x_mesh,y mesh,phi,15); colormap winter % phi contours

title('psi')

caxis ([-9e-5,9e-5]) % for Az

caxis ([-50,50]) % for phi

o

plot(xx,vyy,'k"'")% Plot Ellipse boundary

oe

o\

o\

oe
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hold off; axis equal; axis off
%% [6] Reluctance Torque by Energy Method
theta f = 50 *(pi/180); % Angle of Fringing Effect

yr = linspace (0,Rr,1000); % Integration range of yr on rotor reference frame
thetar = asin(yr/Rr); % thetar in rotor reference frame

xpl = zeros(l,length(yr)); ypl = zeros(l,length(yr)); % Point Sl
xp2 = zeros(l,length(yr)); yp2 = zeros(l,length(yr)); % Point S2
Wc raw = zeros(l,length(beta)); % co-energy

ii = 1;

o)

for betaa = beta % Rotor rotaion from 0 to pi [rad/sec]

% MMF in the loop
Fm = 2*M*Rr*cos (thetar);

% length inside magnet
Lm = 2*Rr*cos (thetar);

g [ length Lpl in airgap ]---—————————=———————-—
% Point ml

xml = Rr*cos (betaa+thetar); % xml in stationary reference frame
yml = Rr*sin(betaa+thetar); % yml in stationary reference frame

)

% Polynomial Coefficient

a4 = (R1"2-R2"2)"2;

a3 = 2*R272*xml* (R1"2-R2"2);

a2 = R274*xml."2+R1"2*R2"2*yml . "2-R2"2* (R1"2-R2"2) "2;
al = 2*R2"4*xml* (R27"2-R1"2) ;

a0 = -R276*xml."2;

for jj=1l:length (yr)
% Calculation of point ml
rootsl = roots([a4,a3(j]j),a2(3jj),al(33),a0(3j)1); % 4 roots of
polynomial

% Calculate xpl
if xml(33)>=0 % if xml>0, so xpl>0
for kk=1:4 % look in the 4 roots to pick the real positive root
if isreal (rootsl (kk)) && rootsl (kk)>=0
xpl (jj) = rootsl (kk);
end
end
else % if xml<0, so xpl<0
for kk=1:4 % look in the 4 roots to pick the real negative root
if isreal (rootsl (kk)) && rootsl (kk)<0
xpl (jj) = rootsl (kk);
end
end
end

% Calculate yml after calculating xml
if yml(33)>=0 % if yml>0, so ypl>0

ypl(3j) = Rl*sqgrt(l-xpl(jj)"2/R2"2);
else % if yml<0, so ypl<0

ypl(3j) = -Rl*sqrt(l-xpl(jj)"2/R2"2);
end

end
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ILpl = sgrt((xml-xpl) .2+ (yml-ypl)."2); % length of Lpl without fringing

% Fringing Effect at the Interpolar Region, add quarter curcle: r*pi/4
correction Lpll = zeros(l,length(yr));

correction Lpl2 =zeros(l,length(yr));

for jj=1l:length (yr)

% If at top interpolar region, at theta=pi/2

if abs(thetar(jj)+betaa-pi/2)<theta c/2 %at distance of theta c¢/2 from

pi/2
correction Lpll(jj) = theta_f*Rl*abs(theta_c/Z—
abs (thetar (jj) +tbetaa-pi/2));
else
correction Lpll(jj) = O;

end

% If at bottom interpolar region, at theta=3pi/2
if abs(thetar(jj)+betaa-3*pi/2)<theta c/2 %at distance of theta c/2
from 3pi/2

correction Lpl2(jj) = theta f*Rl*abs(theta c/2-
abs ( (thetar (jj) +tbetaa-3*pi/2)));
else
correction Lpl2(jj) = 0;
end
end

% Add the extra length for correction
Lpl = Lpl + correction Lpll + correction Lpl2;

G [ length Lp2 in airgap ]----—--—----——-—--—-—=-
% Point m2

xm2 = -Rr*cos (betaa-thetar);

ym2 = -Rr*sin (betaa-thetar);

)

% Polynomial Coefficient

b4 = (R1"2-R2"2)"2;

b3 = 2*R27"2*xm2* (R1"2-R2"2) ;

b2 = R2"4*xm2.”72+R1"2*R2"2*ym2 ."2-R2"2* (R1"2-R2"2) "2;
bl = 2*R274*xm2* (R2"2-R1"2) ;

b0 = -R276*xm2."2;

for jj=l:length(yr)

% Calculation of point m2
roots2 = roots([b4,b3(3j),b2(33),b1(33),b0(33)1); % 4 roots of
polynomial

% Calculate xp2
if xm2(3j)>=0 % 1if xm2>0, so xp2>0
for kk=1:4 % look in the 4 roots to pick the real positive root
if isreal (roots2(kk)) && roots2 (kk)>=0
xp2(jj) = roots2(kk);
end
end
else $ 1if xm2<0, so xp2<0
for kk=1:4 % look in the 4 roots to pick the real negative root
if isreal (roots2(kk)) && roots2 (kk)<0
xp2(jj) = roots2(kk);
end
end
end
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% Calculate yp2 after calculating xp2
if ym2(33)>=0 % if ym2>0, so yp2>0

yp2(3j) = Rl*sqgrt(l-xp2(jj)"2/R2"2);
else $ if ym2<0, so yp2<0

yp2(3j) = -Rl*sqrt(l-xp2(jj)"2/R2"2);
end

end
Lp2 = sqgrt((xm2-xp2) . "2+ (ym2-yp2) ."2); % length of Lp2 without fringing

)

% Fringing Effect at the Interpolar Region, add quarter curcle: r*pi/4
correction Lp2l = zeros(l,length(yr)):;
correction Lp22 = zeros(l,length(yr));
for jj=l:length (yr)
% If at top interpolar region, at theta=pi/2
if abs (betaat+pi-thetar(jj)-pi/2)<theta c/2 %at distance of theta c/2
from pi/2

correction Lp21(jj)
thetar (jj)-pi/2));
else
correction Lp2l(jj) = 0;
end

theta_f*Rl*abs(theta_c/2—abs(betaa+pi—

)

% If at bottom interpolar region, at theta=3pi/2
if abs(betaatpi-thetar(jj)-3*pi/2)<theta c/2 %at distance of theta c/2
from 3pi/2

correction Lp22(jj) = theta f*Rl*abs(theta c/2-abs ((betaatpi-
thetar (33)-3*pi/2)));
else
correction Lp22(jj) = 0;

end

end
o

% Add the extra length for correction
Lp2 = Lp2 + correction Lp2l + correction Lp22;

% Total length

L DFT = Lpl + Lm + Lp2;
Fmm———————————— —= [ Flux Density at beta=0 and 90 ]--—-—-----"--------——-
if betaa==

B beta0 = u0*Fm./L DFT; % B within DFTs

elseif betaa==pi/2
B beta90 = u0*Fm./L DFT; % B within DFTs
end

)

Fmm—m = [ Co-energy Calculation J---—--—=—--———-———————-
% Differential co-energy associated with DFT at rotor angle beta
dWec = 2*(LL*uO/Z)*(Fm.AZ./L_DFT);

% Numerical integration to obtain Wc at rotor angle beta

Wc raw(ii) trapz (yr,dWc) ;

ii = ii+l; % next rotor position

end
% Numerical derivative to obtain torque
for kk=1:(length (beta)-1)
T raw(kk) = (Wc_raw(kk+1l)-Wc_raw(kk))/db;
end
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o)

% Flux density distribution

figure

subplot(2,1,1)
plot ([thetar* (180/pi), -

fliplr (thetar* (180/pi)) 1, [B betal,fliplr (B betal)], 'LineWidth',1); grid on
xlabel ('"\theta r(deg)'); ylabel('B (tesla)'); xlim([-90, 9071);

title ('\beta=0 deg')

subplot(2,1,2)
plot ([thetar* (180/pi), -

fliplr (thetar* (180/pi)) ], B beta90, fliplr (B beta90)], 'LineWidth',1); grid on
xlabel ('\theta r(deg'); ylabel('B (tesla)'); x1lim([-90, 90]);

title('\beta=90 deg')

% Lpl and Lp2
figure
subplot(2,1,1)
plot (thetar* (180/pi),Lpl, 'Linewidth', 1)
xlabel ('\theta r(deg'); ylabel('Lpl'")
subplot(2,1,2)
plot (thetar* (180/pi),Lp2, 'LineWidth', 1)
xlabel('\thetair(deg'); ylabel ("Lp2")

% Wc

bt = beta(l:(length(beta)-1));

WcO = (2/pi)*trapz (bt,Wc_raw(l: (length(beta)-1))) % DC Component

Wecl = (2/pi)*trapz(bt,Wc_raw(l:(length(beta)—l)).*cos(2*bt)) % Fundamental
Component

Wec = Wc0/24Wcl.*cos (2*bt) ;

figure; plot (beta(l: (length (beta)-1))*(180/pi),Wc, 'LineWidth',1); grid on
xlabel ('"\beta (degrees)'); ylabel ('Wc')

% Reluctance Torque: Tres

bt = beta(l:(length(beta)-1));

Tresl = (2/pi)*trapz(bt,T raw.*sin(2*bt))

Tres = Tresl.*sin(2*bt)*1le3; % Fundamental Component

figure; plot (beta(l: (length(beta)-1))*(180/pi),Tres, 'LineWwidth',1); grid on
xlabel ('\beta (deg) ")

ylabel ('T r e s(m N.m) ")

%% [7] Total Torque

Tt = T coil + [Tres,0]; % Model

Tres FEM = spline(beta T FEM orig, T res FEM orig, beta); % Tres, FEM,
interpolation

Tt FEM orig = T coil FEM orig + Tres FEM; % FEM, Original Geometry

Tt FEM simp = T coil FEM simp + Tres FEM; % FEM, Original Geometry

figure; plot (beta* (180/pi) , [Tres,0],'b",
beta* (180/pi) , Tres FEM, 'r—-',...
theta Tres exp, Tres exp, 'k*',

beta* (180/pi), T coil,'b',...
beta* (180/pi), T coil FEM orig, 'r—-',...
beta* (180/pi), T coil FEM simp, 'g--',...
theta Tc exp , Tc exp, 'k*',...

beta* (180/pi), Tt,'b',...

beta* (180/pi), Tt FEM orig, 'r--',...
beta* (180/pi), Tt FEM simp, 'g--',...
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theta Tt exp , Tt exp,'k*',...
'LineWidth',1); grid on
xlabel ("\beta (deg) "); ylabel ('T(m N.m)")
legend('T r e s, Model', 'T r e s FEM', 'T r e s Exp',...
'T ¢ oil, Model','T ¢c o i 1 FEM Orig','T ¢ o i 1 FEM Simp', 'T c o i 1
Exp', ...
'T t, Model','T t, FEM Orig', 'T t, FEM Simp', 'T t, Exp')
x1lim([1 1807)
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Appendix J
Matlab Code for the Solution of Diffusion Equation

The code is as in below:

% Diffusion , Eddy-Currents in the Magnet and The Laminations %
% Sajjad Mohammadi, EECS, MIT, August 2021 %

=
1

4.191*1e-3; % Axial Length of Actuator [m]

Rr = (3.048/2)*1e-3; % Rotor radius [m]
Rl = 1.71le-3; % semi-major axis of ellipse [m]
R2 = 1.15*1.71e-3; % semi-minor axis of ellipse [m]

Do = 13.716e-3; % Outer diameter of stator [m]

d = 0.35*1e-3; % Lamination Thickness [m]
m = 12; % number of laminations
wp = 4.72e-3; % pole width, 4.72mm directly measured from geometry

N = 100; % Number of turns

LcO = 280e-6; % Low-frequency inductance
muO= 4*pi*le-7;

% average air-gap length
g = ((RL-R1)+(R2-Rr))/2 ;
PM length, square approximation of rectangular cross-section
Im = pi*Rr"2/wp;
% Average iron length
1i = (Do/2-wp/4)*pi + (Do/2-wp/4)-(lm+lg)/2 ; % Average length of the iron core
along the flux line

oo

)

% Effective Permeability

Area = wp*L; % Pole area
Rt0 = N”2/Lc0O; % Reluctance seen by stator

mu eff i = 1i /(RtO*Area); % based on LO
mu_eff m 1m/ (RtO*Area); % based on LO

)

% Conductivity, Initial Guess

sigma m = 0.6*1le6; % conductivity of magnet
sigma i = 2*1le6; % conductivity of iron

$ intial field [T]
0=1;

o

% Frequency to plot B and J versus dimensions
f = 20000;% frequency [Hz]
omega = 2*pi*f; % rad/sec

%% 2D Diffusion, Eddy-Currents in the Magnet
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o\

% b = 0.35e-3; %
% £ = 20000;% frequency
omega = 2*pi*f; % rad/sec

a = wp/2; %

b = L/2; % Rectangle Height=2*Db
w = sqrt(4*a*b)/2; %

scale = 0.97; %

boundaries

phi0 = BO*4*a*b; % Initial flux

PM dimensions

Rectangle Width=2a

[Hz]

Lamination thickness

square approximation of the rectangle:

% Meshgrid in elliptical coordinates

x mesh = linspace(-scale*a, scale*a, 15);

z mesh = linspace(-scale*b, scale*b, 15);
[x,2z] = meshgrid(x mesh,z mesh);

Byl = zeros(size(x)); By2 = zeros(size(x));%
phi m = 0;

Jx = zeros(size(x)); Jz = zeros(size(x));%

for n=1:2:300
% kln and k2n

kl =
k2 =

sgrt (
sgrt (

% Coefficients

An =

)

BO* (4./ (n*pi))

% Flux densiyu

.* sin(n*pi/2);

Byl = Byl + An .* cos(n*pi*z/(2*b)) .* (
By2 = By2 + An .* cos(n*pi*x/(2*a)) .* (
% Flux

phi m phi m + (8*phi0/ (n"2*pi~2)) *(

tanh (k2*b) / (k2*b) ); %

% Current density

Jx = Jx
cosh (kl.*x)

sinh (k2.*z)
Jz = Jz
sinh (kl.*x)

cosh (k2.*z)
end
By =
abs (phi m)

o

figure;

contourf (x*1e3

title('B

o

figure;
surf (x*1le3

(Tesla)'");
$ xlabel ('x (mm) '),
axis off tight;

- (An/mu_eff m

./ cosh (kl*a)

+ (An/mu_eff m

./ cosh (k2*Db)

- (An/mu_eff m

./ cosh (kl*a)

+ (An/mu_eff m

./ cosh (k2*Db)

Byl + By2;

)
)
)
)
)
)
)
)

Exact

*

’

’

% Flux Density Distribution,

,z*1le3 ,abs (By));

*

abs:

(n*pi/ (2*b))
.* k2
.* k1

(n*pi/(2*a))

magnitude

,2*1e3 ,abs(By),50, 'LineStyle', 'None');

axis equal
ylabel ('z (mm) ")
caxis ([0.986 1])

colormap Jet %
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side=2*w

scale xy range to avoide overeshoot in quiver plot on

(n*pi./ (2*b))."2 + i*omega*mu_eff m*sigma m );
(n*pi./(2*%a)).”2 + i*omega*mu_eff m*sigma m );

cosh (kl.*x)
cosh (k2.*z)

./ cosh(kl*a)
./ cosh (k2*b)

);
) ;

tanh (kl*a)/ (kl*a) +

¥ sin(n*pi*z/ (2*b)) .* (
.* cos(n*pi*x/(2*a)) .* (
.* cos(n*pi*z/(2*b)) .* (

.* sin(n*pi*x/ (2*a)) .* (

colormap Jet

contours



% xlabel ("x(mm) '"); ylabel ('z (mm)"')
% title('B (Tesla)'); axis equal
axis tight;

% Magnitude of J, real: at t=0

J = abs (sqgrt((real (IJx)) . "2+ (real (Jz))."2));

figure;

contourf ( x*1e3 ,z*le3 ,real(J)*le-6,1000, 'LineStyle', 'None'); colormap Jet %
contours

xlabel ('x (mm) ") ; ylabel('z (mm) ")

title('J (A/mm"2)'"); axis equal; axis off

% Current Density Vectors, real: at t=0
% figure;

hold on
quiver ( x*1le3, z*1le3, real (Jx)*le-6, real(Jz)*le-6) % vectors
xlabel ("x (mm) '); ylabel ('z (mm)"')

axis equal tight

TT = 1/f; % period
timee = 0:TT/8:TT;
mm=1;
figure;
for time = timee % 0, TT/4, TT/2, 3TT/4
BBy = By.*exp(i*omega*time); % including time
subplot (3, length (timee) , mm)
contourf (x*1e3 ,z*le3 ,real (BBy), 50, 'LineStyle', '"None');
title('B (Tesla)'); axis equal
% xlabel ('x(mm)"); ylabel ('z (mm)"')
title(['t="',num2str (mm-1), 'T/8']); axis equal; axis off
% caxis ([0.95 17)

°

JJx = real (Jx.*exp (i*omega*time)); % including time
JJz = real (Jz.*exp(i*omega*time)); % including time
subplot (3, length (timee), length (timee) +mm)
quiver ( x*1le3, z*le3, JJIx*le-6, JJz*le-6) % vectors
% xlabel ("x(mm) '); ylabel ('z (mm)"')
axis equal tight; % xlim([min(x mesh), max(x mesh)])
title(['t=',num2str (mm-1), 'T/8"']); axis equal; axis off
caxis ([-90,901)

JJ=abs (sqrt ((real (IJx.*exp (i*omega*time))) .2+ (real (Jz.*exp (i*omega*time))) ."2))
; % including time
subplot (3, length (timee), 2*length (timee) +mm)
contourf ( x*1le3 ,z*le3 ,real (JJ.*exp(i*omega*time))*le-
6,1000, '"LineStyle', 'None'); colormap Jet % contours
xlabel ('x (mm) "); ylabel('z (mm) ")
% title('J (A/mm"2)'); axis equal; axis off

title(['t=',num2str (mm-1), 'T/8"']); axis equal; axis off

mm = mm+1;
end

%% 1D Diffusion , Eddy-Currents in the The Laminations

omega=2*pi*20000;
alpha = sqgrt(i*omega*mu eff i*sigma 1i);

297



phi0 i = B0 * m * d * wp; % Initial Flux
zz = linspace(-d/2, d/2, 1000);

Byy = BO*cosh(alpha*zz)/cosh(alpha*d/2); % Flux density
phi i = phi0O_i*tanh(alpha*d/2)/ (alpha*d/2); % Flux
Jxx = B0 * (alpha/mu eff i) * sin(alpha*zz)/cosh(alpha*d/2); % Current Density

% TmmTT T Plot of B and J versus y ———————————-——-—————————-
yyaxis left; plot(zz*le3,real (Byy), 'LineWidth',1)

ylabel ('B y (T)")

yyaxis right; plot(zz*le3,real (IJxx)*le-6,'LineWidth',1)

ylabel ('J x (A/mm"2)")

xlabel ('z (mm) ")

grid on; axis tight

§ —mmmm—m—————— Plot over the lamination surface -—-—-——----——--—--——-———-—-—-
xx mesh = linspace (-wp/4, wp/4, 20);

zx_mesh = linspace(-d/2, d/2, 10);

[xx,2z2z] = meshgrid(xx mesh, zx mesh);

Byy BO*cosh (alpha*zz) /cosh (alpha*d/2)+0.*xx; % Flux density

Jxx = B0 * (alpha/mu_eff i) * sin(alpha*zz)/cosh(alpha*d/2)+0.*xx; % Current
Density

Jzz = 0.*xx + 0.*zz; % Current Density

)

% Flux Density Distribution

figure;

contourf (xx*1e3 ,zz*1le3 ,abs(Byy),50, 'LineStyle', "None'); colormap Jet
title('B (Tesla)'); axis equal

% xlabel ("x(mm) '); ylabel ('z (mm)"')

caxis ([0.994 117)

% Current Density

JJ = abs(sgrt((real (IJxx)) . "2+ (real (Jzz))."2));

figure;

contourf ( xx*1le3 ,zz*le3 ,real(JJ)*le-6,1000, 'LineStyle', '"None'); colormap Jet
% contours

% xlabel ("x(mm) '"); ylabel ('z (mm)"')

title('Jd (A/mm”2)'"); axis equal; axis off

caxis ([0, 81)

% Current Density Vectors and magnitude at t=0

% figure;

hold on

quiver ( xx*le3, zz*le3, real (Jxx)*le-6, real(Jzz)*le-6) % vectors
% xlabel ("x(mm) '); ylabel ('z (mm)"')

title('Jd (A/mm”2)"); axis equal; axis off

% caxis ([0,50007)

TT = 1/f; % period

timee = 0:TT/4:TT;

mm=1;

figure;

for time = timee % 0, TT/4, TT/2, 3TT/4
subplot (3, length (timee) , mm)
BByy = real (Byy.*exp (i*omega*time)); % including time
contourf (xx*1e3 ,zz*le3 ,real (BByy),50, 'LineStyle', 'None');
title('B (Tesla)'); axis equal
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% xlabel ("x(mm) '"); ylabel ('z (mm)"')
title(['t=",num2str (mm-1), 'T/4"']); axis equal; axis off
% caxis ([0.95 17)

subplot (3, length (timee) , length (timee) +mm)

JJxx = real (Jxx.*exp (i*omega*time)); % including time
JJzz = real (Jzz.*exp (i*omega*time)); % including time
quiver ( xx*le3, zz*le3, JIxx*le-6, JJzz*le-6) % vectors
% xlabel ("x(mm) '); ylabel ('z (mm)"')

axis equal tight; % xlim([min(x mesh), max(x mesh)])
title(['t=',num2str (mm-1), 'T/4"']); axis equal; axis off
caxis ([-90,90])

subplot (3, length (timee) ,2*length (timee) +mm)

JJ=abs (sqrt (JIxx."2 + JIxx.”2)); % including time

contourf ( xx*1e3 ,zz*le3 ,JJ*1le-6,1000, 'LineStyle', 'None'); colormap Jet %
contours

xlabel ('x (mm) ") ; ylabel('z (mm) ")
% title('J (A/mm"2)'"); axis equal; axis off
title(['t="',num2str (mm-1), 'T/4']); axis equal; axis off

mm = mm+1;
end

oo

% The coefficient Reluctances versus frequency

frequency range to plot Qi and Om versus frequency
f = logspace(2,9,1000);% frequency [Hz]
omegaa=2*pi*ff;

o

h

% Correction factors for mu*sigma
kk i = 0.05;
kk m = 2.15;

§ —mmmmmm—— - Flux ratio and reluctances using exact formulas ------------
% phi/Phi0, Exact
phi phi00 exact = 1./(1 +0.*omegaa); % No eddy current

alpha = sgrt(i * omegaa * kk i * mu eff i*sigma 1i);

phi phi0_ i exact = tanh(alpha*d/2)./(alpha*d/2); % Eddy current in only iron

a=w; b=w; % square
phi m = zeros(1l,length(omegaa));

nn=1;
for omega=omegaa
phi mm=0;

for n=1:2:100
% kln and k2n
kl = sqrt( (n*pi./(2*b)).”2 + i*omega * kk m * mu eff m*sigma m );
k2 = sqrt( (n*pi./(2*a)).”2 + i*omega * kk m * mu eff m*sigma m );

% Flux
phi mm = phi mm + (8*1/(n"2*pi~2)) *( tanh(kl*a)/(kl*a) +
tanh (k2*b) / (k2*b) ); % Exact

end
phi m(nn) = phi mm;
nn=nn+1;
end
phi phi0 m exact = phi m; % Eddy current in only magnet

phi phi0_exact
iron and magnet

phi phi0 i exact .* phi phi0 m exact;% Eddy current in both
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[

% Total Reluctance, Exact
Rt00 exact = RtO * (1./phi phiO0 exact

)

% No eddy current

)i
Rt i exact = RtO * (1./phi phi0O_ i exact); % Eddy current in only iron
Rt m exact = RtO * (1./phi phi0 m exact); % Eddy current in only magnet
Rt exact = Rt0 * (1./phi phi0 exact);% Eddy current in both iron and magnet
% -—--- Flux ratio and reluctances using approximation of tanhx=1/(1+x) —----
% Qi, Om and Q
Qi =0.5*d * sqgrt(i*omegaa*mu eff i*sigma i);
$ Q1= (1./phi phi0_i exact)-1;
Qm= (w * sqrt( (pi/(2*w)).”"2 + li*omegaa*mu_eff m*sigma m ) - pi/2) /
(1+pi/2);
$ Qm= (1L./phi phi0 m exact)-1;

Q = Qi+ 0Qom

)

% phi/Phi0, Approximation of tanhx=1/(1+x)
phi phi00 = 1./(1 +0*omegaa); % No eddy current

0o~

phi phi0 i = 1./(1 + Q i); Eddy current in only iron
phi phi0 m = 1./(1 + Q m); % Eddy current in only magnet
phi phi0 =1./(1 + (Q i+Q m));% Eddy current in both iron and magnet

)

% Total Reluctance, Approximation of tanhx=1/(1+x)
Rt00 = Rt0 * (1 + O*omegaa); % No eddy current

Rt i = Rt0 * (1 + Q i), % Eddy current in only iron
Rt m = Rt0 * (1 + Q m); % Eddy current in only magnet
Rt = Rt0 * (1 + Q i+Q m);% Eddy current in both iron and magnet

o

oo

Plot Rt, Exact formula
figure
subplot(2,1,1)
semilogx (ff, 20*1logl0 (abs (Rt00 exact)),...
ff, 20*logl0(abs (Rt i exact)),...
( (
(

o0 o0 oo o°

oo

ff, 20*1logl0(abs (Rt m exact)),...
ff, 20*1ogl0 (abs (Rt exact)),...
'LineWidth',1); grid
xlabel ('frequency (Hz)")
ylabel ("Magnitude (dB)"'")
title ('Reluctance, Exact formula')
subplot(2,1,2)

o o o° o oo

oo

% semilogx (ff, (180/pi)*angle (Rt00_exact),...

% ff, (180/pi)*angle(Rt_i exact),...

