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Abstract 

Rotary actuators have been widely used in the industry. This thesis investigates the design, 

modeling, identification, drive, and control of an actuator with magnetic restoration. The design 

considerations are explained, FEM is used in the analysis, and a prototype is built for lab 

experiments. A design-oriented analytical model is developed for the actuator, in which the coil 

torque is obtained using the solution of Laplace’s equation in the elliptical coordinates, and the 

reluctance torque is derived by an approach named differential flux tubes. In addition, nonlinear 

and linearized electromechanical models are developed for control system designs and dynamic 

studies. To obtain higher accuracy, the eddy-currents in the laminations and the magnet are also 

modeled using an analytical solution of 1-D and 2-D diffusion equation and extracting a lumped-

element circuit for system-level analysis. It adds to the accuracy of the model to a large degree. 

The impact of the pre-sliding friction on the mechanical dynamic is studied as well. Then, 

identification of the model is performed. Next, an op-amp-based drive circuit for the current control 

loop is proposed, modeled, and designed. Then, three DSP-based position control techniques are 

implemented: pole placement with voltage drive, pole placement with current drive, and nonlinear 

control with feedback linearization. State observers are employed to estimate the unmeasured states. 

The control techniques are evaluated and compared through time response indices such as rise time, 

overshoot, steady-state error, and large-signal tracking, as well as by frequency domain indices like 

bandwidth, robustness, phase margin, sensitivity, disturbance rejection. A method of eddy-current 

plated is also proposed for inductance reduction. In the end, a new effectiveness index is proposed. 

Thesis Supervisor: James L. Kirtley 

Title: Professor of Electrical Engineering and Computer Science 

Thesis Supervisor: Jeffrey H. Lang 

Title: Professor of Electrical Engineering and Computer Science   
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And say, “My Lord, increase me in knowledge.” 

Quran [20:114]  
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Chapter 1 

1. Introduction and Literature Review 
 

 

 

1.1 Literature Review of Limited-Angle Rotary Actuators 

Electric machines and electromagnetic devices have an important role in energy 

conversion between electrical and mechanical forms.  Limited-angle rotary actuators, 

sometimes called limited-angle torque motors, have been employed widely in the industry, 

from automotive manufacturing and biomedical applications to robotics, aerospace, fluid 

valves, and 3D printers. Therefore, their study has been of great interest among researchers. 

1.1.1 FEM-Based Studies of Electric Machines and Rotary Actuators 

The finite element method (FEM) as a powerful technique has been employed widely 

in the study and design of a range of electromagnetic devices from Eddy-Current Couplers 

[1]-[3] and induction machines [4] to Line-Start Permanent Magnet Motors [5]-[7] and 

Switched Reluctance Motors [8]- [10]. And Vernier motors [11]. The following studies 

have been employed FEM in the analysis, design, and model verification of rotary actuators 

and limited-angle torque machines. 

In [12], the finite element method (FEM) is employed in the torque ripple suppression 

of a 4-pole slotted limited angle torque motor. The configuration of the motor is shown in 

Figure 1.1. 
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Figure 1. 1: The configuration of the studied LATM. 

 

In [13], the finite element method (FEM) is employed in the torque performance 

improvement for 4-pole slotted limited-angle torque motors with concentrated winding 

whose configuration and geometry are shown in Figure 1.2. 

      

 

Figure 1. 2: The configuration of the studied slotted limited-angle torque motors. 
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In [14], a slotless limited-angle torque motor for the reaction wheels torque 

measurement system is proposed. The finite element method (FEM) is also employed in 

the study. The configuration of the studied motor is shown in Figure 1.3. 

      

 

Figure 1. 3: The configuration of the slotless LATM for reaction wheels torque measurement 

 

In [15], finite element method (FEM) and basic formulations are employed in the 

analysis of limited angle torque motors with irregular slot numbers for performance 

improvement. The configuration of the motor is shown in Figure 1.4. 

       

Figure 1. 4: The configuration of the studied LATM. 
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In [16], torque performance improvement of a radial-flux slotted limited-angle torque 

motor by tapered tooth-tip is studied. The finite element method (FEM) is also employed 

in the analysis. The configuration of the motor is shown in Figure 1.5. 

       

Figure 1. 5: The configuration of the studied LATM with tapered tooth-tip 

 

1.1.2 Electric Machine Modeling Using Laplace’s Equation 

The solution of Laplace’s and Poisson’s equations [17]- [18] is a powerful approach in 

field calculation and modeling of electromagnetic devices from magnetic couplers [19] to 

rotary actuators. Such studies have been done in elliptical coordinates in [20]-[24], in which 

general frameworks for the solution of Laplace’s and Poisson’s equations in different 

coordinates have been studies. 

In [25], based on the solution of Laplace’s and Poisson’s equations, a voice coil having 

a double-layer Halbach array is studied. The results are verified by FEM and an 

experimental prototype. The configuration of the studied actuator is shown in Figure. 1.6. 
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Figure 1. 6: The geometry of the studied LATM. 

 

In [26], a solution based on Laplace’s equation is employed in the analysis and 

estimation of the maximum angular operation range of a permanent-magnet slotted limited-

angle torque motor. The configuration of the studied actuator is shown in Figure. 1.7. 

       

Figure 1. 7: The geometry of the studied LATM. 
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1.1.3 MEC-Based Studies of Electric Machines and Rotary Actuators 

Magnetic equivalent circuits (MEC) and flux tube-based approaches are powerful 

modeling techniques that are widely used in a variety of electromagnetic devices and 

electric machines from eddy-current couplers [27]-[31] and switched reluctances motors 

(SRMs) [32]-[33] to permanent magnet synchronous motors [34]- [35] and magnetically-

geared machines [36]- [38]. In the following, some papers are reviewed in which MEC is 

employed in the model and design of rotary actuators, voice coil motors, and limited-angle 

torque motors. 

In the old paper [39], performance prediction of a limited-angle rotary actuator, named 

Law’s relay actuator, is studied using a simple magnetic equivalent circuit. The structure 

and the employed MEC are shown in Figure 1.8. This actuator does not have any 

permanent magnet and works based on the reluctance alignment of the rotor.  

  

Figure 1. 8: The geometry and magnetic equivalent circuit of a Law’s relay. 

 

In [40], an equivalent magnetic circuit (MEC) is developed for a radial-flux slotted 

limited-angle torque motor with asymmetrical teeth aimed at torque performance 

improvement. The configuration of the studied actuator and the developed MEC is shown 

in Figure. 1.9. 
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Figure 1. 9: The geometry and the developed MEC of the studied LATM. 

 

In [41], magnetic equivalent circuit (MEC) and finite element method (FEM) are 

employed in the analysis, optimization, and design of a limited-angle torque-motor with 

segmented rotor pole tip structure and toroidal winding. The configuration of the studied 

actuator and the developed MEC are shown in Figure. 1.10. 

      

 

Figure 1. 10: The geometry and the developed MEC of the studied LATM. 
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In [42], a nonlinear magnetic equivalent circuit is proposed for a permanent-magnet 

slotted limited-angle torque motor. The model is also employed for multi-objective design 

optimization of the device. The configuration of the motor and the developed MEC are 

shown in Figure 1.11. 

       

Figure 1. 11: The configuration and the developed nonlinear MEC of the studied LATM. 

 

In [43], a comprehensive magnetic equivalent circuit is developed for a toroidally-

wound limited-angle torque motor having Halbach permanent magnet array as the rotor. 

The model is also employed for multi-objective design optimization of the device. The 

configuration of the motor and the developed MEC are shown in Figure 1.12. 
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Figure 1. 12: The configuration and the developed nonlinear MEC of the studied LATM. 

 

In [44], a magnetic equivalent circuit (MEC) and FEM are employed in the analysis 

and design of a limited-angle torque motor with a moving coil. The configuration of the 

studied actuator is shown in Figure. 1.13. 
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Figure 1. 13: The geometry of the studied limited-angle torque motor with a moving coil 

 

The paper [45] presents simple calculations for the inductance prediction of a 

toroidally-wound limited angle torque motor having a permanent magnet as the rotor. Its 

configuration is shown in Figure. 1.14. 

  

Figure 1. 14: The geometry of the studied toroidally-wound limited-angle torque motor. 

1.1.4 Restoration torque Techniques in Rotary Actuators 

For many applications, for example, in fail-safe operations, the rotor is needed to return 

to the initial position when the stator excitation is removed. This restoration force is 

traditionally provided by a mechanical stiffness or spring. Also, there have been some 
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actuator designs offering a magnetic mechanism to replace the mechanical spring with a 

magnetic restoration force. It is more reliable and does not have the problem of traditional 

springs like mechanical fatigue.  

In the papers [46]-[47], simplified modeling and dynamic analysis of a Laws’s relay, 

including a stiffness, is studied. The stiffness is a nonlinear function of rotor angular 

position (tangent function of position) and provides a restoration torque that attempts to 

bring the rotor back to the initial position. The geometry of the device and stiffness as a 

nonlinear function of the angular position of the rotor is shown in Figure 1.15. The stiffness 

is represented by a nonlinear equation as well. Finally, a nonlinear dynamic model is 

established to study the dynamic behavior of the actuator. 

      

Figure 1. 15: The structure of Laws’s relay and the nonlinear stiffness function 

In the papers [48], a self-aligning limited-angle rotary torque PM motor for the control 

valve is studied. In addition to the stator poles, alignment poles are added to the device, 

such that the rotor returns to its original position when the current is cut off without 

requiring a separate mechanism to control the position. The structure of the device is shown 

in Figure 1.16. 
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Figure 1. 16: The structure of the LATM having self-alignment or restoration torque 

 

In the papers [49], a zero-returner limited-angle torque motor is proposed, in which the 

restoration torque is provided by a separate electromagnetic device connected to the LATM. 

The structure of the device is shown in Figure 1.17. The restoration torque developed by 

the zero-returner system is shown in Figure 1.18. 

      

Figure 1. 17: Restoration torque mechanisms: the traditional mechanical spring (left) and magnetic spring 

(right) 
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Figure 1. 18: The restoration torque developed by the zero-returner system. 

 

The patents, e.g., [50]- [55], provides a variety of structures of rotary actuators with 

and without magnetic restoration torque. This thesis presents generalized studies applicable 

to such actuators while certain aspects of the physical implementations of the actuator with 

magnetic restoration described herein in this thesis, as well as other interesting topologies, 

are covered by patents, among others. In Figure 1.19 and Figure 1.20 a number of such 

actuators along with physical embodiments are presented. 

    

Figure 1. 19: Topology and embodiments of an actuator with magnetic restoration. 
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Figure 1. 20: Topology and embodiments of actuators with magnetic restoration. 

1.1.5 Dynamic Behavior and Control Studies 

High-performance control of electric machines requires accurate models and an 

effective identification rather than conventional lumped models. The identification can be 

offline [56] or even online [57] when there are variations in the parameters of the device. 

Among modeling techniques, the finite element method (FEM), although powerful in the 

numerical modeling and design of electromagnetic devices, is too slow to be used in 

dynamic studies. Magnetic equivalent circuits [58]-[59] and subdomain models [60]-[61] 

provide fast yet accurate analytical frameworks that can be employed in developing 

electromechanical models. MEC-based models are developed to study the design of 

LATMs [58] and magnetic cores [59]. The subdomain approach is employed to study the 

diffusion in eddy current brakes [60] and cylindrical ferrite cores [61]. In [62], the finite 

difference method is employed to find the numerical solution of 2-D diffusion in a 

rectangular sheet. As eddy currents can highly impact the dynamic and thus control system 

design of an electromagnetic device, incorporating their impact in the model can be very 

crucial. In the interesting works [63]-[64], an analytical solution of 1-D diffusion in thin 

laminations or magnetic materials is used to modify the electrical circuit of an 

electromagnetic device. Friction is another factor affecting the mechanical dynamics of 

electromechanical devices, whose impact can be studied by LuGre model [65]-[68]. High 

bandwidth current loops are widely employed to drive actuators and electromagnetic 

devices in order to eliminate the electrical dynamic so that the torque can be directly 

commanded by the outer control loops. It also provides a faster response and higher 

robustness by making the system independent of temperature-dependent elements like the 

stator resistance. The current drives may be developed using analog architectures like op-



37 

 

amps circuits [69]-[71] or FPGA-based switching devices [72]. Advanced current 

controllers are also studied in [73]. A push-pull-based drive is also implemented in [74]. 

The position control system of rotary actuators can be implemented by voltage drives 

[75]-[76] or current drives [69]-[71]. The former, although cheap and simple, have 

disadvantages like a slower response, weak robustness, and even more uncertainties in the 

model. The latter, by eliminating the electrical dynamic of the actuator using a high-

bandwidth current loop, can offer a faster response, higher robustness, and even 

simplicities in the model. Among others, feedback linearization has been employed as a 

powerful yet simple nonlinear control technique for the control of electromechanical 

devices if a precise model is available [77]-[78]. Also, unmeasured states can be estimated 

using observers [79]-[80]. Model-based observers, especially those which are based on 

state-space models, can be easily discretized to be implemented in a DSP [81]. In addition, 

advanced observers can be developed for special purposes [82]. Advanced position control 

techniques are implemented in [83]- [85]. 

1.2 Outline and Contributions of the Thesis 

Analytical models are useful in the design of electromagnetic devices. In this thesis, a 

model is developed for a rotary actuator whose stator curvature is elliptically shaped to 

have a reluctance torque that restores the rotor to the maximum torque per ampere position. 

The total torque is decomposed to the coil torque as well as a reluctance torque. The rotor’s 

permanent magnet is represented by equivalent Amperian currents. The stator geometry is 

simplified to an ellipse having surface current densities at the interpolar regions which are 

equivalent to the stator currents. Then, the field solution within the ellipse is obtained using 

Laplace’s equation in the elliptical coordinates, so that the coil torque can be obtained by 

Lorentz force. The reluctance torque is derived by the energy method and an approach 

named differential flux tubes, which is similar to the conventional flux tubes in magnetic 

equivalent circuits. A rotating reference frame on the rotor is also adopted to simplify 

mathematics. The finite element method is also used in the field analysis and development 

of the proposed model. In the end, the actuator is prototyped whose experimental results 

are employed to evaluate the results obtained from the analytical model and finite element 

method. 
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Modeling, identification, drive, and current control loop of a limited-rotation actuator 

is studied. The stator pole faces are elliptically shaped to obtain a restoration torque. A 

nonlinear electromechanical model is developed for analysis and nonlinear control for large 

signals. It is also linearized to be used in the linear control for small signals. To get higher 

accuracy and an efficient design, the eddy-currents in the laminations and the magnet are 

included in the model by analytically solving the diffusion equation and extracting a 

lumped-element circuit. The impact of the pre-sliding friction on the mechanical dynamic 

is studied as well. Finite element analysis is also used in the study. The lab experiments are 

performed using a prototype actuator.  Torque-angle and back-emf characteristics are 

obtained, and the identification of the model is carried out. Then, an op-amp-based drive 

circuit for the current control loop is proposed and designed. Using a third-order model of 

the op-amps, a very accurate model for the drive and the current loop is developed to be 

used for prediction and evaluation purposes, while its simplified version is also obtained 

for the design procedure.  

Also, the accuracy of the modeling of the actuator and the drive circuit is evaluated in 

control studies. The importance of eddy current modeling is shown as well. Also, the 

effectiveness of the designed current loop and its practical trade-offs are investigated. Then, 

three DSP-based position control techniques are implemented and compared: pole 

placement with voltage drive, placement with current drive, and nonlinear control with 

feed linearization. Full-order and reduced-order observers are also employed to estimate 

the unmeasured states. The control system designs are evaluated through indices like rise 

time, overshoot and steady-state error, and large-signal tracking in the step response as well 

as bandwidth, robustness, phase margin, sensitivity, disturbance rejection, and noise 

rejection in the frequency domain. 

An eddy-current-based technique is proposed that may reduce the coil inductance at 

high frequencies. However, it is an initial examination by two-dimensional FEM, while 

more tests and optimizations may be done by researchers on various aspects of the 

technique, how to optimize the strategy, what penalties do we pay for using this method, 

the effectiveness of this approach, etc. It is just a conceptual study, for which a typical 

geometry of the actuator is picked. The default values of the conductivity of laminations 
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and the magnet given by the software are employed. Although close, they do not accurately 

simulate experimental studies or even three-dimensional finite element analysis.  

A new effectiveness index is proposed that may represent the effectiveness of an 

actuator with oscillational behavior in a better way. Like the previous chapter, more 

investigations and discussions can be done on the proposed effectiveness index herein. 

. 
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Chapter 2 

2. Electromagnetics and Energy Conversion 
 

 

 

 

2.1 Introduction 

In this chapter, first, we start with an overview of electromagnetic field theory and 

Maxwell’s equations [17]-[18]. Then, we continue with quasi-static field theory, i.e., 

magneto-quasi-static (MQS) field theory and electro-quasi-static (EQS) field theory. Also, 

we review static field theory, i.e., magneto-static (MS) field theory and electrostatic (ES) 

field theory. The, we talk about energy conversion and calculations of force and torque. 

2.2. Maxwell’s Equations and Charge Conservation in Free Space 

Differential and integral forms of Maxwell’s equations in free space or microscopic 

formulation of Maxwell’s equations, as well as continuity equation are as in below: 

 Differential Form Integral Form Boundary Conditions 

Ampere’s 

law 

0

0

f

EB
J

t






 = +


 0

0

. .f

C S

EB
dl J ds

t





 
= + 

 
   

1 2

0 0

1 2

0

( )

1
( )

f

t t f

B B
n K

B B K

 



 − =

− =

 

Gauss’s 

law of 

magnetic 

. 0B =  
. 0

S

B ds =  1 2

1 2

.( ) 0

n n

n B B

B B

− =

=
 

Faraday’s 

law 

B
E

t


 = −


 . .

C S

B
E dl ds

t


= −

   1 2

1 2

( ) 0

t t

n E E

E E

 − =

=
 

Gauss’s 

law 0. fE  =  0 . f

S vol

E ds dv =   0 1 0 2

0 1 2

.( )

( )

sf

n n sf

n E E

E E

  

 

− =

− =
 

Continuity 

equation 
. 0

f

fJ
t


 + =


 . 0

f

f

S vol

J ds dv
t


+ =

   

1 2.( ) .f f f

sf

n J J K

t



− +


= −



 

 



42 

 

where B is magnetic flux density, E is the electric field, Jf is free current density, Kf is free 

surface current density, ρf is free charge density, σsf is free surface charge density. Also, t 

and n stand for tangential and normal, respectively.  

2.3. Maxwell’s Equations in Matter 

Employing two new quantities of magnetic field intensity H and electric displacement 

field D, constitutive relations are given below: 

0 ( )B H M= +  

0D E P= +  

J E=  

 

where M and P are magnetization and polarization vectors of the matter. Also, σ is the 

conductivity of the matter. 

Then, the differential and the integral form of Maxwell’s equations in matter or 

macroscopic formulation of Maxwell’s equations are as in below: 

 Differential Form Integral Form Boundary Condition 

Ampere’s 

law f

D
H J

t


 = +


 . .f

C S

D
H dl J ds

t

 
= + 

 
   

1 2

1 2

( ) f

t t f

n H H K

H H K

 − =

− =
 

Gauss’s law 

of magnetic 
. 0B =  

. 0
S

B ds =  1 2

1 2

.( ) 0

n n

n B B

B B

− =

=
 

Faraday’s 

law 

B
E

t


 = −


 . .

C S

B
E dl ds

t


= −

   1 2

1 2

( ) 0

t t

n E E

E E

 − =

=
 

Gauss’s law . fD  =  . f

S vol

D ds dv=   1 2

1 2

.( ) sf

n n sf

n D D

D D





− =

− =
 

Continuity 

equation 
. 0

f

fJ
t


 + =


 . 0

f

f

S vol

J ds dv
t


+ =

   

1 2.( ) .f f f

sf

n J J K

t



− +


= −


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2.3.1. Employing Charge Model of Magnetization 

By substituting for B=µo(H+M) and D=εoE+P from constitutive relations, we can get 

a new formulation. It should be noted that, in this model, the equations and the boundary 

conditions are in terms of H, and then we obtain B with 0 ( )B H M= + .  Using the charge 

model of magnetization, we have: 

 Differential Form Boundary Condition 

Ampere’s 

law 

0

0

( )
f

f

E P
H J

t

P E
H J

t t





 +
 = + 



 
 = + +

 

  

0f p

E
H J J

t



 = + +


  

f pJ J J= +  

polarization current density: 

p

P
J

t


=


 

1 2

1 2

( ) f

t t f

n H H K

H H K

 − =

− =
 

note: boundary conditions 

are in terms of H 

Gauss’s law 

of magnetic 

0 0 0. ( ) 0 . .H M H M   + =  = −   

0. mH  =   

(surface) magnetic-charge density: 

0 1 2. ; .( )m smM n M M  = −  = − −  

0 1 0 2

0 1 2

.( )

( )

sm

n n sm

n H H

H H

  

 

− =

− =
 

note: boundary conditions 

are in terms of H 

Faraday’s 

law 

0

0 0

( )H M
E

t

H M
E

t t



 

 +
 = − 



 
 = − −

 

  

*

0 m

H
E J

t



 = − −


  

magnetic-current density: 

*

0m

M
J

t



=


  

1 2

1 2

( ) 0

t t

n E E

E E

 − =

=
 

Gauss’s law 

0

0

.( )

. .

f

f

E P

E P

 

 

 + = 

 = −
  

0. f pE   = +   

(surface) polarization charge density:

1 2. ; .( )p spP n P P = − = − −   

1 2

1 2

.( ) sf sp

n n sf sp

n D D

D D

 

 

− = +

− = +
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Continuity 

equation 

. 0
f

fJ
t


 + =


 

*. 0m
mJ

t


 + =


 

. 0
p

pJ
t


 + =


 

1 2.( ) .

s

n J J K

t



− +


= −



 

 

2.3.2. Employing Amperian Current Model of Magnetization 

Also, we can employ the Amperian current model of magnetization to get a new 

formulation for Maxwell’s equation mater. In this case, we need to remove 
*

0m

M
J

t



=



and 0 .m M = −  , and instead, employ mJ M= as a free current in Ampere’s law. It 

should be noted that, in this model, the equations and the boundary conditions are in terms 

of B, and then we obtain H with 
0

B
H M


= − . We have: 

 Differential Form Boundary Condition 

Ampere’s 

law 

0

0

f p m

B E
J J J

t





 = + + +


  

f m pJ J J J= + +  

polarization current density: 

p

P
J

t


=


    

Amperian current model of magnetization: 

1 2; ( )m mJ M K n M M= =  −  

1 2

0

1 2

0

1
( ) f m

t t
f m

n B B K K

B B
K K





 − = +

−
= +

 

note: boundary conditions 

are in terms of B 

Gauss’s law 

of magnetic 
. 0B =  

1 2

1 2

.( ) 0

n n

n B B

B B

− =

=
 

note: boundary conditions 

are in terms of B 

Faraday’s 

law 

B
E

t


 = −


 

or   0 ( )H M
E

t

 +
 = −


 

or   
H

E
t


 = −


 

1 2

1 2

( ) 0

t t

n E E

E E

 − =

=
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Gauss’s law 

0. f pE   = +   

f p  = +   

(surface) polarization charge density:

1 2. ; .( )p spP n P P = − = − −   

1 2

1 2

.( ) sf

n n sf

n D D

D D





− =

− =
 

Continuity 

equation 

. 0
f

fJ
t


 + =


 

. 0
p

pJ
t


 + =


 

1 2.( ) .

s

n J J K

t



− +


= −



 

 

The net electric current Ienc enclosed in closed lines C encompassing surface S 

corresponding to current density J, as well as the net electric charge Qenc enclosed in 

volume vol corresponding to volume charge density ρ are as in below: 

Current 
.enc

S

I J ds=   

Charge enc

vol

Q dv=   

 

Magnetic flux and electric flux through a surface S are defined as in below: 

Magnetic flux 
.B

S

B ds =   

Electric flux 
.E

S

E ds =  ,  .D

S

D ds =   

 

The macroscopic formulation of Maxwell’s equations is as in below: 

 Integral Form 

Ampere’s law 

. D
enc

C

d
H dl I

dt


= +  

.enc f

S

I J ds=   

Gauss’s law of 

magnetic 
. 0

S

B ds =  
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Faraday’s law . B

C

d
E dl

dt


= −  

Gauss’s law 

.. e enc

S

D ds Q=  

.e enc f

vol

Q dv=   

Continuity 

equation 

.. 0e enc

S

dQ
J ds

dt
+ =  

  

Using the charge model of magnetization, we can also rewrite as in below: 

 Integral Form 

Ampere’s law 

0. E
enc

C

d
H dl I

dt


= +  

electric current: 

 ( ).enc f p

S

I J J ds= +  

Gauss’s law of 

magnetic 

0 . m

S

H ds Q =  

magnetic charge: 

 .m enc m

vol

Q dv=   

Faraday’s law 

*. B
m

C

d
E dl I

dt


= − −  

magnetic current: 

 
* * .m m

S

I J ds=   

Gauss’s law 

0 .. e enc

S

E ds Q =  

Electric charge: 

. ( )e enc f p

vol

Q dv = +  

Continuity 

equation 

.. 0e enc

S

dQ
J ds

dt
+ =  

.. 0m enc
m

S

dQ
J ds

dt
+ =  

 

Using the Amperian current model of magnetization, we can also rewrite as in below: 
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 Integral Form 

Ampere’s law 

0

0

. E
enc

C

dB
dl I

dt





= +  

electric current: 

( ).enc f p m

S

I J J J ds= + +  

Gauss’s law of 

magnetic 
. 0

S

B ds =  

Faraday’s law . B

C

d
E dl

dt


= −  

Gauss’s law 

0 .. e enc

S

E ds Q =  

electric charge: 

. ( )e enc f p

vol

Q dv = +  

Continuity 

equation 
. 0enc

S

dQ
J ds

dt
+ =  

 

Notes: 

• There is a duality in the four of Maxwell’s equations. The duality between Ampere’s 

law and Faraday's law (in the charge model of magnetization) is as in below: 

0 f p

E
H J J

t



 − = +


 (2.1) 

*

0 m

H
E J

t



 + = −


 (2.2) 

The duality between magnetic and electric Gauss’s laws is as in below: 

0. mH  =  (2.3) 

0. f pE   = +  (2.4) 

• The rate of change of magnetic flux Bd

dt


 is the induced electro-motive force (EMF) 

which can be seen in Faraday’s law. 
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• The rate of change of electric flux Dd

dt


 is the displacement current or the induced 

magneto-motive force (MMF), which can be seen in Ampere’s law. 

• The coupling between electric and magnetic fields, i.e., the magnetic induction in 

Faraday’s law ( /D t  ) and the displacement current in Ampere’s law ( /B t  ), gives 

rise to electromagnetic waves.  

• Derivation of continuity equation: by employing Ampere’s law, Gauss’s law, and the 

fact that divergence of the curl of a vector H is always zero, we have: 

.( . )
.( ) 0 .( ) 0 . 0 . 0

D
H J

Dt
D D

H J J J
t t t

 


 = +
 =

   
  = ⎯⎯⎯⎯⎯→ + =  + = ⎯⎯⎯→ + =

  
 

 (2.5) 

• In Maxwell’s equations written using the magnetic charge model of magnetization, the 

relationships and the boundary conditions are written in terms of H and then 

0 ( )B H M= + . In Maxwell’s equations written using the Amperian current model of 

magnetization in which the magnets are treated as free currents, the relationships and 

the boundary conditions are written in terms of B and then 
0

B
H M


= − .  

2.3.3. Linear Isotropic Material 

For magnetically linear isotropic homogeneous materials, magnetization M can be 

buried in permeability µ by using magnetic susceptibility χm. Also, for electrically linear 

isotropic materials, polarization P can be buried in permittivity ε by using electric 

susceptibility χe. 

magnetization 

mM H=  

permeability

0 , (1 )r r m    = = +  0 (1 )mB H H  = + =  

polarization 

0 eP E =  

permittivity 

0 , (1 )r r e    = = +  0 (1 )eD E E  = + =  
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The equations B H=  and D E=  are helpful in media like iron and can be 

employed instead of 
0 ( )B H M= +  and 

0 ( )D E P= + . 

For example, it is true for iron in the linear region, i.e., when field H is small. Figure 2.1 

shows a simple comparison of permeability for ferromagnetic, paramagnetic, and 

diamagnetic materials. 

 

Figure 2. 1. Comparison of permeability for ferromagnetic, paramagnetic, and diamagnetic materials 

[source: wikipedia].  

For nonlinear isotropic homogeneous materials, µ, ε, and σ depends on the field as in 

below: 

( )B H H=  

( )D E E=  

( )J E E=  

In anisotropic material, µ(H), ε(E) and σ(E) are independent of the direction of the field, 

while in anisotropic material µ, ε and σ depend on the direction as in below: 

11 12 13

21 22 23

31 32 33

x x

y y

z z

B H

B H

B H

  

  

  

     
     

=
     
          

 (2.6) 

In a homogeneous material, µ, ε and σ do not depend on position, while in an 

inhomogeneous material, they do as in below: 

( , , )x y z =  

( , , )x y z =  

( , , )x y z =  
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2.4. Vector and Scalar Potentials 

The fields can be obtained in two ways: 

• Maxwell’s equations can be solved directly for the fields. In this case, we deal with 

four coupled first-order field equations. Maxwell’s equation in a stationary, 

homogeneous, isotropic and linear medium with constitutive relations B=µH, D=εE 

and J=σE are as in below: 

Magnetic 

E
H J

t


 = +


 

. 0B =  

0 ( )B H M= +  

Electric 

B
E

t


 = −


 

. E  =  

0 ( )D E P= +  

 

• Also, it might be more convenient to employ scalar and vector potentials. In this case, 

we deal with two uncoupled second-order field equations. 

Magnetic Vector Potential: 

It is worth noting that the divergence of the curl of a vector is zero .( ) 0A  = . In 

other words, if the divergence of a vector is zero, it can be defined by a vector potential. 

According to magnetic Gauss’s law in the Amperian current model of magnetization, a 

magnetic vector potential can be defined as in below: 

. 0B B A =  =  (2.7) 

As shown in Figure 2.2(a), the net flux passing through a surface S enclosed by closed 

line C is the surface integral of magnetic flux density vector B over surface S, or is the 

closed line integral of the magnetic vector potential A over line C as in below: 

. .
S c

B ds A dl = =   (2.8) 
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It is obtained by substituting B in terms of A and employing Stokes’ theorem. In a 2D 

problem where A is only in the z-direction, flux is easily calculated as in below: 

1 2( )z z zL A A L A = − =   (2.9) 

where Az1 and Az1 are values of Az at the two points in the xy-plane as shown in Figure 2.2(b), 

and L is the axial length of the problem in the z-direction. In case of having a uniform 

magnetic flux density B or in approximations, we have: 

avL w B =  (2.10) 

Combining the last two equations, we have: 

z avA w B =  (2.11) 

 

Figure 2. 2. Closed line C enclosed by open surface S in (a) 3D problem and (b) 2D problem. 

Magnetic Scalar Potential (current-free region): 

In a current-free region, the magnetic field is solenoidal. We know that the curl of 

gradient of a scalar function is zero, so according to Faraday’s law, a magnetic scalar 

potential can be defined as in below: 

0H H  = → = −  (2.12) 

By employing the identity 2.   =   in the magnetic Gausses’ law with charge 

model of magnetization and substituting the fields in terms of the potentials, we obtain a 

second-order scalar Poison’s equation governing as in below: 

2. ( ) m m     − =   = −  (2.13) 
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Electric Scalar Potential: 

Also, the curl of gradient of a scalar function is zero, i.e., the rotation of the maximum 

variation of the scalar field at any point in space is zero. In other words, if the curl of a 

vector is zero, it can be defined by a scalar potential. According to Faraday’s law, an 

electric scalar potential can be defined as in below: 

( ) 0
B A A AB A

E E E E
t t t t

 
   = 

 = − ⎯⎯⎯⎯⎯→  + =  + = −  = − −
   

 (2.14) 

Two Uncoupled Equations in Terms of Potentials: 

Magnetic: By substituting B A=  and /E A t= − −   in Ampere’s law and 

Gauss’s law, we obtain uncoupled equations in terms of vector and scalar potentials. By 

employing the identity 2( . )A A A =  −   in the Ampere’s law, we have: 

2

2
2

2

( / )

( / )
( . )

( . )

A A t
J

t

A t
A A J

t

A
A A J

t t







 


  

  − − 
 = + 



 − − 
 −  = − + 



 
 − −  + = −

 

 (2.15) 

By imposing the Lorentz gauge condition .A
t





 = −


, we obtain: 

2
2

2
; f m p

A
A J J J J J

t
 


 − = − = + +


 (2.16) 

In the Cartesian coordinates, it can be simplified in terms of the vector components as 

in below: 

2
2

2

2

2

2

2
2

2

ˆ ˆ ˆ ˆˆ ˆ,

x
x x

y

x y z x y z y y

z
z z

A
A J

t

A
A A x A y A z J J x J y J z A J

t

A
A J

t

 

 

 

 
 − = −




= + + = + +   − = −


 
 − = −



 (2.17) 
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Electric: By employing the identity 2.   =   in the Gausses’ law and substituting 

the fields in terms of the potentials, we have: 

2 ( . )
. ( )

A A

t t


   



  
 − − =   + = −

 
 (2.18) 

By imposing the Lorentz gauge condition .A
t





 = −


, we obtain: 

2
2

2t

 
 




 − = −


 (2.19) 

Using the charge model of magnetization, the potential relationships and their solutions 

can be summarized as follow: 

 Potentials Poison’s equation Solutions 

Magnetic 

. 0B =  
B A=   

current model of 

magnetization  
2

2

2

A
A J

t
 


 − = −


 

f m pJ J J J= + +  

| |
( , )

( , )
4 | |

V

x x
J x t

uA x t dv
x x






−
 −

=
−  

Magnetic 

(current free) 

0H =  

H = −  

charge model of 

magnetization  
2 . mM  = = −  

 

Electric 

( ) 0
A

E
t


 + =


 

A
E

t



= − −


 

2
2

2t

 
 




 − = −


 

| |
( , )

1
( , )

4 | |
V

x x
x t

ux t dv
x x







−
 −

=
−  

Lorentz gauge .A
t





 = −


 

where 
81/ 3 10 /u m s = =  is the speed of light in the medium. 

2.5. Quasistatic Field Theory 

Quasi-static fields are obtained by ignoring either the magnetic induction in Faraday’s 

law ( /B t  ) or the displacement current in Ampere’s law ( /D t  ) when the dimension 

of the studied device is small enough compared to the wavelength (λ=c/f) of the 

electromagnetic wave. 

Magnetoquasistatic (MQS) fields: by ignoring the displacement current in Ampere’s 

law ( /D t  ), we have:  
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H J =  (2.20) 

. 0B =  (2.21) 

B
E

t


 = −


 (2.22) 

According to magnetic Gauss’s law, a magnetic vector potential is still B A=  . By 

employing Ampere’s law and the fact that divergence of the curl of a vector H is always 

zero, we have: 

.( ) 0 . 0
H J

H J
 =

  = ⎯⎯⎯⎯⎯→ =  (2.23) 

In other words, the current density distribution of magnetoquasistatic is solenoidal, that is, 

it does not have sources or sinks.  

By employing the identity 2( . )A A A =  −   in Ampere’s law, we obtain one 

second-order equation governing magnetoquasistatic fields: 

2 ( . )
A

J A A J



 =   −  = −  

To determine a vector A uniquely, we need to know both the curl and divergence of it. 

In MQS systems, we take the vector a to be solenoidal for the sake of convenience, i.e., 

zero divergences . 0A = , which is called the Coulomb’s gauge. It is worth noting that this 

choice is arbitrary. By imposing Coulomb’s gauge condition, we obtain the second-order 

vector Poison’s equation governing magnetoquasistatic fields: 

2 A J = −  (2.24) 

In the Cartesian coordinates, it can be simplified in terms of the vector components as 

in below: 

2

2 2

2

ˆ ˆ ˆ ˆˆ ˆ,

x x

x y z x y z y y

z z

A J

A A x A y A z J J x J y J z A J

A J







 = −


= + + = + +   = −

 = −

 (2.25) 

Electroquasistatic (EQS) fields: by ignoring the magnetic induction in Faraday’s law 

( /B t  ), we have:  

0E =  (2.26) 

. E  =  (2.27) 
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The continuity equation is there with full terms because we only ignored ( /B t  ), not 

( /D t  ). 

.( . )
.( ) 0 .( ) 0 . 0 . 0

D
H J

Dt
D D

H J J J
t t t

 


 = +
 =

   
  = ⎯⎯⎯⎯⎯→ + =  + = ⎯⎯⎯→ + =

  

 (2.28) 

We know that the curl of gradient of a scalar function is zero, so according to Faraday’s 

law, an electric scalar potential can be defined as in below: 

0E E  = → = −  (2.29) 

By employing the identity 2.   =   in the Gausses’ law and substituting the fields 

in terms of the potentials, we obtain the second-order scalar Poison’s equation governing 

electroquasistatic fields: 

2. ( )


   


 − =   = −  (2.30) 

The equations governing quasistatic fields can be summarized in the table below: 

 Magnetoquasistatic 0
D

t


=


 Electroquasistatic 0

B

t


=


 

Field 

equations 

, . 0H J J =  =  

. 0B =  

B
E

t


 = −


 

( , )J J E B=  

0E =  

. E  =  

. 0J
t


 + =


 

( )J J E=  

Potentials  
B A=   

current-free: H = −  
E = −  

Poison’s 

equation 

2 A J = −  

current-free: 
2 . mM  = = −  

2 



 = −  

Potential 

solutions 

( , )
( , )

4 | |
V

J x t
A x t dv

x x







=

−  
1 ( , )

( , )
4 | |

V

x t
x t dv

x x








=

−  

Coulomb’s 

gauge 
. 0A =  

 

Note: 
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Conservative Vector Field: Closed-line integral of an irrational field is zero, and it can be 

represented by the gradient of a scalar potential, e.g., E in EQS and H in a current-free 

region. Such fields are called conservative because the line integral of the field vector 

between two points in space is path independent. In EQS where 0,E E  = = − we 

have: 

, ,

. 0 . . ( ) ( )

b b

C a path A a path B

E dl E dl E dl b a =  = = −    (2.31) 

In current-free MQS where 0,H H  = = − , we have: 

, ,

. 0 . . ( ) ( )

b b

C a path A a path B

H dl H dl H dl b a =  = = −    (2.32) 

2.6. Static Field Theory 

In static field theory, there are no time variations, and the time-dependent terms 

( / 0t  = ) will be removed from Maxwell’s equations. The currents are steady in 

magnetostatic (MS), and the charges have stationary distributions in electrostatic (ES). 

 Magnetostatic  Electrostatic  

Field 

equations 

H J =  

. 0B =  

( )0B H M= +  or B H=  

. 0J =  

0E =  

. E  =  

( )0D E P= +  or D E=  

. 0J =  

Potentials  
B A=   

current-free: H = −  
E = −  

Poison’s 

equation 

2 A J = −  

current-free: 
2 . mM  = = −  

2 



 = −  

Potential 

solutions 

( )
( )

4 | |
V

J x
A x dv

x x







=

−  
1 ( )

( )
4 | |

V

x
x dv

x x








=

−  

Coulomb’s 

gauge 
. 0A =  
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2.7. Toque Calculations Using Maxwell Stress Tensor 

Maxwell stress tensor is usually employed in microscopic field description of forces—

the way Poynting’s theorem is used in field discretion of energy flow. Maxwell stress 

tensor is the rewritten form of Lorenz law and is solely in terms of magnetic fields, so it 

can be used to calculate the force in situations in which the currents (charged particles) are 

not available or hard to calculate to be used in Lorentz force. In cylindrical coordinates 

(r, θ, z), the Maxwell stress tensor is as in below: 

rr r rz

r z

zr z zz

T T T

T T T T

T T T



  



 
 

=
 
  

 (2.33) 

where stress tensor Tij in electromagnetics is as in the following: 

2 2

0 0

0 0

1 1 1
( )

2
ij i j i j ijT E E B B E B  

 
= + − +  (2.34) 

where i and j can be r, θ or z, and δij is the Kronecker’s delta which is 1 if i=j, otherwise 0. 

For magnetic fields, e.g., in electric machines, we have: 

2

0 0

1 1

2
ij i j ijT B B B 

 
= −  (2.35) 

where 

2 2 2 2

ˆ ˆ ˆ

r z

r r z z

B B B B

B B a B a B a



 

= + +

= + +
 (2.36) 

Maxwell stress tensor can be rewritten as in below: 

2 2 2

2 2 2

0

2 2 2

2

1

2

2

r z
r r z

r z
r z

z r
z r z

B B B
B B B B

B B B
T B B B B

B B B
B B B B





 






 − −
 
 

− − 
=  

 
− − 

 
 

 (2.37) 
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Similar to the role of Poynting vector S in field description of energy flow in Poynting’s 

theorem, the divergence of the sensor in cylindrical coordinates is the vector of volume 

force density (with the dimension of N/m3) as in the following: 

1
ˆ.

1
ˆ

1
ˆ

r rrrr rz
v r

r z r r

zzr zz zr
z

A A AA A
f T a

r r z r

A A A A A
a

r r z r

AA A A
a

r r z r

 

    










 −  
=  = + + + 

   

   + 
+ + + + 

   

  
+ + + + 

   

 (2.38) 

Then, force (with the dimension of N) on an object surrounded by closed surface S 

having the volume vol can be obtained as in below: 

.

r

vol

z

F

F F T dv

F



 
 

= = 
 
  

  (2.39) 

Using Stokes’ theorem, we have: 

ˆ.

r

S

z

F

F F T n dA

F



 
 

= =
 
  

  (2.40) 

As shown in Figure 2.3, the stress on a surface has two components: the normal 

component, which is called normal stress, and the parallel component, which is called shear 

stress. There are actually three stresses operating on a surface, two of which are parallel to 

the surface, whose resultant is the shear stress. The normal stress, which is actually the 

normal force per unit area, will be as in below: 

ˆ ˆ( . )n n n =  (2.41) 

 The shear stress, which is actually the tangential force per unit area, is then remaining as 

in below:  

ˆ ˆ( . )n n  = −  (2.42) 
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Figure 2. 3. Stress, shear stress, and normal stress 

 

Then, the developed torque on a lever arm vector r is as in below: 

ˆ( . )e

S

T r T n dA=   (2.43) 

Generally, for a surface having the normal unit vector of n=(nr, nθ, nz), the surface force 

density (with the dimension of N/m2) is as in below: 

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ. .

ˆ ˆ ˆ

r rr r rz r rr r r rz z

r z r r z z

z zr z zz z zr r z zz z

f T T T n T a T a T a

f f T n T T T n T a T a T a

f T T T n T a T a T a

  

        

  

+ +       
       

= = = = + +
       
       + +       

 (2.44) 

In a two-dimensional analysis of radial-flux rotating machines having an internal rotor, 

the magnetic field does not have any z-component (Bz=0), so Tiz=Tzi=0. As shown in 

Figure 2.4, for a cylinder of radius R encompassing the rotor, normal vector of the side 

surface (Sr+), top surface (Sz+) and bottom surface (Sz-) are n=(1, 0, 0), n=(0, 0, 1) and n=(0, 

0, -1), respectively.  

 

Figure 2. 4. Stresses on a cylinder encompassing the rotor of a radial-flux rotating machine. 
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The force density on the closed surface integral over a cylinder surrounding the rotor 

can be separated into three open surface integrals of the side surface, the top surface, and 

the bottom surface as in below: 

ˆ ˆ ˆ ˆ( . ) ( . ) ( . ) ( . )

r z z

r z z

S S S S

F T n dA T a R d dz T a r dr d T a r dr d  

+ −

= = + + −     (2.45) 

As shown in Figure 2.4, the tensor (force density vector) operating on the three surfaces 

of the cylinder are calculated as below: 

2 2

0 0

2 2

0 0

2

0

1
0

2
1

1
ˆ ˆ ˆ. 0 . 0

2
0 0

0 0
2

r

r
rr r r

rr

r
S r r r r rr r r

zz

B B
T T B B

T
B B

f T a T B B T T T a T a

B
T


 


     

 

 



+

 −
= = 

     
 −    

= = = = = = +     
         −
 =
  

 (2.46) 

2 2

0 0

2 2

0 0

2

0

1
0

2
0 0

1
ˆ ˆ. 0 . 0 0

2
1

0 0
2

z

r
rr r r

r
z r r zz z

zz

zz

S

B B
T T B B

B B
f T a T B B T T a

T
B

T


 


  

 

 



+

 −
= = 

     
 −    

= = = = = =     
         −
 =
  

 (2.47) 

2 2

0 0

2 2

0 0

2

0

1
0

2
0 0

1
ˆ ˆ. 0 . 0 0

2
1

0 0
2

z

r
rr r r

r
z r r zz z

zz

z

S

z

B B
T T B B

B B
f T a T B B T T a

T
B

T


 


  

 

 



−

 −
= = 

     
 −    

= − = = = = = −     
     − −    −
 =
  

 (2.48) 

Therefore, the three integrals can be rewritten as in below:  
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ˆ ˆ ˆ ˆ( ) ( )

r z z

rr r r zz z zz z

S S S

F T a T a R d dz T a r dr d T a r dr d    

+ −

= + + + −    (2.49) 

The last two terms will cancel. In fact, the negative sign in Tzz shows that the last two 

terms are just the forces that tend to keep the rotor within the stator region, produced by 

fluxes that tend to take the shortest path with minimum reluctance. These normal stresses 

on these top and base surfaces are as in below: 

2

0

:
2

z n z

B
S a


+

−
=  (2.50) 

2

0

:
2

z n z

B
S a


− =  (2.51) 

The stress on the side surface of the cylinder has two components: Tθr in the tangential 

direction the contributes to the torque production and Trr whose spatial average around the 

cylinder is zero because the normal force at any point on the cylinder will be canceled by 

a negative value on the opposite side. On the side surface, the shear stress and the normal 

stress can be obtained as: 

2 2

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ: ( . ) [( ). ]
2

r
r n rr r r r r rr r r

B B
S n n T a T a a a T a a

  


+

−
= = + = =  (2.52) 

0

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ: ( . ) ( )r rr r r rr r r rS n n T a T a T a T a B B a       


+ = − = + − = =  (2.53) 

Therefore, the developed electromagnetic torque is as in below: 

ˆ( . )

r

e

S

T r T n dA

+

=   (2.54) 

It leads to the following: 

2 2

2

0 0 0

( ) ( )

L

e

r rT R B H R d dz R L B H d

 

    = =    (2.55) 
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where C can be any closed circle of radius R in the air-gap, as shown in Figure 2.5. In 

certain conditions where the shear stress on the surface has a spatial average of 

2

0

1
( ) ( )

2
rB H d



   


 =   (2.56) 

the average toque will be 

22eT R L =    (2.57) 

Observation: 

• The clear observation in the above equation is that the developed torque is just the 

average shear stress <τ> (average force density) times the surface area 2πRL times the 

torque leg R. 

• We know that this equation leads to the same torque regardless of the circle path C of 

radius R we take, so the stress should be larger for lower radii.  

1 2 1 2R R      (2.58) 

• The torque is independent of R and can be calculated from the closed line integral over 

ANY circle C in the air-gap region. 

1
( ) ( )

2
r

C

B H dl  


 =   (2.59) 

2 ( ) ( )e

r

C

T R L B H d  =   (2.60) 

• Since the shear stress and the torque are independent of the radius of the cylinder, they 

can be obtained from averaging over air-gap volume (or air-gap area in 2D analysis). 

It is useful in FEM when the meshed air gap is not very fine. 

2

0 0

1
( ) ( )

o

i

RL

e

r

o i R

T r B H r dr d dz
R R



  =
−     (2.61) 

so 

2

2

0 0

1
( ) ( ) ( ) ( )

o

i g

RL

e

r r

o i o iR S

L
T r B H r dr d dz B H r dr d

R R R R



      = =
− −     (2.62) 
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where Ri and Ro can be inner and outer radii of the air-gap region (hollow cylinder). 

The arbitrary circle C in the air-gap and the air-gap surface area Sg (yellow area) is 

shown in Figure 2.5. 

• If the normal and tangential components of the field are orthogonal, the average shear 

stress will be zero. The following trigonometric pairs are orthogonal: 

➢ 1 2 1 2sin sinp and p where p p    

➢ 1 2 1 2sin cosp and p where p p    

➢ sin cosp and p   

Therefore, the pair that results in nonzero average shear stress is: 

➢ 0 0sin sin ( )
2

p and p where


   −   

 

 

Figure 2. 5. Arbitrary closed line C and air-gap surface area Ag employed in torque calculations using 

Maxwell stress tensor. 

 

It is worth noting that the developed electromagnetic torque can be obtained from the 

shear stress on either the stator or the rotor. As illustrated in Figure 2.6., it can be shown 

that the shear stresses on the two sides of the air gap are in opposite directions. The normal 

unit vector of the rotor surface is in +r direction, so we have: 

ˆ ˆ1

ˆ. . 0 0

0 0

rr r rz rr r r

rotor

r r z

zr z zz

T T T T a T a

T a T T T

T T T

  

  



+     
     

= =
     
          

 (2.63) 
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The normal unit vector of the stator surface is in -r direction, so we have: 

ˆ ˆ1 ( )

ˆ. . 0 0

0 0

rr r rz rr r r

stator

r r z

zr z zz

T T T T a T a

T a T T T

T T T

  

  



− − +     
     

− = =
     
          

 (2.64) 

It is seen that both shear and normal stresses are in opposite directions. 

 

Figure 2. 6. Maxwell stress tensor and shear stress on the surfaces of rotor and stator 

We should be careful about the fact that a minus sign comes in if the torque is calculated 

using the shear stress on the stationary part—the stator, so 

2 22 2e

i rotor o statorT R L R L   =  = −    (2.65) 

The point is that we take the one whose calculation is easier according to the situation 

we have. For example, in the case of having a surface current density on the surface of an 

infinitely permeable iron, the tangential magnetic field intensity is just equal to the surface 

current density. Since the calculated torque is constant regardless of the radius, the shear 

stress is larger on the surface of the rotor than on the surface of the stator for an inner-rotor 

radial-flux machine: 

i o rotor statorR R      (2.66) 

It is also consistent with the fact that the fields Br and Hθ are larger on the rotor surface 

(smaller radii) than on the stator surface (larger radii). Also, in cases where the air-gap 

length is very small compared to rotor radius (g<<Ri), the torque can be calculated using 

the average radius, and the shear stress on either side, and also the shear stresses have equal 

amplitudes but opposite directions. 
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2 22 2e

ave rotor ave statorT R L R L   =  = −    (2.67) 

rotor stator    −    (2.68) 

 

2.8. Carter’s Coefficient and Slot Modeling 

In a slotted-stator machine, the slots can be modeled by carter’s coefficient. Figure 2.7 

shows the flux lines and magnetic flux density distribution in an air-gap having a slotted-

stator on the bottom side and surface-mounted permanent magnets for the sake of modeling 

on the other side. It is seen that the flux lines which are facing the stator teeth take a shorter 

path—almost the air-gap length—, while those facing the stator slots take a longer path; 

therefore, the effective air gap is larger than the physical air gap. 

 

Figure 2. 7. flux lines and magnetic flux density distribution in an air-gap having slots. 

In order to account for the effect of the two mentioned regions, we employ a slot pitch 

of the stator, including a tooth and a slot. The associated region is also modeled with proper 

boundary conditions as in Figure 2.8 to solve Poisson’s equation for magnetic vector 

potential A in a region without any current. In a 2-D problem, vector potential as in below: 

2 2
2

2 2
0z z

z

A A
A

x y

 
 = + =

 
 (2.69) 

It is worth noting that in a two-dimensional problem, magnetic vector potential Az(x,y) 

only has a z-component while magnetic flux density and magnetic field intensity have x- 

and y-components. We have: 

z zA A a=  (2.70) 
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( , ,0)z z
x x y y

A A
B B a B a A B

y x

 
= + =   = −

 
 (2.71) 

1 1 1
( , ,0)x x y y x yH H a H a B H B B

  
= + =  =  (2.72) 

 We have Neumann boundary conditions on the iron boundaries because the flux lines 

are perpendicular to the iron edges. In other words, magnetic field intensity H is zero in an 

infinitely permeable iron, and due to the continuity of the tangential components Ht where 

there isn’t any surface current density on the boundary, Ht is also zero in the air gap and on 

the iron boundaries. 

0 0 0iron air iron z
t t

A
H H H

n


=  = =  =


 (2.73) 

where n is the normal component of the boundary. We also have Neumann boundary 

condition the bottom edge of the problem to which the flux lines, as well as the magnetic 

field intensity, are perpendicular. 

0 0z
x

A
H

y


=  =


 (2.74) 

There is a Dirichlet boundary condition on the left and right sides of the air gap. As in 

below: 

1z zleft
A A=  (2.75) 

2z zright
A A=  (2.76) 
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Figure 2. 8. (a) Dirichlet and Neumann boundary conditions of the problem 

To solve the problem, it is needed to choose two reasonable values for Az1 and Az2. 

Assuming an average magnetic flux density of 1 Tesla in the air gap, it will be possible to 

come up with fine values. As shown in Figure 2.9(a), the net flux passing through a surface 

S enclosed by closed line C is the surface integral of magnetic flux density vector B over 

surface S, or is the closed line integral of the magnetic vector potential A over line C as in 

below: 

. .
S c

B ds A dl = =   (2.77) 

It is obtained by substituting B in terms of A and employing Stokes’ theorem. In a 2D 

problem where A is only in the z-direction, flux is easily calculated as in below: 

1 2( )z z zL A A L L A = − =   (2.78) 

where Az1 and Az1 are values of Az at the two points in the xy-plane as shown in Figure 2.9(b), 

and L is the axial length of the problem in the z-direction. In case of having a uniform 

magnetic flux density B or in approximations, we have: 

avL w B =  (2.79) 

Combining the last two equations, we have: 

z avA w B =  (2.80) 
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where w=ws+wt in our case. 

 

Figure 2. 9. Closed line C enclosed by open surface S in (a) 3D problem and (b) 2D problem. 

We take ws=4 mm, wt=5 mm, and g=4 mm, so for Bav=1 Tesla in the air-gap, we have 

ΔAz=0.009×1=0.009 wb/m. We assign Az1=0 to the left side and Az2=0.009 wb/m to the 

right side of the air gap. As shown in Figure 2.10, flux lines have the expected values and 

behave the way that we expected, magnetic vector potential is in the z-direction, average 

magnetic flux density distribution in the air-gap is 1 Tesla, and magnetic flux density 

vectors have a downward direction that matches the flux pathing through the surface which 

is -0.009 wb per unit length. 

 

Figure 2. 10.  Field simulation in one slot pitch region: (a) flux lines and magnetic vector potential and (b) 

magnetic flux density distribution and vectors. 
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It is worth noting that the slot depth hs is large enough that no flux reaches the bottom 

of the slot, and all flux lines are attracted to the sides. Based on the flux lines in the region, 

the flux tube model is shown in Figure 2.11(a) is offered to determine the reluctance in an 

air gap facing a slotted stator. The permeance Pg1 is calculated as in below: 

/2

0
1

0

2

sw

g

i

L dl
P

g l




=

+
  (2.81) 

We have: 

0
1

2
ln 1

4

s
g

i

L w
P

g

 



 
= + 

 
 (2.82) 

The permeance Pg2 is calculated as in below: 

0
2

t
g

i

w L
P

g


=  (2.83) 

The total permeance is: 

1 22g g gP P P= +  (2.84) 

We have: 

0

4
ln 1

4

t s
g

i i

w w
P L

g g






   
= + +  

   
 (2.85) 

In case of ignoring the fringing effect due to the slots, the air-gap permeance is: 

0
g

i

w L
P

g

 =  (2.86) 

Therefore, Carter’s coefficient is: 

1

4
1 ln 1

4

g g s s
c

g ig

R P w wg
k

P w w gR





−
   

= = = − + +  
   

 (2.87) 
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It is seen that as long as the slot is deep enough, kc is independent of hs and is only a 

function of slot opening ws, slot pitch w, and air-gap length gie. Finally, as shown in 

Figure 2.11(b), an equivalent slotless stator with efficient air-gap length gie can be 

employed where 

; 1ie c i cg k g k=   (2.88) 

  

Figure 2. 11. (a) flux-tube modeling of an air-gap having slotted stator and (b) equivalent slotless stator 

with efficient air-gap length. 

2.9. Modeling of the Stator 

In this section, magnetomotive force, equivalent surface current density, and tangential 

magnetic field intensity of a stator are obtained. In the studied structure, the stator is the 

inner part, and the rotor is the outer part. 

2.9.1. MMF Produced by Stator 

In this section, we will obtain the magnetomotive force produced by the stator, which 

will be used in the calculation of the radial component of the magnetic field density in the 

air gap. Figure 2.12(a) shows a typical 2-pole (Ps=1) three-phase stator with concentrated 

windings. The positive direction of the pulsating fluxes produced by each phase is also 

depicted (negative currents produce flux in the opposite direction). The resultant of these 

three pulsating fluxes is a rotating field in the air gap. 