% ff, (180/pi)*angle (Rt _m exact),...
)

oo

ff, (180/pi)*angle(Rt_exact),...
'LineWidth',1); grid

xlabel ('frequency (Hz)"'")

ylabel ('"Angle (deg) ')

legend ('R t 0','R t i','R t m','R t")

o o o° o oo

o\

% Plot phi/phi0, Exact

figure

subplot(2,1,1)

semilogx (ff, 20*1ogl0 (abs(phi phi00 exact)),...

ff, 20*1ogl0 (abs(phi phi0 i exact)),...
ff, 20*1ogl0 (abs(phi phi0 m exact)),...
ff, 20*1logl0(abs(phi phi0 exact)), ...
'LineWidth',1); grid

o o d° o° o oP

oe
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o\

xlabel ('frequency (Hz)"'")

ylabel ('"Magnitude (dB)"'")

title ('\phi/\phi 0, Exact formula')

subplot(2,1,2)

semilogx (ff, (180/pi
£f, (180/pi
£f, (180/pi
£f, (180/pi

o° o0 oo

o

*angle (phi phi00 exact),
*angle (phi phi0 i exact), ...
*angle (phi phi0 m exact)
*angle (phi phi0 exact),
'LineWidth',1); grid

xlabel ('frequency (Hz)'")

ylabel ("Angle (deg)')

legend('R t O0','R £t i','"R £t m','R t")

o©

o\©

oo ..

o° o oo oo

o©

o

> Plot Rt, Approximation of tanhx=1/(1+x)
figure
subplot(2,1,1)
semilogx (ff, 20*logl0 (abs (Rt00)),
ff, 20*1ogl0 (abs (Rt 1)),...
ff, 20*logl0(abs (Rt m)),
ff, 20*1logl0 (abs(Rt)),
'LineWidth',1); grid
ylabel ("Magnitude (dB) ")
% title('Reluctance, Appr formula')
x1im([1072 1079]); ylim([148, 200])
xticks([1072, 1073,1074,1075,10"6,1077,1078,10"9]);
subplot (2,1,2)
semilogx (ff, (180/pi

( *angle (Rt00)
ff, (180/pi
(

(
*angle (Rt 1)
ff, (180/pi)*angle (Rt _m)
ff, (180/pi)*angle (Rt),
'LineWidth',1); grid
xlabel ('frequency (Hz)'); ylabel ('Angle (deg)")
legend('R £ O','R £t i'",'"R € m','R t")
x1im([1072 1079]1); ylim([O, 45])
xticks([10"2, 1073,10"%4,1075,10%6,1077,1078,1079]); yticks ([0, 22.5, 45])

% Plot phi/phi0O, Approximation of tanhx=1/(1+x)
figure
subplot (2,1,1)
semilogx (ff, 20*1logl0 (abs (phi phi00)),
ff, 20*1logl0(abs(phi phiO i)),...
ff, 20*1ogl0(abs(phi phi0 m))
ff, 20*1logl0 (abs(phi phiO)),
'LineWidth',1); grid
xlabel ('frequency (Hz)'"); ylabel('Magnitude (dB)"')
x1im ([107%2 10797)
title ('\phi/\phi 0, Appr formula')
subplot(2,1,2)
semilogx (f£, (180/pi)*angle(phi phi00),
ff, (180/pi)*angle(phi phiO i), ...
ff, (180/pi)*angle(phi phi0O m), ...
ff, (180/pi)*angle(phi phio),
'LineWidth',1); grid
xlabel ('frequency (Hz)'); ylabel ('Angle (deg)')
x1im([107"2 10797)
legend('R t O','R £t i','"R € m','R t")

4

oe

Plot Om and Qi
figure
subplot (2,1,1)

o\

oe
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o\

semilogx (ff, 20*logl0O(abs(Qi)), ...
ff, 20*1logl0 (abs(Qm))); grid

xlabel ('frequency (Hz)"'")

ylabel ('"Magnitude (dB)"'")

title('Q m=\phi/\phi 0")

legend('Q i','Q m','Q i*Q m')

subplot (2,1,2)

semilogx (ff, (180/pi)*angle (Qi), .
ff, (180/pi)*angle(Qm)); grid

xlabel ('frequency (Hz)'")

ylabel ("Angle (deg)')

legend('Q i','Q m','Q i*Q m')

o o0 d° o° o° o A° d° o° o°

o©

%% Electric-Magnetic Coupled Circuit
ff = logspace(0,5,1000);% frequency [Hz]
omegaa=2*pi*ff;

Rc = 1.76; % coil resistance [ohm]

Rs = 0.1; % sense resistor [ohm]

R = Rc+Rs;

LcO = 290e-6; % Low-frequency inductance

)

% Correction factors for mu*sigma
kk i = 0.05;
kk m = 2.15;

% Qi, Om, Q

Q i = sgrt(i*omegaa* kk i*mu eff i*sigma i)*d/2;

Qm=1* (w* sqrt( (pi/(2*w)).”2 + i * omegaa * kk m*mu eff m*sigma m )-
pi/2)/ (14pi/2);

% Taylor Approximation of Qm with three first for faractional order modeling
aa = (pi/(2*w));

= (w* (aa + (1/(2%aa)).* 1 * omegaa * kk m*mu_eff m*sigma m -
*aa”3)).* (i * omegaa *kk m* mu_eff m*sigma m).”"2 ) -pi/2)/(1+pi/2);

Q= Qi+ Qm

% Only RL

He = 1./ (R+i*omegaa*LcO0);

% RL including eddy effect only in iron

kk_ii = 0.1;

Q ii = sqgrt(i*omegaa* kk ii*mu eff i*sigma 1i)*d/2;
He eddy i = (1 + Q ii)./(R + i*omegaa*Lc0 + R*Q ii);

% RL including eddy effect
He eddy = (1 + Q)./(R + i*omegaa*Lc0 + R*Q);

figure
subplot(2,1,1)
semilogx (ff, 20*logl0O(abs(He)), ...
ff, 20*logl0(abs(He eddy i)),...
ff, 20*1logl0(abs(He eddy)),'g',...
He appr exp(:,1), He appr exp(:,2),'k--",...
'LineWidth',1); grid
xlabel ('frequency (Hz)'); ylabel ('Magnitude (dB) ")
xticks([1070, 1071, 1072, 1073,1074,1075]); % yticks([-90, -45, 01])
x1im([1070 1075]); ylim([-50 0])
subplot(2,1,2)
semilogx (ff, (180/pi)*angle(He), ...
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ff, (180/pi)*angle(He eddy 1),
ff, (180/pi)*angle(He eddy),'g"', ...
He appr exp(:,1), He appr exp(:,3),'k--",...
'LineWidth',1); grid

xlabel ('Frequency (Hz)'); ylabel('Angle (deg)');

xticks([10~0, 1071, 102, 1073,1074,107"5]); yticks([-90, -45, 0])

legend ('RL Model (2 DoF)','Eddy Model (3 DoF)', 'Eddy Model (4

DoF) ', 'Experiment')
x1im([1070 1075]); ylim([-90 0])

% Mu-Sigma product
mu_sigma i OnlyIron = kk ii*mu eff i*sigma i % eddy only in iron
mu_sigma i = kk i*mu eff i*sigma i % eddy in both iron and magnet

mu sigma m = kk m*mu eff m*sigma m % eddy in both iron and magnet
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Appendix K

Matlab Code for Modeling of Current-Loop with
Non-Ildeal and Ideal Op-amp Models

The code is as follows:

% Current Loop Modeling using ideal and non-ideal Op-Amps %
% Sajjad Mohammadi, EECS, MIT, August 2021 %

% Including 3 Op-Amps

% Input Block: 1/71

% Feed Forward Path: Compensator FF, Power OpAmp, Actuator

% Feedback path: Sensor Resistor Rs, Buffer OpAmp, Compensator FB

oo

clc; clear;

e —— [ Actuator Gp exct=Icoil/Vcoil]---=—--—--—=——-———————
He exct: including back-emf

He appr: ignoring back-emf

Bode Plot of the Plnat C506

with/without back-emf

o 00 oo o°
\

o

o

J=1.65e-9; % Inretia/mass with mirror from Solid Works

= 1.5077e-09; % Inretia/mass without mirror from Solid Works
d 4.4881e-07; % damping
ks = 0.0013; % spring

A~ G

Rc = 1.76; % coil resistance [ohm]
Rs = 0.1; % sense resistor [ohm]

R = Rc+Rs;

Lc = 280e-6; % coil inductance [H]

% kt = 1.836e-3; % torque/force constant, Typical
kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021

He exct = tf([J kd ks], [Lc*J R*J+Lc*kd R*kd+ks*kd+kt”2 R*ks]); % Icoil/Vcoil
with back emf

He appr = tf([1],[Lc R]); % Icoil/Vcoil without back emf

Hm = tf([kt], [J kd ks]); % Torque/Icoil

% Plots
subplot(2,1,1)
options = bodeoptions;
options.FreqUnits = 'Hz';
bode (He exct,He appr,Hm,options); title ('Actuator Electrical and mechanical
Part"')
legend('Gp exct=Icoil/Vcoil with bemf', 'Gp exct=Icoil/Vcoil without
bemf', 'mechanical G m=T/Icoil')
subplot(2,1,2)
step (He exct,He appr)
title ('Step Response, Vcoil to Icoil')
legend ('Model with bemf', '"Model without bemf (locked rotor)"')

figure

304



pzmap (He exct,He appr,Hm);axis equal; title ('Actuator Electrical and
mechanical Part')

legend('Gp exct=Icoil/Vcoil with bemf', 'Gp exct=Icoil/Vcoil without
bemf', 'mechanical G m=T/Icoil')

%% ———mmm—m—— - [ Current Sensor Resistor Gcs=Vrs/Icoil]---=——--———--——-———
% Converting Coil Current to a Voltage to be measured by buffer OpAmp

% Vrs=Rs*Icoil

Rs = 0.1; % sense resistor

Gecs = Rs; % Gs=Vrs/Icoil;

%% —mmmmmmmmm [ Power OpAmp TF pAmp nonideal=Vcoil/Vc]-------—----———--—
Increasing Compensator Output Voltage Vc to Coil Voltage Vcoil

PowerOpAmp Modeling, LM3886

non-ideal OpAmps: TF pAmp nonideal

ideal OpAmps: TF pAmp ideal

o o0 oo

o

s = tf([1 0],[1]);

% Voltage Divider

Rl pAmp = 64.9e3; % voltage divider
R2 pAmp = 10e3; % voltage divider

% Power Op-Amp

Ra pAmp = 10e3; % feedback

Rb pAmp 95.3e3; % feedback

% input lag compensation and input resistance of Op-Amp
Ri pAmp = 6.2e3; % input lag compensation
Ci pAmp 470e-12; % input lag compensation

o)

RiCi pAmp = Ri pAmp+l/(Ci pAmp*s); % series Ri and Ci

Zin = 100e6; % input impedance of Op-Amp
% Zi pAmp = RiCi pAmp*Zin/ (RiCi_pAmp+Zin) ;
Zi pAmp = RiCi pAmp;

)

% Op-Amp Open-Loop Gain Transfer Function A(s), LM3886
GBP pAmp = 8e6; % Gain-Bandwidth Product [Hz]
Avo pAmp = 107 (115/20); % Open-Loop DC-gain

fl pAmp = GBP_pAmp/Avo_pAmp; wl pAmp=2*pi*fl pAmp; % pole 1

5 f2 pAmp = 1.5e6; w2 pAmp=2*pi*f2 pAmp; % pole 2, usually less than GWB

% £3 pAmp = 2.9e6; w3 pAmp=2*pi*f3 pAmp; % pole 3, usually between f2 and
GWB

f2 pAmp = 3e6; w2 pAmp=2*pi*f2 pAmp; % pole 2, usually less than GWB

f3 pAmp = 4e6; w3 pAmp=2*pi*f3 pAmp; % pole 3, usually between f2 and GWB

o)

Al pAmp = Avo pAmp*wl pAmp /(s+wl pAmp); % lst-order model

A2 pAmp = Avo_pAmp*wl pAmp*w2 pAmp / ((s+wl_ pAmp) * (s+w2_ pAmp)); % 2nd-order
model

A3 pAmp = Avo pAmp*wl pAmp*w2 pAmp*w3 pAmp

/ ((s+wl_pAmp) * (s+w2_ pAmp) * (s+w3_pAmp)); % 2nd-order model

A pAmp = A3 pAmp; % Order selection

o\

options.FreqUnits = 'Hz';

oe

o\

figure; bode (A, {1,1le8},0ptions); grid
title ('Open-Loop Gain A')

oe
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% Non-Ideal OpAmp, Uncompensated
FF pAmp = (R2 pAmp/ (Rl pAmp+R2 pAmp)) * A pAmp; % Feed Forward

FB pAmp = (Ra_pAmp/(Ra_pAmp+Rb pAmp)) * ((R1_pAmp+R2 pAmp) /R2_pAmp); % Feedback
LT pAmp = FF pAmp*FB pAmp; % Loop Transmision

TF pAmp nonideal = feedback(

o)

FF pAmp, FB pAmp); % Closed-Loop (internal loop)

% Non-Ideal OpAmp, Compensated with Ri & Ci at input

FF pAmp comp = (R2 pAmp/ (Rl pAmp+R2 pAmp)) * ( Zi pAmp/(Zi pAmp +
(R1_pAmp*R2_ pAmp/ (R1_pAmp+R2 pAmp)) + (Ra_pAmp*Rb pAmp/ (Ra_pAmp+Rb pAmp))) ) *
A pAmp; % Feed Forward

FB pAmp comp = (Ra_pAmp/(Ra_pAmp+Rb pAmp)) * ((R1_pAmp+R2 pAmp)/R2_pAmp); %
Feedback

LT pAmp comp = FF pAmp comp*FB pAmp comp; % Loop Transmision
TF pAmp nonideal comp = feedback (FF pAmp comp,FB pAmp comp); % Closed-Loop

% DC Gian
DC gain pAmp = (R2_pAmp/ (Rl pAmp+R2 pAmp)) * (1+Rb pAmp/Ra pAmp)
DC_gain dB pAmp 20*10gl0 ( (R2_pAmp/ (R1_pAmp+R2 pAmp)) * (1+Rb_pAmp/Ra_pAmp))

% Ideal OpAmp

TF pAmp ideal = DC gain pAmp;
% Plots
options.FreqUnits = 'Hz';

figure; h=bodeplot (A pAmp, {1,1el0}); grid title('LM3886 Open-Loop Gain A')
setoptions (h, 'FregqUnits', 'Hz");
title ('Power Op-Amp LM3886 Gain A(s)')

ff = logspace(0,10,2000);% frequency [Hz]
omegaa=2*pi*ff;

[mag pAmp, phase pAmp,wout] = bode (A pAmp,omegaa); % calculating magnitude at wc
[mag Comp, phase Comp,wout] = bode(A Comp,omegaa); % calculating magnitude at wc

figure; colororder({'r','b'})

yyaxis left
semilogx (ff, 20*1ogl0 (squeeze (mag pAmp)), 'r', 'LineWidth',1.2);
ylabel ('Mag (dB)'); title('LM3886 A(s)'"); ylim([-250 117])
% legend('non-ideal OpAmps', 'ideal OpAmps', 'Expr')

yyaxis right
semilogx (ff, squeeze(phase pAmp),'b','LineWidth',1.1); grid
xlabel ('Frequency (Hz)'); ylabel('Phase (deg)')
x1im([1070 10710]); ylim([-272 2])
xticks([10"0, 1072, 1074,1076,1078,107107)
legend ('Mag', 'Phase')

o

% ax = gca; ax.XGrid = 'on';

figure;hold on; bode (LT pAmp comp, {10,1e8}); bode (LT pAmp, {10,1e8});
title ('Power OpAmp, Loop Transmision'); legend('Compensated', 'Uncompensated')

subplot (2,1,1)
hold on;

bode (TF_pAmp nonideal comp, {10,1e8});bode (TF_pAmp nonideal, {10,1e8}); grid
title ('Power OpAmp, Closed-Loop Bode');

legend ('Compensated', 'Uncompensated"')

subplot (2,1,2)
step (TF_pAmp nonideal comp,TF pAmp nonideal) ;
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title ('Power OpAmp, Step Response'); legend('Compensated', 'Uncompensated')

%% ———————- [ Compensator 1/Z1, FF Comp nonideal, FB Comp nonideal ]--------
C506 Compensator Op-Amp Modeling, OP1652
Forward Path, non-ideal OpAmp: FF Comp nonideal

o©

o

% Forward Path, ideal OpAmp: FF Comp ideal
% Feedback Path non-ideal OpAmp: FB Comp nonideal
% Feedback Path ideal OpAmp: FB Comp ideal

o

Input Block 1/71

s = tE£([1 0],[1]);
% Z1 Components

Rl Comp = 5.1e3; % Z1
71 = R1 Comp;

% Z2 Components, Lead Compensator

R2 Comp = 10e3; % Z2, it sets the bandwidth together with R1 Comp
% R2p Comp = 100; % Z2, It, together with C2 Comp, sets the Lead
Characteristics, origianl

% C2 Comp = 2400e-12; % Z2, original

R2p Comp = 1.1le3; % Z2, It, together with C2 Comp, sets the Lead
Characteristics

C2 Comp = 2.2e-09; % 72

Z2 = R2_Comp* (R2p_Comp*C2_ Comp*s+1)/ ( (R2_Comp+R2p Comp) *C2_ Comp*s+1) ;

oo

Zzf Components, Lag Compensator

% R3 Comp = 2e6; % Zf , large paralle resistor to limit the integrator
% R3 Comp = 470e3; % Zf , original value, large paralle resistor to limit the
integrator

R3 Comp = 2e6;

)

% C3 Comp = 180e-12; % zf, original
C3 Comp = 100e-12;

Zf = R3 _Comp/ (R3_Comp*C3 Comp*s+l); % with parallel R3 Comp, Non-pure
interator

% Zf = 1/(C3_Comp*s); % without parallel R3 Comp, pure integrator

% Op-Amp Open-Loop Transfer Function A(s), , OP1652

GBP Comp = 18e6; % Gain-Bandwidth Product [Hz]
Avo Comp = 107(114/20); % Open-Loop DC-gain

fl Comp = GBP_Comp/Avo Comp; wl Comp=2*pi*fl Comp; % pole 1

f2 Comp = 1.5e7; w2 Comp=2*pi*f2 Comp; % pole 2, not found in datasheet
f3 Comp = 2.9%e7; w3 Comp=2*pi*f3 Comp; % pole 3, not found in datasheet
Al Comp = Avo Comp*wl Comp /(s+wl Comp); % lst-order model

A2 Comp = Avo_ Comp*wl Comp*w2 Comp / ((s+wl Comp)* (s+w2_Comp)); % 2nd-order
model

A3 Comp = Avo_Comp*wl Comp*w2 Comp*w3_Comp

/ ((s+wl_Comp) * (s+w2_Comp) * (s+w3_Comp)); % 2nd-order model

A Comp = A3 Comp; % Order selection

% options.FreqUnits = 'Hz';

o\

figure; h=bodeplot (A Comp, {1,1el0}); grid title('Open-Loop Gain A'")
setoptions (h, 'FreqUnits', 'Hz"'");

oe

oe

Loop Transmission, Ideal Op-Amp
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FF Comp ideal Zt;
FB Comp ideal 1/22;
Loop Comp ideal = FF Comp ideal * FB Comp ideal; % Ideal Op-Amp

o)

% Loop Transmission, Non-Ideal Op-Amp

FF int Comp = 72f * ( (21*22)/(Z21*Z2+Z21*Zf+722*Zf) ) * A Comp; % Feed
Forward, internal OpAmp Loop
FB int Comp = 1/Zf; % Feedback path of internal OpAmp Loop

o)

FF Comp nonideal = feedback(FF int Comp,FB int Comp); % Closed-Loop (internal
loop), FF part of the compensator
FB Comp nonideal = 1/Z2; % FB part of the compensator

Loop_Comp = FF Comp nonideal * FB Comp nonideal; % Non-Ideal Op-Amp
% Plots
options.FreqUnits = 'Hz';

figure; h=bodeplot (A Comp, {1,1el0}); grid title('OP1652 Open-Loop Gain A')
setoptions (h, 'FreqUnits', 'Hz");
title('Compensator Op-Amp OP1652 Gain A(s)')

options.FreqgUnits = 'Hz';

figure; h=bodeplot (Loop Comp ideal,Loop Comp); grid;
setoptions (h, 'FreqUnits', 'Hz");

title ('C506 Compensator Loop Transmission'); legend('ideal', 'non-ideal')

ff = logspace(0,10,2000);% frequency [Hz]
omegaa=2*pi*ff;
[mag Comp, phase Comp,wout] = bode (A Comp,omegaa); % calculating magnitude at wc

figure; colororder({'r','b'})

yyaxis left
semilogx (ff, 20*logl0 (squeeze(mag Comp)),'r', 'LineWidth',1.2);
ylabel ("Mag (dB)'); title('LM3886 A(s)'); ylim([-250 117])
% legend('non-ideal OpAmps', 'ideal OpAmps', 'Expr')

yyaxis right
semilogx (ff, squeeze(phase Comp), 'b', 'LineWidth',1.1); grid
xlabel ('Frequency (Hz)'); ylabel('Phase (deg)')
x1im([1070 10710]); ylim([-272 2])
xticks([10"0, 1072, 1074,1076,1078,107107)
legend ('Mag', 'Phase')

o

% ax = gca; ax.XGrid = 'on';

oo
oo

———————— [ Current Sensor Buffer OpAmp: TF buff nonideal=vs/Vrs ]--------
C506 Current Sensor Buffer Op-Amp Modeling, OP1652
Conversing the Voltage of current sense resistor to voltage Vs
non-ideal OpAmps: TF buff nonideal
ideal OpAmps: TF buff ideal

o o0 oo

o

s = tf£([1 01,[11);

R1_buff = le3;
R2 buff = 10e3;

% Op-Amp Open-Loop Transfer Function A(s), , OP1652

GBP buff = 18e6; % Gain-Bandwidth Product [Hz]

Avo buff 107 (114/20); % Open-Loop DC-gain

f1_buff GBP_buff/Avo buff; wl buff=2*pi*fl buff; % pole 1

f2 buff = 1.5e7; w2 buff=2*pi*f2 buff; % pole 2, not found in datasheet
£3_buff = 2.9e7; w3 buff=2*pi*f3 buff; % pole 3, not found in datasheet

Al buff

Avo buff*wl buff /(s+wl buff); % Ist-order model
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A2 buff = Avo buff*wl buff*w2 buff /((s+wl buff)*(s+w2 buff)); % 2nd-order
model

A3 buff = Avo buff*wl buff*w2 buff*w3 buff
/((s+wl_buff)*(s+w2_buff)*(s+w3_buff)); % 2nd-order model

A buff = A3 buff; % Order selection

o©

options.FreqgUnits = 'Hz';
figure; h=bodeplot (A buff, {1,1el0}); grid title('Open-Loop Gain A'")
setoptions (h, 'FreqUnits', 'Hz"'");

o\°

o©

% Ideal Op-Amp

TF buff ideal = R2 buff/Rl1 buff; % Ideal Op-Amp

% Loop Transmission, Non-Ideal Op-Amp

FF_int buff = (R2_buff/ (Rl _buff+R2 buff)) * A buff; % Feed Forward, internal
OpAmp Loop

FB int buff = R1 buff/R2 buff; % Feedback path of internal OpAmp Loop

TF buff nonideal = feedback(FF int buff,FB int buff);

% Plots

options.FreqUnits = 'Hz';

figure; h=bodeplot (A buff,{1,1el0}); grid; title('OP1652 Open-Loop Gain A'")
setoptions (h, 'FreqUnits', 'Hz");

title('Current Sensor Op-Amp OP1652 Gain A(s)"'")

options.FreqgUnits = 'Hz';
figure; h=bodeplot (TF buff nonideal);setoptions (h, 'FreqUnits', 'Hz'"'); grid;
title('C506 Current Sensor Buffer')

%% —mmm—————— [ Model Selection: Model with or without back-emf ]--————-———-
Select the Actuator Model?

Gp=Gp_exct; % 1: Actuator model with back-emf

Gp = He appr; % 2:Actuator model without back-emf

o

oo

% ——mm e —— [ Block Diagram]---------"="=--"-"-"—-"—"—"—"—"———"—\—\—\——

F = 1/21; % input block

P = Gp; % Actuator

% C = FF _Comp nonideal * TF pAmp nonideal comp; % non-ideal op-amp, Power op-
amp with compensator

C = FF Comp nonideal * TF pAmp nonideal; % non-ideal op-amp, Power op-amp

without compensator
Ci = FF Comp_ ideal * TF pAmp ideal; % ideal op-amp

H = Rs * TF_buff nonideal * FB_Comp nonideal; % non-ideal op-amp
Hi = Rs * TF buff ideal * FB Comp ideal; % ideal op-amp
%% ——————————————— [ Current Loop, Loop Transmission PCH]-------—-———————————

LT CurrentLoop P*C*H; % Closed-Loop, Non-Ideal OpAmps
LT CurrentLoop ideal = P*Ci*Hi; % Closed-Loop, Ideal OpAmps

o)

% The loop excluding compensator, ideal
LT CurrentLoop_ rest = P*TF_pAmp nonideal*TF buff nonideal; % Closed-
Loop, Non-Ideal OpAmps
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LT CurrentLoop ideal rest = P*TF pAmp ideal*TF buff ideal; % Closed-Loop,

Ideal OpAmps

o

Plots

Decomposition of Loop Transmission, non-ideal model of op-amps
figure

options.FreqUnits = 'Hz';

o©

h=bodeplot (Loop Comp, LT CurrentLoop rest,LT CurrentLoop,{0.1,1e8}); grid;

title ('Decomposition of Loop Transmision, nonideal op-amps ');
legend ('Compensator', '"Rest of the Loop','Loop Transmission')
setoptions (h, 'FreqUnits', '"Hz");

% Decomposition of Loop Transmission, ideal model of op-amps
figure

options.FreqUnits = 'Hz';

h=bodeplot (Loop Comp ideal,LT CurrentLoop ideal rest,...

LT CurrentLoop ideal, {0.1,1e8}); grid;
title('Decomposition of Loop Transmision, ideal op-amps ');
legend ('Compensator', 'Rest of the Loop', 'Loop Transmission')
setoptions (h, 'FreqUnits', 'Hz");

figure

subplot (2,1,1)

options.FreqgUnits = 'Hz';

h=bodeplot (LT CurrentLoop,LT CurrentLoop ideal, {0.1,1e8}); grid;

title('Loop Transmision Bode ');legend('non-ideal OpAmps', 'ideal OpAmps')

setoptions (h, 'FregqUnits', 'Hz");

subplot (2,1,2)
nyquist (LT CurrentLoop, LT CurrentLoop ideal);

title('Loop Transmision Nyquist');legend('non-ideal OpAmps', 'ideal OpAmps')

figure
margin (LT CurrentLoop); grid;

o

% Reference tracking PCF/1+PCH

GANG1
GANGil

F*P*C/ (1+P*C*H); % Closed-Loop, Non-Ideal OpAmps
F*P*Ci/ (1+P*Ci*Hi); % Closed-Loop, Ideal OpAmps

DC _gain CurrentLoop PureIntegrator = R2_ Comp/R1_Comp
DC _gain dB CurrentLoop Purelntegrator = 20*1oglO(R2_ Comp/R1_Comp)

g —m——————— [Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]-----

[mag DC,phase DC,wout DC] = bode(GANGil,0); % calculating magnitude at 0

rad/sec
DC gain CurrentLoop NonPurelntegrator = mag DC
DC_gain_dB_CurrentLoop NonPureIntegrator = 20*1ogl0 (mag_ DC)

%% ——————- [Gang 2: Reference to Power Op-Amp output Voltage FC/1+PCH]
GANG2 = F*C/ (1+P*C*H); % Closed-Loop, Non-Ideal OpAmps

GANGi2 = F*Ci/(1+P*Ci*Hi); % Closed-Loop, Ideal OpAmps

% —mm———m—m———— [Gang 3: Disturbance Rejection P/1+PCH]-=----——=---

% Disturbance to plant output
GANG3 = P/ (1+P*C*H); % Closed-Loop, Non-Ideal OpAmps

GANGi3 = P/ (1+P*Ci*Hi); % Closed-Loop, Ideal OpAmps
$% —mmmmmm e [Gang 4: Sensitivity 1/1+PCH]--------———--————

% measurement noise to plant output
GANG4 = 1/ (1+P*C*H) ; % Closed-Loop, Non-Ideal OpAmps
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GANGi4 = 1/ (14+P*Ci*Hi); % Closed-Loop, Ideal OpAmps

%% ————mmm e —————— [Gang 5: Noise Sensitivity CH/1+PCH]-=—=-——=-———-—————-
% Noise to controller (power op-amp) output

GANG5 = C*H/ (1+P*C*H) ; % Closed-Loop, Non-Ideal OpAmps

GANGi5 = Ci*Hi/ (1+P*Ci*Hi); % Closed-Loop, Ideal OpAmps

%% —————————————= [Gang 6: Complementary Sensitivity PCH/1+PCH]-----—-———-——-—
% Disturbance to controller (power op-amp) output

GANG6 = P*C*H/ (1+P*C*H); % Closed-Loop, Non-Ideal OpAmps

GANGi6 = P*Ci*Hi/ (1+P*Ci*Hi); % Closed-Loop, Ideal OpAmps

§% ———-- [ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+4PCH, PCH/1+PCH]------

5 ————- Bode Plot —-----

)

f range = {10,1e6}; % Frequency range of plots

figure

subplot(3,2,1)
options.FreqUnits = 'Hz';
h=bodeplot (GANG1,GANGil, f range); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('Gl: Reference Tracking FPC/1+PCH');
legend ('non-ideal OpAmps', 'ideal OpAmps')

subplot (3,2,2)
options.FreqUnits = 'Hz';
h=bodeplot (GANG2, GANGi2, f range); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('G2: Ref to P-OpAmp Output FC/1+PCH');
legend('non-ideal OpAmps', 'ideal OpAmps')

subplot (3,2, 3)
options.FreqUnits = 'Hz';
h=bodeplot (GANG3,GANGi3, f range); grid;
setoptions (h, 'FreqUnits', "Hz'");
title('G3: Disturbance Rejection P/1+PCH');
legend('non-ideal OpAmps', 'ideal OpAmps')

subplot (3,2,4)
options.FreqUnits = 'Hz';
h=bodeplot (GANG4,GANGi4, f range); grid;
setoptions (h, 'FreqUnits', "Hz");
title('G4: Sensitivity 1/1+PCH'");
legend ('non-ideal OpAmps', 'ideal OpAmps')

subplot (3,2,5)
options.FreqUnits = 'Hz';
h=bodeplot (GANGS5, GANGi5, f range); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('G5: Noise Sensitivity CH/1+PCH');
legend('non-ideal OpAmps', 'ideal OpAmps')

subplot (3,2, 06)
options.FreqUnits = 'Hz';
h=bodeplot (GANG6, GANGi6, f range); grid;
setoptions (h, 'FreqUnits', "Hz'");
title('G6: Compl Sensitivity PCH/1+PCH'");
legend('non-ideal OpAmps', 'ideal OpAmps')
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o)

T %5 ————- Magnitude-only Bode Plot -----
% figure
% subplot (3,2,1)

% options.FreqUnits = 'Hz';

% h=bodeplot (GANG1,GANGil, f range); grid;

% setoptions (h, 'FreqUnits', 'Hz'");

% setoptions (h, 'FreqUnits', '"Hz', 'PhaseVisible', 'off");

% title('Gl: Reference Tracking FPC/1+PCH'); legend('non-ideal

OpAmps', 'ideal OpAmps')

% subplot (3,2,2)

% options.FreqUnits = 'Hz';

% h=bodeplot (GANG2,GANGi2, f range); grid;

% setoptions (h, 'FreqUnits', 'Hz"'");

% setoptions (h, 'FreqUnits', '"Hz', 'PhaseVisible', 'off");

% title('G2: Ref to P-OpAmp Output FC/1+PCH'); legend('non-ideal

OpAmps', 'ideal OpAmps')

% subplot (3,2, 3)

% options.FreqUnits = 'Hz';

% h=bodeplot (GANG3,GANGi3, f range); grid;

% setoptions (h, 'FreqUnits', 'Hz'");

% setoptions (h, 'FreqUnits', '"Hz', 'PhaseVisible', 'off");

% title('G3: Disturbance Rejection P/1+PCH'); legend('non-ideal

OpAmps', 'ideal OpAmps')

% subplot(3,2,4)

% options.FreqUnits = 'Hz';

% h=bodeplot (GANG4,GANGi4, f range); grid;

% setoptions (h, 'FreqUnits', 'Hz'");

% setoptions (h, 'FreqUnits', '"Hz', 'PhaseVisible', 'off");

% title('G4: Sensitivity 1/1+PCH'); legend('non-ideal OpAmps', 'ideal
OpAmps ')

% subplot (3,2,5)

% options.FreqUnits = 'Hz';

% h=bodeplot (GANG5,GANGi5, f range); grid;

% setoptions (h, 'FreqUnits', 'Hz'");

% setoptions (h, 'FreqUnits', '"Hz', 'PhaseVisible', 'off'");

% title('G5: Noise Sensitivity CH/1+PCH'); legend('non-ideal OpAmps', 'ideal
OpAmps ')

% subplot (3,2,6)

% options.FreqUnits = 'Hz';

% h=bodeplot (GANG6, GANGi6, f range); grid;

% setoptions (h, 'FreqUnits', 'Hz'");

% setoptions (h, 'FreqUnits', '"Hz', 'PhaseVisible', 'off'");

% title('G6: Compl Sensitivity PCH/1+PCH'); legend('non-ideal OpAmps', 'ideal
OpAmps ')

$ % ———— Pole-Zero Map -----

% figure

% subplot(3,2,1)

% pzmap (GANG1, GANGil)

% title('Gl: Reference Tracking FPC/1+PCH'); legend('non-ideal

OpAmps', 'ideal OpAmps')

% subplot(3,2,2)

% pzmap (GANG2, GANGi2)

% title('G2: Ref to P-OpAmp Output FC/1+PCH'); legend('non-ideal
OpAmps', 'ideal OpAmps')

% subplot (3,2,3)

% pzmap (GANG3, GANG1i3)
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% title('G3: Disturbance Rejection P/1+PCH'); legend('non-ideal
OpAmps', 'ideal OpAmps')
subplot (3,2,4)

pzmap (GANG4, GANGi4)

title('G4: Sensitivity 1/1+PCH'); legend('non-ideal OpAmps', 'ideal
OpAmps ')
subplot (3,2,5)

pzmap (GANG5, GANGi5)

title('G5: Noise Sensitivity CH/1+PCH'); legend('non-ideal OpAmps', 'ideal
OpAmps ')
subplot (3,2, 6)

pzmap (GANG6, GANGi6)

title('G6: Compl Sensitivity PCH/1+PCH'); legend('non-ideal OpAmps', 'ideal
OpAmps ')

o° oo

o

o° oo

o

o° oo

o©

[

s ————- Step Response —-----

figure

subplot(3,2,1)

step (GANG1, GANGil)

title('Gl: Reference Tracking FPC/1+PCH');
legend('non-ideal OpAmps', 'ideal OpAmps')
ylabel ('"Amplitude (A)")

subplot (3,2,2)
step (GANG2, GANGi2)
title('G2: Ref to P-OpAmp Output FC/1+PCH');
legend('non-ideal OpAmps', 'ideal OpAmps')
ylabel ("Amplitude (Volt)"')

subplot (3,2, 3)
step (GANG3, GANGi3)
title('G3: Disturbance Rejection P/1+PCH');
legend('non-ideal OpAmps', 'ideal OpAmps')

subplot (3,2, 4)
step (GANG4, GANGi4)
title('G4: Sensitivity 1/1+PCH'");
legend('non-ideal OpAmps', 'ideal OpAmps')

subplot (3,2,5)
step (GANGS5, GANG15)
title('G5: Noise Sensitivity CH/1+PCH');
legend('non-ideal OpAmps', 'ideal OpAmps')

subplot (3,2, 06)
step (GANG6, GANG1i6)
title('G6: Compl Sensitivity PCH/1+PCH');
legend('non-ideal OpAmps', 'ideal OpAmps')
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Appendix L

Matlab Code for Comparison of Current-Loops by
Changing the Location of Lead Compensator

The lead compensator is put in the feedback path, forward path, and then removed. The results are

compared. The Matlab code is as follows:

% Comparison: Lead in Feedback path, Lead in Forward path, No Lead %
% Sajjad Mohammadi, EECS, MIT, August 2021 %

% C506 Current Loop Modeling using ideal Op-Amps

% Input Block: 1/71

% Feed Forward Path: Compensator FF, Power OpAmp, Actuator

% Feedback path: Sensor Resistor Rs, Buffer OpAmp, Compensator FB

%% —mmmmmm o [ Actuator Gp exct=Icoil/Vcoil]---------———————-——--—-
% He exct: including back-emf

% He appr: ignoring back-emf

% Bode Plot of the Plnat C506

% with/without back-emf

J=1.65e-9; % Inretia/mass with mirror from Solid Works

J = 1.5077e-09; % Inretia/mass without mirror from Solid Works
kd = 4.4881e-07; % damping

ks = 0.0013; % spring

Rc = 1.76; % coil resistance [ohm]

Rs = 0.1; % sense resistor [ohm]

R = Rc+Rs;

Lc = 280e-6; % coil inductance [H]

% kt=1.836e-3; % torque/force constant, Typical

°

kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021

He exct = tf([J kd ks], [Lc*J R*J+Lc*kd R*kd+ks*kd+kt”2 R*ks]); % Icoil/Vcoil
with back emf

He appr = tf([1],[Lc R]); % Icoil/Vcoil without back emf

Hm = tf([kt],[J kd ks]); % Torque/Icoil

% Plots
subplot(2,1,1)

options = bodeoptions;

options.FreqUnits = 'Hz';

bode (He exct,He appr,Hm,options); title ('Actuator Electrical and mechanical
Part')

legend('Gp exct=Icoil/Vcoil with bemf','Gp exct=Icoil/Vcoil without
bemf', 'mechanical G m=T/Icoil')
subplot(2,1,2)

step (He exct,He appr)

title ('Step Response, Vcoil to Icoil')

legend ('Model with bemf', '"Model without bemf (locked rotor)"')
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figure

pzmap (He exct,He appr,Hm);axis equal; title

mechanical Part'

legend('Gp exct=

)
Icoil/Vcoil

bemf', 'mechanical G m=T/Icoil')

with bemf', 'Gp exct=Icoil/Vcoil

('Actuator Electrical and

without

——————————————— [ Current Sensor Resistor Gecs=Vrs/Icoil]-------———-———-—-—--

% Converting Coil Current to a Voltage to be measured by buffer OpAmp

% Vrs=Rs*Icoil
Rs=0.1; % sense
% Gs=Vrs

o° o o

oo

ideal OpAmps:
s=tf([1 0], [1]);

R1 pAmp=64.9e3;
R2 pAmp=10e3; %
Ra pAmp=10e3; %
Rb pAmp=95.3e3;

)

o)

Ri pAmp=6.2e3; %
Ci pAmp=470e-12;

RiCi pAmp=Ri pAmp+1/(Ci_ pAmp*s); %
input impedance of Op-Amp
$ Zi pAmp=RiCi pAmp*zin/ (RiCi_ pAmp+Zin);

Zin=100e6; %

)

resistor
/Icoil;

LM3886
TF pAmp nonideal
TF pAmp ideal

)

% input voltage divider
input voltage divider
feedback

% feedback

input lag compensation
% input lag compensation

o)

Zi pAmp=RiCi pAmp;

% DC Gian

DC gain pAmp = (R2_pAmp/ (R1_pAmp+R2 pAmp) )
= 20*1ogl0 ((R2_pAmp/ (R1_pAmp+R2 pAmp))

DC_gain_dB_pAmp

% Ideal OpAmp

°

TF pAmp ideal=DC gain pAmp;

o

C506 Compensat
Forward Path,
Forward Path,
Feedback Path
Feedback Path
Input Block 1/

o0 o o oP

oo

s=tf([1 0], [1]);

R1 Comp=5.1e3; %
Z1=R1 Comp;

% Lead (22)

% Z2 Components,
R2 Comp = 10e3;
% R2p Comp = 100
Characteristics,
% C2 Comp = 240

———————— [ Compensator 1/71,

or Op-Amp Modeling,
non-ideal OpAmp:
ideal OpAmp:
non-ideal OpAmp:
ideal OpAmp:

zZ1

z1

Lead Compensator
% 72,
H S 72,
origianl
0e-12; %

It,

%22, original
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FF Comp nonideal,
OP1652

FF Comp nonideal
FF Comp ideal

FB Comp nonideal
FB Comp ideal

——————————————— [ Power OpAmp TF pAmp nonideal=Vcoil/Vc]-------———-——-————
Increasing Compensator Output Voltage Vc to Coil Voltage Vcoil

PowerOpAmp Modeling,
non-ideal OpAmps:

% input lag compensation and input resistance of Op-Amp

series Ri and Ci

* (1+Rb_pAmp/Ra_pAmp)
* (1+Rb_pAmp/Ra_pAmp) )

FB Comp nonideal ]J--------

it sets the bandwidth together with R1 Comp
together with C2 Comp,

sets the Lead



R2p Comp = 1.1e3; % Z2, It, together with C2 Comp, sets the Lead
Characteristics

C2 Comp = 2.2e-09; % 22

Z2 = R2 Comp; % Lead Compensator is in the forward path

o©

Lag (zf)

R3 Comp=470e3; % Zf
R3 Comp = 2e6;

% C3 Comp=180e-12; % Zf
C3 Comp = 100e-12;

o\©

$ Zf = R3 Comp/ (R3_Comp*C3_ Comp*s+l); % with parallel R3_Comp, Non-pure
interator

zf = 1/(C3 Comp*s); % without parallel R3 Comp, pure integrator

% A: Lead Compensator in Feedback Path, Loop Transmission

FF Comp ideal A = Zf;

FB Comp ideal A = (1/z2) *

((R2_Comp+R2p Comp) *C2_ Comp*s+1)/ (R2p_Comp*C2 Comp*s+1);

Loop Comp ideal A = FF Comp ideal A * FB Comp ideal A; % Ideal Op-Amp

% B: Lead Compensator in Forward Path, Loop Transmission

FF Comp ideal B = zf * ((R2_Comp+R2p Comp)*C2 Comp*s+1)/(R2p_ Comp*C2 Comp*s+1);
FB Comp ideal B = 1/Z2;

Loop Comp ideal B = FF Comp ideal B * FB Comp ideal B; % Ideal Op-Amp

% C: No Lead Compensator, Loop Transmission

FF Comp ideal C = Zf;

FB Comp ideal C = 1/22;

Loop Comp ideal C = FF Comp ideal C * FB Comp ideal C; % Ideal Op-Am

options.FreqgUnits = 'Hz';

figure; h=bodeplot (Loop Comp ideal A,Loop Comp ideal B,Loop Comp ideal C);
grid;

setoptions (h, 'FreqUnits', "Hz'");

title ('C506 Compensator Loop Transmission');

legend ('Lead in Feedback Path', 'Lead in Forward Path', 'No lead')

oo
oo

———————— [ Current Sensor Buffer OpAmp: TF buff nonideal=vs/Vrs ]--------
C506 Current Sensor Buffer Op-Amp Modeling, OP1652
Conversing the Voltage of current sense resistor to voltage Vs
non-ideal OpAmps: TF buff nonideal
ideal OpAmps: TF buff ideal

o o0 oo

o

s=tf([1 0],[11);

R1 buff=1e3;
R2 buff=10e3;

% Ideal Op-Amp
TF_buff ideal = R2_buff/R1_buff; % Ideal Op-Amp

3% —mmmm—m— - [ Model Selection: Model with or without back-emf ]--—---------
% Select the Actuator Model?

% Gp=Cp_exct; % 1l: Actuator model with back-emf

Gp = He appr; % 2:Actuator model without back-emf
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P=Gp; % Actuator

% A: Lead Compensator in Feedback Path

Ci A = FF Comp ideal A * TF pAmp ideal; % ideal op-amp
Hi A = Rs * TF buff ideal * FB Comp ideal A; % ideal op-amp

% B: Lead Compensator in Feedback Path

Ci B = FF Comp ideal B * TF pAmp ideal; % ideal op-amp
Hi B = Rs * TF buff ideal * FB Comp ideal B; % ideal op-amp

% C: Lead Compensator in Feedback Path
Ci C = FF Comp ideal C * TF pAmp ideal; % ideal op-amp
Hi_C = Rs * TF_buff_ldeal * FB Comp ideal C; % ideal op-amp

%% —mmmm——————————- [ Current Loop, Loop Transmission PC]----—-—-———-—————————

LT CurrentLoop ideal A P*Ci A*Hi A; % Closed-Loop, Ideal OpAmps
LT CurrentLoop ideal B P*Ci B*Hi B % Closed-Loop, Ideal OpAmps
LT CurrentLoop ideal C = P*Ci A*Hi C; % Closed-Loop, Ideal OpAmps

% Plots

figure

options.FregUnits = 'Hz'

h=bodeplot (LT CurrentLoop ideal A,LT CurrentLoop ideal B,LT CurrentLoop ideal C
,{10,1e8}); grid;

title('Loop Transmision Bode ')

legend('Lead in Feedback Path', 'Lead in Forward Path', 'No Lead')
setoptions (h, 'FregqUnits', 'Hz");

o

figure
margin (LT CurrentLoop ideal A,LT CurrentLoop ideal B,LT CurrentLoop ideal C);
grid;

oo

o

%% - [Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]------------
% Reference tracking PCF/1+PCH

oe

GANGil A = F*P*Ci A/ (1+P*Ci A*Hi A);
GANGil B = F*P*Ci B/ (1+P*Ci B*Hi B);
GANGil C = F*P*Ci C/(1+P*Ci C*Hi C);

Closed-Loop, Ideal OpAmps
Closed-Loop, Ideal OpAmps
Closed-Loop, Ideal OpAmps

o\

oe

DC_gain CurrentLoop = R2 Comp/R1_Comp
DC_gain dB CurrentLoop = 20*1ogl0(R2_Comp/R1_Comp)

)

%% ——————- [Gang 2: Reference to Power Op-Amp output Voltage FC/1+PCH]------

oe

GANGi2 A = F*Ci A/ (1+P*Ci A*Hi A);
GANGi2 B = F*Ci B/ (1+P*Ci B*Hi B);
GANGi2 C = F*Ci C/(1+P*Ci C*Hi C);

Closed-Loop, Ideal OpAmps
Closed-Loop, Ideal OpAmps
Closed-Loop, Ideal OpAmps

o\

o

o

%%~ [Gang 3: Disturbance Rejection P/1+PCH]--=--—--———————--——
% Disturbance to plant output
GANGi3 A = P/ (1+P*Ci A*Hi A);

oe

Closed-Loop, Ideal OpAmps

GANGi3 B = P/ (1+P*Ci B*Hi B); % Closed-Loop, Ideal OpAmps
GANGi3 C = P/(1+P*Ci C*Hi C); % Closed-Loop, Ideal OpAmps
$% —mmmmm oo [Gang 4: Sensitivity 1/1+PCH]----——--——————————————-

% measurement noise to plant output
GANGi4 A = 1/(1+P*Ci A*Hi A); Closed-Loop, Ideal OpAmps

oe

GANGi4 B = 1/(1+P*Ci B*Hi B); % Closed-Loop, Ideal OpAmps
GANGi4 C = 1/(1+P*Ci C*Hi C); % Closed-Loop, Ideal OpAmps
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o
°

Noise to controller (power op-amp
GANGi5 A = Ci A*Hi A/ (1+P*Ci A*Hi A
GANGi5 B = Ci B*Hi B/ (1+P*Ci B*Hi B

—————————————————— [Gang 5: Noise Sensitivity CH/1+PCH]
output

o)

Ci C*Hi C/(1+P*Ci C*Hi C

—————————————— [Gang 6: Complementary Sensitivity PCH/1+PCH]
Disturbance to controller (power op-amp) output
GANGi6 A = P*Ci A*Hi A/ (1+P*Ci A*Hi A);
GANGi6 B = P*Ci B*Hi B/ (L+P*Ci B*Hi B);
GANGi6 C

o oP

oe

P*Ci C*Hi C/(1+P*Ci C*Hi C);

————— [ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH,

---- Bode Plot -----

figure
subplot (3,2,1)

options.FreqUnits = 'Hz';

h=bodeplot (GANGil A,GANGil B,GANGil C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', 'Hz'");

title('Gl: Reference Tracking FPC/1+PCH')

legend('Lead in Feedback Path', 'Lead in Forward Path',

subplot (3,2,2)

options.FreqUnits = 'Hz';

h=bodeplot (GANGi2 A,GANGi2 B,GANGi2 C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', 'Hz'");

title('G2: Ref to P-OpAmp Output FC/1+PCH')

legend ('Lead in Feedback Path','Lead in Forward Path',

subplot (3,2, 3)

options.FreqUnits = 'Hz';

h=bodeplot (GANGi3 A,GANGi3 B,GANGi3 C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', 'Hz'");

title('G3: Disturbance Rejection P/1+PCH')
legend('Lead in Feedback Path', 'Lead in Forward Path',

subplot (3,2, 4)

options.FreqUnits = 'Hz';

h=bodeplot (GANGi4 A,GANGi4 B,GANGi4 C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', 'Hz'");

title('G4: Sensitivity 1/1+PCH'")

legend('Lead in Feedback Path', 'Lead in Forward Path',

subplot (3,2,5)

options.FreqUnits = 'Hz';

h=bodeplot (GANGi5 A,GANGi5 B,GANGi5 C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', "Hz");

title('G5: Noise Sensitivity CH/1+PCH'")

legend('Lead in Feedback Path', 'Lead in Forward Path',

subplot (3,2, 6)

options.FreqUnits = 'Hz';

h=bodeplot (GANGi6 A,GANGil B,GANGil C,{10,1e9}); grid;
setoptions (h, 'FreqUnits', 'Hz'");

title('G6: Compl Sensitivity PCH/1+PCH'")

legend('Lead in Feedback Path', 'Lead in Forward Path',

---- Magnitude-only Bode Plot -----

figure
subplot (3,2,1)
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; % Closed-Loop, Ideal OpAmps
; % Closed-Loop, Ideal OpAmps
; % Closed-Loop, Ideal OpAmps

Closed-Loop, Ideal OpAmps
Closed-Loop, Ideal OpAmps
Closed-Loop, Ideal OpAmps

PCH/1+PCH]

'No

Lead"')

Lead')

Lead')

Lead')

lead")

Lead')



options.FreqUnits = 'Hz';

h=bodeplot (GANGil A,GANGil B,GANGil C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', '"Hz'");

setoptions (h, 'FreqUnits', 'Hz', 'PhaseVisible', 'off');

title('Gl: Reference Tracking FPC/1+PCH')

legend('Lead in Feedback Path', 'Lead in Forward Path', 'No Lead')

subplot (3,2,2)
options.FreqUnits = 'Hz';
h=bodeplot (GANGi2 A,GANGi2 B,GANGi2 C,{10,1e9}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', 'Hz', 'PhaseVisible', 'off');
title('G2: Ref to P-OpAmp Output FC/1+PCH')
legend ('Lead in Feedback Path', 'Lead in Forward Path', 'No Lead')

subplot (3,2, 3)
options.FreqUnits = 'Hz';
h=bodeplot (GANGi3 A,GANGi3 B,GANGi3 C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off");
title('G3: Disturbance Rejection P/1+PCH')
legend ('Lead in Feedback Path','Lead in Forward Path', 'No Lead')

subplot (3,2,4)
options.FreqUnits = 'Hz';
h=bodeplot (GANGi4 A,GANGi4 B,GANGi4 C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off");
title('G4: Sensitivity 1/1+PCH")
legend ('Lead in Feedback Path','Lead in Forward Path', 'No Lead')

subplot (3,2,5)
options.FreqUnits = 'Hz';
h=bodeplot (GANGi5 A,GANGi5 B,GANGi5 C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off");
title('G5: Noise Sensitivity CH/1+PCH'")
legend ('Lead in Feedback Path', 'Lead in Forward Path', 'No Lead')

subplot (3,2, 06)
options.FreqUnits = 'Hz';
h=bodeplot (GANGi6_A, GANGi6_B, GANGi6_C, {10,1e9}); grid;
setoptions (h, 'FreqUnits', "Hz'");
setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off');
title('G6: Compl Sensitivity PCH/1+PCH'")
legend('Lead in Feedback Path', 'Lead in Forward Path', 'No Lead')

5 ————- Pole-Zero Map -----
figure
subplot(3,2,1)

pzmap (GANGil A,GANGil B,GANGil C)

title('Gl: Reference Tracking FPC/1+PCH')

legend ('Lead in Feedback Path', 'Lead in Forward Path', 'No Lead')
subplot(3,2,2)

pzmap (GANGi2 A,GANGi2 B,GANGi2 C)

title('G2: Ref to P-OpAmp Output FC/1+PCH')

legend ('Lead in Feedback Path', 'Lead in Forward Path', 'No Lead')
subplot (3,2, 3)

pzmap (GANGi3 A,GANGi3 B,GANGi3 C)

title('G3: Disturbance Rejection P/1+PCH')

legend ('Lead in Feedback Path', 'Lead in Forward Path', 'No Lead')
subplot (3,2, 4)
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pzmap(GANGi47A,GANGi44B,GANGi47C)
title('G4: Sensitivity 1/1+PCH'")

legend ('Lead in Feedback Path', 'Lead in Forward

subplot (3,2,5)
pzmap (GANGi5 A,GANGi5 B,GANGi5 C)

title('G5: Noise Sensitivity CH/1+PCH')
legend('Lead in Feedback Path', 'Lead in Forward

subplot (3,2, 6)
pzmap (GANGi6 A,GANGi6 B,GANGi6 C)

title('G6: Compl Sensitivity PCH/1+PCH')
legend ('Lead in Feedback Path', 'Lead in Forward

5 === Step Response -----

figure

subplot(3,2,1)

step (GANGil A,GANGil B,GANGil C)

title('Gl: Reference Tracking FPC/1+PCH')
legend ('Lead in Feedback Path', 'Lead in Forward

ylabel ('Amplitude (A)")

subplot (3,2,2)
step (GANGi2 A,GANGi2 B,GANGi2 C)

title('G2: Ref to P-OpAmp Output FC/1+PCH')
legend ('Lead in Feedback Path', 'Lead in Forward

ylabel ("Amplitude (Volt)')

subplot (3,2, 3)
step (GANGi3 A,GANGi3 B,GANGi3 C)

title('G3: Disturbance Rejection P/1+PCH')
legend ('Lead in Feedback Path', 'Lead in Forward

subplot (3,2,4)
step (GANGi4 A,GANGi4 B,GANGi4 C)
title('G4: Sensitivity 1/1+PCH'")

legend('Lead in Feedback Path', 'Lead in Forward

subplot (3,2,5)
step (GANGi5 A, GANGi5 B,GANGi5 C)

title('G5: Noise Sensitivity CH/1+PCH'")
legend('Lead in Feedback Path', 'Lead in Forward

subplot (3,2, 06)
step (GANGi6 A, GANGi6 B,GANGi6 C)

title('G6: Compl Sensitivity PCH/1+PCH')
legend('Lead in Feedback Path', 'Lead in Forward
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Appendix M

Matlab Code for Comparison of Current-Loops by
Changing the Location of Lead Compensator

The Matlab code is given below:

% Current Loop Modeling including Eddy Current %
% Frequency Domain s=jw %
% Using ideal and non-ideal Op-Amps %
% Sajjad Mohammadi, EECS, MIT, August 2021 %

% Including 3 Op-Amps

% Input Block: 1/71

% Feed Forward Path: Compensator FF, Power OpAmp, Actuator

% Feedback path: Sensor Resistor Rs, Buffer OpAmp, Compensator FB

o
oe
b
Q
pors
c
o))
o+
O
o]
(O]
"U
0]
b
Q
purs
Il
—
Q
O
e
=
~
<
Q
O
e
=

oo

Load Experimental data
run FrequencyTimeResponse Control Experiment

o

o

frequency range for plots

ff = logspace(0,7,2000);% frequency [Hz]
omegaa=2*pi*ff;

s = 1li * omegaa;

% J=1.65e-9; % Inretia/mass with mirror from Solid Works
J = 1.5077e-09; % Inretia/mass without mirror from Solid Works

kd = 4.4881e-07; % damping

ks = 0.0013; % spring

Rc = 1.76; % coil resistance [ohm]
Rs = 0.1; % sense resistor [ohm]

R = Rc+Rs;

Lc = 280e-6; % coil inductance [H]

% kt = 1.836e-3; % torque/force constant, Typical
kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021

o

% from identification, File: DiffusionlD2D
mu_sigma i = 3.2035;
mu_sigma m = 2.8227;

d = 0.35*1e-3; $ Lamination Thickness [m]
wp = 4.72e-3; % pole width, 4.72mm directly measured from geometry
L = 4.191*1le-3; % Axial Length of Actuator [m]
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a = wp/2; % Rectangle Width=2a
b = L/2; % Rectangle Height=2*Db
w = sqgrt(4*a*b)/2; % square approximation of the rectangle: side=2%*w

Rc = 1.76; % coll resistance [ohm]

Rs = 0.1; % sense resistor [ohm]

R = Rc+Rs;

LcO = 295e-6; % Low-frequency inductance

Q i = sqgrt(i*omegaa* mu sigma i)*d/2;

Qm= (w* sqrt( (pi/(2*w)).”2 + 1 * omegaa * mu_sigma m )-pi/2)/(1l+pi/2);

o\°

Taylor Approximation of Om with three first for faractional order modeling
aa = (pi/(2*w));

o©

$Qm= (w?* (aa + (L/(2%aa)).* 1 * omegaa * kk m*mu eff m*sigma m -
(1/(8*aa”3)).* (i * omegaa *kk _m* mu eff m*sigma m)."2 ) -pi/2)/(l+pi/2);
Q = 0i+0Q0m

% RL without back-emf (locked)
He = 1./ (R+i*omegaa*LcO) ;

oo

RL model with back-emf (unlocked)

He exct = tf([J kd ks], [Lc*J R*J+Lc*kd R*kd+ks*kd+kt”2 R*ks]); % Icoil/Vcoil
with back emf

He exct = (J*s.”2 + kd*s + ks)./( Lc*J*s.”3 + (R*J+Lc*kd)*s.”2 +
(R*kd+ks*kd+kt"2)*s + R*ks );

o

% RL including eddy effect
He eddy = (1 + Q)./(R + i*omegaa*Lc0 + R*Q);

% Mechanical Dynamic
Hm = kt./(J*s.”2+kd*s+ks);

figure
subplot(2,1,1)
semilogx (ff, 20*loglO(abs(He)),'--',... % RL Model without back-emf
ff, 20*1ogl0 (abs(He exct)),'-.",... % RL Model with back-emf
ff, 20*1logl0(abs(He eddy)),'--',... % Model with eddy
He appr exp(:,1), He appr exp(:,2),'k',... % Experiment Locked
He exct exp(:,1), He exct exp(:,2),'b--"',... % Experiment unlocked
'LineWidth',1); grid
xlabel ('frequency (Hz)'); ylabel ('Magnitude (dB)")
title('Q m=\phi/\phi 0"')
% x1im([1071 1077])
subplot(2,1,2)
semilogx (ff, (180/pi)*angle(He),'--',... % RL Model without back-emf
ff, (lSO/pi)*angle(He_exct),'—.',... % RL Model with back-emf
ff, (180/pi)*angle(He eddy),'--',... % Model with eddy
He appr exp(:,1), He appr exp(:,3),'k',... % Experiment Locked
He exct exp(:,1), He exct exp(:,3),'b--',... % Experiment unlocked