Figure 2.11(b)-(d) show the flux lines (closed path of Ampere’s law) and the 

corresponding spatial distribution of the magnetomotive forces (pulsating fluxes) for the 

three phases at time t=0 where ia=Is, ib=-Is/2, and ic=-Is/2. The resultant magnetomotive 

force, as shown in Figure 2.11(e), is a traveling wave for t>0. The amplitude of the MMF 

of each phase is obtained from Ampere’s circuital law as in below: 
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.
2

a a
enc

s sC

Ni Ni
H dl I g H g H H

p g p
=  + =  =  (2.89) 

Also, 

2

a

s

Ni
MMF g H MMF

p
=  =  (2.90) 

where N is the number of turns per phase and N/ps is the number of turns per phase per 

pole, and phase currents are: 

( ) cos( )a si t I t=  (2.91) 

2
( ) cos( )

3
b si t I t


= −  (2.92) 

2
( ) cos( )

3
c si t I t


= +  (2.93) 

The Fourier series representation of the spatial distribution of the three magnetomotive 

forces are as in below: 

( )
1

( )4
( , ) sin

2

a
a s

n s
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N i t
F t np

n p
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

+

=

= −  (2.94) 
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( )4 2
( , ) sin ( )

2 3
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c s

n s
odd

N i t
F t np

n p


 



+

=

 
= − + 

 
  (2.96) 

The Fourier representation series of the spatial distribution of the total magnetomotive 

forces can be obtained directly from the step-wise waveform in Figure 2.11(e) directly or 

by mathematical calculations as in below: 

( , ) ( , ) ( , ) ( , )s a b cF t F t F t F t   = + +  (2.97) 

By substitution of the magnetomotive forces and the currents, we have: 
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We have, 
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 (2.99) 

For n=1, 7, 13, etc., we have the first part of each pair in the three lines of the equation 

above, resulting in a forward traveling wave in the air gap. The nth component is as in 

below: 

( )
3 4

( , ) sin
2 2

s
sn s

s

NI
F t np t

n p
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
= − −  (2.100) 

while for n=5, 11, etc., we have the first part of each pair in the three lines of the equation 

above, resulting in a backward traveling wave in the air gap. The nth component is as in the 

following: 

( )
3 4

( , ) sin
2 2

s
sn s

s

NI
F t np t

n p
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
= − +  (2.101) 

Therefore, the fundamental component (n=1) is: 
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3 4

( , ) sin
2 2

s
s s
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NI
F t p t

p
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
= − −  (2.102) 
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In reality, usually, we do not employ full-pitched concentrated windings, so to account 

for the winding configuration, the winding factor kw can be included in the above 

relationship as in below: 

( )1( , ) sins s sF t F p t   = − −  (2.103) 

1

3 4

2 2

s
s w

s

NI
F k

p
= −  (2.104) 

where δ is the current angle, and the winding factor is defined as in below: 

w p dk k k=  (2.105) 

where kp and kb are pitch and distribution factors, respectively. In a short-pitched winding, 

the pitch factor for the nth harmonic is as in below: 

sin
2

pn

n
k


=  (2.106) 

where α refers to the angular displacement between the two sides of a coil in electrical 

degrees. For a full-pitched coil α=π. 

In a distributed winding, the distribution factor for the nth harmonic is given below: 

sin
2

sin
2

dn

nm

k
n

m




=  (2.107) 

where γ is the slot angular pitch in electrical degrees and m is the number of slots per pole 

per phase. For a concentrated winding, m=1 and so kd=1. 
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Figure 2. 12. A typical three-phase two-pole stator with concentrated windings: (a) stator phases and field 

axis of each phase, (b) flux lines and MMF produced by phase a, (c) flux lines, and MMF produced by phase 

b, (d) flux lines and MMF produced by phase c, and (e) the resultant traveling MMF in the air-gap 

2.9.2. Equivalent Surface Current Density of Stator 

In this section, we obtain the equivalent surface current density of the stator that plays 

the role of the stator winding embedded in the slots in the slotless winding after employing 

the carter’s coefficient. It will be used in torque calculations on the stator as well as in 

extracting the tangential component of the magnetic field intensity on the surface of the 

stator. Using Ampere’s circuital law for the closed curve C in Figure 2.13, we have: 

. z i
C

H dl K R =   (2.108) 
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Magnetic field intensity is zero in infinitely permeable irons, so it leads to: 

/2 /2
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 (2.109) 

The limit of the difference quotient above as Δθ approaches to zero leads to the 

derivative of Hr with respect to θ as in below: 
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 (2.110) 

On the other hand, we know that 

s rF g H=  (2.111) 

Combining the two leads to: 
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
 (2.112) 

By substitution of Fs, we obtain the fundamental component as in below 
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= − −  (2.113) 

It can be written as in below: 

( )1( , ) cosz z sK t K p t   = − −  (2.114) 
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Figure 2. 13. Closed line of Ampere’s law enclosing the surface current density of the stator. 

 

2.9.3. Tangential Component of Field Intensity on Surface of Stator 

The tangential component of the magnetic field intensity on the surface of the stator 

will be used in determining the shear stress on the stator surface using the Maxwell stress 

tensor. Using Ampere’s law over the contour C shown in Figure 2.14, and knowing that 

magnetic intensity within infinitely permeable iron of stator is zero, we have: 

0 z zH K H K − =  =  (2.116) 

By substituting Kz, we obtain the fundamental component as in below: 

( )1( , ) cos sH t H p t    = − −  (2.118) 
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=  (2.119) 

  

Figure 2. 14. Closed line of the Ampere’s law around the boundary of stator surface 
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2.10. Permanent Magnet Modeling 

This part is devoted to the calculation of the magnetomotive force, equivalent magnetic 

charge, and equivalent Amperian current of the PMs. 

2.10.1. MMF Produced by PMs 

The magnetomotive force produced by permanent magnets, which will be used in the 

calculation of the radial component of the magnetic flux density distribution, can be written 

as in below: 

( ) ( )m mF h M =  (2.120) 

where hm is the PM height and the magnetization density of permanent magnets M, shown 

in Figure 2.15(a), is related to PM’s residual flux density Br as in below: 

0

1
rM B


=  (2.121) 

We also know that 

0 ( )H B M= +  (2.122) 

The permanents magnets are alternating in the polarity and have an arc angle of θm, so 

Fourier series representation of the demagnetization density distribution can be written as 

in below: 
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 

+

=

= −  (2.123) 

Then, the fundamental component leads to a continuous magnetization sheet, as shown 

in Figure 2.16(a). It can be represented as in the following: 

0 0( , ) cos ( )mM t M p  = −  (2.124) 

where 
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0

4
sin

2

m mr
pB

M


 
=  (2.125) 

In the case of rotating magnets, we have: 

0 mt  = +  (2.126) 

where ωm is the mechanical speed of the rotor and ξ is the initial position at time t=0. When 

the modulators are the rotating part, and PMs are stationary, we have θ0=0 and then, 

0( ) cos mM M p =  (2.127) 

2.10.2. Coulombian Magnetic Charge Model of PMs 

Using the so-called Coulombian model, the permanent magnets can be represented by 

fictitious magnetic charges that can be used in torque calculation by employing Kelvin 

magnetization force density. The magnetization density M results in the fictitious charge 

density ρm as in below: 

0.m M = −  (2.128) 

In radially magnetized permanent magnets, we have: 

0
r

m

M

r
 


= −  (2.129) 

In a permanent magnet having a uniform magnetization, the divergence of M is zero 

throughout the volume. In this case, a magnetic surface charge density is defined as in the 

following: 

0
ˆ. ( )a b

m n M M = − −  (2.130) 

where n is the normal unit vector of the surface boundary. It is worth noting that positive 

and negative magnetic surface charge densities should be assigned to the surface 

boundaries of a permanent magnet such that M vectors originate from negative charges and 

terminates on positive charges—the rule. As shown in Figure 2.15(b), the surfaces 
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magnetic charges on the two sides of PMs, whose normal vectors are in the radial direction, 

are obtained as in below: 

0m M =   (2.131) 

The fundamental component, as shown in Figure 2.16(b), obtained from the 

fundamental component of the surface charge density distribution shown in Figure 2.16(a), 

is obtained as: 

0 0 0( , ) cos ( )m mt M p    = − −  (2.132) 

When modulators are the rotating part, and PMs are stationary, we have θ0=0 and then, 

0 0( ) cosm mM p   = −  (2.133) 

Torque on PMs using Kelvin force and magnetic charge model of PMs: 

Kelvin magnetization force density can be used in finding the force on a magnetic 

charge in the presence of a magnetic field. Force density acting on magnetic charge density 

ρm in a magnetic field of H can be obtained as in the following: 

mf H=  (2.134) 

Also, force density acting on magnetic surface charge density σm in a magnetic field of 

H can be obtained as in the following: 

mf H=  (2.135) 

where the magnetic field H has two components as in below: 

ˆ ˆ
r rH H a H a = +  (2.136) 
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2.10.3. Amperian Current Model of PMs 

Magnetization of permanent magnets can be modeled by an equivalent current density 

called Amperian currents which can be used in torque calculations by employing Lorentz 

force. The equivalent current density of magnetization M can be extracted as in below: 

mJ M=   (2.136) 

For radially magnetized PMs, the equivalent current is in the z-direction is obtained as 

in the following: 

1
m

M
J

r 


= −


 (2.137) 

In a permanent magnet having a uniform magnetization, the curl of M is zero 

throughout the volume. In this case, a surface current density is defined as in the following: 

ˆ
mK M n=   (2.138) 

where n is the normal unit vector of the surface boundary. It is worth noting that positive 

(in +z direction) and negative (in -z-direction) surface current densities should be assigned 

to the surface boundaries of a permanent magnet such that they produce flux in the same 

direction as M—right-hand rule in Ampere’s law. As shown in Figure 2.15(c), the surfaces 

current densities on the two sides of PMs, whose normal vector are in the θ direction, are 

obtained as in below: 

mK M=   (2.139) 

This is a singularity at the side surfaces of a radially-magnetized PM. The radius r in 

the curl representation of Amperian currents can be seen by looking at the nature of an 

impulse. If θ0 is the left side position of the right PM, on which there is a singularity, 

according to the definition of an impulse, we have: 
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0 0 0

0 0 0

( ) ( ) ( )m m m

M
J dl M J r d M J d

r

  

  

    
+ + +

− − −

=  =  =    (2.140) 

The fundamental component, as shown in Figure 2.16(c), obtained from the 

fundamental component of the magnetization density distribution shown in Figure 2.16(a), 

is obtained as: 

0
0

1
( , , ) sin ( )m

m m

M pM
J r t p

r r
  




= − = −


 (2.141) 

When the modulators are rotating part and PMs are stationary, we have θ0=0 and then, 

0( , ) sinm
m m

M p
J r p

r
 =  (2.142) 

 
Figure 2. 15. Permanent magnet modeling: (a) magnetization, (b) equivalent fictitious charge and (c) 

equivalent surface current density 
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Figure 2. 16. Permanent magnet modeling using the fundamental component: (a) magnetization, (b) 

equivalent fictitious charge, and (c) equivalent surface current density 

 

2.10.4. Tangential Component of Field Intensity on Surface of PMs 

The tangential component of the magnetic field intensity on the surface of the PMs will 

be used in determining the shear stress on the surface of PMs using Kelvin force density. 

The tangential component of the field Hθ can be approximated based on the radial 

component of the field Hr. The field is perpendicular to the surface of the infinitely 

permeable iron, so 

0
o mr R h

H = +
=  (2.143) 

As shown in Figure 2.17, using a linear approximation of Hθ in the PM region, Hθ can 

be represented as a linear function of r with the rate of ∂Hθ/∂θ. 

[ ( )]
o o m

o o mr R r R h

H
H H R R h

r


 = = +


− = − +


 (2.144) 
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It leads to: 

o
mr R

H
H h

r


 =


= −


 (2.145) 

Ampere’s law in a current-free region says that: 

1
0 (0 0) (0 0) ( ) 0r

r z

H H
H a a a

r r






 
 =  − + − + − =

 
 (2.146) 

so, 

1 r
H H

r r





 
=

 
 (2.147) 

We obtain Hθ as a function of Hr on the surface of the PM (r=Ro): 

o

m r

r R
o

h H
H

R


=


= −


 (2.148) 

 

Figure 2. 17. Linear approximation of the flux lines at the surface of PMs 
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Chapter 3 

3. Flux Tubes and Magnetic Equivalent Circuits 
 

 

 

 

3.1 Introduction 

Both numerical or analytical techniques may be used in the analysis of electrical 

machines. Numerical approaches like the finite element method [86], although accurate, 

are usually expensive and too time-consuming to be used in the design optimizations, while 

analytical models by providing fast yet accurate solutions are a very good trade-off between 

accuracy and the required time—useful in preliminary design stages. 

Analytical frameworks for analysis of electrical machines may be performed using the 

solution of Laplace’s and Poison’s equations, or by employing flux-tube-based techniques 

[87] The former, although very powerful, might be complicated for many geometries, 

incapable of taking iron saturation into account, while the latter is usually simpler and 

effective in many configurations without any symmetry and is able to account for iron 

saturation and most material properties, e.g., both PM characteristics. In this chapter, flux-

tube-based models for eddy-current couplers and switched reluctance motors, as very good 

examples, have been developed. Analytical models are the best candidates for design 

optimization and parametric analysis of electric machines. In this chapter, this method is 

studied for two topologies od electric machines. 

3.2. Example I: Eddy Current Couplers 

In this section, a flux-tube model for axial-flux eddy-current couplers is offered [31], 

which is on the basis of a three-dimensional magnetic equivalent circuit combined with 

Faraday’s and Ampere’s laws to account for the reaction field produced by induced eddy-

currents. The proposed framework provides good flexibility and simplicity and is able to 

consider all geometrical parameters and material properties, e.g., saturation and 

permeability of the iron parts, remanence and coercivity of PMs, and actual current paths. 



85 

 

Moreover, it is capable of handling complicated geometries since there is no need for 

boundary conditions. A number of design-related considerations are analytically derived 

as well and accounted for practical concerns. Three-dimensional FEM has also been 

employed in the analyses of the device as well as evaluations of the model. Advantages of 

the proposed model in terms of accuracy and effectiveness are shown. 

3.2.1. Proposed model  

Geometry and specifications of the studied axial-flux eddy-current coupler are 

illustrated in Figure 3.1 and Table 3.1. Axially-polarized surface-mounted PMs alternating 

in the direction of magnetization are placed on the surface of the primary rolled back-iron, 

and the conductive sheet (CS) is located on the surface of the secondary part. The prime 

mover is attached to one part while the load is fixed to the other. Currents are induced in 

the CS due to a relative speed between the two parts, from which the reaction field is 

developed that produces an electromagnetic torque from the interaction with the primary 

magnetic field. The active region associated with PMs and back irons are limited by Ri and 

Ro, while the conductive sheet is extended by overhangs of length H from both sides to 

provide a return path for the induced current. 

 

 

 
Figure 3. 1.  Geometry of the studied eddy-current coupler 
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To simplify some calculations, the device geometry may linearly be expanded along 

with the average radius of the active part given below: 

( ) / 2R R Rav oi= +
 (3.1) 

Then, the pole pitch, the equivalent effective length and the translational speed of the 

linearized structure could be defined respectively as in the following: 

; ;
p av o i av

R L R R v Rp  = = − =
 (3.2) 

3.2.2. Field Calculations: 

First, the magnetic flux produced by PMs is determined using the implemented 

nonlinear MEC. The induced current in the conductive sheet is then calculated through 

Faraday’s law. Finally, the impact of the reaction field on the original air-gap field is taken 

into account by Ampere’s law. The flux paths and the 3D MEC of one flux loop associated 

with the machine are depicted in Figure 3.2. 

Table 3. 1 Specifications of the case-study coupler 

parameter value parameter value 

active inner radius, Ri 30 mm primary-yoke, Lyp 6.5 mm 

active outer radius, Ro 50 mm secondary-yoke, Lys 6.1 mm 

PM height, hpm 7 mm PM grade N35 

air-gap length, g 1 mm PM remanence 1.19 T 

CS thickness, Lcs 1 mm PM corecity -872 kA/m 

overhang length, H 10 mm CS conductivity (Cu) 58 MS 

PM arc, θm 30 deg steel grade M15 

number of PMs, Npm 8 frame material Aluminum 
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The equivalent MMF of a PM is as follows: 

m c pmF H h=
 (3.3) 

The reluctance of a PM, and the total reluctance of the effective air-gap (including CS) 

are calculated as follows: 

2 2

0

0

0

 
(  

 

2

)m o

i

pm pm

m R

r o i m

r

R

h h
R

R R
r dr d

   
  

= =
−

 

 (3.4) 

2 2

0

0

0

2( )

)
 

(  
 

m o

i

cs cs
ge R

o i m

R

g L g L
R

R R
r dr d

  
 

+ +
= =

−
 

 (3.5) 

where ge=g+Lcs is the effective air-gap, and µr=-Br/µ0 Hc is the relative recoil permeability 

of PMs through which both PM characteristics are accounted for in the proposed model. It 

is worth noting that only Br is accounted for in the models that are based on Laplace’s 

equations. The flux tube associated with the leakage permeance between the two adjacent 

PMs is shown in Figure 3.3(a), whose corresponding permeance can be found as follows: 

 

Figure 3. 2.  Magnetic equivalent circuit: (a) Flux paths within the machine, (b) Flux paths within the 

machine, (c) The corresponding 3D MEC 
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0

0

( )

(1 )

eg
o i

mm

m p

R R dl
P

l



  

−
=

+ −
 (3.6) 

Finally, we obtain: 

0 ( ) ( )
1

(1 )

o i cs
mm

m p

R R g L
P ln

 

  

 − +
= +  −   (3.7) 

According to Figure 3.3(b), the magnet to iron leakage permeance can be calculated 

from the following: 

1

0
0

( )L
o i

li

pm

R R dl
P

l h




−
=

+  (3.8) 

Executing the integration yields: 

0 1
( )

1o i
li

pm

R R L
P Ln

h

 



 −
= +  

 

 (3.9) 

where the thickness of the flux tube L1 is the minimum of half of the inter-polar length and 

the effective air gap as follows: 

( )1( ) min ,(1 ) / 2m e m pL g  = −
 (3.10) 

According to Figure 3.3(c), magnet leakage from the top surface is calculated as: 

0

0

( / 2)

3

2

eg
o m

lt

pm

R dl
P

l h

 


=

+
  (3.11) 

We obtain 

0 3
1

3 2

o m e
lt

m

R g
P Ln

h

  



 
= + 

   (3.12) 

According to Figure 3.3(d), the bottom leakage flux is obtained as: 
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0

0

( / 2)

3

2

eg
i m

lb

pm
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P

l h

 


=

+
  (3.13) 

We obtain 

0 3
1

3 2

i m e
lb

m

R g
P Ln

h

  



 
= + 

 
 (3.14) 

 

Since the flux density within the iron yokes are higher behind the inter-polar regions, 

to obtain higher accuracy, as shown in Figure 3.4(a) and Figure 3.5(a), reluctance of either 

primary or secondary iron yokes are considered to be formed from three separate 

components. In addition, a mean area, defined as the average of the areas through which 

the flux paths as shown in Figure 3.4(b)-(d), is considered to calculate reluctances of the 

primary iron as in below: 

1

1 3 /2
0 1 1

0 1

0

 

 

0.5 ( )( / 2)

0.5 (    )
m o
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yp i o m
yp yp R
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iyp o i yp
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l R R
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



 
  

+
= = =

  
− + 

  
 

 (3.15) 

 

Figure 3. 3.  Flux tubes: (a) PM to PM leakage permeance, (b) PM to iron leakage permeance in the 

interpolar region, (c) PM to iron leakage permeance on the top surface, (d) PM to iron leakage 

permeance on the bottom surface 
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According to Figure 3.5(b)-(d), reluctances of the secondary iron is obtained similarly 

as in below: 
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 (3.23) 

where, µip1, µip2, µip3, µis1, µis2, and µis3 are relative permeabilities of the iron components 

determined by the B-H characteristic of the utilized steel. Finally, solving the circuit shown 

in Figure 3.2(c) yields the system of equations in (3.23), from which circuit fluxes can be 

calculated. 
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Figure 3. 4.  Reluctances calculations for the primary iron: (a) Reluctance elements, (b) 

Calculations of Ryp1, (c) calculations of Ryp2, (d) Calculations of Ryp3 

 
Figure 3. 5. Reluctances for the secondary iron: (a) Reluctance elements, (b) Calculations 

of Rys1, (c) Calculations of Rys2, (d) Calculations of Rys3 
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An iterative procedure is employed to calculate the permeability of the saturable 

permeances. The unsaturated values are initially assigned to the relative permeability of 

iron reluctance to determine the reluctance network and solve the circuit. Afterward, the 

associated magnetic flux densities are calculated as in the following: 
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Then, through the B-H curve of the utilized iron, new permeabilities are updated. To 

this end, auxiliary permeabilities are obtained by: 

( ) ( 1) ( 1)

1 1 0 1
ˆ /k k k

iyp yp ypB H − −=
 (3.28) 

( ) ( 1) ( 1)

2 2 0 2
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iyp yp ypB H − −=
 (3.29) 

( ) ( 1) ( 1)

1 1 0 1
ˆ /k k k

iys ys ysB H − −=
 (3.30) 

( ) ( 1) ( 1)

2 2 0 2
ˆ /k k k

iys ys ysB H − −=
 (3.31) 

Then, new permeabilities are calculated through: 

( ) ( ) ( 1) 1

1 1 1
ˆ[ ] [ ]k k d k d
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 (3.32) 
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 (3.34) 
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( ) ( ) ( 1) 1

2 2 2
ˆ[ ] [ ]k k d k d

iys iys iys   − −=
 (3.35) 

where k is the iteration number, and d denotes a damping constant set to 0.1. The process 

lasts until the following criterion is independently satisfied for all permeabilities as in 

below: 

( ) ( 1) ( 1)
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 (3.38) 

( ) ( 1) ( 1)

2 2 2[ ] /k k k
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 (3.39) 

where ε is the termination factor assigned based on the required accuracy (0.01 herein). 

The distribution of the radial component of the flux density produced by PMs in the air gap 

and the CS can be expressed as below: 
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 (3.40) 

3.2.3. The Induced Currents 

Once the flux density is calculated, the induced current density in the conductive sheet 

is determined by Ampere’s law as in below: 

( ) ( )( ) z av zx R xJ x v B v B B   = == 
 (3.41) 

where v, 𝜔, B, and Bz are respectively the relative velocity vector, relative angular velocity, 

and the total magnetic flux density vector and its axial component. 



94 

 

3.2.4. The Reaction Field 

The resultant flux density distribution in air-gap and the conductive sheet is defined as 

the resultant of the fields produced by PMs and the reaction field as in below: 

( ) ( ) ( )z pm csx x xB B B= +
 (3.42) 

where Bcs(x) denotes the reaction flux density issued from the induced current in the 

conductive sheet, whose associated flux lines are shown in Figure 3.6. This can be 

calculated by applying Ampere’s law to the depicted path, as in below: 
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0

0
2 ( ) / ( )
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m cs cs av z
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h g L B x R B x dz dx  + + =    (3.43) 

where, x1 and x2 are the positions of the left and right sides of the path, respectively. 

The term after the equality is the total current enclosed in the closed path. Since the reaction 

flux mainly flows across the unsaturated iron parts, the corresponding MMF drops are 

negligible, and PM recoil permeability is assumed unity compared to the iron parts, all of 

which help avoid excessive calculations. Finally, the substitution of (3.42) yields: 
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Differentiating (44) with respect to x yields an ordinary differential equation as in the 

following: 
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whose general solution can be obtained according to the definition intervals of Bpm(x) given 

in (40), as follows: 
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Given in the Appendix, constants k1, k2, and k3 are determined by the conditions below: 
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        0  ( )
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p

x L L

cs
x

B x J dA J dA


−
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1 2( ) ( )
2 2

m p m p

cs csB x B x
   

= − = = −  (3.48) 

2 3( ) ( )
2 2

m p m p

cs csB x B x
   

= = =  (3.49) 

where the first equation denotes the main condition referring to the point x=x0 where total 

currents enclosed in the intervals [-τp/2,x0] and [x0, τp/2] are the same, so the magnetic field 

at the point x0 is zero. Equations (3.48) and (3.49) denote the continuity of Bcs(x) at the 

margins of the PMs. The significant point x0 is thus determined through the following 

equation:   

0

0

/2

/2 0 0
( ) ( )

cs p cs

p

x L L

av z av z
x

R x R xB dz dx B dz dx



   

−
=     (3.50) 

x0 is obtained by solving the above equation as in below: 

0

1
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2 2

p p

m

m m
x Ln

m

 


 
= − − 

 
 (3.51) 
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3.2.5. The Developed Torque 

Finally, the developed torque is calculated by the total ohmic losses dissipated by the 

induced currents in the conductive sheet, as in below: 

2
( )/ ( / )

CS
xT P L J dx dz = =   (3.52) 

3.2.6. The Actual Current Distribution 

Here, a 3D correction of the equivalent 2D model is carried out to consider the actual 

current paths in the conductive sheet, including the return paths in the overhangs. 

Figure 3.7 illustrates the induced current paths in the conductive sheet. Figure 3.7(a) 

illustrates the condition in which return paths are neglected, and induced currents are 

considered to flow only in the r-direction, while actual induced currents, including the 

return paths, are depicted in Figure 3.7(b). Finally, Russel’s coefficient, given below, is 

employed in order to take into account the actual current paths. 

tanh( / 4 )
1

( / 4 )(1 )

av
s

av

pL R
K

pL R 
= −

+
 (53.3) 

where λ is the overhang coefficient defined as in below: 

tanh( / 4 ) tanh( / 4 )av L avpL R pL R =  (3.54) 

 
Figure 3. 6.  Flux lines of the reaction field 
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where αL=2H/L is the ratio of the total overhang length to the active length. The developed 

torque is finally modified by the correction of the CS conductivity, as in below: 

*

sK =  (3.55) 

 

3.2.7. Design Considerations 

A constraint should be placed on the maximum current density in the conductive sheet 

to avoid an excessive temperature rise that substantially affects the PMs and the adhesive 

holding them to the rotor surface. The average current density is calculated as in below: 

/2

0 /2
( ) /

cs p

p

L

av cs pxJ J dx dz L





−
=    (3.56) 

Also, the following relationship should also be satisfied to limit the flux flowing into 

the back irons and avoid saturation. 

       /   ;       
 

ys

yp yp knee ys

knee

L L B L
L B


   (3.57) 

Moreover, it is essential to limit the ratio of the field intensity inside the PMs to its 

coercivity in order to keep the operating point conservatively above the knee of the 

demagnetization curve to prevent irreversible demagnetization due to the reaction field or 

high temperature. A Hm/Hc ratio of 0.75 is acceptable. We have: 

 
Figure 3. 7. Induced currents in the conductive sheet: (a) Simplified current paths in the conductive-sheet 

by neglecting the return paths, (b) Real current paths by considering the return paths in the overhangs 
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/ 1 /m c m rH H B B= −  (3.58) 

where Bm is the flux density within PMs. 

3.2.8. Evaluations 

This section is devoted to the evaluation of the main characteristics of the device 

obtained by FEM, the implemented analytical model, and the prototyped coupler. 

Figure 3.8 shows the B-H characteristic of the utilized steel. Figure 3.9 illustrates the 

resultant magnetic flux density in the air-gap and the current density distribution in the 

conductive sheet, from which a close agreement with FEM is seen as well. A full-meshed 

model of the utilized 3D FEM is shown in Figure 3.10(a), in which relatively smaller 

elements are considered in the CS and the PMs wherein there is a higher field variation. As 

flux density on the surface of iron parts and PMs is shown in Figure 3.10(b), the flux 

density within the secondary iron behind the inter-polar region corresponding to Ryp1 and 

Rys1 is 1.5 T, i.e., the knee point of the B-H curve, as designed, and the adjacent portions 

associated with Ryp2 and Rys2 magnetically operate at a lower flux density, as expected. Flux 

density distribution on the air-gap side of the conductive sheet is presented in 

Figure 3.10(c). 

 

 

 
Figure 3. 8.  B-H characteristic of the utilized steel grade M15. 

 

 
Figure 3. 9. Field calculations at speed of 400 rpm: (a) Air-gap magnetic flux density and (b) Current 

density distributions 
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The torque-speed characteristic of the coupler is shown in Figure 3.11, from which a 

maximum torque limitation of 4.4 N.m via the allowed maximum current density of 50 

A/mm2 can be determined. Also, it can be observed that a close agreement between the 

analytical, the experimental, and the FEM results are obtained. It is worth noting that in the 

eddy-current couplers since the induced current only exists in a solid conductive sheet 

without any insulation, the current density can be much higher (here 50 A/mm2) compared 

to conventional machines (about 5 A/mm2). 

 

 

3.3. Example II: A Switched Reluctance Motor with Hybrid Excitation 

In this section, modeling, design, and experimental study of a two-phase SRM with 

Hybrid excitation and self-starting capability is accomplished. The geometry of the motor 

is based on C-core modules, whose advantages are shortened flux paths leading to smaller 

core losses and reduced hysteresis losses as the direction of the flux within the stator core 

       
Figure 3. 10. 3D FEM: (a) Full meshed model, (b) Flux density distribution on the surface of iron parts 

and PMs, (c) Flux density distribution on the surface of the conductive sheet 

 
Figure 3. 11.  Torque-speed characteristics of the machine 
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do not reverse; the required MMF is also smaller, resulting in a reduction in the copper 

losses. Thanks to this configuration, a number of PMs can be incorporated into the motor 

to get the hybrid excitation leading to a higher torque density. In addition, by adding several 

teeth on the two poles of the C-cores, the desired number of stator/rotor teeth can be 

obtained, as well as the winding area, and thus, the electrical loading of the motor goes up. 

Also, a new technique is employed to bring a self-starting capability and a pre-determined 

direction of rotation, which has superiorities over the previously proposed methods. A 

MEC-based model for analysis and design of the motor is implemented. It includes precise 

flux tubes for modeling the air gap and the core permeances by dividing the rotation range 

into five different regions according to the observed flux pattern. To attain higher accuracy, 

core saturation is also considered. Another superiority of the proposed model over the 

previous techniques is that it provides a continuous analytical model over the five regions 

as well as on the boundary between them, whose merit is clear in the numerical 

differentiation in torque calculations. Also, FEM is employed in the design and the analysis 

of the motor, as well as verifications of the model. 

3.3.1. Proposed SRM 

As shown in Figure 3.12, in the proposed two-phase SRM (Nph=2), the stator is made 

up of separated C-cores called modules, there are a number of teeth on each pole of a C-

core, and PMs are embedded in the structure to provide a hybrid excitation. Also, a 

technique is used to obtain a self-starting capability. Table 3.2 summarizes the 

specifications of the proposed structure with and without PMs, i.e., hybrid-excited modular 

SRM (HEMSRM) and modular SRM (MSRM). 
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Figure 3. 12.  Topology of the proposed HEMSRM. 

Table 3. 2 Dimensions of HEMSRM and MSRM 

Parameter Symbol HEMSRM MSRM 

Number of phases Nph 2 2 

Number of stator teeth Ns 16 16 

Number of rotor teeth Nr 18 18 

Number of C-core per phase n 2 2 

Number of teeth per pole of a C-core m 2 2 

Rotor pole pitch (deg) θrp 20 20 

C-core angle (deg) γ 40 40 

Stator pole arc (deg) λ 8 8 

Stator tooth arc (deg) βs & βs+α 8.4 & 11.9 8.4 & 11.9 

Rotor pole arc (deg) βr 8.4 8.4 

Stator outer diameter (mm) Do 94 94 

Stator yoke thickness (mm) bsy 4.7 4.7 

Stator inner diameter (mm) Di 51.2 51.2 

Stator pole length (mm) hs 10.7 10.7 

Stator tooth yoke thickness (mm) bty 3 3 

Stator tooth length (mm) ht 3 3 

Air-gap length (mm) lg 0.3 0.3 

Rotor outer diameter (mm) d 50.6 50.6 

Rotor pole length (mm) hr 4.55 4.55 

Shaft diameter (mm) Dsh 20 20 

Stack length (mm) L 20 20 

PM width & length (mm) WPM & lPM 5 & 10 - 

Available windings space (mm2) ac 112 112 

Fill factor Ff 0.64 0.64 

Current density (A/mm2) Jc 5.5 5.5 

Number of turns per pole of a C-core Tpole 90 90 

Type of PM - NdFe42 - 

 



102 

 

3.3.1.1. C-Core Stator 

Each stator phase is made up of a number of C-cores. Each C-core has two poles. There 

is a concentrated winding around each pole. The stator flux goes to the rotor from one pole 

and returns from the other pole. There are three main advantages compared to the 

conventional structures: 

1. Compared to conventional SRMs, the flux path in the rotor and stator back irons is 

shorter, so the required magnetomotive force and the following copper and core 

losses are reduced. 

2. The direction of the flux in the C-cores does not reverse and is always the same, 

which results in a significant reduction in the core losses. 

3. As the C-cores are magnetically isolated, we can incorporate PMs to have a hybrid-

excited stator. 

We know that each C-core produces an attraction force on the shaft, so an important 

point is the number of C-core per phase. As it will be explained later, having only one C-

core per phase (n=1) results in a radial force on the shaft of the motor, which is destructive, 

can damage the ball bearing, and can cause eccentricity. Therefore, n=2 is picked so that 

the radial forces on the shaft are canceled out. 

3.3.1.2. The Stator and Rotor Teeth Design  

The stator is designed such that there are m teeth on each pole of a C-core. The number 

of stator teeth Ns is the number of phases Nph times the number of C-core per phase n times 

the total number teeth per C-core 2m: 

2s phN N n m=  
 (3.59) 

The number of rotor teeth Nr is given as follows, where 2m is the number of teeth 

required for the aligned phase, and 2m+1 is the number of teeth required for the unaligned 

phase. 

[2 (2m 1)]rN n m= + +
 (3.60) 
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3.3.1.3. Hybrid Excitation by Embedding PMs 

By adding PMs between the C-core modules of the MSRM, we obtain a HEMSRM. 

The direction of the magnetization of the PMs should be determined such that the direction 

of the PM flux is the same as the direction of the stator flux in the air gap when a phase is 

excited. Consequently, the air-gap flux is strengthened, resulting in higher torque. 

Therefore, the direction of the PMs should be clockwise or counterclockwise, which is 

based on the direction of currents in the stator windings. Here, the clockwise direction is 

selected. 

3.3.1.4. Self-Starting Capability 

A big drawback of two-phase SRMs is that they do not have a self-starting torque and 

thus a pre-determined direction of rotation. To obtain a starting torque, one of the left or 

the right tooth of each pole of a C-core needs to be extended by an amount of α from one 

side. It can be seen that when phase B is aligned (the right flux loop), phase A (the left flux 

loop), which is in an unaligned position, can develop a starting torque if excited. This 

technique of developing a staring torque by making an asymmetry in the torque-angle 

characteristic can be observed in Figure 3.13. If the extension is made on the right side of 

the teeth, the direction of the rotation of the rotor is counterclockwise; also, if the extension 

is made on the left side of the teeth, the direction of the rotation of the rotor is clockwise. 
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3.3.1.5. Flux Analysis 

Figure 3.14(a) shows flux loops and flux density distribution due to only stator 

excitation (MSRM). It can be seen that, compared to conventional SRMs, there are no flux 

reversals and the flux paths are shorter (smaller required MMF), resulting in lower core 

and copper losses. As flux paths and flux density distribution due to only PM excitation 

are shown in Figure 3.14(b), it is observed that nearly all of the PM flux closes its pass 

through the stator C-cores at zero current, resulting in almost zero cogging torque. As 

shown in Figure 3.14(c), as the current goes up in HEMSRM, the stator core gets close to 

the knee point of the saturation, and core reluctance goes up, thus more PM flux tends to 

pass the air-gap and close its path through the rotor; it is how the PM flux reinforces the 

air-gap flux density, leading to an increase in the developed torque. It is worth noting that 

the thickness of the C-cores should be designed such that they get close to the knee point 

of the saturation curve at the nominal current so that most of the PM flux passes the air gap 

to contribute to the energy conversion. 

 
Figure 3. 13.  Teeth extension in the proposed self-starting technique. 
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3.3.2. Flux Tube Modeling 

This section is devoted to MEC and torque derivation. 

3.3.2.1. Magnetic Equivalent Circuit 

The implemented MEC, is given in Figure 3.15. The circuit, which has 32 nodes, can 

be solved using Kirchhoff’s current law to obtain the node MMFs. It leads to the following 

32-by-32 system of equations: 

  
Figure 3. 14.  Flux paths, flux lines, and flux density due to (a) only current (MSRM), (b) only PMs, and (c) 

both current and PMs (HEMSRM). 



106 

 

   , 32 1 32 132 32i j i iP F 
 

  =   (3.61) 

where the node MMFs Fi are the unknowns. The flux sources φi are obtained using the 

Norton equivalent of the MMF sources of the stator Fs and the PMs Fpm as in below: 

(2 )(2 )s sp sy sP P F = +
 (3.62) 

(2 )(2 )pm PM sy pmP P F = +
 (3.63) 

Then, the flux source φi is φsp for i=2 and 31, -φsp for i=3 and 30, φpm for i=1 and 32, 

and -φpm for i=4 and 28. Otherwise, φi is zero. The element Pi,j is the sum of the permeances 

connected to the node i if i=j, and it is minus the permeance between the nodes i and j if 

i≠j.  

 

3.3.2.2. Air-Gap Flux Tubes and Permeances 

As shown in Figure 3.16, based on the observation of the flux lines and the fact that the 

flux pattern changes as the rotor rotates from an unaligned position (θ=0) to a fully-aligned 

position (θ=θrp/2), five different regions are considered for the flux tube modelling and 

permeance calculation of the air-gap. The boundary between the regions is also specified. 

The highest number of flux tubes (the most complicated model) exists in region one, and 

 
Figure 3. 15.  Magnetic Equivalent Circuit. 
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this number decreases with disappearing some flux tubes as the rotor gets close to the end 

of region 5 (the simplest model). Each flux tube can be calculated using: 

0
b

gi
a

gi

L dx
P

l


=   (3.64) 

where the integration interval [a,b], the flux tube length lgi, and the obtained permeance 

relationships are given in Table 3.3. For simplicity, k=μ0L/π is used. Other geometrical 

parameters are given in the Appendix. 

Comparing the MEC in Figure 3.15 and the air-gap flux tubes in Figure 3.16, we 

understand that the four air-gap permeances P1, P2, P3, and P4 shown in Figure 3.15 are 

constituted from several parallel flux-tubes (Pg1 to Pg13), calculated as in below: 

1 1 2 3 12g g g gP P P P P= + + +
 (3.65) 

2 4 5 6g g gP P P P= + +
 (3.66) 

3 7 8 9 13g g g gP P P P P= + + +
 (3.67) 

4 5 10 11g g gP P P P= + +
 (3.68) 

It is worth noting that the value of Pgi is zero in some regions, as shown in Table 3.3. 

3.3.2.3. Core and PM Permeances 

The permeances of the rotor and the stator cores, as well as the PMs, as shown in 

Figure 3.16, can be obtained using the following relationship: 

A
P

l


=  (3.69) 

where the values of permeability μ, length l, area A, and the obtained relationships are given 

in the Table 3.3. 
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3.3.2.4. Core Saturation 

The core saturation is accounted for using an iterative procedure in which the 

permeabilities of the core permeances updates in each iteration as in below: 

Table 3. 3 Permeance Calculations for Different Regions 

Air-gap Permeances 

Pgi Region (Ri) 

Integration 

interval 

Flux tube 

length Permeance Relationship 

a b li(x) 

Pg1 
R1 θ1-θ τr+θ1-θ lg+(π/2)x ( ) ( )( )( )g 12 1 2lrk ln     + + −

 

R2, R3, R4, R5 0 τr+θ1-θ lg+(π/2)x ( ) ( )( )1 g2 1 2lrk ln     + + −
 

Pg2 
R1 0 θ1-θ lg+πx ( ) ( )( )1 g1 lk ln    + −

 

R2, R3, R4, R5 - - - 0 

Pg3 

R1 θ1-θ τr/2+θ1 lg+(π/2)x ( )( ) ( )( )( )g 1 g 12 4l 2 4l 2rk ln       + + + −
 

R2, R3 0 τr/2+θ1 lg+(π/2)x ( ) ( )( )1 g2 1 2lrk ln    + +
 

R4, R5 0 τr+θ1-θ lg+(π/2)x ( ) ( )( )1 g2 1 2lrk ln     + + −
 

Pg4 
R1, R2, R3 θ1+θ τr/2+θ1 lg+(π/2)x ( )( ) ( )( )( )g 1 g 12 4l 2 4l 2rk ln       + + + +

 

R4, R5 - - - 0 

Pg5 
R1, R2, R3 0 θ1+θ lg+πx ( ) ( )( )1 g1 lk ln    + +

 

R4, R5 - - - 0 

Pg6 
R1, R2 θ1+θ τr-τs1/2+3θ1/2 lg+(π/2)x ( )( ) ( )( )( )g 1 1 g 12 4l 2 3 4l 2r sk ln        + − + + +

 

R3, R4, R5 - - - 0 

Pg7 

R1, R2 0 τr-τs1/2+θ1/2 lg+(π/2)x ( ) ( )( )1 1 g2 1 2 4lr sk ln     + − +
 

R3, R4 0 2τr-τs1+θ1-θ lg+(π/2)x ( ) ( )( )1 1 g2 1 2 2lr sk ln      + − + −
 

R5 - - - 0 

Pg8 
R1, R2, R3, R4 0 τs1-τr-θ1+θ lg ( ) ( )0 1 1 gls rL    − − +

 

R5 0 τr lg ( ) ( )0 glrL 
 

Pg9 
R1, R2, R3 0 τr/2+θ1 lg+(π/2)x ( ) ( )( )1 g2 1 2 4lrk ln    + +

 

R4, R5 0 τr+θ1-θ lg+(π/2)x ( ) ( )( )1 g2 1 2lrk ln     + + −
 

Pg10 
R1, R2, R3 θ1+θ τr/2+θ1 lg+(π/2)x ( )( ) ( )( )( )g 1 g 12 4l 2 4l 2rk ln       + + + +

 

R4, R5 - - - 0 

Pg11 

R1 θ1+θ τr+θ1+θ lg+(π/2)x ( ) ( )( )( )g 12 1 2lrk ln     + + +
 

R2, R3 θ1+θ τr+2θ1 lg+(π/2)x ( ) ( )( )( )g 1 g 12 2l 2 2lrk ln       + + + +
 

R4, R5 - - - 0 

Pg12 
R1 - - - 0 

R2, R3, R4, R5 0 θ-θ1 lg ( )0 1 glL  −
 

Pg13 
R1, R2, R3, R4 - - - 0 

R5 0 τs1-2τr-θ1+θ lg+(π/2)x ( ) ( )( )1 1 g2 1 2 2ls rk ln      + − − +
 

Core and PM Permeances 

Pcore μ Area A Length l Permeance Relationship 

Psy μsy bsy L γ (Do-bsy)/2 ( ) / (( )( ) / 2)sy sy o syb L D b  −
 

Psp μsp τs L hs ( ) /sp s sL h 
 

Prp μrp τr L hr ( ) /rp r rL h 
 

Pry μry bry L  τrp ( ) /ry ry rpb L 
 

Pst1 μst1 τs1 L ht 1 1( ) /st s tL h   

Pst2 μst2 τs2 L ht 2 2( ) /st s tL h   

Pyt1 μyt1 bty L (τrp+τr-τs1)/2 1 1( ) / (( ) / 2)yt ty rp r sb L   + −
 

Pyt2 μyt2 bty L τrp/2 2 ( ) / ( / 2)yt ty rpb L 
 

PPM μPM wPM L lPM ( ) /PM PM PMw L l  
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( ) ( )

( 1) ( 1) ( ) ( 1) 1

0/ , ( ) .( )
k k

k k k d k d

ri i i ri ririB H    
 

− − − −= =  (3.70) 

where Biron and Hiron are obtained from the BH curve. The damping d is set to 0.1. This 

iterative process repeats until the following stop criterion is satisfied for ε=0.001. 

( ) ( 1)k k

ri ri  −−   (3.71) 

3.3.2.5. Torque Calculation 

Having the node MMFs calculated, the flux passing a pole of a C-core φsp, and then the 

flux linkage and the inductance of a phase can be obtained as in below: 

( , )
( , )

( , ) 2 ( , )pole sp

i
L i

i

i nT i

 


   

=

=

 (3.72) 

Then, the coenergy and the torque are obtained as in below: 

21
( , ) ( , )

2
cW i L i i =  (3.73) 

Having the coenergy, the developed torque can be obtained by numerical 

differentiation using the following relationship: 

2( , ) 1 ( , )
( , )

2

c

i const

W i dL i
T i i

d

 


 =


= =


 (3.74) 
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Figure 3. 16.  Flux tubes for permeances calculations in different regions. 
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3.3.3. Results and Discussions 

As shown in Figures 3.17(a)-(b), there is a starting torque in both HEMSRM and 

MSRM. The PMs have increased the torque in HEMSRM. As summarized in Table 3.4, 

the higher the current, the larger the impact of PM deployment on the torque increase; as 

it was shown in Figure 3.14, as the current goes up, the core gets closer to the knee point 

of saturation and the core reluctance goes up, so more PM flux tends to pass the air-gap so 

as to contribute to the energy conversion and finally torque production. Figures 3.19(c) 

illustrates the total torque (THEMSRM) at the nominal current of 6 A and its components, i.e., 

the parts produced by stator flux (TMSRM) and PM flux (TPM), respectively; it is seen that 

almost half of the total torque is produced by the PMs. As shown in Figures 3.17(d), the 

magnitude of the cogging torque is almost zero (less than 5 mN.m) as almost all of the PM 

flux passes the C-cores, as can also be observed in Figure 3.14(b). Also, a great correlation 

is observed between analytical, FEM, and experimental results, proving the accuracy of the 

model. As given in Figure 3.18, the rate of change of flux linkage versus position is higher 

in HEMSRM compared to MSRM, which is the reason behind its larger torque capability. 

 

 
Figure 3. 17. (a) and (b) torque-angle characteristics at different currents for HEMSRM and MSRM, (c) 

total torque of HEMSRM and its components at the current of 6A, and (d) cogging torque of HEMSRM. 
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Figure 3. 18.  Flux linkage versus position characteristics for the two motors at the currents of 2, 4, and 6 

A. 

Table 3. 4 Comparison of Mean and Peak Torque 

Phase 

current 

(A) 

Torque of 

HEMSRM 

(N.m) 

Torque of 

MSRM 

(N.m) 

Mean torque of 

HEMSRM 

compared to 

MSRM (%) 

Peak torque of 

HEMSRM 

compared to 

MSRM (%) Mean peak Mean peak 

1 0.038 0.056 0.038 0.054 0.00 3.70 

2 0.150 0.212 0.140 0.206 7.14 2.91 

3 0.328 0.471 0.234 0.392 40.17 20.15 

4 0.534 0.797 0.291 0.496 83.50 60.68 

5 0.704 1.116 0.330 0.570 113.33 95.79 

6 0.833 1.374 0.363 0.628 129.47 118.79 
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Chapter 4 

4. A Rotary Actuator with Magnetic 

Restoration and an Experimental Prototype 
 

 

 

 

 

 

 

 

 

 

4.1 The Topology of the Actuator 

In this chapter, an electromechanical model incorporating eddy currents is developed 

for a limited-angle rotary actuator with a magnetic restoration torque to be employed in 

identification, drive, and control studies. By elliptically shaping the stator curvature, the 

reluctance torque is produced to restore the rotor to the maximum torque position if the 

coil current is removed. 

The geometry and the exploded view of the actuator, whose specifications are listed in 

Table 4.1, are shown in Figure 1(a)-(b). The rotor PM has diametral magnetization. The 

interaction of stator flux and the magnet produces the main torque. The stator inner surface 

is shaped to have an elliptical curvature whose interaction with the magnet produces a 

reluctance torque which tends to restore the rotor back to the maximum torque per ampere 

position (MTPAP). 

 

Table 4. 1 Specifications of the Studied Motor 

parameter value parameter value 
outer diameter, Do  13.716 mm PM remnant, Br 1.37 Tesla 

lamination height d 0.35 total turns, N 100 

# of laminations, m 12 wire gauge AWG33 

stack length, L 4.191 mm torque constant, kt 1.906 mN.m/A 

pole width, wp 4.72 mm Mag. spring ks 0.636 mN/rad 

PM length, Lpm 9 mm total stiffness, Ks 1.3 mN/rad 

rotor diameter, Dr 3.048 mm total damping, kd 4.49e-7 Ns/rad 

minor radius, R1 1.71 mm inertia, J 1.65e-9 kg.m2 

major radius, R2 1.9665 mm inductance, Lc0 280 uH 

PM conductivity 0.6 MS/m resistance, Rc 1.76 ohm 

lamination conduct. 2 MS/m sense resistor, Rs 0.1 ohm 
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4.2. Design Considerations 

 In this section, some design aspects of the actuator are explained: 

1. The rotor radius Rr and thus the overall sizing is obtained based on torque/power 

requirements. 

2. The inner radius of the stator is designed to provide enough space for the stator winding 

according to the required electrical loading (Ampere turn). 

3. The outer diameter of the stator Do is designed such that the back iron operates at the 

knee point of the magnetic saturation curve; too small values result in saturation while 

 

 
Figure 4. 1. (a)  exploded view of the actuator, (b) geometry of the actuator, (c) Amperian current model 

of PM, and (d) lumped-element models of the PM 
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a large value causes the excessive use of iron and oversizing. A value around half of 

the pole face is a good design. 

4. There is a compromise between kt and kres; a larger restoration can be achieved by a 

higher saliency, but kt goes down as the saliency increase the effective air-gap length, 

which causes a reduction in the average flux density of air-gap; therefore, the saliency 

should be designed to provide the minimum required restoration. 

5. There are two auxiliary slots to divide the pole faces into two sections in order to aid 

in restoration by suppressing hysteresis effects. As the rotor goes back and forth around 

MTPAP, the direction of the flux produced by the PM within each half of the stator 

pole faces changes without the auxiliary slots. By separating the two halves of a pole 

face, the magnet flux turns the auxiliary slot; thus, one section always stays North and 

the other one always stays South, guaranteeing that the rotor restores to the MTPAP 

when the current is removed from the coil. As illustrated in Figure 4.2, without the 

auxiliary slots, there could be a hysteresis effect making one-half of the pole face more 

or less North/South if the current is removed when the rotor is not at the MTPAP; as a 

result, the rotor restores to position with a small deviation from MTPAP. The opening 

of these two slots should be small enough so that its fringing effect can be ignored. 

 

4.3. Field Analysis 

Figure 4.3(a) shows flux lines, flux density distribution, the radial component Br and 

its fundamental Br1 on the rotor surface due to the stator current. The left sides of 

Figures. 4.3(b)-(d) show the magnetic flux density distribution due to the PM at different 

 
Figure 4. 2.  PM flux and hysteresis effect: (a) without and (b) with auxiliary slots. 
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rotor positions, while the right sides illustrate the PM Amperian currents Km together with 

Br1—the torque producing. At β=0, KmBr1 integrates to zero, so Tcoil=0; also, Trest=0, 

because the PM is faced with the minimum permeance, which is an unstable equilibrium 

as the slope of the curve is positive. At β=45, Trest is maximum. At MTPAP, i.e., β=0, 

KmBr1 integrates to a maximum value; also, Trest=0 as the PM is faced with the maximum 

permeance, which is a stable equilibrium as the slope of the curve is negative. The meshed 

models used in finite element analysis are shown in Figure 4.4. 

 

 
Figure 4. 3. (a) 2D distribution of magnetic flux density and flux lines (left), and radial component of 

magnetic flux density Br and its fundamental Br1 due to stator current of 1A, and (b)-(d) 3D distribution of 

magnetic flux density (left), and Amperian current distribution of PM together with Br1 (right) at rotor 

positions β=0, β=45o and β=90o. 
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4.3. Experimental Prototype 

Figure 4.5 shows the prototyped actuator and the torque-angle measurement setup. The 

torque-angle characteristics at zero coil currents (the restoration torque) as well as the coil 

torque and the total torque at a current of 1A are given in Figure 4.6(a). The torque constant 

is obtained as kt=1.906 m N.m/A by experiment and 1.953 m N.m/A by 3D FEM and, i.e., 

less 2.5% of error. Also, the restoration constant is obtained as krest=0.318 by experiment 

and 0.28 by FEM and, i.e., an error of 11%. Among the sources of the discrepancies might 

be prototyping issues, misalignments, inaccurate material characteristics, etc. The coil 

torque is obtained by subtracting the restoration torque from the total torque as it cannot 

directly be measured. The back-emf waveform at a velocity around 100 rad/sec is shown 

in Figure 4.6(b), where the peak divided by the velocity is obtained as kb=1.91 volt.sec/rad 

by experiment and 1.96 volt.sec/rad by FEM and, i.e., an error of less than 3%. It is seen 

 

 
Figure 4. 4.  Meshed models for original geometry used for FEM. 
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that all waveforms have a sinusoidal pattern, as expected from the nonlinear 

electromechanical model that will be explained in a future chapter. 

 

 

4.4. Conclusions 

In the studied actuator, the coil torque is produced by the interaction of the fluxes 

produced by the coil current, and the restoration torque is produced by the interaction of 

the magnet with the saliency of the stator poles. The penalty of having the restoration torque 

is that the coil torque goes down to a small degree, which is a point to have in mind for the 

 
Figure 4. 5.  The prototype actuator (left), and torque-angle measurement (right). 

 
Figure 4. 6.  (a) Coil, restoration and total torques, and (b) back-emf waveform 
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design of such devices. In some applications, the restoration torque might not be needed, 

and so a circular crosssection might is adopted for the stator pole faces. It is also true for 

the auxiliary slots; if the restoration does not matter, they may be eliminated from the 

topology of the actuator. 
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Chapter 5 

5. Electromagnetic Model 
 

 

 

 

 

 

 

 

 

 

 

 

5.1 Introduction 

Modeling of electric machines and provides very useful tools for design, analysis, and 

optimization purposes. Due to advantages like simple structure, cheap maintenance, high 

reliability, low cost, and uncomplicated control, rotary actuators have been employed 

widely in the industry from automotive manufacturing and biomedical applications to 

robotics, aerospace, fluid valves, optical scanning, and 3D printers. They are sometimes 

called limited-angle torque motors, especially when designed to provide a constant torque 

over an angular region. Voice coil motors have the same behavior.  

The finite element method (FEM) is a very powerful numerical technique in the 

analysis of electromagnetic devices, e.g., in limited-angle torque motors and actuators; 

however, FEM can be expensive and time-consuming, making them very slow in the design 

optimizations. On the other hand, analytical approaches, by providing closed-form 

solutions, are very fast yet accurate alternatives for preliminary designs and optimizations. 

Electric machines may be successfully modeled based on the solution of Laplace’s and 

Poisson’s equations; this powerful approach provides precise field solutions and torque 

calculations, yet their major drawback is that several boundary conditions are required to 

solve the system of equations, so severe challenges can be faced in complicated geometries. 

This approach has been used in the modeling of many electromagnetic devices in different 

coordinates, e.g., magnetic couplers in cylindrical coordinates [19], a voice coil actuator in 
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cartesian coordinates [25], and limited-angle torque motors in cylindrical coordinates [26]. 

General solutions in cartesian, cylindrical, and spherical coordinates can be found in [17] 

-[18]. However, Laplace’s equation in elliptical coordinates, whose general solutions can 

be found in [20] and [24], have rarely been used in the modeling of electric machines. In 

[21]-[23], such studies have been done in the realm of physics and accelerator magnets. 

In this chapter, an analytical model is developed for a rotary actuator with a magnetic 

restoration torque that replaces the traditional mechanical springs having a shorter lifetime 

and mechanical fatigue problems. The rotor is a permanent magnet (PM) with diametral 

magnetization. The restoration torque is produced by shaping the stator to have an 

approximately elliptical curvature such that a reluctance torque is obtained. To model the 

actuator, the stator geometry is simplified to an ellipse having surface current densities on 

the interpolar regions which are equivalent to stator coils. Also, the PM is represented with 

Amperian currents on the surface of the rotor. 

To obtain the coil torque, the field solutions within the stator are obtained by solving 

Laplace’s equation in the elliptical coordinates in which the equivalent surface current is 

used as a boundary condition. Afterward, the magnetic flux density on the PM boundary 

are obtained and converted to the cylindrical coordinates. Then, the coil torque is calculated 

by the Lorentz force operating on the Amperian currents. As the stator boundary is an 

ellipse and the rotor boundary is a circle, the reluctance torque cannot be derived by solving 

Laplace’s equation in one coordinate system, so the flux tube method is employed. Also, a 

rotating reference frame on the rotor is adopted to simplify the mathematics. It is shown 

that the conventional flux tubes used in lumped-element MECs do not work, and thus a 

method named differential flux tubes is adopted in which, instead of lumped permeances 

for different regions, differential permeances are utilized. Then, the corresponding 

differential co-energy is integrated to calculate the co-energy at any rotor position, whose 

derivative with respect to rotor position gives the reluctance torque. 

The finite element method is also employed in the field analysis and development of 

the proposed model. Field distribution, flux lines, and torque profiles are obtained and 

analyzed. The actuator is also prototyped. Finally, it is shown that there is close agreement 
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among the results obtained from the analytical model, FEM in the simplified geometry, 

FEM in the original geometry, and experimental results obtained from the prototype. 

5.2. The Actuator and The Proposed Model 

5.2.1 The Actuator  

The geometry and the exploded view of the actuator are shown in Figure 5.1. The 

specifications are also listed in Table 5.1. For this study, the length of the magnet is shorter 

than the one used in the previous chapter and the one used in the dynamic studies. It is a 

two-pole machine. The stator has two coils that are in series, and each of them includes 

half of the total number of turns. The rotor PM has diametral magnetization. The magnetic 

field developed by the stator current interacts with the PM to produce a torque which will 

be obtained by Lorentz force. Changing the direction of stator current results in back and 

forth rotation of the rotor. The stator inner surface has an elliptical shape to create a 

reluctance difference seen by the PM to develop a reluctance torque to bring the rotor back 

to the maximum torque per ampere position. Also, there are two auxiliary slots in the pole 

faces to aid in rotor restoration to maximum torque per ampere position by suppressing 

hysteresis effects in the stator laminations. 

The total developed torque of the actuator is constituted from the coil torque, which is 

the interaction of the field produced by the stator current with the PM, and the restoration 

torque, which is a reluctance torque developed from the interaction of the PM with the 

variable reluctance of the air-gap. The total torque is a function of stator current and rotor 

position as in below: 

( , ) ( , ) ( )t c coil c resT i T i T  = +
 (5.1) 

The coil torque is obtained by solving Laplace’s equation in simplified geometry of the 

stator in the elliptical coordinates, and the restoration torque is derived by differential flux 

tubes. 
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Figure 5. 1. Geometry (top) and exploded view (bottom) of the actuator. 

Table 5. 1 Specifications of the Studied Motor 

parameter Value  

stator outer diameter Do  13.716 mm 

stack length L 4.191 mm 

outer diameter of rotor Dr=2Rr 3.048 mm 

minor radius of elliptical surface of stator R1 1.71 mm 

major radius of elliptical surface of stator R2 1.9665 mm 

PM remnant flux Br 1.37 Tesla 

total number of turns, N 100 

wire gauge AWG33 

interpolar angle θc 38 degrees 

fringing angle θf 50 degrees 
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5.2.2 Equivalent Geometry of Stator in Elliptical Coordinates 

The solution of Laplace’s equation cannot straightforwardly be obtained for the 

complicated geometry of the stator where the boundary conditions cannot easily be applied. 

As shown in Figure 5.2, in the proposed model, the stator is simplified into a hollow ellipse 

whose semi-major and semi-minor axes are R2 and R1. The two foci F1 and F2 are also 

located at (±c, 0). The ellipse is represented in Cartesian coordinates as in below:  

2 2 2 2 2 2

2 1 2 1/ / 1;x R y R c R R+ = = −
 (5.2) 

The advantage of the simplified geometry is that the boundaries of Laplace’s equation 

can be easily applied in elliptical coordinates (η, ψ, z). However, the main challenges are 

how to form the boundary conditions and how to reproduce the stator coils in the new 

geometry. As shown in Figure 5.2, the stator coils are represented as equivalent surface 

current densities Kc=±Kcm with an angular span of θc on the boundary of the ellipse where 

the interpolar region is located in the original geometry. It will be shown that this new 

boundary produces the same field distribution in the region inside the ellipse with very 

good accuracy. 

 

Figure 5.3 shows the new geometry in the elliptical coordinates (η,ψ,z) whose 

relationship with cartesian coordinates (x,y,z) is j cosh( j )x y c  + = +  in the complex plane 

and. Deriving real and imaginary parts leads to: 

  
Figure 5. 2.  An ellipse as an equivalent geometry for the stator curvature and a surface current density 

Kc in the interpolar region as an equivalent for the coils. 
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cosh cos

sinh sin ; [0, ], [0,2 ]

x c

y c

z z

 

    

=


=  + 
 =  (5.3) 

where constant η gives elliptic cylinders and constant ψ gives hyperbolic cylinders, as 

shown in Figure 5.3 with the green lines. A line between the two foci is obtained by η=0. 

With the simplified geometry, the flux lines and the flux density vectors have the same 

behavior on the ellipse boundary, i.e., perpendicular to the iron surface (zero tangential 

component Bψ=0) where the is no surface current, and non-perpendicular to the boundary 

on the interpolar region where there is a surface current density (Bψ=-Kc). The small impact 

of auxiliary slots on the field distribution is also ignored. 

The stator boundary can be represented as an ellipse η=η0 where η0=tanh-1(R1/R2) 

which is obtained from 1 0sinhR c = divided by 2 0coshR c = .  

Now, the interpolar region angular span θc in the cylindrical coordinates need to be 

translated into ψc in elliptical coordinates. According to point A(xc,yc) in Figure 5.3, the 

angular span in the cylindrical coordinates can be obtained x / tan( / 2)c c cy = . Also, dividing 

the two equations (3) at the point A results in 
0x / coth cot(pi/ 2 / 2)c c cy  = − . Mathematical 

manipulations result in: 

1

0

tan( / 2)
2 tan

coth

c

c






−  
=  

   (5.4) 

The equivalent current density of the stator coils Kc, assumed to be uniformly 

distributed, is the total current Nic over the length lc in the interpolar region is obtained as: 

/c c cK Ni l=
 (5.5) 

The length lc is obtained by integrating over the differential length dl=ht dψ where ht 

is the scale factor given in the appendix. The length lc is obtained as in below: 

/ 2 /2 /2 /2

2 2

0

/2 /2 /2 /2

cosh cos
c c

c c

pi pi

c t

pi pi

l h d c d

 

 

   

+ +

− −

= = − 
 (5.6) 
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It could also be determined in cartesian coordinates but with much more calculations. 

 

 

5.2.3 Amperian Current Representation of PM in Cylindrical 

Coordinates 

As the PM has a circular shape, it is easier to be modeled in cylindrical coordinates (r, 

θ, z). The magnetization vector M in the PM region in terms of azimuth θ and rotor angular 

position β can be represented as in below: 

ˆˆ( , ) cos( ) sin( ) ; rM M r M r R      = − − + −   (5.7) 

Having the residual flux density Br, magnetization is obtained as M=Br/μ0. A 

magnetization vector can be represented as Amperian current density Jm, and since the 

magnetization is uniform inside the PM, there is only a surface current density Km on the 

surface of the rotor as in below: 

 
Figure 5. 3.  Simplified geometry of the actuator in elliptical coordinates. 
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ˆ;m mJ M K M n=  =   (5.8) 

where n=r is the unit vector normal to the surface of the rotor. By substituting the 

magnetization M in (7), Km on the surface of the PM is obtained as in below: 

ˆ ˆ( , ) sin( ) ;m rK M r M z r R   =  = − − =  (5.9) 

As shown in Figure 5.2(b), it is also seen that the Amperian currents are in the z-

direction because the magnetization vector is always in the rφ-plane. 

5.3. Coil Torque 

To obtain the coil torque using the Lorentz force, the flux density distribution produced 

by stator current on the surface of the rotor, where the Amperian currents exist, is obtained 

through the solution of Laplace’s equation in elliptical coordinates. 

5.3.1 Laplace’s Equations in Elliptical Coordinates 

As inside the ellipse is a current free region and the surface currents can be employed 

as boundary condition of flux density B or field intensity H, the Ampere’ law can be 

reduced as: 

0 0JH J H= = ⎯⎯⎯→ =  (5.10) 

As the curl of gradient of a scalar field is zero, a magnetic scalar potential can be 

defined as in below: 

H = −
 (5.11) 

By employing the identity 2.   =  in the magnetic Gausses’ law results in the 

Laplacian equation below: 

0 2

0. 0 . ( ) 0 0
B H

B
   =

 = ⎯⎯⎯→  − = →  =  (5.12) 

Laplace’s equation in elliptical coordinates is [20]: 
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2 2
2

2 2 2 2 2

1
( , ) 0

cosh cosc

 
  

   

  
 = + = 

−     (5.13) 

Employing the separation of variables ( , ) ( ) ( )    =   leads to the following 

relationships: 

2 2
2

2 2

1 ( ) 1 ( )

( ) ( )

d d
p

d d

 

  

 
= − =

   (5.14) 

This equation can be satisfied independent of η and ψ if they are constant and equal to 

a separation constant p2 where p is usually the number of pole pairs of the electric machine 

(here p=1). Then, this PDE is reduced to two ODEs as in below: 

2 20, 0p p  −  =  +  =
 (5.15) 

For p≠0, as Ψ must be periodic in ψ, the solutions of Ψ(ψ) are the followings sets: 

, sin(p ), cos(p )jp jpe e or   −

 (5.16) 

The exponential ones are helpful for problems with infinite half-space. Also, the 

solutions of Γ(η) are as in below: 

, sinh(p ), cosh(p )p pe e or   −

 (5.17) 

For p=0, the solution for uniform fields is as follows: 

0 0 0 0( ) a b , ( ) 1   = +  =  (5.18) 

However, it is not the solution to the problem as it is not periodic in ψ. It is shown in 

[21]-[23] that, due to the Green’s function of the potential, the solution of Laplace’s 

equation in elliptical coordinates is comprised of either odd or even functions as in below: 

sinh(p )sin(p ), cosh(p )cos(p ); p 1,2,3...    =
 (5.19) 

In other words, odd functions come together, and even functions come together as well. 

The flux lines originate from the positive potentials at the left side of the ellipse (centered 

at ψ=π) and end in the negative equipotential line at the right side of the ellipse (centered 
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at ψ=0), showing an even function φ(η,ψ).  As the potential is an even function of ψ, the 

second term in (5.19) is picked and thus φn=An cosh(npη) cos(npψ) where p=1. Finally, 

the general solution of φn(η,ψ) can be written as: 

1
( , ) A cosh(n )cos(n )nn

    
+

=
=   (5.20) 

5.3.2. Boundary Conditions and the Solution 

At the ellipse boundary (η=η0), the boundary condition for the solution of the vector 

field H can be obtained as in below: 

,
ˆ ( )iron air c iron cH H K H H K  − =  − =

 (5.21) 

As the field intensity Hψ,iron inside infinitely permeable iron is zero, the tangential 

component of the field intensity inside the ellipse at the boundary is obtained as 

0( , ) ( )cH K   = −
 (5.22) 

In Figure 5.4, the flux lines and the distribution of Kc and Hψ on the boundary of the 

stator ellipse are shown. 

; / 2 / 2 / 2 / 2

( ) ; / 2 / 2 / 2 / 2

0 ; . .

cm c c

c cm c c

K

K K

o w

    

     

+ −   −


= − − −   − −

  (5.23) 
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The field intensity H can be obtained as: 

1
ˆ ˆ ˆ ˆ

t

H H H
h

 

 
    

 

  
= + = − = − + 

    (5.24) 

Thus, the normal and tangential components Hη and Hψ are obtained as in the following: 

2 2
1

1
A sinh(n )cos(n )

cosh cos
n

n

H n
c

  
 

+

=

−
=

−


 (5.25) 

2 2
1

1
A cosh(n )sin(n )

cosh cos
n

n

H n
c

  
 

+

=

=
−


 (5.26) 

From the boundary condition (21), the following equality is obtained. 

0
2 2

1
0

1
A cosh(n )sin(n ) ( )

cosh cos
n c

n

n K
c

  
 

+

=

= −
−


 (5.27) 

It is worth noting that a big mistake would be trying to calculate the coefficients An 

based on the Fourier series expansion of -Kc(ψ) because the coefficient of sin(nψ) in the 

left side should not be a function of ψ; any coefficient of sin(nψ) which is a function of ψ 

 
Figure 5. 4.  Flux lines as well as surface current density K, tangential field intensity Hψ and scalar 

potential φ on the surface of ellipse η=η0. 
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should be taken to the right side before finding the Fourier series coefficients. Taking 

2 2

0cosh cosc  − to the right side, the following Fourier series expansion is obtained: 

2 2

0

1

cosh cos ( ) sinc n

n

c K a n   
+

=

− − =
 (5.28) 

whose Fourier coefficients are obtained as in below: 

2 2

0
0

2
cosh cos ( )sin dn ca c K n



    


= − −
 (5.29) 

As 0A cosh(n )n nn a = , the coefficients An are obtained as: 

/ 2 /2

2 2

0

0 /2 /2

2
cosh cos sin d

cosh(n )

c

c

cm

n

cK
A n

n

 

 

   
 

+

−

−
= −

 (5.30) 

It can easily be obtained by numerical integration. Having the tangential component 

Hψ(η0,ψ) at the ellipse η=η0, the scalar potential φ(η0,ψ) can be obtained by integration as 

follows: 

0

0

0

0 0 0 0 0

1
( , )

( , )

( , ) ( , ) ( , )d ( )

t

t

H
h

h H










 

  

         

− 
= 



= − +
 (5.31) 

For simplicity, the initial point can be taken at the middle of the surface current density 

where the potential is zero, i.e., φ0(ψ0=π/2)=0. As shown in Figure 5.4, it is also seen that 

the flux lines originate on positive potentials and terminate on negative potentials. The field 

direction can also be observed by the right-hand rule. The relationship (5.31) is very useful 

for obtaining the scalar potential from magnetic flux density vector B obtained from FEM 

to be compared to analytical results (Figure 5.5). 
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As given in the Appendix, instead of the magnetic scalar potential, field solutions can 

be obtained using Laplace’s equation in terms of the z-component of magnetic vector 

potential Az. Unlike the scalar potential φ, Az must have a sine behavior, so the general 

solution of Az(η,ψ) can be written as: 

1
( , ) cosh(n )cos(n )z nn

A D   
+

=
=   (5.32) 

The relationship between the coefficients An and Dn is as: 

0n nD A= −
 (5.33) 

 
Figure 5. 5. Normal and tangential components of magnetic flux density distribution as well as the scalar 

magnetic potential (a) on the stator boundary, i.e. ellipse η=η0, (b) in the air-gap, i.e. ellipse η=0.9 η0, and 

(c) on PM boundary, i.e. circle r=Rr. 
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5.3.3. Torque Calculation by Lorentz Force 

To calculate the developed torque, the radial component of magnetic flux density 

distribution Br on the surface of the PM is required. The circle r=Rr is represented as: 

cos , sin ; 0 2r rx R y R   = =  
 (5.34) 

This trajectory can be translated into elliptical coordinates as: 

1 j
Re cosh

x y

c
 − +  
=   

    (5.35) 

1 j
Im cosh

x y

c
 − +  

=   
    (5.36) 

After obtaining the vector fields (Bη, Bψ) on the circle r=Rr, it can be converted into 

cartesian coordinates as in below:  

( , )
( )

sinh( j )

t

x y

h
B jB B jB

c
 

 

 
+ = +

+
 (5.37) 

After obtaining Bx and By through real and imaginary parts, it can be converted to 

cylindrical coordinates as follows: 

cos sin

sin cos

xr

y

BB

BB

 

 

    
=     

−      (5.38) 

Having the radial component of the magnetic flux density Br on the surface of the PM, 

the developed torque can be obtained by Lorentz force over the Amperian currents as: 

2

0
( , ) ( , ) ( )coil c r m r rT i L R K B R d



    =   (5.39) 

Since Km is a sinusoidal waveform, only the fundamental component of the magnetic 

flux density Br1 participates in the torque production.  

2

1 1 1
0

1
( , ) cos ; ( ) ( , ) cosr c c r cB i B B i B i d



    


= = 
 (5.40) 
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By substituting for Br1 and Km in (5.39) and expressing the trigonometric product in 

sums, the torque equation is obtained as in below: 

2

1( , ) sincoil c rT i R L B M  =  (5.41) 

where the torque constant, i.e., the maximum coil torque at a stator current of 1 A, is 

obtained as 2

1 /t r ck R L B M i= . 

5.3.4. Field Analysis 

Figure 5.5 illustrates normal and tangential components of magnetic flux density 

distribution as well as scalar magnetic potential on the stator boundary (ellipse η=η0), in 

the air-gap (ellipse η=0.9 η0) and on PM boundary (circle r=Rr). The results derived from 

the analytical model, FEM in the simplified geometry, and FEM in the original geometry, 

are compared. A great agreement is observed between the analytical and numerical results 

with a very small discrepancy. The analytical results from the model and those extracted 

from FEM in the simplified geometry exactly match with almost zero error. As shown in 

Figure 5.5(a), a small discrepancy is observed between the simplified geometry (analytical 

or FEM) and the original geometry on the stator surface (η=η0) at the interpolar region, 

which makes sense as this section was the most challenging part of generating the 

equivalent geometry. The boundary condition Bψ=-Kc can also be observed on the stator 

surface (η=η0). A very small bump is also observed at the auxiliary slots, as expected. As 

shown in Figure 5.5(c), very good accuracy is observed in the analytical results for the 

torque-producing component of the magnetic flux density, i.e., the radial component Br. 

It is worth noting that the employed FEM is based on the solution of the z-component 

of vector magnetic potential Az and only produces the normal and tangential components 

of the B or H. To obtain the FEM results for the magnetic scalar potential φ in the elliptical 

coordinates, the relationship (30) is used to numerically integrate over Bψ. To obtain scalar 

magnetic potential in cylindrical coordinates φ(r,θ) from the tangential component Bθ, the 

relationship of a gradient in cylindrical coordinates is employed as follows: 

0

0 0

1
( , ) ( , ) ( , )d ( )r r rH R R r H R

r



 




      



− 
=  = − +

 
 (5.42) 
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where the initial point φ0(θ0=π/2)=0 is taken for simplicity. As expected, the scalar 

magnetic potential is positive on the left side of the y-axis, zero on the y-axis, and negative 

on the right side of the y-axis. It is φ+=50 on the left pole face of the stator and φ-=-50 on 

the right pole face of the stator. At the interpolar region, where there is a surface current 

density, there is a transition between φ+ and φ- which is equal to the integration of the 

surface current density (or minus tangential component of field intensity) times the scale 

factor of the coordinate system. 

Figure 5.6(a) shows flux density vectors B and scalar potentials contours φ obtained by 

the analytical model. It can be seen that the flux density vectors are perpendicular to the 

equipotential lines φ as expected from the gradient relationship (5.24). Also, the field 

vectors depart from the positive equipotential lines and end on the negative ones. It is also 

seen that flux density vectors and flux lines are perpendicular to the infinitely permeable 

iron where there is no surface current density. As shown in Figure 5.6(b) and Figure 5.6(c), 

the field distribution within the stator curvature obtained from the equivalent geometry is 

the same as the one extracted from the original geometry (inside dotted ellipse). It is how 

geometry simplification is useful by simplifying the field solution in the region where the 

field distribution is important to perform torque calculations. 
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5.4. Reluctance Torque 

The stator pole faces elliptically shaped such that the air-gap permeance seen by the 

PM varies by the rotation of the rotor, producing a reluctance torque that restores the rotor 

to the maximum torque per ampere position. It acts as a magnetic spring. Since the stator 

boundary is an ellipse and the PM boundary is a circle, neither elliptical coordinates nor 

cylindrical coordinates can be employed to solve Laplace’s equation; thus flux tube method 

is employed to calculate the reluctance torque by energy method. 

5.4.1. Differential Flux Tubes 

Figure 5.7 presents magnetic flux density distribution and flux lines due to the PM in 

equivalent and original geometries at rotor positions of β=0 (M is aligned with major axis), 

β=45, and β=90 (M is aligned with minor axis). It can be observed that, within the PM, the 

flux lines are parallel to the magnetization. The flux lines deviate at the PM boundary due 

to the Amperian currents as H1θ-H2θ=Km (counter-clockwise turn at positive currents and 

 
Figure 5. 6.  Fields produced by stator current: (a) flux density vectors and scalar potentials contours obtained 

by model, (b) flux density distribution and flux lines in the simplified geometry obtained by the model and 

FEM, and (d) flux density distribution and flux lines within the original geometry obtained by FEM. 
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clockwise turn at negative currents). Also, the flux lines are perpendicular to the infinitely 

permeable boundary of the stator (Hθ=0). No energy is stored within the infinitely 

permeable iron. The flux within the PM and the air-gap lines are approximated with straight 

lines. In Figure 5.8, the Amperian currents and the flux lines employed in the modeling are 

illustrated at the same rotor angles of 0, 45, and 90 degrees. The air-gap flux tubes and the 

corresponding permeances of the air-gap and the PM are also shown. 

 

In the conventional MEC methods, to develop a lumped-element model, flux tubes are 

employed for different regions, and MMF sources are adopted for the regions having 

magnetization or current. The conventional flux tubes are not useful in our case as, 

according to the flux lines shown in Figure 5.8, the conventional flux tubes do not 

incorporate the variation of stored co-energy whose derivative with respect to β is the 

reluctance torque. Integrating the flux lines and Amperian currents of the PM gives 

permeance and an MMF for the PM. However, it can be seen that integrating over the flux 

lines within the air-gap leads to equal air-gap permeances if the PM magnetization is 

aligned with either the major axis or the minor axis. As shown in Figure 5.8, the lumped-

element values of the permeances Pg0 and Pg90 are equal; visually describing, just relocate 

 
Figure 5. 7. Magnetic flux density and flux lines due to the PM in equivalent (top) and original (bottom) 

geometries at rotor positions of: (a) β=0 (M is aligned with major axis), (b) β=45 and β=90 (M is aligned 

with minor axis). 
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the bottom right part of Pg90 to the top of its left part to obtain Pg0. In other words, this 

lumped MEC model does not reflect the rate of change of co-energy, which is the torque.  

What is missing in this lumped model? It can be observed in Figure 5.8 that the total 

current enclosed in the closed path of Ampere’s law for different flux loops is different, 

which is ignored in the lumped permeances in which it is integrated over flux lines. For 

example, looking at Figures 5.8(a) and (b) carefully, it can be observed that the currents 

enclosed in the flux loops with the shortest length in the air-gap are different for β=0 and 

β=90; this fact, which is missing in the lumped MEC model, makes a difference in the 

stored co-energy in the two cases, resulting in a reluctance torque. When the PM 

magnetization is aligned with the minor axis (β=90), the enclosed current and thus stored 

co-energy is larger; it can also be seen that the magnitude of the flux density distribution 

is relatively larger. 

 

In Figure 5.9, a differential flux tube having a differential thickness dyr, i.e. a 

differential area L dyr, enclosing a current as a function of yr is depicted. Its total length is 

l(yr). Two strategies can be taken here: 

In the conventional flux tubes, integrating over yr from 0 to Rr gives a lumped 

permeance to be employed in a lumped-element MEC to obtain the co-energy, multiplied 

by 2 for the other half, gives the total co-energy at the rotor angle β. It was explained that 

it does not reflect the reluctance torque as this lumped permeance is the same for β=0 

degrees and β=90 degrees. 

 
Figure 5. 8.  Flux lines due to PMs at rotor positions of: (a) β=0 (M is aligned with major axis), (b) β=45 

and (c) β=90 (M is aligned with major axis). 
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With a strategy that we would name differential flux tubes (DFT), differential 

permeance is employed in further analysis, and it is not integrated over yr to get a lumped 

permeance. This differential flux tube encloses a total current which is a function of yr. 

Next, the differential co-energy associated with this differential permeance is calculated as 

a function of yr. Afterward, integrating this differential co-energy with respect to yr from 0 

to Rr, multiplied by 2 for the other half, gives the total co-energy at the rotor angle β. 

Contrary to the conventional method, the DFT-based approach makes a difference between 

the two cases of β=0 or β=90 degrees as it understands that the total currents enclosed in 

the flux loops with the shortest length in the air-gap are different for β=0 and β=90 (refer 

to Figures 8(a) and (b)).  The whole process can be performed over a rotor rotation to obtain 

the stored co-energy Wc as a function of β. Finally, the reluctance torque can be determined 

as the derivative of the co-energy with respect to β. 

 

 

  

 
Figure 5. 9.  Differential flux tubes to calculate reluctance torque: (a) within the ellipse boundary and (b) 

including fringing length at the interpolar regions. 
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5.4.2. Rotor Reference Frame 

To simplify calculations, a rotating reference frame {(xr, yr); (r,θr)} on the rotor is used, 

as shown in Figure 5.9. The axis xr is set parallel to the magnetization vector M, and thus 

the perpendicular axis yr is the integration variable for the DFTs. The rotation angle of the 

rotating frame with respect to the stationary frame {(x, y), (r,θ)} is β and thus r  = + . 

The following relationships are obtained for any point on the PM boundary: 

cos cos( ) cos
;

sin sin( ) sin

r r r

r r r

r r r

r r r

x R R x R

y R R y R

   

   

 = = + = 
 

= = + =    (5.43) 

By converting the sine and cosine of β+θr to products, the transformation matrix 

between the two frames is obtained as: 

cos sin

sin cos

r

r

x x

y y

 

 

 −   
=     

        (5.44) 

5.4.3. Current Enclosed by the Differential Flux Tubes 

In the rotor reference frame, the Amperian current density (5.9) is independent of rotor 

rotation β and can be simplified to: 

( ) sinr r

mK M = −
 (5.45) 

 Then, the total magnetomotive force Fm associated with the DFT at yr or θr is obtained 

by the total current enclosed in the closed path of the Ampere’s law obtained as in below: 

( ) | ( ) | 2 cos
r

r

r r r r

m m r rF K R d R M
 


   

−

= =  (5.46) 

It can be written as a function of yr as in below: 

2 2( ) 2 ( )r r

m rF M R y = −
 (5.47) 
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5.4.4. Differential Permeance, Differential Co-energy, and Reluctance 

Torque 

The co-energy associated with a differential permeance d℘ is: 

0 / ( )r rd L dy l y=
 (5.48) 

The differential energy associated with the DFT is: 

2

2

0

( )1 1
( )

2 2 ( )

r

r rm

c m r

F y
dW F y d L dy

l y
= =

 (5.49) 

where l(yr) is the total length of the flux tube within the PM and air-gap regions. By 

substituting Fm and d℘, and integrating over yr from 0 to Rr, the total co-energy stored in 

the system (icoil=0) at any rotor angle β is obtained as in below: 

( ) 2

, 0

0( 0)

( )1
( ) 2 2

2 ( )

r
c r r

r
c

W y R R r

rm

c tot c r

W y

F y
W dW L dy

l y
 

=

=

= = 
 (5.50) 

Then, the developed restoration torque is obtained as follows: 

, 2
( ) 1 ( )

2

c tot

rest m

W
T F

 

 
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= =

   (5.51) 

Its frequency is double the frequency of the coil torque as the PM faces the stator 

saliency twice per revolution. It is simplified to the fundamental component as in below: 

1 1
0

2
sin 2 ; ( )sin 2rest restT T T T d


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

= = 
  (5.52) 

5.4.5. Length of the Differential Flux Tubes 

The total length of the flux tube l(yr) needs to be calculated as a function of yr as in the 

following: 

1 ,Lg1 2 ,Lg 2( ) ( ) ( )r

g f m g fl y L L L L L= + + + +
 (5.53) 
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where Lm is the length within the magnet, Lg1 and Lg2 are the lengths within the air-gap, 

and Lf,Lg1 and Lf,Lg2 are the lengths due to the fringing effect at the interpolar regions. 

 The length of the line Lm inside the PM, which is between the points m1 and m2 is 

obtained as below: 

2 2( ) 2 2 cos 2 ( )r r r r

m r rL y x R R y= = = −
 (5.54) 

Obtaining the coordinates of the point pairs m1-s1 and m2-s2 in the stationary frame,  the 

lengths Lg1 and Lg2 in the air-gap can be obtained as: 

( ) ( )
2 2

1 1 1 1 1g m s m sL x x y y= − + −
 (5.55) 

( ) ( )
2 2

2 2 2 2 2g m s m sL x x y y= − + −
 (5.56) 

However, these lengths are required to be obtained in terms of yr to be employed in co-

energy calculations (5.50). The point m1(xm1,ym1) in which 1

r r

m =  and 1

r

m  = +  is 

obtained in the stationary and rotor reference frames as: 
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 = + = 
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= + =    (5.57) 

The point m2(xm2, ym2) where 2

r r

m  = −  and 2

r

m   = + −  is obtained in the 

stationary and rotor reference is as follows: 

2 2

2 2

2 2

cos( ) cos
: ; :

sin( ) sin
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m r m rr
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m r m r

x R x R
m m

y R y R

  
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 = − − = − 
 

= − − =    (5.58) 

The points s1 and s2 are the intersections of the ellipse with the lines Lg1 and Lg2, which 

are determined based on the fact that the flux lines are perpendicular to the infinitely 

permeable boundary of the ellipse. The normal vector to the ellipse is the gradient of the 

ellipse trajectory as in below: 
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2 2

2 2 2 2

2 1 2 1

2 2
ˆ ˆ ˆ ; 1

x y x y
n f x y f

R R R R
=  = + = + −

 (5.59) 

Thus, the slope of the perpendicular line at point (x,y) is as: 

2
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1
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x

n R y
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n xR
= =

 (5.60) 

Having the slop and the two points m1(xm1,ym1) and s1(xs1,ys2), line Lg1 is obtained as: 

2

12

1 1 1 12
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( )s

s m s m

s

yR
y y x x

xR
− = −

 (5.61) 

By writing ys1 in terms of xs1, and substituting it into the ellipse equation 

2 2 2 2

1 2 1 1/ / 1s sx R y R+ = , the following polynomial is achieved. 

4 3 2

4 1 3 1 2 1 1 1 0 0s s s sa x a x a x a x a+ + + + =
 (5.62) 

whose coefficients a0 to a4 are given in the Appendix. Two of the four roots of the above 

polynomial are complex conjugate which is not the solution. One of the two remaining 

roots is positive, and the other one is negative, one of which should be picked based on the 

sign of xm1, i.e., if xm1>0, then xs1>0, and if xm1<0, then xs1<0. Afterward, ys1 is obtained as 

in below: 

2 2

1 1 1 21 /s sy R x R=  −
 (5.63) 

The sign of ys1 is picked based on the sign of ym1, i.e. if ym1>0, then ys1>0, and if ym1<0, 

then ys1<0. The general rule is that s1 is in the same quadrant as m1.  The same procedure 

is taken to obtain the line Lg2 and its intersection with the ellipse, i.e., point s2(xs2,ys2). 

5.4.6. The Fringing Lengths in the Interpolar Regions 

As observed in Figure 5.7, in the original geometry, the flux produced by the PM 

includes a fringing effect in the interpolar region which is not is incorporated in the 

equivalent elliptical geometry. It was negligible in the derivation of the stator field and the 

coil torque, but it needs to be accounted for in the calculation of the PM flux and the 
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reluctance torque a reach higher accuracy. As shown in Figure 5.9, the fringing length Lf 

is model as a circular arc with a fringing angle θf if the point is in the interpolar region; 

otherwise, Lf is zero. We have: 

1

1

/ 2 | / 2 | ; | / 2 | / 2

( ) / 2 | 3 / 2 | ; | 3 / 2 | / 2

0; . .

f c c

f f c c
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o w

      
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  − − − 


=  − − − 

  (5.64) 

in which θ is substituted with θm1 for Lf,Lg1, and θm2 for Lf,Lg2. Also, θm1 and θm2 can be 

obtained in terms of yr. 

5.5. Experimental Study and The Results 

The actuator is prototyped whose experimental results are compared with those 

obtained from the analytical model and FEM. Figure 5.10 shows the component of the 

prototyped actuator and the torque-angle measurement setup. Figure 5.11 presents the coil 

torque, the restoration torque, and the total toque extracted from the model, FEM, and 

experiment. It can be seen that there is a close agreement among the analytical, numerical, 

and experimental results.  It is observed that the frequency of the reluctance torque is twice 

the coil torque, and the equilibrium point of the restoration torque is at the maximum torque 

per ampere position, i.e., β=90 degrees. In other words, the reluctance torque acts as a 

magnetic spring that restores the rotor to the maximum torque per ampere position. The 

meshed models used for FEM are given in Figure 5.12 and Figure 5.13. 
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Figure 5. 10.  The prototype (top), and torque-angle measurement setup (bottom). 

 
Figure 5. 11.  Restoration, coil and total torque profiles obtained by model, FEM in the original 

geometry, FEM in the simplified geometry and experiment. 
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Figure 5. 12.  Meshed models for original geometry used for FEM. 

 
Figure 5. 13.  Meshed models for simplified geometry used for FEM. 
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5.6. Conclusion 

In this chapter, an analytical model is developed for an actuator whose stator curvature 

is nonuniformly shaped to have a reluctance torque in addition to the coil torque. The 

rotor’s permanent magnet is incorporated in the model through equivalent Amperian 

currents. To model the actuator, the complicated geometry of the stator is substituted with 

an equivalent ellipse having a surface current density representing the stator current.  The 

coil torque is obtained using the Lorentz force and the solution of Laplace’s equation in 

terms of both scalar and vector potentials in the elliptical coordinates. The reluctance 

torque is obtained using the energy method and differential flux tubes that incorporate the 

variation of current enclosed in the flux loops. In addition to the detailed explanations, an 

attempt is made to visualize the modeling procedure and the field distributions so that the 

readers can clearly understand the ideas and utilize them in their research. Also, the finite 

element method is employed in the field analysis and development of the model. In the end, 

the actuator is prototyped. 

The model produces the results in a few seconds while, depending on the desired 

accuracy, it could take a couple of hours up to a few days using a FEM. It is shown that the 

equivalent geometry produces the same field solution within the rotor area as the original 

geometry. Normal and tangential components of magnetic flux density, flux lines, 

magnetic scalar potential, magnetic vector potential, coil torque, reluctance torque, and 

total torque are extracted and analyzed. A very close agreement is observed among the 

results obtained from the analytical model, FEM in the simplified geometry, FEM in the 

original geometry, and experimental results from the prototyped device.  
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Chapter 6 

6. Electromechanical Model, Eddy-Currents 

and Identification 
 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Introduction 

Rotary actuators have been widely employed in the industry, from robotics and 

aerospace to fluid valves and optical scanning, due to advantages like simple structure, 

cheap maintenance, high reliability, low cost, and uncomplicated control. They are 

sometimes called limited-angle torque motors (LATMs) when designed to provide a 

constant torque over an angular range. In many applications, such as fail-safe operations, 

a restoration torque is required to return the rotor to the initial position, such as a nonlinear 

stiffness used in Laws’s relays, and a magnetic restoration created by adding alignment 

poles to the stator. This paper presents generalized studies applicable to such actuators 

while certain aspects of the physical implementations of the actuator described herein are 

covered by patents. 

High-performance control of electric machines requires accurate models and an 

effective identification rather than conventional lumped models. The identification can be 

offline [56] or even online [57] when there are variations in the parameters of the device. 

Among modeling techniques, the finite element method (FEM), although powerful in the 

numerical modeling and design of electromagnetic devices, is too slow to be used in 

dynamic studies. Magnetic equivalent circuits [58]-[59] and subdomain models [60]-[61] 

provide fast yet accurate analytical frameworks that can be employed in developing 
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electromechanical models. MEC-based models are developed to study the design of 

LATMs [58] and magnetic cores [59]. The subdomain approach is employed to study the 

diffusion in eddy current brakes [60] and cylindrical ferrite cores [61]. In [62], the finite 

difference method is employed to find the numerical solution of 2-D diffusion in a 

rectangular sheet. As eddy currents can highly impact the dynamic and thus control system 

design of an electromagnetic device, incorporating their impact in the model can be very 

crucial. In the interesting works [63]-[64], an analytical solution of 1-D diffusion in thin 

laminations or magnetic materials is used to modify the electrical circuit of an 

electromagnetic device. Friction is another factor affecting the mechanical dynamics of 

electromechanical devices, whose impact can be studied by LuGre model [65]-[68]. 

In this chapter, an electromechanical model incorporating eddy currents is developed 

for a limited-angle rotary actuator with a magnetic restoration torque to be employed in 

identification, drive, and control studies. By elliptically shaping the stator curvature, the 

reluctance torque is produced to restore the rotor to the maximum torque position if the 

coil current is removed. The relationship of the restoration torque is obtained using the co-

energy method and a lumped-parameter model of the magnet, while the relationship of the 

torque component developed by the coil current is obtained using the Lorentz force and the 

Amperian current model of the magnetization. The back-emf relationship is also obtained. 

Then, a nonlinear electromechanical model, including governing electrical and mechanical 

equations and its nonlinear state-space representation, is developed for large-signal studies 

and nonlinear control. Then, the nonlinear model is linearized around the preferred 

equilibrium point, i.e., the maximum torque position per Ampere, to reach a linear 

electromechanical model and a linear state-space model for linear control system designs.  

As the eddy-currents in the laminations and the magnet largely distort the electrical 

dynamic from a simple RL circuit, in order to obtain a higher precision and a more efficient 

control system design, the eddy-currents are included in the model by solving 1-D diffusion 

in the laminations and 2-D diffusion in the magnet; then, from the microscopic field 

solutions, lumped-element magnetic and electric circuits having frequency dependant 

reluctance and inductance are obtained which are more useful for system-level designs and 

control purposes. It brings a near-zero discrepancy in estimating the phase margin of the 
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current loop, while this error could be very large if eddy currents are ignored. Its accuracy 

is much better compared to the case where only 1-D diffusion in laminations is considered. 

The impact of the pre-sliding friction on the mechanical dynamic is also studied using the 

LuGre model. Also, 2D and 3D FEM are employed in the analysis, and the actuator is 

prototyped. Torque-angle and back-emf characteristics are obtained. The identification of 

the model is carried out as well. A close agreement is observed between the results obtained 

from the experiment, model, and FEM. 

6.2. The Actuator 

The geometry and the exploded view of the actuator, whose specifications are listed in 

Table 6.1, are shown in Figure 6.1. The rotor PM has diametral magnetization. The 

interaction of stator flux and the magnet produces the main torque. The stator inner surface 

is shaped to have an elliptical curvature whose interaction with the magnet produces a 

reluctance torque which tends to restore the rotor back to the maximum torque per ampere 

position (MTPAP). 



152 

 

 

 

 

 
Figure 6. 1. (a)  exploded view of the actuator, (b) geometry of the actuator, (c) Amperian current model 

of PM, and (d) lumped-element models of the PM 

Table 6. 1 Specifications of the Studied Motor 

parameter value parameter value 
outer diameter, Do  13.716 mm PM remnant, Br 1.37 Tesla 

lamination height d 0.35 total turns, N 100 

# of laminations, m 12 wire gauge AWG33 

stack length, L 4.191 mm torque constant, kt 1.906 mN.m/A 

pole width, wp 4.72 mm Mag. spring ks 0.636 mN/rad 

PM length, Lpm 9 mm total stiffness, Ks 1.3 mN/rad 

rotor diameter, Dr 3.048 mm total damping, kd 4.49e-7 Ns/rad 

minor radius, R1 1.71 mm inertia, J 1.65e-9 kg.m2 

major radius, R2 1.9665 mm inductance, Lc0 280 uH 

PM conductivity 0.6 MS/m resistance, Rc 1.76 ohm 

lamination conduct. 2 MS/m sense resistor, Rs 0.1 ohm 
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6.3. Torque and Back-EMF Calculations 

6.3.1. Permanent Magnet Models 

The magnetization vector M of the PM in terms of azimuth φ and rotor angular position 

β can be represented as in below: 

ˆˆ( , ) sin( ) cos( ) ; rM M r M r R      = − − − − 
 (6.1) 

A magnetization M can be represented as Amperian current density Jm. As shown in 

Figure 6.2(a), since M is uniform inside the PM, there is only a surface current density Km 

as: 

ˆ;m mJ M K M n=  = 
 (6.2) 

where n=r is the unit vector normal to the surface. Thus: 

ˆ ˆ( , , ) cos( ) ;m rK r M r M z r R   =  = − =
 (6.3) 

As shown in Figure 6.2(b), the lumped-element model of the PM consists of a 

permeance ℘m and a magneto-motive force Fm which is the total current enclosed in the 

Amperian loop as: 

/2

/2
( , ) 2m m r rF K R d R M

  

  
  

= +

=− +
= =

 (6.4) 

 

 
Figure 6. 2.  (a) Amperian current and (b) lumped-element models of the PM. 
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6.3.2. Stator Field  

Through Ampere’s law, the current in the stator coils produces a magnetic field as in 

below: 

0 rB J  =
 (6.5) 

The radial component of magnetic flux density distribution on the surface of the PM, 

which is the torque-producing component, can be represented in Fourier series as in below: 

1 31,3,5
( ) sin sin sin 3 ...r nn

B B n B B   
+

=
= = + +

 (6.6) 

As long as the stator iron is not saturated, the coefficients Bn are linearly proportional 

to the coil current is, so: 

1 31,3,5
( ) sin sin sin 3 ...r n c c cn

B k i n k i k i   
+

=
= = + +

 (6.7) 

6.3.3. Coil Torque 

The stator flux interacts with the PM to produce an electromagnetic torque which is 

obtained by Lorentz force as: 

2

0
( , ) ( )coil r m r rT L R K B R d



   =   (6.8) 

By substitution of Km and Br, we have: 

 

 

1 2 1

2 2 3 1 1 2

3 3 2 1 3

sin sin 2 /

sin /

d t rest L

c t c co

x x f

x k x k x x k x T J f

x R x k x x v L f

 = =


= − + + − =


= − − + =

 (6.9) 

Except for n=1, the integration of the product of cos(φ-β) and sin nφ is zero, i.e., only 

the fundamental component of Br contributes to the torque production.  It simplifies as in 

below: 

2
2

0 1
0

( , ) cos( )sin( )coil c r cT i L R M k i d


    = −
 (6.10) 
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By expressing the trigonometric product in sums, it yields: 

2

1 0( , ) sin sincoil c r c t cT i L R k M i k i   = =
 (6.11) 

where kt is the torque constant [Nm/A]. 

6.3.4. Restoration Torque 

The elliptical curvature of the stator causes a reluctance torque. The PM is faced 

maximum permeance at MTPAP (β=90). The total permeance can be expressed as in 

below: 

0 1( ) cos 2  = −  (6.12) 

The stored co-energy and the restoration torque are as: 

21
( ) ( )

2
c mW F = 

 (6.13) 

2 2

1

( ) 1 ( )
sin 2 ;

2

c

rest m rest rest m

W
T F k k F

 


 

 
= = = =

   (6.14) 

where krest is the maximum restoration torque. 

6.3.5. Total Torque 

The total electromagnetic torque can be expressed as: 

( , ) sin sin 2e c t c restT i k i k  = +
 (6.15) 

whose small-signal model around MTPAP (θ=β-π/2) is: 

( , )e c t c sT i k i k = −
 (6.16) 

where ks=2 krest can be defined as the magnetic spring constant. 

6.3.6. Back Electromotive Force 

The flux linked by the stator coil is: 
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0( , ) ( ); ( ) cosc co c m mi L i       = + = −
 (6.17) 

where λm and λ0 are PM flux and its maximum, and Lc0 is the frequency-independent coil 

inductance. As PM flux is in the opposite direction of the unit normal vector of coil area at 

β=0, there is a negative sign. The back-emf is as in below: 

0( , ) sinm m m

r r r

d d dd
E

dt d dt d

  
     

 
= = = =

 (6.18) 

where β = ωrt and ωr=dλm/dβ is the angular velocity of the rotor. Defining the back EMF 

constant kb [volt.sec/rad] as the amplitude of the back EMF at 1 rad/sec, we have: 

( , ) sinr b rE k   =
 (6.19) 

In the linearized model around MTPAP, E=kb ωr . Due to energy conservation in the 

conversion of electrical power (E is) to mechanical form (Tcoil ωr), so kb=kt. 

6.4. Electromechanical Model 

6.4.1. Nonlinear Electromechanical Model 

The governing electromechanical dynamic, whose block diagram is shown in 

Figure 6.3, is as in the following: 

( , ) ( )
( ) ( ) ( ) ( )c c

c c c c c co

d i di t
v t R i t E t R i t L

dt dt

 
= + = + +

 (6.20) 

2

2
( , )d e c L

d d
J k T i T

dtdt

 
+ = −

  (6.21) 

where kd is the viscous damping constant, and TL is the load torque. It leads to a nonlinear 

differential equation as in below: 

sin 2 sind rest t cJ k k k i   + − =
 (6.22)  

The states are defined as angular position, angular velocity, and coil current. The inputs 

are coil voltage and load torque: 
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1 2 3 1 2( ) [ , , ] [ , , ] ; ( ) [ , ] [ , ]t t t t

r c c Lx t x x x i u t u u v T = = = =
 (6.23) 

Substitution for E and Tt yields the nonlinear system below: 

 

 

1 2 1

2 2 3 1 1 2

3 3 2 1 3

sin sin 2 /

sin /

d t rest L

c t c co

x x f

x k x k x x k x T J f

x R x k x x v L f

 = =


= − + + − =


= − − + =

 (6.24) 

 

6.4.2. Equilibrium Point 

The equilibrium points, i.e., the solution of the system of equation [f1=0; f2=0; f3=0] at 

zero input, are obtained as: 

0, / 2, , 3 / 2; 0; 0r ci    = = =  (6.25) 

where π/2 and 3π/2 are stable equilibriums, and 0 and π are unstable ones. The position 

β=π/2 is taken as MTPAP.  

6.4.3. Electromechanical and State Space Models 

The system is linearized around the equilibrium point below: 

1 2 3 1 2[ , , ] [ / 2, 0, 0] ; [ , ] [0,0]t t t tx x x x u u u= = = =  (6.26) 

Then, the states and the inputs are as in the following: 

[ , , ] [ / 2 , , ]t t

r c r cx x x i i      = +  = +
 (6.27) 

 
Figure 6. 3.  The developed nonlinear electromechanical model. 
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[ , ] [ , ]t t

c L c Lu u u v T v T  = +  =
 (6.28) 

All variables are the same as their deviations except β, for which new variable θ=δβ is 

defined as deviations of angular position around MTPAP. The linearized state-space 

system is: 

( ) ( ) ( ); ( ) ( )
d

x t A x t B u t y t C x t
dt
   = + =

 (6.29) 

1 1 1 1 1

1 2 3 1 2

2 2 2 2 2

1 2 3 1 2

3 33 3 3

1 21 2 3

, ,

f f f f f

x x x u u

f f f f f
A B at x x u u

x x x u u

f ff f f

u ux x x

       
   
       
       

= = = =   
       
      
   

         

 (6.30) 

It leads to the following linear state-space system: 

0 1 0 0 0

/ / / 0 1/

0 / / 1/ 0

c

r s d t r

L

c t co c co c c

v
k J k J k J J

T
i k L R L i i

 

 

       
        

= − − + −         
        − −      

 (6.31) 

The linear electromechanical dynamic is as in below: 

2

2

c

c t r c c c

d s t c L

di
v k L R i

dt

d d
J k k k i T

dtdt



 


= + +

+ + = −

 (6.32) 

where ks=2krest. The output is angular position, so C=[1 0 0]t. The block diagram of the 

linearized model is shown in Figure 6.4. 
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6.4.4. Transfer Function of Electrical and Mechanical Dynamics 

The mechanical dynamics of the actuator is as in below: 

2 2 2

/(s)
(s)

(s) 2

t t

m

c d s n n

k k J
H

I Js k s k s s



 
= = =

+ + + +
 (6.33) 

where natural frequency and damping ratio are /n sk J = and / 2d nk J = . The 

electrical dynamic can be written as: 

2

3 2 2
(s)

( )s ( )s

c d s

e

c co co d d s d t s

I Js k s k
H

V L Js R J L k R k k k k R k

+ +
 = =

+ + + + + +
 (6.34) 

where R is the total resistance of coil Rc and current sensor Rs. It includes an anti-resonance 

at the natural frequency of mechanical dynamic. Ignoring the back-emf leaves an RL circuit 

as: 

1
(s) c

e

c co

I
H

V L s R
= =

+
 (6.35) 

The back-emf is treated as a disturbance in the current loop. The electrical time constant 

is τe≈Lc0/R. 

 
Figure 6. 4.  The linearized electromechanical model. 
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6.5. Eddy-Current Impact on the Electrical Dynamic 

To obtain higher accuracy in the electrical dynamic, eddy currents in the laminations 

and the magnet are modeled, which adds two more degrees of freedom in addition to Lc0 

and Rc. As shown in Figure 6.5, according to Ampere’s law, the stator current Nic produces 

an initial flux φ0 whose time variations induce eddy currents in the iron laminations and 

the magnet (Ie.i and Ie.m) according to Faraday's law which causes a secondary flux 

attenuating the initial flux. It reduces the coil inductance. A combination of Ampere’s and 

Faraday’s laws leads to the diffusion equation 2 /B B t =   . 

 

To avoid unneeded complexities, the magnet cylinder is simplified to a cube with a 

rectangular cross-section. The width of the rectangle is the same as the pole width wp. The 

length of the magnet lm along the flux loop is obtained such that the cross-sectional areas 

and thus the volumes are kept the same: 

2 2 /p m r m r pw l R l R w =  =
 (6.36) 

The average air-gap length is as follows: 

1 2 1 22 {( ) ( )} / 2 2g r r rl R R R R R R R=  − + − = + −
 (6.37) 

The average length of the flux loop within the iron core li can be approximated as a 

half-circle plus pole lengths as in below: 

 
Figure 6. 5.  (a)-(b) MEC and simplified MEC without eddy currents, (c) simplified MEC with eddy 

currents, and (d) paths of Ampere’s and Faraday’s laws. 
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2 4 2 4 2 2

p p go o m

i

w w lD D l
l 

       
= − + − − +      

         (6.38) 

The reluctances of air-gap, magnet, and iron are obtained as: 

0 0 0

; ; ; ( )
g m i

g m i p p

ri

l l l
R R R A w L

A A A   
= = = =

 (6.39) 

where μri is the relative permeability of iron. The area of the left and right return paths, 

including half of the air-gap flux φ0/2, is almost wpL/2. The total reluctance Rt0 and its 

approximation based on the low-frequency inductance Lc0 is as follows: 

2

0 0

0

( )
;

i r g m

t g m i t

ri p co

l l l N
R R R R R

A L



 

+ +
= + + = 

 (6.40) 

The initial flux and flux density are obtained as φ0=Nic/Rt0 and B0= φ0Ap. Employing 

Ampere’s law over a flux loop leads to: 

. .m

0 0 0

.
g m i

enc c e i e
c

ri

Bl Bl B lB
dl I Ni I I

    
=  + + = + +  (6.41) 

It can be rewritten to obtain the effective permeability to solve diffusion in the 

laminations and magnets as in below: 

0

. .m 2
( );

( )

i i ri i i i co

i eff c e i e eff

i r g m t p p

l l l L
Bl Ni I I

l l l R A N A

 
 


= + + = = 

+ +
 (6.42) 

0

. .m 2
( );

( )

m m ri m m m co

m eff c e i e eff

i ri g m t p p

l l l L
Bl Ni I I

l l l R A N A

 
 


= + + = = 

+ +
 (6.43) 

6.5.1.  1-D Diffusion for Eddy Currents in the Laminations 

As shown in Figure 6.6(a), since the laminations are thin, the eddy-currents in the 

laminations can be modeled by one-dimensional diffusion as in below: 

 

2

2

ˆ( , ) Re ( )e

y yi

eff i

j t

y y

B B

tz

B z t B z 

 
 

=


=

 (6.44) 
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In phasor domain, it leads to: 

2

2

ˆ
ˆy i

eff i y

B
j B

z
 


=

  (6.45) 

The solution is obtained as in below: 

ˆ (z)i z z

eff i ys j B A e A e   + −

+ −=  =   = +
 (6.46) 

As the initial field B0 on the boundaries of the magnet is not disturbed by the flux 

produced by the eddy currents, the boundary conditions are 
0

ˆ ( , z / 2)zB x d B=  =  which result 

in: 

/ 2 /2/2 /2
0

/2 /2 /2 /2
0

/ (1 )

/ (1 )

d dd d

d d d d

A e eBAe e

BAe e A e e

  

   

−
++

−
− −

 = +     
=      

= +     
 (6.47) 

By substituting A+ and A-, the solution is obtained as: 

0

coshˆ (z, )
cosh / 2

y

z
B B

d





=

 (6.48) 

The flux passing all lamination is obtained as follows: 

/ 4 /2

0
/4 /2

0

0

tanh / 2ˆˆ( ) 2 (z, )dxdz
/ 2

p

p

w d

y
w d

c

t

z
m B

d

Ni

R


   





− −
= =

=

 
 (6.49) 

where m is the number of laminations such that L=md, and 2 is for the two flux loops. 

Using the approximation tanh x=1/(1+x) and substituting for φ0, the following MEC is 

obtained: 

0 .

. 0

( )
( )

( )

( ) (j ) ; (j ) 0.5

c

t e i

i

e i t i i eff i

N I j
j

R R j

R j R Q Q d j


 



    

=
+

= =

 (6.50) 
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The eddy-impedance Re.i is a half-order complex reluctance that is zero at ω=0. It goes 

up with frequency, causing a magnitude reduction and a phase lag in the flux φ(t) with 

respect to the magnetomotive force or coil current. The associated magnetic circuit is 

shown in Figure 6.7(a). The induced eddy current density in one lamination is obtained as 

follows: 

0

ˆ1 1 sinhˆ ˆ( , )
cosh / 2

y

y xi i i

eff eff eff

B z
J z B J B

z t

 


  


=   = =


 (6.51) 

 

 

6.5.2.  2-D Diffusion for Eddy Currents in the Magnet 

As shown in Figure 6.6(b), the eddy-currents in the magnet can be modeled using two-

dimensional diffusion as in below: 

 
2 2

2 2
ˆ; ( , , ) Re ( , )e

y y ym j t

eff m y y

B B B
B x z t B x z

tx z

 
  

+ = =
   (6.52) 

where ˆ
yB  is a complex number. In phasor domain, it leads to: 

 
 

Figure 6. 6. (a) 1-D diffusion in laminations, and (b) 2-D diffusion in magnet. 
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2 2

2 2

ˆ ˆ
ˆy y m

eff m y

B B
j B

x z
 

 
+ =

   (6.53) 

Using the separation of variables, we have: 

ˆ ( , ) ( ) Z( ) m

z eff m

X Z
B x z X x z j

X Z
 

 
=  + =  (6.54) 

The boundary conditions are 
0

ˆ ˆ( , ) ( , )y yB a z B x b B =  = where a=wp/2, b=L/2. By 

superposition, the problem can be divided into two problems as shown in Figure 6.6(b) 

with boundary conditions: 

0
ˆ ˆ1: ( , z) ; ( , z ) 0y yP B a B B x b = =  =

 (6.55) 

0
ˆ ˆ2 : ( , z) 0; ( , z )y yP B a B x b B = =  =

 (6.56) 

The solution of equation (54) for problem 1 is as follows: 

2

1 1 1 1

2

2 2 2

1 0 1

(x) sinh , cosh

1 ( ) ( ) (z) sin z, cos
2 2 2 2

( ) ( )
2 2

n n n n

m

n m n eff m

X
k s k X k x k x

X

Z n n n n
P s j Z z

Z b b b b

n n
k j k j

b b

   

 
   

 
=  =  



= −  = − 




− =  = +


 (6.57) 

Satisfying ˆ ( , ) 0yB x b = , the solution is obtained as follows: 

1

1

1,3,... 1

coshˆ ( , z, ) cos
2 cosh

n

y n

n n

k xn
B x a z

b k a




+

=

= 
 (6.58) 

where an is obtained as the coefficients of the Fourier series of the boundary condition

0
ˆ ( , z)zB a B =  as follows: 

0

1 4
cos dz sin

2 2

b
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b
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b b n

 

−
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 (6.59) 

The solution of equation (6.48) for problem 2 is as follows: 
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Satisfying ˆ ( ,0) 0zB a = , the solution is obtained as follows: 
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where bn is Fourier series coefficients of the boundary condition 
0

ˆ ( , z)yB a B =  as bn=an. 