'LineWidth',1); grid
xlabel ('frequency (Hz)'"'); ylabel('Angle (deg)')
legend ('RL Model, locked','RL Model, unlocked', 'Eddy Model', 'Expr,
locked', "Expr, unlocked')
% x1im([1071 10777])

% Plot mechanical dynamic
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figure
subplot(2,1,1)
semilogx (ff, 20*loglO(abs(Hm)),'r",... % Model
Hm expr(:,1), Hm expr(:,2),'b--',... % Experiment
'LineWidth',1); grid
ylabel ("Magnitude (dB) ")
x1im([1071 1074])
subplot(2,1,2)
semilogx (ff, (180/pi)*angle(Hm),'r',... % Model
Hm expr(:,1), unwrap (Hm expr(:,3)),'b--"',... % Experiment
'LineWidth',1); grid
xlabel ('frequency (Hz)'); ylabel ('Angle (deg)')
legend ('Model', "Experiment')
x1im ([1071 1074])

% Plot mechanical dynamic WITH fRICTION TESTS
figure
subplot(2,1,1)

semilogx (Friction 10mv Bode(:,1), Friction 10mv Bode(:,2),'--"',...
Friction 20mv_Bode(:,1), Friction 20mv_Bode(:,2),'--',...
Friction 30mv _Bode(:,1), Friction 30mv Bode(:,2),'--',...
Friction 40mv_Bode(:,1), Friction 40mv_Bode(:,2),'g--",...
Hm expr(:,1), Hm expr(:,2),'--r',... % Experiment
ff, 20*logl0O(abs(Hm)),'k', ... % Model

'LineWidth',0.7); grid
ylabel ("Magnitude (dB) ")
x1im([1071 1073]); ylim([-30 17])

subplot(2,1,2)

semilogx (Friction 10mv Bode(:,1), Friction 10mv Bode(:,3),'--"',...
Friction 20mv_Bode(:,1), Friction 20mv_Bode(:,3),'--',...
Friction 30mv _Bode(:,1), Friction 30mv Bode(:,3),'--',...
Friction 40mv_Bode(:,1), Friction 40mv_Bode(:,3),'g--",...
Hm expr(:,1), unwrap (Hm expr(:,3)),'--r',... % Experiment
ff, (180/pi)*angle(Hm),'k',... $ Model

'LineWidth',0.7); grid
xlabel ('frequency (Hz)'"); ylabel ('Angle (deg) ')
legend ('10mv, 20mA', '20mv, 40mA', '30mv, 60mA', '40mv, 80mA','60mv, 120mA,
Hm', "Model"')
x1im([1071 1073]); ylim([-180 0])
yticks ([-180 -90 0])

2% ———m——————————— [ Current Sensor Resistor Gecs=Vrs/Icoil]l--—-—-———--—"=--————=
% Converting Coil Current to a Voltage to be measured by buffer OpAmp

% Vrs=Rs*Icoil

Rs = 0.1; % sense resistor

Gcs = Rs; % Gs=Vrs/Icoil;

%% ——————————————= [ Power OpAmp TF pAmp nonideal=Vcoil/Vc]------——--——————--—
Increasing Compensator Output Voltage Vc to Coil Voltage Vcoil

PowerOpAmp Modeling, LM3886

non-ideal OpAmps: TF pAmp nonideal

ideal OpAmps: TF pAmp ideal

o° o° o°

o\

o

% Voltage Divider
Rl pAmp = 64.9e3; % voltage divider
R2 pAmp = 10e3; % voltage divider
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% Power Op-Amp
Ra pAmp = 10e3; % feedback
Rb pAmp = 95.3e3; % feedback

% input lag compensation and input resistance of Op-Amp

Ri pAmp = 6.2e3; % input lag compensation

Ci pAmp = 470e-12; % input lag compensation

RiCi pAmp = Ri pAmp+l./(Ci pAmp*s); % series Ri and Ci
Zin = 100e6; % input impedance of Op-Amp

$ Zi pAmp = RiCi pAmp*Zin/ (RiCi pAmp+Zin) ;

Zi pAmp = RiCi pAmp;

% Op-Amp Open-Loop Gain Transfer Function A(s), LM3886
GBP pAmp = 8e6; % Gain-Bandwidth Product [Hz]
Avo _pAmp = 107(115/20); % Open-Loop DC-gain

fl pAmp = GBP pAmp./Avo pAmp; wl pAmp=2*pi*fl pAmp; % pole 1

f2 pAmp = 1.5e6; w2 pAmp=2*pi*f2 pAmp; % pole 2, usually less than GWB

f3 pAmp = 2.9e6; w3 pAmp=2*pi*f3 pAmp; % pole 3, usually between f2 and GWB
Al pAmp = Avo pAmp.*wl pAmp ./ (s+wl pAmp); % lst-order model

o)

A2 pAmp = Avo pAmp.*wl pAmp.*w2 pAmp ./ ((s+wl pAmp).* (s+w2_ pAmp)); % 2nd-order
model

A3 pAmp = Avo pAmp.*wl pAmp.*w2 pAmp*w3 pAmp

./ ((s+wl pAmp) .* (s+w2_ pAmp) .* (s+w3_pAmp)); % 2nd-order model

A pAmp = A3 pAmp; % Order selection

% Non-Ideal OpAmp, Uncompensated

°

FF pAmp = (R2 pAmp./ (Rl pAmp+R2 pAmp)) .* A pAmp; % Feed Forward
FB pAmp = (Ra_pAmp./(Ra_pAmp+Rb pAmp)) .* ((R1_pAmp+R2 pAmp) ./R2_pAmp); %
Feedback

LT pAmp = FF pAmp.*FB pAmp; % Loop Transmision

TF pAmp nonideal = FF pAmp./ (1+FF_pAmp.*FB pAmp); % Closed-Loop (internal loop)
% Non-Ideal OpAmp, Compensated with Ri & Ci at input

FF_pAmp comp = (R2 pAmp./ (Rl _pAmp+R2 pAmp)) .* ( Zi pAmp./(Zi pAmp +
(R1_pAmp.*R2 pAmp./ (Rl _pAmp+R2 pAmp)) + (Ra_pAmp.*Rb pAmp./ (Ra_pAmp+Rb pAmp)))

) .* A pAmp; % Feed Forward
FB pAmp comp = (Ra_pAmp./(Ra_pAmp+Rb pAmp)) .* ((R1_pAmp+R2 pAmp) ./R2_pAmp); %
Feedback

o)

LT pAmp comp = FF pAmp comp.*FB pAmp comp; % Loop Transmision
TF pAmp nonideal comp = FF pAmp comp./ (1+FF pAmp comp.*FB pAmp comp); % Closed-
Loop

% DC Gian
DC_gain_ pAmp = (R2_pAmp./ (R1_pAmp+R2 pAmp)) .* (1+Rb_pAmp./Ra_pAmp)
DC_gain dB pAmp 20*1ogl0 ( (R2_pAmp./ (Rl _pAmp+R2 pAmp)) .* (1+Rb_pAmp/Ra_ pAmp))

% Ideal OpAmp
TF _pAmp ideal = DC_gain pAmp;

mag_TF pAmp nonideal = 20*1loglO (abs (TF_pAmp nonideal));
phase TF pAmp nonideal = (180/pi)*unwrap (angle(TF _pAmp nonideal));

subplot(2,1,1)
semilogx (ff, mag TF pAmp nonideal, ...
'LineWidth',1); grid
% xlabel ('frequency (Hz)")
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ylabel ("Magn (dB) ')
% set(gca, 'xtick',[1):
% ax = gca; ax.XGrid =
subplot(2,1,2)
semilogx (ff, phase TF pAmp nonideal, ...
'LineWidth',1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)'")

'on'; ax.YGrid = 'on';

%% ————-——-- [ Compensator 1/Z1, FF Comp nonideal, FB Comp nonideal ]--------
C506 Compensator Op-Amp Modeling, OP1652
Forward Path, non-ideal OpAmp: FF Comp nonideal

o©

o©

% Forward Path, ideal OpAmp: FF Comp ideal
% Feedback Path non-ideal OpAmp: FB Comp nonideal
% Feedback Path ideal OpAmp: FB Comp ideal

o©

Input Block 1/71
% Z1 Components

Rl Comp = 5.1e3; % 70
Z1 R1 Comp;

)

% Z2 Components, Lead Compensator
R2 Comp = 10e3; % 22, it sets the bandwidth together with R1 Comp

% R2p Comp = 100; % Z2, It, together with C2 Comp, sets the Lead
Characteristics, origianl

% C2 Comp = 2400e-12; % z2, original

R2p Comp = 1.le3; % Z2, It, together with C2 Comp, sets the Lead
Characteristics

C2 Comp = 2.2e-09; % 72

Z2 =
R2 Comp.* (R2p Comp.*C2 Comp.*s+1) ./ ((R2_Comp+R2p Comp) .*C2 Comp*s+1);

o

72f Components, Lag Compensator

% R3 _Comp = 2e6; % Zf , large paralle resistor to limit the integrator

% R3 Comp = 470e3; % Zf , original value, large paralle resistor to limit the
integrator

R3 Comp = 2e6;

% C3 Comp = 180e-12; % zf, original
C3 Comp = 100e-12;

zZf = R3 Comp./(R3_Comp.*C3 Comp.*s+1l); % with parallel R3 Comp, Non-pure
interator

% zf = 1/(C3_Comp*s); % without parallel R3 Comp, pure integrator

% Op-Amp Open-Loop Transfer Function A(s), , OP1652

GBP Comp = 18e6; % Gain-Bandwidth Product [Hz]
Avo Comp = 107(114/20); % Open-Loop DC-gain

fl Comp = GBP_Comp./Avo Comp; wl Comp=2*pi*fl Comp; % pole 1

f2 Comp = 1.5e7; w2 Comp=2*pi*f2 Comp; % pole 2, not found in datasheet

f3 Comp = 2.%e7; w3 Comp=2*pi*f3 Comp; % pole 3, not found in datasheet

Al Comp = Avo Comp.*wl Comp ./ (s+wl Comp); % lst-order model

A2 Comp = Avo_Comp.*wl Comp.*w2 Comp ./ ((s+wl Comp).* (s+w2 Comp)); % 2nd-order
model

A3 Comp = Avo Comp.*wl Comp.*w2 Comp.*w3 Comp

./ ((s+wl_Comp) .* (s+w2_ Comp) .* (s+w3_Comp)); % 2nd-order model

A Comp = A3 Comp; % Order selection
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o\

options.FreqUnits = 'Hz';
figure; h=bodeplot (A Comp, {1,1el0}); grid title('Open-Loop Gain A'")
setoptions (h, 'FreqUnits', '"Hz"'");

o©

o\°

o)

% Loop Transmission, Ideal Op-Amp

FF Comp ideal = 7f;

FB Comp ideal =1./22;

Loop Comp ideal = FF Comp ideal .* FB Comp ideal; % Ideal Op-Amp

% Loop Transmission, Non-Ideal Op-Amp

FF int Comp = zf .* ( (21.%22)./(21.*22+21.*2f+Z2.*2f) ) .* A Comp; % Feed
Forward, internal OpAmp Loop
FB int Comp = 1./Zf; % Feedback path of internal OpAmp Loop

o)

FF Comp nonideal = FF_int Comp./(1+FF _int Comp.*FB_int Comp); % Closed-Loop
(internal loop), FF part of the compensator
FB Comp nonideal = 1./Z2; % FB part of the compensator

Loop_ Comp = FF Comp nonideal .* FB Comp nonideal; % Non-Ideal Op-Amp
% ideal

mag_Loop Comp ideal = 20*1ogl0 (abs(Loop Comp ideal));

phase Loop Comp ideal = (180/pi) *unwrap (angle (Loop Comp ideal));

)

% non ideal
mag Loop Comp = 20*1ogl0 (abs (Loop Comp)) ;
phase Loop Comp = (180/pi) *unwrap (angle (Loop Comp)) ;

subplot(2,1,1)
semilogx (ff, mag Loop Comp ideal, ...
ff, mag Loop Comp, ...
Bode Comp(:,1), Bode Comp(:,2),... % Comp Expr
'LineWidth',1); grid
% xlabel ('frequency (Hz)"')
ylabel ("Magn (dB) ')
% set(gca, "xtick', []);
% ax = gca; ax.XGrid =
subplot (2,1, 2)
semilogx (ff, phase Loop Comp ideal, ...
ff, phase Loop Comp, ...
Bode Comp(:,1), Bode Comp(:,3)-180,... % Comp Expr, subtracted by

'on'; ax.YGrid = 'on';

180
'LineWidth',1); grid
xlabel ('Freqg (Hz)'); ylabel ('Phase (deg)'")
title('C506 Compensator Loop Transmission'); legend('ideal', 'non-ideal',
'Expr'")

oo
oo

———————— [ Current Sensor Buffer OpAmp: TF buff nonideal=vs/Vrs ]--------
C506 Current Sensor Buffer Op-Amp Modeling, OP1652
Conversing the Voltage of current sense resistor to voltage Vs
non-ideal OpAmps: TF buff nonideal
5 ideal OpAmps: TF buff ideal
R1 buff = 1le3;
R2 buff = 10e3;

o o0 oo

o

% Op-Amp Open-Loop Transfer Function A(s), , OP1652

GBP buff = 18e6; % Gain-Bandwidth Product [Hz]

Avo buff 107 (114/20); % Open-Loop DC-gain

f1 buff = GBP buff./Avo buff; wl buff=2*pi*fl buff; % pole 1

f2_buff 1.5e7; w2 _buff=2*pi*f2 buff; % pole 2, not found in datasheet
£3 buff 2.9%e7; w3 buff=2*pi*f3 buff; % pole 3, not found in datasheet

326



Al buff = Avo buff*wl buff ./(s+wl buff); % lst-order model
A2 buff = Avo buff.*wl buff.*w2 buff ./((S+wl_buff).*(S+w2_buff)); % 2nd-order
model

A3 buff = Avo buff*wl buff.*w2 buff.*w3 buff
./((S+w1_buff).*(s+w2_buff).*(s+w3_buff)); % 2nd-order model

A buff = A3 buff; % Order selection

% Ideal Op-Amp

TF_buff ideal = R2_buff./Rl1_buff; % Ideal Op-Amp
% Loop Transmission, Non-Ideal Op-Amp

FF _int buff = (R2 buff./(R1 buff+R2 buff)) * A buff; % Feed Forward, internal
OpAmp Loop

FB int buff = R1 buff./R2 buff; % Feedback path of internal OpAmp Loop

TF buff nonideal = FF int buff./(1+FF int buff.*FB int buff);

% ideal

mag TF buff nonideal = 20*1logl0(abs(TF _buff nonideal));

phase TF buff nonideal = (180/pi)*unwrap(angle(TF_buff_nonideal));
% Plot

subplot(2,1,1)
semilogx (ff, mag TF buff nonideal, ...
'LineWidth',1); grid
% xlabel ('frequency (Hz)"')
ylabel ("Magn (dB) ")
% set(gca, "xtick',[]);
% ax = gca; ax.XGrid =
subplot (2,1,2)
semilogx (ff, phase TF buff nonideal, ...
'LineWidth',1); grid
xlabel ('Freqg (Hz)'); ylabel ('Phase (deg)'")

'on'; ax.YGrid = 'on';

% ——————————- [ Model Selection: Model with or without back-emf ]--—------——-
% Select the Actuator Model?

Gp RL=He; % without eddy. RL Model

Gp = He eddy; % with eddy

%% —mmmmmm e [ Block Diagram]--—--—---—-—————-———————————————

F = 1./21; % input block

P = Gp; % Actuator

P RL = Gp_RL; % Actuator

% C = FF _Comp nonideal * TF pAmp nonideal comp; % non-ideal op-amp, Power op-
amp with compensator

C = FF Comp nonideal .* TF pAmp nonideal; % non-ideal op-amp, Power op-amp

without compensator
Ci = FF Comp ideal .* TF pAmp ideal; % ideal op-amp

H = Rs .* TF buff nonideal .* FB Comp nonideal; % non-ideal op-amp
Hi = Rs .* TF buff ideal .* FB Comp ideal; % ideal op-amp

%% [ Current Loop, Loop Transmission PCH]-----—-—--—-——-——-——-—-—
% Loop, non-ideal
LT CurrentLoop = P.*C.*H; % Closed-Loop, Non-Ideal OpAmps
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mag LT CurrentLoop = 20*1ogl0 (abs (LT CurrentLoop)); % mag
phase LT CurrentLoop = (180/pi)*unwrap(angle(LT_CurrentLoop)); % phase

% The loop excluding compensator, non-ideal

LT CurrentLoop rest = P.*TF pAmp nonideal.*TF buff nonideal.*Rs; %
Closed-Loop, Non-Ideal OpAmps

mag_ LT CurrentLoop rest = 20*1loglO (abs (LT CurrentLoop rest)); % mag

phase LT CurrentLoop rest = (180/pi)*unwrap(angle (LT CurrentLoop rest)); %
phase

Q

% Loop Transmission, non-ideal, only RL model of electrical dynamic, P=He

LT CurrentLoop RL = He.*C.*H; % Closed-Loop, Non-Ideal OpAmps
mag LT CurrentLoop RL = 20*1oglO (abs (LT CurrentLoop RL)); % mag
phase LT CurrentLoop RL = (180/pi)*unwrap(angle(LT_CurrentLoop_RL)); % phase

Q

% Loop, ideal

LT CurrentLoop ideal = P.*Ci.*Hi; % Closed-Loop, Ideal OpAmps

mag_ LT CurrentLoop ideal = 20*loglO (abs (LT CurrentLoop ideal)); % mag

phase LT CurrentLoop ideal = (180/pi)*unwrap(angle (LT CurrentLoop ideal)); %
phase

% The loop excluding compensator, ideal

LT CurrentLoop ideal rest = P.*TF pAmp ideal.*TF buff ideal.*Rs; % Closed-
Loop, Ideal OpAmps

mag LT CurrentLoop ideal rest = 20*1ogl0(abs (LT CurrentLoop ideal rest)); % mag
phase LT CurrentLoop ideal rest =
(l80/pi)*unwrap(angle(LT_CurrentLoop_ideal_rest)); % phase

% Plots Non-Ideal
subplot (2,1,1)
semilogx (ff, mag Loop Comp, 'm',

Bode Comp(:,1), Bode Comp(:,2),'k--',... % Comp Expr,

ff, mag LT CurrentLoop rest,'g',...

Bode LT(:,1), Bode LT(:,2)+14.6-Bode Comp(:,2),'k--',... % Rest,
Expr

ff, mag LT CurrentLoop,'r',... % Eddy Model

ff, mag LT CurrentLoop RL,'b',... % RL model

Bode LT(:,1), Bode LT(:,2)+14.6,'k--",... % LT Expr, add by 14.9

because it was attentuated for measurement
'LineWidth',1); grid
% xlabel ('frequency (Hz)"'")
ylabel ('Magn (dB)'); ylim([-40 50]); x1lim([1071 10751])
% title('Decomposition of Loop Transmision, nonideal op-amps ');
xticks([1071, 1072 1073,1074,1075])
subplot (2,1, 2)
semilogx (ff, phase Loop Comp, 'm', ...
Bode Comp(:,1), Bode Comp(:,3)-180,'k--',... % Comp Expr,
subtracted by 180
ff, phase LT CurrentLoop rest,'qg',...
Bode LT(:,1), Bode LT(:,3)-180-(Bode Comp(:,3)-180), 'k-—-"',...

oe

Rest, Expr

ff, phase LT CurrentLoop, 'r',... % Eddy Model
ff, phase LT CurrentLoop RL,'b',... % RL Model
Bode LT(:,1), Bode LT(:,3)-180,'k--',... % LT Expr, subtracted by

180
'LineWidth',1); grid
xlabel ('Freqg (Hz)'); ylabel ('Phase (deg)'); ylim([-180 0]); xlim([10"1
107517)
legend('Comp, Model', 'Comp, Expr', 'Rest, Model', 'Rest, Expr','LT, Eddy
Model', 'LT, RL Model','LT Expr')
xticks([10"1, 1072 1073,1074,1075]1); yticks([-180,-90,01)

% Plots Ideal
figure
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subplot(2,1,1)
semilogx (ff, mag Loop Comp ideal, ...

Bode Comp(:,1), Bode Comp(:,2),... % Comp Expr,

ff, mag LT CurrentLoop ideal rest,...

Bode LT(:,1), Bode LT(:,2)+14.6-Bode Comp(:,2),... % Rest, Expr
ff, mag LT CurrentLoop ideal, ...

Bode LT(:,1), Bode LT(:,2)+14.6,... % LT Expr, add by 14.9 because

it was attentuated for measurement
'LineWidth',1); grid

% xlabel ('frequency (Hz)'")

ylabel ("Magn (dB) ')

title('Decomposition of Loop Transmision, ideal op-amps ');

legend ('Compensator', 'Compensator Expr', 'Rest of Loop', 'Rest of Loop
Expr', 'Loop Trans','LT Exp')
subplot(2,1,2)

semilogx (ff, phase Loop Comp ideal, ...

Bode Comp(:,1), Bode Comp(:,3)-180,... % Comp Expr, subtracted by
180

ff, phase LT CurrentLoop ideal rest,...

Bode LT(:,1), Bode LT(:,3)-180-(Bode Comp(:,3)-180),... % Rest,
Expr

ff, phase LT CurrentLoop ideal,...
Bode LT(:,1), Bode LT(:,3)-180,... % LT Expr, subtracted by 180
'LineWidth',1); grid

xlabel ('Freq (Hz)'); ylabel ('Phase (deg)'")

)

% Loop Transmission, ideal and non-ideal op-amps
figure
subplot (2,1,1)
semilogx (ff, mag LT CurrentLoop, ...
ff, mag LT CurrentLoop ideal, ...
Bode LT(:,1), Bode LT(:,2)+14.6,... % LT Expr, add by 14.9 because
it was attentuated for measurement
'LineWidth',1); grid
% xlabel ('frequency (Hz)"'")
ylabel ('Magn (dB) ')
title('Loop Transmision Bode ');
legend ('non-ideal OpAmps', 'ideal OpAmps', 'Expr')
subplot (2,1,2)
semilogx (ff, phase LT CurrentLoop, ...
ff, phase LT CurrentLoop_ ideal, ...
Bode LT(:,1), Bode LT(:,3)-180,... % LT Expr, subtracted by 180
'LineWidth',1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)")

)

% Nyquist and sensitivity circle

figure;

plot (real (LT CurrentLoop),imag (LT CurrentLoop),'r', ...
real (LT expr(1:1990)),imag (LT expr(1:1990)), "k--",...

'LineWidth',1.1); grid on

xlabel ('real'); ylabel ('imaginary')

legend('Model'", "Expr')

title ('Nyquist and sensitivity circle')

axis equal

% —————————— [Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]----—=-=——---
% Reference tracking PCF/1+PCH

% Eddy Model of Electrical Dynamic, non-ideal op-amps

GANGl = F.*P.*C./(1+P.*C.*H); % Closed-Loop, Non-Ideal OpAmps

mag GANGl = 20*1ogl0 (abs (GANG1)) ;
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phase GANGl = (180/pi)*unwrap (angle (GANG1)) ;

% RL Model of Electrical Dynamic, non-ideal op-amps

GANGl RL = F.*P_RL.*C./(1+P_RL.*C.*H); % Closed-Loop, Non-Ideal OpAmps

mag GANGl RL = 20*1ogl0(abs(GANG1l RL));
phase GANGl RL = (180/pi)*unwrap(angle(GANGl_RL));

Q

% Eddy Model of Electrical Dynamic, ideal op-amps

GANGil = F.*P.*Ci./(1+P.*Ci.*Hi); % Closed-Loop, Ideal OpAmps
mag GANGil = 20*1ogl0 (abs (GANGil));
phase GANGil = (180/pi)*unwrap (angle (GANGil));

DC_gain CurrentLoop PureIntegrator = R2 Comp/R1_Comp
DC gain dB CurrentLoop Purelntegrator = 20*1oglO(R2 Comp/R1 Comp)

DC gain dB CurrentLoop NonPureIntegrator = mag GANGI1 (1)
DC gain CurrentLoop NonPurelIntegrator = lOA(mag_GANGl(l)/ZO)

GANG2 = F.*C./(1+P.*C.*H); % Closed-Loop, Non-Ideal OpAmps
mag GANG2 = 20*1oglO0 (abs (GANG2)) ;
phase GANG2 = (180/pi)*unwrap (angle (GANG2)) ;

GANG2 RL = F.*C./(14P_RL.*C.*H); % Closed-Loop, Non-Ideal OpAmps
mag GANG2 RL = 20*1ogl0 (abs(GANG2 RL))
phase GANG2 RL = (180/pi)*unwrap (angle (GANG2 RL)) ;

GANGi2 = F.*Ci./(1+P.*Ci.*Hi); % Closed-Loop, Ideal OpAmps
mag GANGi2 = 20*1ogl0 (abs (GANGi2));
phase GANGi2 = (180/pi)*unwrap (angle (GANGi2));

)

% Lead in Forward Path
FF Comp ideal LF = (R3_Comp./(R3 _Comp.*C3 Comp.*s+l))... % Lag

.*((R2_Comp+R2p Comp) .*C2 Comp*s+1) ./ (R2p Comp.*C2 Comp.*s+1);% Lead
FB Comp ideal LF = 1./R2 Comp;

Ci LF = FF_Comp_ideal LF.* TF pAmp_ideal; % ideal op-amp

Hi LF = Rs .* TF buff ideal.* FB Comp ideal LF; % ideal op-amp

GANGi2 LF = F.*Ci LF./(1+P.*Ci LF.*Hi LF); % Lead in Forward Path
mag GANGi2 LF = 20*1logl0 (abs (GANGi2 LF));

phase GANGi2 LF = (180/pi)*unwrap (angle (GANGi2 LF));

% —mm—mm—— [Gang 3: Disturbance Rejection P/1+PCH]--—--——-—-—-
% Disturbance to plant output

GANG3 = P./(1+P.*C.*H); % Closed-Loop, Non-Ideal OpAmps

mag GANG3 = 20*1ogl0 (abs (GANG3)) ;

phase GANG3 = (180/pi)*unwrap (angle (GANG3)) ;

GANG3 RL = P _RL./(14P_RL.*C.*H); % Closed-Loop, Non-Ideal OpAmps
mag GANG3 RL = 20*1ogl0 (abs (GANG3 RL)) ;

phase GANG3 RL = (180/pi)*unwrap (angle (GANG3 RL)) ;

GANGi3 = P./(1+P.*Ci.*Hi); % Closed-Loop, Ideal OpAmps

mag_GANGi3 = 20*1logl0 (abs (GANGi3));

phase GANGi3 = (180/pi) *unwrap (angle (GANGi3)) ;
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% —mmmmmm———— - [Gang 4: Sensitivity 1/1+PCH]-----—-—-—————————————-
% measurement noise to plant output

GANG4 = 1./ (14+P.*C.*H); % Closed-Loop, Non-Ideal OpAmps

mag GANG4 = 20*1ogl0 (abs (GANG4)) ;

phase GANG4 = (180/pi) *unwrap (angle (GANG4) ) ;

GANG4 RL = l./(l+P_RL.*C.*H); % Closed-Loop, Non-Ideal OpAmps
mag GANG4 RL = 20*1ogl0(abs(GANG4 RL));

phase GANG4 RL = (180/pi)*unwrap(angle(GANG4_RL));

GANGi4 = 1./ (14P.*Ci.*H1i); % Closed-Loop, Ideal OpAmps
mag GANGi4 = 20*1ogl0 (abs (GANGi4));

phase GANGi4 = (180/pi)*unwrap (angle (GANGi4));

%Y ——mmm [Gang 5: Noise Sensitivity CH/1+PCH]--—--—-—-—-—-———————
% Noise to controller (power op-amp) output

GANGS5 = C.*H./(1+P.*C.*H); % Closed-Loop, Non-Ideal OpAmps

mag GANGS = 20*1ogl0 (abs (GANGS)) ;

phase GANGS5 = (180/pi) *unwrap (angle (GANGS)) ;

GANG5 RL = C.*H./(1+P_RL.*C.*H); % Closed-Loop, Non-Ideal OpAmps

mag GANG5 RL = 20*1ogl0 (abs (GANGS RL));

phase GANG5 RL = (180/pi)*unwrap (angle (GANG5 RL)) ;

GANGi5 = Ci.*Hi./ (1+P.*Ci.*Hi); % Closed-Loop, Ideal OpAmps
mag_ GANGi5 = 20*1ogl0 (abs (GANGi5)) ;

phase GANGi5 = (180/pi)*unwrap (angle (GANGi5)) ;

%% —mmmmmm = [Gang 6: Complementary Sensitivity PCH/1+PCH]-—-—---———--——--
% Disturbance to controller (power op-amp) output

GANG6 = P.*C.*H./(1+P.*C.*H); % Closed-Loop, Non-Ideal OpAmps

mag GANG6 = 20*1oglO (abs (GANG6) ) ;

phase GANG6 = (180/pi) *unwrap (angle (GANG6) ) ;

GANG6 RL = P RL.*C.*H./(14P_RL.*C.*H); % Closed-Loop, Non-Ideal OpAmps
mag_GANG6 RL = 20*1ogl0 (abs (GANG6 RL));

phase GANG6 RL = (180/pi)*unwrap (angle (GANG6 RL)) ;

GANGi6 = P.*Ci.*Hi./ (1+P.*Ci.*Hi); % Closed-Loop, Ideal OpAmps
mag_GANGi6 = 20*1ogl0 (abs (GANGi6)) ;

phase GANGi6 = (180/pi)*unwrap (angle (GANGi6));

%% ————- [ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------
%% ————- [ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------
% ———-- Bode Plot —-----

% Gang 1

figure; colororder({'r','[0, 0.5, 0]"'})
yyaxis left
semilogx (ff, mag GANGL, 'r',....
.% ff, mag GANGil, ...
Bode G1(:,1), Bode Gl1(:,2),'k--",... % Experiment
'LineWidth',1.4);
% xlabel ('frequency (Hz)"'")
ylabel ("Magn (dB) ")
title('Gl: Reference Tracking FPC/1+PCH');
% legend('non-ideal OpAmps', 'ideal OpAmps', 'Expr')
xticks([1071, 1072 1073,1074,1075])
yyaxis right
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semilogx (ff, phase GANGL, 'g', ...
.% ff, phase GANGil, ...

Bode G1(:,1), Bode G1(:,3)-180,'b--",... % Experiment
'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)")

x1im([1071 1075]); ylim([-180 2])
xticks([1071, 1072 1073,1074,1075])
legend('Mag, Model', 'Mag, Expr', 'Phase, Model', 'Phase, Expr')
ax = gca; ax.XGrid = 'on';
% Gang 2
figure; colororder({'r','[0, 0.5, 0]"'})
yyaxis left
semilogx (ff, mag GANGZ2, 'r',...
.% ff, mag GANGiZ, ...
Bode G2(:,1), Bode G2(:,2),'k--",... % Experiment
ff, mag GANGi2 LF,'r',... % Lead in Forward Path
'LineWidth',1.4); grid
% xlabel ('frequency (Hz)')
ylabel ('Magn (dB) ")
title('G2: Ref to P-OpAmp Output FC/1+PCH');
% legend('non-ideal OpAmps', 'ideal OpAmps', 'Expr')
% x1lim([1071 1075]);ylim([10 30]); xticks([1071, 1072 1073,1074,10"5])
yyaxis right
semilogx (ff, phase GANGZ, 'g', ...
.% ff, phase GANGiZ, ...
Bode G2(:,1), unwrap(Bode G2(:,3))+180,'b--"',... % Experiment
ff, phase GANGi2 LF,'g',... % Lead in Forward path
'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)")
x1lim([10%1 1076]); ylim([-100 100]); xticks([10”71, 1072 1073,1074,10"5
10761)
legend ('Mag, Model', 'Mag, Expr', 'Phase, Model', 'Phase, Expr')
ax = gca; ax.XGrid = 'on';
% Gang 3
figure; colororder({'r','[0, 0.5, 0]"'})
yyaxis left
semilogx (ff, mag GANG3,'r',...
.% ff, mag GANGi3, ...
Freq G3, Mag G3,'k--',... % Experiment, G3=P*G4
'LineWidth',1.4); grid
% xlabel ('frequency (Hz)"'")
ylabel ('Magn (dB) ')
title('G3: Disturbance Rejection P/1+PCH');
% legend('non-ideal OpAmps', 'ideal OpAmps', 'Expr')
x1im([1071 1076]); ylim([-55 -28]); =xticks([107"1, 1072 1073,1074,10"5,
10761])
yyaxis right
semilogx (ff, phase GANG3, 'g', ...
.% ff, phase GANGi3, ...
Freq G3, Phase G3, 'b--',... % Experiment, G3=P*G4
'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)'")
x1im([1071 1076]); ylim([-60 90]); xticks([1071, 1072 1073,1074,10"5,
legend ('Mag, Model', 'Mag, Expr', 'Phase, Model', 'Phase, Expr')
ax = gca; ax.XGrid = 'on';
% Gang 4
figure; colororder({'r','[0, 0.5, 0]"'})
yyaxis left
semilogx (ff, mag GANG4, 'r', ...
.% ff, mag GANGid4, ...
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Freq G4, Mag G4, 'k--",...
'LineWidth',1.4); grid
ylabel ('Magn (dB) ')
title('G4: Sensitivity 1/1+PCH'");
% legend('non-ideal OpAmps','ideal OpAmps', 'Expr', 'Expr 2'")
x1lim([10"1 1076]1); ylim([-45 3]); xticks([1071, 1072 1073,1074,10"5, 1076])
yyaxis right
semilogx (ff, phase GANG4,'g', ...
.% ff, phase GANGi4, ...
Freq G4, Phase G4, 'b--',...
'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)")
x1lim([10"1 1076]1); ylim([-5 160]); xticks([107"1, 1072 1073,1074,1075, 1076])
legend ('Mag, Model', 'Mag, Expr', 'Phase, Model', 'Phase, Expr')
ax = gca; ax.XGrid = 'on';

% Gang 5: CH/1+PCH
figure; colororder({'r','[0, 0.5, 0]"'})
yyaxis left
semilogx (ff, mag GANGS, 'r',...
.% ff, mag GANGiS5, ...
Freq G5, Mag G5, 'k--',...
'LineWidth',1.4); grid
% xlabel ('frequency (Hz)"')
ylabel ("Magn (dB) ')
title('G5: Noise Sensitivity CH/1+PCH');
% legend('non-ideal OpAmps', 'ideal OpAmps', 'Expr')
x1lim([10"1 2*1076]); ylim([O 30]); xticks([1071, 1072 1073,1074,1075, 1076])
yyaxis right
semilogx (ff, phase GANG5,'g',...
.% ff, phase GANGi5, ...
Freq G5, Phase G5, 'b--',...
'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)")
x1im([10"1 2*1076]); ylim([-270 180]); xticks([10"1, 1072 1073,1074,10"5,
10761)
legend ('Mag, Model', 'Mag, Expr', 'Phase, Model', 'Phase, Expr')
ax = gca; ax.XGrid = 'on';

% Gang 6: PCH/1+PCH
figure; colororder({'xr','[0, 0.5, 0]"})
yyaxis left
semilogx (ff, mag GANG6, 'r',...
.% ff, mag GANGi6, ...
Freq G6, Mag G6, 'k--',...
'LineWidth',1.4); grid
% xlabel ('frequency (Hz)"'")
ylabel ('Magn (dB) ')
title('G6: Compl Sensitivity PCH/1+PCH');
% legend('non-ideal OpAmps', 'ideal OpAmps', 'Expr')
x1im([1071 1075]); ylim([-15 3]); xticks([1071, 107”2 1073,1074,10751])
yyaxis right
semilogx (ff, phase GANG6, 'g', ...
.% ff, phase GANGi6, ...
Freq G6, Phase G6, 'b--',...
'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)")
legend ('Mag, Model', 'Mag, Expr', 'Phase, Model', 'Phase, Expr')
ax = gca; ax.XGrid = 'on';
x1im([1071 1075]); ylim([-150 50]); =xticks([1071, 1072 1073,1074,10"5])
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% Gang 1

figure
subplot(2,1,1)
semilogx (ff, mag GANGl RL,'g',... % non-idel op-amo, RL model
ff, mag GANGl,'r',... % non-idel op-amo, eddy model
.% ff, mag GANGil, ...
Bode G1(:,1), Bode Gl (:,2),'k--",... % Experiment

'LineWidth',1.1); grid
ylabel ("Magn (dB) ")
title('Gl: Reference Tracking FPC/1+PCH');
legend ('RL Model', '"Eddy Model', "Experiment'); x1im([107"1 1075]); ylim([-35
1071)
xticks([1071, 1072 1073,1074,1075])
subplot(2,1,2)

semilogx (ff, phase GANGl RL,'g',... % non-idel op-amo, eddy model
ff, phase GANG1,'r',... % non-idel op-amo, RL model
.% ff, phase GANGil, ...
Bode G1(:,1), Bode G1(:,3)-180,'k--",... % Experiment

'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)'")
x1im([1071 1075]); ylim([-200 317)
xticks([1071, 1072 1073,1074,1075])
% Gang 2
figure
subplot (2,1,1)
semilogx (ff, mag GANG2 RL,'g',...
ff, mag GANGZ, 'r',...

ff, mag GANGi2 LF,'b-.',... % Lead in Forward Path
.% ff, mag GANGiZ, ...
Bode G2(:,1), Bode G2(:,2),'k--",... % Experiment

'LineWidth',1.1); grid
ylabel ("Magn (dB) ')
title('G2: Ref to P-OpAmp Output FC/1+PCH');
legend ('RL Model', 'Eddy Model', 'Lead in Forward Path', 'Experiment')
x1im([10"1 6*1075]1);ylim([-5 40]); xticks([1071, 1072 1073,1074,1075,10"6])
subplot(2,1,2)
semilogx (ff, phase GANG2 RL,'g',...
ff, phase GANG2,'r',...

ff, phase GANGi2 LF,'b-.',... % Lead in Forward Path
.% ff, phase GANGiZ, ...
Bode G2(:,1), unwrap(Bode G2(:,3))+180,'k--",... % Experiment

'LineWidth',1.1); grid
xlabel ('Freqg (Hz)'); ylabel ('Phase (deg)'")
x1im([1071 6*1075]); ylim([-150 90]); xticks([1071, 1072
1073,1074,1075,10%61)
% Gang 3
figure
subplot(2,1,1)
semilogx (ff, mag GANG3 RL,'g',...
ff, mag GANG3, 'r', ...
.% ff, mag GANGi3, ...
Freq G3, Mag G3,'k--',... % Experiment, G3=P*G4
'LineWidth',1.1); grid
ylabel ("Magn (dB) ")
title('G3: Disturbance Rejection P/1+PCH');
legend ('RL Model', 'Eddy Model', "Experiment')
x1im([1071 1076]); ylim([-65 -25]); =xticks([107"1, 1072 1073,1074,10"5,
10761)
subplot(2,1,2)
semilogx (ff, phase GANG3 RL,'g',...
ff, phase GANG3, 'r', ...
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.% ff, phase GANGi3, ...
Freq G3, Phase G3,'k--',... % Experiment, G3=P*G4
'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)")
x1im([1071 1076]); ylim([-100 55]); =xticks([107”1, 1072 1073,1074,10"5,
10761)
% Gang 4
figure
subplot (2,1,1)
semilogx (ff, mag GANG4 RL,'g',...
ff, mag GANG4, 'r',...
.% ff, mag GANGid4, ...
Freq G4, Mag G4, 'k--',...
'LineWidth',1.1); grid
ylabel ('Magn (dB) ')
title('G4: Sensitivity 1/1+PCH'");
legend ('RL Model', 'Eddy Model', 'Experiment')
x1im([10”1 1076]); ylim([-45 5]); xticks([1071, 1072 1073,1074,1075, 1076])
subplot (2,1,2)
semilogx (ff, phase GANG4 RL,'g',...
ff, phase GANG4,'r',...
.% ff, phase GANGi4, ...
Freq G4, Phase G4, 'k--',...
'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)")
x1im([10”1 1076]); ylim([-5 130]); =xticks([10"1, 1072 1073,1074,10"5, 1076])

% Gang 5: CH/1+PCH
figure
subplot(2,1,1)
semilogx (ff, mag GANGS5 RL,'g',...
ff, mag GANGS,'r',...
.% ff, mag GANGi5, ...
Freq G5, Mag G5, 'k--",...
'LineWidth',1.1); grid
ylabel ('Magn (dB) ')
title('G5: Noise Sensitivity CH/1+PCH');
legend ('RL Model', 'Eddy Model', 'Experiment')
x1im([10"1 2*1076]); ylim([-20 35]); xticks([10"1, 1072 1073,1074,10"5,
10761)
subplot(2,1,2)
semilogx (ff, phase GANG5 RL,'g',...
ff, phase GANGS,'r',...
.% ff, phase GANGi5, ...
Freq G5, Phase G5, 'k--",...
'LineWidth',1.1); grid
xlabel ('Freqg (Hz)'); ylabel ('Phase (deg)'")
x1im([1071 2*1076]); ylim([-270 90]); xticks([1071, 107”2 1073,1074,10"5,
10761])

% Gang 6: PCH/1+PCH
figure
subplot(2,1,1)
semilogx (ff, mag GANG6 RL,'g',...
ff, mag GANG6, 'r', ...
.% ff, mag GANGiG6, ...
Freq G6, Mag G6, 'k--',...
'LineWidth',1.1); grid
% xlabel ('frequency (Hz)"'")
ylabel ("Magn (dB) ")
title('G6: Compl Sensitivity PCH/1+PCH'");
% legend('non-ideal OpAmps', 'ideal OpAmps', 'Expr')
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legend ('RL Model', 'Eddy Model', '"Experiment')
x1lim([10”1 10751); ylim([-20 3]); xticks([1071, 1072 1073,1074,10"5])
subplot(2,1,2)

semilogx (ff, phase GANG6 RL,'g',...

ff, phase GANG6, 'r', ...

.% ff, phase GANGiG6, ...

Freq G6, Phase G6,'k--',...

'LineWidth',1.1); grid
xlabel ('Freg (Hz)'); ylabel ('Phase (deg)'")
x1lim([107~1 10751); ylim([-170 3]); xticks([1071, 1072 1073,1074,1075])

336



Appendix N

Matlab Code for Comparison of Current-Loops by
Changing the Location of Lead Compensator

The following is the Matlab code implemented using FOMCON toolbox for solving the fractional-
order systems. For a part of the results, e.g. step responses it did not work well for my case. Maybe
another toolbox can be more helpful.

% Fractional Order Model, FOMCON toolbox in Matlab %
% Current Loop Modeling including Eddy Current %
% Using ideal and non-ideal Op-Amps %
% Sajjad Mohammadi, EECS, MIT, August 2021 %

% Including 3 Op-Amps

% Input Block: 1/71

% Feed Forward Path: Compensator FF, Power OpAmp, Actuator

% Feedback path: Sensor Resistor Rs, Buffer OpAmp, Compensator FB

% —mmmmm e ————— - [ Actuator Gp_exct=Icoil/Vcoil]---—=----—---------—-
s=fotf('s'); % Fractional order, Fomcon toolbox in Matlab

% J=1.65e-9; % Inretia/mass with mirror from Solid Works

J = 1.5077e-09; % Inretia/mass without mirror from Solid Works
kd = 4.4881e-07; % damping

ks = 0.0013; % spring

Rc = 1.76; % coil resistance [ohm]

Rs = 0.1; % sense resistor [ohm]

R = Rc+Rs;

Lc = 280e-6; % coil inductance [H]

% kt 1.836e-3; % torque/force constant, Typical

kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021

5% oo m—m—m— [Electrical Dynamic with Eddy Current] ---------------

$ He exct = tf([J kd ks], [Lc*J R*J+Lc*kd R*kd+ks*kd+kt”2 R*ks]); % Icoil/Vcoil
with back emf
% He appr = tf([1],[Lc R]); % Icoil/Vcoil without back emf

% From identification, File: DiffusionlD2D
mu_sigma i = 3.2035;
mu_sigma_m = 2.8227;

d = 0.35*1e-3; $ Lamination Thickness [m]

wp = 4.72e-3; % pole width, 4.72mm directly measured from geometry
L = 4.191*1le-3; % Axial Length of Actuator [m]
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a = wp/2; % Rectangle Width=2a
b = L/2; % Rectangle Height=2*Db

w = sqgrt(4*a*b)/2; % square approximation of the rectangle: side=2*w
Rc = 1.76; % coil resistance [ohm]

Rs = 0.1; % sense resistor [ohm]

R = Rc+Rs;

LcO = 295e-6; % Low-frequency inductance

Q i = (d/2)*(s* mu_sigma i)"0.5;

$Qm= (w* ( (pi/(2*w)).”2 + S * mu_sigma m )"0.5 -pi/2)/(1+pi/2);
% Taylor Approximation of QOm with three first for faractional order modeling
aa = (pi/(2*w));

Qm= (w* (aa + (1/(2%aa))* s * mu_sigma m - (1/(8%aa"3))* (s
*mu_sigma m) "2 ) -pi/2)/(l+pi/2);

Q = 01i+0Q0m

% Only RL

He = 1/ (R+s*Lc0);
% RL including eddy effect
He eddy = (1 + Q)/(R + s*Lc0 + R*Q);

figure;hold on

step (He eddy,0:0.00001:0.003) % with eddy
step(He,0:0.00001:0.003) % without eddy

xlabel ('time (sec)'); ylabel ('current (A)")

title('Step Response of He'); legend('with eddy', 'without eddy')
hold off

figure; hold on

bode (He eddy, logspace (1,6,2000))

bode (He, logspace (1,6,2000))

grid; title('Bode plot of He'); legend('with eddy', 'without eddy')
hold off

h = gcr; setoptions(h,'FreqUnits','Hz"')

x1im([10"1 10757)

2% ———m——————————— [ Current Sensor Resistor Gecs=Vrs/Icoil]l-—-—-—-——-——--—"="--———=
Converting Coil Current to a Voltage to be measured by buffer OpAmp
Vrs=Rs*Icoil

Rs = 0.1; % sense resistor

Gcs = Rs; % Gs=Vrs/Icoil;

o

o\

%% ———m—————— - [ Power OpAmp TF pAmp nonideal=Vcoil/Vc]----—--——=--—-———
Increasing Compensator Output Voltage Vc to Coil Voltage Vcoil

PowerOpAmp Modeling, LM3886

non-ideal OpAmps: TF pAmp nonideal

ideal OpAmps: TF pAmp ideal

o° o° o°

o\

o)

% Voltage Divider

Rl pAmp = 64.9e3; % voltage divider
R2 pAmp = 10e3; % voltage divider

% Power Op-Amp

Ra pAmp = 10e3; % feedback
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Rb pAmp = 95.3e3; % feedback

o)

% input lag compensation and input resistance of Op-Amp

Ri pAmp = 6.2e3; % input lag compensation
Ci pAmp = 470e-12; % input lag compensation
RiCi pAmp = Ri pAmp+l/(Ci pAmp*s); % series Ri and Ci

Zin 100e6; % input impedance of Op-Amp
$ Zi pAmp = RiCi pAmp*Zin/ (RiCi_ pAmp+Zin);

Zi pAmp = RiCi pAmp;

[

% Op-Amp Open-Loop Gain Transfer Function A(s), LM3886
GBP pAmp = 8e6; % Gain-Bandwidth Product [Hz]

Avo pAmp = 107 (115/20); % Open-Loop DC-gain

fl pAmp = GBP_pAmp/Avo_pAmp; wl pAmp=2*pi*fl pAmp; % pole 1

f2 pAmp = 1.5e6; w2 pAmp=2*pi*f2 pAmp; % pole 2, usually less than GWB

f3 pAmp = 2.9e6; w3 pAmp=2*pi*f3 pAmp; % pole 3, usually between f2 and GWB

o)

Al pAmp = Avo pAmp*wl pAmp /(s+wl pAmp); % lst-order model

A2 pAmp = Avo pAmp*wl pAmp*w2 pAmp / ((s+wl pAmp) * (s+w2 pAmp)); % 2nd-order
model

A3 pAmp = Avo pAmp*wl pAmp*wZ2 pAmp*w3 pAmp

/ ((s+wl_pAmp) * (s+w2_pAmp) * (s+w3_pAmp)); % 2nd-order model

A pAmp = A3 pAmp; % Order selection

% options.FreqUnits = 'Hz';

o

oo

figure; bode (A, {1,1e8},0ptions); grid
title ('Open-Loop Gain A'")

o

o

5 Non-Ideal OpAmp, Uncompensated

FF pAmp = (R2 pAmp/ (Rl _pAmp+R2 pAmp)) * A pAmp; % Feed Forward

FB pAmp (Ra_pAmp/ (Ra_pAmp+Rb pAmp)) * ((R1_pAmp+R2 pAmp) /R2 pAmp); % Feedback
LT pAmp = FF pAmp*FB pAmp; % Loop Transmision

TF pAmp nonideal = FF _pAmp/ (1+FF pAmp*FB pAmp); % Closed-Loop (internal loop)

)

% Non-Ideal OpAmp, Compensated with Ri & Ci at input

FF pAmp comp = (R2 _pAmp/ (Rl _pAmp+R2 pAmp)) * ( Zi pAmp/(Zi pAmp +
(R1_pAmp*R2_pAmp/ (R1_pAmp+R2 pAmp)) + (Ra_pAmp*Rb pAmp/ (Ra_pAmp+Rb pAmp))) ) *
A pAmp; % Feed Forward

FB pAmp comp = (Ra_pAmp/(Ra_pAmp+Rb pAmp)) * ((R1_pAmp+R2 pAmp)/R2_pAmp); %
Feedback

o)

LT pAmp comp = FF pAmp comp*FB pAmp comp; % Loop Transmision
TF pAmp nonideal comp = FF _pAmp comp/ (1+FF _pAmp comp*FB pAmp comp); % Closed-
Loop

% DC Gian
DC gain pAmp = (R2_pAmp/ (R1_pAmp+R2 pAmp)) * (1+Rb pAmp/Ra_ pAmp)
DC gain dB pAmp 20*10gl0 ( (R2_pAmp/ (R1_pAmp+R2 pAmp)) * (1+Rb_pAmp/Ra_ pAmp))

% Ideal OpAmp
TF _pAmp ideal = DC_gain pAmp;

TF pAmp nonideal = DC gain pAmp; % For simplicity in Fomcon

% bode

figure; bode (TF _pAmp nonideal, logspace(1,9,2000)); grid
title ('Power OpAmp, Closed-Loop Bode')

h = gcr; setoptions(h,'FreqUnits','Hz"')
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o)

% Step Response
figure; step(TF pAmp
title ('Power OpAmp,

_nonideal,

Step Response')

[0:0.00000001:0.0000171) ;

[ Compensator 1/71,

% C506 Compensator Op-Amp Modeling,
non-ideal OpAmp:

% Forward Path,

% Forward Path, ideal OpAmp:

% Feedback Path non-ideal OpAmp:

% Feedback Path ideal OpAmp:
% Input Block 1/21

% Z1 Components
Rl Comp = 5.1e3; %
71 = Rl_Comp;

z1

)

% 722 Components,

R2 Comp = 10e3; % Z2,

% R2p Comp = 100; % Z2,
Characteristics, origianl

% C2 Comp = 2400e-12; % Z2,
R2p Comp = 1.1e3; % 22, It,
Characteristics

C2 Comp = 2.2e-09; % 72

Z2 =

o

zf Components,

FF Comp nonideal,
OP1652

FF Comp ideal

FB Comp ideal

Lead Compensator
it sets the bandwidth together with R1 Comp

It, together with C2 Comp,

original
together with C2 Comp,

Lag Compensator

FB Comp nonideal ]

FF Comp nonideal

FB Comp nonideal

sets the Lead

sets the Lead

R2 Comp* (R2p_Comp*C2 Comp*s+1)/ ((R2_Comp+R2p Comp) *C2 Comp*s+1) ;

% R3 Comp = 2e6; % Zf , large paralle resistor to limit the integrator

% R3 Comp = 470e3; % Zf , original value, large paralle resistor to limit
integrator

R3 Comp = 2e6;
% C3 Comp = 180e-12; % Zf, original
C3 Comp = 100e-12;
zf = R3_Comp/ (R3_Comp*C3 Comp*s+l); % with parallel R3 Comp, Non-pure
interator
% zf = 1/(C3_Comp*s); % without parallel R3 Comp, pure integrator
% Op-Amp Open-Loop Transfer Function A(s), , OP1652
GBP Comp = 18e6; % Gain-Bandwidth Product [Hz]
Avo Comp = 107(114/20); % Open-Loop DC-gain
fl Comp = GBP_Comp/Avo Comp; wl Comp=2*pi*fl Comp; % pole 1
f2 Comp = 1.5e7; w2 Comp=2*pi*f2 Comp; % pole 2, not found in datasheet
f3 Comp = 2.%e7; w3 Comp=2*pi*f3 Comp; % pole 3, not found in datasheet
Al Comp = Avo Comp*wl Comp /(s+wl Comp); % lst-order model
A2 Comp = Avo_Comp*wl Comp*w2 Comp / ((s+wl Comp)* (s+w2_Comp)); % 2nd-order
model
A3 Comp = Avo Comp*wl Comp*w2 Comp*w3 Comp
/ ((s+wl_Comp) * (s+w2_ Comp) * (s+w3_Comp)); % 2nd-order model
A Comp = A3 Comp; % Order selection
% options.FreqUnits = 'Hz';

oe

figure
setopt

o\

; h=bodeplot (A Comp, {1,1el0});
ions (h, 'FreqUnits', 'Hz");

grid
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% Loop Transmission, Ideal Op-Amp

FF Comp ideal = 7f;

FB Comp ideal = 1/22;

Loop Comp ideal = FF Comp ideal * FB Comp ideal; % Ideal Op-Amp

Q

% Loop Transmission, Non-Ideal Op-Amp

FF _int Comp = zf * ( (Z21%22)/(21*22+z1*Zf+z2*Zf) ) * A Comp; % Feed
Forward, internal OpAmp Loop

FB int Comp = 1/2f; % Feedback path of internal OpAmp Loop

FF Comp nonideal = FF_int Comp/ (1+FF_int Comp*FB int Comp); % Closed-Loop
(internal loop), FF part of the compensator

FB Comp nonideal = 1/Z2; % FB part of the compensator

Loop_Comp = FF Comp nonideal * FB Comp nonideal; % Non-Ideal Op-Amp
% bode

figure; hold on;

bode (Loop Comp ideal, logspace (1,5,2000))

bode (Loop Comp, logspace (1,5,2000)); grid;

h = gcr; setoptions(h, 'FreqUnits', 'Hz")

title('C506 Compensator Loop Transmission'); legend('ideal', 'nmon-ideal')
hold off

oo
o

———————— [ Current Sensor Buffer OpAmp: TF buff nonideal=vs/Vrs ]--------
C506 Current Sensor Buffer Op-Amp Modeling, OP1652
Conversing the Voltage of current sense resistor to voltage Vs
non-ideal OpAmps: TF buff nonideal
ideal OpAmps: TF buff ideal

o o0 oo

o

R1 buff 1e3;
R2 buff = 10e3;

)

% Op-Amp Open-Loop Transfer Function A(s), , OP1652
GBP _buff = 18e6; % Gain-Bandwidth Product [Hz]
Avo buff = 107(114/20); % Open-Loop DC-gain

fl_Buff = GBP_buff/Avo_buff; wl_buff=2*pi*f1_buff; % pole 1
f2_buff = 1.5e7; w2_buff=2*pi*f2 buff; % pole 2, not found in datasheet
f3 buff = 2.9%e7; w3 buff=2*pi*f3 buff; % pole 3, not found in datasheet

Al buff = Avo buff*wl buff /(s+wl buff); % lst-order model

A2 buff = Avo buff*wl buff*w2 buff /((s+wl buff)*(s+w2 buff)); % 2nd-order
model

A3 buff = Avo buff*wl buff*w2 buff*w3 buff

/ ((s+wl _buff)* (s+w2 buff)* (s+w3 buff)); % 2nd-order model

A buff = A3 buff; % Order selection

% options.FreqUnits = 'Hz';

o\

figure; h=bodeplot (A buff, {1,1el0}); grid title('Open-Loop Gain A'")
setoptions (h, 'FreqUnits', 'Hz'");

oe

% Ideal Op-Amp

TF_buff ideal = R2_buff/R1_buff; % Ideal Op-Amp

% Loop Transmission, Non-Ideal Op-Amp

FF_int buff = (R2 buff/ (Rl _buff+R2 buff)) * A buff; % Feed Forward, internal
OpAmp Loop

FB int buff = R1 buff/R2 buff; % Feedback path of internal OpAmp Loop

TF _buff nonideal = FF_int buff/ (1+FF_int buff*FB_int buff);
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TF buff nonideal = 10; % % For simplicity in Fomcon

% Plots

figure;

bode (TF_buff nonideal, logspace(1,11,2000))
grid; title('Bode, sensor buffer')

h = gcr; setoptions(h, 'FreqUnits', 'Hz")
legend('ideal', 'non-ideal')

hold off

%% ————————— [ Model Selection: Model with or without back-emf ]--—————-——-
% Select the Actuator Model