Thus By=By1+By2 is obtained as: 
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By integrating over the area, the flux is obtained as follows: 
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where 
0 04abB = . As a≈b, for simplicity of calculations, the rectangle is approximated with 

a square whose side width w is picked such that the area is the same, i.e. w ab= . Only the 

fundamental component (n=1) is employed to obtain a lumped-element model. The 

approximation tanh x=1/(1+x) is used as well. As the series terms for n=3,5,… are ignored, 

the DC gain should be matched such that φ(ω=0)=φ0. Substituting for φ0=Nic/Rt0 and 

writing the rest in format 1/(1+func(ω)) leads to: 

0 .m
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+  (6.64) 
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The eddy-impedance Re.m is zero at ω=0. The associated magnetic circuit is shown in 

Figure 6.7(b). The induced eddy current density in the magnet is as follows: 
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6.5.3.  The Coupled Electric-Magnetic Circuit 

As shown in Figure 6.7(c), the MEC incorporating eddy currents in both laminations 

and the magnet, whose total reluctance is Rt(jω)=Rt0+Re.i(jω)+Re.m(jω). Combining 

magnetic and electric circuits as in Figure 6.7(d) results in the system of equations below: 
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c c c c c c

t e ec t e e
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− + += + +     
 (6.67) 

The electrical dynamic can be obtained by solving the above system of equation, or 

simply by finding φ from the magnetic equation and substituting it into the electric 

equation: 
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 (6.68) 

 
Figure 6. 7.  (a)-(c) MEC with eddy current in iron and magnet, and (d) coupled electric-magnetic 

circuit to obtain electrical dynamic including eddy currents. 
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where Q(jω)≥0. The low-frequency inductance is Lc0=N2/Rt0, as expected. There are four 

parameters to be found in identification: Rc, Lc0, i

eff i  and m

eff m  . The frequency-dependent 

inductance can also be obtained as: 

2
0 0

2 2
/ 0
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t t
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=
= = ⎯⎯
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⎯ → =

+
⎯⎯  (6.69) 

Using the above relationship, (35) can be rewritten as: 

)
)

1
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(c

e
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H j

j L j


 
=

+
 (6.70) 

Figure 6.8 illustrates the distribution of the flux density as well as current density 

vectors within the laminations and the magnet. It is seen that, at zero frequency, no eddy 

current is induced, and flux density distributions are uniform, while eddy currents are 

induced at higher frequencies, causing a reduction in the flux density at the center of the 

material. 

 

 
Figure 6. 8. Flux density distribution, current density distributions and current density vectors within 

magnet (top) and laminations (bottom). 
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6.5.4.  Fractional-Order System 

The square roots, including s=jω, illustrate a fractional dynamic which may be written 

as in the following: 

   0 0
(s) /j i

m n

j ij ie b s a sH
 

= =
=  

 (6.71) 

where sα and sβ correspond to fractional derivatives. Here Qi is in the above format, and Qm 

can be rewritten using Taylor expansion as in below: 
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 (6.72) 

6.6. Experimental Evaluation and Identification 

Figure 6.9 shows the prototyped actuator and the torque-angle measurement setup. 

Figure 6.10 shows the experimental setup, including the drive and the current control loop. 

 

 

 
Figure 6. 9.  The prototype actuator (left), and torque-angle measurement (right). 



169 

 

 

 

6.6.1. Torque and Back-EMF Profiles 

The torque-angle characteristics at zero coil currents (the restoration torque) as well as 

the coil torque and the total torque at a current of 1A are given in Figure 6.11(a). The torque 

constant is obtained as kt=1.906 m N.m/A by experiment and 1.953 m N.m/A by 3D FEM 

and, i.e., less 2.5% of error. Also, the restoration constant is obtained as krest=0.318 by 

experiment and 0.28 by FEM and, i.e., an error of 11%. Among the sources of the 

discrepancies might be prototyping issues, misalignments, inaccurate material 

characteristics, etc. The experimental values are used in the identification. The coil torque 

is obtained by subtracting the restoration torque from the total torque as it cannot directly 

be measured. The back-emf waveform at a velocity around 100 rad/sec is shown in 

Figure 6.11(b), where the peak divided by the velocity is obtained as kb=1.91 volt.sec/rad 

by experiment and 1.96 volt.sec/rad by FEM and, i.e., an error of less than 3%. It is seen 

that all waveforms have a sinusoidal pattern, as expected from the nonlinear model. 

 
Figure 6. 10.  The setup for identification and analysis of actuator and current loop. 
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6.6.2. Identification of the Mechanical Dynamics and Friction Impact 

The actuator is excited with the current control loop as a current source to obtain the 

frequency response of the mechanical dynamic Hm. In Figure 6.12(a)-(d), the waveforms 

of the coil current ic and the rotor position θ, as well as frictional hysteresis loops in the 

torque-position plane for different amplitudes of coil current, are extracted. The hysteresis 

loops can be approximated as a straight line whose slope is almost the total stiffness seen 

by the system. It is observed that, for smaller amplitudes of current, the total stiffness is 

larger, and the hysteresis band is wider. Figure 6.12(e) shows the frequency response of 

Hm for different amplitudes of the injected signal. A value of 10 mv at the input of the 

current loop corresponds to a coil current of about 20 mA as the DC gain of the current 

loop is almost 2. The DC gain of Hm is smaller than the value of kt/ks, i.e., the total stiffness 

of the system is a bit larger than the stiffness of the magnetic spring. It is caused by 

hysteresis behavior of the pre-sliding friction as described by LuGre model [20]-[21]: 
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 (6.73) 

 
Figure 6. 11.  (a) Coil, restoration and total torques, and (b) back-emf waveform 

 
Fig. 9.  The prototype actuator (left), and torque-angle 

measurement (right). 
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where σs is the bristle stiffness, σd is the bristle damping, z is the internal state of bristle 

deflection, v=dθ/dt is the relative velocity between the two surfaces. Also, g(v) is the 

Stribeck curve for steady-state velocities, Fc is the Coulomb friction force, Fs is the static 

friction force, and vs is Stribeck velocity. A term for viscosity may also be added to Ff. 

Linearization around z=0 and v=0 results in [65]- [68]: 

f s dF    = +
 (6.74) 

In other words, the friction looks like a stiffness σs and a damping σd. Thus, the 

mechanical dynamics is modified to:  

2
(s) t

d s t c f m

c d s

k
J k k k i F H

I Js K s K


  + + = −  = =

+ +
 (6.75) 

where Kd=kd+σd and Ks=ks+σs are the total damping and stiffness. As expected, the DC 

gain of Hm in Figure 6.12(e) is smaller for smaller amplitudes. There is also a phase delay 

at low frequencies, which is caused by the frictional hysteresis. This delay gets smaller for 

larger amplitudes of current as the hysteresis band gets smaller. The profiles of the total 

stiffness and the low-frequency lag versus current are shown in Figure 6.12(f). The 

identification is performed using the frequency response for currents around 80-120 mA 

where the actuator operates, and the values of Ks and Kd do not have big variations. Having 

the DC gain Gm0 from the magnitude response and kt from the previous section, the spring 

factor
0/s t mk k G= is obtained. At a high-frequency ωhf where the slope is -40 dB/dec, the 

inertia dominates the dynamic as 2( ) /m tH s k Js= so 2/ | ( ) |t hf m hfJ k H =  which is also close to 

the value obtained by Solid Works. Then, the natural frequency ωn is obtained by

/n sk J = . According to the resonance peak, an initial value for ζ is guessed. Finally, the 

parameters are re-adjusted such that the closest match is obtained. Having ζ, the damping 

factor is derived as 2d nk J = . A close agreement between the model and the experimental 

results is observed up to a sufficiently large frequency. 
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Figure 6. 12.  Mechanical dynamic: (a)-(d) profiles of the coil current ic and the position θ as well as 

frictional hysteresis loops in the torque-position plane for different amplitudes of current, (e) frequency 

response of the mechanical dynamics Hm for different amplitudes of injected signal, and (f) total stiffness 

and low-frequency lag due to the hysteresis loop for different amplitudes of injected signal. 
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6.6.3. Identification of the Electrical Dynamics 

In Figure 6.13(a), the 2-DoF conventional RL model of the electrical dynamic and the 

proposed4-DoF model including eddy currents are compared with experimental results. 

The parameters of the RL model are simply measured by an LCR meter, as given in 

Table 6.1. From the DC gain, the resistance R= Rc+Rs and then Rc is obtained. At high 

frequency, the dynamic is reduced to the inductance as 
0( ) 1/e cH s L s= , so at a higher 

frequency ωhf where the slope is -20 dB/dec, the inductance can be obtained as 

1/ | ( ) |hf e hfL H = . These are pretty close to those obtained by LCR meter. The accuracy 

of this model drops drastically at mid frequencies, causing problems in the design of the 

current loop. As observed, the phase asymptote of the experimental result, instead of -90o, 

gets close to -45o due to eddy currents which affect the frequency response by nature of 

half order (45 degrees). 

The phase error at a frequency of 20 kHz (crossover frequency of the current loop) is 

around 15 degrees in the 2-DoF RL model, while it is reduced to 9 degrees for the 3-DoF 

model with eddy currents in only laminations, and 0.4 degrees for the 4-DoF model with 

eddy currents in both laminations and magnets.  The approximated parameters of the 3-

DoF model are Rc=1.76 , Lc0=295 μH, 6.4071i

eff i  = . The approximated parameters of 

the 4-DoF model are Rc=1.76 , Lc0=295 μH, 3.2035i

eff i  = and 2.8227m

eff m  = . The 

magnetic reluctance without and with the impact of eddy currents in the laminations and 

the magnet are shown in Figure 6.13(b), illustrating that the reluctance of the flux loop 

goes up due to eddy currents at higher frequencies, resulting in an inductance reduction. 

The ratio of the flux to the initial flux is also shown in Figure 6.14, due to eddy currents, 

from which it can be observed that the flux goes down at high frequencies. 
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6.7. Conclusions 

Nonlinear and linear modeling of the actuator is developed. The eddy currents in the 

laminations and the magnet are included in the model by extracting a lumped-element 

framework from the analytical solution of the diffusion equation, which provides very high 

accuracy for dynamic and control studies of the device. As the field solutions are not 

preferred for system-level designs, a lumped-element model is extracted that incorporates 

 
Figure 6. 13.  (a) electrical dynamic and (b) ferequency-dependant magnetic reluctances. 

 
Figure 6. 14.  Ratio of flux to the initial flux versus frequency. 
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eddy currents. Without including the eddy-current in the model, it could result in large 

inaccuracies in the frequencies around the crossover frequency of the current loop, which 

can cause misleading predictions of the phase margin design. By including the eddy current 

in the laminations using the solution of 1-D diffusion, a part of the inaccuracy issue is 

solved, and by including the eddy current in the magnet using the solution of 2-D diffusion, 

most part of the inaccuracy issue is solved. The impact of friction on the mechanical 

dynamic is investigated. The friction acts like stiffness and damping in the pre-sliding 

regime. The lab experiments are performed using a prototype actuator, whose results 

illustrate a very good correlation with the results obtained by modeling and FEM. Torque 

and back-emf profiles are obtained, and the identification of the model is carried out, which 

will be used in the control system designs. 
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Chapter 7 

7. Modeling and Design of Drive Circuit and 

Current Control Loop 
 

 

 

 

 

 

 

 

 

 

 

 

 

7.1 Introduction 

High bandwidth current loops are widely employed to drive actuators and 

electromagnetic devices in order to eliminate the electrical dynamic so that the torque can 

be directly commanded by the outer control loops. It also provides a faster response and 

higher robustness by making the system independent of temperature-dependent elements 

like the stator resistance. The current drives may be developed using analog architectures 

like op-amps circuits [69]-[71] or FPGA-based switching devices [72]. 

In this chapter, n op-amp-based drive circuit for the current control loop is proposed, 

modeled, and designed. Using a third-order model of the op-amps estimated from the 

datasheet, a very accurate model for the drive and the current control loop is developed to 

be used for prediction and evaluation purposes. In addition, the simplified version of the 

model is obtained for design purposes and high-level intuitive analysis. The accuracy and 

effectiveness of the modeling of the actuator and the drive circuit are evaluated in control 

studies. The importance of eddy current modeling is demonstrated as well. Also, the 

effectiveness of the designed current loop and various practical trade-offs are investigated. 

The control system designs are evaluated and compared through indices like rise time, 

overshoot, and steady-state error in the step response, as well as bandwidth, phase margin, 

sensitivity, disturbance rejection, and noise rejection in the frequency domain. 
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7.2.  Drive Circuit and Modeling Approach 

The electromagnetic torque is proportional to the current which is developed in the coil 

within an electrical time constant. By implementing a high bandwidth current loop as the 

most inner loop, the whole electrical dynamic can be eliminated. Thus, instead of coil 

voltage, the current or torque can be commanded directly from the outer loops. Also, the 

complexities such as fractional dynamics of eddy currents are removed, resulting in the 

simplicity and accuracy of the position control. In addition, the robustness of the drive is 

increase by making the system independent of temperature-dependent elements such as 

coil resistance. As the drive circuit is shown in Figure 7.1, an analog control system is 

employed for the current loop whose advantage is that an immediate response to the current 

command is achieved. The desired closed-loop response is obtained by a lead-lag 

compensator. 

 

 

 
Figure 7. 1. Drive circuit and current control loop 
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A very accurate model for the drive circuit is developed using a non-ideal model of the 

op-amps. According to the frequency response of the op-amps given in the datasheet, a 

third-order model for the gain A(s) can be approximated as in below: 

1 2 3

1

( )
(1 s/ 2 f )(1 s/ 2 f )(1 s/ 2 f )

f /

OL

OL

A
A s

GBP A
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=

+ + +



 (7.1) 

where the open-loop gain AoL, gain-bandwidth product GBP, f1=GBP/AOL, and 

frequencies f2 and f3 can be approximated from the datasheet. The approximated 

specifications and frequency responses of LM3886 and OP1652 op-amps used in the drive 

are shown in Figure 7.2. Lower order models can also be obtained by ignoring the 

dynamics of f2 and f3. Then, by writing the differential input voltage Vd in terms of output 

voltage Vo and inputs V+ and V-, the op-amp circuit can be modeled. 

(s)o s d

d

V A V

V V V+ −

=

= −
 (7.2) 

 

The developed model is very precise for simulations and performance prediction. 

However, for the design procedure, an ideal model is obtained when the gain A(s) 

approaches infinity. This simplified version is written in terms of conventional control 

 
Figure 7. 2. (a) Torque and (b) back-emf waveforms 
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system architectures. There are two main points on how to pick mid-range resistances for 

op-amp circuits. First, the resistances should not be too small to avoid drawing a large 

current that causes heating and loss. For example, if Rp1 and Rp2 are too small, they can 

draw a big current from the output of the power op-amp to the ground. Second, the 

resistances should not be too large to cause non-ideal op-amp behavior as input impedances 

are not infinite in reality. Also, bypass capacitors of 0.1uF are used for power rails of op-

amps connected very close to the power pins. 

7.3. Modeling of the Power Op-Amp and Voltage Divider 

To drive the actuator, an LM3886 power op-amp with an open-loop gain of A1(s) is 

used, which can provide a current of ±10 A and a large instantaneous and continuous power 

capability. Generally, in op-amp circuits, the higher the closed-loop gain, the lower the 

bandwidth; thus, the lowest possible gain is preferred. Based on the datasheet of LM3886, 

the lowest closed-loop gain to have a stable circuit and to get a phase margin of around 15 

degrees in open-loop gain A(s) is 10. In smaller gains, the phase margin gets lost. Therefore, 

mid-range values for Rp1 and Rp2 are picked to have a gain of 10.53. Another consideration 

is that the impedances at the inverting and noninverting inputs (10||64.9 and 10||95.3) 

should be close; it is satisfied as the 10 k resistance dominates the large parallel ones. A 

voltage divider with a gain of 0.133 is used to adjust the maximum output of the 

compensator (±14.7) to the maximum output of the power op-amp 

(±14.7 volt×0.133×10.53=±20.6 volt). The transfer function of the voltage divider is just a 

gain as in below: 

2

vd

1 2

(s) vd v

u v v

V R
H

V R R
= =

+
 (7.3) 

The differential input voltage of the power op-amp is: 
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 (7.4) 

The transfer function of the ideal model is just a gain as follows: 
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 (7.5) 

The block diagrams of the ideal and non-ideal models are shown in Figure 7.3. Its 

bandwidth is large enough compared to the current loop bandwidth that can be treated as a 

gain in the design process. 

 

7.4. Modeling of the Current Sensor 

A low-noise high-bandwidth OP1652 op-amp with an open-loop gain of A2(s) is used 

for compensator and current measurement. The coil current is measured by the voltage 

across a Metal Element 5-watt resistance Rs =0.1  in series with the coil, whose voltage 

is buffered so that it is not loaded. The advantage of this open-air resistor is to keep the hot 

spot safely off the PCB and improve the heat dissipation. Its parasitic inductance is much 

smaller than the metal film resistors. Also, the sense circuitry should be as close as possible 

 

 
 

Figure 7. 3. The non-ideal (top) and the ideal (bottom) models of the power op-amp 
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to the sense resistor to avoid large loop areas by the PCB tracks, which can form parasitic 

inductances. The buffer gain is set to 1/Rs, i.e., Rs2/Rs1=10, so the DC gain of Hs is unity 

(Vs=ic). The differential input voltage of the op-amp is: 

1 1
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The transfer function of the ideal model is just a gain as follows: 
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 (7.7) 

As its bandwidth is large enough compared to the current loop, it is treated as a gain in 

the design process. The block diagrams of the non-ideal and ideal models are shown in 

Figure 7.4. 

 

 

 
Figure 7. 4. The non-ideal (top) and the ideal (bottom) models of the current sensor 
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7.5. Modeling of the Lead-Lag Compensator 

The lag compensator provides a large low-frequency gain to eliminate steady-state 

error. The lead compensator provides a fairly large phase margin to limit the overshoot of 

the time response and to increase the robustness of the control system. 

The lead compensator is put in the feedback path so as to reduce overshoot and thus 

saturation in the output of the power op-amp. The differential input of the op-amp Vdc is as 

follows: 

2 1 1 2

1 2 2 1 1 2

|| || ||

|| || ||

f f

dc set s u

f f f

Z Z Z Z Z Z
v V V V

Z Z Z Z Z Z Z Z Z
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 (7.8) 

It can be simplified to: 
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The transfer function of the lag compensator is obtained as: 
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With the ideal model of op-amps (A2(s)→∞), it reduces to: 
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 (7.11) 

The role of very large resistor Rlg is to limit the DC gain of the closed-loop system to 

avoid overcurrent in the coil in unexpected scenarios. However, if Rlg is very large, a pure 

integrator is obtained as 1/ClgS. As the value of Rlg=2 M is picked, the pure integrator 

approximation can be used in the design process. The transfer function of the lead 

compensator using the ideal model of the op-amp is: 
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2 ld ld

ld

2 2 ld ld 2

( ) 11 1 1 1
(s)

1 1

R R C s s
H

Z R R C s R s





+ + +
= = =

+ +  (7.12) 

where the time constant is τ=RldCld, and the pole-zero ratio is =1+R2/Rld. The lead 

compensator provides a maximum phase of m at the frequency of ωm as in below: 

1 1 1
sin

1
m mat


 

  

− − 
= = 

+   (7.13) 

The value of  is set according to the required phase compensation. Too big values can 

amplify high-frequency noise. The value of ωm is usually set at the gain crossover 

frequency ωc of the loop transmission so that the highest phase margin is obtained. The 

non-ideal and the ideal model of the compensator are shown in Figure 7.5. 

 

 

 
Figure 7. 5. The non-ideal (top) and the ideal (bottom) models of the compensator 
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7.6. Model of the Drive Circuit and Current Control Loop 

In Figure 7.6, the non-ideal and the ideal models of the drive circuit and the current 

control loop are shown. The non-ideal model is employed for simulations and predictions, 

while the ideal model can be used for initial discussions and design purposes, as in the 

following section. 

 

7.7. Design of Lead-Lag Compensator 

The design steps are as in below: 

1. The closed-loop DC gain is almost R2/R1, whose value is picked such that bounds of 

Vset (±5V from DAC of DSP) are matched to the current capability of the power op-

amp (±5×10/5.1=±9.8A). The resistor R1 should not be smaller than 1 k as it can 

cause heating and damaging the DAC with overloading and drawing a large current. 

Picking R1=5.1 k, leaves R2=10 k. 

 

 
Figure 7. 6. The non-ideal (top) and the ideal (bottom) models of the drive circuit and the current control 

loop 
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2. Next, the typical pole-zero ratio of =10 is used, which provides a maximum phase of 

m≈55o to the loop. Therefore, Rld is obtained as: 

2 21 / / ( 1) 1.1ld ldR R R R k  = − = + 
 (7.14) 

3. The 10%-90% rise time of the closed-loop response is tr≈2.2/ωbw, where ωbw is the 

closed-loop bandwidth in rad/sec. To have a tr<50μs, at least a bandwidth of 7 kHz is 

required. The crossover frequency must be much larger than 1/τe to provide a very fast 

time response with a small rise time. The crossover frequency of the loop transmission 

is set to fc=20 kHz which gives a closed-loop bandwidth around fbw=7.8 kHz.  Setting 

ωm=ωc=2πfc, the value of Cld is obtained as follows: 

1 1
2.2m ld

ld ld m ld

C nF
R C R


  

=  = 

 (7.15) 

4. The last component to be determined is Clg which is set such that the gain of loop 

transmission is unity at ωc. 

22

lg

lg 1 2 1

1
(j ) (j ) 1 1 100

j

pv

ld c e c

c v v p

RR
H H C pF

C R R R
 



 
+ =   

 +  

 (7.16) 

where Hv, Hp, and Hs are just the simple gains of the ideal models of the voltage divider, 

power op-amp, and current sensor. The electrical dynamic, including eddy currents, is 

used here. 

5.  Figure 7.7 shows the loop transmission and its components as designed in part I of the 

paper, as well as the Nyquist of the loop. The results of the developed model are in very 

close agreement with the experiment. A sufficient phase margin of φm=72.5o is 

obtained. It is seen that the phase margin is estimated with an error less than 1o with 

the electrical dynamic including eddy current, while the error is around 16o if eddy 

currents are ignored in the RL model. The Nyquist is a well far away from -1. 



187 

 

 

7.8. The Six Gangs: Design Trade-Offs of Drive and Current loop 

The design trade-off of the current control loop is studied in this section. As shown in 

the block diagram given in Figure 7.8, the three important inputs of the current loop are 

reference R (current command Vset), disturbance D, and measurement noise N. Also, the 

 
 

 
Figure 7. 7. Frequency response of loop components: (top) loop transmission, compensator, and 

rest of loop (loop transmission excluding compensator), and (bottom) Nyquist 
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three outputs are the plant output x (position θ), measured output y, and drive output u. The 

loop transmission is L=PCH. It can be represented as a MIMO system as follow: 

1 1 1

1

1 1 1

1 1 1

P PCH PCF

PCH PCH PCHx D
P PCF

y N
PCH PCH PCH

u R
PCH CH CF

PCH PCH PCH

− 
 + + +

    
    =
    + + +
       

 
 + + + 

 (7.17) 

There are six district transfer functions known as the six gangs [88]. The experimental 

frequency responses are obtained by SR785 Digital Signal Analyzer, whose maximum 

frequency is 100 kHz. Easily obtaining the frequency responses of loop transmission 

L=PCH, Gang 1, Gang 2 and Plant P, the Gangs 3-6 can easily be obtained as G3=P/(1+L), 

G4=1/(1+L), G5=(L/P)/(1+L) and G6=L/(1+L). The high precision of the developed 

models for the actuator and the drive circuit is illustrated in comparison with the 

experimental data. It is also shown that the RL model of the electrical dynamic in which 

the eddy currents are ignored may cause misleading inaccuracies in the design process. 

 

7.8.1. Gang 1: Reference Tracking 

This is the reference tracking transfer function from the current command (DAC) to the 

coil current as in below: 

1

Y FPC
T

R PCH
= =

+
 (7.18) 

 
Figure 7. 8. The six gangs: block diagram, inputs and outputs 
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2

1

(0)
lim (0) 5.96

(0)
DC

C

RF
T T dB

H R→
= = =   (7.19) 

Frequency and step responses of T are shown in Figure 7.9 and Figure 7.10. Provided 

by the crossover frequency of ωc=20 kHz, as ωbw ∝ ωc, a sufficient bandwidth of around 

fbw=7.86 kHz is obtained, which provides a fast response with a small rise time 

tr≈2.2/ωbw=45 us as expected. Also, the bandwidth is not excessively large to introduce 

high-frequency noise to the system. Thanks to the sufficient phase margin of the loop, the 

closed-loop response is well damped (ζ≈ φm/100) without a significant resonance peak. 

Provided by the lag compensator, if the loop gain at low frequency is large enough, the 

steady-state error converges to zero, and the D.C. gain is R2/R1=1.961, that is, a current 

command of Vest=1 produces a current of 1.961 A in the coil.  

7.8.2. Gang 2: Voltage Capability of the Drive 

This is the transfer function from the current setpoint R to the output of the power op-

amp U as in below: 

1

U FC

R PCH
=

+
 (7.20) 

2

1

(0)
lim 11.26

1 (0) (0)C

RFC F
R dB

PCH P H R→
= = 

+
 (7.21) 

A design criterion is the D.C. gain which converts the current setpoint (DAC voltage) 

to the steady-state coil voltage. The DC gain of 11.26 dB converts the ±5 volt at the DAC 

to ±18 volt at the coil terminal—a bit below the maximum voltage capability of drive. Also, 

a comparison is made with a case where the lead compensator is placed in the forward path. 

As shown in Figure 7.9, it can be observed that the resonance peak of the frequency 

response and the overshoot of the step response is larger, which can result in saturation of 

the voltage op-amp whose output voltage cannot go beyond ±20.6 volts. Therefore, putting 

the lead compensator in the feedback path is a wise decision that enhances the voltage 

capability of the drive in the transient regime. The step response is also shown in 

Figure 7.10. 
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7.8.3. Gang 3: Disturbance Rejection or Load Sensitivity 

This is the transfer function from the disturbance D to the output y (coil current) as in 

below: 

1

Y P

D PCH
=

+
 (7.22) 

lim 0
1C

P

PCH→
=

+
 (7.23) 

The disturbance operates at low frequency as the reference command. The back-emf 

E=kbωr is treated as a disturbance in the current loop. A large loop gain in low frequencies 

provided by the lag compensator brings a good disturbance rejection whose capability 

needs a compromise with reference tracking capability and robustness as increasing the 

low-frequency gain comes at the expense of a decrease in the magnitude slope and thus in 

the phase margin of the loop transmission around the crossover frequency. In other words, 

pushing down the output response to the disturbance (Gang 3) comes at the cost of an 

overshoot in the output response to the setpoint (Gang 1). The disturbances are effectively 

attenuated at low to high frequencies, as it can be observed in Figure 7.9 that the magnitude 

peak is around -30 dB. 

To obtain time responses of Gangs 3 to 6, extra equipment is not required to inject D 

and N signals to the specified locations. As the input impedance of the power op-amp is 

very large and the output impedance of the compensator op-amp is very low, according to 

the circuit shown in Figure 7.10(c), approximated responses of Gangs 3 and 4 can be 

obtained by injecting the input signal to the non-inverting input of the power op-amp 

through a 10 k resistor. If the inverse gains of the voltage divider (vin to v+) and power 

op-amp (v+ to vc) are applied to the responses, ic and vc give the approximate responses for 

G3=P/(1+PCH) and G4=1/(1+PCH), respectively. The inverse of the total gain from vin 

to vc is 0.2, so if the magnitude of injected signal vin is 0.2 volt, the signals ic and vc give 

the unit step responses of Gangs 3 and 4. It is seen that the unit step response to the 

disturbance signal is effectively suppressed to 6 mv. 
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7.8.4. Gang 4: Sensitivity 

The sensitivity is the transfer function from the noise N to the output y, or reference R 

to the error for F=1.  

1

1

Y
S

N PCH
= =

+  (7.24) 

Typically, S is zero at low frequencies, has a peak Ms at a mid-frequency ωms, and 

converges to unity at high frequencies. Sensitivity is a measure of the robustness of the 

control system to the variations of the parameters of the plant He as the impact of variations 

of T to P is proportional to sensitivity S as follows: 

   
dT T dT dP

S S
dP P T P

=  =
 (7.25) 

If the sensitivity curve is harshly pushed down at low frequencies to obtain a smaller 

steady-state error and robust disturbance rejection, it pops up at mid frequencies resulting 

in a larger Ms; it is called waterbed effect and needs a trade-off. It is also reflected in the 

fact that S+T=1 if F=H=1. Usually, a value of Ms smaller than 2dB or 3dB shows a 

satisfying design. Thanks to the sufficient phase margin of the loop, Ms=1 is obtained, as 

shown in Figure 7.9. It can also be seen that if the RL model without eddy current dynamic 

is used, the value of Ms has a significant discrepancy which can be misleading in the design 

trade-offs. According to Figure 7.10, the unit step response to the noise signal is effectively 

suppressed to 10 mv. It is also a measure of steady-state error elimination, which is largely 

satisfying. 

7.8.5. Gang 5: Noise Sensitivity 

The noise sensitivity is the transfer function from the noise N to the drive output U.  

1
N

U CH
S

N PCH
= =

+  (7.26) 

The system should be designed such that noise sensitivity is as small as possible so that 

the measurement noise is not amplified by the power op-amp, causing loss and drive 
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saturation. As Sn=CH×S, at high frequencies S=1 and so Sn=CH; thus, the pole-zero ratio 

of the lead compensator α should not be very large to avoid noise amplification. As shown 

in Figure 7.9, a sufficient noise attenuation is obtained at high frequencies by a value of 

α=10. 

7.8.6. Gang 6: Complementary Sensitivity 

Complementary sensitivity is the transfer function from the disturbance D to the drive 

output U.  

1
cm

U PCH
S

D PCH
= =

+  (7.27) 

If F=H=1, Scm=T. As S+Scm=1, there is a compromise between S and Scm. It is shown 

in Figure 7.9.  

 

 
Figure 7. 9.   Frequency response of the six gangs. 
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7.9. Conclusion 

An op-amp-based analog drive circuit is proposed, designed, and precisely modeled by 

a third-order model of the op-amps. It provides a very accurate simulation platform to 

predict the performance of the drive circuit and the current control loop. In addition, an 

ideal model using the ideal model of op-amps is then developed to be employed in the 

design of the current control loop. The accuracy of the ideal model is a bit lower than the 

non-ideal model, but its diagram is in the form of the conventional lea-lag control systems, 

which provides a good platform for the design of the current loop. The design trade-offs 

are analyzed through six important performance indices called the six gangs, including 

tracking capability, voltage capability of drive, disturbance rejection, sensitivity, noise 

sensitivity, and complementary sensitivity. Among the six gangs, the first four are the most 

important ones. Tracking with sufficient bandwidth (small rise time) and enough phase 

margin (small overshoot) is significant. The sensitivity is the second important one whose 

peak needs to be smaller than 2 or 3 dB to have good robustness. A good disturbance 

rejection is also helping to suppress the back-emf in the current control loop. Checking the 

saturation level of the power op-amp is important; for example, by placing the lead 

compensator, a larger head room is provided for the overshoot of the output of the power 

op-amp.  

 The accuracy of the drive modeling, as well as the effectiveness of the actuator model, 

are studied in the tests of the current control loop. The developed models for the actuator 

and the drive are employed in position control studies, and the significance of eddy current 

modeling in the effectiveness and accuracy of the control system designs and predictions 

 
Figure 7. 10.   Step responses of (a) Gang 1and Gang 2, (b) Gang 1and Gang 2 zoomed-in, and (c) Gang 3 and 

Gang 4. 
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is demonstrated. Also, various aspects and practical trade-offs of the current loop are 

investigated. Then, three DSP-based position control techniques are implemented. 
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Chapter 8 

8. Pole-Placement Position Control with Voltage 

Drive 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.1 Introduction  

The position loop can be digitally implemented in a DSP. The Zero-Order-Hold (ZOH) 

sampling is performed at the frequency of fs up to 160 kHz. Bipolar ADCs with 16 bits of 

resolution is employed. If unipolar ADCs are used, it is required to deal with an offset by 

an extra op-amp circuit. The position sensor returns a voltage as a function of position, and 

its inverse function is implemented in the DSP. As the bandwidth of the position loop 

should be around or not much larger than the bandwidth of the actuator to avoid drive 

saturation, pole placement position control is employed for desired poles having a natural 

frequency of ωn=2π500 rad. The experimental control setup is shown in Figure 8.1. As 

shown in Figure 8.2, the pole placement control is performed using the power op-amp as a 

voltage drive. To effectively use the resolution of the DAC, a voltage divider with a gain 

of 0.4 is used such that ±5v at the DAC translates to ±21v at the output of power op-amp 

(±5×0.4×10.53=±21). The coil voltage is measured by ADC through a voltage divider. 

Also, the current can be measured using the output of the buffer sent to an ADC, or it can 

be estimated by a state observer. The circuits gains are canceled out in the DSP by their 

inverse values so that the physical model of the actuator can be used for control system 

design without requiring any gain modification. 
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8.2. Employed Model 

By ignoring the fractional-order dynamic of eddy currents, an integer-order linearized 

model, whose block diagram is shown in Figure 8.3, is obtained to be used in pole 

placement control: 

2

0 2
;c

c t r c c d s t c

di d d
v k L Ri J K K k i

dt dtdt

 
 = + + + + =  (8.1) 

It can be represented as a third-order state-space model as: 

 
Figure 8. 1.  Experimental control setup 

 
Figure 8. 2.   Pole placement with voltage drive 
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 

 
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= − − +       
       − −      

 (8.2) 

 

8.3. Full-State Feedback Control in Time Domain 

As shown in Figure 8.2, full-state feedback is obtained by substituting u=r-K δx and 

r=G θref as in below: 

( ) ( ) ( ) ( )
d

x t A BK x t B r t
dt
 = − +  (8.3) 

The eigenvalues of matrix Acl=A-BK determine the closed-loop dynamic. The gain 

vector K=[k1, k2, kn] is obtained by pole-placement using Ackermann’s formula as in 

below: 

  1 2

3 31 3
0 0 1 ( ); [B AB A B]c d cK M A M−


= =  (8.4) 

where Mc is the controllability matrix and φd is the desired characteristic polynomial whose 

roots are the desired eigenvalues λ1, λ2 and λ3 of closed-loop dynamic Acl=A-BK which are 

chosen to be on a circle with a radius of ωn=2πfn and with damping of ζ as –ωn and

21n nj  −  − . It leads to the following desired characteristic polynomial: 

 
Figure 8. 3. Block diagram of the linearized electromechanical model. 

 



198 

 

2 2

1 2 3( )( )( ) (( 2 ( )) )d n n n             = − − − = + + +  (8.5) 

The input gain for position tracking (C=[1 0 0]t) is obtained as: 

( )
1 1[ ]G C A B K B
− −= − −  (8.6) 

8.4. Full-Order State Estimator 

Position and current can be directly measured or estimated, and velocity is estimated. 

When there are noise problems and unmodeled dynamics, as in our case where eddy current 

dynamics are ignored, a full-order observer might be preferred over a reduced-order one. 

The estimator dynamics are as follows:  

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))
d

x t A x t Bu t L y t y t
dt
 = + + −  (8.7) 

ˆ ˆ( ) ( )y t C x t=  (8.8) 

Substituting for ŷ in (15) results in: 

( )
ˆ ˆ( ) ( ) ( ) [ ]

( )

u td
x t A LC x t B L

y tdt
 

 
= − +  

 
 (8.9) 

where Ae=A-LC forms the closed-loop dynamics of the estimator. The pole placement can 

be done for the estimator using Ackermann’s formula to obtain the gain vector 

L=[L1  L2  L3]
t: 

 1

1 3

2

( ) 0 0 1 ;
t

e o o

C

L A M M CA

CA

 −



 
 

= =  
 
 

 (8.10) 

where Mo is the observability matrix, and φe(λ) is the desired characteristic polynomial 

whose roots are the desired eigenvalues of estimator dynamic Ae=A-LC which are chosen 

to be around 5 to 10 times faster than the controller. For example, locating them at –10ωn, 
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can be a good choice as it is still within the bandwidth of the sensors. It leads to the 

following characteristic polynomial: 

3( 10 )( )e n   = +  (8.11) 

Using the Forward Euler method, by substituting d/dt with (z-1)/Ts, the Z-transform 

and the discrete-time equation of the estimator is obtained as in below: 

ˆ ˆx( ) ( ) x( 1) ( 1) ( 1)s e s c sk I T A k T Bv k T L y k= + − + − + −  (8.12) 

where Ts=1/fs is the sampling time. It can be easily implemented into the DSP. Another 

state estimation technique is to employ a full-order observer where only the unmeasured 

states (velocity) are taken from the observer and the measured states (position and current) 

are directly taken from the sensor. In this method, model uncertainties can be more 

efficiently suppressed in velocity estimations. 

8.5. Design of the Compensator 

The compensator is the combined controller and estimator with input y(t) and outputs 

u(t). If r=0, the dynamics is obtained by substituting ˆu K x= −  and ˆ ˆy C x= in (15) as 

in below: 

ˆ ˆ ˆ( ) ( ) ( ) ( ); ( )
d

x t A BK LC x t L y t u K x t
dt
  = − − + = −  (8.13) 

where Ac=A-BK-LC, Bc=L and Cc=-K. Its dynamics are obtained as eigenvalues of 

Ac=A-BK-LC, which need to be checked for stability. The closed-loop dynamic is as 

follows: 

( ) ( )

ˆ ˆ( ) ( )

x t A B K x td

x t LC A B K LC x tdt

 

 

−     
=     

− −     
 (8.14) 

The characteristic polynomial of the compensator is |λI-(A-BK)|×|λI-(A-LC)|=0, and so 

the 6 eigenvalues of the above system are the same as the 3 eigenvalues of Acl=A-BK and 
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the 3 eigenvalues of Ae=A-LC taken together. This fact is called the separation principle 

that enables us with the independent design of controller and estimator. 

8.6. Design, Simulation, and Experiment 

The plant is controllable and observable as Mc and Mo are full rank matrices. The 

eigenvalues of Acl are chosen by ωn=2πfn=2π500 rad/sec and damping of ζ=0.8. The 

feedback and the input gains are obtained as K=[5.3636, 0.0031, 0.3437] and G=6.8664. 

The eigenvalues of estimator dynamic Ae are chosen to be around 5 to 10 times faster than 

the controller. For a response that is 10 times faster, the value of estimator gain L is 

obtained as [8.73e4, 2.34e9, 1.15e7]. Also, the compensator is stable as the eigenvalues of 

A-BK-LC are -42069 and -26703±11066i. 

Figure 8.4(a)-(d) shows both simulation and experimental results for a square wave 

reference with a magnitude of ±5 degrees and a frequency of 20 Hz. The steady-state error 

is almost zero, voltage and current are within limits, and the experimental results are close 

to those expected from simulations. As shown in Figure 8.4(a), a small discrepancy is 

observed in the reference tracking results; the simulation predicted a small overshoot which 

is expected from the desired damping, while the experiment does not illustrate any 

overshoot. It can also be explained by the closed-loop frequency response given in 

Figure 8.5(a) that the experimental result shows a more damped system. This discrepancy 

can probably be explained by non-modeled dynamics such as friction as well as eddy-

currents; as shown in Figure 8.5(b), the phase margin of the real system is a bit larger than 

the model, i.e., a smaller overshoot. Although the obtained phase margin looks good, the 

closed-loop response is a function of temperature-dependent elements such as coil 

resistance. 
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Figure 8. 4. Step response of pole placement with voltage drive: (a) position, (b) velocity, (c) current and (d) voltage 

 

 
Figure 8. 5. Frequency Response of pole placement with voltage drive: (a) loop transmission, and  (b) closed-loop 

system. 
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8.7. Extra Math 

The relationship of the closed-loop transfer function (r to θ) is obtained as: 

1( [ ])T GC SI A BK B−= − −  (8.15) 

Also, the loop transmission, which is the transfer function from u to the comparison 

point θk is obtained as: 

1( )k

ref

L K SI A B
I

 −= = −  (8.16) 

Corrections of the delays due to ADC and computation time can be performed by the 

term dsT
e
−

 where Td is the delay. The dynamic of the current loop can be reduced to a 

simple gain for controller design; however, it can be included in the model to gain a higher 

accuracy in the designs and simulations. If the transfer function HCL is the closed-loop 

response of the current loop (Gang 1) multiplied by the inverse of its D.C. gain to have a 

unity D.C. gain on total, the control effort, instead of being U= Gθref -K δX, will be 

U=HCL(R-K δX). The transfer function of the plant from u to the states as outputs is the 1-

input 2-output system Gm=C(SI-A)-1B where C=I2×2. The difference between Gm and Hm is 

that Gm is a 2-by-1 matrix that outputs both position and velocity. Thus, a closed-loop 

system incorporating the current-loop dynamic is obtained as: 

1

2 2( ) ( )ref

ref

m CL m CL m CL

X
X G H KX I G H G GG K H



−

= −  = +  (8.17) 

 8.8. Conclusion 

In this chapter, a pole placement position control with voltage drive is developed. The 

drive circuit is cheap and simple. It shows acceptable performance for simple applications, 

but it lacks accuracy and robustness for advanced control requirements. The source of 

inaccuracies could be uncertainties or unmodeled dynamics like eddy-currents. A source 

of the lack of robustness could be the fact that the control system is dependent on the 

temperature-dependent resistor of the coil. In the next chapter, this issue is solved by 
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employing a high-bandwidth current loop which eliminates the electrical dynamic, 

including uncertainties like eddy-currents.  
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Chapter 9 

9. Pole-Placement Position Control with 

Current Drive 
 

 

9.1 Introduction 

As shown in Figure 9.1(a), using a high-bandwidth current loop as the most inner loop, 

the electrical dynamic of the actuator, including its time constant and complicated 

dynamics such as eddy currents, can be eliminated, leaving a faster plant having fewer 

complexities. Then, instead of the coil voltage, the current or torque can instantaneously 

be commanded by the position loop. The bandwidth of the current loop is around 7.86 kHz, 

while the desired bandwidth of the position loop is less than 500 Hz. Therefore, as shown 

in Figure 9.1(b), the current loop can be seen as its D.C. gain from the position loop. This 

gain is canceled out by its inverse in the DSP to avoid requiring to add extra gain to the 

plant. 

 

 

 

 
 

 
Figure 9. 1. Pole placement with current drive: (a) current and position control loops, (b) simplifying the 

high bandwidth current loop to its DC gain 
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9.2. Employed Model 

As shown in Figure 9.2, eliminating the electrical dynamic by the current loop and 

canceling its DC gain in the DSP, the model is reduced to the second-order mechanical 

dynamic as follows: 

0 1 0

/ / /
c

s d trr

i
K J K J k J





      
= +      

− −      
 (9.1) 

 

9.3. Full-State Feedback Control in Time Domain 

The feedback gains K=[k1 k2] and the unitary input gain G are obtained where C=[1 0]t.  

  1

2 21 2
0 1 ( ); [B AB]c d cK M A M−


= =  (9.2) 

( )
1 1[ ]G C A B K B
− −= − −  (9.3) 

 
 

 
 

Figure 9. 2. Order reduction of the electromechanical model from three (top) to two (bottom) 

 



207 

 

9.4. Reduced-Order Estimator 

The available states do not need to be estimated by the observer. Reduced-order 

observers are computationally more efficient, may converge faster, and have higher 

bandwidth. For the current drive, a reduced-order observer is employed to estimate velocity. 

The model can be partitioned based on the measured states X1=θ and unmeasured ones 

X2=ωr as follows: 

1 11 12 1 1

21 22 2 22

c

X A A X B
i

A A X BX

       
= +       

        
 (9.4) 

1

2

[I 0]
X

y
X

 
=  

 
 (9.5) 

The estimator in terms of the new state z can be expressed as: 

ˆ ˆ ˆ
cZ AZ B y F i= + +  (9.6) 

2X Z L y= +  (9.7) 

whose parameters are obtained as: 

22 12Â A L A= −  (9.8) 

21 11
ˆB̂ A L A L A= + −  (9.9) 

2 1F̂ B L B= −  (9.10) 

Thus, the characteristic polynomial of Â=-kd/J-L has been obtained whose 

characteristic polynomial is φ(λ)=|λI-Â|=λ+kd/J+L. Also, the bandwidth of the estimator 

is λ0, so the desired pole is -λ0 and the desired characteristic polynomial is φe(λ)=λ+λ0. Thus, 

the estimator gain is obtained as L=λ0-kd/J. Also, Ackermann’s formula can be used to 

obtain estimator’s gain by substituting A with A22 and C with A12 as: 

 1

22( ) 1
t

e oL A M −=  (9.11) 

 12oM A=  (9.12) 
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It gets to the same value for L. Substituting L in (29) leads to: 

0Â = −  (9.13) 

2

0 0
ˆ ( / / J)d sB k J k = − − +  (9.14) 

ˆ /tF k J=  (9.15) 

Finally, the velocity is obtained as ωr=z+Lθ. Using the Forward Euler, the discrete-

time equations are obtained for DSP implementation as in below: 

ˆ ˆ ˆ( ) ( ) ( 1) ( 1) ( 1)s s s cZ k I T A Z k T B k T F i k= + − + − + −  (9.16) 

( ) ( ) ( )r k Z k L k = +  (9.17) 

The estimator bandwidth is set to λ0=10ωn. 

9.5. Compensator 

It can be shown that the characteristic equation of the compensator |λI-(A-BK)|×|λI-

(A22-LA12)|=0, so the controller dynamic Acl=A-BK and the estimator dynamic Â= A22-LA12 

can be designed independently.  

9.6. Design, Simulation, and Experiment 

The desired closed-loop poles λ1 and λ2 are chosen to have a natural frequency of 

ωn=2πfn=1000π rad/sec, and damping of ζ=0.8 as 21n nj  −  − , so the desired 

characteristics polynomial is as follows: 

( ) ( )( ) 2 2

1 2 2d n n         = − − = + +  (9.18) 

The feedback gains and the unitary gain are obtained as K=[7.124, 0.0037] and 

G=7.806. Then, the estimator gain L is obtained as 31118. 

The step responses of position, velocity, current command (scaled DAC output), and 

coil current are shown in Figure 9.3. The reference tracking and the performance of the 

current loop are very good. Not only are the results as expected from the experiment, but 
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also, they correlate well with the simulations from the model. It can be observed that, 

compared to voltage drive control, the control system design using the current drive is more 

accurate, which is due to the elimination of electrical dynamics, including eddy currents 

and back-emf impact. Also, the elimination of the temperature-dependent resistance of the 

coil adds to the robustness of the system. 

 

As shown in Figure 9.4, the performance of the system is checked in the frequency 

domain, illustrating a sufficient phase margin of 70 degrees and a -3dB bandwidth of 

455 Hz, which is higher than the bandwidth of the pole placement control with voltage 

drive. 

 
Figure 9. 3. Step response of the pole placement with current drive: (a) position, (b) velocity, (c) current 

command, and (d) coil current. 
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As shown in Figure 9.5, there is a steady error and a bit larger overshoot in the large-

signal reference tracking result of the control system for a reference amplitude of 10 

degrees. It is expected as the control system was designed using the linearized model of 

the actuator to be employed for small-signal maneuvers.  This issue can be solved using a 

nonlinear control system. 

 
Figure 9. 4.  Frequency response of (a) loop transmission, and (b) closed-loop system 
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9.7. Conclusion 

The pole placement position control using the current drive is more accurate and more 

effective compared to the position control with voltage drive. It is also more robust. Also, 

the current or torque can be commanded directly. These advantages are provided by the 

high bandwidth current control loop that eliminated the electrical dynamic. Therefore, 

implementing a current loop as the most inner loop is always recommended. The only 

significant problem with the control system was large-signal control in which showed some 

lack of performance like steady-state error and a larger overshoot. It was expected because 

the linear control system design was carried out using the linearized version of the 

electromechanical model for small-signal deviations around the equilibrium point. The 

issue is solved by nonlinear control in the next chapter. 

 

 

 

 

 

 

 
Figure 9. 5.  Large-signal response of the pole placement with current drive. 
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Chapter 10 

10. Nonlinear Control by Feedback Linearization 
 

 

10.1 Introduction  

The linear control system techniques, as in the previous sections, work well for small-

signal setpoints while, for large-signal maneuvers, they can result in unwanted inaccuracies 

like steady-state error, large overshoots, and even instability in severe cases. Nonlinear 

control provides an opportunity to work with large-signal inputs. Feedback linearization is 

a nonlinear technique that can be powerful in eliminating the nonlinearities of the system, 

yet it requires a very accurate model of the plant as well as measuring or estimating the 

state variable. Thanks to the accuracy of the developed nonlinear model, effective 

nonlinear control can be established. The current loop is employed to get a faster response 

and to get rid of the complexities and fractional-order elements of the electrical dynamic. 

Then, we only deal with the nonlinear model of the mechanical dynamic, including the 

nonlinear profiles of the electromagnetic torque and the magnetic spring, as shown in 

Figure 10.1. As the restoration torque and the electromagnetic torque are functions of the 

position, by substituting θ=β-π/2, the nonlinear electromechanical model is obtained as 

follows: 

2

2

: cos

: sin 2 cos

c

c b r c c c

d rest t c

di
Elec v k R i L

dt

d d
Mech J K k k i

dtdt

 

 
 


= + +


 + + =


 (10.1) 
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10.2. Feedback Linearization 

Feedback linearization can be implemented for a plant if its state-space model can be 

written in the companion form as follows: 

1 2

2 3

1 1

...

(x ,..., x ) g(x ,..., x ) u(t) (t)n n n

x x

x x

x f v

=


=


 = + =

 (10.2) 

where functions f(x) and g(x) are nonlinear functions of the states. u(t)=ic(t) is the input. 

In addition to a very accurate model, all of the states need to be measured or estimated in 

order to evaluate functions f and g. Then, the following nonlinear transformation is used at 

the input to cancel out the nonlinearities. 

 1

1

1
( ) (t) (x ,..., x )

g(x ,..., x )
n

n

u t v f= −  (10.3) 

 
 

 
 

Figure 10. 1. Eliminating of the nonlinear electrical dynamic from the nonlinear mechanical dynamic (top) 

to reduce the system to the nonlinear mechanical dynamic (bottom) 

 



215 

 

It results in a linear system having n poles at the origin and with the new input v(t), to 

which linear control techniques can be applied. The nonlinear mechanical dynamic can be 

written as in below: 

sin 2 cos

r

d r rest t

r c c

k k k
i f g i v

J J

 

  


 =

 +

= − + = + =


 (10.4) 

Where functions f and g are obtained as: 

sin 2
( , ) d r rest

r

k k
f

J

 
 

+
= −  (10.5) 

cos
( , ) t

r

k
g

J


  =  (10.6) 

The nonlinear transformation at the input is as follows: 

1
( ) [ ( ) ( , )]

( , )
c r

r

i t v t f
g

 
 

= −  (10.7)  

Then, the remaining system is a double integrator with the new input v(t), which can 

be designed using linear control techniques yet having a good performance in large-signal 

analysis and maneuvers. The new linear system is as follows: 

2

(s) 1

( )
mv H

v s s


 =  = =  (10.8)  

The state-space form is obtained as follows: 

0 1 0

0 0 1rr

v




      
= +      
     

 (10.9) 

The block diagram of the feedback linearization control is shown in Figure 10.2. The 

current loop is treated as its D.C. gain because its bandwidth is much larger than the 

bandwidth of the position loop. However, like pole placement with current drive, its 

dynamic is accounted for in the simulations to get higher accuracy. 
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10.3. Pole Placement in Time Domain 

The desired closed-loop poles λ1 and λ2 are chosen to have a natural frequency of 

ωn=2πfn and damping of ζ as 21n nj  −  − , so the desired characteristics polynomial is 

as follows: 

( ) 2 22d n n     = + +  (10.10) 

The matrices A, B, and C are obtained as: 

0 1

0 0
A

 
=  
 

 (10.11) 

0

1
B

 
=  
 

 (10.12) 

[1 0]C =  (10.13) 

 
 

 
 

Figure 10. 2. Block diagram of the nonlinear control system using feedback linearization and pole-

placement: (a) current and position control loops, (b) simplifying the high-bandwidth current loop to its DC 

gain 
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The feedback gains K=[k1 k2] for position and velocity obtained by Ackermann’s 

formula as well, as the unitary input gain is obtained as follows: 

2

1 1 2 nk   = =  (10.14) 

2 1 2( ) 2 nk   = − + =  (10.15) 

2

nG =  (10.16) 

The velocity observation is done using a derivate plus a low-pass filter which is kind 

of like the reduced-order observer used in the pole placement with the current drive. 

10.4. The Equivalent System 

Also, as shown in Figure 10.3, it can be proved by mathematical manipulations that the 

transfer function of the loop transmission is almost the double integrator (linearized system 

from v to θ) in series with a P.D. compensator in the feedback loop as in below: 

2

2

2k n ns
L

v s

  +
 =  (10.17) 

Therefore, the closed-loop system is obtained as: 

22

2 2

/

1 2

n

ref n n

G s

L s s



  
= =

+ + +
 (10.18) 

 

 

 
Figure 10. 3. Equivalent system of double integrator plus a PD controller in the feedback path 
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10.5. Design, Simulation, and Experiment 

The desired closed-loop poles have a natural frequency of ωn=2πfn=1000π rad/sec and 

damping of ζ=0.8. The step responses of position, velocity, current command (scaled DAC 

output), and coil current for a large-signal command with an amplitude of 10 degrees are 

shown in Figure 10.4. A comparison is also made with the simulations obtained using the 

model. Thanks to the accuracy of the developed nonlinear model, the nonlinear control 

technique works as expected, and it correlates well with the simulation results. Contrary to 

the linear control system, the developed nonlinear control technique works well with a 

large-signal input without any steady-state error. 
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Figure 10. 4. Nonlinear control: (a) time responses, and (b)-(e) full-period waveforms and comparison 

with model for position, velocity, current command, and coil current. 
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The system performance is also checked in the frequency domain given in Figure 10.5. 

The frequency response of the system from the signal v to the position is very close to a 

double integrator given in Figure 10.5(a); it should be noted that its gain is attenuated for 

measurements by SR785 digital signal analyzer, and also a delay is observed in the phase 

which due to sampling and computations. It can also be seen in Figure 10.5(b)-(c) that the 

loop transmission is kind of a double integrator in series with a P.D. compensator. A 

sufficient phase margin of 59 degrees is obtained as well. As shown in Figure 10.5(d), a 

bandwidth of 413 Hz is obtained, which is closed to the one obtained by the linear control 

system with the current drive as the sensitivity is shown in Figure 10.5(e), the maximum 

sensitivity of the control loop is Ms=2.4 dB, showing sufficient robustness. 

10.6. Conclusion 

Thanks to the accuracy of the developed model, the feedback linearization technique is 

then used in nonlinear control for large-signal applications. It showed almost zero steady-

state error. Full-order and reduced-order observers are also employed to estimate the 

unmeasured states. The control system designs in the thesis are evaluated through indices 

like rise time, overshoot, and steady-state error in the time response, as well as bandwidth, 

phase margin, sensitivity, disturbance rejection, and noise rejection in the frequency 

domain. In Table 10.1, the three position control systems are compared and ranked for 

different indices. 

 

 

Table 10. 1 Comparison and Ranking of the Position Control Techniques 

 Voltage 

Drive 

Current 

Drive 

Nonlinear 

Bandwidth 2 1 1 

Robustness 2 1 1 

Accuracy 3 2 1 

Small Signal 2 1 1 

Large Signal 3 2 1 

Simplicity/Cost 1 2 3 
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Figure 10. 5. Frequency domain analysis of nonlinear control: (a) double integrator, (b) pole locations, (c) 

loop components, (d) closed loop, and (e) sensitivity. 
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Chapter 11 

11. Eddy-Current Plates to Reduce Leakage 

Inductances 
 

 

11.1. Introduction  

An eddy-current-based technique is proposed that may reduce the coil inductance at 

high frequencies. However, it is an initial examination by two-dimensional FEM, while 

more tests and optimizations may be done by researchers on various aspects of the 

technique, how to optimize the strategy, what penalties do we pay for using this method, 

the effectiveness of this approach, etc. It is just a conceptual study, for which a typical 

geometry of the actuator is picked. The default values of the conductivity of laminations 

and the magnet given by the software are employed. Although close, they do not accurately 

simulate experimental studies or even three-dimensional finite element analysis.  

11.2. The Design Strategy 

There are three rules on where to place eddy-current plates: 

Rule 1: Place eddy-current plates in the regions where there exists a leakage flux that does 

not contribute to the torque production and only adds to the coil inductance. The 

plates should be placed perpendicular to the leakage fluxes to kill them through 

the opposing flux produced by eddy-currents induced in them. 

The slot areas and the region between the edges of the two stator poles seem to be 

such areas. 

Rule 2: Do NOT Place eddy-current plates in the region where the main flux exists. Main 

flux is the portion of the flux that interacts with the magnet to produce torque. 

 Rotor area or pole faces of the stator are such regions. A shorted turn around a pole 

of the stator lamination would do the same thing: killing the main flux. 
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Rule 3: Do NOT place eddy-current plates in regions where there is a varying flux from 

the rotor because it causes an eddy-current brake that acts as a damper on the rotor. 

 The region between the edges of the two stator poles seems to be such an areas. 

Also, pole faces of the stator are such regions. 