% Gp=He; % without eddy
Gp = He eddy; % with eddy

$% —————————— [ Block Diagram]--—-—-—-—-—---——————"—"—"—"—"—"—\—\—————~——

F = 1/2Z21; % input block

P = Gp; % Actuator

% C = FF Comp nonideal * TF pAmp nonideal comp; % non-ideal op-amp, Power op-
amp with compensator

C = FF Comp nonideal * TF pAmp nonideal; % non-ideal op-amp, Power op-amp

without compensator
Ci = FF Comp ideal * TF pAmp ideal; % ideal op-amp

H = Rs * TF buff nonideal * FB Comp nonideal; % non-ideal op-amp

Hi = Rs * TF buff ideal * FB Comp ideal; % ideal op-amp

5% —omm——————— - [ Current Loop, Loop Transmission PCH]-----—-—--—-——-—-—-—--—-—

LT CurrentLoop P*C*H; % Closed-Loop, Non-Ideal OpAmps
LT CurrentLoop ideal = P*Ci*Hi; % Closed-Loop, Ideal OpAmps

)

% The loop excluding compensator, ideal

LT CurrentLoop rest = P*TF _pAmp nonideal*TF buff nonideal; % Closed-
Loop, Non-Ideal OpAmps

LT CurrentLoop ideal rest = P*TF pAmp ideal*TF buff ideal; % Closed-Loop,
Ideal OpAmps

o

Plots

Decomposition of Loop Transmission, non-ideal model of op-amps
figure; hold on

bode (Loop Comp, logspace (1,7,2000)) ;

bode (LT CurrentLoop rest, logspace(1,7,2000))

bode (LT CurrentLoop, logspace (1,7,2000))

grid; h = gcr; setoptions(h, 'FreqUnits', 'Hz")

title ('Decomposition of Loop Transmision, nonideal op-amps ');
legend ('Compensator', 'Rest of the Loop', 'Loop Transmission')
hold off; xlim([107”1 10751])

o\

o)

% Decomposition of Loop Transmission, ideal model of op-amps
figure; hold on

bode (Loop Comp_ ideal, logspace(1,7,2000));

bode (LT CurrentLoop ideal rest,logspace(l,7,2000))

bode (LT CurrentLoop ideal, logspace(1,7,2000))

grid; h = gcr; setoptions(h, 'FreqUnits', 'Hz")
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title ('Decomposition of Loop Transmision, ideal op-amps ');
legend ('Compensator', 'Rest of the Loop', 'Loop Transmission')
hold off; xlim([10"1 10"75])

figure; hold on

bode (LT CurrentLoop, logspace(1,7,2000));

bode (LT CurrentLoop ideal, logspace(1,7,2000))

grid; h = gcr; setoptions(h, 'FreqUnits', 'Hz")

title('Loop Transmision Bode ');legend('non-ideal OpAmps', 'ideal OpAmps')
hold off; x1lim([1071 10"5])

%% —————————- [Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]------------
% Reference tracking PCF/1+PCH

GANG1 = 1/ (14+P*C*H) * (F*P*C) ; % Closed-Loop, Non-Ideal OpAmps
GANGil F*P*Ci/ (1+P*Ci*Hi) ; % Closed-Loop, Ideal OpAmps

DC gain CurrentLoop Purelntegrator = R2 Comp/R1_Comp
DC _gain dB CurrentLoop Purelntegrator = 20*1loglO(R2_ Comp/R1_Comp)

%% —————== [Gang 2: Reference to Power Op-Amp output Voltage FC/1+PCH]------
GANG2 = (1/(14+P*C*H))*F*C; % Closed-Loop, Non-Ideal OpAmps

GANGi2 = (1/(1+P*Ci*Hi))*F*Ci; % Closed-Loop, Ideal OpAmps

%% ———m—m———— - [Gang 3: Disturbance Rejection P/1+PCH]--=-—--———=——————
% Disturbance to plant output

GANG3 = P/ (1+P*C*H); % Closed-Loop, Non-Ideal OpAmps

GANGi3 = P/ (1+P*Ci*Hi); % Closed-Loop, Ideal OpAmps

$% —mmmmm e ———————— - [Gang 4: Sensitivity 1/1+PCH]-------——-————————————-
% measurement noise to plant output
GANG4 = 1/ (1+P*C*H); % Closed-Loop, Non-Ideal OpAmps

GANGi4 = 1/ (1+4P*Ci*Hi); % Closed-Loop, Ideal OpAmps

$% —mmmmm—————————— [Gang 5: Noise Sensitivity CH/1+PCH]--------——-—-——-———~-
% Noise to controller (power op-amp) output
GANG5 = (1/(14+4P*C*H))* (C*H); % Closed-Loop, Non-Ideal OpAmps

GANGi5 = 1/ (1+P*Ci*Hi)* (Ci*Hi); % Closed-Loop, Ideal OpAmps

% —————————————= [Gang 6: Complementary Sensitivity PCH/1+PCH]-----—--————-
% Disturbance to controller (power op-amp) output
GANG6 = P*C*H/ (1+P*C*H) ; % Closed-Loop, Non-Ideal OpAmps

GANGi6 = P*Ci*Hi/ (1+P*Ci*Hi); % Closed-Loop, Ideal OpAmps

R [ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+4PCH, PCH/1+PCH]------

% ———-- Bode Plot —-----
f range = logspace(1l,7,3000); % Frequency range of plots
x lim = [10"1 1075];

% Gang 1

figure; hold on

bode (GANG1, f range)

bode (GANGil, £ range)

grid; h = gcr; setoptions(h, 'FreqUnits', 'Hz'")
title('Gl: Reference Tracking FPC/1+PCH')
legend('non-ideal OpAmps', 'ideal OpAmps')
hold off; xlim(x_ lim)
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o)

% Gang 2

figure; hold on

bode (GANG2, f range)

bode (GANGiZ2, f range)

grid; h = gcr; setoptions(h, 'FreqUnits', 'Hz")
title('G2: Ref to P-OpAmp Output FC/1+PCH')
legend ('non-ideal OpAmps', 'ideal OpAmps')
hold off; xlim(x lim)

% Gang 3

figure; hold on

bode (GANG3, £ range)

bode (GANGi3, f range)

grid; h = gcr; setoptions(h, 'FreqUnits', 'Hz")
title('Loop Transmision Bode ')
legend('non-ideal OpAmps','ideal OpAmps')
hold off; xlim(x lim)

title('G3: Disturbance Rejection P/1+PCH');

)

% Gang 4

figure; hold on

bode (GANG4, £ range)

bode (GANGi4, f range)

grid; h = gcr; setoptions(h, 'FreqUnits', 'Hz'")
title('Loop Transmision Bode ')

legend ('non-ideal OpAmps', 'ideal OpAmps')
hold off; xlim(x lim)

title('G4: Sensitivity 1/1+PCH'");

% Gang 5

figure; hold on

bode (GANGS, £ range)

bode (GANGi5, £ range)

grid; h = gcr; setoptions(h, 'FreqUnits', 'Hz")
title('Loop Transmision Bode ')
legend('non-ideal OpAmps', 'ideal OpAmps')
hold off; xlim(x 1lim)

title('G5: Noise Sensitivity CH/1+PCH'");

% Gang 6

figure; hold on

bode (GANG6, £ range)

bode (GANGi6, f range)

grid; h = gcr; setoptions(h, 'FreqUnits', 'Hz")
title('Loop Transmision Bode ')

legend ('non-ideal OpAmps', 'ideal OpAmps')
hold off; xlim(x lim)
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Appendix O

Matlab code for Modeling and Simulation of
Position Control, and Initialization for Simulink

The code is given below:

% Position Control Design for Actuator C506 and Simulink Initialization %
% Sajjad Mohammadi, EECS, MIT, August 2021 %

% Note: the file related to the Current loop modeling needs to be run first
% as its transfer functions are empl

oo

osition Control Design for Actuator C506 and Simulink Initialization
] Motor parameters (SI units)

] Loop Shaping in Frequency Domain

] Pole Placement with Voltage Drive

] Pole Placement with Current Drive
1
]

o0 00 o° o°

oo

Nonlinear Control in Frequency Domain
Nonlinear Control with Pole Placement

P
[
[
[
[
[
[

o U W N

o

clc; clear; close all

o

o
oo

[ Motor parameters (SI units) ]
1.5077e-09; % Inretia/mass without mirror from Solid Works [kg.m"2]
d 4.4881e-07; % damping
ks = 0.0013; % spring
Krest=ks/2; % spring

~ 4
1

Rc = 1.76; % coil resistance [ohm]
Rs = 0.1; % sense resistor [ohm]

R = Rc+Rs;

Lc = 280e-6; % coil inductance [H]

% kt = 1.836e-3; % torque/force constant, Typical
kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021
kb = kt; % Back-emf Constant [Vs/rad]

)

% Bandwidth and damping of closed-loop poles

zeta = 0.8; %damping

BW = 500; % bandwidth of Position Controller [Hz]

wn 2*pi*BW; % Natural frequency of the desired poles
wC 2*pi*BW; % Crossover frequency of position loop

% Reference Position
f ref = 20; % Frequency (Hz)
A ref = 10; Amplitude (Hz)

oe

% Current Loop Dynamic for Controls with Current drive
% it includes inverse ofits DC gain
G_CurrentLoop = (1/DC_gain CurrentLoop NonPureIntegrator) * GANGil;

% Angular Position Reference

T ref = 1/f ref;
t 0:T ref/10000:2.5*T ref;
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theta ref = A ref*square(2*pi*f ref*t);

% Saturation Voltage of Power Op-Amp
V_sat = 21; % volt

=tf('s'");
% [ Loop Shaping in Frequency Domain ]
Small-Signal Linear Control System Design using the Linearized Model
Electrical Dynamic is removed by the haigh bandwidth current loop
Lead-Lag controller is used
A low-pass filter is in the DSP after reading the position sensor with ADC
The sensor function and its inverse are calcelled out
The DC gain of the current loop and its inverse gian in the DSP are canceled
out
fprintf ('Loop Shaping in Frequency Domain')
s=tf('s");

0

o

o d° o° o oP

o©

% Mechanical Dynamic:
~mech = tf([kt], [J kd ks]); % Torque/Icoil

()

% Lead-Lag Compenstor: Kp * (1+Ki/s) * (alpha*tau*s+1)/ (tau*s+1)
$Lag:

Ki=wc/10 % One decade before wc

C lg=1+Ki/s; % Lag

% Lead:

alpha=15; % pole-zero ratio to get a phase compensation of 55 degrees
tau=1/ (wc*sqgrt (alpha))

% tau=le-4 % rounding

C_ld=(alpha*tau*s+1l)/ (tau*s+l); % Lead

% Low-Pass Filter

fb filter=5000; % break frequency Hz
wb=2*pi*fb filter; % one decade above wc
H _LPF=wb/ (s+wb) ;

% Loop Gain Kp
~aux = C 1g*C 1d*G mech; % Loop Transmision excluding Kp
[mag, phase,wout] = bode(G_aux,wc); % calculating magnitude at wc

o

Kp=1/mag % calculating Kp as the gain required to have unity loop magnitude at
weC

(]

o)

Phase margin=180+phase % Phase margin

% Position Controller
Cp=Kp*C 1lg*C 1d;

% Loop Transmission
LT p=Cp*G mech; % Without current loop dynamic
LT p CurrentLoop=Cp*G mech*G CurrentLoop; % With current loop dynamic

F —mmmmm e [ Block Diagram]--—-—-————-—————————"—"—"—"—\————————

F p=1; % input block

P p=G mech; % Mechanical Dynamic, Without current loop dynamic

P p CurrentLoop=G mech*G CurrentLoop; % Mechanical Dynamic, With current loop
dynamic

C p = Cp; % Lead-Lag Compensator

Hp=1; % Low-pass filter

$ ——————————— [ Current Loop, Loop Transmission PCH]-----—-—-—-—-————-—-—-—-——-
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options = bodeoptions;
options.FreqUnits = 'Hz';
bode (G mech,options); grid; title ('Bode: Mechanical Dynamic H m')

figure; bode(C 1lg,C 1d,C 1g*C 1d); grid
legend('Lag', 'Lead', 'Lead-Lag")

figure; bode (LT p,Cp,G mech); grid
legend('Loop Tranmission', 'Compensator C p','Plant H m')
title('Bode, Without current loop dynamic')

figure; bode (LT p CurrentLoop,Cp,G mech,G CurrentLoop); grid
legend('Loop Tranmission', 'Compensator C p','Plant H m', 'Current Loop')
title('Bode, With current loop dynamic')

5 —mm—————— [Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]--=-—===-——---

% Reference tracking PCF/1+PCH

GANGL p = F p*P p*C p/(1+P_p*C p*H p); % Closed-Loop

GANGl p CurrentLoop =

F p*P_p CurrentLoop*C p/(1+P_p CurrentLoop*C p*H p); % Closed-Loop

 ——————- [Gang 2: Reference to Controller output Voltage FC/1+PCH]------

GANG2 p = F p*C p/(1+P_p*C_p*H p); % Closed-Loop

GANGZ2 p CurrentLoop = F p*C p/(14P_p CurrentLoop*C p*H p); % Closed-Loop

$ —mmmmmmm———— [Gang 3: Disturbance Rejection P/14PCH]---------———------
% Disturbance to plant output

GANG3 p = P p/(1+P_p*C p*H p); % Closed-Loop

GANG3 p CurrentLoop = P_p CurrentLoop/ (1+P_p CurrentLoop*C p*H p); %
Closed-Loop

§ ——mmmmm [Gang 4: Sensitivity 1/1+PCH]----------—-————————————
% measurement noise to plant output
GANG4 p = 1/(1+4P_p*C p*H p); % Closed-Loop

GANG4 p CurrentLoop = 1/(1+P_p CurrentLoop*C p*H p); % Closed-Loop

§ mmmmmmm e [Gang 5: Noise Sensitivity CH/1+PCH]----------————-——~

% Noise to controller output

GANGS5 p = C_p*H p/(14P_p*C_p*H p); % Closed-Loop

GANGS p CurrentLoop = C_p*H p/(1+P_p CurrentLoop*C p*H p); % Closed-Loop

§ —m——————— - [Gang 6: Complementary Sensitivity PCH/1+PCH]-------------
% Disturbance to controller output

GANG6_p = P p*C p*H p/(1+P_p*C p*H p); % Closed-Loop

GANG6 p CurrentLoop =

P p CurrentLoop*C p*H p/(1+P_p CurrentLoop*C p*H p); % Closed-Loop

$ —-——- [ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------

% ———-- Bode Plot —-----
f bode=1le5; %frequency range to plot

figure
subplot(3,2,1)
options.FreqUnits = 'Hz';
h=bodeplot (GANGl p,GANGl p CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', "Hz'");
title('Gl: Reference Tracking FPC/1+PCH')
legend ('Withou current loop dynamic', 'With current loop dynamic')
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subplot (3,2,2)
options.FreqUnits = 'Hz';
h=bodeplot (GANG2 p,GANG2 p CurrentLoop,{10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('G2: Ref to Controller Output FC/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 3)
options.FreqUnits = 'Hz';
h=bodeplot (GANG3 p,GANG3 p CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('G3: Disturbance Rejection P/1+PCH')
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 4)
options.FreqUnits = 'Hz';
h=bodeplot (GANG4 p,GANG4 p CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', '"Hz'");
title('G4: Sensitivity 1/1+PCH")
legend ('Withou current loop dynamic', 'With current loop dynamic')

subplot (3,2,5)
options.FreqUnits = 'Hz';
h=bodeplot (GANG5 p,GANG5 p CurrentLoop,{10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('G5: Noise Sensitivity CH/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 06)
options.FreqUnits = 'Hz';
h=bodeplot (GANG6 p,GANG6 p CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('G6: Compl Sensitivity PCH/1+PCH'")
legend ('Withou current loop dynamic', 'With current loop dynamic')

& ————= Magnitude-only Bode Plot -----
figure
subplot(3,2,1)

options.FreqUnits = 'Hz';

h=bodeplot (GANG1 p,GANGl p CurrentLoop,{10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");

setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off");

title('Gl: Reference Tracking FPC/1+PCH'")

legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 2)
options.FreqUnits = 'Hz';
h=bodeplot (GANG2 p,GANG2 p CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off");
title('G2: Ref to Controller Output FC/1+PCH')
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 3)
options.FreqUnits = 'Hz';
h=bodeplot (GANG3 p,GANG3 p CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', '"Hz', 'PhaseVisible', 'off");
title('G3: Disturbance Rejection P/1+PCH')
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,4)
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options.FreqUnits = 'Hz';

h=bodeplot (GANG4 p,GANG4 p CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', '"Hz'");

setoptions (h, 'FreqUnits', 'Hz', 'PhaseVisible', 'off');

title('G4: Sensitivity 1/1+PCH'")

legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,5)
options.FreqUnits = 'Hz';
h=bodeplot (GANG5 p,GANG5 p CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', 'Hz', 'PhaseVisible', 'off');
title('G5: Noise Sensitivity CH/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 6)
options.FreqUnits = 'Hz';
h=bodeplot (GANG6 p,GANG6 p CurrentLoop,{10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off");
title('G6: Compl Sensitivity PCH/1+PCH'")
legend ('Withou current loop dynamic', 'With current loop dynamic')

% ———-- Pole-Zero Map -----

figure

subplot(3,2,1)

pzmap (GANG1 p)

title('Gl: Reference Tracking FPC/1+PCH')

subplot (3,2,2)
pzmap (GANGZ p)
title('G2: Ref to Controller Output FC/1+PCH')

subplot (3,2, 3)
pzmap (GANG3 p)
title('G3: Disturbance Rejection P/1+PCH')

subplot (3,2, 4)
pzmap (GANG4 p)
title('G4: Sensitivity 1/1+PCH'")

subplot (3,2,5)
pzmap (GANGS p)
title('G5: Noise Sensitivity CH/1+PCH'")

subplot (3,2, 6)
pzmap (GANG6_p)
title('G6: Compl Sensitivity PCH/1+PCH'")

s == Step Response —-----
figure
subplot(3,2,1)
% Step Response
[yy,tt]=1sim(GANGl p,theta ref* (pi/180),t);
lyy2,tt2]=1sim(GANGl p CurrentLoop,theta ref* (pi/180),t);
plot (tt,theta ref,'--',tt,yy*(180/pi),tt2,yy2*(180/pi), 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel('Position (degree)')
title('Gl: Reference Tracking FPC/1+PCH')

subplot (3,2,2)
[yy,tt]=1sim(GANG2 p,theta ref*(pi/180),t);
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[yy2,tt2]=1sim(GANG2 p CurrentLoop,theta ref* (pi/180),t);
plot (tt,yy,tt2,yy2, 'LineWidth',1); grid

xlabel ('Time (sec)');ylabel('i r e £ (A)")

title('G2: Ref to Controller Output FC/1+PCH'")

subplot (3,2, 3)
[yy,tt]=1sim(GANG3 p,theta ref*(pi/180),t);
[yy2,tt2]=lsim(GANGB_p_CurrentLoop,theta_ref*(pi/180),t);
plot(tt,yy,tt2,yy2, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('Amplitude")
title('G3: Disturbance Rejection P/1+PCH')

subplot (3,2, 4)
[yy,tt]=1sim(GANG4 p,theta ref*(pi/180),t);
[yy2,tt2]=lsim(GANG4_p_CurrentLoop,theta_ref*(pi/180),t);
plot(tt,yy,tt2,yy2, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('Amplitude")
title('G4: Sensitivity 1/1+PCH")

subplot (3,2,5)
[yy,tt]=1sim(GANG5 p,theta ref*(pi/180),t);
[yy2,tt2]=1sim(GANG5 p CurrentLoop,theta ref*(pi/180),t);
plot(tt,yy,tt2,yy2, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ("Amplitude’)
title('G5: Noise Sensitivity CH/1+PCH'")

subplot (3,2, 6)
[yy,tt]=1sim(GANG6 p,theta ref*(pi/180),t);
[yy2,tt2]=1sim(GANG6 p CurrentLoop,theta ref*(pi/180),t);
plot (tt,yy,tt2,yy2, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('Amplitude')
title('G6: Compl Sensitivity PCH/1+PCH'")

o
oe

[ Pole Placement with Voltage Drive ]

o\

Small Signal control using Linear Model

Linearized State Space Model (order: n=3)

x1= angular pos (theta), x2 = angular velocity (omega), x3 = current (i)
dX=A3*X+B3*u , u=coil voltage

y =C3*X+D3*u

fprintf ([ \n\n\n', ...

'Pole Placement with Voltage Drive'])

o o0 oo

o

A3 = [0 1 0
-ks/J -kd/J kt/J
0 -kb/Lc  -R/Lc];
B3 = [0
0
1/Lc];

oe

all states as output
= eye(3);
[0; 0; 017

Q

3
D3

o

% Angular Position Tracking
C3 act = [1 0 0];
D3 act = 0;

%Open-Loop System
sys3 = ss(A3,B3,C3,D3);
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% Controllability
Mc3 = ctrb(A3,B3) % Controllability Matrix
Mc3 = [B3 A3*B3 A3"2*B3]

rank Mc3=rank (Mc3) ;
if rank Mc3==3; disp(['It is ontrollable. Rank of Mc is ', num2str(rank Mc3)])
else; disp('It is NOT ontrollable')
end
% Observability
Mo3 = obsv(A3,C3 act) % Observability Matrix
Mo3 = [C3 act
C3_act*A3
C3_act*A3"2]

rank Mo3=rank (Mo3) ;

if rank Mo3==3; disp(['It is observable. Rank of Mo is ', num2str(rank Mo3)])
else; disp('It is NOT observable')
end

% Pole Placement
% Desired closed-loop poles on a circle with eadius of wn

lambda d3 = [-zeta*wn+i*wn*sqrt(l-zeta”2), -zeta*wn-i*wn*sqgrt(l-zeta”2), -wn];
% Desired characteristic Polynomial
phi d3 = @(S) (S"2+2*zeta*wn*S+wn"2*eye (size(S))) * (S+wn*eye (size(S)));

% Feedback Gains K3=[kl k2 k3] by Ackermann's formula
K3 = place (A3, B3, lambda d3)
K3=[0 0 1]*inv(Mc3)*phi d3(A3) % Ackermann's formula

% Untary gain for angular position tracking
G3 = -inv(C3_act*inv (A3-B3*K3) *B3)

%Closed-Loop System
sys3 cl = ss(A3-B3*K3,B3,C3,D3); % Controller

% Full-Order State Observer

% Desired closed-loop poles of the Observer

lambda e3 = [-10*wn, -10*wn, -10*wn]; % 5 to 10 times faster than controller
% Desired characteristic Polynomial

phi e3 = @(S) (S+10*wn*eye(size(S)))"3;

% Observer Gains L3=[L1 L2 L3] by Ackermann's formula

L3=acker (A3',C3 act', lambda e3)' % with Matlab

L3=phi e3(A3)*inv(Mo3)*[0 0 1]' % Ackermann's formula

% Eigenvalues of Controller, Observer and Compensator:

fprintf ('Eigenvalues of Controller, Observer and Compensator')
eig A BK 3 = eig(A3-B3*K3)

eig A LC 3 = eig(A3-L3*C3_act)

eig A BK LC 3 = eig(A3-B3*K3-L3*C3_act)

oe

Plots

Open-Loop Responses

figure; step(sys3); grid

title('Step Response (Open-Loop, Voltage Drive)')

o\

figure; pzmap (sys3)
title ('Open-Loop A, Voltage Drive')
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figure; bode(sys3); grid
title('Bode (Open-Loop, Voltage Drive)')

% Closed-Loop Responses

% Step Response
[yy3,tt3]=lsim(sys3_cl,G3*theta_ref*(pi/180),t);
u3=G3*theta ref* (pi/180)-K3*yy3'; % Control signal u=Vref

figure % subplot(4,1,1)
plot (tt3, theta ref, 'g--', ..

tt3-T ref, yy3(:,1)*(180/pi),'r',... % shifted by one period
Step theta VD(:,1) , Step theta VD(:,2),'k',... % Experiment
'LineWidth',1); grid

xlabel ('"Time (sec)');ylabel('Position (degree)')

x1im ([0 0.99*T ref]); ylim([-5.5 5.5])
legend ('Reference', '"Model', 'Experiment')
title('Step Response (Closed-Loop, Voltage Drive)')

figure % subplot(4,1,2)
(

plot (tt3-T ref, yy3(:,2),'r',... % shifted by one period
Step Velocity VD(:,1), Step Velocity VD(:,2),'k',... % Experiment

'LineWidth',1); grid

xlabel ('Time (sec)');ylabel ('Velocity (rad/sec)")
legend ('Model', "Experiment")

x1im ([0 0.99*T ref]); ylim([-180 180])

figure % subplot(4,1,3)
(

plot (tt3-T ref, yy3(:,3),'r',... % shifted by one period
Step Current VD(:,1), Step Current VD(:,2),'k',... %Experiment
'LineWidth',1); grid

xlabel ('Time (sec)');ylabel ('Current (A)"')

legend ('Model', "Experiment")
x1im ([0 0.99*T ref]); ylim([-0.35 0.35])

figure % subplot(4,1,4)
(

plot (tt3-T ref, u3,'r',... % shifted by one period
Step Voltage VD(:,1), Step Voltage VD(:,2),'k',... % Experiment
'LineWidth',1); grid
xlabel ('Time (sec)');ylabel('V c (v)")
1.2 1.2])

x1im ([0 0.99*T ref]); ylim([-
legend ('Model', "Experiment')

)

% pole-zero map
figure;
plot(real(eig A BK 3),imag(eig A BK 3), 'x',real(eig A LC 3),imag(eig A LC 3), 'x
L}

P

real (eig A BK LC 3),imag(eig A BK LC 3),'x','LineWidth',1)

legend ('Controller A-Bk (closed-loop)', 'Observer A-LC', 'Compensator A-BK-LC')
xlabel ('"Real Axis'); ylabel ('Imaginary Axis')
title('pole map (Pole Placement, Voltage Dive) ')

figure; bode(sys3 cl); grid
title('Bode (Closed-Loop, Voltage Drive)')

[ Frequency Responses ]J]-—————-—————————————————————
ff = logspace(1,4,2000);% frequency [Hz]
omegaa=2*pi*ff;
S = 1i * omegaa;
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Ts=1/(160000) ;

% Loop Transmission
for kk=1l:length(S)
LT3 delay(kk) = exp(-S(kk)*Ts) * K3*inv (S (kk)*eye (3)-A3)*B3; % with delay
(S(

LT3 (kk) = K3*inv kk) *eye (3) -A3) *B3;
end
figure
subplot(2,1,1)
semilogx (ff, 20*1logl0 (abs (LT3 delay)),'g',... % with delay

ff, 20*1logl0 (abs(LT3)),'r--',... % without delay
Freq expr VD, Mag LT VD expr, 'k--',...

'LineWidth',1.1); grid

ylabel ("Magnitude (dB) ")

x1im ([1071 1074])

subplot(2,1,2)

semilogx (ff, (180/pi)*angle (LT3 delay),'g',... % with delay
ff, (180/pi)*angle(LT3),'r--',... % without delay
Freq expr VD, Phase LT VD, 'k--",...
'LineWidth',1.1); grid

xlabel ('frequency (Hz)'); ylabel ('Angle (deg)")

legend ('Model with delay', 'Model', 'Expr'); title('Loop Transmission')

x1im([1071 1074]); ylim([-180 0]); yticks([-180, -90, 0])

for kk=1l:length(S)

Gl VD(kk) = G3*[1 0 0]*inv (S (kk)*eye(3)-(A3-B3*K3)) *B3;

Gl VD delay(kk) = exp(-S(kk)*Ts)*G3*[1 0 0]*inv (S (kk) *eye (3)-(A3-
B3*K3)) *B3;
end
figure

subplot(2,1,1)
semilogx (ff, 20*logl0 (abs (Gl VD delay)),'g',...
ff, 20*1loglO(abs (Gl VD)), 'r—=",...
Bode Gl VD(:,1), Bode Gl VD(:,2), 'k-=",...
'LineWidth',1); grid
ylabel ('"Magnitude (dB) ")
x1im ([1071 1074])
subplot (2,1, 2)
semilogx (ff, (180/pi) *unwrap (angle (Gl VD delay)),'g’, ...
ff, (180/pi)*unwrap(angle(Gl_VD)),'r——', .
Bode Gl VD(:,1), unwrap(Bode Gl VD(:,3)), " 'k-—-",...
'LineWidth',1); grid
xlabel ('frequency (Hz)'"); ylabel ('Angle (deg) ')
legend('Model with delay', 'Model', 'Expr'); title('Gang 1'")
x1im ([1071 3*1073])

o)

& ———————- Gang 4 ——————————-
% Loop Transmission
G4 delay = 1./(1+4LT3 delay);

figure
subplot(2,1,1)
semilogx (ff, 20*logl0 (abs (G4 delay)),'g',... % with delay
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ff, 20*1logl0O(abs(1./(1+LT3))), " 'r-=',... % without delay
Freq expr VD, Mag G4 VD, 'k--',... % obtained as 1/ (1+LT)
'LineWidth',1.1); grid
ylabel ("Magnitude (dB) ")
x1im ([107"1 10747)
subplot(2,1,2)

semilogx (ff, (180/pi)*angle (G4 delay),'g',... % with delay
ff, (180/pi)*angle(l./(1+LT3)),'r--',... % without delay

Freq expr VD, Phase G4 VD, 'k--",...