11.3. Leakage Fluxes of Stator: Where to Place Eddy-Current Plates 

Figure 11.1 shows the flux lines within the motor due to the coil current (no PM). It 

helps us find the leakage fluxes: the portion of the flux that does not interact with the 

magnet to produce torque and only adds to the inductance value. 

 

Most portion of the flux goes through the magnet to contribute to torque production. 

However, it is seen that a part of the flux lines is only a leakage flux that does not pass the 

magnet and close their path through the slots—that is to say, they do not contribute to the 

torque production and only add to the coil inductance. We can place eddy-current plates 

perpendicular to these leakage fluxes to kill them through the opposite flux produced by 

eddy currents induced in the plates. 

  

 
Figure 11. 1. Leakage fluxes within the actuator due to coil current: where to put eddy current plates 
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11.4. Magnetic Field Produced by Rotor 

Figure 11.2 shows flux lines within the motor due to the magnet (zero current) at 

different directions (0, 45, and 90 degrees). Watching the stray fluxed of the PM helps us 

to find the wrong locations to place the eddy-current plates. The eddy-current plates should 

not be placed where there is a varying flux from the magnet because it causes eddy-current 

brake, which is like extra damping on the rotor. 

 

 

11.5. The Inductance-Frequency Profile without Eddy-Current Plates  

 The stator coil inductance versus frequency up to around 1 MHz is in Figure 11.3. 

It is seen that the inductance is about 225 µH at low frequencies while it goes down as 

frequency goes up. It is seen that the inductance is about 227 micro Henry which is close 

but smaller than the experimental result we obtained by LCR meter. Among the sources of 

discrepancy could be ignoring the 3-D effects, end turns, and inaccuracy of material 

properties. It is observed that the inductance goes down to around 5 micro Henry in very 

high frequencies. What is the reason for inductance reduction at higher frequencies? Eddy-

currents in the motor elements, i.e., the magnet, the laminations, the copper coils (skin and 

proximity effects). In the next section, it is compared with the cases including eddy-current 

plates. 

 

 
Figure 11. 2. Fluxed to the PM: where NOT to put eddy current plates 
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11.6. Eddy-Current Plates 

11.6.1. Case 1: Placing Eddy-Current Plates in Slots 

In case 1, as shown in Figure 11.4, the eddy-current plates are placed in the slots 

perpendicular to the leakage fluxes to kill the leakage flux in the slots. The inductance 

versus frequency up to 1 MHz is obtained as in Figure 11.5. Some reduction is observed in 

the inductance profile of the device just by placing the four plates. 

 

 

 
Figure 11. 3. The inductance-frequency profile without eddy-current plates obtained by FEM 
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11.6.2. Case 2: Placing Eddy-Current Plates in Slots and Interpolar 

Regions 

In case 2, as shown in Figure 11.6, two more eddy-current plates are placed in the 

interpolar region to kill the leakage fluxes between the two edges of each of the two-pole 

faces. The inductance versus frequency up to 1 MHz is shown in Figure 11.7. There is not 

a significant improvement compared to case 1 by adding these to plates. As shown in 

Figure 11.8, the two eddy-current plates are thickened and moved toward the center such 

that they have more interaction with the leakage fluxes in the interpolar region. Almost no 

impact on inductance reduction is observed. 

 
 

Figure 11. 4. Placing the eddy-current plates in the slots obtained by FEM 

 

   
 

Figure 11. 5. The inductance-frequency profile when eddy-current plates are placed in the slots 
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Figure 11. 6. Placing the eddy-current plates in the slots and the interpolar regions  

    
 

Figure 11. 7. The inductance-frequency profile when eddy-current plates are placed in the slots and the 

interpolar regions obtained by FEM 

     

 
Figure 11. 8. Increasing the thickness of eddy current plates and moving them toward the center 
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11.7. Conclusion 

An elementary conceptual study is carried out to study the feasibility of reducing the 

coil inductance using eddy current operations in some conductive plates called eddy-

current plates. A strategy is explained on where to or not to place the plates. It is observed 

that it can kill the leakage fluxes and reduce the inductance. The penalty for placing the 

eddy current plates can be limiting the coil area or producing more heat due to the induced 

eddy currents. One may study the impact of the material and thickness of the plates, the 

best locations to places the, etc. Performing several experiments could also be helpful. In 

an elementary test that we performed, there was a difference ib the results. The inductance 

reduction happened at higher frequencies compared to simulations. However, optimations 

and more concrete experiments are needed to test and verify the idea. 
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Chapter 12 

12. A Proposed Effectiveness Index 
 

 

12.1 Introduction  

A new effectiveness index is proposed that may represent the effectiveness of an 

actuator with oscillational behavior in a better way. Like the previous chapter, more 

investigations and discussions can be done on the proposed effectiveness index herein. 

13.2 Power Flow Inside an Electric Motor 

In the motoring operation, the electrical power is the input to the coil terminals. Then, 

energy conversion from electrical to mechanical occurs in the air-gap through the magnetic 

field media, and finally, mechanical power is produced on the shaft as the output. We also 

have losses with the path from input to output. The electric power terms are as in below 

Instantaneous power: 

𝑝𝑒(𝑡) = 𝑣(𝑡) 𝑖(𝑡) (12.1) 

Apparent Power Se: 

|𝑆𝑒| =
1

2
𝑉𝑚 𝐼𝑚 =  𝑉𝑟𝑚𝑠 𝐼𝑟𝑚𝑠 (12.2) 

𝑉𝑟𝑚𝑠 =
𝑉𝑚

√2
   𝑎𝑛𝑑   𝑉𝑟𝑚𝑠 =

𝐼𝑚

√2
 (12.3) 

The apparent Power has two components: active power P and reactive power Q. 

Active Power Pe: 

It is the portion of power flow that, averaged over a complete cycle of the AC waveform, 

results in a net transfer of energy in one direction is known as real power (also referred to 

as active power). This is the real power (average power) we usually talk about and is the 

component that does the work. It is the power in the resistive part of the circuit. The unit 

of P is Watt. 

𝑃𝑒 =
1

𝑇
∫ 𝑝𝑒(𝑡)𝑑𝑡

𝑇

0
 =  

1

𝑇
∫ 𝑣(𝑡) 𝑖(𝑡)𝑑𝑡

𝑇

0
 =

1

2
𝑉𝑚 𝐼𝑚 𝑐𝑜𝑠

𝑒
  (12.4) 

where the angle  is the angle between voltage and current 

https://en.wikipedia.org/wiki/Real_power
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𝑃𝑒 = |𝑆𝑒| 𝑐𝑜𝑠
𝑒

=
1

2
𝑉𝑚 𝐼𝑚 𝑐𝑜𝑠

𝑒
=  𝑉𝑟𝑚𝑠 𝐼𝑟𝑚𝑠 𝑐𝑜𝑠

𝑒
 (12.5) 

Reactive Power Qe: 

That portion of power flow due to stored energy that returns to the source in each cycle 

is called reactive power. It is the power in the reactive part of the circuit (inductor or 

capacitor). The unit of Q is Var. 

𝑄𝑒 = |𝑆𝑒| 𝑠𝑖𝑛
𝑒

=
1

2
𝑉𝑚 𝐼𝑚 𝑠𝑖𝑛

𝑒
=  𝑉𝑟𝑚𝑠 𝐼𝑟𝑚𝑠 𝑠𝑖𝑛

𝑒
 (12.6) 

 

Note: 

- For  a resistive load, =0 and so cos=1, sin=0, i.e., we only have active power 

- For a reactive load (inductor or capacitor), =+90 or -90 and so cos=0, sin=1, i.e., 

we only have reactive power—no work is done. 

 

12.3. Traditional Notion of Mechanical Power: 

In linear-motion systems, mechanical power is force (N) times linear speed (m/sec): 

𝑝𝑚(𝑡) = 𝐹(𝑡) 𝑣(𝑡) (12.7) 

 

In rotational systems, mechanical power is torque (N.m) times rotational speed 

(rad/sec): 

 

𝑝𝑚(𝑡) = 𝑇(𝑡) (𝑡) (12.8) 

 

 

Average Mechanical Power: 

We know that p(t) oscillates with time. The average power is the average of p(t) over a 

period as in below: 

𝑃𝑚 =
1

𝑇
∫ 𝑝𝑚(𝑡)𝑑𝑡

𝑇

0
 =  

1

𝑇
∫ 𝑇(𝑡) (𝑡)𝑑𝑡

𝑇

0
 =

1

2
𝑇𝑚 𝑚 𝑐𝑜𝑠

𝑚
  (12.9) 

where m is the angle between torque and velocity. 

 

https://en.wikipedia.org/wiki/Reactive_power
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12.4. New Definition: Apparent, Active and Reactive Mechanical Power 

• Problem: For evaluating an actuator with oscillating rotation, the traditional 

power definition might not always reflect the satisfactory performance of the 

actuator. 

• For example, when a torque T is applied to a pure inertia J, the output velocity  

is lagging the torque by 90 degrees. Thus, the average mechanical power, which is 

the integration of a sine waveform times a cosine, is zero. However, it is doing 

something for us by rotating the rotor, so we may define a new power index! 

𝑃𝑚 =
1

𝑇
∫ 𝑝𝑚(𝑡)𝑑𝑡

𝑇

0
 =  

1

𝑇
∫ 𝑠𝑖𝑛 (

2𝜋

𝑇
𝑡) 𝑐𝑜𝑠(

2𝜋

𝑇
𝑡)𝑑𝑡

𝑇

0
 (12.10) 

• As another example, when there is a lag (e.g., 20 degrees in an inertia plus damper 

system) between the torque and velocity, there are instances when instantaneous 

power is negative. What should we think about that? Should we take the absolute 

value before calculating the average?!  

• Proposed Solution: To solve this issue, we can define the counterpart of apparent 

electrical power for mechanical power. Then, we can calculate the efficiency as the 

ratio of apparent mechanical power on the rotor shaft (output) to apparent electrical 

power at the coil terminal (input). 

 

Apparent Mechanical Power: 

 

𝑆𝑚 =
1

2
𝑇𝑚 𝑚 =  𝑇𝑟𝑚𝑠 𝑟𝑚𝑠 (12.11) 

 𝑇𝑟𝑚𝑠 =
𝑇𝑚

√2
   𝑎𝑛𝑑   𝑟𝑚𝑠 =

𝑚

√2
 (12.12) 

Apparent Power S has two components: active power Pm and reactive power Qm 

 

Active Mechanical Power: 

It has properties as in below: 

- The portion of power flow that, averaged over a complete cycle, results in a net transfer 

of energy in one direction, which is known as real power (also referred to as active 

power) 

https://en.wikipedia.org/wiki/Real_power
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- This is the real power (average power) we usually talk about and is the component 

that is doing work. 

𝑃𝑚 =
1

𝑇
∫ 𝑝𝑚(𝑡)𝑑𝑡

𝑇

0
 =  

1

𝑇
∫ 𝑇(𝑡)(𝑡) 𝑑𝑡

𝑇

0
 =

1

2
𝑇𝑚 𝑚  𝑐𝑜𝑠

𝑚
  (12.13) 

where the angle m is the angle between torque and velocity. 

- It is the power in the damper part of the circuit. A damper in a mechanical circuit is 

like a resistor in an electrical circuit. They both dissipate energy. 

𝑃𝑚 = 𝑆𝑚 𝑐𝑜𝑠
𝑚

=
1

2
𝑇𝑚 𝑚 𝑐𝑜𝑠

𝑚
=  𝑇𝑟𝑚𝑠 𝑟𝑚𝑠  𝑐𝑜𝑠

𝑚
 (12.14) 

- The unit of Pm is Watt. 

 

Reactive Mechanical Power: 
 

- That portion of power flow due to stored energy that returns to the source in each 

cycle is known as reactive power.  

- It is the power in the reactive part of the circuit (inertia or spring). 

𝑄𝑚 = 𝑆𝑚 𝑠𝑖𝑛
𝑚

=
1

2
𝑇𝑚 𝑚 𝑠𝑖𝑛

𝑚
=  𝑇𝑟𝑚𝑠 𝑟𝑚𝑠  𝑠𝑖𝑛

𝑚
 (12.15) 

- The unit of Q is Var. 

 

12.5. The Traditional Efficiency and the New effectiveness Index: 

 

Traditional Definition of Efficiency: 

- Efficiency is the ratio of output power to input power. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
 (12.16) 

- By substitution, we have: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=  

1

2
 𝑇𝑚 𝑚 𝑐𝑜𝑠𝑚
1

2
 𝑉𝑚 𝐼𝑚 𝑐𝑜𝑠𝑒

=
1

2
 𝐾𝑡 𝐼𝑚 𝑚 𝑐𝑜𝑠𝑚

1

2
 𝑉𝑚 𝐼𝑚 𝑐𝑜𝑠𝑒

=
𝐾𝑡 𝑚 

𝑉𝑚 

𝑐𝑜𝑠𝑚

𝑐𝑜𝑠𝑒

 (12.17) 

 

- Here, Pin is the Average Electrical Power (Active Electrical Power) at the coil terminals, 

and Pout is the Average Mechanical Power (Active Mechanical Power) on the shaft 

 

https://en.wikipedia.org/wiki/Reactive_power
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• Issue: For evaluating an actuator with oscillating rotation, the traditional power 

definition might not always reflect a satisfactory performance of the actuator. 

• For example, when a torque T is applied to a pure inertia J, the output velocity  is 

lagging the torque by 90 degrees (𝑐𝑜𝑠
𝑚

= 0). Thus, the average mechanical power, 

which is the integration of a sine waveform times a cosine, will be zero. However, it is 

doing something for us by rotating the rotor, so we may define a new efficiency index! 

 

The Proposed Definition for Effectiveness: 

• The solution we propose for the mentioned problem is to define efficiency as the ratio 

of the apparent mechanical power to the apparent electrical power, i.e., removing 

𝒄𝒐𝒔
𝒎

 and 𝒄𝒐𝒔
𝒆
 from the traditional notion of efficiency.  

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =  
|𝑆|𝑜𝑢𝑡

|𝑆|𝑖𝑛
 (12.18) 

• It may be called Apparent Efficiency or Apparent-Power Efficiency. 

• By substitution, we have: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =  
𝑆𝑜𝑢𝑡

𝑆𝑖𝑛
=  

1

2
 𝑇𝑚 𝑚

1

2
 𝑉𝑚 𝐼𝑚

=
1

2
 𝐾𝑡 𝐼𝑚 𝑚

1

2
 𝑉𝑚 𝐼𝑚

=
𝐾𝑡 𝑚

𝑉𝑚
 (12.19) 

• It is seen that it leads to efficiency as the ratio of back-EMF over terminal Voltage 

because  𝐸 = 𝐾𝑡  . 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝐸𝑚

𝑉𝑟𝑚𝑠
 (12.20) 

• This is very interesting because the back-EMF is also zero at zero velocity, where 

mechanical power is also zero. 

 

• It can also be represented with RMS values as in below: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝐾𝑡 𝑟𝑚𝑠

𝑉𝑟𝑚𝑠
 (12.21) 
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12.6. Frequency-Domain Analysis of Efficiency (New Definition by 

Reactive Power): 

For the new definition of effectiveness defined as the ratio of the amplitude of back-EMF 

(ktω) to the terminal voltage amplitude, a transfer function can be defined whose input and 

output are terminal voltage and back-EMF, respectively.  

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝐸𝑚

𝑉𝑟𝑚𝑠
=

𝐾𝑡 𝑟𝑚𝑠

𝑉𝑟𝑚𝑠
 (12.22) 

We can obtain the transfer function from terminal voltage to the position as follows: 

𝜃 (𝑠)

𝑉(𝑆)
=

𝐾𝑡

𝐿 𝐽 𝑠3+ (𝑅 𝐽+𝐿 𝐾𝑑) 𝑠2+(𝑅 𝐾𝑑+𝐾𝑠 𝐾𝑑+𝑘𝑡
2)𝑠+𝑅 𝐾𝑠

 (12.23) 

Therefore, just by taking a derivative (multiplying numerator by S), we can get the transfer 

function from terminal voltage to the velocity: 

 (s)

𝑉(𝑆)
=

𝑘 𝑠

𝐿 𝐽 𝑠3+ (𝑅 𝐽+𝐿 𝐾𝑑) 𝑠2+(𝑅 𝐾𝑑+𝐾𝑠 𝐾𝑑+𝑘𝑡
2)𝑠+𝑅 𝐾𝑠

 (12.24) 

 

Then by multiplying by torque constant kt, we can get the transfer function from terminal 

voltage to the back-EMF, which is the proposed effectiveness index as follows: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑠) =
𝐸 (𝑠)

𝑉(𝑆)
=

𝑘𝑡
2 𝑠

𝐿 𝐽 𝑠3+ (𝑅 𝐽+𝐿 𝐾𝑑) 𝑠2+(𝑅 𝐾𝑑+𝐾𝑠 𝐾𝑑+𝑘𝑡
2)𝑠+𝑅 𝐾𝑠

 (12.25) 

 
If we multiply the two sides by current, it gives effectiveness as the ratio of the input 

power to the converted power. 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑠) =
𝐸 (𝑠)𝐼(𝑠)

𝑉(𝑆)𝐼(𝑠)
=

𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝑐𝑜𝑛𝑣𝑒𝑟𝑒𝑡𝑑 𝑝𝑜𝑤𝑒𝑟
 (12.26) 

The absolute and logarithmic values of the new effectiveness index as a function 

frequency are shown in Figure 12.1. It is seen that the peak happens at a mid-frequency 

around the natural frequency of the mechanical dynamic. It makes sense as the back-emf 

gets its peak value around that frequency. At zero frequency, where the velocity and so 

back-EMF are zero, there is no output mechanical power, and thus the effectiveness value 

is zero. At a mid-frequency, a resonance happens, which corresponds to the maximum 

power conversion and maximum effectiveness. 
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This frequency can be understood by Maximum power transfer theory if we define an 

equivalent impedance for the back-EMF as in below: 

𝑍𝐸(𝑠) =
𝐸 (𝑠)

𝐼(𝑆)
=

𝑘𝑡
2 𝑠

𝐽 𝑠2+𝐾𝑑𝑠+𝐾𝑠
 (12.27) 

 The maximum happens around a frequency where Zcoil≈Zemf
*. In other words, if coil 

resistance is close to the equivalent back-emf resistance (Rc≈Remf), and coil reactance is 

close to the negative back-emf reactance (Xc≈ -Xemf), i.e., emf reactance looks capacitive. 

In Figure 12.2, the magnitude-phase, as well as the real-imaginary components of the 

impedances of the coil (Zcoil=R+jω), back-emf and total impedance, are plotted. 

 

 

    
 

Figure 12. 1. Effectiveness index versus frequency 

 

    
Figure 12. 2 Impedances of coil Zcoil, back-emf ZE and the total Zt 
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12.7. Conclusion 

In this chapter, an effectiveness index is proposed that may evaluate the performance 

of oscillating actuators in a better way. However, more analysis and experiments may be 

carried out about it. To this end, apparent mechanical power is defined whose concept is 

like apparent electrical power. Therefore, the effectiveness index is defined as the ratio of 

apparent mechanical power as the output of the actuator to the apparent electrical power as 

the input of the device. A new parameter is defined as the equivalent impedance of the 

back-emf, representing the converted energy. Then, a discussion is made with the theory 

of maximum power transfer. 
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Chapter 13 

13. Conclusion and Future Works 

 
13.1 Conclusions 

An electromechanical model is developed for an actuator whose stator curvature is 

nonuniformly shaped to have a reluctance torque in addition to the coil torque. The rotor’s 

permanent magnet is incorporated in the model through equivalent Amperian currents. To 

model the actuator, the complicated geometry of the stator is substituted with an equivalent 

ellipse having a surface current density representing the stator current.  The coil torque is 

obtained using the Lorentz force and the solution of Laplace’s equation in terms of both 

scalar and vector potentials in the elliptical coordinates. The reluctance torque is obtained 

using the energy method and differential flux tubes that incorporate the variation of current 

enclosed in the flux loops. In addition to the detailed explanations, an attempt is made to 

visualize the modeling procedure and the field distributions so that the readers can clearly 

understand the ideas and utilize them in their research. Also, the finite element method is 

employed in the field analysis and development of the model. In the end, the actuator is 

prototyped. The model produces the results in a few seconds while, depending on the 

desired accuracy, it could take a couple of hours up to a few days using a FEM. It is shown 

that the equivalent geometry produces the same field solution within the rotor area as the 

original geometry. Normal and tangential components of magnetic flux density, flux lines, 

magnetic scalar potential, magnetic vector potential, coil torque, reluctance torque, and 

total torque are extracted and analyzed. A very close agreement is observed among the 

results obtained from the analytical model, FEM in the simplified geometry, FEM in the 

original geometry, and experimental results from the prototyped device. 

In addition, a nonlinear and linear electromechanical model of an actuator with 

magnetic restoration is developed for dynamic and control studies. The eddy currents in 

the laminations and the magnet are included in the model by extracting a lumped-element 

framework from the analytical solution of the diffusion equation, which provides very high 
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accuracy for dynamic and control studies of the device. The impact of friction on the 

mechanical dynamic is investigated. The design considerations of the actuator are 

explained as well. The lab experiments are performed using a prototype actuator, 

illustrating a very good correlation with the results obtained by modeling and FEM. Torque 

and back-emf profiles are obtained, and the identification of the model is carried out. Then, 

an analog drive circuit is proposed, designed, and precisely modeled by a third-order model 

of the op-amps, whose ideal version is then employed in the design of the current control 

loop. The accuracy of the drive modeling, as well as the effectiveness of the actuator model 

in the current loop, is studied, and the design trade-offs are analyzed. Then, three DSP-

based position control techniques are implemented. First, a pole placement position control 

with voltage drive is developed, showing acceptable performance for simple applications 

but lacking accuracy and robustness for advanced control requirements. Second, by 

employing the developed current control loop, the complexities of the electrical dynamic 

are eliminated, and then a pole placement position control with the current drive is 

implemented whose accuracy and robustness are improved while still lacking effectiveness 

for large-signal purposes. Thanks to the accuracy of the developed model, the feedback 

linearization technique is then used in nonlinear control for large-signal applications. Full-

order and reduced-order observers are also employed to estimate the unmeasured states. 

The control system designs are evaluated through indices like rising time, overshoot, and 

steady-state error in the time response, as well as bandwidth, phase margin, sensitivity, 

disturbance rejection, and noise rejection in the frequency domain. The three-position 

control systems are compared and ranked for different indices. 

Also, an elementary conceptual study is carried out to study the feasibility of reducing 

the coil inductance using eddy current operations in some conductive plates called eddy-

current plates. A strategy is explained on where to or not to place the plates. It is observed 

that it can kill the leakage fluxes and reduce the inductance. The penalty for placing the 

eddy current plates can be limiting the coil area or producing more heat due to the induced 

eddy currents. One may study the impact of the material and thickness of the plates, the 

best locations to places the, etc. Performing several experiments could also be helpful. At 

the end, an effectiveness index is proposed that may evaluate the performance of oscillating 

actuators in a better way. However, more analysis and experiments may be carried out 
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about it. To this end, apparent mechanical power is defined whose concept is like apparent 

electrical power. Therefore, the effectiveness index is defined as the ratio of apparent 

mechanical power as the output of the actuator to the apparent electrical power as the input 

of the device. A new parameter is defined as the equivalent impedance of the back-emf, 

representing the converted energy. Then, a discussion is made with the theory of maximum 

power transfer. 

13.2 Future Works and Recommendations for the Designers 

• Other control techniques for position control might be studied. Input shaping or 

prefilters to make the step setpoint smoother to avoid overshoots and thus saturation in 

the power op-amp can be a good investigation. 

• Design and implementation of a loop-shaping control with higher bandwidth for the 

position loop can be studied. Its design procedure is presented in the Appendix. 

• Developing a switching drive would be an interesting subject. It can provide a higher 

voltage and current capability, plus a smaller copper loss compared to the op-amp-

based analog drive. However, it may introduce noise and switching ripple to the system. 

• Modeling the switching drive would be an interesting case study as well. It provides a 

simulation platform to study the input shaping and prefilters and auto-tuning systems. 

Then, it can be compared with the modeling and design of the op-amp-based current 

control loop and drive. 

• The switching drive can be implemented by an op-amp-based current control loop just 

by substituting the power op-amp with an H-bridge, including an extra circuit to 

convert the output of the compensator to a PWM to drive the gates of the MOSFETs. 

It can be done by comparing the output of the compensator with a sawtooth wave. Also, 

filters may be used at the H-bridge to filter out the high-frequency stuff. 

• The switching current control loop may also be implemented digitally by DSPs or 

FPGAs. For example, both current and position loops may be implemented in one DSP, 
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or the current loop may be implemented by an FPGA to have a faster dynamic while 

the position loop is implemented in a DSP as the outer loop. 

• A high-precision friction model may also be important, especially if the device is going 

to work in low frequencies where the stiffness of the system matters. It can also be an 

interesting research direction. 

• If the device works at a sufficiently high frequency where the inertia is dominant, the 

magnetic spring and the friction stiffness might not be a significant matter in the 

dynamic behavior of the device. However, the magnetic spring might still be required 

as a fail-safe operation. For example, in laser projection applications, the magnetic 

spring provides safety for situations when the current is removed from the stator or 

when the actuator is going to start from turn-off mode; it avoids projecting the laser 

beam at unwanted locations that can damage the people or the equipment. 

• Flux feedback can be an interesting control strategy that may be studied. Actually, in 

electric machines, the coil current produces a magnetic flux in the air gap, then the 

magnetic flux interacts with the rotor (here the PM), and finally, a torque is produced. 

If eddy currents are ignored, there is no phase shift between flux and torque. Therefore, 

by eliminating the electrical dynamic using a high-bandwidth current loop, torque is 

related to the current with a torque constant kt. Then, the current loop is just the torque 

loop, and commanding the current is just commanding the torque. However, if we have 

significant eddy currents in the device, torque and current are not related by just a 

simple gain kt because the reluctance is a function of frequency. Therefore, the torque 

constant kt, instead of being a simple gain, will be frequency-dependent. The torque 

constant kt will have a frequency response that relates torque to current with magnitude 

and a phase at any frequency. In this case, the current loop might not be as effective as 

the normal cases. As a solution, having a flux loop can be helpful because commanding 

the flux is like commanding the torque. The diagram is given in Figure. 13.1. 
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Measurement or Estimation of Magnetic Flux: 

Four methods for estimating or measuring the flux are proposed, as given in Figure. 13.2. 

1. Measurement by an extra coil around pole faces 

Having an extra coil (maybe one or two turns) around the pole faces can be used for 

flux measurement to be employed in feedback control. 

1d
E N E dt

dt N
  




=  =   (13.1) 

2. Flux Estimation by the Eddy-Current Model 

A method to estimated flux would be the eddy current modeling using the diffusion 

equation. In chapter 6, we obtained the relationship of flux and current as a function of 

terminal voltage as n below: 

0 .i .m0 .i .m( ) 0

c c c c c c

t e ec t e e

V R I j N R j N I V

N R R RNI R R R

  

 

= +      
 =      

− + += + +     
 (13.2) 

According to the above equation, a model-based flux estimator can be implemented if 

the coil current is available. 

3. Flux estimation by Coil Current 

Current can be directly measured or estimated by the last equation. To clarify, having 

the terminal voltage measured, the coil current and the core flux can be estimated using 

the above equation. 

    
Figure 13. 1. Impedances of coil Zcoil, back-emf ZE and the total Zt 
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 (13.3) 

4. Flux Estimation by voltage and current of the coil 

Also, if identification of the frequency-dependent reluctances were difficult, a flux 

estimator may be implemented using the measured values of the terminal voltage and 

the coil current as follows: 

( ) ( ) ([ ) ( )
1

c c c c

d
v Ri N v Ri dt

d N
t t

t
t t


= +  = −  (13.4) 

Having the flux measured or estimated, a flux loop may be implemented around the 

current loop to eliminate the frequency-dependent torque constant or the delay between 

current and flux. Then, the output of the position loop is just the torque input to the 

mechanical dynamics of the device. It will be a simple yet accurate flux estimation. 

Just the value of the coil resistance is required. 

  

    
Figure 13. 2. The methods for measurement or estimation of the flux 
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Appendix A 

Experimental Results of Identification of 

Mechanical and Electrical Dynamics 
 

Identification of Mechanical Dynamics and Friction Test 

The current loop is used as a current source to excite the transfer function of the 

mechanical dynamic Hm, and the voltage from the sensor is measured. The result obtained 

from Dynamic Signal Analyzer SR785 is shown in Figure A.1. The sensor voltage is 

10 volt/25 degrees. In other words, there is the following extra gain in the magnitude of the 

frequency response that needs to be subtracted at the end: 

10

10 180deg
20log

25degress
sensor

volt rees
G

radians

 
=  

 
 (A.1) 

 

Friction Test: 

The impact of the friction in the pre-sliding regime can be modeled by damping and 

stiffness. This impact is a function of the amplitude of the position. Figure A.2 shows the 

bode plot and the time responses of the mechanical dynamics of the actuator, i.e., coil 

current as input and position as output. It can be observed that for smaller amplitudes, the 

DC gain goes down. In other words, as the torque constant kt is constant, the total stiffness 

goes up for smaller amplitudes. It can be seen that, for a very small amplitude of 10 mv, 

 
Figure A. 1. The Mechanical Dynamic obtained by SR785 
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the friction of bearing becomes significant as the rotor stops rotating at some frequencies. 

In the plots, when the amplitude is decreased, the faint curve is the one from the previous 

test, which is left there for comparison. The time profiles of coil current (almost double the 

setpoint of the current loop) and position for different amplitudes of current are shown in 

Figure A.3. There is a voltage offset at the position sensor, which is caused by 

misalignment of the light blocker of the sensor on the rotor, which should be canceled out. 

 

     
  

   
 

     
Figure A. 2. The frequency response of the mechanical dynamic for different amplitudes of the injected 

signal which is the setpoint of the current loop: (a) 60 mv, (b) 40 mv, (c) 30 mv, (d) 20 mv, (e) 10 mv, and 

(f) all together. 
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Identification of Electrical Dynamics  

The result is shown in Figure A.4. For frequencies above 10 kHz, the magnetic 

coupling between the position sensor and coil comes in, which ruins the frequency response. 

When the rotor is free to move, the resonance frequency is exactly at the natural frequency 

of the mechanical dynamic, as it is caused by the effect of back-emf, which is proportional 

to the mechanical velocity. 

 

  
 

  
 

Figure A. 3. The frequency response of the mechanical dynamic for different amplitudes of the injected 

signal which is the setpoint of the current loop: (a) 200 mA, (b) 100 mA, (c) 50 mA, and (d) 25 mA. 
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Figure A. 4. The frequency response of the electrical dynamic: with rotor free to move 

mH   (left) and with 

locked rotor Hm (right) obtained by SR785. 
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Appendix B 

Experimental Results of Drive and Current Loop 
 

 

Frequency Response of Compensator and Loop Transmission 

To obtain the frequency response of the loop transmission, the total gain of the loop 

needs to be attenuated so that the coil winding is not damaged by a very large current. This 

attenuation can be obtained by attenuator pads or adding a parallel resistor to the grounded 

resistor of the voltage divider. This attenuation gain should be canceled out at the end. The 

results are given in Figure B.1. 

 

Frequency Responses of Gangs 3 to Six Using the Frequency 

Responses of the Loop Transmission and the Plant 

Having the experimental results for the loop transmission L=PCH and the plant P=He, 

the gangs 3 to 6 can be obtained as: 

3
1 1

P P
G

L PCH
= =

+ +
 (B.1) 

1 1
4

1 1
G

L PCH
= =

+ +
 (B.2) 

   
Figure B. 1. Frequency response of compensator (left) and loop transmission (right). 
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( )
1
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/

1

L P CH

L H
G

PC
=

+
=

+
 (B.3) 

6
1 1

L PCH
G

L PCH
= =

+ +
 (B.4) 

The results obtained using the above method are given in Figure B.2. However, they 

can directly be measured or approximated by injecting signals to the appropriate points. It 

is possible with op-amp circuits as the input impedance of an op-amp is infinite, and the 

output impedance is zero. However, in our drive circuit, calculating them using the loop 

transmission and the plant was more accurate. 

 

Frequency and Step Responses of Gang 1 and Gang 2 

The inverted input of the current loop is excited. The coil current is measured at the 

output of the current sensor buffer to get Gang 1. The output of the power op-amp is 

measured to get Gang 2. The results for locked and unlocked rotor cases are shown in 

 

 
Figure B. 2. Frequency response of compensator (left) and loop transmission (right). 
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Figure B.3 and Figure B.4. For the unlocked case, there is a hump at the natural frequency 

of the mechanical dynamic, which is caused by back-emf as observed in the electrical 

dynamic of the actuator when back-emf is included: 

2

3 2 2
(s)

( )s ( )s

c d s

e

c co co d d s d t s

I Js k s k
H

V L Js R J L k R k k k k R k

+ +
 = =

+ + + + + +
 (B.5) 

 

 

The time responses are sent to the DAC of DSP and measured, so the conversion ratios 

should be applied. The results for locked and unlocked rotor cases are shown in Figure B.5 

and Figure B.6. 

 

   
Figure B. 3. Frequency Response of Gang 1 (left) and Gang 2 (right) when the rotor is locked. 

  
 

Figure B. 4.  Frequency Response of Gang 1 (left) and Gang 2 (right) when the rotor is free to move. 
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Frequency and Step Responses of Gang 3 and Gang 4 

To measure the frequency responses of Gang 3 and gang 4, a resister Rd=10k is 

connected to the positive input of the power op-amp to inject disturbance. It is fine as the 

power op-amp input has a high impedance. Also, the output of the compensator op-amp is 

very low (almost zero), so the voltage dividers are paralleled, which, together with Rd form 

a voltage divider whose middle voltage is V+ of the op-amp. This gain should cancel out at 

the end. The Gang 3 (Disturbance Rejection) is measured at the coil current (output of 

current sensor op-amp). Gang 4(sensitivity) is measured at the output of power op-amp, 

but the gain of Power op-amp should be canceled out at the end. The frequency and time 

responses are shown in Figure B.7 and Figure B.8. If the inverse gains of the voltage 

divider (vin to v+) and power op-amp (v+ to vc) are applied to the responses, ic and vc give 

     
 

Figure B. 5. Step Response of Gang 1 and Gang 2 when the rotor is locked. 

     
 

Figure B. 6. Step Response of Gang 1 and Gang 2 when the rotor is free to move. 
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the approximate responses for G3=P/(1+PCH) and G4=1/(1+PCH), respectively. The 

inverse of the total gain from vin to vc is 0.2, so if the magnitude of injected signal vin is 0.2 

volt, the signals ic and vc give the unit step responses of Gangs 3 and 4. This injection 

method has distortions in the obtained bode plot and step response, so the results calculated 

based on the frequency response of loop transmission and the plant are more accurate. 

 

 

Frequency Response and Step Response of Gang 4, Gang 5, and Gang 6 

The input signal is injected into the positive input of the current sensor op-amp with a 

resistance of Rn=10k (the same feedback resistance) so that we have the same signal at the 

output of the op-amp (gain=1). Gang 4 (sensitivity) can be measured at the output of the 

current sensor op-amp as an alternative method. The Gang 5, i.e., CH/1+PCH, can be 

obtained by measuring the output of the coil voltage (output of power op-amp). The Gang 6, 

i.e., PCH/1+PCH, can be obtained by measuring the coil current. As we exited the buffer 

op-amp, the coil current could not be measured at the output of the buffer op-amp or at the 

    
Figure B. 7. Frequency Response of Gang 3 (left) and Gang 4 (right). 

    
Figure B. 8. Step response of Gang 3 and Gang 4. 
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top of the sense resistor. Solution: We measure the coil current with a "current probe." The 

gain of the current probe should be canceled out, which is 0.1 Volt/A. The results are shown 

in Figure B.9. The time responses are also given in Figure B.10.  

 

 

  

  
 

    
Figure B. 9. Frequency Response of Gang 4 (top), gang 5 (bottom left) and Gang 6 (bottom right). 

  
Figure B. 10. Step response of Gang 4, gang 5 and Gang 6. 
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Appendix C 

Initial Designs of Drive and Control Loops 
 

The initial design on the breadboard, together with a Texas Instrument LAUNCHXL-

F28379D, as well as the final PCB, including the DSP, are given in Figure C.1. It is seen 

that the results obtained from the PCB-based circuit match better with the model as there 

are all kinds of parasitic like capacitors in the breadboard circuit. 

 

 
 

More pictures from the experimental setup, the prototypes, and the equipment are given 

in Figure C.2 and Figure C.3. 

      
   

Figure C. 1. Initial design and test of the drive, current loop and position loop 
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Figure C. 2. More pictures from experimental setups and tests 
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Figure C. 3. More pictures from experimental setups and tests 
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Appendix D 

Experimental Results of Position Control with 

Voltage Drive 
 

 

 

Step Response 

The step reference of position for the small signal of ±5 as well as the step responses 

position, velocity, and current are given in Figure D.1. and Figure D.2. The quantities are 

measured at the DAC of the DSP, so the conversion ratios should be applied. 

 

 

        
Figure D. 1. Step response results: reference position (±5 degrees), output position, velocity, current 

     
Figure D. 2. Step response results: reference position (±5 degrees), and coil voltage 
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Frequency Response of Gang 1 and Gang 2 

The reference position is excited. For Gang 1, the output position is measured. The gain 

of the position sensor needs to be canceled out. For Gang 2, the output of the power op-

amp (coil voltage) is measured. The results are given in Figure D.3. 

 

 

 

Frequency Response of Gang 3 and Gang 4 

A resister Rd=10k is connected to the positive input of the power op-amp to inject 

disturbance which is fine as the power op-amp input has high impedance. The power op-

amp gain, which is around 20dB, needs to be canceled out at the end. Gang 3 (Disturbance 

Rejection) is measured at the position sensor. The position sensor gain should also be 

canceled out. The measured output is position sensor voltage (25 degrees/10 volt), so this 

gain should be considered, which is 20*log10((25/10)*(pi/180)) = -27.2037. The Gang 4 

(sensitivity) is measured at the output of power op-amp. Note that the gain of power op-

amp should be canceled out. The results are shown as in Figure D.4. 

 

     
Figure D. 3. Frequency responses of Gang 1 (left) and Gang 2 (right) 
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Frequency Response of Gang 5 and Gang 6 

The input signal is injected into the positive input of the current sensor op-amp with a 

resistance of Rn=10k (the same feedback resistance) so that we have the same signal at the 

output of the op-amp (gain=1). The Gang 5, i.e., CH/1+PCH, can be obtained by measuring 

the coil voltage (output of power op-amp). Gang 6, i.e., PCH/1+PCH, can be obtained by 

measuring the coil current. By exciting the buffer op-amp, the coil current cannot be 

measured at the output of the buffer op-amp or at the top of the sense resistor. Solution: the 

coil current can be measured with a "current probe." The gain of the current probe should 

be canceled out (0.1Volt/A). The results are given in Figure D.5. 

 

     
 

Figure D. 4. Frequency Response of Gang 3 (left) and Gang 4 (right) 

     
 

Figure D. 5. Frequency Response of Gang 5 (left). Gang 6 missing. 
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Having loop transmission L and the plant P=He, the gangs 3 to 6 can be obtained as: 

3
1 1

P P
G

L PCH
= =

+ +
 (D.1) 

1 1
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= =

+ +
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 (D.3) 

6
1 1

L PCH
G

L PCH
= =

+ +
 (D.4) 

These results are more accurate than the method of injecting to the high-impedance 

inputs of the op-amps. 

Frequency Response of Loop Transmission of the Position 

The results are given in Figure D.6. 

 

Frequency Response of Voltage to Position 

The frequency response of the plant, i.e., voltage to position, for different amplitudes 

of the injected signal is given in Figure D.7. The gain of the position sensor (27.2 dB) 

should be canceled out. It can be observed that as the amplitude of the injected signal goes 

up, the DC gain goes up; it is the impact of variations of stiffness Ks due to the friction. As 

we know that the DC gain is (1/R)*(kt/Ks). For larger amplitudes, the stiffness goes down, 

and thus the DC gain goes up. For the last case (200 mv), the expected DC gain is 

20*log10((1/R)*(kt/ks)) + 20*log10( (180/pi)*(10/25) ) = 25.1384 which is close. 

     
 

Figure D. 6. Frequency response of the loop transmission for the pole placement with voltage drive 
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Figure D. 7. Frequency response of voltage to position for amplitudes of injected signal as 20 mv, 30 

mv, 40 mv, 50 mv, 65 mv, 80 mv and 200 mv 
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Appendix E 

Experimental Results of Position Control with 

Current Drive 
 

 

 

Frequency Response of Gang 1 and Gang 2 

The reference position is excited. For Gang 1, the output position is measured, so the 

gain of the position sensor needs to be canceled out. The results are given in Figure E.1. 

 

Frequency Response of Gang 3 and Gang 4 

An Rd=10k resister is connected to the positive input of the compensator to inject the 

input signal. Gang 3 is measured at the position. The position sensor gain should also be 

canceled out. Gang 4 is measured at the coil current. The DC gain of the current loop should 

be canceled out. The results are shown as in Figure E.2. Note that these results can also be 

obtained using the frequency responses of the loop transmission and the plant, which are 

more accurate. 

 

  
     

Figure E. 1. Frequency response of Gang 1 (left) and Gang 2 (right) 
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Loop Transmission 

The loop is broken at the DAC. Then, the power op-amp input is excited, and the 

voltage is measured at the DAC. The results are given in Figure E.3. 

 

Having loop transmission L and the plant P=He, the gangs 3 to 6 can be obtained as: 

3
1 1

P P
G

L PCH
= =

+ +
 (E.1) 

1 1
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L PCH
= =

+ +
 (E.4) 

These results are more accurate than the method of injecting to the high-impedance 

inputs of the op-amps.  

   
 

Figure E. 2. Frequency response of Gang 3 (left) and Gang 4 (right) 

     
 

Figure E. 3. Frequency response of Gang 5 (left). Gang 6 missing. 
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Appendix F 

Experimental Results of Nonlinear Position 

Control with Feedback Linearization 
 

 

 

Step Response 

The step reference of position for the large signal of ±10 as well as the step responses 

position, velocity, and current are given in Figure F.1. and Figure F.2. The quantities are 

measured at the DAC of the DSP, so the conversion ratios should be applied. 

 

      
 

    

Figure F. 1. (top) Step response (plus zoomed-in version) of reference position (±10 degrees), position, 

velocity, current, and (bottom) the zoomed-in version of the step response of position 
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Frequency Response of Gang 1 and Gang 2 

The reference position is excited. For Gang 1, the output position is measured. The gain 

of the position sensor needs to be canceled out. The results are given in Figure F.3. 

 

Frequency Response of Gang 3 and Gang 4 

A resister Rd=10k is connected to the positive input of the power op-amp to inject 

disturbance which is fine as the power op-amp input has high impedance. The power op-

amp gain, which is around 20dB, needs to be canceled out at the end. Gang 3 (Disturbance 

Rejection) is measured at the position sensor. The position sensor gain should also be 

canceled out. The measured output is position sensor voltage (25 degrees/10 volt), so this 

gain should be considered, which is 20*log10((25/10)*(pi/180)) = -27.2037. The Gang 4 

(sensitivity) is measured at the output of power op-amp. Note that the gain of power op-

amp should be canceled out. The results are shown as in Figure F.4. 

     
 

Figure F. 2. Step response results: reference position (±5 degrees), and coil voltage 

     
 

Figure F. 3. Frequency Response of Gang 1 (left) and Gang 2 (right) 
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Having loop transmission L and the plant P=He, the gangs 3 to 6 can be obtained as: 

3
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These results are more accurate than the method of injecting to the high-impedance 

inputs of the op-amps. 

Frequency Response of Double Integrator from v to position θ 

The frequency response of the system from the signal v to the position is very close to 

a double integrator. It should be noted that its gain is attenuated for measurements by 

SR785 digital signal analyzer, and also, a delay is observed in the phase due to sampling 

and computations. The results are given in Figure F.5. 

     
 

Figure F. 4. Frequency Response of Gang 3 (left) and Gang 4 (right) 
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Figure F. 5. Frequency response of the double integrator from v to θ 
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Appendix G 

Extension on Formulations of the Electromagnetic 

Model in Chapter 5 
 

G.1 Coefficient of Polynomial (5.62) 

The coefficient of the polynomial (5.62) are as below: 

6 2

0 2 1ma R x= −
 (G.1) 

4 2 2

1 2 1 2 12 ( )ma R x R R= −
 (G.2) 

4 2 2 2 2 2 2 2 2

2 2 1 1 2 1 2 1 2( )m ma R x R R y R R R= + − −
 (G.3) 

2 2 2

3 2 1 1 22 ( )ma R x R R= −
 (G.4) 

2 2 2

4 1 2( )a R R= −
 (G.5) 

G.2. Scale Factors of Elliptical Coordinates 

The scale factor ht=hη=hψ can be obtained using orthogonal curvilinear theory. Having 

the coordinate system (u,v,w) expressed in cartesian coordinates (x,y,z), the scale factor hu, 

hv, and hw can be obtained as: 

, ; , ; ,u v w

x y x y x y
h h h

u u v v w w

          
= = =     

            (G.6) 

The differential lengths, differential area, and differential volume are obtained as: 

; ;u u v v w wdl h du dl h dv dl h dw= = =
 (G.7) 

; ;u v w v u w w u vdA h h dv dw dA h h du dw dA h h du dv= = =
 (G.8) 
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u v wdv h h h du dv dw=
 (G.9) 

In elliptical coordinates, for example, hη is obtained as: 

2 2

,
x y x y

h
   

        
= = +     

          (G.10) 

Manipulations leads to: 

2 2cosh costh h h c   = = = −
 (G.11) 

It is also clear that hz=1. 

G.3. Solutions by Magnetic Vector Potential 

Instead of using magnetic scalar potential ψ for a current-free region, field solutions 

within the ellipse could be obtained based on the magnetic vector potential. As the 

divergence of the curl of a vector field is zero, according to Ampere’s law, a magnetic 

vector potential A can be defined as in below: 

. 0B B A = → =
 (G.12) 

By employing the identity 2( .A)A A =   −   in Ampere’s law, we obtain one 

second-order equation governing magnetoquasistatic fields: 

2

0

0

( . )
A

H J J A A J



 = → = →  −  = −

 (G.13) 

To determine the vector A uniquely, its curl and divergence are required to be known. 

In magnetoquasistatic systems, the vector is taken to be solenoidal for the sake of 

convenience, i.e., zero divergence .A 0 = , which is called the Coulomb’s gauge. It is worth 

noting that this choice is arbitrary. By imposing Coulomb’s gauge condition, a second-

order vector Poison’s equation is obtained. Since it’s a 2D problem, the vector A only has 

a z-component. Also, as the region within the ellipse is current-free, and the surface 
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currents are treated as boundary conditions, the Poison’s equation is reduced to Laplace’s 

equation as: 

ˆ 02 2 2

0 0 0z zA A z J

z z zA J A J A = =
 = − ⎯⎯⎯→ = − ⎯⎯⎯→ =

 (G.14) 

In elliptical coordinates, the solution can be one of the expressions in (5.19). The net 

flux passing through a surface S enclosed by closed line C is the surface integral of 

magnetic flux density vector B over surface S, or according to Stoke’s theorem, is the 

closed line integral of the magnetic vector potential A over line C as in below: 

. .
s c
B ds A dl = = 

 (G.15) 

In 2D problems, the flux is easily calculated as in below: 

2 2(A A )z zL = −
 (G.16) 

where Az1 and Az1 are values of Az at the two points in the xy-plane. As shown in Figure G.1, 

according to Ampere’s law for the surface currents, the magnetic flux is flowing within the 

ellipse from left to right. Then, as the curl of vector potential is the B, Az must have positive 

values above the x-axis and negative values below the x-axis. Also, as minus gradient 

scalar potential is the magnetic field, the magnetic flux flows from positive potentials to 

negative potentials. In other words, unlike scalar potential φ, which is an even function 

with a cosine behavior, the vector potential Az must be an odd function with a sine behavior, 

so the first term is in (5.19) is picked and thus Azn=Dn sinh(nη) sin(nψ). Finally, the general 

solution of Az(η,ψ) can be written as: 

1
( , ) sinh(n )sin(n )z nn
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+

=
=  (G.17) 
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The boundary condition can be applied by finding B or H field as in below: 

2

ˆ ˆ ˆ
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Thus, the normal and tangential components Hη and Hψ are obtained as in the following: 

1

1
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 (G.19) 

1

1
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B n D
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−
= 

 (G.20) 

The boundary condition 0 0( , ) ( )cB K    = −  leads to: 

0 01
cosh(n )sin(n ) ( )n t cn

nD h K   
+

=
=  (G.21) 

The term 
0cosh(n )nnD  is the coefficients of the Fourier series expansion of the right 

side as in below: 

0 0 0
0

2
cosh(n ) ( , ) ( )sin dn t cnD h K n



      


= 
 (G.22) 

 
Figure G. 1.  Sine behavior of vector potential A and cosine behavior of scalar potential φ. 
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As 0cosh(n )n nnD a = , the coefficients Dn are obtained as: 
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 (G.23) 

It is seen that the solutions of scalar potential φ and vector potential Az are exactly the 

same with the following relationship between the coefficients An and Dn: 

0n nD A= −
 (G.24) 

 

G.4. Transformation Matrix 

cos cos( ) cos
;

sin sin( ) sin

r r r

r r r

r r r

r r r

x R R x R

y R R y R
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 = = + = 
 

= = + =    (G.25) 

For cos( )r + and cos( )r + , we substitute the products as: 

[cos cos sin sin ]

[sin cos cos sin ]

r r

r

r r

r

x R

y R

   

   

 = −


= +  (G.26) 

It can be rewritten as in below: 

cos [ cos ] sin [ sin ]

sin [ cos ] cos [ sin ]

r r

r r

r r

r r

x R R

y R R

   
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 = −


= +  (G.27) 

By substituting the terms in the bracket in xr and yr, we obtain: 

cos sin

sin cos

r r

r r

x x y

y x y

 

 

 = −


= +  (G.28) 

The transformation matrix is obtained as: 
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=     

        (G.29) 

It can be observed that, for β=0, the rotor reference frame falls on the stationary 

reference frame, i.e., x=xr and y=yr. 

G.5. Obtaining the Polynomial Coefficients 

Having the slop and two points m1(xm1,ym1) and s1(xs1,ys2), the line Lp1 is obtained as: 

2

12

1 1 1 12

11

( )s
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y y x x

xR
− = −

 (G.30) 

Then, ys1 can be obtained in terms of xs1 as in below: 
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 (G.31) 

By substituting ys1 into the ellipse equation:  
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 (G.32) 

Leads to: 
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1 1 1 1
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1
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− +   (G.33) 

Simplifying results in the following polynomial: 

4 3 2

4 1 3 1 2 1 1 1 0 0s s s sa x a x a x a x a+ + + + =
 (G.34) 

whose coefficients are: 

6 2

0 2 1ma R x= −
 (G.35) 
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4 2 2

1 2 1 2 12 ( )ma R x R R= −
 (G.36) 

4 2 2 2 2 2 2 2 2

2 2 1 1 2 1 2 1 2( )m ma R x R R y R R R= + − −  (G.37) 

2 2 2

3 2 1 1 22 ( )ma R x R R= −
 (G.38) 

2 2 2

4 1 2( )a R R= −
 (G.39) 
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Appendix H 

Loop-Shaping Position Control in Frequency 

Domain 
 

 

An advantage of the control in the frequency domain is that the stability and robustness 

of the system can be evaluated. 

Control Architecture 

As shown in Figure H.1, the position loop can be digitally implemented in a DSP 

around the current loop, which had analog implementation using op-amps. The current loop 

is much faster than the position loop so that the current loop is seen as a D.C. gain from 

the position loop; the inverse of this DC gain is placed before the DAC so that the output 

of the position compensator is exactly the current command iref sent to the current loop. In 

other words, the bandwidth of the current loop should be designed to be much larger than 

the bandwidth of the position loop. Also, the sampling frequency is large enough that the 

time delay (computational time and sampling by ZOH) can be ignored. 

The desired bandwidth of the position loop is around fbw=500 Hz; this bandwidth 

provides a fast response with a rise time around tr=2.2/ωbw. The phase compensation is 

around 55 degrees, providing a small overshoot in the step response, good robustness, and 

enough stability margin. The position sensor returns a voltage as a function of position, 

and its inverse function is implemented in the DSP so that they cancel out in the loop 

transmission. There can be a low-pass filter in the loop to reject the high-frequency content 

of the position sensor and other elements; its break frequency should be greater than the 

crossover frequency such that it does not add a negative phase to the system. The crossover 

frequency ωc is related to the desired bandwidth of the closed-loop system, so it is set at 

ωbw =1000π Hz or higher. 
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A PI compensator, including an integrator, is used to null any steady-state error. A lead 

compensator is employed to achieve enough phase margin. 

Design of Compensator and Low-Pass Filter 

The transfer function of the lead-lag compensator is as in below: 

lg

1
( ) ( ) ( ) (1 )( )

1

i

p p ld p

k s
C s k C s C s k

s s





+
= = +

+  (H.1) 

The lead compensator can provide a maximum phase compensation φm at the frequency 

of ωm as in below: 

1 1 1
sin

1
m mat


 

  

− − 
= = 

+   (H.2) 

The typical pole-zero ratio α=10 is picked for the lead compensator to get a maximum 

phase compensation of around φm=55 degrees. Setting ωm=ωc, leads to τ=10-4. 

 
 

 
Figure H. 1. Position loop in the frequency domain: (a) with full dynamic of the current loop (top), and by 

replacing the current loop with its DC gain when its bandwidth is much larger than position loop (bottom). 
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The integrator gain is set to one decade before the crossover frequency, i.e., 

ki=ωc/10=100π, so that its impact on the reduction of the phase margin is limited to around 

5 degrees. 

The transfer function of the low-pass filter is as follow: 

( ) b

LPF

b

H s
s




=

+  (H.3) 

The break frequency should be well below the noise frequency as well as at least one 

decade above ωc to limit its impact on the reduction of the phase margin. Since the 

bandwidth of the position sensor is sufficiently high (100 kHz), it can even be removed. 

Finally, the loop gain kp is determined based on the fact that the gain of the loop 

transmission at ωc should be unity: 

lg1/ (j ) (j ) (j ) (j )p c ld c m c LPF ck C C H H   =
 (H.4) 

whose unknown kp can be obtained. Even the transfer function of the low-pass filter HLPF 

can be ignored in the above equation as its magnitude is almost unity at ωc. The DC gain 

of the current loop and its inverse, as well as the position sensor function and its inverse 

function, do not appear in the loop transmission as they are canceled out. 

Digital Implementation of the Compensator 

The sampling time Ts=1/fs where fs=160 kHz is the sampling frequency of the DSP. 

Using the Tustin transformation, the z-transform of the discrete-time lag compensator is 

obtained as: 
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

 (H.5) 

The discrete-time implementation of the lag compensator is 

lg lg lg lg( 1) ( ) [ / 2 1] (t 1) [ / 2 1] (t)i s i sy t y t k T x k T x+ = + + + + −
 (H.6) 



279 

 

By using shifting theorem, it leads to: 

lg lg lg lg( ) ( 1) [ / 2 1] (t) [ / 2 1] (t 1)i s i sy t y t k T x k T x= − + + + − −
 (H.7) 

The z-transform of the discrete-time lead compensator is obtained as: 
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where z1, z2, and kld are as follows: 
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; ;
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The discrete-time implementation of the lead compensator is: 

2 1( 1) ( ) [ (t 1) ( )]ld ld ld ld ldy t z y t k x z x t+ + = + +  (H.10) 

By using shifting theorem, it leads to: 

2 1( ) ( 1) [ (t) ( 1)]ld ld ld ld ldy t z y t k x z x t= − − + + −
 (H.11) 

Nonlinear Control by Feedback Linearization 

Nonlinear control provides an opportunity to work with large input signals. Feedback 

linearization is nonlinear technique which can be a powerful in eliminating the 

nonlinearities of the system, yet it requires a very accurate model of the plant. 

Since the inductance is a function of frequency due to eddy-currents and proximity 

effects, obtaining an accurate model for the electrical dynamic is complicated, so 

employing the current control loop is very useful to eliminate the electrical dynamics and 

all its nonlinearities. Then, for feedback linearization, we only deal with the mechanical 

dynamic whose model is relatively more accurate. 

Feedback Linearization 

If a nonlinear state space can be written in companion form as in below: 
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2 3

1 1

...

(x ,..., x ) g(x ,..., x ) u(t) (t)n n n

x x

x x

x f v

=


=


 = + =

 (H.12) 

where functions f(x) and g(x) are nonlinear functions of the states, and u(t) is the input; it 

can be seen that all states should be measured or estimated to be able to evaluate f and g. 

Then, the following nonlinear transformation can be used at the input to cancel the 

nonlinearities. 
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u t v f= −

 (H.13) 

The result is a linear system with new input is v and n poles at the origin, to which 

linear control techniques can be applied. 