'LineWidth',1.1); grid
xlabel ('frequency (Hz)'"'); ylabel ('Angle (deg)")
legend ('Model with delay', 'Model', 'Expr'); title('Loop Transmission')
x1im ([10"1 10747)

o\
o°

[ Pole Placement with Current Drive ]
Small Signal using Linear Model
Linearized State Space Model (order: n=2)
x1= angular pos (theta), x2 = angular velocity (omega)
dX=A2*X+B2*u , u=coil current
y =C2*X+D2*u
fprintf ([’ \n\n\n', ...
'Pole Placement with Current Drive'])

o o o oP

oo

A2 = [0 1
-ks/J -kd/J];
B2 = [0
kt/J71;

o

all states as output
C2 = eye(2);
D2 = [0
0];

o\

Angular Position Tracking
C2 act = [1 0];
D2 act = [0];

% Controllability
Mc2 = ctrb(A2,B2) % Controllability Matrix
Mc2 [B2 A2*B2]

rank Mc2=rank (McZ2)

if rank Mc2==2; disp(['It is ontrollable. Rank of Mc is ', num2str(rank Mc2)])
else; disp('It is NOT ontrollable')

end

% Observability
Mo2 = obsv(A2,C2 act) % Observability Matrix
Mo2 = [C2_act

C2_act*AZ2]

rank Mo2=rank (MoZ2)

if rank Mo2==2; disp(['It is observable. Rank of Mo is ', num2str(rank Mo2)])
else; disp('It is NOT observable')

end

% Mechanical Dynamic:
G mech = tf([kt],[J kd ks]); % Torque/Icoil

%O0Open-Loop System
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sys2=ss (A2,B2,C2,D2);

o\°

Pole Placement

Desired clodes-loop poles: lambdal, lambdaZ2

Desired Characteristic Equation: Phi d=(lambda-lambdal) * (lambda-lambdaZ2)
Observability Matrix Mc=[B2, A2*B2]

Ackermann's formula: K=[0 1]*inv(Mc)*Phi d(A2)

o o0 oo

o\©

o
°

Desired closed-loop poles on a circle with eadius of wn

lambda d2 = [-zeta*wn+i*wn*sqrt(l-zeta”2), -zeta*wn-i*wn*sqrt(l-zeta”2)];
% Desired characteristic Polynomial

phi d2 = @(S) (S"2+2*zeta*wn*S+wn"2*eye (size(S)));

% Feedback Gains K2=[kl k2] by Ackermann's formula
K2 = place (A2, B2, lambda d2)

K2=[0 1]*inv(Mc2)*phi d2(A2) % Ackermann's formula
% Unitary gain for angular position tracking

G2 = -inv(C2_act*inv (A2-B2*K2) *B2)

%Closed-Loop System

% Without Current Loop Dynamic:

sys2 cl = ss(A2-B2*K2,B2,C2,D2);

With Current Loop Dynamic:

calculations: (G=system, H=Current Loop time inverse of DC gain)

(1) dX=A*X+B*u, y=C*X+D*u => G(s)=X(s)/U(s)=C*inv (sI-A)*B+D => X (s)=G(s)U(x)

(2) U(s)=H(s)*(R(s)-k*X(s))

(1)&(2) => X(s)=G(s)*H(s)*
=> (I+G(s)H(s)k)*X(s)=G(s)

GG2 = [G mech ; s*G mech]; %

velocity]

sys2 cl CurrentLoop = inv(eye(2)+GG2*G CurrentLoop*K2) *GG2*G_ CurrentLoop;

o 00 oo o°

o

(R(s)-k*X(s))=G(s)*H(s)*R(s)-G(s)*H(s)*k*X(s)
H(s)R(s) => X(s)=1inv ((I+G(s)H(s)k))*G(s)H(s)R(s)
Mechanical dynamic, input=Ic, outputs=[position,

oo

o

Full-Order State Observer

Desired closed-loop poles of the Observer

lambda e2 = [-10*wn, -10*wn]; % 5 to 10 times faster than controller
% Desired characteristic Polynomial

phi e2 = @(S) (S+10*wn*eye(size(S))) "2;

oo

% Observer Gains L2=[L1 L2] by Ackermann's formula
L2=acker (A2',C2 act', lambda e2)' % with Matlab

L2=phi e2(A2)*inv (Mo2)*[0 1]' % Ackermann's formula

% Eigenvalues of Controller, Observer and Compensator:

fprintf ('Eigenvalues of Controller, Full-Order Observer and Compensator')
eig A BK 2 = eig(A2-B2*K2)

eig A LC 2 = eig(A2-L2*C2_act)

eig A BK LC 2 = eig(A2-B2*K2-L2*C2 act)

A2 = [0 1
-ks/J -kd/J];
B2 = [0
kt/J1;

% Reduced-Order State Observer
% Partitioning of matrix A2 and B2
Aell = A2(1,1);

Ael2 A2(1,2);
Ae2l = A2(2,1);
Ae22 = A2(2,2);
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Be2 = B2(2);

% Observability

fprintf ('Reduced-Order Observer:')

Mo2 ro = obsv(Ae22,Ael2) % Observability Matrix (Aa=Ae22, C=Ael2)
Mo2 ro = [Rel2]

rank Mo2 ro=rank (Mo2 ro)

if rank Mo2 ro==1; disp(['It is observable. Rank of Mo is ',
num2str (rank Mo2 ro)])

else; disp('It is NOT observable')

end

Q

% Desired closed-loop poles of the Observer
lambda e2 ro = [-10*wn]; % 5 to 10 times faster than controller

% Desired characteristic Polynomial
phi e2 ro = @(S) (S+10*wn*eye(size(S)));

% Observer Gains L2=[L1 L2] by Ackermann's formula

L2 ro=acker (Ae22',Ael2', lambda e2 ro)' % with Matlab

L2 ro=phi e2 ro(Ae22)*inv(Mo2 ro)*[1]' % Ackermann's formula
L2 ro = -lambda e2 ro-kd/J % Hand calculations

fprintf ('Eigenvalues of Controller and Reduced-Order Observer')
eig A BK 2 = eig(A2-B2*K2)
eig A LC 2 ro = eig(Re22-L2 ro*Ael2)

oo

Plots

Open-Loop Responses

figure; step(sys2); grid

title ('Step Response (Open-Loop, Current Drive)')

o

figure; pzmap (sys2)
title('Open-Loop A, Current Drive')

figure; bode(sys2); grid
title ('Bode (Open-Loop, Current Drive)')

o

Closed-Loop Responses

Step Response

s Without Dynamic of Current Loop
[yy2,tt2]=1sim(sys2 cl,G2*theta ref* (pi/180),t);
u2=G2*theta ref* (pi/180)-K2*yy2'; % Control signal u=Iref

% With Dynamic of Current Loop

[yy2 CurrentLoop,tt2 CurrentLoop] =

lsim(sys2 cl CurrentLoop,G2*theta ref* (pi/180),t);

u2 CurrentLoop = G2*theta ref* (pi/180)-K2*yy2 CurrentLoop'; % Control signal
u=Iref

o\

o

oe

Coil current Ic

Without Dynamic of Current Loop

lyy ic_i,tt _ic i]=1sim((1/DC_gain CurrentLoop NonPureIntegrator)*GANGil,u2 Curr
entLoop, tt2 CurrentLoop);

% With Dynamic of Current Loop

[yy_ic,tt _icl=1sim((1/DC _gain CurrentLoop NonPurelntegrator)*GANGl,u2 CurrentLo
op,tt2 CurrentLoop) ;

o\

% Coil Viltage
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% Without Dynamic of Current Loop

[yy ve i,tt vec i]=1sim((1/DC_gain CurrentLoop NonPureIntegrator)*GANGi2,u2 Curr
entLoop, tt2 CurrentLoop);

% With Dynamic of Current Loop

[yy vc,tt vel=lsim((1/DC gain CurrentLoop NonPurelntegrator)*GANG2,u2 CurrentLo
op,tt2 CurrentLoop) ;

figure % subplot(5,1,1)
(

plot (tt2, theta ref,'g--',... % reference
L% tt2-T ref, yy2(:,1)*(180/pi),... % without current loop dynamic
tt2 CurrentLoop-T ref, yy2 CurrentLoop(:,1)*(180/pi),'r',... % with
current loop dynamic
Step theta CD(:,1) , Step theta CD(:,2),'k--',... % Experiment,

steady state error=0.005
'LineWidth',1); grid
title('Step Response (Closed-Loop, Current Drive)')
legend('Reference \theta r e f','\theta without current loop dynamicp',...
'\theta with current loop dynamic', 'Experiment')
xlabel ('Time (sec)');ylabel ('Position (degree) ')
x1im ([0 0.99*T ref]); ylim([-5.5 5.5])

figure % subplot(5,1,2)
plot(...% tt2-T ref, yy2(:,2),...
tt2 CurrentLoop-T ref, yy2 CurrentlLoop(:,2),'r',... % with current loop
dynamic
Step Velocity CD(:,1), Step Velocity CD(:,2), 'k-—-",...
'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('Velocity (rad/sec)")
legend ('Without current loop dynamic', 'With current loop dynamic', ...
'Experiment’')
x1im ([0 0.99*T ref]); ylim([-270 270])

figure % subplot(5,1,3)
(.

plot(...% tt2-T ref, u2,... % without current loop dynamic
tt2 CurrentLoop-T ref, u2 Currentloop,'r',... % with current loop
dynamic, Iref a a
Step DAC CD largelO(:,1), Step DAC CD largelO(:,2),'k--',... % data for

5deg is missing, so 10 is used with scaling, it is multiplied by Iref=-
(R2/R1) *DAC
'LineWidth',1); grid
xlabel ('Time (sec)');ylabel('u=i r e £ (A)")
legend ('Without current loop dynamic', 'With current loop
dynamic', 'Experiment')
x1im ([0 0.99*T ref]); ylim([-1.4 1.4])

figure % subplot(5,1,4)
plot(...% tt_ic i-T ref,yy ic i,... % without current loop dynamic
tt ic-T ref,yy ic,'r',... % with current loop dynamic, Ic
Step Current CD(:,1) , Step Current CD(:,2),'k--',...
'LinewWidth',1); grid
xlabel ('Time (sec)');ylabel('I c (A)")
legend ('Without current loop dynamic','With current loop
dynamic', 'Experiment')
x1im ([0 0.99*T ref]); ylim([-1.4 1.4])

figure % subplot(5,1,5)
plot(...%tt ve i-T ref, yy vc i,... % without current loop dynamic
tt ve-T ref, yy vc,... % with current loop dynamic
Step Voltage CD(:,1), Step Voltage CD(:,2),...
'LineWidth',1); grid
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xlabel ('Time (sec)');ylabel('V c (v)")
legend ('Without current loop dynamic','With current loop dynamic')

o)

% pole-zero map
figure;
plot(real(eig A BK 2),imag(eig A BK 2), 'x',real(eig A IC 2),imag(eig A LC 2),'x
P
real (eig A BK LC 2),imag(eig A BK LC 2),'x','LineWidth',6 1)
legend('Controller A-Bk (closed-loop)','Full-Order Observer A-LC', 'Compensator
A-BK-LC"')
xlabel ('Real Axis'); ylabel ('Imaginary Axis')
title('pole map (Pole Placement, Voltage Dive)')

figure;
plot(real(eig A BK 2),imag(eig A BK 2), 'x',real(eig A LC 2 ro),imag(eig A LC 2
ro) ...
,'x', '"LineWidth', 1)
legend('Controller A-Bk (closed-loop)', 'Reduced-Order Observer A-LC')
xlabel ('Real Axis'); ylabel('Imaginary Axis')
title('pole-zero map (Pole Placement, Voltage Dive)')

figure; bode(sys2 cl,sys2 cl CurrentLoop); grid
title('Bode (Closed-Loop, Current Drive)')
legend ('Without current loop dynamic', 'With current loop dynamic')

% Large signal: =10 to 10 degrees
figure % subplot(5,1,1)
plot(tt2, theta ref,'g--',... % reference

L% tt2-T ref, yy2(:,1)*(180/pi),... % without current loop dynamic
tt2 CurrentLoop-T ref, yy2 CurrentLoop(:,1)*(180/pi),'r',... % with
current loop dynamic
Step theta CD largelO(:,1) , Step theta CD largelO(:,2),'k--"',...
Experiment, steady state error=0.005
'LineWidth',1); grid
title('Step Response (Closed-Loop, Current Drive)')
legend('Reference \theta r e f','\theta with current loop
dynamic', 'Experiment') S
xlabel ('Time (sec)');ylabel ('Position (degree) ')
x1im ([0 0.99*T ref]); ylim([-10.5 10.5])

o

figure % subplot(5,1,4)
(.

plot(...% tt _ic i-T ref,yy ic i,... % without current loop dynamic

tt _ic-T ref,yy ic,'r',... % with current loop dynamic
Step Current CD largelO(:,1) , Step Current CD largelO(:,2),'k',...
'LineWidth',1); grid
xlabel ('Time (sec)');ylabel('I c (A)")
legend ('Without current loop dynamic', 'With current loop
dynamic', 'Experiment')
x1im ([0 0.99*T ref]); ylim([-2.4 2.4])

T e [ Frequency Responses ]J]-———————————————————————————
ff = logspace(1,4,2000);% frequency [Hz]

omegaa=2*pi*ff;

S = 1i * omegaa;

% Loop Transmission

Ts=1/(30e3);

for kk=1l:length (S)
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LT2 delay(kk) = exp(-S(kk)*Ts) * K2*inv (S (kk)*eye(2)-A2)*B2; % with delay
LT2 (kk) = K2*inv (S (kk) *eye (2)-A2) *B2;
end
figure
subplot(2,1,1)
semilogx (ff, 20*1ogl0 (abs(LT2 delay)),'g',... % with delay
ff, 20*1logl0 (abs(LT2)),'r--',... % without delay
Bode LT CD(:,1), Bode LT CD(:,2), 'k-—=",...
'LineWidth',1.1); grid
ylabel ("Magnitude (dB) ")
x1im([1071 1074]); ylim([-30 37])
subplot(2,1,2)
semilogx (ff, (180/pi)*unwrap (angle(LT2 delay)),'g',... % with delay
ff, (180/pi)*angle(LT2),'r--',... % without delay

Bode LT CD(:,1), Bode LT CD(:,3), 'k-—=",...

'LineWidth',1.1); grid
xlabel ('frequency (Hz)'"'); ylabel ('Angle (deg)")
legend ('Model with delay', 'Model', 'Expr'); title('Loop Transmission')
x1im ([107"1 107471); ylim([-220 3])

)

% ———————— Gang 1 —-——===————-

ff = logspace(l,4,2000);% frequency [Hz]
omegaa=2*pi*ff;

S = 11 * omegaa;

Ts=1/(16e3);

exp (=S (kk) *Ts) ;

for kk=1l:length(S)

Gl CD(kk) = G2*[1 0]*inv (S (kk)*eye(2)-(A2-B2*K2)) *B2;

Gl CD_delay(kk) = exp(-S(kk)*Ts)* G2*[1 0]*inv (S (kk) *eye (2)-(A2-B2*K2)) *B2;
end
figure

subplot(2,1,1)
semilogx (ff, 20*logl0 (abs (Gl _CD delay)),'g',...
ff, 20*logl0(abs (Gl CD)),'r--",...
Bode Gl CD(:,1), Bode Gl CD(:,2), 'k-——=",...
'LineWidth',1); grid
ylabel ("Magnitude (dB)'"); x1im([10"1 1074])
subplot (2,1,2)
semilogx (ff, (180/pi) *unwrap (angle (Gl CD delay)),'g’, ...
ff, (180/pi)*unwrap(angle(Gl CD)), 'r—-",...
Bode Gl CD(:,1), unwrap(Bode Gl CD(:,3)), " 'k-—-",...
'LineWidth',1); grid
xlabel ('frequency (Hz)'"'); ylabel('Angle (deg)')
legend ('Model with delay', 'Model', 'Expr'); title('Gang 1'"); x1lim([10"1
3*107317)

o)

& ———————- Gang 4 ——————————-
% Loop Transmission
G4 CD delay = 1./(1+LT2 delay);

figure
subplot(2,1,1)
semilogx (ff, 20*1logl0(abs (G4 CD delay)),'g',... % with delay
ff, 20*1logl0O(abs(1l./(1+LT2))), " 'r-=-',... % without delay
Freqg expr CD, Mag G4 CD,'k--',... % obtained as 1/ (1+LT)
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'LineWidth',1.1); grid

ylabel ("Magnitude (dB) ")

x1im ([107"1 107417)

subplot(2,1,2)

semilogx (ff, (180/pi)*angle(G4 CD delay),'g',... % with delay
ff, (180/pi)*angle(l./(1+LT2)),'r--',... % without delay
Freq expr CD, Phase G4 CD, 'k--",...
'LineWidth',1.1); grid

xlabel ('frequency (Hz)'"'); ylabel ('Angle (deg)")

legend ('Model with delay', 'Model', 'Expr'); title('Sensitivity')

x1im ([107"1 10747)

o\
o°

[ Nonlinear Control in Frequency Domain ]
Feedback Linearization, Current Drive, Frequency Domain
Nonlinear Model

o©

o\°

% dxl = x2

% dx2 = f(x)+g(x)*u(t) = v , u=coil current
% Nonlinear Compensation v = f+g*u

% u=(v-f)/g

oo

Linear Model with input v (compensated with feedback linearization v=f+g*u)
dxl = x2

dx2 = v

Lead-Lag Control

o° oo

o

fprintf ([’ \n\n\n', ...
'Nonlinear Control in Frequency Domain'])

s=tf('s");

% Mechanical Dynamic:
G mech nl = tf([1],[1 O 0]); % Torque/Icoil

% Lead-Lag Compenstor: Kp * (1+Ki/s) * (alpha*tau*s+1)/ (tau*s+1)
$Lag:

Ki nl=0;%wc/10 % One decade before wc

C lg nl=1+Ki nl/s; % Lag

% Lead:

alpha nl=10; % pole-zero ratio to get a phase compensation of 55 degrees
tau nl=1/(wc*sqgrt (alpha nl))

% tau=le-4 % rounding

C_ld_nl=(alpha_nl*tau_nl*s+1)/(tau_nl*s+1); $ Lead

% Loop Gain Kp

G_aux nl = C_1lg nl*C_1d nl*G mech nl; % Loop Transmision excluding Kp
[mag nl,phase nl,wout] = bode(G aux nl,wc); % calculating magnitude at wc
Kp nl = 1/mag nl % calculating Kp as the gain required to have unity loop
magnitude at wc

Q

Phase margin nl = 180+phase nl % Phase margin
% Position Controller

Cp nl=Kp nl * C 1g nl * C 1d nl;

% Loop Transmission

LT nl = Cp nl * G mech nl; % Without current loop dynamic

LT nl CurrentLoop=Cp_nl*G mech nl*G CurrentLoop; % With current loop dynamic
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F nl = 1; % input block

P nl=G mech nl; % Mechanical Dynamic, Without current loop dynamic

P nl CurrentLoop=G mech nl*G CurrentLoop; % Mechanical Dynamic, With current
loop dynamic

C nl = Cp nl; % Lead-Lag Compensator

H nl = 1; % Low-pass filter

§ —mmmmmm [ Current Loop, Loop Transmission PCH]---—-----——-————-———-—-
options = bodeoptions;
options.FreqUnits = 'Hz';

bode (G mech nl,options); grid; title ('Bode: Mechanical Dynamic H m=1/s"2")
title('Nonlinear Control, Frequency Domain')

figure; bode(C 1g nl,C 1d nl,C 1g nl*C 1d nl); grid
legend('Lag', '"Lead', 'Lead-Lag"')
title('Nonlinear Control, Frequency Domain')

figure; bode (LT nl,Cp nl,G mech nl); grid
legend('Loop Tranmission', 'Compensator C p','Plant H m'")
title('Bode, Without current loop dynamic')

figure; bode (LT nl CurrentLoop,Cp,G mech nl,G CurrentLoop); grid
legend('Loop Tranmission', 'Compensator C p','Plant H m','Current Loop')
title('Bode, With current loop dynamic')

§ —mmmm————- [Gang 1: Closed-Loop Reference Tracking FPC/1+4PCH]------------
% Reference tracking PCF/1+PCH
GANG1 nl = F nl*P nl*C nl/(1+P nl*C nl*H nl); % Closed-Loop

GANGl:nl_CurrentLoop =
F nl*P nl CurrentLoop*C nl/(14+P nl CurrentLoop*C nl*H nl); % Closed-Loop, with
current-loop dynamic

$ ——————- [Gang 2: Reference to Controller output v(t), FC/1+PCH]------

GANGZ nl = F nl*C nl/(1+P_nl*C nl*H nl); % Closed-Loop

GANG2 nl CurrentLoop = F nl*C nl/(1+P nl CurrentLoop*C nl*H nl); % Closed-Loop,
with current-loop dynamic

§ —m————————— [Gang 3: Disturbance Rejection P/1+PCH]------——=--—-————-
% Disturbance to plant output
GANG3 nl = P nl/(1+P_nl*C nl*H nl % Closed-Loop

)7
GANG3 nl CurrentLoop = P _nl CurrentLoop/(1+P _nl CurrentLoop*C nl*H nl); %
Closed-Loop, with current-loop dynamic

§ —mmmm [Gang 4: Sensitivity 1/1+PCH]---------—————————————-—
% measurement noise to plant output
GANG4_nl = 1/(14P_nl*C nl*H nl); % Closed-Loop

GANG4 nl CurrentLoop = 1/(14+P nl CurrentLoop*C nl*H nl); % Closed-Loop, with
current-loop dynamic

§ —mmm [Gang 5: Noise Sensitivity CH/1+PCH]---------—-———————
% Noise to controller output
GANG5 nl = C_nl*H nl/(1+P_nl*C nl*H nl); % Closed-Loop

GANG5 nl CurrentLoop = C nl*H nl/(1+P_nl CurrentLoop*C nl*H nl); % Closed-Loop,
with current-loop dynamic

§ —mmm————————— [Gang 6: Complementary Sensitivity PCH/1+PCH]----—--=——=-—-
% Disturbance to controller output
GANG6_nl = P nl*C nl*H nl/(1+P_nl*C nl*H nl); % Closed-Loop
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GANG6 nl CurrentLoop =
P nl CurrentLoop*C nl*H nl/(1+P_nl CurrentLoop*C nl*H nl); % Closed-Loop, with
current-loop dynamic

g ———- [ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------

s ———-- Bode Plot —-----
f bode=le5; Sfrequency range to plot

figure
subplot(3,2,1)
options.FreqUnits = 'Hz';
h=bodeplot (GANG1 nl,GANGl nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('Gl: Reference Tracking FPC/1+PCH')
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,2)
options.FreqUnits = 'Hz';
h=bodeplot (GANG2 nl,GANG2 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz");
title('G2: Ref to Controller Output v(t), FC/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 3)
options.FreqUnits = 'Hz';
h=bodeplot (GANG3 nl,GANG3 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('G3: Disturbance Rejection P/1+PCH')
legend ('Withou current loop dynamic', 'With current loop dynamic')

subplot (3,2, 4)
options.FreqUnits = 'Hz';
h=bodeplot (GANG4 nl,GANG4 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', "Hz");
title('G4: Sensitivity 1/1+PCH")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,5)
options.FreqUnits = 'Hz';
h=bodeplot (GANG5 nl,GANG5 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
title('G5: Noise Sensitivity CH/1+PCH'")
legend ('Withou current loop dynamic', 'With current loop dynamic')

subplot (3,2, 6)
options.FreqUnits = 'Hz';
h=bodeplot (GANG6 nl,GANG6 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', "Hz'");
title('G6: Compl Sensitivity PCH/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

& ————= Magnitude-only Bode Plot -----
figure
subplot(3,2,1)

options.FreqUnits = 'Hz';

h=bodeplot (GANG1 nl,GANGl nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', "Hz");
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setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off");
title('Gl: Reference Tracking FPC/1+PCH')
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,2)
options.FreqUnits = 'Hz';
h=bodeplot (GANG2 nl,GANG2 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off");
title('G2: Ref to Controller Output v(t), FC/1+PCH')
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 3)
options.FreqUnits = 'Hz';
h=bodeplot (GANG3 nl,GANG3 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', 'Hz', 'PhaseVisible', 'off');
title('G3: Disturbance Rejection P/1+PCH')
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,4)
options.FreqUnits = 'Hz';
h=bodeplot (GANG4 nl,GANG4 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', '"Hz', 'PhaseVisible', 'off');
title('G4: Sensitivity 1/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,5)
options.FreqUnits = 'Hz';
h=bodeplot (GANG5 nl,GANG5 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', '"Hz', 'PhaseVisible', 'off');
title('G5: Noise Sensitivity CH/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 06)
options.FreqUnits = 'Hz';
h=bodeplot (GANG6 nl,GANG6 nl CurrentLoop, {10,f bode}); grid;
setoptions (h, 'FreqUnits', 'Hz'");
setoptions (h, 'FreqUnits', "Hz', 'PhaseVisible', 'off");
title('G6: Compl Sensitivity PCH/1+PCH'")
legend ('Withou current loop dynamic', 'With current loop dynamic')

5 ————- Pole-Zero Map —--—-—--
figure
subplot(3,2,1)

pzmap (GANG1 nl)

title('Gl: Reference Tracking FPC/1+PCH'")
subplot (3,2, 2)

pzmap (GANG2 nl)

title('G2: Ref to Controller Output v(t), FC/1+PCH'")
subplot (3,2, 3)

pzmap (GANG3 nl)

title('G3: Disturbance Rejection P/1+PCH')
subplot (3,2, 4)

pzmap (GANG4 nl)

title('G4: Sensitivity 1/1+PCH'")
subplot (3,2,5)

pzmap (GANG5 nl)

title('G5: Noise Sensitivity CH/1+PCH'")
subplot (3,2, 6)
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pzmap (GANG6 nl)
title('G6: Compl Sensitivity PCH/1+PCH')

5 —==== Step Response -----

figure

subplot(3,2,1)

% Step Response

[yy position,tt]=1sim(GANG1l nl, theta ref* (pi/180),t);

[yy position CurrentLoop,tt2]=1sim(GANGl nl CurrentLoop,theta ref*(pi/180),t);
plot (tt, theta ref,'--
',tt,yy position*(180/pi),tt2,yy position CurrentLoop* (180/pi), 'LineWidth',1);
grid
xlabel ('Time (sec)');ylabel('Position (degree)')
title('Gl: Reference Tracking FPC/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,2)
[yy v,tt]=1sim(GANG2 nl,theta ref*(pi/180),t);
[yy v _CurrentLoop, tt2]=1sim(GANG2 nl CurrentLoop,theta ref* (pi/180),t);
plot(tt,yy v,tt2,yy v CurrentLoop, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel('v(t)")
title('G2: Ref to Controller Output v(t), FC/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 3)
[yy,tt]l=1sim(GANG3 nl, theta ref*(pi/180),t);
[yy2,tt2]=1sim(GANG3 nl CurrentLoop,theta ref*(pi/180),t);
plot (tt,yy,tt2,yy2, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('Amplitude')
title('G3: Disturbance Rejection P/1+PCH')
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,4)
[yy,tt]l=1sim(GANG4 nl, theta ref*(pi/180),t);
[yy2,tt2]=1sim (GANG4 nl CurrentLoop,theta ref*(pi/180),t);
plot (tt,vyy,tt2,yy2, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('Amplitude')
title('G4: Sensitivity 1/1+PCH")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2,5)
[yy,tt]=1sim(GANG5 nl, theta ref*(pi/180),t);
[yy2,tt2]=lsim(GANGS_nl_CurrentLoop,theta_ref*(pi/180),t);
plot (tt,yy,tt2,yy2, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('Amplitude')
title('G5: Noise Sensitivity CH/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

subplot (3,2, 6)
[yy,tt]=1sim(GANG6 nl, theta ref*(pi/180),t);
lyy2,tt2]=1sim(GANG6 nl CurrentLoop,theta ref*(pi/180),t);
plot(tt,yy,tt2,yy2, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('Amplitude')
title('G6: Compl Sensitivity PCH/1+PCH'")
legend ('Withou current loop dynamic','With current loop dynamic')

o\

oe

Velocity
Without Dynamic of Current Loop
Ref2Velocity = s*GANGl nl;

o\
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[yy velocity,tt]=1sim(Ref2Velocity,theta ref*(pi/180),t); % Velocity
% Without Dynamic of Current Loop

Ref2Velocity CurrentLoop = s*GANGl nl CurrentLoop;

[yy_velocity CurrentLoop,tt2]=lsim(Ref2Velocity CurrentLoop,theta ref* (pi/180),
t); % Velocity

% Plot

figure; plot(tt,yy velocity,tt2,yy velocity CurrentLoop, 'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('velocity(rad/sec)"')

title('Nonlinear Control, Frequency Domain')

legend ('Withou current loop dynamic','With current loop dynamic')

% Current Reference Iref: u=(v-f)/g
% Without Dynamic of Current Loop

u2nl Iref = ( yy v-(1/J)*(-kd*yy velocity-Krest.*sin(2*yy position)) )./ (
kt*cos (yy position)/J );

% With Dynamic of Current Loop, Ic=G CurrentLoop*Iref

u2nl Iref CurrentLoop = ( yy v-(1/J)*(-kd*yy velocity CurrentLoop-
Krest.*sin (2*yy position CurrentLoop)) )./ ( kt*cos(yy position CurrentLoop)/J
) i

[u2nl Ic,tt]=1sim(G CurrentLoop,u2nl Iref CurrentLoop,tt); % Ic

figure; plot(tt,u2nl Iref,tt2,u2nl Iref CurrentLoop,tt2,u2nl Ic, 'LineWidth',1);
grid

xlabel ('Time (sec)');ylabel('Iref, Ic(A)")

title('u=I r e f, Nonlinear Control, Frequency Domain')

legend ('Withou current loop dynamic u=Iref=Ic','With current loop dynamic,
u=Iref', '"With current loop dynamic, Ic')

oo
o©

[Nonlinear Control with Pole Placement]
Feedback Linearization, Current Drive, State Space Control
Nonlinear Model

o

oo

% dxl = x2

% dx2 = f(x)+g(x)*u(t) = v , u=coil current
% Nonlinear Compensation v = f+g*u

% u=(v-f)/g

o\

Linear Model with input v (compensated with feedback linearization v=f+g*u)
dxl = x2

s dx2 = v

fprintf ([’ \n\n\n', ...