As the restoration torque and the electromagnetic torque are functions of the position, 

by substituting θ=β-π/2, the nonlinear electromechanical model is obtained as follows: 
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 (H.14) 

The nonlinear state-space form of mechanical dynamic is as: 
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The nonlinear transformation at the input is as follows: 

1
( ) [ ( ) ( , )]

( , )
c r

r

i t v t f
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 
 

= −

 (H.16)  

Then, the remaining system with the new input v is a double integrator linear system 

as in below: 
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 (H.17)  

The state-space form is as follows: 

0 1 0

0 0 1rr
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Any kind of linear control can be designed for this system. 

Nonlinear Control by Loop Shaping in Frequency Domain 

The block diagram of the control architecture is shown in Fig. 6. The same lead-lag 

compensator as in section II is used. However, since the plant is changed, the loop gain kp 

needs to be redesigned as in below: 

lg1/ (j ) (j ) (j )p c ld c m ck C C H  =
 (H.19) 

It is assumed that the state observer is fast enough that it does not have a big impact on 

the loop phase at the crossover frequency. The digital implementation of the controller is 

the same. 

 

  

 
 

Figure H. 2. Nonlinear control by loop shaping 
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Appendix I 

Matlab Code for the Electromagnetic Model in 

Chapter 5 
 

The code is as in below: 

 

 

%-------------------------------------------------------------------------% 

%   Actuator Model by Elliptical Coordinates and Differential Flux Tubes  % 

%                Sajjad Mohammadi, EECS, MIT, August 2021                 % 

%-------------------------------------------------------------------------% 

clear; clc; 

  

%% [1] Parameters 

  

N  = 100; % Number of turns 

ic  = 1;   % current [A] 

u0 = 4*pi*1e-7; 

R1 = 1.71e-3; % semi-major axis of ellipse [m] 

R2 = 1.15*1.71e-3; % semi-minor axis of ellipse [m] 

Rr = 1.524e-3; % Rotor radius [m] 

Br = 1.37; % residual flux of PMs (T) 

M  = Br/u0; % PM Magnetization 

LL = 4.191e-3; % axial length of actuator (m),  0.165 inch 

theta_c = 38*(pi/180); % Interpolar angle Cylindrical [rad], 

atand(0.564/1.63816169) 

  

  

% Rotor Rotation 

db   = pi/1000; % Increament of rotor rotation: beta 

beta = 0:db:pi; % Rotor rotation: beta 

  

  

% Elliptical Coordinates 

eta0 = atanh(R1/R2); % Reference ellipse 

c = sqrt(R2^2-R1^2); % Ellipse foci +c and -c 

psi_c = 2*atan(tan(theta_c/2)/coth(eta0)); % Interpolar angle Elliptical11 

  

% Coordinates of point A, right side of surface current Kc 

x_A = c*cosh(eta0).*cos(pi/2 - psi_c/2)*1000 

y_A = c*sinh(eta0).*sin(pi/2 - psi_c/2)*1000 

  

% Calculation of lc 

% Method 1: Cartesian Coordinates 

t1 = atan((R2/R1)*cot(theta_c/2)); 

tt = linspace(t1,pi/2,1000); 

Lc  = 2*trapz(tt,sqrt((R2*sin(tt)).^2+(R1*cos(tt)).^2)) % verttical ellipse 

% Method 2: Ellipticals Coordinates 

psi_L = linspace(pi/2-psi_c/2,pi/2+psi_c/2,1000); 

Lc = trapz(psi_L, c*sqrt(cosh(eta0)^2-cos(psi_L).^2)) 

% Lc=1.140186e-3; % measured from FEM 

  

% Load FEM data 

run FEMresult_B_Current_eta0_eta9_Rr 
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%% [2] Field calculations, eta and psi components of B on elliplse eta=eta0 

  

% The ellipse to calculate fields on it 

eta = 0.999*eta0; % stator boundary 

  

% Test for get point A 

% x_c = c*cosh(eta0)*cos(pi/2-psi_c/2) 

% y_c = c*sinh(eta0)*sin(pi/2-psi_c/2) 

% theta_c = 2*atand(x_c/y_c) 

  

psi = linspace(0,2*pi,10000); % 2*pi range of elliptical angle psi 

  

phi   = zeros(1,length(psi));  % Magnetic Scalar  Potentian 

Az    = zeros(1,length(psi));  % Magnetic Vector  Potentian 

B_eta = zeros(1,length(psi));% eta-component of B (normal) 

B_psi = zeros(1,length(psi));% psi-component of B (tangential) 

  

for n=1:2:300 

    % Caculation of Fourier Coefficients An 

    psii = linspace(pi/2-psi_c/2,pi/2+psi_c/2,10000); % for integration 

    An   = -(N*ic/Lc)*(2*c./(n*pi*cosh(n*eta0)))... 

           *trapz(psii, sqrt(cosh(eta0)^2-cos(psii).^2).*sin(n*psii) ); 

     

    % Scalar Potential: phi=A cosh(n eta) cos(psi)   

    phi = phi + An.*cosh(n*eta).*cos(n*psi); % Magnetic scalar potential 

  

    % Vector Potential: phi=A sinh(n eta) sin(psi) 

    Dn  = -u0*An; 

    Az  = Az + Dn.*sinh(n*eta).*sin(n*psi); 

     

    % Scale Factor 

    ht = c*sqrt(cosh(eta).^2-cos(psi).^2); % Scale factor 

  

    % Flux Density Vectors 

    B_eta = B_eta+u0*(-1./ht)*n.*An.*sinh(n*eta).*cos(n*psi); % B_eta 

    B_psi = B_psi+u0*(1./ht)*n.*An.*cosh(n*eta).*sin(n*psi);  % B_psi 

     

end  

  

% Magnetic Flux density: B_eta and B_psi 

subplot(3,1,1) 

   plot(psi*(180/pi),B_eta,...                % Model 

        psi_B_eta0_orig*(180/pi), Beta_B_eta0_orig,'--',... % FEM original 

        psi_B_eta0_simp*(180/pi), Beta_B_eta0_simp,'--',... % FEM simplified 

        'LineWidth',1); grid on 

   legend('Model','FEM original','FEM simplified') 

   xlabel('\psi (deg)') 

   ylabel('B_\eta (tesla)') 

   xlim([0,360]) 

   title('Ellipse Boundary \eta=\eta_0') 

subplot(3,1,2) 

   plot(psi*(180/pi),B_psi,... 

        psi_B_eta0_orig*(180/pi), Bpsi_B_eta0_orig,'--',... 

        psi_B_eta0_simp*(180/pi), Bpsi_B_eta0_simp,'--',... 

        'LineWidth',1); grid on 

   legend('Model','FEM original','FEM simplified') 

   xlabel('\psi (deg)') 

   ylabel('B_\psi (tesla)') 

   xlim([0,360]) 

subplot(3,1,3) 

   plot(psi*(180/pi),phi,... 

        psi_B_eta0_orig*(180/pi), phi_B_eta0_orig,'--',... 

        psi_B_eta0_orig*(180/pi), phi_B_eta0_simp,'--',... 
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        'LineWidth',1); grid on 

   xlim([0,360]); ylim([-55,55]) 

   legend('Model','FEM original','FEM simplified') 

   xlabel('\psi (deg)'); ylabel('Scalar Potential \phi') 

    

    

      plot(psi*(180/pi),Az,... 

        'LineWidth',1); grid on 

    

  

% % Scalar Potential from H_psi 

% B_psii =B_psi; 

% psii = psi; 

%  

% zz = c*sqrt(cosh(eta).^2-cos(psii).^2).*B_psii/u0; 

% phii = -cumtrapz(psii, zz); % Cumulative Integral 

% phi0 = (1/(psii(end)-psii(1)))*trapz(psii, phii); % Averaging to find DC 

value 

% BB = phii - phi0; % Subtract DC value 

%    

% plot(psii*(180/pi), BB) 

% xlabel('\psi'); ylabel('Scalar Potential \phi')  

%     

    

  

% Magnitude of B 

% plot(psi*(180/pi),sqrt(B_eta.^2+B_psi.^2)) 

% xlim([0,360]) 

% xlabel('\psi') 

% ylabel('|B|') 

  

% % Test: H_psi = (1/ht)*dphi/dt 

% db=psi(2)-psi(1); 

% for kk=1:(length(psi)-1) 

%     T(kk)=(phi(kk+1)-phi(kk))/db; 

% end 

% plot(psi(1:length(psi)-1)*(180/pi), u0*1./(c.*sqrt((cosh(eta0)^2-

cos(psi(1:length(psi)-1)).^2))).*T) 

  

  

% Converting (B_eta, B_psi) to (Bx, By) and (Br, B_theta) 

% ht = c*sqrt(cosh(eta).^2-cos(psi).^2); 

% Bx = imag( (ht./(c*sinh(eta+j*psi))) .* (B_psi+j*B_eta)); 

% By = real( (ht./(c*sinh(eta+j*psi))) .* (B_psi+j*B_eta)); 

%  

% x = c*cosh(eta).*cos(psi); 

% y = c*sinh(eta).*sin(psi); 

%  

% for jj=1:length(x) 

%     if x(jj)<=0 

%        theta(jj)=atan(y(jj)./x(jj))+pi; % pi because atan in Matlab is in [-

pi/2,pi/2] 

%     else 

%        theta(jj)=atan(y(jj)./x(jj)); 

%     end 

% end 

%  

% B_r = Bx.*cos(theta)+By.*sin(theta); 

% B_theta = -Bx.*sin(theta)+By.*cos(theta); 

%  

% figure 

% subplot(3,1,1) 

%    plot(theta*(180/pi),B_r) 
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%    xlabel('\theta'), ylabel('B_r') 

% subplot(3,1,2) 

%    plot(theta*(180/pi),B_theta) 

%    xlabel('\theta'), ylabel('B_\theta') 

% subplot(3,1,3) 

%    plot(theta*(180/pi),sqrt(B_r.^2+B_theta.^2)) 

%    xlabel('\theta'), ylabel('|B|') 

  

  

  

%% [3] Field calculations, eta and psi components of B in air-gap (elliplse 

eta=0.9*eta0) 

  

% The ellipse to calculate fields on it 

eta = 0.9*eta0;  

  

% For FEM, to measure fields on this line 

R2p = c*cosh(eta) 

R1p = c*sinh(eta) 

  

% Test for get point A 

% x_c = c*cosh(eta0)*cos(pi/2-psi_c/2) 

% y_c = c*sinh(eta0)*sin(pi/2-psi_c/2) 

% theta_c = 2*atand(x_c/y_c) 

  

psi = linspace(0,2*pi,10000); % 2*pi range of elliptical angle psi 

  

phi   = zeros(1,length(psi));  % Scalar Magnetic Potentian 

Az   = zeros(1,length(psi));  % Scalar Magnetic Potentian 

B_eta = zeros(1,length(psi));% eta-component of B (normal) 

B_psi = zeros(1,length(psi));% psi-component of B (tangential) 

  

for n=1:2:300 

    % Caculation of Fourier Coefficients An 

    psii = linspace(pi/2-psi_c/2,pi/2+psi_c/2,10000); % for integration 

    An   = -(N*ic/Lc)*(2*c./(n*pi*cosh(n*eta0)))... 

           *trapz(psii, sqrt(cosh(eta0)^2-cos(psii).^2).*sin(n*psii) ); 

     

    % Scalar Potential: phi=A cosh(n eta) cos(psi)   

    phi = phi+An.*cosh(n*eta).*cos(n*psi); % Magnetic scalar potential 

  

    % Vector Potential: phi=A sinh(n eta) sin(psi)   

    Dn  = -u0*An; 

    Az  = Az+Dn.*sinh(n*eta).*sin(n*psi); 

     

    ht = c*sqrt(cosh(eta).^2-cos(psi).^2); % Scale factor 

  

    % Flux Density Vectors 

    B_eta = B_eta+u0*(-1./ht)*n.*An.*sinh(n*eta).*cos(n*psi); % B_eta 

    B_psi = B_psi+u0*(1./ht)*n.*An.*cosh(n*eta).*sin(n*psi);  % B_psi 

     

end  

  

% Magnetic Flux density: B_eta and B_psi 

subplot(3,1,1) 

   plot(psi*(180/pi),B_eta,... 

   psi_B_eta9_orig*(180/pi), Beta_B_eta9_orig,'--',... 

   psi_B_eta9_simp*(180/pi), Beta_B_eta9_simp,'--',... 

   'LineWidth',1); grid on 

   legend('Model','FEM original','FEM simplified') 

   xlabel('\psi (deg)'); ylabel('B_\eta (tesla)'); xlim([0,360]) 

   title('air-gap \eta=0.9\eta_0') 

subplot(3,1,2) 
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   plot(psi*(180/pi),B_psi,... 

   psi_B_eta9_orig*(180/pi), Bpsi_B_eta9_orig,'--',... 

   psi_B_eta9_simp*(180/pi), Bpsi_B_eta9_simp,'--',... 

   'LineWidth',1); grid on 

   legend('Model','FEM original','FEM simplified') 

   xlabel('\psi (deg)'); ylabel('B_\psi (tesla)') 

   xlim([0,360]) 

subplot(3,1,3) 

   plot(psi*(180/pi),phi,... 

        psi_B_eta9_orig*(180/pi), phi_B_eta9_orig,'--',... 

        psi_B_eta9_simp*(180/pi), phi_B_eta9_simp,'--',... 

        'LineWidth',1); grid on 

   xlim([0,360]); ylim([-55,55]) 

   xlabel('\psi (deg)'); ylabel('Scalar Potential \phi') 

  

    

    

% Magnitude of B 

% plot(psi*(180/pi),sqrt(B_eta.^2+B_psi.^2)) 

% xlim([0,360]) 

% xlabel('\psi') 

% ylabel('|B|') 

  

  

  

%% [4] Torque Calculations, eta and psi components of B on PM boundary (r=Rr) 

  

% Cylindrical coordinates 

theta = linspace(0,2*pi,1000); 

r = Rr; 

  

% Cylindrical to Cartesian coordinates 

xx = r.*cos(theta); 

yy = r.*sin(theta); 

  

% Cartesian to elliptical coordinates 

eta_cr = real(acosh((xx+j*yy)./c)); 

psi_cr = imag(acosh((xx+j*yy)./c)); 

  

phi   = zeros(1,length(psi_cr)); 

Az    = zeros(1,length(psi_cr)); 

B_eta = zeros(1,length(psi_cr)); 

B_psi = zeros(1,length(psi_cr)); 

  

for n=1:2:299 

  

    % Caculation of Fourier Coefficients An 

    psii = linspace(pi/2-psi_c/2,pi/2+psi_c/2,10000); 

    An   = -(N*ic/Lc)*(2*c./(n*pi*cosh(n*eta0)))... 

           *trapz(psii, sqrt(cosh(eta0)^2-cos(psii).^2).*sin(n*psii) ); 

     

    % Scalar Potential: phi=A cosh(n eta) cos(psi)   

    phi = phi+An.*cosh(n*eta_cr).*cos(n*psi_cr); % Magnetic Scalar Potential 

  

    % Vector Potential: phi=A sinh(n eta) sin(psi)   

    Dn  = -u0*An; 

    Az  = Az+Dn.*sinh(n*eta_cr).*sin(n*psi_cr); 

     

    % Scale Factor 

    ht  = c*sqrt(cosh(eta_cr).^2-cos(psi_cr).^2); % Scale factor 

  

    B_eta = B_eta+u0*(-1./ht)*n.*An.*sinh(n*eta_cr).*cos(n*psi_cr); % B_eta 

    B_psi = B_psi+u0*(1./ht)*n.*An.*cosh(n*eta_cr).*sin(n*psi_cr);  % B_psi 
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end  

  

% acosh gives [0,pi], so it needs to be modified to get [0,2pi] 

psi_crr = [psi_cr(1:length(psi_cr)/2) , 

2*pi+psi_cr(length(psi_cr)/2+1:length(psi_cr))]; 

  

% B_eta and B_psi on boundary of PM 

subplot(3,1,1) 

   plot(psi_crr*(180/pi),B_eta,'LineWidth',1); grid on 

   xlabel('\psi (deg)'); ylabel('B_\eta (tesla)') 

   xlim([0,360]) 

   title('PM Boundary r=Rr') 

   legend('Model','FEM original','FEM simplified') 

subplot(3,1,2) 

   plot(psi_crr*(180/pi),B_psi,'LineWidth',1); grid on 

   xlabel('\psi (deg)'); ylabel('B_\psi (tesla)') 

   xlim([0,360]) 

   legend('Model','FEM original','FEM simplified') 

subplot(3,1,3) 

   % Scalar potential phi on boundary of PM as a function of psi 

   plot(psi_crr*(180/pi),phi,'LineWidth',1); grid on 

   xlim([0,360]); ylim([-55,55]) 

   xlabel('\psi (deg)'); ylabel('Scalar Potential \phi') 

   legend('Model','FEM original','FEM simplified') 

  

  

% plot(psi_crr*(180/pi),sqrt(B_eta.^2+B_psi.^2),'LineWidth',1); grid on 

% xlim([0,360]) 

% xlabel('\psi (deg)') 

% ylabel('|B| (tesla)') 

  

% Plot Ellipse and PM boundaries 

x_el = c*cosh(eta0).*cos(psi); 

y_el = c*sinh(eta0).*sin(psi); 

  

x_cr = c*cosh(eta_cr).*cos(psi_cr); 

y_cr = c*sinh(eta_cr).*sin(psi_cr); 

figure; plot(x_el,y_el,x_cr,y_cr,'LineWidth',1); grid on 

legend('Ellipse boundary','PM boundary') 

axis equal 

  

% Covert Vector B from Elliptical to Cartesian 

ht = c*sqrt(cosh(eta_cr).^2-cos(psi_cr).^2); 

Bx = imag( (ht./(c*sinh(eta_cr+j*psi_cr))) .* (B_psi+j*B_eta)); 

By = real( (ht./(c*sinh(eta_cr+j*psi_cr))) .* (B_psi+j*B_eta)); 

  

% Covert Vector B from Cartesian to Cylindrical 

B_r     =  Bx.*cos(theta)+By.*sin(theta); 

B_theta = -Bx.*sin(theta)+By.*cos(theta); 

  

% Fundamental Component of Br, Torque-Producing Component 

Br1_model    = (2/(2*pi))*trapz(theta,B_r.*cos(theta)) % Model 

Br1_FEM_orig = 

(2/(2*pi))*trapz(theta_B_Rr_orig,Br_B_Rr_orig.*cos(theta_B_Rr_orig)) % Original 

Geometry 

Br1_FEM_simp = 

(2/(2*pi))*trapz(theta_B_Rr_simp,Br_B_Rr_simp.*cos(theta_B_Rr_simp)) % 

Simplified Geometry 

  

% Bt and B_theta 

figure 

subplot(3,1,1) 

   plot(theta*(180/pi), B_r,... 
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        theta_B_Rr_orig*(180/pi), Br_B_Rr_orig,'--',... 

        theta_B_Rr_simp*(180/pi), Br_B_Rr_simp,'--',... 

        ... 

        theta*(180/pi), Br1_model*cos(theta),... % fundamental 

        theta_B_Rr_orig*(180/pi), Br1_FEM_orig*cos(theta_B_Rr_orig),'--',... % 

fundamental 

        theta_B_Rr_simp*(180/pi), Br1_FEM_simp*cos(theta_B_Rr_simp),'--',... % 

fundamental 

        'LineWidth',1); grid on 

   xlabel('\theta (deg)'); ylabel('B_r (tesla)') 

   xlim([0,360]) 

   legend('Model','FEM original','FEM simplified') 

   title('PM Boundary r=Rr') 

subplot(3,1,2) 

   plot(theta*(180/pi),B_theta,... 

        theta_B_Rr_orig*(180/pi), Btheta_B_Rr_orig,'--',... 

        theta_B_Rr_simp*(180/pi), Btheta_B_Rr_simp,'--',... 

        'LineWidth',1); grid on 

   xlabel('\theta (deg)'); ylabel('B_\theta (tesla)') 

   legend('Model','FEM original','FEM simplified') 

   xlim([0,360]) 

subplot(3,1,3) 

   % Scalar potential phi on boundary of PM as a function of theta 

   plot(theta*(180/pi),phi,... 

        theta_B_Rr_orig*(180/pi), phi_B_Rr_orig,'--',... 

        theta_B_Rr_simp*(180/pi), phi_B_Rr_simp,'--',... 

        'LineWidth',1); grid on 

   xlim([0,360]); ylim([-55,55]) 

   xlabel('\theta (deg)'); ylabel('Scalar Potential \phi') 

   legend('Model','FEM original','FEM simplified') 

  

% plot(theta*(180/pi),sqrt(B_r.^2+B_theta.^2),'LineWidth',1); grid on 

% xlabel('\theta (deg)'); ylabel('|B| (tesla)') 

% xlim([0,360]) 

    

% Torque Method 1 (General) 

T_coil1 = zeros(1,length(beta));  

mm=1; 

for betaa=beta 

    Km = -M*sin(theta-betaa); % Amperian Surface Current Density of PM 

    T_coil1(mm) = LL*Rr^2*trapz(theta,Km.*B_r) * 1e3; % m N.m 

    mm = mm+1; 

end 

  

  

% Torque Method 2 (Using B1) 

T_coil          = pi*Rr^2*LL*M*Br1_model    * sin(beta) * 1e3; % Model, m N.m 

T_coil_FEM_orig = pi*Rr^2*LL*M*Br1_FEM_orig * sin(beta) * 1e3; % FEM, Original 

Geometry, m N.m 

T_coil_FEM_simp = pi*Rr^2*LL*M*Br1_FEM_simp * sin(beta) * 1e3; % FEM, 

Simplified Geometry, m N.m 

  

  

% Coil Plot Torque 

figure 

plot((180/pi)*beta , T_coil,... 

     (180/pi)*beta , T_coil_FEM_orig,'--',... 

     (180/pi)*beta , T_coil_FEM_simp,'--',... 

      'LineWidth',1); grid on 

xlabel('\beta(deg)'), ylabel('Torque (m N.m)') 

legend('Model','FEM, Original Geometry','FEM, Simplified Geometry') 

ylim([0,1.6]) 
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%% [5] Vector Fields B and Equipotential Lines phi 

  

% Meshgrid in elliptical coordinates 

etaa_mesh = linspace(0,eta0,20); 

psii_mesh = linspace(0,2*pi,70); 

[eta_mesh,psi_mesh] = meshgrid(etaa_mesh,psii_mesh); 

  

% Elliptical to Cartesian Conversion 

x_mesh = c*cosh(eta_mesh).*cos(psi_mesh); 

y_mesh = c*sinh(eta_mesh).*sin(psi_mesh); 

  

phi   = zeros(length(psii_mesh),length(etaa_mesh)); % Scalar Potential 

Az    = zeros(length(psii_mesh),length(etaa_mesh)); % Vector Potential 

B_eta = zeros(length(psii_mesh),length(etaa_mesh)); % B_eta 

B_psi = zeros(length(psii_mesh),length(etaa_mesh)); % B_psi 

  

for n=1:2:500 

    psii = linspace(pi/2-psi_c/2,pi/2+psi_c/2,10000); 

    An   = -(N*ic/Lc)*(2*c./(n*pi*cosh(n*eta0)))... 

           *trapz(psii, sqrt(cosh(eta0)^2-cos(psii).^2).*sin(n*psii) ); 

     

    phi = phi+An.*cosh(n*eta_mesh).*cos(n*psi_mesh); % Scalar Potential 

     

    Dn  = -u0*An; 

    Az  = Az+Dn.*sinh(n*eta_mesh).*sin(n*psi_mesh); % Vector Potential 

     

    ht  = c*sqrt(cosh(eta_mesh).^2-cos(psi_mesh).^2); % Scale factor 

  

    B_eta = B_eta+u0*(-1./ht)*n.*An.*sinh(n*eta_mesh).*cos(n*psi_mesh); % B_eta 

    B_psi = B_psi+u0*(1./ht)*n.*An.*cosh(n*eta_mesh).*sin(n*psi_mesh);  % B_psi 

end  

  

% Field Vectors B in Cartesian Coordinates 

Bx  = imag( (ht./(c*sinh(eta_mesh+j*psi_mesh))) .* (B_psi+j*B_eta)); % Bx 

By  = real( (ht./(c*sinh(eta_mesh+j*psi_mesh))) .* (B_psi+j*B_eta)); % By 

Bxy = sqrt(Bx.^2+Bx.^2); % Magnitude |B| 

  

% Flux Density Vectors and Equipotential Lines 

figure; hold on 

quiver(x_mesh,y_mesh,Bx,By) % vectors 

contour(x_mesh,y_mesh,phi,21); colormap winter % phi contours 

% contour(x_mesh,y_mesh,phi,20,'ShowText','on') % contours 

xx = c*cosh(eta0).*cos(psi_mesh); yy = c*sinh(eta0).*sin(psi_mesh); 

plot(xx,yy,'k')% Plot Ellipse boundary 

hold off; axis equal; axis off 

  

% Flux Density Distribution 

figure; hold on 

contourf(x_mesh,y_mesh,Bxy,100,'LineStyle','None'); colormap Jet % contours 

contour(x_mesh,y_mesh,Az,21,'Linecolor','k','LineWidth',0.7); % Az contours 

title('B (Tesla)'); axis equal; axis off 

caxis([0,0.2]); hold off 

  

% Distribution of Vector Magnetic Potential Az 

figure; hold on 

% contour(x_mesh,y_mesh,Az,21,'--','LineWidth',1); colormap cool % Az contours 

% title('Az (Wb/m)') 

  contour(x_mesh,y_mesh,phi,15); colormap winter % phi contours 

% title('psi') 

% caxis([-9e-5,9e-5]) % for Az 

caxis([-50,50]) % for phi 

plot(xx,yy,'k')% Plot Ellipse boundary 
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hold off; axis equal; axis off 

  

%% [6] Reluctance Torque by Energy Method 

  

theta_f = 50 *(pi/180); % Angle of Fringing Effect 

  

yr   = linspace(0,Rr,1000); % Integration range of yr on rotor reference frame 

thetar = asin(yr/Rr);     % thetar in rotor reference frame 

  

xp1 = zeros(1,length(yr)); yp1 = zeros(1,length(yr)); % Point S1 

xp2 = zeros(1,length(yr)); yp2 = zeros(1,length(yr)); % Point S2 

Wc_raw  = zeros(1,length(beta)); % co-energy 

ii  = 1; 

  

for betaa = beta % Rotor rotaion from 0 to pi [rad/sec] 

     

    % MMF in the loop  

    Fm = 2*M*Rr*cos(thetar); 

     

    % length inside magnet 

    Lm = 2*Rr*cos(thetar);  

     

    %--------------------[ length Lp1 in airgap ]--------------------    

    % Point m1 

    xm1 = Rr*cos(betaa+thetar); % xm1 in stationary reference frame 

    ym1 = Rr*sin(betaa+thetar); % ym1 in stationary reference frame 

    

    % Polynomial Coefficient 

    a4 = (R1^2-R2^2)^2; 

    a3 = 2*R2^2*xm1*(R1^2-R2^2); 

    a2 = R2^4*xm1.^2+R1^2*R2^2*ym1.^2-R2^2*(R1^2-R2^2)^2; 

    a1 = 2*R2^4*xm1*(R2^2-R1^2); 

    a0 = -R2^6*xm1.^2; 

     

    for jj=1:length(yr) 

         

        % Calculation of point m1 

        roots1 = roots([a4,a3(jj),a2(jj),a1(jj),a0(jj)]); % 4 roots of 

polynomial 

         

        % Calculate xp1 

        if xm1(jj)>=0 % if xm1>0, so xp1>0 

           for kk=1:4 % look in the 4 roots to pick the real positive root 

               if isreal(roots1(kk)) && roots1(kk)>=0 

                  xp1(jj) = roots1(kk);                 

               end    

           end         

        else % if xm1<0, so xp1<0 

           for kk=1:4 % look in the 4 roots to pick the real negative root 

               if isreal(roots1(kk)) && roots1(kk)<0 

                  xp1(jj) = roots1(kk);                 

               end    

           end  

        end 

     

        % Calculate ym1 after calculating xm1 

        if ym1(jj)>=0 % if ym1>0, so yp1>0 

           yp1(jj) =  R1*sqrt(1-xp1(jj)^2/R2^2); 

        else % if ym1<0, so yp1<0 

           yp1(jj) = -R1*sqrt(1-xp1(jj)^2/R2^2); 

        end 

    end 
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    Lp1 = sqrt((xm1-xp1).^2+(ym1-yp1).^2); % length of Lp1 without fringing 

  

    % Fringing Effect at the Interpolar Region, add quarter curcle: r*pi/4 

    correction_Lp11 = zeros(1,length(yr)); 

    correction_Lp12 =zeros(1,length(yr)); 

    for jj=1:length(yr) 

        % If at top interpolar region, at theta=pi/2 

        if abs(thetar(jj)+betaa-pi/2)<theta_c/2 %at distance of theta_c/2 from 

pi/2 

            correction_Lp11(jj) = theta_f*R1*abs(theta_c/2-

abs(thetar(jj)+betaa-pi/2)); 

        else 

            correction_Lp11(jj) = 0; 

        end 

         

        % If at bottom interpolar region, at theta=3pi/2 

        if abs(thetar(jj)+betaa-3*pi/2)<theta_c/2 %at distance of theta_c/2 

from 3pi/2 

            correction_Lp12(jj) = theta_f*R1*abs(theta_c/2-

abs((thetar(jj)+betaa-3*pi/2))); 

        else 

            correction_Lp12(jj) = 0; 

        end 

         

    end     

  

    % Add the extra length for correction 

    Lp1 = Lp1 + correction_Lp11 + correction_Lp12; 

  

     

     

    %--------------------[ length Lp2 in airgap ]--------------------    

    % Point m2 

    xm2 = -Rr*cos(betaa-thetar); 

    ym2 = -Rr*sin(betaa-thetar); 

     

    % Polynomial Coefficient 

    b4 = (R1^2-R2^2)^2; 

    b3 = 2*R2^2*xm2*(R1^2-R2^2); 

    b2 = R2^4*xm2.^2+R1^2*R2^2*ym2.^2-R2^2*(R1^2-R2^2)^2; 

    b1 = 2*R2^4*xm2*(R2^2-R1^2); 

    b0 = -R2^6*xm2.^2; 

     

    for jj=1:length(yr) 

         

        % Calculation of point m2 

        roots2 = roots([b4,b3(jj),b2(jj),b1(jj),b0(jj)]); % 4 roots of 

polynomial 

         

        % Calculate xp2 

        if xm2(jj)>=0 % if xm2>0, so xp2>0 

           for kk=1:4 % look in the 4 roots to pick the real positive root 

               if isreal(roots2(kk)) && roots2(kk)>=0 

                  xp2(jj) = roots2(kk);                 

               end    

           end         

        else % if xm2<0, so xp2<0 

           for kk=1:4 % look in the 4 roots to pick the real negative root 

               if isreal(roots2(kk)) && roots2(kk)<0 

                  xp2(jj) = roots2(kk);                 

               end    

           end  

        end 
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        % Calculate yp2 after calculating xp2 

        if ym2(jj)>=0 % if ym2>0, so yp2>0 

           yp2(jj) =  R1*sqrt(1-xp2(jj)^2/R2^2); 

        else % if ym2<0, so yp2<0 

           yp2(jj) = -R1*sqrt(1-xp2(jj)^2/R2^2); 

        end 

         

    end 

    Lp2 = sqrt((xm2-xp2).^2+(ym2-yp2).^2); % length of Lp2 without fringing 

     

     

    % Fringing Effect at the Interpolar Region, add quarter curcle: r*pi/4 

    correction_Lp21 = zeros(1,length(yr)); 

    correction_Lp22 = zeros(1,length(yr)); 

    for jj=1:length(yr) 

        % If at top interpolar region, at theta=pi/2 

        if abs(betaa+pi-thetar(jj)-pi/2)<theta_c/2 %at distance of theta_c/2 

from pi/2 

            correction_Lp21(jj) = theta_f*R1*abs(theta_c/2-abs(betaa+pi-

thetar(jj)-pi/2)); 

        else 

            correction_Lp21(jj) = 0; 

        end 

         

        % If at bottom interpolar region, at theta=3pi/2 

        if abs(betaa+pi-thetar(jj)-3*pi/2)<theta_c/2 %at distance of theta_c/2 

from 3pi/2 

            correction_Lp22(jj) = theta_f*R1*abs(theta_c/2-abs((betaa+pi-

thetar(jj)-3*pi/2))); 

        else 

            correction_Lp22(jj) = 0; 

        end 

         

    end 

    % Add the extra length for correction 

    Lp2 = Lp2 + correction_Lp21 + correction_Lp22; 

  

  

    % Total length 

    L_DFT = Lp1 + Lm + Lp2; 

     

    %--------------- --[ Flux Density at beta=0 and 90 ]-------------------    

    if betaa==0 

        B_beta0  = u0*Fm./L_DFT; % B within DFTs 

    elseif betaa==pi/2 

        B_beta90 = u0*Fm./L_DFT; % B within DFTs 

    end 

     

    %--------------------[ Co-energy Calculation ]--------------------    

    % Differential co-energy associated with DFT at rotor angle beta 

    dWc = 2*(LL*u0/2)*(Fm.^2./L_DFT); 

    % Numerical integration to obtain Wc at rotor angle beta 

    Wc_raw(ii) = trapz(yr,dWc); 

    ii = ii+1; % next rotor position 

  

end 

  

% Numerical derivative to obtain torque 

for kk=1:(length(beta)-1) 

    T_raw(kk) = (Wc_raw(kk+1)-Wc_raw(kk))/db; 

end 
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% Flux density distribution 

figure 

subplot(2,1,1) 

    plot([thetar*(180/pi),-

fliplr(thetar*(180/pi))],[B_beta0,fliplr(B_beta0)],'LineWidth',1); grid on 

    xlabel('\theta_r(deg)'); ylabel('B (tesla)'); xlim([-90, 90]); 

title('\beta=0 deg') 

subplot(2,1,2) 

    plot([thetar*(180/pi),-

fliplr(thetar*(180/pi))],[B_beta90,fliplr(B_beta90)],'LineWidth',1); grid on 

    xlabel('\theta_r(deg'); ylabel('B (tesla)'); xlim([-90, 90]); 

title('\beta=90 deg') 

  

% Lp1 and Lp2 

figure 

subplot(2,1,1) 

   plot(thetar*(180/pi),Lp1,'LineWidth',1) 

   xlabel('\theta_r(deg'); ylabel('Lp1') 

subplot(2,1,2) 

   plot(thetar*(180/pi),Lp2,'LineWidth',1) 

   xlabel('\theta_r(deg'); ylabel('Lp2') 

  

% Wc 

bt  = beta(1:(length(beta)-1)); 

Wc0 = (2/pi)*trapz(bt,Wc_raw(1:(length(beta)-1))) % DC Component 

Wc1 = (2/pi)*trapz(bt,Wc_raw(1:(length(beta)-1)).*cos(2*bt)) % Fundamental 

Component 

Wc  = Wc0/2+Wc1.*cos(2*bt); 

figure; plot(beta(1:(length(beta)-1))*(180/pi),Wc,'LineWidth',1); grid on 

xlabel('\beta (degrees)'); ylabel('Wc') 

  

% Reluctance Torque: Tres 

bt = beta(1:(length(beta)-1)); 

Tres1 = (2/pi)*trapz(bt,T_raw.*sin(2*bt)) 

Tres = Tres1.*sin(2*bt)*1e3; % Fundamental Component 

figure; plot(beta(1:(length(beta)-1))*(180/pi),Tres,'LineWidth',1); grid on 

xlabel('\beta(deg)') 

ylabel('T_r_e_s(m N.m)') 

  

  

  

%% [7] Total Torque 

  

Tt          = T_coil          + [Tres,0]; % Model 

  

Tres_FEM = spline(beta_T_FEM_orig, T_res_FEM_orig, beta); % Tres, FEM, 

interpolation 

Tt_FEM_orig = T_coil_FEM_orig + Tres_FEM; % FEM, Original Geometry 

Tt_FEM_simp = T_coil_FEM_simp + Tres_FEM; % FEM, Original Geometry 

  

  

figure; plot(beta*(180/pi) ,[Tres,0],'b',... 

             beta*(180/pi) , Tres_FEM,'r--',... 

             theta_Tres_exp, Tres_exp,'k*',... 

             ... 

             beta*(180/pi), T_coil,'b',... 

             beta*(180/pi), T_coil_FEM_orig,'r--',... 

             beta*(180/pi), T_coil_FEM_simp,'g--',... 

             theta_Tc_exp , Tc_exp,'k*',... 

             ... 

             beta*(180/pi), Tt,'b',... 

             beta*(180/pi), Tt_FEM_orig,'r--',... 

             beta*(180/pi), Tt_FEM_simp,'g--',... 
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             theta_Tt_exp , Tt_exp,'k*',...              

             'LineWidth',1); grid on 

xlabel('\beta(deg)'); ylabel('T(m N.m)') 

legend('T_r_e_s, Model', 'T_r_e_s FEM', 'T_r_e_s Exp',... 

       'T_c_o_i_l, Model','T_c_o_i_l FEM Orig','T_c_o_i_l FEM Simp', 'T_c_o_i_l 

Exp',... 

       'T_t, Model','T_t, FEM Orig', 'T_t, FEM Simp', 'T_t, Exp') 

xlim([1 180]) 
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Appendix J 

Matlab Code for the Solution of Diffusion Equation 
 

The code is as in below: 

 

 

%-------------------------------------------------------------------------% 

%      Diffusion , Eddy-Currents in the Magnet and The Laminations        % 

%                Sajjad Mohammadi, EECS, MIT, August 2021                 % 

%-------------------------------------------------------------------------% 

  

  

%% Dimensions and Initialization 

clc; 

  

L  = 4.191*1e-3; % Axial Length of Actuator [m] 

Rr = (3.048/2)*1e-3; % Rotor radius [m] 

R1 = 1.71e-3; % semi-major axis of ellipse [m] 

R2 = 1.15*1.71e-3; % semi-minor axis of ellipse [m] 

Do = 13.716e-3; % Outer diameter of stator [m] 

d  = 0.35*1e-3; % Lamination Thickness [m] 

m  = 12; % number of laminations 

wp = 4.72e-3; % pole width, 4.72mm directly measured from geometry 

N  = 100; % Number of turns 

Lc0 = 280e-6; % Low-frequency inductance 

mu0= 4*pi*1e-7; 

  

% average air-gap length 

lg = ((R1-R1)+(R2-Rr))/2 ; 

% PM length, square approximation of rectangular cross-section 

lm = pi*Rr^2/wp;  

% Average iron length 

li = (Do/2-wp/4)*pi + (Do/2-wp/4)-(lm+lg)/2 ; % Average length of the iron core 

along the flux line 

  

% Effective Permeability 

Area = wp*L; % Pole area 

Rt0  = N^2/Lc0; % Reluctance seen by stator 

  

mu_eff_i = li /(Rt0*Area); % based on L0 

mu_eff_m = lm/(Rt0*Area); % based on L0 

  

% Conductivity, Initial Guess 

sigma_m = 0.6*1e6; % conductivity of magnet 

sigma_i = 2*1e6; % conductivity of iron 

  

% intial field [T] 

B0 = 1; 

  

% Frequency to plot B and J versus dimensions 

f = 20000;% frequency [Hz] 

omega = 2*pi*f; % rad/sec 

  

  

  

%% 2D Diffusion, Eddy-Currents in the Magnet 
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% PM dimensions 

% b = 0.35e-3; % Lamination thickness 

  

% f = 20000;% frequency [Hz] 

omega = 2*pi*f; % rad/sec 

  

a = wp/2; % Rectangle Width=2a 

b = L/2; % Rectangle Height=2*b 

w = sqrt(4*a*b)/2; % square approximation of the rectangle: side=2*w 

  

scale = 0.97; % scale xy range to avoide overeshoot in quiver plot on 

boundaries 

  

phi0 = B0*4*a*b; % Initial flux 

  

% Meshgrid in elliptical coordinates 

x_mesh = linspace(-scale*a, scale*a, 15); 

z_mesh = linspace(-scale*b, scale*b, 15); 

[x,z]  = meshgrid(x_mesh,z_mesh); 

  

By1 = zeros(size(x)); By2 = zeros(size(x));%  

phi_m  = 0; 

Jx = zeros(size(x)); Jz = zeros(size(x));%  

  

for n=1:2:300 

    % k1n and k2n 

    k1 = sqrt( (n*pi./(2*b)).^2 + i*omega*mu_eff_m*sigma_m ); 

    k2 = sqrt( (n*pi./(2*a)).^2 + i*omega*mu_eff_m*sigma_m ); 

     

    % Coefficients 

    An = B0*(4./(n*pi)) .* sin(n*pi/2); 

     

    % Flux densiyu 

    By1 = By1 + An .* cos(n*pi*z/(2*b)) .* ( cosh(k1.*x) ./ cosh(k1*a) ); 

    By2 = By2 + An .* cos(n*pi*x/(2*a)) .* ( cosh(k2.*z) ./ cosh(k2*b) ); 

     

    % Flux 

    phi_m  = phi_m  + (8*phi0/(n^2*pi^2)) *( tanh(k1*a)/(k1*a) + 

tanh(k2*b)/(k2*b) ); % Exact 

     

    % Current density  

    Jx = Jx - (An/mu_eff_m) .* (n*pi/(2*b)) .* sin(n*pi*z/(2*b)) .* ( 

cosh(k1.*x) ./ cosh(k1*a) )... 

            + (An/mu_eff_m)      .* k2      .* cos(n*pi*x/(2*a)) .* ( 

sinh(k2.*z) ./ cosh(k2*b) ); 

    Jz = Jz - (An/mu_eff_m)      .* k1      .* cos(n*pi*z/(2*b)) .* ( 

sinh(k1.*x) ./ cosh(k1*a) )... 

            + (An/mu_eff_m) .* (n*pi/(2*a)) .* sin(n*pi*x/(2*a)) .* ( 

cosh(k2.*z) ./ cosh(k2*b) ); 

end  

By = By1 + By2; 

  

abs(phi_m) 

  

% Flux Density Distribution, abs: magnitude 

figure; 

contourf(x*1e3 ,z*1e3 ,abs(By),50,'LineStyle','None'); colormap Jet 

title('B (Tesla)'); axis equal 

% xlabel('x(mm)'); ylabel('z(mm)') 

axis off tight;  caxis([0.986 1]) 

  

figure; 

surf(x*1e3 ,z*1e3 ,abs(By)); colormap Jet % contours 
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% xlabel('x(mm)'); ylabel('z(mm)') 

% title('B (Tesla)'); axis equal 

axis tight;  

  

  

% Magnitude of J, real: at t=0 

J = abs(sqrt((real(Jx)).^2+(real(Jz)).^2)); 

figure; 

contourf( x*1e3 ,z*1e3 ,real(J)*1e-6,1000,'LineStyle','None'); colormap Jet % 

contours 

xlabel('x(mm)'); ylabel('z(mm)') 

title('J (A/mm^2)'); axis equal; axis off 

% Current Density Vectors, real: at t=0 

% figure; 

hold on 

quiver( x*1e3, z*1e3, real(Jx)*1e-6, real(Jz)*1e-6) % vectors 

xlabel('x(mm)'); ylabel('z(mm)') 

axis equal tight 

  

  

% ------------------------- Plots including time -------------------------- 

TT = 1/f; % period 

timee = 0:TT/8:TT; 

mm=1; 

figure; 

for time = timee % 0, TT/4, TT/2, 3TT/4 

    BBy = By.*exp(i*omega*time); % including time 

    subplot(3,length(timee),mm) 

      contourf(x*1e3 ,z*1e3 ,real(BBy),50,'LineStyle','None'); 

      title('B (Tesla)'); axis equal 

      % xlabel('x(mm)'); ylabel('z(mm)') 

      title(['t=',num2str(mm-1),'T/8']); axis equal; axis off 

      % caxis([0.95 1]) 

  

    JJx = real(Jx.*exp(i*omega*time)); % including time 

    JJz = real(Jz.*exp(i*omega*time)); % including time 

    subplot(3,length(timee),length(timee)+mm) 

      quiver( x*1e3, z*1e3, JJx*1e-6, JJz*1e-6) % vectors 

      % xlabel('x(mm)'); ylabel('z(mm)') 

      axis equal tight; % xlim([min(x_mesh), max(x_mesh)]) 

      title(['t=',num2str(mm-1),'T/8']); axis equal; axis off 

      caxis([-90,90]) 

     

    

JJ=abs(sqrt((real(Jx.*exp(i*omega*time))).^2+(real(Jz.*exp(i*omega*time))).^2))

; % including time 

    subplot(3,length(timee),2*length(timee)+mm) 

      contourf( x*1e3 ,z*1e3 ,real(JJ.*exp(i*omega*time))*1e-

6,1000,'LineStyle','None'); colormap Jet % contours 

      xlabel('x(mm)'); ylabel('z(mm)') 

      % title('J (A/mm^2)'); axis equal; axis off 

      title(['t=',num2str(mm-1),'T/8']); axis equal; axis off 

  

    mm = mm+1; 

end 

    

    

  

%% 1D Diffusion , Eddy-Currents in the The Laminations 

  

omega=2*pi*20000; 

alpha = sqrt(i*omega*mu_eff_i*sigma_i); 

  



298 

 

phi0_i = B0 * m * d * wp; % Initial Flux 

  

zz = linspace(-d/2, d/2, 1000); 

  

Byy = B0*cosh(alpha*zz)/cosh(alpha*d/2); % Flux density 

phi_i = phi0_i*tanh(alpha*d/2)/(alpha*d/2); % Flux 

Jxx = B0 * (alpha/mu_eff_i) * sin(alpha*zz)/cosh(alpha*d/2); % Current Density 

  

  

% ---------------------- Plot of B and J versus y ------------------------- 

yyaxis left;  plot(zz*1e3,real(Byy),'LineWidth',1) 

ylabel('B_y (T)') 

yyaxis right; plot(zz*1e3,real(Jxx)*1e-6,'LineWidth',1) 

ylabel('J_x (A/mm^2)') 

xlabel('z (mm)') 

grid on; axis tight 

  

  

% ------------------ Plot over the lamination surface --------------------- 

xx_mesh = linspace(-wp/4, wp/4, 20); 

zx_mesh = linspace(-d/2, d/2, 10); 

[xx,zz]  = meshgrid(xx_mesh,zx_mesh); 

  

Byy = B0*cosh(alpha*zz)/cosh(alpha*d/2)+0.*xx; % Flux density 

  

Jxx = B0 * (alpha/mu_eff_i) * sin(alpha*zz)/cosh(alpha*d/2)+0.*xx; % Current 

Density 

Jzz = 0.*xx + 0.*zz; % Current Density 

  

% Flux Density Distribution 

figure; 

contourf(xx*1e3 ,zz*1e3 ,abs(Byy),50,'LineStyle','None'); colormap Jet 

title('B (Tesla)'); axis equal 

% xlabel('x(mm)'); ylabel('z(mm)') 

caxis([0.994 1]) 

  

% Current Density 

JJ = abs(sqrt((real(Jxx)).^2+(real(Jzz)).^2)); 

figure; 

contourf( xx*1e3 ,zz*1e3 ,real(JJ)*1e-6,1000,'LineStyle','None'); colormap Jet 

% contours 

% xlabel('x(mm)'); ylabel('z(mm)') 

title('J (A/mm^2)'); axis equal; axis off 

caxis([0, 8]) 

% Current Density Vectors and magnitude at t=0 

% figure; 

hold on 

quiver( xx*1e3, zz*1e3, real(Jxx)*1e-6, real(Jzz)*1e-6) % vectors 

% xlabel('x(mm)'); ylabel('z(mm)') 

title('J (A/mm^2)'); axis equal; axis off 

% caxis([0,5000]) 

  

  

% ------------------------- Plot Including time --------------------------- 

TT = 1/f; % period 

timee = 0:TT/4:TT; 

mm=1; 

figure; 

for time = timee % 0, TT/4, TT/2, 3TT/4 

    subplot(3,length(timee),mm) 

    BByy = real(Byy.*exp(i*omega*time)); % including time 

    contourf(xx*1e3 ,zz*1e3 ,real(BByy),50,'LineStyle','None'); 

    title('B (Tesla)'); axis equal 
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    % xlabel('x(mm)'); ylabel('z(mm)') 

    title(['t=',num2str(mm-1),'T/4']); axis equal; axis off 

    % caxis([0.95 1]) 

  

    subplot(3,length(timee),length(timee)+mm) 

    JJxx = real(Jxx.*exp(i*omega*time)); % including time 

    JJzz = real(Jzz.*exp(i*omega*time)); % including time 

    quiver( xx*1e3, zz*1e3, JJxx*1e-6, JJzz*1e-6) % vectors 

    % xlabel('x(mm)'); ylabel('z(mm)') 

    axis equal tight; % xlim([min(x_mesh), max(x_mesh)]) 

    title(['t=',num2str(mm-1),'T/4']); axis equal; axis off 

    caxis([-90,90]) 

     

    subplot(3,length(timee),2*length(timee)+mm) 

    JJ=abs(sqrt(JJxx.^2 + JJxx.^2)); % including time 

    contourf( xx*1e3 ,zz*1e3 ,JJ*1e-6,1000,'LineStyle','None'); colormap Jet % 

contours 

    xlabel('x(mm)'); ylabel('z(mm)') 

    % title('J (A/mm^2)'); axis equal; axis off 

    title(['t=',num2str(mm-1),'T/4']); axis equal; axis off 

  

    mm = mm+1; 

end 

  

    

  

%% The coefficient Reluctances versus frequency 

% frequency range to plot Qi and Qm versus frequency 

ff = logspace(2,9,1000);% frequency [Hz] 

omegaa=2*pi*ff; 

  

% Correction factors for mu*sigma 

kk_i = 0.05; 

kk_m = 2.15; 

  

% ------------ Flux ratio and reluctances using exact formulas ------------ 

% phi/Phi0, Exact 

phi_phi00_exact  = 1./(1 +0.*omegaa);  % No eddy current 

  

alpha = sqrt(i * omegaa * kk_i * mu_eff_i*sigma_i); 

phi_phi0_i_exact = tanh(alpha*d/2)./(alpha*d/2);   % Eddy current in only iron 

  

a=w; b=w; % square 

phi_m = zeros(1,length(omegaa)); 

nn=1; 

for omega=omegaa 

    phi_mm=0; 

    for n=1:2:100 

        % k1n and k2n 

        k1 = sqrt( (n*pi./(2*b)).^2 + i*omega * kk_m * mu_eff_m*sigma_m ); 

        k2 = sqrt( (n*pi./(2*a)).^2 + i*omega * kk_m * mu_eff_m*sigma_m ); 

     

        % Flux 

        phi_mm  = phi_mm  + (8*1/(n^2*pi^2)) *( tanh(k1*a)/(k1*a) + 

tanh(k2*b)/(k2*b) ); % Exact 

    end  

    phi_m(nn) = phi_mm; 

    nn=nn+1; 

end 

phi_phi0_m_exact = phi_m;   % Eddy current in only magnet 

  

phi_phi0_exact   = phi_phi0_i_exact .* phi_phi0_m_exact;% Eddy current in both 

iron and magnet 
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% Total Reluctance, Exact 

Rt00_exact = Rt0 * (1./phi_phi00_exact);  % No eddy current 

Rt_i_exact = Rt0 * (1./phi_phi0_i_exact);   % Eddy current in only iron 

Rt_m_exact = Rt0 * (1./phi_phi0_m_exact);   % Eddy current in only magnet 

Rt_exact   = Rt0 * (1./phi_phi0_exact);% Eddy current in both iron and magnet 

  

  

  

% ---- Flux ratio and reluctances using approximation of tanhx=1/(1+x) ---- 

% Qi, Qm and Q 

Q_i = 0.5 * d * sqrt(i*omegaa*mu_eff_i*sigma_i); 

% Q_i = (1./phi_phi0_i_exact)-1; 

  

Q_m = (w * sqrt( (pi/(2*w)).^2 + 1i*omegaa*mu_eff_m*sigma_m ) - pi/2) / 

(1+pi/2); 

% Q_m = (1./phi_phi0_m_exact)-1; 

  

Q  =  Q_i + Q_m; 

  

% phi/Phi0, Approximation of tanhx=1/(1+x) 

phi_phi00  = 1./(1 +0*omegaa);  % No eddy current 

phi_phi0_i = 1./(1 + Q_i);   % Eddy current in only iron 

phi_phi0_m = 1./(1 + Q_m);   % Eddy current in only magnet 

phi_phi0   = 1./(1 + (Q_i+Q_m));% Eddy current in both iron and magnet 

  

% Total Reluctance, Approximation of tanhx=1/(1+x) 

Rt00 = Rt0 * (1 + 0*omegaa);  % No eddy current 

Rt_i = Rt0 * (1 + Q_i);   % Eddy current in only iron 

Rt_m = Rt0 * (1 + Q_m);   % Eddy current in only magnet 

Rt   = Rt0 * (1 + Q_i+Q_m);% Eddy current in both iron and magnet 

  

  

% -------------------------------- Plots ---------------------------------- 

% Plot Rt, Exact formula 

% figure 

% subplot(2,1,1) 

%    semilogx(ff, 20*log10(abs(Rt00_exact)),...   

%             ff, 20*log10(abs(Rt_i_exact)),... 

%             ff, 20*log10(abs(Rt_m_exact)),... 

%             ff, 20*log10(abs(Rt_exact)),... 

%             'LineWidth',1); grid 

%    xlabel('frequency (Hz)') 

%    ylabel('Magnitude (dB)') 

%    title('Reluctance, Exact formula') 

% subplot(2,1,2) 

%    semilogx(ff, (180/pi)*angle(Rt00_exact),... 

%             ff, (180/pi)*angle(Rt_i_exact),... 

%             ff, (180/pi)*angle(Rt_m_exact),... 

%             ff, (180/pi)*angle(Rt_exact),... 

%             'LineWidth',1); grid 

%    xlabel('frequency (Hz)') 

%    ylabel('Angle (deg)') 

%    legend('R_t_0','R_t_i','R_t_m','R_t') 

%   

% % Plot phi/phi0, Exact  

% figure 

% subplot(2,1,1) 

%    semilogx(ff, 20*log10(abs(phi_phi00_exact)),...   

%             ff, 20*log10(abs(phi_phi0_i_exact)),... 

%             ff, 20*log10(abs(phi_phi0_m_exact)),... 

%             ff, 20*log10(abs(phi_phi0_exact)),... 

%             'LineWidth',1); grid 
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%    xlabel('frequency (Hz)') 

%    ylabel('Magnitude (dB)') 

%    title('\phi/\phi_0, Exact formula') 

% subplot(2,1,2) 

%    semilogx(ff, (180/pi)*angle(phi_phi00_exact),... 

%             ff, (180/pi)*angle(phi_phi0_i_exact),... 

%             ff, (180/pi)*angle(phi_phi0_m_exact),... 

%             ff, (180/pi)*angle(phi_phi0_exact),... 

%             'LineWidth',1); grid 

%    xlabel('frequency (Hz)') 

%    ylabel('Angle (deg)') 

%    legend('R_t_0','R_t_i','R_t_m','R_t') 

  

  

  

% Plot Rt, Approximation of tanhx=1/(1+x) 

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(Rt00)),...   

            ff, 20*log10(abs(Rt_i)),... 

            ff, 20*log10(abs(Rt_m)),... 

            ff, 20*log10(abs(Rt)),... 

            'LineWidth',1); grid 

   ylabel('Magnitude (dB)') 

   % title('Reluctance, Appr formula') 

   xlim([10^2 10^9]); ylim([148, 200]) 

   xticks([10^2, 10^3,10^4,10^5,10^6,10^7,10^8,10^9]); 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*angle(Rt00),... 

            ff, (180/pi)*angle(Rt_i),... 

            ff, (180/pi)*angle(Rt_m),... 

            ff, (180/pi)*angle(Rt),... 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('R_t_0','R_t_i','R_t_m','R_t') 

   xlim([10^2 10^9]); ylim([0, 45]) 

   xticks([10^2, 10^3,10^4,10^5,10^6,10^7,10^8,10^9]); yticks([0, 22.5, 45]) 

  

  

% Plot phi/phi0, Approximation of tanhx=1/(1+x) 

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(phi_phi00)),...   

            ff, 20*log10(abs(phi_phi0_i)),... 

            ff, 20*log10(abs(phi_phi0_m)),... 

            ff, 20*log10(abs(phi_phi0)),... 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Magnitude (dB)') 

   xlim([10^2 10^9]) 

   title('\phi/\phi_0, Appr formula') 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*angle(phi_phi00),... 

            ff, (180/pi)*angle(phi_phi0_i),... 

            ff, (180/pi)*angle(phi_phi0_m),... 

            ff, (180/pi)*angle(phi_phi0),... 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   xlim([10^2 10^9]) 

   legend('R_t_0','R_t_i','R_t_m','R_t') 

    

% Plot Qm and Qi 

% figure 

% subplot(2,1,1) 
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%    semilogx(ff, 20*log10(abs(Qi)),... 