'Nonlinear Control with Pole Placement'])

o

o

A2nl = [0 1

0 01;
B2nl = [0

1];

oe

All states as output
C2nl = eye(2);
D2nl = [0

01;

% Angular Position Tracking
C2nl_act = [1 0];
D2nl _act = [0];

oe

Controllability
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Mc2nl = ctrb(A2nl,B2nl); % Controllability Matrix

rank Mc2nl=rank (Mc2nl)

if rank Mc2nl==2; disp(['It is ontrollable. Rank of Mc is ',
num2str (rank Mc2nl)])

else; disp('It is NOT ontrollable')

end

% Observability

Mo2nl = obsv(A2nl,C2nl); % Observability Matrix

rank Mo2nl=rank (Mo2nl)

if rank Mo2nl==2; disp(['It is observable. Rank of Mo is ',
num2str (rank Mo2nl)])

else; disp('It is NOT observable')

end

%Open-Loop System
sys2nl=ss (A2nl,B2nl,C2nl,D2nl);

oo

Pole Placement

Desired clodes-loop poles: lambdal, lambdaZ2

Desired Characteristic Equation: Phi d=(lambda-lambdal) * (lambda-lambdaZ2)
Observability Matrix Mc=[Blnl, Alnl*Blnl]

Ackermann's formula: K=[0 1]*inv(Mc)*Phi d(A2nl)

o° o o°

oo

oo

Desired closed-loop poles
lambdal=-zeta*wn+i*wn*sqgrt (1-zeta”"2);
lambda2=-zeta*wn-i*wn*sqrt (l-zeta”2);

lambda d2nl=[lambdal lambdaZ2];

% Desired characteristic Polynomial

phi d2nl = @ (S) (S"2+2*zeta*wn*S+wn”"2*eye (size(S)));

% Feedback Gains

% K2nl= place(A2nl, B2nl, lambda d2nl)

K2nl =[lambdal*lambda?2 - (lambdal+lambda2)] % Solving equations
K2nl = place(A2nl, B2nl, lambda d2nl)

K2nl =[0 1]*inv(Mc2nl)*phi d2nl (A2nl) % Ackermann's formula

o

Unitary gain for angular position tracking
C act2 = [1 0];
G2nl = -inv(C_act2*inv(A2nl-B2nl*K2nl) *B2nl)

%$Closed-Loop System

% Without Current Loop Dynamic:

sys2nl cl=ss(A2nl-B2nl*K2nl,B2nl,C2nl,D2nl);

With Current Loop Dynamic:

calculations: (G=system, H=Current Loop time inverse of DC gain)

(1) dX=A*X+B*u, y=C*X+D*u => G(s)=X(s)/U(s)=C*inv (sI-A)*B+D => X (s)=G(s)U(x)
(2) U(s)=H(s)*(R(s)-k*X(s))

(1)&(2) => X(s)=G(s)*H(s)*(R(s)-k*X(s))=G(s)*H(s)*R(s)-G(s)*H(s)*k*X(s)

=> (I+G(s)H(s)k)*X(s)=G(s)H(s)R(s) => X(s)=inv ((I+G(s)H(s)k))*G(s)H(s)R(s)
GG2 nl = [1/s"2 ; 1/s]; % Mechanical dynamic, input=Ic, outputs=[position,
velocity]

sys2nl cl CurrentLoop =

inv (eye (2)+GG2 nl*G CurrentLoop*K2nl)*GG2 nl*G CurrentLoop;

o o0 o o o

o

o\

Plots

Open-Loop Responses

figure; step(sys2nl); grid

title ('Step Response (Open-Loop, Nonlinear Control by Pole Placement)')

oe

figure; pzmap(sys2nl)
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title('Open-Loop A, Nonlinear Control by Pole Placement')

figure; bode(sys2nl); grid
title('Bode (Open-Loop, Nonlinear Control by Pole Placement) ')

% Closed-Loop Responses

% Step Response

% Without Dynamic of Current Loop, u=Iref=Ic

[yy2nl,tt2nl] = lsim(sysan_cl,G2nl*theta_ref*(pi/lSO),t);

v2nl = G2nl*theta ref* (pi/180)-K2nl*yy2nl'; % v (t)

u2nl Iref = ( v2nl-(1/J)* (-kd*yy2nl(:,2)'-Krest.*sin(2*yy2nl(:,1)")) )./ (
kt*cos (yy2nl(:,1)")/J );

% With Dynamic of Current Loop, u=Iref, Ic=G CurrentLoop*Iref

[yy2nl CurrentLoop,tt2nl CurrentLoop]=lsim(sys2nl cl CurrentLoop,G2nl*theta ref
*(pi/180),t);

v2nl CurrentLoop=G2nl*theta ref* (pi/180)-K2nl*yy2nl CurrentLoop'; % Control
signal u=Iref

uz2nl Iref CurrentLoop = ( v2nl_CurrentLoop—(l/J)*(—kd*yy2nl(:,2)'—
Krest.*sin (2*yy2nl (:,1) ")) )./ ( kt*cos(yy2nl(:,1)")/J );

[u2nl Ic CurrentLoop,tt2nl CurrentLoopl=lsim(G CurrentLoop,u2nl Iref CurrentLoo
p,tt2nl); % Velocity

o

Coil Viltage

Without Dynamic of Current Loop

[yy ve i,tt vc i]=1sim((1/DC_gain CurrentLoop NonPureIntegrator)*GANGi2,u2nl Ir
ef CurrentLoop,tt2nl CurrentLoop);

% With Dynamic of Current Loop

[yy_vc,tt vel=lsim((1/DC _gain CurrentLoop NonPurelntegrator)*GANG2,u2nl Iref Cu
rrentLoop, tt2nl CurrentLoop) ;

oo

figure % subplot(6,1,1)
plot (tt2nl-T ref,theta ref, 'g--',...
.5 tt2nl—T_ref,yy2nl(:,1)*(180/pi),... % withoiut current-loop
dynamic
tt2nl CurrentLoop-T_ ref,yy2nl CurrentLoop(:,1)*(180/pi),'r"',... % with

current-loop dynamic
Step theta NL SS10(:,1), Step theta NL SS10(:,2),'k--",...
'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('Position (degree) ")
title('Step Response (Closed-Loop, Nonlinear Control by Pole Placement)')
legend('Reference \theta r e f','\theta with current loop dynamic',
'Experiment')
x1im ([0 0.99*T ref]); ylim([-10.5 10.5])

figure % subplot(6,1,2)

plot(...% tt2nl-T ref,yy2nl(:,2),...
tt2nl CurrentLoop-T ref,yy2nl CurrentLoop(:,2),'r',...
Step Velocity NL SS10(:,1), Step Velocity NL SS10(:,2),'k--"',...
'LineWidth',1); grid

xlabel ('Time (sec)');ylabel ('Velocity (rad/sec)')

legend ('With current loop dynamicu=Iref', 'Experiment')

x1im ([0 0.99*T ref]); ylim([-550 550])

figure % subplot (6,1, 3)
plot(...% tt2nl-T ref,u2nl Iref,...
tt2nl CurrentLoop-T ref,u2nl Iref CurrentLoop,'r',...
Step DAC_NL_SS10(:,1), (10/5.1)*Step DAC_NL SS10(:,2), 'k-=",...
Iref=- (R2/R1) *DAC

oe
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'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('u=Iref, Ic (A)")
legend ('With current loop dynamic, u=Iref', 'Experiment')
x1im ([0 0.99*T ref]); ylim([-3 3])

figure % subplot (6,1,4)
plot (tt2nl CurrentLoop-T ref,u2nl Ic CurrentLoop,'r',...
Step Current NL SS10(:,1), Step Current NL SS10(:,2),'k--',...
'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('u=Iref, Ic (A)")
legend('Ic With current loop dynamic', 'Experiment')
x1im ([0 0.99*T ref]); ylim([-3 3])

figure % subplot(6,1,5)
plot(tt vc i-T ref,v2nl, ...
tt vc-T ref,v2nl CurrentLoop, ...
'LineWidth',1); grid
xlabel ('Time (sec)');ylabel('signal v(t)")
legend ('Without current loop dynamic','With current loop dynamic')

figure % subplot(6,1,6)
plot (tt2nl-T ref,yy vc 1i,...
tt2nl-T ref,yy vc,...
.%% Experiment includes missing data when saved fromscope
'LineWidth',1); grid
xlabel ('Time (sec)');ylabel ('V c(t)")
legend ('Without current loop dynamic','With current loop dynamic',
'Experiment')

)

figure; pzmap(sys2nl cl); % grid([0.2 0.4 0.6 0.8 1], [wn]); axis equal
title('Closed-Loop A-BK, Nonlinear Control by Pole Placement')

figure; bode(sys2nl cl,sys2nl cl CurrentLoop); grid
title('Bode (Closed-Loop, Nonlinear Control by Pole Placement) ')
legend('Without current loop dynamic', 'With current loop dynamic')

% Tommmmmm oo [ Frequency Responses ]--—-—-——-—————-——-————————————-——
ff = logspace(1,4,2000);% frequency [Hz]

omegaa=2*pi*ff;

S = 1i * omegaa;

)

% Loop Transmission
Ts=1/(100e3);
for kk=1l:1length(S)

LT2 nl delay(kk) = exp(-S(kk)*Ts) * K2nl*inv (S (kk)*eye(2)-A2nl)*B2nl; %
with delay

LT2 nl(kk) = K2nl*inv (S (kk)*eye(2)-A2nl)*B2nl;
end
figure
subplot(2,1,1)

semilogx (ff, 20*1ogl0 (abs(LT2 nl delay)),'g',... % with delay

ff, 20*1logl0(abs(LT2 nl)),'r--',... % without delay

'LineWidth',1.1); grid

ylabel ("Magnitude (dB) ")

x1im ([1071 1074])
subplot(2,1,2)
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semilogx (ff, (180/pi)*angle(LT2 nl delay),'g',... % with delay
ff, (180/pi)*angle(LT2 nl),'r--',... % without delay
'LineWidth',1.1); grid

xlabel ('frequency (Hz)'); ylabel ('Angle (deg)')

legend ('Model with delay','Model'); title('Loop Transmission')

x1im ([107"1 10747)

T —mm————- Gang 1 --——-—=—-——-—-

ff = logspace(1,4,2000);% frequency [Hz]
omegaa=2*pi*ff;

S = 1i * omegaa;

Ts=1/(22e3);

% double integrator, PD and Loop Transmission and Gang 1 with Model
DI = 1./S.72;

DI delay = exp(-S*Ts)./S."2;

PD = wn"2 + 2*zeta*wn*S; % PD, rest of the loop

LT = DI.*PD;

LT delay = exp(-S*Ts) .*DI.*PD; % LT with delay

for kk=1l:length(S)

Gl nl(kk) = G2nl*[1 0]*inv (S (kk)*eye(2)-(A2n1-B2nl*K2nl)) *B2nl;
Gl nl delay(kk) = exp(-S(kk)*Ts)* G2nl*[1 O0]*inv (S (kk)*eye(2)-(A2nl-
B2nl*K2nl)) *B2nl;

end

GGl _delay = exp(-S*Ts).*G2nl.*DI delay./(1+LT delay); % Gang 1 with delay = PD
in series with double integrator with delay
GG4 delay = 1./(1+LT _delay); % Gang 4

oo

Double Integrator, Loop Transmission and Gang 1 with Experiment
interpolation of double integrator from experiment

Mag DI exprr = interpl(loglO(Freq DI expr),Mag DI expr,loglO(ff));
Phase DI exprr= interpl (logl0(Freq DI expr),Phase DI expr,loglO(ff));

Mag DI exprr abs = 10.” (Mag DI exprr/20);

DI expr = Mag DI exprr abs .*( cosd(Phase DI exprr) + 1i* sind(Phase DI exprr)
); % complex number by combining angle and phase

o

LT expr = DI expr.*PD; % loop transmission
GGl _expr = G2nl*DI expr./(1+LT expr); % Gang 1 = PD in series with double
integrator

GG4 expr = 1./(1+LT_expr); % Gang 1 = PD in series with double integrator

o)

% remove the problematic element for plots
fff=£ff;
f££(1149)=[];
GGl _expr (1149)
DI expr(1149)=
LT expr(1149)=
GG4 expr (1149

remove the problematic element

[1; % remove the problematic element
]; % remove the problematic element
]1; % remove the problematic element
[1; % remove the problematic element

% Gang 1
figure
subplot(2,1,1)

semilogx (ff, 20*logl0 (abs (GGl delay)),'r',... % model with delay
...% ff, 20*loglO(abs(Gl nl)),'g',... % model without delay
fff, 20*1logl0 (abs (GGl expr)), 'k--',... % experiment

'LineWidth',1); grid
ylabel ('Magnitude (dB)'"); x1lim([10"1 3*10731])
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subplot (2,1, 2)
semilogx (ff, (180/pi)*unwrap(angle(GGl_delay)),'r',...
.% ff, (180/pi)*unwrap(angle(Gl nl)),'g',...
fff, (180/pi)*unwrap(angle (GGl expr)), 'k--',...
'LineWidth',1); grid
xlabel ('frequency (Hz)'); ylabel ('Angle (deg)')
legend ('Model with delay', 'Model', 'Experiment'); title('Gang 1')
x1im([1071 3*1073]); ylim([-250 0]); yticks([-180 -90 0])

% Loop Transmission and double integrator

°

figure
subplot(2,1,1)
semilogx( ff, 20*loglO(abs(DI)),'g',... % double integrator without delay
ff, 20*1ogl0(abs (DI delay)),'r',... % double integrator with delay
fff, 20*logl0(abs (DI _expr)),'k--',... % double integrator
experiment
.% Bode DoubleIntegrator NL SS(:,1),
Bode DoublelIntegrator NL SS(:,2),'k--',... % Experiment
ff, 20*1logl0 (abs(PD)),'r", $ PD
ff, 20*logl0(abs (LT delay)),'r-',... % Loop Transmission
fff, 20*logl0(abs (LT expr)),'k--',... % Loop Transmission
Experiment
'LineWidth',1.1); grid on
x1im([1071 5*1073]); ylim([-180 1701]);
subplot(2,1,2)
semilogx (ff, (180/pi)*angle(DI)-360,'g--", ..
ff, (180/pi)*unwrap (angle (DI delay))-360,'r',...

)
fff, (180/pi)*unwrap(angle (DI expr)), 'k--',...
.% Bode DoubleIntegrator NL SS(:,1),
unwrap (Bode DoubleIntegrator NL SS(:,3)),'k--',... % Experiment
ff, (180/pi)*angle(PD),'r',...
ff, (180/pi)*unwrap(angle (LT delay)),'r',...
fff, (180/pi)*unwrap(angle (LT expr)), 'k--',... % Experiment
'LineWidth',1.1); grid on
legend('DI', 'DI with delay', 'DI Expr', 'PD','LT','LT expr')
x1im([1071 5*1073]1); ylim([-270 90]); yticks([-270 -180 -90 01])
yticks ([-270 -180 -90 0 901])
% Gang 4: Sensitivity
figure
subplot(2,1,1)
semilogx (ff, 20*1ogl0 (abs (GG4 delay)),'r',
fff, 20*1ogl0 (abs (GG4 expr)), 'k--",...
'LineWidth',1); grid
ylabel ("Magnitude (dB)");
yticks ([-30 -20 -10 0 57)
subplot(2,1,2)
semilogx (ff, (180/pi)*unwrap(angle(GG4_delay))—180,'r',...
fff, (180/pi)*unwrap(angle(GG4 expr))-180, 'k--",...
'LineWidth',1); grid
xlabel ('frequency (Hz)'); ylabel ('Angle (deg)')
legend('Model with delay', 'Experiment'); title('Gang 4: Sensitivity')
x1im([1072 4.7*%1073]); ylim([-185 0])
yticks ([-180 -90 0])

x1lim([10%2 4.7*1073]); ylim([-30 5])
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Appendix P

Matlab Code for New Effectiveness Index

The code is given below:

o°

New Effectiveness Index
Frequency-Domain Analysis of efficiency

o

o

Gp: including back-emf
Gp_appr: ignoring back-emf
Bode Plot of the Plnat C506
with/without back-emf

o oP

o°

J = 1.5077e-09; % Inretia/mass without mirror from Solid Works
kd 4.4881le-07; % damping
ks 0.0013; % spring

Rc=1.76; % coil resistance

Rs=0.1; % sense resistor

R=Rc+Rs;

1L=280e-6; % coil inductance

kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021

Gp = tf([J kd ks], [L*J R*J+L*kd R*kd+ks*kd+kt”2 R*ks]); % Icoil/Vcoil with
back emf

Gp_appr = tf([1],[L R]); % Icoil/Vcoil without back emf

G mech = tf([kt 0], [J kd ks]); % Velocity/Icoil

Z E = tf([kt"2 0],[J kd ks]); % Back-efm impedance

Z coil = tf([L R],1); % Vcoil/Icoil without back emf

$ efficiency=Gp*G mech*Kf; % efficiency=(T*W)/(V*I)=(k£*I*W)/ (V*I)=KE*W/v
Eff=tf([kt"2 0], [L*J R*J+L*kd R*kd+ks*kd+kt”2 R*ks]); %
efficiency=(T*W)/ (V*I)=(kf*I*W)/ (V*I)=Kf*W/V

figure;

win=logspace (0,5,1eb) ;

[mag Eff,phase Eff,w] = bode(Eff,win);

Efff = mag Eff .*( cosd(phase Eff) + 1i* sind(phase Eff) ); % Complex number

[mag 7z E,phase 7Z E,w] = bode(Z E,win);
Z EE = mag Z E .*( cosd(phase Z E) + 1i* sind(phase Z E) ); % Complex number

[mag 7z coil,phase Z coil,w] = bode(Z coil,win);
Z coill = mag Z coil .*( cosd(phase Z coil) + 1li* sind(phase Z coil) ); %
Complex number

semilogx (win/ (2*pi), squeeze (mag Eff), 'LineWidth',1.1); grid on
xlabel ('frequency (Hz)'"); ylabel('Mag (abs)"')
title('efficiency'")

x1im([1070 1074])

figure;

semilogx(win/(2*pi),20*log10(squeeze(mag_Eff)),'Linewidth',l.l); grid on
xlabel ('frequency (Hz)'"'); ylabel('Mag (dB)")
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x1im ([1070 1074])

figure
options = bodeoptions;
options.FreqUnits = 'Hz';

bode (Eff,Zz E,Z coil,Eff,options); grid on
legend('Eff','Z E',"'"Z coil','Z t")
x1im([1070 1075])

figure;
subplot(2,1,1)

'LineWidth'
xlabel ('frequency
x1im ([1070 10747])
x1im ([1070 10747)

,1.1); grid on
Hz)'"); ylabel ('Real (abs)"'")

semilogx (win/ (2*pi), (real (squeeze (Efff))), ...
win/ (2*pi), (real (squeeze(Z EE))), ...
win/ (2*pi), (real (squeeze (Z coill))), ...
win/ (2*pi), (real (squeeze (Z EE+Z coill))), ...
h
(

subplot(2,1,2)

r
'LineWidth'
xlabel ('frequency
title('efficiency')
x1im([1070 1074])
legend('Eff','2 E',"Z coil','Z t")
x1im([1070 1074])

,1.1); grid on
Hz)'"); ylabel ('Imag (abs)"')

semilogx (win/ (2*pi), (imag (squeeze (Efff))), ...
win/ (2*pi), (imag(squeeze(Z EE))), ...
win/ (2*pi), (imag(squeeze(Z coill))), ...
win/ (2*pi), (imag (squeeze (Z EE+Z coill))), ...
h
(
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Appendix Q

Simulink Implementations

Simulink implementation of the models and control system is kind of an alternative to
implementation with coding. Each of them has advantages and disadvantages. Coding is better for
frequency-domain analysis and time domain analysis without nonlinearities, while Simulink is

better for time-domain analysis including nonlinear terms. The Simulink models are given below:

Current Control loop:

" Iref
DC gain
Current Loop C]
Ilc
Vu Ve Ic
0ooo num(s) num(s)
00 »1/Z1*u
raf  den(s) den(s)
Current F Lag Voltage Power Op-Amp  Actuator
Reference (A) Divider lec Dynamic
num(s
® |,
den(s)
Lead Sensor Buffer Rs

Loop-Shaping Position Control:

1: Frequency Domain
Current Drive
Linear Control

v_pAC @7@ et (8

-R1/R2

oooo ) num(s) num(s)
pi/180 o b dents) = P Ic States

Reference (deg) Nonliear Model

(Current Drive)

Angular Positiol Lag1 Lead1 elocity (rad/sec)

States.

4@ Iref (A)
o0oao . num(s) num(s) x=Ax+Bu
00 pi/180 o b den(s) ref | y=Cx+Du

Angular Positiol Lag Lead Linear Model

Reference (deg) (Current Drive)

elocity (rad/sec)

J

States

velocity Tad/sec)

»
|
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Loop-Shaping Position Control Including Dynamic of Current Loop:

1: Frequency Domain
Current Drive
With Current Loop Dynamic

Linear Control
o =] Current Loop

V_DAC1 Dl- raf 4@ —-@

R1R1 Vu Ve

nanie) | [t mm(e)
Qi D i :
\Angular Position Lag2 Lead2 F Lag Voltage Power Op-Amp _ Actual
Divider Elec Dynamic Nonliear Model
{Coman Drve) 4|_|—’
States.

Reference (deg)1
03

Inverse of

DC gain of
Current Lapp 1

num(s)
den(s)
Lead Sensor Buffer Rs

Pole-Placement Position Control with Voltage Drive:

2: Pole Placement
Voltage Drive
Linear Control
voltage Ve C] < voltage
oooo
00 pi/180 b g vs States
Angular Position
Reference (deg) Nonliear Model current
(Voltage Drive) States

Pole-Placement Position Control with Current Drive

3: Pole Placement
Current Drive
Linear Control

Iref (A) D

<
oooo
00 pi/180 —b@—b@ . ’ P Ic States
-/ Current Ic (A)

Angular Positiof
Reference (deg)

Nonliear Model
Current lc (A) (Current Drive)

theta, omega

velocity (rad/sec)

States

] X=Ax+Bu
uy | y=Cx+Du

velocity (g9

States-1

Observer1
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Pole-Placement Position Control with Current Drive Including Current Loop
Dynamic:

3: Pole Placement
Current Drive with Curret Loop Dynamic
Linear Control

Current Loop
Iref (A)

Ve
num(s)

ol 8!
den(s) 3 < fates [~¥ ‘
Lapi i Inverse of F Lag Voltage Power Op-Amp1 _ Actuator velocity (rad/sec) | g
Lo SenER) DC gain of Divider ec Dynamic ‘Nonliear Model O T
Current Lopp num(s) (Current Drive)
den(s)
1

Lead Sensor Buffer Rs | States.
iheta, omega 'l
K2 P

Feedback-Linearization Nonlinear Control with Loop Shaping:

4: Nonlinear Control - Frequency Domain
Current Drive
D v(t) —» C] Iref
oooo num(s) num(s)
00 pi/180 +_ Kp_nl v
v den(s) den(s) | v N Ik {A)
Angular Position Lag Lead —¥|x1 (position) u P Ic States
Reference (deg) —P x2 (velocity)
Nonlinear Compensation Nonliear Model
u=(f-v)/g (Current Drive) eloclty (radisec) |
1 ]
>
States
»(J
oooo num(s) num(s) v X=Ax+ Bu
00 pi/180 - Ke_nl den(s) den(s) g y=Cx+ Du
Angular Position Lag Lead Linear Model
Reference (deg) (Feedback Linearization) T\ocityvﬂm&pwadlsec) !
| >
States
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Feedback-Linearization Nonlinear Control with Loop Shaping and Including
Current Loop Dynamic

4: Nonlinear Control - Frequency Domain
Current Drive with Current Loop Dynamic

Angular
Pasition
Reference
(deg)

1 (position) ~u

2 (velacity)

Inverse of F L
Nonlinear DC gain of
Compensation | Cument Lopp num(s)
u=(tv)ig den(s)
iref (A)

Current Loop

Lead

Vu
num(s)
i den(s) i
o

s
Y] Voltage
Divider

Power

S

Sensor Buffer

Ve

Actuator

lec Dynamic
Rs

e States|

Nonliear Model
(Gurrent Drive)

Feedback-Linearization Nonlinear Control with Pole-Placement:

5: Nonlinear Control
Pole Placement

@ x1,x2

Linear Model

(Feedback Linearization)

Current Drive vt) (] rer | Jfe
oooo
00 pi/180 G2nl +_ v
v
Ifef
Angular Position x1 (position) u L P Ic States
Reference (deg) x2 (velogity)
Nonlinear Compensation Nonliear Model
u=(f-v)/g (Current Drive) velocity (radisec) |
o .
@ | >
States
Iref D -
o0ooo
00 pi/180 G2nl +_ = >
X= Ax+ Bu
Angular Position | y=cx+Du
Reference (deg)

velocity (rad/sec)

States

States
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Feedback-Linearization Nonlinear Control with Pole-Placement and
Including Current-Loop Dynamic:

§: Nonlinear Control - Pole Placement
Current Drive with Current Loop Dynamic

B

=
s a; O

u ic
L0 mum(s nums; ]
Ang,. r Positio ’—D st u . o ¥ lc States| y [l
Reference (dag) N LA
nverse of foltage cluat o
Nonlinear Compensation| DG gain of jvider ac ic Nonliear Madel
u=i rent Loj { Current Drive ) rerT—
s

e ensor Buffer s
States
@ ‘Il:l . Iref, Ic
L) L »]
Tref ()
e

Feedback-Linearization Nonlinear Control with Pole-Placement and
Including Current-Loop Dynamic and Delay Terms:

5: Nanlinear Control - Pole Placement
With time Delay at ADCs
Current Drive with Current Loop Dynamic

CUITe
vyt @1 fref 1 @' .EI .@
h’ v ' ()
\ um
e de r-@m Bl
%2 {velocity)

Reference (deg) 1
Inverse uf

Vialtage Power Op-Amp 1 A tual
Nonlinear Compensation| DG g Divider 1 Dynamic 1
oz | cument Lo pol
dm(s)
Sensor Buffer1 s 1

I —

I

Iref (A)
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