%             ff, 20*log10(abs(Qm))); grid 

%    xlabel('frequency (Hz)') 

%    ylabel('Magnitude (dB)') 

%    title('Q_m=\phi/\phi_0') 

%    legend('Q_i','Q_m','Q_i*Q_m') 

% subplot(2,1,2) 

%    semilogx(ff, (180/pi)*angle(Qi),... 

%             ff, (180/pi)*angle(Qm)); grid 

%    xlabel('frequency (Hz)') 

%    ylabel('Angle (deg)') 

%    legend('Q_i','Q_m','Q_i*Q_m') 

  

  

  

%%  Electric-Magnetic Coupled Circuit 

ff = logspace(0,5,1000);% frequency [Hz] 

omegaa=2*pi*ff; 

  

Rc = 1.76; % coil resistance [ohm] 

Rs = 0.1; % sense resistor [ohm] 

R  = Rc+Rs; 

Lc0 = 290e-6; % Low-frequency inductance 

  

% Correction factors for mu*sigma 

kk_i = 0.05; 

kk_m = 2.15; 

  

% Qi, Qm, Q 

Q_i =  sqrt(i*omegaa* kk_i*mu_eff_i*sigma_i)*d/2; 

Q_m = 1 * ( w * sqrt( (pi/(2*w)).^2 +  i * omegaa * kk_m*mu_eff_m*sigma_m )-

pi/2)/(1+pi/2); 

  

% Taylor Approximation of Qm with three first for faractional order modeling 

aa = (pi/(2*w)); 

% Q_m = ( w * ( aa + (1/(2*aa)).* i * omegaa * kk_m*mu_eff_m*sigma_m  -  

(1/(8*aa^3)).* (i * omegaa *kk_m* mu_eff_m*sigma_m).^2 ) -pi/2)/(1+pi/2); 

  

Q =  Q_i + Q_m; 

  

% Only RL 

He = 1./(R+i*omegaa*Lc0); 

  

% RL including eddy effect only in iron 

kk_ii = 0.1; 

Q_ii =  sqrt(i*omegaa* kk_ii*mu_eff_i*sigma_i)*d/2; 

He_eddy_i = (1 + Q_ii)./(R + i*omegaa*Lc0 + R*Q_ii); 

  

% RL including eddy effect 

He_eddy = (1 + Q)./(R + i*omegaa*Lc0 + R*Q); 

  

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(He)),... 

            ff, 20*log10(abs(He_eddy_i)),... 

            ff, 20*log10(abs(He_eddy)),'g',... 

            He_appr_exp(:,1), He_appr_exp(:,2),'k--',... 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Magnitude (dB)') 

   xticks([10^0, 10^1, 10^2, 10^3,10^4,10^5]); % yticks([-90, -45, 0]) 

   xlim([10^0 10^5]); ylim([-50 0]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*angle(He),... 
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            ff, (180/pi)*angle(He_eddy_i),... 

            ff, (180/pi)*angle(He_eddy),'g',... 

            He_appr_exp(:,1), He_appr_exp(:,3),'k--',... 

            'LineWidth',1); grid 

   xlabel('Frequency (Hz)'); ylabel('Angle (deg)'); 

   xticks([10^0, 10^1, 10^2, 10^3,10^4,10^5]); yticks([-90, -45, 0]) 

   legend('RL Model (2 DoF)','Eddy Model (3 DoF)','Eddy Model (4 

DoF)','Experiment') 

   xlim([10^0 10^5]); ylim([-90 0]) 

    

% Mu-Sigma product  

mu_sigma_i_OnlyIron = kk_ii*mu_eff_i*sigma_i % eddy only in iron 

mu_sigma_i = kk_i*mu_eff_i*sigma_i % eddy in both iron and magnet 

mu_sigma_m = kk_m*mu_eff_m*sigma_m % eddy in both iron and magnet 
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Appendix K 

Matlab Code for Modeling of Current-Loop with 

Non-Ideal and Ideal Op-amp Models 
 

The code is as follows: 

 

 

%-------------------------------------------------------------------------% 

%           Current Loop Modeling using ideal and non-ideal Op-Amps       % 

%                Sajjad Mohammadi, EECS, MIT, August 2021                 % 

%-------------------------------------------------------------------------% 

  

% Including 3 Op-Amps 

% Input Block: 1/Z1 

% Feed Forward Path: Compensator FF, Power OpAmp, Actuator  

% Feedback path: Sensor Resistor Rs, Buffer OpAmp, Compensator FB 

  

% clc; clear; 

%% --------------------[ Actuator Gp_exct=Icoil/Vcoil]--------------------- 

% He_exct:      including back-emf 

% He_appr: ignoring back-emf 

% Bode Plot of the Plnat C506 

% with/without back-emf 

  

% J=1.65e-9; % Inretia/mass with mirror from Solid Works 

J  = 1.5077e-09; % Inretia/mass without mirror from Solid Works 

kd = 4.4881e-07; % damping 

ks = 0.0013; % spring 

  

Rc = 1.76; % coil resistance [ohm] 

Rs = 0.1; % sense resistor [ohm] 

R  = Rc+Rs; 

Lc  = 280e-6; % coil inductance [H] 

% kt = 1.836e-3; % torque/force constant, Typical 

kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021 

  

He_exct = tf([J kd ks],[Lc*J R*J+Lc*kd R*kd+ks*kd+kt^2 R*ks]); % Icoil/Vcoil  

with back emf 

He_appr = tf([1],[Lc R]); % Icoil/Vcoil  without back emf 

Hm = tf([kt],[J kd ks]); % Torque/Icoil 

  

  

% Plots 

subplot(2,1,1) 

   options = bodeoptions; 

   options.FreqUnits = 'Hz'; 

   bode(He_exct,He_appr,Hm,options); title ('Actuator Electrical and mechanical 

Part') 

   legend('Gp_exct=Icoil/Vcoil  with bemf','Gp_exct=Icoil/Vcoil without 

bemf','mechanical G_m=T/Icoil') 

subplot(2,1,2) 

   step(He_exct,He_appr) 

   title ('Step Response, Vcoil to Icoil') 

   legend('Model with bemf','Model without bemf (locked rotor)') 

  

figure 
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pzmap(He_exct,He_appr,Hm);axis equal; title ('Actuator Electrical and 

mechanical Part') 

legend('Gp_exct=Icoil/Vcoil  with bemf','Gp_exct=Icoil/Vcoil  without 

bemf','mechanical G_m=T/Icoil') 

  

  

  

%% ---------------[ Current Sensor Resistor Gcs=Vrs/Icoil]----------------- 

% Converting Coil Current to a Voltage to be measured by buffer OpAmp 

% Vrs=Rs*Icoil 

Rs  = 0.1; % sense resistor 

Gcs = Rs; % Gs=Vrs/Icoil; 

  

  

  

%% ---------------[ Power OpAmp TF_pAmp_nonideal=Vcoil/Vc]----------------- 

% Increasing Compensator Output Voltage Vc to Coil Voltage Vcoil 

% PowerOpAmp Modeling, LM3886 

% non-ideal OpAmps:  TF_pAmp_nonideal 

% ideal OpAmps:      TF_pAmp_ideal 

  

s = tf([1 0],[1]); 

  

% Voltage Divider 

R1_pAmp = 64.9e3; %  voltage divider 

R2_pAmp = 10e3; %  voltage divider 

  

% Power Op-Amp 

Ra_pAmp = 10e3; % feedback 

Rb_pAmp = 95.3e3; % feedback 

  

% input lag compensation and input resistance of Op-Amp 

Ri_pAmp   = 6.2e3; % input lag compensation 

Ci_pAmp   = 470e-12; % input lag compensation 

RiCi_pAmp = Ri_pAmp+1/(Ci_pAmp*s); % series Ri and Ci 

Zin       = 100e6; % input impedance of Op-Amp 

% Zi_pAmp = RiCi_pAmp*Zin/(RiCi_pAmp+Zin); 

Zi_pAmp   = RiCi_pAmp; 

  

  

% Op-Amp Open-Loop Gain Transfer Function A(s), LM3886 

GBP_pAmp = 8e6; % Gain-Bandwidth Product [Hz] 

Avo_pAmp = 10^(115/20); % Open-Loop DC-gain 

f1_pAmp  = GBP_pAmp/Avo_pAmp; w1_pAmp=2*pi*f1_pAmp; % pole 1 

% f2_pAmp  = 1.5e6;   w2_pAmp=2*pi*f2_pAmp; % pole 2, usually less than GWB 

% f3_pAmp  = 2.9e6;   w3_pAmp=2*pi*f3_pAmp; % pole 3, usually between f2 and 

GWB 

f2_pAmp  = 3e6;   w2_pAmp=2*pi*f2_pAmp; % pole 2, usually less than GWB 

f3_pAmp  = 4e6;   w3_pAmp=2*pi*f3_pAmp; % pole 3, usually between f2 and GWB 

  

  

A1_pAmp = Avo_pAmp*w1_pAmp /(s+w1_pAmp); % 1st-order model 

A2_pAmp = Avo_pAmp*w1_pAmp*w2_pAmp /((s+w1_pAmp)*(s+w2_pAmp)); % 2nd-order 

model 

A3_pAmp = Avo_pAmp*w1_pAmp*w2_pAmp*w3_pAmp 

/((s+w1_pAmp)*(s+w2_pAmp)*(s+w3_pAmp)); % 2nd-order model 

  

A_pAmp  = A3_pAmp; % Order selection 

  

% options.FreqUnits = 'Hz'; 

%  

% figure; bode(A,{1,1e8},options); grid  

% title('Open-Loop Gain A') 
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% Non-Ideal OpAmp, Uncompensated 

FF_pAmp = (R2_pAmp/(R1_pAmp+R2_pAmp)) * A_pAmp; % Feed Forward 

FB_pAmp = (Ra_pAmp/(Ra_pAmp+Rb_pAmp)) * ((R1_pAmp+R2_pAmp)/R2_pAmp); % Feedback 

LT_pAmp = FF_pAmp*FB_pAmp; % Loop Transmision 

TF_pAmp_nonideal = feedback(FF_pAmp,FB_pAmp); % Closed-Loop (internal loop) 

  

% Non-Ideal OpAmp, Compensated with Ri & Ci at input 

FF_pAmp_comp = (R2_pAmp/(R1_pAmp+R2_pAmp)) * ( Zi_pAmp/(Zi_pAmp + 

(R1_pAmp*R2_pAmp/(R1_pAmp+R2_pAmp)) + (Ra_pAmp*Rb_pAmp/(Ra_pAmp+Rb_pAmp))) ) * 

A_pAmp; % Feed Forward 

FB_pAmp_comp = (Ra_pAmp/(Ra_pAmp+Rb_pAmp)) * ((R1_pAmp+R2_pAmp)/R2_pAmp); % 

Feedback 

LT_pAmp_comp = FF_pAmp_comp*FB_pAmp_comp; % Loop Transmision 

TF_pAmp_nonideal_comp = feedback(FF_pAmp_comp,FB_pAmp_comp); % Closed-Loop 

  

% DC Gian 

DC_gain_pAmp    = (R2_pAmp/(R1_pAmp+R2_pAmp)) *(1+Rb_pAmp/Ra_pAmp) 

DC_gain_dB_pAmp = 20*log10((R2_pAmp/(R1_pAmp+R2_pAmp)) *(1+Rb_pAmp/Ra_pAmp)) 

  

% Ideal OpAmp 

TF_pAmp_ideal   = DC_gain_pAmp; 

  

  

% Plots 

options.FreqUnits = 'Hz'; 

figure; h=bodeplot(A_pAmp,{1,1e10}); grid title('LM3886 Open-Loop Gain A') 

setoptions(h,'FreqUnits','Hz'); 

title('Power Op-Amp LM3886 Gain A(s)') 

  

  

  

ff = logspace(0,10,2000);% frequency [Hz] 

omegaa=2*pi*ff; 

[mag_pAmp,phase_pAmp,wout] = bode(A_pAmp,omegaa); % calculating magnitude at wc 

[mag_Comp,phase_Comp,wout] = bode(A_Comp,omegaa); % calculating magnitude at wc 

  

figure; colororder({'r','b'}) 

yyaxis left 

   semilogx(ff, 20*log10(squeeze(mag_pAmp)),'r','LineWidth',1.2);  

   ylabel('Mag (dB)'); title('LM3886 A(s)'); ylim([-250 117]) 

   % legend('non-ideal OpAmps','ideal OpAmps','Expr') 

yyaxis right 

   semilogx(ff, squeeze(phase_pAmp),'b','LineWidth',1.1); grid 

   xlabel('Frequency (Hz)'); ylabel('Phase (deg)') 

   xlim([10^0 10^10]); ylim([-272 2]) 

   xticks([10^0, 10^2, 10^4,10^6,10^8,10^10]) 

   legend('Mag', 'Phase') 

   % ax = gca; ax.XGrid = 'on'; 

  

  

    

    

figure;hold on; bode(LT_pAmp_comp,{10,1e8}); bode(LT_pAmp,{10,1e8}); 

title('Power OpAmp, Loop Transmision'); legend('Compensated','Uncompensated') 

  

subplot (2,1,1) 

   hold on; 

bode(TF_pAmp_nonideal_comp,{10,1e8});bode(TF_pAmp_nonideal,{10,1e8}); grid 

   title('Power OpAmp, Closed-Loop Bode'); 

legend('Compensated','Uncompensated') 

subplot (2,1,2) 

   step(TF_pAmp_nonideal_comp,TF_pAmp_nonideal); 
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   title('Power OpAmp, Step Response'); legend('Compensated','Uncompensated') 

  

  

  

%% --------[ Compensator 1/Z1, FF_Comp_nonideal, FB_Comp_nonideal ]-------- 

% C506 Compensator Op-Amp Modeling, OP1652 

% Forward Path, non-ideal OpAmp:  FF_Comp_nonideal 

% Forward Path, ideal OpAmp:      FF_Comp_ideal 

% Feedback Path non-ideal OpAmp:  FB_Comp_nonideal 

% Feedback Path ideal OpAmp:      FB_Comp_ideal 

% Input Block 1/Z1 

  

s = tf([1 0],[1]); 

  

% Z1 Components 

R1_Comp = 5.1e3; % Z1 

Z1      = R1_Comp; 

  

% Z2 Components, Lead Compensator 

R2_Comp  = 10e3; % Z2, it sets the bandwidth together with R1_Comp 

  

% R2p_Comp = 100;  % Z2, It, together with C2_Comp, sets the Lead 

Characteristics, origianl 

% C2_Comp  = 2400e-12; % Z2, original 

R2p_Comp = 1.1e3;  % Z2, It, together with C2_Comp, sets the Lead 

Characteristics 

C2_Comp  = 2.2e-09; % Z2 

  

Z2       = R2_Comp*(R2p_Comp*C2_Comp*s+1)/((R2_Comp+R2p_Comp)*C2_Comp*s+1); 

  

% Zf Components, Lag Compensator 

% R3_Comp = 2e6; % Zf , large paralle resistor to limit the integrator 

 % R3_Comp = 470e3; % Zf , original value, large paralle resistor to limit the 

integrator 

 R3_Comp = 2e6; 

  

% C3_Comp = 180e-12; % Zf, original 

C3_Comp = 100e-12; 

  

Zf      = R3_Comp/(R3_Comp*C3_Comp*s+1); % with parallel R3_Comp, Non-pure 

interator 

% Zf   = 1/(C3_Comp*s); % without parallel R3_Comp, pure integrator 

  

% Op-Amp Open-Loop Transfer Function A(s), , OP1652 

GBP_Comp = 18e6; % Gain-Bandwidth Product [Hz] 

Avo_Comp = 10^(114/20); % Open-Loop DC-gain 

f1_Comp  = GBP_Comp/Avo_Comp; w1_Comp=2*pi*f1_Comp; % pole 1 

f2_Comp  = 1.5e7;   w2_Comp=2*pi*f2_Comp; % pole 2, not found in datasheet 

f3_Comp  = 2.9e7;   w3_Comp=2*pi*f3_Comp; % pole 3, not found in datasheet 

  

A1_Comp  = Avo_Comp*w1_Comp /(s+w1_Comp); % 1st-order model 

A2_Comp  = Avo_Comp*w1_Comp*w2_Comp /((s+w1_Comp)*(s+w2_Comp)); % 2nd-order 

model 

A3_Comp  = Avo_Comp*w1_Comp*w2_Comp*w3_Comp 

/((s+w1_Comp)*(s+w2_Comp)*(s+w3_Comp)); % 2nd-order model 

  

A_Comp  = A3_Comp; % Order selection 

  

% options.FreqUnits = 'Hz'; 

% figure; h=bodeplot(A_Comp,{1,1e10}); grid title('Open-Loop Gain A') 

% setoptions(h,'FreqUnits','Hz'); 

  

% Loop Transmission, Ideal Op-Amp 
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FF_Comp_ideal   = Zf; 

FB_Comp_ideal   = 1/Z2; 

Loop_Comp_ideal = FF_Comp_ideal * FB_Comp_ideal; % Ideal Op-Amp 

  

% Loop Transmission, Non-Ideal Op-Amp 

FF_int_Comp      = Zf * ( (Z1*Z2)/(Z1*Z2+Z1*Zf+Z2*Zf) ) * A_Comp; % Feed 

Forward, internal OpAmp Loop 

FB_int_Comp      = 1/Zf; % Feedback path of internal OpAmp Loop 

FF_Comp_nonideal = feedback(FF_int_Comp,FB_int_Comp); % Closed-Loop (internal 

loop), FF part of the compensator 

FB_Comp_nonideal = 1/Z2; % FB part of the compensator 

Loop_Comp        = FF_Comp_nonideal * FB_Comp_nonideal; % Non-Ideal Op-Amp 

  

  

% Plots 

options.FreqUnits = 'Hz'; 

figure; h=bodeplot(A_Comp,{1,1e10}); grid title('OP1652 Open-Loop Gain A') 

setoptions(h,'FreqUnits','Hz'); 

title('Compensator Op-Amp OP1652 Gain A(s)') 

  

options.FreqUnits = 'Hz'; 

figure; h=bodeplot(Loop_Comp_ideal,Loop_Comp); grid; 

setoptions(h,'FreqUnits','Hz'); 

title('C506 Compensator Loop Transmission'); legend('ideal','non-ideal') 

  

  

  

ff = logspace(0,10,2000);% frequency [Hz] 

omegaa=2*pi*ff; 

[mag_Comp,phase_Comp,wout] = bode(A_Comp,omegaa); % calculating magnitude at wc 

  

figure; colororder({'r','b'}) 

yyaxis left 

   semilogx(ff, 20*log10(squeeze(mag_Comp)),'r','LineWidth',1.2);  

   ylabel('Mag (dB)'); title('LM3886 A(s)'); ylim([-250 117]) 

   % legend('non-ideal OpAmps','ideal OpAmps','Expr') 

yyaxis right 

   semilogx(ff, squeeze(phase_Comp),'b','LineWidth',1.1); grid 

   xlabel('Frequency (Hz)'); ylabel('Phase (deg)') 

   xlim([10^0 10^10]); ylim([-272 2]) 

   xticks([10^0, 10^2, 10^4,10^6,10^8,10^10]) 

   legend('Mag', 'Phase') 

   % ax = gca; ax.XGrid = 'on'; 

  

%% --------[ Current Sensor Buffer OpAmp: TF_buff_nonideal=vs/Vrs ]-------- 

% C506 Current Sensor Buffer Op-Amp Modeling, OP1652 

% Conversing the Voltage of current sense resistor to voltage Vs 

% non-ideal OpAmps:  TF_buff_nonideal 

% ideal OpAmps:      TF_buff_ideal 

  

s = tf([1 0],[1]); 

  

R1_buff = 1e3; 

R2_buff = 10e3; 

  

% Op-Amp Open-Loop Transfer Function A(s), , OP1652 

GBP_buff = 18e6; % Gain-Bandwidth Product [Hz] 

Avo_buff = 10^(114/20); % Open-Loop DC-gain 

f1_buff  = GBP_buff/Avo_buff; w1_buff=2*pi*f1_buff; % pole 1 

f2_buff  = 1.5e7;   w2_buff=2*pi*f2_buff; % pole 2, not found in datasheet 

f3_buff  = 2.9e7;   w3_buff=2*pi*f3_buff; % pole 3, not found in datasheet 

  

A1_buff  = Avo_buff*w1_buff /(s+w1_buff); % 1st-order model 
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A2_buff  = Avo_buff*w1_buff*w2_buff /((s+w1_buff)*(s+w2_buff)); % 2nd-order 

model 

A3_buff  = Avo_buff*w1_buff*w2_buff*w3_buff 

/((s+w1_buff)*(s+w2_buff)*(s+w3_buff)); % 2nd-order model 

  

A_buff   = A3_buff; % Order selection 

  

% options.FreqUnits = 'Hz'; 

% figure; h=bodeplot(A_buff,{1,1e10}); grid title('Open-Loop Gain A') 

% setoptions(h,'FreqUnits','Hz'); 

  

  

% Ideal Op-Amp 

TF_buff_ideal = R2_buff/R1_buff; % Ideal Op-Amp 

  

% Loop Transmission, Non-Ideal Op-Amp 

FF_int_buff = (R2_buff/(R1_buff+R2_buff)) * A_buff; % Feed Forward, internal 

OpAmp Loop 

FB_int_buff = R1_buff/R2_buff; % Feedback path of internal OpAmp Loop 

TF_buff_nonideal = feedback(FF_int_buff,FB_int_buff); 

  

  

% Plots 

options.FreqUnits = 'Hz'; 

figure; h=bodeplot(A_buff,{1,1e10}); grid; title('OP1652 Open-Loop Gain A') 

setoptions(h,'FreqUnits','Hz'); 

title('Current Sensor Op-Amp OP1652 Gain A(s)') 

  

options.FreqUnits = 'Hz'; 

figure; h=bodeplot(TF_buff_nonideal);setoptions(h,'FreqUnits','Hz'); grid;  

title('C506 Current Sensor Buffer') 

  

%% -----------[ Model Selection: Model with or without back-emf ]----------- 

% Select the Actuator Model? 

% Gp=Gp_exct; % 1: Actuator model with back-emf 

Gp = He_appr;  % 2:Actuator model without back-emf 

  

  

%% ---------------------------[ Block Diagram]----------------------------- 

F  = 1/Z1; % input block 

  

P  = Gp; % Actuator 

  

% C  = FF_Comp_nonideal * TF_pAmp_nonideal_comp; % non-ideal op-amp, Power op-

amp with compensator 

C  = FF_Comp_nonideal * TF_pAmp_nonideal; % non-ideal op-amp, Power op-amp 

without compensator 

Ci = FF_Comp_ideal * TF_pAmp_ideal; % ideal op-amp 

  

H  = Rs * TF_buff_nonideal * FB_Comp_nonideal; % non-ideal op-amp 

Hi = Rs * TF_buff_ideal * FB_Comp_ideal; % ideal op-amp 

  

  

%% ----------------[ Current Loop, Loop Transmission PCH]------------------- 

  

LT_CurrentLoop       = P*C*H;  % Closed-Loop, Non-Ideal OpAmps 

LT_CurrentLoop_ideal = P*Ci*Hi;  % Closed-Loop, Ideal OpAmps 

  

  

% The loop excluding compensator, ideal 

LT_CurrentLoop_rest       = P*TF_pAmp_nonideal*TF_buff_nonideal;  % Closed-

Loop, Non-Ideal OpAmps 
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LT_CurrentLoop_ideal_rest = P*TF_pAmp_ideal*TF_buff_ideal;  % Closed-Loop, 

Ideal OpAmps 

  

  

% Plots 

% Decomposition of Loop Transmission, non-ideal model of op-amps 

figure 

options.FreqUnits = 'Hz'; 

h=bodeplot(Loop_Comp,LT_CurrentLoop_rest,LT_CurrentLoop,{0.1,1e8}); grid; 

title('Decomposition of Loop Transmision, nonideal op-amps '); 

legend('Compensator','Rest of the Loop','Loop Transmission') 

setoptions(h,'FreqUnits','Hz'); 

  

% Decomposition of Loop Transmission, ideal model of op-amps 

figure 

options.FreqUnits = 'Hz'; 

h=bodeplot(Loop_Comp_ideal,LT_CurrentLoop_ideal_rest,... 

           LT_CurrentLoop_ideal,{0.1,1e8}); grid; 

title('Decomposition of Loop Transmision, ideal op-amps '); 

legend('Compensator','Rest of the Loop','Loop Transmission') 

setoptions(h,'FreqUnits','Hz'); 

  

figure 

subplot(2,1,1) 

options.FreqUnits = 'Hz'; 

h=bodeplot(LT_CurrentLoop,LT_CurrentLoop_ideal,{0.1,1e8}); grid; 

title('Loop Transmision Bode ');legend('non-ideal OpAmps','ideal OpAmps') 

setoptions(h,'FreqUnits','Hz'); 

  

subplot(2,1,2) 

nyquist(LT_CurrentLoop,LT_CurrentLoop_ideal); 

title('Loop Transmision Nyquist');legend('non-ideal OpAmps','ideal OpAmps') 

  

figure 

margin(LT_CurrentLoop); grid; 

%% ----------[Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]------------ 

% Reference tracking PCF/1+PCH 

  

GANG1  = F*P*C/(1+P*C*H);  % Closed-Loop, Non-Ideal OpAmps 

GANGi1 = F*P*Ci/(1+P*Ci*Hi);  % Closed-Loop, Ideal OpAmps 

  

DC_gain_CurrentLoop_PureIntegrator = R2_Comp/R1_Comp 

DC_gain_dB_CurrentLoop_PureIntegrator = 20*log10(R2_Comp/R1_Comp) 

  

[mag_DC,phase_DC,wout_DC] = bode(GANGi1,0); % calculating magnitude at 0 

rad/sec 

DC_gain_CurrentLoop_NonPureIntegrator = mag_DC 

DC_gain_dB_CurrentLoop_NonPureIntegrator = 20*log10(mag_DC) 

  

  

%% -------[Gang 2: Reference to Power Op-Amp output Voltage FC/1+PCH]------ 

  

GANG2  = F*C/(1+P*C*H);     % Closed-Loop, Non-Ideal OpAmps 

GANGi2 = F*Ci/(1+P*Ci*Hi);  % Closed-Loop, Ideal OpAmps 

  

%% ---------------[Gang 3: Disturbance Rejection  P/1+PCH]----------------- 

% Disturbance to plant output 

GANG3  = P/(1+P*C*H);    % Closed-Loop, Non-Ideal OpAmps 

GANGi3 = P/(1+P*Ci*Hi);  % Closed-Loop, Ideal OpAmps 

  

%% --------------------[Gang 4: Sensitivity 1/1+PCH]----------------------- 

% measurement noise to plant output 

GANG4  = 1/(1+P*C*H);    % Closed-Loop, Non-Ideal OpAmps 
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GANGi4 = 1/(1+P*Ci*Hi);  % Closed-Loop, Ideal OpAmps 

  

%% ------------------[Gang 5: Noise Sensitivity CH/1+PCH]------------------ 

% Noise to controller (power op-amp) output 

GANG5  = C*H/(1+P*C*H);      % Closed-Loop, Non-Ideal OpAmps 

GANGi5 = Ci*Hi/(1+P*Ci*Hi);  % Closed-Loop, Ideal OpAmps 

  

%% --------------[Gang 6: Complementary Sensitivity PCH/1+PCH]------------- 

% Disturbance to controller (power op-amp) output 

GANG6  = P*C*H/(1+P*C*H);     % Closed-Loop, Non-Ideal OpAmps 

GANGi6 = P*Ci*Hi/(1+P*Ci*Hi); % Closed-Loop, Ideal OpAmps 

  

  

%% -----[ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------ 

  

% ----- Bode Plot ----- 

  

f_range = {10,1e6}; % Frequency range of plots 

  

figure 

subplot(3,2,1) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG1,GANGi1,f_range); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G1: Reference Tracking FPC/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

  

subplot(3,2,2) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG2,GANGi2,f_range); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G2: Ref to P-OpAmp Output FC/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

  

subplot(3,2,3) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG3,GANGi3,f_range); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G3: Disturbance Rejection P/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

  

subplot(3,2,4) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG4,GANGi4,f_range); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G4: Sensitivity 1/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

  

subplot(3,2,5) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG5,GANGi5,f_range); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G5: Noise Sensitivity CH/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

  

subplot(3,2,6) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG6,GANGi6,f_range); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G6: Compl Sensitivity PCH/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 
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% % ----- Magnitude-only Bode Plot ----- 

% figure 

% subplot(3,2,1) 

%    options.FreqUnits = 'Hz'; 

%    h=bodeplot(GANG1,GANGi1,f_range); grid; 

%    setoptions(h,'FreqUnits','Hz'); 

%    setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

%    title('G1: Reference Tracking FPC/1+PCH'); legend('non-ideal 

OpAmps','ideal OpAmps') 

%  

% subplot(3,2,2) 

%    options.FreqUnits = 'Hz'; 

%    h=bodeplot(GANG2,GANGi2,f_range); grid; 

%    setoptions(h,'FreqUnits','Hz'); 

%    setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

%    title('G2: Ref to P-OpAmp Output FC/1+PCH'); legend('non-ideal 

OpAmps','ideal OpAmps') 

%  

% subplot(3,2,3) 

%    options.FreqUnits = 'Hz'; 

%    h=bodeplot(GANG3,GANGi3,f_range); grid; 

%    setoptions(h,'FreqUnits','Hz'); 

%    setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

%    title('G3: Disturbance Rejection P/1+PCH'); legend('non-ideal 

OpAmps','ideal OpAmps') 

%  

% subplot(3,2,4) 

%    options.FreqUnits = 'Hz'; 

%    h=bodeplot(GANG4,GANGi4,f_range); grid; 

%    setoptions(h,'FreqUnits','Hz'); 

%    setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

%    title('G4: Sensitivity 1/1+PCH'); legend('non-ideal OpAmps','ideal 

OpAmps') 

%  

%    subplot(3,2,5) 

%    options.FreqUnits = 'Hz'; 

%    h=bodeplot(GANG5,GANGi5,f_range); grid; 

%    setoptions(h,'FreqUnits','Hz'); 

%    setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

%    title('G5: Noise Sensitivity CH/1+PCH'); legend('non-ideal OpAmps','ideal 

OpAmps') 

%  

% subplot(3,2,6) 

%    options.FreqUnits = 'Hz'; 

%    h=bodeplot(GANG6,GANGi6,f_range); grid; 

%    setoptions(h,'FreqUnits','Hz'); 

%    setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

%    title('G6: Compl Sensitivity PCH/1+PCH'); legend('non-ideal OpAmps','ideal 

OpAmps') 

  

  

% % ----- Pole-Zero Map ----- 

% figure 

% subplot(3,2,1) 

%    pzmap(GANG1,GANGi1) 

%    title('G1: Reference Tracking FPC/1+PCH'); legend('non-ideal 

OpAmps','ideal OpAmps') 

% subplot(3,2,2) 

%    pzmap(GANG2,GANGi2) 

%    title('G2: Ref to P-OpAmp Output FC/1+PCH'); legend('non-ideal 

OpAmps','ideal OpAmps') 

% subplot(3,2,3) 

%    pzmap(GANG3,GANGi3) 
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%    title('G3: Disturbance Rejection P/1+PCH'); legend('non-ideal 

OpAmps','ideal OpAmps') 

% subplot(3,2,4) 

%    pzmap(GANG4,GANGi4) 

%    title('G4: Sensitivity 1/1+PCH'); legend('non-ideal OpAmps','ideal 

OpAmps') 

% subplot(3,2,5) 

%    pzmap(GANG5,GANGi5) 

%    title('G5: Noise Sensitivity CH/1+PCH'); legend('non-ideal OpAmps','ideal 

OpAmps') 

% subplot(3,2,6) 

%    pzmap(GANG6,GANGi6) 

%    title('G6: Compl Sensitivity PCH/1+PCH'); legend('non-ideal OpAmps','ideal 

OpAmps') 

  

  

% ----- Step Response ----- 

figure 

subplot(3,2,1) 

   step(GANG1,GANGi1) 

   title('G1: Reference Tracking FPC/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

   ylabel('Amplitude (A)') 

  

subplot(3,2,2) 

   step(GANG2,GANGi2) 

   title('G2: Ref to P-OpAmp Output FC/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

   ylabel('Amplitude (Volt)') 

  

subplot(3,2,3) 

   step(GANG3,GANGi3) 

   title('G3: Disturbance Rejection P/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

  

subplot(3,2,4) 

   step(GANG4,GANGi4) 

   title('G4: Sensitivity 1/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

  

subplot(3,2,5) 

   step(GANG5,GANGi5) 

   title('G5: Noise Sensitivity CH/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 

  

subplot(3,2,6) 

   step(GANG6,GANGi6) 

   title('G6: Compl Sensitivity PCH/1+PCH'); 

   legend('non-ideal OpAmps','ideal OpAmps') 
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Appendix L 

Matlab Code for Comparison of Current-Loops by 

Changing the Location of Lead Compensator 
 

The lead compensator is put in the feedback path, forward path, and then removed. The results are 

compared. The Matlab code is as follows: 

 

 

 
%-------------------------------------------------------------------------% 

%    Comparison: Lead in Feedback path, Lead in Forward path, No Lead     % 

%                Sajjad Mohammadi, EECS, MIT, August 2021                 % 

%-------------------------------------------------------------------------% 

  

% C506 Current Loop Modeling using ideal Op-Amps 

% Input Block: 1/Z1 

% Feed Forward Path: Compensator FF, Power OpAmp, Actuator  

% Feedback path: Sensor Resistor Rs, Buffer OpAmp, Compensator FB 

  

% clc; clear; 

%% --------------------[ Actuator Gp_exct=Icoil/Vcoil]--------------------- 

% He_exct:      including back-emf 

% He_appr: ignoring back-emf 

% Bode Plot of the Plnat C506 

% with/without back-emf 

  

% J=1.65e-9; % Inretia/mass with mirror from Solid Works 

J  = 1.5077e-09; % Inretia/mass without mirror from Solid Works 

kd = 4.4881e-07; % damping 

ks = 0.0013; % spring 

Rc = 1.76; % coil resistance [ohm] 

Rs = 0.1; % sense resistor [ohm] 

R  = Rc+Rs; 

Lc  = 280e-6; % coil inductance [H] 

% kt=1.836e-3; % torque/force constant, Typical 

kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021 

  

He_exct = tf([J kd ks],[Lc*J R*J+Lc*kd R*kd+ks*kd+kt^2 R*ks]); % Icoil/Vcoil  

with back emf 

He_appr = tf([1],[Lc R]); % Icoil/Vcoil  without back emf 

Hm = tf([kt],[J kd ks]); % Torque/Icoil 

  

  

% Plots 

subplot(2,1,1) 

   options = bodeoptions; 

   options.FreqUnits = 'Hz'; 

   bode(He_exct,He_appr,Hm,options); title ('Actuator Electrical and mechanical 

Part') 

   legend('Gp_exct=Icoil/Vcoil  with bemf','Gp_exct=Icoil/Vcoil without 

bemf','mechanical G_m=T/Icoil') 

subplot(2,1,2) 

   step(He_exct,He_appr) 

   title ('Step Response, Vcoil to Icoil') 

   legend('Model with bemf','Model without bemf (locked rotor)') 
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figure 

pzmap(He_exct,He_appr,Hm);axis equal; title ('Actuator Electrical and 

mechanical Part') 

legend('Gp_exct=Icoil/Vcoil  with bemf','Gp_exct=Icoil/Vcoil  without 

bemf','mechanical G_m=T/Icoil') 

  

  

  

%% ---------------[ Current Sensor Resistor Gcs=Vrs/Icoil]----------------- 

% Converting Coil Current to a Voltage to be measured by buffer OpAmp 

% Vrs=Rs*Icoil 

Rs=0.1; % sense resistor 

Gcs=Rs; % Gs=Vrs/Icoil; 

  

  

  

%% ---------------[ Power OpAmp TF_pAmp_nonideal=Vcoil/Vc]----------------- 

% Increasing Compensator Output Voltage Vc to Coil Voltage Vcoil 

% PowerOpAmp Modeling, LM3886 

% non-ideal OpAmps:  TF_pAmp_nonideal 

% ideal OpAmps:      TF_pAmp_ideal 

  

s=tf([1 0],[1]); 

  

R1_pAmp=64.9e3; % input voltage divider 

R2_pAmp=10e3; % input voltage divider 

Ra_pAmp=10e3; % feedback 

Rb_pAmp=95.3e3; % feedback 

  

% input lag compensation and input resistance of Op-Amp 

Ri_pAmp=6.2e3; % input lag compensation 

Ci_pAmp=470e-12; % input lag compensation 

RiCi_pAmp=Ri_pAmp+1/(Ci_pAmp*s); % series Ri and Ci 

Zin=100e6; % input impedance of Op-Amp 

% Zi_pAmp=RiCi_pAmp*Zin/(RiCi_pAmp+Zin); 

Zi_pAmp=RiCi_pAmp; 

  

% DC Gian 

DC_gain_pAmp = (R2_pAmp/(R1_pAmp+R2_pAmp)) *(1+Rb_pAmp/Ra_pAmp) 

DC_gain_dB_pAmp = 20*log10((R2_pAmp/(R1_pAmp+R2_pAmp)) *(1+Rb_pAmp/Ra_pAmp)) 

  

% Ideal OpAmp 

TF_pAmp_ideal=DC_gain_pAmp; 

  

  

%% --------[ Compensator 1/Z1, FF_Comp_nonideal, FB_Comp_nonideal ]-------- 

% C506 Compensator Op-Amp Modeling, OP1652 

% Forward Path, non-ideal OpAmp:  FF_Comp_nonideal 

% Forward Path, ideal OpAmp:      FF_Comp_ideal 

% Feedback Path non-ideal OpAmp:  FB_Comp_nonideal 

% Feedback Path ideal OpAmp:      FB_Comp_ideal 

% Input Block 1/Z1 

  

s=tf([1 0],[1]); 

  

R1_Comp=5.1e3; % Z1 

Z1=R1_Comp; 

% Lead (Z2) 

% Z2 Components, Lead Compensator 

R2_Comp  = 10e3; % Z2, it sets the bandwidth together with R1_Comp 

% R2p_Comp = 100;  % Z2, It, together with C2_Comp, sets the Lead 

Characteristics, origianl 

% C2_Comp  = 2400e-12; % Z2, original 
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R2p_Comp = 1.1e3;  % Z2, It, together with C2_Comp, sets the Lead 

Characteristics 

C2_Comp  = 2.2e-09; % Z2 

Z2 = R2_Comp; % Lead Compensator is in the forward path 

  

% Lag (Zf) 

% R3_Comp=470e3; % Zf 

R3_Comp = 2e6; 

% C3_Comp=180e-12; % Zf 

C3_Comp = 100e-12; 

  

% Zf = R3_Comp/(R3_Comp*C3_Comp*s+1); % with parallel R3_Comp, Non-pure 

interator 

Zf = 1/(C3_Comp*s); % without parallel R3_Comp, pure integrator 

  

% A: Lead Compensator in Feedback Path, Loop Transmission 

FF_Comp_ideal_A = Zf; 

FB_Comp_ideal_A = (1/Z2) * 

((R2_Comp+R2p_Comp)*C2_Comp*s+1)/(R2p_Comp*C2_Comp*s+1); 

Loop_Comp_ideal_A = FF_Comp_ideal_A * FB_Comp_ideal_A; % Ideal Op-Amp 

  

% B: Lead Compensator in Forward Path, Loop Transmission 

FF_Comp_ideal_B = Zf * ((R2_Comp+R2p_Comp)*C2_Comp*s+1)/(R2p_Comp*C2_Comp*s+1); 

FB_Comp_ideal_B = 1/Z2; 

Loop_Comp_ideal_B = FF_Comp_ideal_B * FB_Comp_ideal_B; % Ideal Op-Amp 

  

% C: No Lead Compensator, Loop Transmission 

FF_Comp_ideal_C = Zf; 

FB_Comp_ideal_C = 1/Z2; 

Loop_Comp_ideal_C = FF_Comp_ideal_C * FB_Comp_ideal_C; % Ideal Op-Am 

  

  

options.FreqUnits = 'Hz'; 

figure; h=bodeplot(Loop_Comp_ideal_A,Loop_Comp_ideal_B,Loop_Comp_ideal_C); 

grid; 

setoptions(h,'FreqUnits','Hz'); 

title('C506 Compensator Loop Transmission'); 

legend('Lead in Feedback Path','Lead in Forward Path', 'No lead') 

  

  

%% --------[ Current Sensor Buffer OpAmp: TF_buff_nonideal=vs/Vrs ]-------- 

% C506 Current Sensor Buffer Op-Amp Modeling, OP1652 

% Conversing the Voltage of current sense resistor to voltage Vs 

% non-ideal OpAmps:  TF_buff_nonideal 

% ideal OpAmps:      TF_buff_ideal 

  

s=tf([1 0],[1]); 

  

R1_buff=1e3; 

R2_buff=10e3; 

  

% Ideal Op-Amp 

TF_buff_ideal = R2_buff/R1_buff; % Ideal Op-Amp 

  

  

%% -----------[ Model Selection: Model with or without back-emf ]----------- 

% Select the Actuator Model? 

% Gp=Gp_exct; % 1: Actuator model with back-emf 

Gp = He_appr;  % 2:Actuator model without back-emf 

  

  

%% ---------------------------[ Block Diagram]----------------------------- 

F=1/Z1; % input block 
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P=Gp; % Actuator 

  

% A: Lead Compensator in Feedback Path 

Ci_A = FF_Comp_ideal_A * TF_pAmp_ideal; % ideal op-amp 

Hi_A = Rs * TF_buff_ideal * FB_Comp_ideal_A; % ideal op-amp 

  

% B: Lead Compensator in Feedback Path 

Ci_B = FF_Comp_ideal_B * TF_pAmp_ideal; % ideal op-amp 

Hi_B = Rs * TF_buff_ideal * FB_Comp_ideal_B; % ideal op-amp 

  

% C: Lead Compensator in Feedback Path 

Ci_C = FF_Comp_ideal_C * TF_pAmp_ideal; % ideal op-amp 

Hi_C = Rs * TF_buff_ideal * FB_Comp_ideal_C; % ideal op-amp 

  

  

%% ----------------[ Current Loop, Loop Transmission PC]------------------- 

  

LT_CurrentLoop_ideal_A = P*Ci_A*Hi_A;  % Closed-Loop, Ideal OpAmps 

LT_CurrentLoop_ideal_B = P*Ci_B*Hi_B  % Closed-Loop, Ideal OpAmps 

LT_CurrentLoop_ideal_C = P*Ci_A*Hi_C;  % Closed-Loop, Ideal OpAmps 

  

% Plots 

figure 

options.FreqUnits = 'Hz'; 

h=bodeplot(LT_CurrentLoop_ideal_A,LT_CurrentLoop_ideal_B,LT_CurrentLoop_ideal_C

,{10,1e8}); grid; 

title('Loop Transmision Bode ') 

legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

setoptions(h,'FreqUnits','Hz'); 

  

% figure 

% margin(LT_CurrentLoop_ideal_A,LT_CurrentLoop_ideal_B,LT_CurrentLoop_ideal_C); 

grid; 

  

%% ----------[Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]------------ 

% Reference tracking PCF/1+PCH 

  

GANGi1_A = F*P*Ci_A/(1+P*Ci_A*Hi_A);  % Closed-Loop, Ideal OpAmps 

GANGi1_B = F*P*Ci_B/(1+P*Ci_B*Hi_B);  % Closed-Loop, Ideal OpAmps 

GANGi1_C = F*P*Ci_C/(1+P*Ci_C*Hi_C);  % Closed-Loop, Ideal OpAmps 

  

DC_gain_CurrentLoop = R2_Comp/R1_Comp 

DC_gain_dB_CurrentLoop = 20*log10(R2_Comp/R1_Comp) 

  

  

%% -------[Gang 2: Reference to Power Op-Amp output Voltage FC/1+PCH]------ 

  

GANGi2_A = F*Ci_A/(1+P*Ci_A*Hi_A);  % Closed-Loop, Ideal OpAmps 

GANGi2_B = F*Ci_B/(1+P*Ci_B*Hi_B);  % Closed-Loop, Ideal OpAmps 

GANGi2_C = F*Ci_C/(1+P*Ci_C*Hi_C);  % Closed-Loop, Ideal OpAmps 

  

%% ---------------[Gang 3: Disturbance Rejection  P/1+PCH]----------------- 

% Disturbance to plant output 

GANGi3_A = P/(1+P*Ci_A*Hi_A);  % Closed-Loop, Ideal OpAmps 

GANGi3_B = P/(1+P*Ci_B*Hi_B);  % Closed-Loop, Ideal OpAmps 

GANGi3_C = P/(1+P*Ci_C*Hi_C);  % Closed-Loop, Ideal OpAmps 

  

%% --------------------[Gang 4: Sensitivity 1/1+PCH]----------------------- 

% measurement noise to plant output 

GANGi4_A = 1/(1+P*Ci_A*Hi_A);  % Closed-Loop, Ideal OpAmps 

GANGi4_B = 1/(1+P*Ci_B*Hi_B);  % Closed-Loop, Ideal OpAmps 

GANGi4_C = 1/(1+P*Ci_C*Hi_C);  % Closed-Loop, Ideal OpAmps 
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%% ------------------[Gang 5: Noise Sensitivity CH/1+PCH]------------------ 

% Noise to controller (power op-amp) output 

GANGi5_A = Ci_A*Hi_A/(1+P*Ci_A*Hi_A);  % Closed-Loop, Ideal OpAmps 

GANGi5_B = Ci_B*Hi_B/(1+P*Ci_B*Hi_B);  % Closed-Loop, Ideal OpAmps 

GANGi5_C = Ci_C*Hi_C/(1+P*Ci_C*Hi_C);  % Closed-Loop, Ideal OpAmps 

  

%% --------------[Gang 6: Complementary Sensitivity PCH/1+PCH]------------- 

% Disturbance to controller (power op-amp) output 

GANGi6_A = P*Ci_A*Hi_A/(1+P*Ci_A*Hi_A);  % Closed-Loop, Ideal OpAmps 

GANGi6_B = P*Ci_B*Hi_B/(1+P*Ci_B*Hi_B);  % Closed-Loop, Ideal OpAmps 

GANGi6_C = P*Ci_C*Hi_C/(1+P*Ci_C*Hi_C);  % Closed-Loop, Ideal OpAmps 

  

%% -----[ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------ 

  

% ----- Bode Plot ----- 

figure 

subplot(3,2,1) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi1_A,GANGi1_B,GANGi1_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G1: Reference Tracking FPC/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,2) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi2_A,GANGi2_B,GANGi2_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G2: Ref to P-OpAmp Output FC/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,3) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi3_A,GANGi3_B,GANGi3_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G3: Disturbance Rejection P/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,4) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi4_A,GANGi4_B,GANGi4_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G4: Sensitivity 1/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,5) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi5_A,GANGi5_B,GANGi5_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G5: Noise Sensitivity CH/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No lead') 

  

subplot(3,2,6) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi6_A,GANGi1_B,GANGi1_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G6: Compl Sensitivity PCH/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

  

% ----- Magnitude-only Bode Plot ----- 

figure 

subplot(3,2,1) 
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   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi1_A,GANGi1_B,GANGi1_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G1: Reference Tracking FPC/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,2) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi2_A,GANGi2_B,GANGi2_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G2: Ref to P-OpAmp Output FC/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,3) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi3_A,GANGi3_B,GANGi3_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G3: Disturbance Rejection P/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,4) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi4_A,GANGi4_B,GANGi4_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G4: Sensitivity 1/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,5) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi5_A,GANGi5_B,GANGi5_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G5: Noise Sensitivity CH/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,6) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANGi6_A,GANGi6_B,GANGi6_C,{10,1e9}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G6: Compl Sensitivity PCH/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

  

% ----- Pole-Zero Map ----- 

figure 

subplot(3,2,1) 

   pzmap(GANGi1_A,GANGi1_B,GANGi1_C) 

   title('G1: Reference Tracking FPC/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

subplot(3,2,2) 

   pzmap(GANGi2_A,GANGi2_B,GANGi2_C) 

   title('G2: Ref to P-OpAmp Output FC/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

subplot(3,2,3) 

   pzmap(GANGi3_A,GANGi3_B,GANGi3_C) 

   title('G3: Disturbance Rejection P/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

subplot(3,2,4) 



320 

 

   pzmap(GANGi4_A,GANGi4_B,GANGi4_C) 

   title('G4: Sensitivity 1/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

subplot(3,2,5) 

   pzmap(GANGi5_A,GANGi5_B,GANGi5_C) 

   title('G5: Noise Sensitivity CH/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

subplot(3,2,6) 

   pzmap(GANGi6_A,GANGi6_B,GANGi6_C) 

   title('G6: Compl Sensitivity PCH/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

% ----- Step Response ----- 

figure 

subplot(3,2,1) 

   step(GANGi1_A,GANGi1_B,GANGi1_C) 

   title('G1: Reference Tracking FPC/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

   ylabel('Amplitude (A)') 

  

subplot(3,2,2) 

   step(GANGi2_A,GANGi2_B,GANGi2_C) 

   title('G2: Ref to P-OpAmp Output FC/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

   ylabel('Amplitude (Volt)') 

  

subplot(3,2,3) 

   step(GANGi3_A,GANGi3_B,GANGi3_C) 

   title('G3: Disturbance Rejection P/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,4) 

   step(GANGi4_A,GANGi4_B,GANGi4_C) 

   title('G4: Sensitivity 1/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,5) 

   step(GANGi5_A,GANGi5_B,GANGi5_C) 

   title('G5: Noise Sensitivity CH/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 

  

subplot(3,2,6) 

   step(GANGi6_A,GANGi6_B,GANGi6_C) 

   title('G6: Compl Sensitivity PCH/1+PCH') 

   legend('Lead in Feedback Path','Lead in Forward Path', 'No Lead') 
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Appendix M 

Matlab Code for Comparison of Current-Loops by 

Changing the Location of Lead Compensator 
 

 

 

The Matlab code is given below: 
 

 

 
%-------------------------------------------------------------------------% 

%              Current Loop Modeling including Eddy Current               % 

%                         Frequency Domain s=jw                           % 

%                    Using ideal and non-ideal Op-Amps                    % 

%                Sajjad Mohammadi, EECS, MIT, August 2021                 % 

%-------------------------------------------------------------------------% 

  

% Including 3 Op-Amps 

% Input Block: 1/Z1 

% Feed Forward Path: Compensator FF, Power OpAmp, Actuator  

% Feedback path: Sensor Resistor Rs, Buffer OpAmp, Compensator FB 

  

%% --------------------[ Actuator Gp_exct=Icoil/Vcoil]--------------------- 

  

% Load Experimental data 

% run FrequencyTimeResponse_Control_Experiment 

  

% frequency range for plots 

ff = logspace(0,7,2000);% frequency [Hz] 

omegaa=2*pi*ff; 

s = 1i * omegaa; 

  

  

% J=1.65e-9; % Inretia/mass with mirror from Solid Works 

J  = 1.5077e-09; % Inretia/mass without mirror from Solid Works 

kd = 4.4881e-07; % damping 

ks = 0.0013; % spring 

Rc = 1.76; % coil resistance [ohm] 

Rs = 0.1; % sense resistor [ohm] 

R  = Rc+Rs; 

Lc  = 280e-6; % coil inductance [H] 

% kt = 1.836e-3; % torque/force constant, Typical 

kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021 

  

  

  

  

%% ----------------- [Electrical Dynamic with Eddy Current] --------------- 

  

  

% from identification, File: Diffusion1D2D 

mu_sigma_i = 3.2035; 

mu_sigma_m = 2.8227; 

  

d  = 0.35*1e-3; % Lamination Thickness [m] 

wp = 4.72e-3; % pole width, 4.72mm directly measured from geometry 

L  = 4.191*1e-3; % Axial Length of Actuator [m] 
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a = wp/2; % Rectangle Width=2a 

b = L/2; % Rectangle Height=2*b 

w = sqrt(4*a*b)/2; % square approximation of the rectangle: side=2*w 

  

Rc = 1.76; % coil resistance [ohm] 

Rs = 0.1; % sense resistor [ohm] 

R  = Rc+Rs; 

Lc0 = 295e-6; % Low-frequency inductance 

  

Q_i =  sqrt(i*omegaa* mu_sigma_i)*d/2; 

Q_m = ( w * sqrt( (pi/(2*w)).^2 +  i * omegaa * mu_sigma_m )-pi/2)/(1+pi/2); 

  

% Taylor Approximation of Qm with three first for faractional order modeling 

% aa = (pi/(2*w)); 

% Q_m = ( w * ( aa + (1/(2*aa)).* i * omegaa * kk_m*mu_eff_m*sigma_m  -  

(1/(8*aa^3)).* (i * omegaa *kk_m* mu_eff_m*sigma_m).^2 ) -pi/2)/(1+pi/2); 

  

  

Q   =  Q_i + Q_m; 

  

% RL without back-emf (locked) 

He = 1./(R+i*omegaa*Lc0); 

  

% RL model with back-emf (unlocked) 

% He_exct = tf([J kd ks],[Lc*J R*J+Lc*kd R*kd+ks*kd+kt^2 R*ks]); % Icoil/Vcoil  

with back emf 

He_exct = (J*s.^2 + kd*s + ks)./( Lc*J*s.^3 + (R*J+Lc*kd)*s.^2 + 

(R*kd+ks*kd+kt^2)*s + R*ks ); 

  

  

% RL including eddy effect 

He_eddy = (1 + Q)./(R + i*omegaa*Lc0 + R*Q); 

  

% Mechanical Dynamic 

Hm = kt./(J*s.^2+kd*s+ks); 

  

  

  

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(He)),'--',...      % RL Model without back-emf 

            ff, 20*log10(abs(He_exct)),'-.',... % RL Model with back-emf 

            ff, 20*log10(abs(He_eddy)),'--',... % Model with eddy 

            He_appr_exp(:,1), He_appr_exp(:,2),'k',... % Experiment Locked 

            He_exct_exp(:,1), He_exct_exp(:,2),'b--',... % Experiment unlocked 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Magnitude (dB)') 

   title('Q_m=\phi/\phi_0') 

   % xlim([10^1 10^7]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*angle(He),'--',...      % RL Model without back-emf 

            ff, (180/pi)*angle(He_exct),'-.',...  % RL Model with back-emf 

            ff, (180/pi)*angle(He_eddy),'--',... % Model with eddy 

            He_appr_exp(:,1), He_appr_exp(:,3),'k',... % Experiment Locked 

            He_exct_exp(:,1), He_exct_exp(:,3),'b--',... % Experiment unlocked 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('RL Model, locked','RL Model, unlocked','Eddy Model','Expr, 

locked','Expr, unlocked') 

   % xlim([10^1 10^7]) 

  

% Plot mechanical dynamic 
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figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(Hm)),'r',...       %  Model 

            Hm_expr(:,1), Hm_expr(:,2),'b--',... % Experiment  

            'LineWidth',1); grid 

   ylabel('Magnitude (dB)') 

   xlim([10^1 10^4]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*angle(Hm),'r',...      % Model 

            Hm_expr(:,1), unwrap(Hm_expr(:,3)),'b--',... % Experiment  

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model','Experiment') 

   xlim([10^1 10^4]) 

  

    

 % Plot mechanical dynamic WITH fRICTION TESTS 

figure 

subplot(2,1,1) 

   semilogx(Friction_10mv_Bode(:,1), Friction_10mv_Bode(:,2),'--',... 

            Friction_20mv_Bode(:,1), Friction_20mv_Bode(:,2),'--',... 

            Friction_30mv_Bode(:,1), Friction_30mv_Bode(:,2),'--',... 

            Friction_40mv_Bode(:,1), Friction_40mv_Bode(:,2),'g--',... 

            Hm_expr(:,1), Hm_expr(:,2),'--r',... % Experiment  

            ff, 20*log10(abs(Hm)),'k',...       %  Model 

            'LineWidth',0.7); grid 

   ylabel('Magnitude (dB)') 

   xlim([10^1 10^3]); ylim([-30 17]) 

subplot(2,1,2) 

   semilogx(Friction_10mv_Bode(:,1), Friction_10mv_Bode(:,3),'--',... 

            Friction_20mv_Bode(:,1), Friction_20mv_Bode(:,3),'--',... 

            Friction_30mv_Bode(:,1), Friction_30mv_Bode(:,3),'--',... 

            Friction_40mv_Bode(:,1), Friction_40mv_Bode(:,3),'g--',... 

            Hm_expr(:,1), unwrap(Hm_expr(:,3)),'--r',... % Experiment  

            ff, (180/pi)*angle(Hm),'k',...      % Model 

            'LineWidth',0.7); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('10mv, 20mA','20mv, 40mA','30mv, 60mA','40mv, 80mA','60mv, 120mA, 

Hm','Model') 

   xlim([10^1 10^3]); ylim([-180 0]) 

   yticks([-180 -90 0]) 

    

    

  

  

%% ---------------[ Current Sensor Resistor Gcs=Vrs/Icoil]----------------- 

% Converting Coil Current to a Voltage to be measured by buffer OpAmp 

% Vrs=Rs*Icoil 

Rs  = 0.1; % sense resistor 

Gcs = Rs; % Gs=Vrs/Icoil; 

  

  

  

%% ---------------[ Power OpAmp TF_pAmp_nonideal=Vcoil/Vc]----------------- 

% Increasing Compensator Output Voltage Vc to Coil Voltage Vcoil 

% PowerOpAmp Modeling, LM3886 

% non-ideal OpAmps:  TF_pAmp_nonideal 

% ideal OpAmps:      TF_pAmp_ideal 

  

  

% Voltage Divider 

R1_pAmp = 64.9e3; %  voltage divider 

R2_pAmp = 10e3; %  voltage divider 
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% Power Op-Amp 

Ra_pAmp = 10e3; % feedback 

Rb_pAmp = 95.3e3; % feedback 

  

% input lag compensation and input resistance of Op-Amp 

Ri_pAmp   = 6.2e3; % input lag compensation 

Ci_pAmp   = 470e-12; % input lag compensation 

RiCi_pAmp = Ri_pAmp+1./(Ci_pAmp*s); % series Ri and Ci 

Zin       = 100e6; % input impedance of Op-Amp 

% Zi_pAmp = RiCi_pAmp*Zin/(RiCi_pAmp+Zin); 

Zi_pAmp   = RiCi_pAmp; 

  

  

% Op-Amp Open-Loop Gain Transfer Function A(s), LM3886 

GBP_pAmp = 8e6; % Gain-Bandwidth Product [Hz] 

Avo_pAmp = 10^(115/20); % Open-Loop DC-gain 

f1_pAmp  = GBP_pAmp./Avo_pAmp; w1_pAmp=2*pi*f1_pAmp; % pole 1 

f2_pAmp  = 1.5e6;   w2_pAmp=2*pi*f2_pAmp; % pole 2, usually less than GWB 

f3_pAmp  = 2.9e6;   w3_pAmp=2*pi*f3_pAmp; % pole 3, usually between f2 and GWB 

  

A1_pAmp = Avo_pAmp.*w1_pAmp ./(s+w1_pAmp); % 1st-order model 

A2_pAmp = Avo_pAmp.*w1_pAmp.*w2_pAmp ./((s+w1_pAmp).*(s+w2_pAmp)); % 2nd-order 

model 

A3_pAmp = Avo_pAmp.*w1_pAmp.*w2_pAmp*w3_pAmp 

./((s+w1_pAmp).*(s+w2_pAmp).*(s+w3_pAmp)); % 2nd-order model 

  

A_pAmp  = A3_pAmp; % Order selection 

  

  

% Non-Ideal OpAmp, Uncompensated 

FF_pAmp = (R2_pAmp./(R1_pAmp+R2_pAmp)) .* A_pAmp; % Feed Forward 

FB_pAmp = (Ra_pAmp./(Ra_pAmp+Rb_pAmp)) .* ((R1_pAmp+R2_pAmp)./R2_pAmp); % 

Feedback 

LT_pAmp = FF_pAmp.*FB_pAmp; % Loop Transmision 

TF_pAmp_nonideal = FF_pAmp./(1+FF_pAmp.*FB_pAmp); % Closed-Loop (internal loop) 

  

% Non-Ideal OpAmp, Compensated with Ri & Ci at input 

FF_pAmp_comp = (R2_pAmp./(R1_pAmp+R2_pAmp)) .* ( Zi_pAmp./(Zi_pAmp + 

(R1_pAmp.*R2_pAmp./(R1_pAmp+R2_pAmp)) + (Ra_pAmp.*Rb_pAmp./(Ra_pAmp+Rb_pAmp))) 

) .* A_pAmp; % Feed Forward 

FB_pAmp_comp = (Ra_pAmp./(Ra_pAmp+Rb_pAmp)) .* ((R1_pAmp+R2_pAmp)./R2_pAmp); % 

Feedback 

LT_pAmp_comp = FF_pAmp_comp.*FB_pAmp_comp; % Loop Transmision 

TF_pAmp_nonideal_comp = FF_pAmp_comp./(1+FF_pAmp_comp.*FB_pAmp_comp); % Closed-

Loop 

  

% DC Gian 

DC_gain_pAmp    = (R2_pAmp./(R1_pAmp+R2_pAmp)) .*(1+Rb_pAmp./Ra_pAmp) 

DC_gain_dB_pAmp = 20*log10((R2_pAmp./(R1_pAmp+R2_pAmp)) .*(1+Rb_pAmp/Ra_pAmp)) 

  

% Ideal OpAmp 

TF_pAmp_ideal   = DC_gain_pAmp; 

  

  

  

mag_TF_pAmp_nonideal = 20*log10(abs(TF_pAmp_nonideal)); 

phase_TF_pAmp_nonideal = (180/pi)*unwrap(angle(TF_pAmp_nonideal)); 

  

subplot(2,1,1) 

   semilogx(ff, mag_TF_pAmp_nonideal,... 

            'LineWidth',1); grid 

   % xlabel('frequency (Hz)') 
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   ylabel('Magn (dB)') 

   % set(gca,'xtick',[]); 

   % ax = gca; ax.XGrid = 'on'; ax.YGrid = 'on'; 

subplot(2,1,2) 

   semilogx(ff, phase_TF_pAmp_nonideal,... 

            'LineWidth',1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

  

  

  

%% --------[ Compensator 1/Z1, FF_Comp_nonideal, FB_Comp_nonideal ]-------- 

% C506 Compensator Op-Amp Modeling, OP1652 

% Forward Path, non-ideal OpAmp:  FF_Comp_nonideal 

% Forward Path, ideal OpAmp:      FF_Comp_ideal 

% Feedback Path non-ideal OpAmp:  FB_Comp_nonideal 

% Feedback Path ideal OpAmp:      FB_Comp_ideal 

% Input Block 1/Z1 

  

% Z1 Components 

R1_Comp = 5.1e3; % Z0 

Z1      = R1_Comp; 

  

% Z2 Components, Lead Compensator 

R2_Comp  = 10e3; % Z2, it sets the bandwidth together with R1_Comp 

  

% R2p_Comp = 100;  % Z2, It, together with C2_Comp, sets the Lead 

Characteristics, origianl 

% C2_Comp  = 2400e-12; % Z2, original 

R2p_Comp = 1.1e3;  % Z2, It, together with C2_Comp, sets the Lead 

Characteristics 

C2_Comp  = 2.2e-09; % Z2 

  

Z2       = 

R2_Comp.*(R2p_Comp.*C2_Comp.*s+1)./((R2_Comp+R2p_Comp).*C2_Comp*s+1); 

  

% Zf Components, Lag Compensator 

% R3_Comp = 2e6; % Zf , large paralle resistor to limit the integrator 

 % R3_Comp = 470e3; % Zf , original value, large paralle resistor to limit the 

integrator 

 R3_Comp = 2e6; 

  

% C3_Comp = 180e-12; % Zf, original 

C3_Comp = 100e-12; 

  

Zf      = R3_Comp./(R3_Comp.*C3_Comp.*s+1); % with parallel R3_Comp, Non-pure 

interator 

% Zf    = 1/(C3_Comp*s); % without parallel R3_Comp, pure integrator 

  

% Op-Amp Open-Loop Transfer Function A(s), , OP1652 

GBP_Comp = 18e6; % Gain-Bandwidth Product [Hz] 

Avo_Comp = 10^(114/20); % Open-Loop DC-gain 

f1_Comp  = GBP_Comp./Avo_Comp; w1_Comp=2*pi*f1_Comp; % pole 1 

f2_Comp  = 1.5e7;   w2_Comp=2*pi*f2_Comp; % pole 2, not found in datasheet 

f3_Comp  = 2.9e7;   w3_Comp=2*pi*f3_Comp; % pole 3, not found in datasheet 

  

A1_Comp  = Avo_Comp.*w1_Comp ./(s+w1_Comp); % 1st-order model 

A2_Comp  = Avo_Comp.*w1_Comp.*w2_Comp ./((s+w1_Comp).*(s+w2_Comp)); % 2nd-order 

model 

A3_Comp  = Avo_Comp.*w1_Comp.*w2_Comp.*w3_Comp 

./((s+w1_Comp).*(s+w2_Comp).*(s+w3_Comp)); % 2nd-order model 

  

A_Comp  = A3_Comp; % Order selection 
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% options.FreqUnits = 'Hz'; 

% figure; h=bodeplot(A_Comp,{1,1e10}); grid title('Open-Loop Gain A') 

% setoptions(h,'FreqUnits','Hz'); 

  

% Loop Transmission, Ideal Op-Amp 

FF_Comp_ideal   = Zf; 

FB_Comp_ideal   = 1./Z2; 

Loop_Comp_ideal = FF_Comp_ideal .* FB_Comp_ideal; % Ideal Op-Amp 

  

% Loop Transmission, Non-Ideal Op-Amp 

FF_int_Comp      = Zf .* ( (Z1.*Z2)./(Z1.*Z2+Z1.*Zf+Z2.*Zf) ) .* A_Comp; % Feed 

Forward, internal OpAmp Loop 

FB_int_Comp      = 1./Zf; % Feedback path of internal OpAmp Loop 

  

FF_Comp_nonideal = FF_int_Comp./(1+FF_int_Comp.*FB_int_Comp); % Closed-Loop 

(internal loop), FF part of the compensator 

FB_Comp_nonideal = 1./Z2; % FB part of the compensator 

Loop_Comp        = FF_Comp_nonideal .* FB_Comp_nonideal; % Non-Ideal Op-Amp 

  

  

% ideal 

mag_Loop_Comp_ideal = 20*log10(abs(Loop_Comp_ideal)); 

phase_Loop_Comp_ideal = (180/pi)*unwrap(angle(Loop_Comp_ideal)); 

% non ideal 

mag_Loop_Comp = 20*log10(abs(Loop_Comp)); 

phase_Loop_Comp = (180/pi)*unwrap(angle(Loop_Comp)); 

  

  

subplot(2,1,1) 

   semilogx(ff, mag_Loop_Comp_ideal,... 

            ff, mag_Loop_Comp,... 

            Bode_Comp(:,1), Bode_Comp(:,2),... % Comp Expr 

            'LineWidth',1); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   % set(gca,'xtick',[]); 

   % ax = gca; ax.XGrid = 'on'; ax.YGrid = 'on'; 

subplot(2,1,2) 

   semilogx(ff, phase_Loop_Comp_ideal,... 

            ff, phase_Loop_Comp,... 

            Bode_Comp(:,1), Bode_Comp(:,3)-180,... % Comp Expr, subtracted by 

180 

            'LineWidth',1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   title('C506 Compensator Loop Transmission'); legend('ideal','non-ideal', 

'Expr') 

  

  

%% --------[ Current Sensor Buffer OpAmp: TF_buff_nonideal=vs/Vrs ]-------- 

% C506 Current Sensor Buffer Op-Amp Modeling, OP1652 

% Conversing the Voltage of current sense resistor to voltage Vs 

% non-ideal OpAmps:  TF_buff_nonideal 

% ideal OpAmps:      TF_buff_ideal 

R1_buff = 1e3; 

R2_buff = 10e3; 

  

% Op-Amp Open-Loop Transfer Function A(s), , OP1652 

GBP_buff = 18e6; % Gain-Bandwidth Product [Hz] 

Avo_buff = 10^(114/20); % Open-Loop DC-gain 

f1_buff  = GBP_buff./Avo_buff; w1_buff=2*pi*f1_buff; % pole 1 

f2_buff  = 1.5e7;   w2_buff=2*pi*f2_buff; % pole 2, not found in datasheet 

f3_buff  = 2.9e7;   w3_buff=2*pi*f3_buff; % pole 3, not found in datasheet 
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A1_buff  = Avo_buff*w1_buff ./(s+w1_buff); % 1st-order model 

A2_buff  = Avo_buff.*w1_buff.*w2_buff ./((s+w1_buff).*(s+w2_buff)); % 2nd-order 

model 

A3_buff  = Avo_buff*w1_buff.*w2_buff.*w3_buff 

./((s+w1_buff).*(s+w2_buff).*(s+w3_buff)); % 2nd-order model 

  

A_buff   = A3_buff; % Order selection 

  

% Ideal Op-Amp 

TF_buff_ideal = R2_buff./R1_buff; % Ideal Op-Amp 

  

% Loop Transmission, Non-Ideal Op-Amp 

FF_int_buff = (R2_buff./(R1_buff+R2_buff)) * A_buff; % Feed Forward, internal 

OpAmp Loop 

FB_int_buff = R1_buff./R2_buff; % Feedback path of internal OpAmp Loop 

TF_buff_nonideal = FF_int_buff./(1+FF_int_buff.*FB_int_buff); 

  

% ideal 

mag_TF_buff_nonideal = 20*log10(abs(TF_buff_nonideal)); 

phase_TF_buff_nonideal = (180/pi)*unwrap(angle(TF_buff_nonideal)); 

  

% Plot 

subplot(2,1,1) 

   semilogx(ff, mag_TF_buff_nonideal,... 

            'LineWidth',1); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   % set(gca,'xtick',[]); 

   % ax = gca; ax.XGrid = 'on'; ax.YGrid = 'on'; 

subplot(2,1,2) 

   semilogx(ff, phase_TF_buff_nonideal,... 

            'LineWidth',1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

  

  

  

%% -----------[ Model Selection: Model with or without back-emf ]----------- 

% Select the Actuator Model? 

Gp_RL=He; % without eddy. RL Model 

Gp = He_eddy;  % with eddy 

  

  

  

%% ---------------------------[ Block Diagram]----------------------------- 

F  = 1./Z1; % input block 

  

P  = Gp; % Actuator 

P_RL  = Gp_RL; % Actuator 

  

% C  = FF_Comp_nonideal * TF_pAmp_nonideal_comp; % non-ideal op-amp, Power op-

amp with compensator 

C  = FF_Comp_nonideal .* TF_pAmp_nonideal; % non-ideal op-amp, Power op-amp 

without compensator 

Ci = FF_Comp_ideal .* TF_pAmp_ideal; % ideal op-amp 

  

H  = Rs .* TF_buff_nonideal .* FB_Comp_nonideal; % non-ideal op-amp 

Hi = Rs .* TF_buff_ideal .* FB_Comp_ideal; % ideal op-amp 

  

  

  

%% ----------------[ Current Loop, Loop Transmission PCH]------------------- 

% Loop, non-ideal 

LT_CurrentLoop       = P.*C.*H;  % Closed-Loop, Non-Ideal OpAmps 
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mag_LT_CurrentLoop = 20*log10(abs(LT_CurrentLoop)); % mag 

phase_LT_CurrentLoop = (180/pi)*unwrap(angle(LT_CurrentLoop)); % phase 

% The loop excluding compensator, non-ideal 

LT_CurrentLoop_rest       = P.*TF_pAmp_nonideal.*TF_buff_nonideal.*Rs;  % 

Closed-Loop, Non-Ideal OpAmps 

mag_LT_CurrentLoop_rest = 20*log10(abs(LT_CurrentLoop_rest)); % mag 

phase_LT_CurrentLoop_rest = (180/pi)*unwrap(angle(LT_CurrentLoop_rest)); % 

phase 

  

% Loop Transmission, non-ideal, only RL model of electrical dynamic, P=He 

LT_CurrentLoop_RL       = He.*C.*H;  % Closed-Loop, Non-Ideal OpAmps 

mag_LT_CurrentLoop_RL = 20*log10(abs(LT_CurrentLoop_RL)); % mag 

phase_LT_CurrentLoop_RL = (180/pi)*unwrap(angle(LT_CurrentLoop_RL)); % phase 

  

% Loop, ideal 

LT_CurrentLoop_ideal = P.*Ci.*Hi;  % Closed-Loop, Ideal OpAmps 

mag_LT_CurrentLoop_ideal = 20*log10(abs(LT_CurrentLoop_ideal)); % mag 

phase_LT_CurrentLoop_ideal = (180/pi)*unwrap(angle(LT_CurrentLoop_ideal)); % 

phase 

% The loop excluding compensator, ideal 

LT_CurrentLoop_ideal_rest = P.*TF_pAmp_ideal.*TF_buff_ideal.*Rs;  % Closed-

Loop, Ideal OpAmps 

mag_LT_CurrentLoop_ideal_rest = 20*log10(abs(LT_CurrentLoop_ideal_rest)); % mag 

phase_LT_CurrentLoop_ideal_rest = 

(180/pi)*unwrap(angle(LT_CurrentLoop_ideal_rest)); % phase 

  

% Plots Non-Ideal 

subplot(2,1,1) 

   semilogx(ff, mag_Loop_Comp,'m',... 

            Bode_Comp(:,1), Bode_Comp(:,2),'k--',...  % Comp Expr,  

            ff, mag_LT_CurrentLoop_rest,'g',... 

            Bode_LT(:,1), Bode_LT(:,2)+14.6-Bode_Comp(:,2),'k--',... % Rest, 

Expr 

            ff, mag_LT_CurrentLoop,'r',...    % Eddy Model 

            ff, mag_LT_CurrentLoop_RL,'b',... % RL model 

            Bode_LT(:,1), Bode_LT(:,2)+14.6,'k--',... % LT Expr, add by 14.9 

because it was attentuated for measurement 

            'LineWidth',1); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)'); ylim([-40 50]); xlim([10^1 10^5]) 

   % title('Decomposition of Loop Transmision, nonideal op-amps '); 

   xticks([10^1, 10^2 10^3,10^4,10^5]) 

subplot(2,1,2) 

   semilogx(ff, phase_Loop_Comp,'m',... 

            Bode_Comp(:,1), Bode_Comp(:,3)-180,'k--',... % Comp Expr, 

subtracted by 180 

            ff, phase_LT_CurrentLoop_rest,'g',... 

            Bode_LT(:,1), Bode_LT(:,3)-180-(Bode_Comp(:,3)-180),'k--',... % 

Rest, Expr 

            ff, phase_LT_CurrentLoop,'r',... % Eddy Model 

            ff, phase_LT_CurrentLoop_RL,'b',... % RL Model 

            Bode_LT(:,1), Bode_LT(:,3)-180,'k--',... % LT Expr, subtracted by 

180 

            'LineWidth',1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)');  ylim([-180 0]); xlim([10^1 

10^5]) 

   legend('Comp, Model','Comp, Expr','Rest, Model','Rest, Expr','LT, Eddy 

Model','LT, RL Model','LT Expr') 

   xticks([10^1, 10^2 10^3,10^4,10^5]); yticks([-180,-90,0]) 

  

    

% Plots Ideal 

figure 
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subplot(2,1,1) 

   semilogx(ff, mag_Loop_Comp_ideal,... 

            Bode_Comp(:,1), Bode_Comp(:,2),...  % Comp Expr,  

            ff, mag_LT_CurrentLoop_ideal_rest,... 

            Bode_LT(:,1), Bode_LT(:,2)+14.6-Bode_Comp(:,2),... % Rest, Expr 

            ff, mag_LT_CurrentLoop_ideal,... 

            Bode_LT(:,1), Bode_LT(:,2)+14.6,... % LT Expr, add by 14.9 because 

it was attentuated for measurement 

            'LineWidth',1); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   title('Decomposition of Loop Transmision, ideal op-amps '); 

   legend('Compensator','Compensator Expr','Rest of Loop','Rest of Loop 

Expr','Loop Trans','LT Exp') 

subplot(2,1,2) 

   semilogx(ff, phase_Loop_Comp_ideal,... 

            Bode_Comp(:,1), Bode_Comp(:,3)-180,... % Comp Expr, subtracted by 

180 

            ff, phase_LT_CurrentLoop_ideal_rest,... 

            Bode_LT(:,1), Bode_LT(:,3)-180-(Bode_Comp(:,3)-180),... % Rest, 

Expr 

            ff, phase_LT_CurrentLoop_ideal,... 

            Bode_LT(:,1), Bode_LT(:,3)-180,... % LT Expr, subtracted by 180 

            'LineWidth',1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

  

  

% Loop Transmission, ideal and non-ideal op-amps 

figure 

subplot(2,1,1) 

   semilogx(ff, mag_LT_CurrentLoop,... 

            ff, mag_LT_CurrentLoop_ideal,... 

            Bode_LT(:,1), Bode_LT(:,2)+14.6,... % LT Expr, add by 14.9 because 

it was attentuated for measurement 

            'LineWidth',1); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   title('Loop Transmision Bode '); 

   legend('non-ideal OpAmps','ideal OpAmps','Expr') 

subplot(2,1,2) 

   semilogx(ff, phase_LT_CurrentLoop,... 

            ff, phase_LT_CurrentLoop_ideal,... 

            Bode_LT(:,1), Bode_LT(:,3)-180,... % LT Expr, subtracted by 180 

            'LineWidth',1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

  

  

% Nyquist and sensitivity circle 

figure; 

plot(real(LT_CurrentLoop),imag(LT_CurrentLoop),'r',... 

     real(LT_expr(1:1990)),imag(LT_expr(1:1990)),'k--',... 

                  'LineWidth',1.1); grid on 

xlabel('real'); ylabel('imaginary') 

legend('Model','Expr') 

title('Nyquist and sensitivity circle') 

axis equal 

    

%% ----------[Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]------------ 

% Reference tracking PCF/1+PCH 

  

% Eddy Model of Electrical Dynamic, non-ideal op-amps 

GANG1  = F.*P.*C./(1+P.*C.*H);  % Closed-Loop, Non-Ideal OpAmps 

mag_GANG1 = 20*log10(abs(GANG1)); 
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phase_GANG1 = (180/pi)*unwrap(angle(GANG1)); 

  

% RL Model of Electrical Dynamic, non-ideal op-amps 

GANG1_RL  = F.*P_RL.*C./(1+P_RL.*C.*H);  % Closed-Loop, Non-Ideal OpAmps 

mag_GANG1_RL = 20*log10(abs(GANG1_RL)); 

phase_GANG1_RL = (180/pi)*unwrap(angle(GANG1_RL)); 

  

% Eddy Model of Electrical Dynamic, ideal op-amps 

GANGi1 = F.*P.*Ci./(1+P.*Ci.*Hi);  % Closed-Loop, Ideal OpAmps 

mag_GANGi1 = 20*log10(abs(GANGi1)); 

phase_GANGi1 = (180/pi)*unwrap(angle(GANGi1)); 

  

DC_gain_CurrentLoop_PureIntegrator = R2_Comp/R1_Comp 

DC_gain_dB_CurrentLoop_PureIntegrator = 20*log10(R2_Comp/R1_Comp) 

  

DC_gain_dB_CurrentLoop_NonPureIntegrator = mag_GANG1(1) 

DC_gain_CurrentLoop_NonPureIntegrator = 10^(mag_GANG1(1)/20) 

  

  

%% -------[Gang 2: Reference to Power Op-Amp output Voltage FC/1+PCH]------ 

  

GANG2  = F.*C./(1+P.*C.*H);     % Closed-Loop, Non-Ideal OpAmps 

mag_GANG2 = 20*log10(abs(GANG2)); 

phase_GANG2 = (180/pi)*unwrap(angle(GANG2)); 

  

GANG2_RL  = F.*C./(1+P_RL.*C.*H);     % Closed-Loop, Non-Ideal OpAmps 

mag_GANG2_RL = 20*log10(abs(GANG2_RL)); 

phase_GANG2_RL = (180/pi)*unwrap(angle(GANG2_RL)); 

  

GANGi2 = F.*Ci./(1+P.*Ci.*Hi);  % Closed-Loop, Ideal OpAmps 

mag_GANGi2 = 20*log10(abs(GANGi2)); 

phase_GANGi2 = (180/pi)*unwrap(angle(GANGi2)); 

  

  

% Lead in Forward Path 

  

FF_Comp_ideal_LF   = (R3_Comp./(R3_Comp.*C3_Comp.*s+1))... % Lag 

                   

.*((R2_Comp+R2p_Comp).*C2_Comp*s+1)./(R2p_Comp.*C2_Comp.*s+1);% Lead 

FB_Comp_ideal_LF   = 1./R2_Comp; 

  

Ci_LF = FF_Comp_ideal_LF.* TF_pAmp_ideal; % ideal op-amp 

Hi_LF = Rs .* TF_buff_ideal.* FB_Comp_ideal_LF; % ideal op-amp 

  

GANGi2_LF = F.*Ci_LF./(1+P.*Ci_LF.*Hi_LF);  % Lead in Forward Path 

mag_GANGi2_LF = 20*log10(abs(GANGi2_LF)); 

phase_GANGi2_LF = (180/pi)*unwrap(angle(GANGi2_LF)); 

  

  

%% ---------------[Gang 3: Disturbance Rejection  P/1+PCH]----------------- 

% Disturbance to plant output 

GANG3  = P./(1+P.*C.*H);    % Closed-Loop, Non-Ideal OpAmps 

mag_GANG3 = 20*log10(abs(GANG3)); 

phase_GANG3 = (180/pi)*unwrap(angle(GANG3)); 

  

GANG3_RL  = P_RL./(1+P_RL.*C.*H);    % Closed-Loop, Non-Ideal OpAmps 

mag_GANG3_RL = 20*log10(abs(GANG3_RL)); 

phase_GANG3_RL = (180/pi)*unwrap(angle(GANG3_RL)); 

  

GANGi3 = P./(1+P.*Ci.*Hi);  % Closed-Loop, Ideal OpAmps 

mag_GANGi3 = 20*log10(abs(GANGi3)); 

phase_GANGi3 = (180/pi)*unwrap(angle(GANGi3)); 
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%% --------------------[Gang 4: Sensitivity 1/1+PCH]----------------------- 

% measurement noise to plant output 

GANG4  = 1./(1+P.*C.*H);    % Closed-Loop, Non-Ideal OpAmps 

mag_GANG4 = 20*log10(abs(GANG4)); 

phase_GANG4 = (180/pi)*unwrap(angle(GANG4)); 

  

GANG4_RL  = 1./(1+P_RL.*C.*H);    % Closed-Loop, Non-Ideal OpAmps 

mag_GANG4_RL = 20*log10(abs(GANG4_RL)); 

phase_GANG4_RL = (180/pi)*unwrap(angle(GANG4_RL)); 

  

GANGi4 = 1./(1+P.*Ci.*Hi);  % Closed-Loop, Ideal OpAmps 

mag_GANGi4 = 20*log10(abs(GANGi4)); 

phase_GANGi4 = (180/pi)*unwrap(angle(GANGi4)); 

  

  

%% ------------------[Gang 5: Noise Sensitivity CH/1+PCH]------------------ 

% Noise to controller (power op-amp) output 

GANG5  = C.*H./(1+P.*C.*H);      % Closed-Loop, Non-Ideal OpAmps 

mag_GANG5 = 20*log10(abs(GANG5)); 

phase_GANG5 = (180/pi)*unwrap(angle(GANG5)); 

  

GANG5_RL  = C.*H./(1+P_RL.*C.*H);      % Closed-Loop, Non-Ideal OpAmps 

mag_GANG5_RL = 20*log10(abs(GANG5_RL)); 

phase_GANG5_RL = (180/pi)*unwrap(angle(GANG5_RL)); 

  

GANGi5 = Ci.*Hi./(1+P.*Ci.*Hi);  % Closed-Loop, Ideal OpAmps 

mag_GANGi5 = 20*log10(abs(GANGi5)); 

phase_GANGi5 = (180/pi)*unwrap(angle(GANGi5)); 

  

  

%% --------------[Gang 6: Complementary Sensitivity PCH/1+PCH]------------- 

% Disturbance to controller (power op-amp) output 

GANG6  = P.*C.*H./(1+P.*C.*H);     % Closed-Loop, Non-Ideal OpAmps 

mag_GANG6 = 20*log10(abs(GANG6)); 

phase_GANG6 = (180/pi)*unwrap(angle(GANG6)); 

  

GANG6_RL  = P_RL.*C.*H./(1+P_RL.*C.*H);     % Closed-Loop, Non-Ideal OpAmps 

mag_GANG6_RL = 20*log10(abs(GANG6_RL)); 

phase_GANG6_RL = (180/pi)*unwrap(angle(GANG6_RL)); 

  

GANGi6 = P.*Ci.*Hi./(1+P.*Ci.*Hi); % Closed-Loop, Ideal OpAmps 

mag_GANGi6 = 20*log10(abs(GANGi6)); 

phase_GANGi6 = (180/pi)*unwrap(angle(GANGi6)); 

  

%% -----[ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------ 

  

%% -----[ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------ 

  

% ----- Bode Plot ----- 

% Gang 1 

figure; colororder({'r','[0, 0.5, 0]'}) 

yyaxis left 

   semilogx(ff, mag_GANG1,'r',.... 

            ...% ff, mag_GANGi1,... 

            Bode_G1(:,1), Bode_G1(:,2),'k--',... % Experiment 

            'LineWidth',1.4);  

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   title('G1: Reference Tracking FPC/1+PCH'); 

   % legend('non-ideal OpAmps','ideal OpAmps','Expr') 

   xticks([10^1, 10^2 10^3,10^4,10^5]) 

yyaxis right 
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   semilogx(ff, phase_GANG1,'g',... 

            ...% ff, phase_GANGi1,... 

            Bode_G1(:,1), Bode_G1(:,3)-180,'b--',... % Experiment 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   xlim([10^1 10^5]); ylim([-180 2]) 

   xticks([10^1, 10^2 10^3,10^4,10^5]) 

   legend('Mag, Model','Mag, Expr', 'Phase, Model','Phase, Expr') 

   ax = gca; ax.XGrid = 'on'; 

    

% Gang 2 

figure; colororder({'r','[0, 0.5, 0]'}) 

yyaxis left 

   semilogx(ff, mag_GANG2,'r',... 

            ...% ff, mag_GANGi2,... 

            Bode_G2(:,1), Bode_G2(:,2),'k--',... % Experiment 

            ff, mag_GANGi2_LF,'r',... % Lead in Forward Path 

            'LineWidth',1.4); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   title('G2: Ref to P-OpAmp Output FC/1+PCH'); 

   % legend('non-ideal OpAmps','ideal OpAmps','Expr') 

   % xlim([10^1 10^5]);ylim([10 30]); xticks([10^1, 10^2 10^3,10^4,10^5]) 

yyaxis right 

   semilogx(ff, phase_GANG2,'g',... 

            ...% ff, phase_GANGi2,... 

            Bode_G2(:,1), unwrap(Bode_G2(:,3))+180,'b--',... % Experiment 

            ff, phase_GANGi2_LF,'g',... % Lead in Forward path 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   xlim([10^1 10^6]); ylim([-100 100]); xticks([10^1, 10^2 10^3,10^4,10^5, 

10^6]) 

   legend('Mag, Model','Mag, Expr', 'Phase, Model','Phase, Expr') 

   ax = gca; ax.XGrid = 'on'; 

    

% Gang 3 

figure; colororder({'r','[0, 0.5, 0]'}) 

yyaxis left 

   semilogx(ff, mag_GANG3,'r',... 

            ...% ff, mag_GANGi3,... 

            Freq_G3, Mag_G3,'k--',... % Experiment, G3=P*G4 

            'LineWidth',1.4); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   title('G3: Disturbance Rejection P/1+PCH'); 

   % legend('non-ideal OpAmps','ideal OpAmps','Expr') 

   xlim([10^1 10^6]); ylim([-55 -28]); xticks([10^1, 10^2 10^3,10^4,10^5, 

10^6]) 

yyaxis right 

   semilogx(ff, phase_GANG3,'g',... 

            ...% ff, phase_GANGi3,... 

            Freq_G3, Phase_G3,'b--',... % Experiment, G3=P*G4 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)')  

   xlim([10^1 10^6]); ylim([-60 90]); xticks([10^1, 10^2 10^3,10^4,10^5, 10^6]) 

   legend('Mag, Model','Mag, Expr', 'Phase, Model','Phase, Expr') 

   ax = gca; ax.XGrid = 'on'; 

    

% Gang 4 

figure; colororder({'r','[0, 0.5, 0]'}) 

yyaxis left 

   semilogx(ff, mag_GANG4,'r',... 

            ...% ff, mag_GANGi4,... 
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            Freq_G4, Mag_G4,'k--',... 

            'LineWidth',1.4); grid 

   ylabel('Magn (dB)') 

   title('G4: Sensitivity 1/1+PCH'); 

   % legend('non-ideal OpAmps','ideal OpAmps','Expr','Expr 2') 

   xlim([10^1 10^6]); ylim([-45 3]); xticks([10^1, 10^2 10^3,10^4,10^5, 10^6]) 

yyaxis right 

   semilogx(ff, phase_GANG4,'g',... 

            ...% ff, phase_GANGi4,... 

            Freq_G4, Phase_G4,'b--',... 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   xlim([10^1 10^6]); ylim([-5 160]); xticks([10^1, 10^2 10^3,10^4,10^5, 10^6]) 

   legend('Mag, Model','Mag, Expr', 'Phase, Model','Phase, Expr') 

   ax = gca; ax.XGrid = 'on'; 

    

% Gang 5: CH/1+PCH 

figure; colororder({'r','[0, 0.5, 0]'}) 

yyaxis left 

   semilogx(ff, mag_GANG5,'r',... 

            ...% ff, mag_GANGi5,... 

            Freq_G5, Mag_G5,'k--',... 

            'LineWidth',1.4); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   title('G5: Noise Sensitivity CH/1+PCH'); 

   % legend('non-ideal OpAmps','ideal OpAmps','Expr') 

   xlim([10^1 2*10^6]); ylim([0 30]); xticks([10^1, 10^2 10^3,10^4,10^5, 10^6]) 

yyaxis right 

   semilogx(ff, phase_GANG5,'g',... 

            ...% ff, phase_GANGi5,... 

            Freq_G5, Phase_G5,'b--',... 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   xlim([10^1 2*10^6]); ylim([-270 180]); xticks([10^1, 10^2 10^3,10^4,10^5, 

10^6]) 

   legend('Mag, Model','Mag, Expr', 'Phase, Model','Phase, Expr') 

   ax = gca; ax.XGrid = 'on'; 

    

% Gang 6: PCH/1+PCH 

figure; colororder({'r','[0, 0.5, 0]'}) 

yyaxis left 

   semilogx(ff, mag_GANG6,'r',... 

            ...% ff, mag_GANGi6,... 

            Freq_G6, Mag_G6,'k--',... 

            'LineWidth',1.4); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   title('G6: Compl Sensitivity PCH/1+PCH'); 

   % legend('non-ideal OpAmps','ideal OpAmps','Expr') 

   xlim([10^1 10^5]); ylim([-15 3]); xticks([10^1, 10^2 10^3,10^4,10^5]) 

yyaxis right 

   semilogx(ff, phase_GANG6,'g',... 

            ...% ff, phase_GANGi6,... 

            Freq_G6, Phase_G6,'b--',... 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   legend('Mag, Model','Mag, Expr', 'Phase, Model','Phase, Expr') 

   ax = gca; ax.XGrid = 'on'; 

   xlim([10^1 10^5]); ylim([-150 50]); xticks([10^1, 10^2 10^3,10^4,10^5]) 

  

  

%% ----- Bode Plot ----- 
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% Gang 1 

figure 

subplot(2,1,1) 

   semilogx(ff, mag_GANG1_RL,'g',... % non-idel op-amo, RL model 

            ff, mag_GANG1,'r',... % non-idel op-amo, eddy model 

            ...% ff, mag_GANGi1,... 

            Bode_G1(:,1), Bode_G1(:,2),'k--',... % Experiment 

            'LineWidth',1.1); grid 

   ylabel('Magn (dB)') 

   title('G1: Reference Tracking FPC/1+PCH'); 

   legend('RL Model','Eddy Model','Experiment'); xlim([10^1 10^5]); ylim([-35 

10]) 

   xticks([10^1, 10^2 10^3,10^4,10^5]) 

subplot(2,1,2) 

   semilogx(ff, phase_GANG1_RL,'g',... % non-idel op-amo, eddy model 

            ff, phase_GANG1,'r',... % non-idel op-amo, RL model 

            ...% ff, phase_GANGi1,... 

            Bode_G1(:,1), Bode_G1(:,3)-180,'k--',... % Experiment 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   xlim([10^1 10^5]); ylim([-200 3]) 

   xticks([10^1, 10^2 10^3,10^4,10^5]) 

   

% Gang 2 

figure 

subplot(2,1,1) 

   semilogx(ff, mag_GANG2_RL,'g',... 

            ff, mag_GANG2,'r',... 

            ff, mag_GANGi2_LF,'b-.',... % Lead in Forward Path 

            ...% ff, mag_GANGi2,... 

            Bode_G2(:,1), Bode_G2(:,2),'k--',... % Experiment 

            'LineWidth',1.1); grid 

   ylabel('Magn (dB)') 

   title('G2: Ref to P-OpAmp Output FC/1+PCH'); 

   legend('RL Model','Eddy Model','Lead in Forward Path','Experiment') 

   xlim([10^1 6*10^5]);ylim([-5 40]); xticks([10^1, 10^2 10^3,10^4,10^5,10^6]) 

subplot(2,1,2) 

   semilogx(ff, phase_GANG2_RL,'g',... 

            ff, phase_GANG2,'r',... 

            ff, phase_GANGi2_LF,'b-.',... % Lead in Forward Path 

            ...% ff, phase_GANGi2,... 

            Bode_G2(:,1), unwrap(Bode_G2(:,3))+180,'k--',... % Experiment 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   xlim([10^1 6*10^5]); ylim([-150 90]); xticks([10^1, 10^2 

10^3,10^4,10^5,10^6]) 

  

% Gang 3 

figure 

subplot(2,1,1) 

   semilogx(ff, mag_GANG3_RL,'g',... 

            ff, mag_GANG3,'r',... 

            ...% ff, mag_GANGi3,... 

            Freq_G3, Mag_G3,'k--',... % Experiment, G3=P*G4 

            'LineWidth',1.1); grid 

   ylabel('Magn (dB)') 

   title('G3: Disturbance Rejection P/1+PCH'); 

   legend('RL Model','Eddy Model','Experiment') 

   xlim([10^1 10^6]); ylim([-65 -25]); xticks([10^1, 10^2 10^3,10^4,10^5, 

10^6]) 

subplot(2,1,2) 

   semilogx(ff, phase_GANG3_RL,'g',... 

            ff, phase_GANG3,'r',... 
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            ...% ff, phase_GANGi3,... 

            Freq_G3, Phase_G3,'k--',... % Experiment, G3=P*G4 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)')  

   xlim([10^1 10^6]); ylim([-100 55]); xticks([10^1, 10^2 10^3,10^4,10^5, 

10^6]) 

  

% Gang 4 

figure 

subplot(2,1,1) 

   semilogx(ff, mag_GANG4_RL,'g',... 

            ff, mag_GANG4,'r',... 

            ...% ff, mag_GANGi4,... 

            Freq_G4, Mag_G4,'k--',... 

            'LineWidth',1.1); grid 

   ylabel('Magn (dB)') 

   title('G4: Sensitivity 1/1+PCH'); 

   legend('RL Model','Eddy Model','Experiment') 

   xlim([10^1 10^6]); ylim([-45 5]); xticks([10^1, 10^2 10^3,10^4,10^5, 10^6]) 

subplot(2,1,2) 

   semilogx(ff, phase_GANG4_RL,'g',... 

            ff, phase_GANG4,'r',... 

            ...% ff, phase_GANGi4,... 

            Freq_G4, Phase_G4,'k--',... 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   xlim([10^1 10^6]); ylim([-5 130]); xticks([10^1, 10^2 10^3,10^4,10^5, 10^6]) 

  

% Gang 5: CH/1+PCH 

figure 

subplot(2,1,1) 

   semilogx(ff, mag_GANG5_RL,'g',... 

            ff, mag_GANG5,'r',... 

            ...% ff, mag_GANGi5,... 

            Freq_G5, Mag_G5,'k--',... 

            'LineWidth',1.1); grid 

   ylabel('Magn (dB)') 

   title('G5: Noise Sensitivity CH/1+PCH'); 

   legend('RL Model','Eddy Model','Experiment') 

   xlim([10^1 2*10^6]); ylim([-20 35]); xticks([10^1, 10^2 10^3,10^4,10^5, 

10^6]) 

subplot(2,1,2) 

   semilogx(ff, phase_GANG5_RL,'g',... 

            ff, phase_GANG5,'r',... 

            ...% ff, phase_GANGi5,... 

            Freq_G5, Phase_G5,'k--',... 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   xlim([10^1 2*10^6]); ylim([-270 90]); xticks([10^1, 10^2 10^3,10^4,10^5, 

10^6]) 

  

% Gang 6: PCH/1+PCH 

figure 

subplot(2,1,1) 

   semilogx(ff, mag_GANG6_RL,'g',... 

            ff, mag_GANG6,'r',... 

            ...% ff, mag_GANGi6,... 

            Freq_G6, Mag_G6,'k--',... 

            'LineWidth',1.1); grid 

   % xlabel('frequency (Hz)') 

   ylabel('Magn (dB)') 

   title('G6: Compl Sensitivity PCH/1+PCH'); 

   % legend('non-ideal OpAmps','ideal OpAmps','Expr') 
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   legend('RL Model','Eddy Model','Experiment') 

   xlim([10^1 10^5]); ylim([-20 3]); xticks([10^1, 10^2 10^3,10^4,10^5]) 

subplot(2,1,2) 

   semilogx(ff, phase_GANG6_RL,'g',... 

            ff, phase_GANG6,'r',... 

            ...% ff, phase_GANGi6,... 

            Freq_G6, Phase_G6,'k--',... 

            'LineWidth',1.1); grid 

   xlabel('Freq (Hz)'); ylabel('Phase (deg)') 

   xlim([10^1 10^5]); ylim([-170 3]); xticks([10^1, 10^2 10^3,10^4,10^5]) 
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Appendix N 

Matlab Code for Comparison of Current-Loops by 

Changing the Location of Lead Compensator 
 

 

 

The following is the Matlab code implemented using FOMCON toolbox for solving the fractional-

order systems. For a part of the results, e.g. step responses it did not work well for my case. Maybe 

another toolbox can be more helpful. 
 

 

 

 

 

 
%-------------------------------------------------------------------------% 

%            Fractional Order Model, FOMCON toolbox in Matlab             % 

%              Current Loop Modeling including Eddy Current               % 

%                    Using ideal and non-ideal Op-Amps                    % 

%                Sajjad Mohammadi, EECS, MIT, August 2021                 % 

%-------------------------------------------------------------------------% 

  

% Including 3 Op-Amps 

% Input Block: 1/Z1 

% Feed Forward Path: Compensator FF, Power OpAmp, Actuator  

% Feedback path: Sensor Resistor Rs, Buffer OpAmp, Compensator FB 

  

%% --------------------[ Actuator Gp_exct=Icoil/Vcoil]--------------------- 

s=fotf('s'); % Fractional order, Fomcon toolbox in Matlab 

  

  

% J=1.65e-9; % Inretia/mass with mirror from Solid Works 

J  = 1.5077e-09; % Inretia/mass without mirror from Solid Works 

kd = 4.4881e-07; % damping 

ks = 0.0013; % spring 

Rc = 1.76; % coil resistance [ohm] 

Rs = 0.1; % sense resistor [ohm] 

R  = Rc+Rs; 

Lc  = 280e-6; % coil inductance [H] 

% kt = 1.836e-3; % torque/force constant, Typical 

kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021 

  

  

%% ----------------- [Electrical Dynamic with Eddy Current] --------------- 

  

%  He_exct = tf([J kd ks],[Lc*J R*J+Lc*kd R*kd+ks*kd+kt^2 R*ks]); % Icoil/Vcoil  

with back emf 

%  He_appr = tf([1],[Lc R]); % Icoil/Vcoil  without back emf 

  

% From identification, File: Diffusion1D2D 

mu_sigma_i = 3.2035; 

mu_sigma_m = 2.8227; 

  

d  = 0.35*1e-3; % Lamination Thickness [m] 

wp = 4.72e-3; % pole width, 4.72mm directly measured from geometry 

L  = 4.191*1e-3; % Axial Length of Actuator [m] 

  



338 

 

a = wp/2; % Rectangle Width=2a 

b = L/2; % Rectangle Height=2*b 

w = sqrt(4*a*b)/2; % square approximation of the rectangle: side=2*w 

  

Rc = 1.76; % coil resistance [ohm] 

Rs = 0.1; % sense resistor [ohm] 

R  = Rc+Rs; 

Lc0 = 295e-6; % Low-frequency inductance 

  

Q_i = (d/2)*(s* mu_sigma_i)^0.5; 

  

% Q_m = ( w * ( (pi/(2*w)).^2 +  S * mu_sigma_m )^0.5 -pi/2)/(1+pi/2); 

% Taylor Approximation of Qm with three first for faractional order modeling 

aa = (pi/(2*w)); 

Q_m = ( w * ( aa + (1/(2*aa))* s * mu_sigma_m  -  (1/(8*aa^3))* (s 

*mu_sigma_m)^2 ) -pi/2)/(1+pi/2); 

  

Q   =  Q_i + Q_m; 

  

% Only RL 

He = 1/(R+s*Lc0); 

  

% RL including eddy effect 

He_eddy = (1 + Q)/(R + s*Lc0 + R*Q); 

  

figure;hold on 

step(He_eddy,0:0.00001:0.003) % with eddy 

step(He,0:0.00001:0.003) % without eddy 

xlabel('time (sec)'); ylabel('current (A)') 

title('Step Response of He'); legend('with eddy', 'without eddy') 

hold off 

  

  

figure; hold on 

bode(He_eddy,logspace(1,6,2000)) 

bode(He,logspace(1,6,2000)) 

grid; title('Bode plot of He'); legend('with eddy', 'without eddy') 

hold off 

h = gcr; setoptions(h,'FreqUnits','Hz') 

xlim([10^1 10^5]) 

  

  

  

%% ---------------[ Current Sensor Resistor Gcs=Vrs/Icoil]----------------- 

% Converting Coil Current to a Voltage to be measured by buffer OpAmp 

% Vrs=Rs*Icoil 

Rs  = 0.1; % sense resistor 

Gcs = Rs; % Gs=Vrs/Icoil; 

  

  

  

%% ---------------[ Power OpAmp TF_pAmp_nonideal=Vcoil/Vc]----------------- 

% Increasing Compensator Output Voltage Vc to Coil Voltage Vcoil 

% PowerOpAmp Modeling, LM3886 

% non-ideal OpAmps:  TF_pAmp_nonideal 

% ideal OpAmps:      TF_pAmp_ideal 

  

% Voltage Divider 

R1_pAmp = 64.9e3; %  voltage divider 

R2_pAmp = 10e3; %  voltage divider 

  

% Power Op-Amp 

Ra_pAmp = 10e3; % feedback 
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Rb_pAmp = 95.3e3; % feedback 

  

% input lag compensation and input resistance of Op-Amp 

Ri_pAmp   = 6.2e3; % input lag compensation 

Ci_pAmp   = 470e-12; % input lag compensation 

RiCi_pAmp = Ri_pAmp+1/(Ci_pAmp*s); % series Ri and Ci 

Zin       = 100e6; % input impedance of Op-Amp 

% Zi_pAmp = RiCi_pAmp*Zin/(RiCi_pAmp+Zin); 

Zi_pAmp   = RiCi_pAmp; 

  

  

% Op-Amp Open-Loop Gain Transfer Function A(s), LM3886 

GBP_pAmp = 8e6; % Gain-Bandwidth Product [Hz] 

Avo_pAmp = 10^(115/20); % Open-Loop DC-gain 

f1_pAmp  = GBP_pAmp/Avo_pAmp; w1_pAmp=2*pi*f1_pAmp; % pole 1 

f2_pAmp  = 1.5e6;   w2_pAmp=2*pi*f2_pAmp; % pole 2, usually less than GWB 

f3_pAmp  = 2.9e6;   w3_pAmp=2*pi*f3_pAmp; % pole 3, usually between f2 and GWB 

  

A1_pAmp = Avo_pAmp*w1_pAmp /(s+w1_pAmp); % 1st-order model 

A2_pAmp = Avo_pAmp*w1_pAmp*w2_pAmp /((s+w1_pAmp)*(s+w2_pAmp)); % 2nd-order 

model 

A3_pAmp = Avo_pAmp*w1_pAmp*w2_pAmp*w3_pAmp 

/((s+w1_pAmp)*(s+w2_pAmp)*(s+w3_pAmp)); % 2nd-order model 

  

A_pAmp  = A3_pAmp; % Order selection 

  

% options.FreqUnits = 'Hz'; 

%  

% figure; bode(A,{1,1e8},options); grid  

% title('Open-Loop Gain A') 

  

% Non-Ideal OpAmp, Uncompensated 

FF_pAmp = (R2_pAmp/(R1_pAmp+R2_pAmp)) * A_pAmp; % Feed Forward 

FB_pAmp = (Ra_pAmp/(Ra_pAmp+Rb_pAmp)) * ((R1_pAmp+R2_pAmp)/R2_pAmp); % Feedback 

LT_pAmp = FF_pAmp*FB_pAmp; % Loop Transmision 

TF_pAmp_nonideal = FF_pAmp/(1+FF_pAmp*FB_pAmp); % Closed-Loop (internal loop) 

  

% Non-Ideal OpAmp, Compensated with Ri & Ci at input 

FF_pAmp_comp = (R2_pAmp/(R1_pAmp+R2_pAmp)) * ( Zi_pAmp/(Zi_pAmp + 

(R1_pAmp*R2_pAmp/(R1_pAmp+R2_pAmp)) + (Ra_pAmp*Rb_pAmp/(Ra_pAmp+Rb_pAmp))) ) * 

A_pAmp; % Feed Forward 

FB_pAmp_comp = (Ra_pAmp/(Ra_pAmp+Rb_pAmp)) * ((R1_pAmp+R2_pAmp)/R2_pAmp); % 

Feedback 

LT_pAmp_comp = FF_pAmp_comp*FB_pAmp_comp; % Loop Transmision 

TF_pAmp_nonideal_comp = FF_pAmp_comp/(1+FF_pAmp_comp*FB_pAmp_comp); % Closed-

Loop 

  

% DC Gian 

DC_gain_pAmp    = (R2_pAmp/(R1_pAmp+R2_pAmp)) *(1+Rb_pAmp/Ra_pAmp) 

DC_gain_dB_pAmp = 20*log10((R2_pAmp/(R1_pAmp+R2_pAmp)) *(1+Rb_pAmp/Ra_pAmp)) 

  

% Ideal OpAmp 

TF_pAmp_ideal   = DC_gain_pAmp; 

  

  

TF_pAmp_nonideal = DC_gain_pAmp; % For simplicity in Fomcon 

  

  

% bode 

figure; bode(TF_pAmp_nonideal,logspace(1,9,2000)); grid 

title('Power OpAmp, Closed-Loop Bode') 

h = gcr; setoptions(h,'FreqUnits','Hz') 
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% Step Response 

figure; step(TF_pAmp_nonideal, [0:0.00000001:0.00001]); 

title('Power OpAmp, Step Response') 

  

  

  

%% --------[ Compensator 1/Z1, FF_Comp_nonideal, FB_Comp_nonideal ]-------- 

% C506 Compensator Op-Amp Modeling, OP1652 

% Forward Path, non-ideal OpAmp:  FF_Comp_nonideal 

% Forward Path, ideal OpAmp:      FF_Comp_ideal 

% Feedback Path non-ideal OpAmp:  FB_Comp_nonideal 

% Feedback Path ideal OpAmp:      FB_Comp_ideal 

% Input Block 1/Z1 

  

  

% Z1 Components 

R1_Comp = 5.1e3; % Z1 

Z1      = R1_Comp; 

  

% Z2 Components, Lead Compensator 

R2_Comp  = 10e3; % Z2, it sets the bandwidth together with R1_Comp 

  

% R2p_Comp = 100;  % Z2, It, together with C2_Comp, sets the Lead 

Characteristics, origianl 

% C2_Comp  = 2400e-12; % Z2, original 

R2p_Comp = 1.1e3;  % Z2, It, together with C2_Comp, sets the Lead 

Characteristics 

C2_Comp  = 2.2e-09; % Z2 

  

Z2       = R2_Comp*(R2p_Comp*C2_Comp*s+1)/((R2_Comp+R2p_Comp)*C2_Comp*s+1); 

  

% Zf Components, Lag Compensator 

% R3_Comp = 2e6; % Zf , large paralle resistor to limit the integrator 

 % R3_Comp = 470e3; % Zf , original value, large paralle resistor to limit the 

integrator 

 R3_Comp = 2e6; 

  

% C3_Comp = 180e-12; % Zf, original 

C3_Comp = 100e-12; 

  

Zf      = R3_Comp/(R3_Comp*C3_Comp*s+1); % with parallel R3_Comp, Non-pure 

interator 

% Zf   = 1/(C3_Comp*s); % without parallel R3_Comp, pure integrator 

  

% Op-Amp Open-Loop Transfer Function A(s), , OP1652 

GBP_Comp = 18e6; % Gain-Bandwidth Product [Hz] 

Avo_Comp = 10^(114/20); % Open-Loop DC-gain 

f1_Comp  = GBP_Comp/Avo_Comp; w1_Comp=2*pi*f1_Comp; % pole 1 

f2_Comp  = 1.5e7;   w2_Comp=2*pi*f2_Comp; % pole 2, not found in datasheet 

f3_Comp  = 2.9e7;   w3_Comp=2*pi*f3_Comp; % pole 3, not found in datasheet 

  

A1_Comp  = Avo_Comp*w1_Comp /(s+w1_Comp); % 1st-order model 

A2_Comp  = Avo_Comp*w1_Comp*w2_Comp /((s+w1_Comp)*(s+w2_Comp)); % 2nd-order 

model 

A3_Comp  = Avo_Comp*w1_Comp*w2_Comp*w3_Comp 

/((s+w1_Comp)*(s+w2_Comp)*(s+w3_Comp)); % 2nd-order model 

  

A_Comp  = A3_Comp; % Order selection 

  

% options.FreqUnits = 'Hz'; 

% figure; h=bodeplot(A_Comp,{1,1e10}); grid title('Open-Loop Gain A') 

% setoptions(h,'FreqUnits','Hz'); 
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% Loop Transmission, Ideal Op-Amp 

FF_Comp_ideal   = Zf; 

FB_Comp_ideal   = 1/Z2; 

Loop_Comp_ideal = FF_Comp_ideal * FB_Comp_ideal; % Ideal Op-Amp 

  

% Loop Transmission, Non-Ideal Op-Amp 

FF_int_Comp      = Zf * ( (Z1*Z2)/(Z1*Z2+Z1*Zf+Z2*Zf) ) * A_Comp; % Feed 

Forward, internal OpAmp Loop 

FB_int_Comp      = 1/Zf; % Feedback path of internal OpAmp Loop 

FF_Comp_nonideal = FF_int_Comp/(1+FF_int_Comp*FB_int_Comp); % Closed-Loop 

(internal loop), FF part of the compensator 

FB_Comp_nonideal = 1/Z2; % FB part of the compensator 

Loop_Comp        = FF_Comp_nonideal * FB_Comp_nonideal; % Non-Ideal Op-Amp 

  

  

% bode 

figure; hold on; 

bode(Loop_Comp_ideal,logspace(1,5,2000)) 

bode(Loop_Comp,logspace(1,5,2000)); grid; 

h = gcr; setoptions(h,'FreqUnits','Hz') 

title('C506 Compensator Loop Transmission'); legend('ideal','non-ideal') 

hold off 

  

  

  

%% --------[ Current Sensor Buffer OpAmp: TF_buff_nonideal=vs/Vrs ]-------- 

% C506 Current Sensor Buffer Op-Amp Modeling, OP1652 

% Conversing the Voltage of current sense resistor to voltage Vs 

% non-ideal OpAmps:  TF_buff_nonideal 

% ideal OpAmps:      TF_buff_ideal 

  

  

R1_buff = 1e3; 

R2_buff = 10e3; 

  

% Op-Amp Open-Loop Transfer Function A(s), , OP1652 

GBP_buff = 18e6; % Gain-Bandwidth Product [Hz] 

Avo_buff = 10^(114/20); % Open-Loop DC-gain 

f1_buff  = GBP_buff/Avo_buff; w1_buff=2*pi*f1_buff; % pole 1 

f2_buff  = 1.5e7;   w2_buff=2*pi*f2_buff; % pole 2, not found in datasheet 

f3_buff  = 2.9e7;   w3_buff=2*pi*f3_buff; % pole 3, not found in datasheet 

  

A1_buff  = Avo_buff*w1_buff /(s+w1_buff); % 1st-order model 

A2_buff  = Avo_buff*w1_buff*w2_buff /((s+w1_buff)*(s+w2_buff)); % 2nd-order 

model 

A3_buff  = Avo_buff*w1_buff*w2_buff*w3_buff 

/((s+w1_buff)*(s+w2_buff)*(s+w3_buff)); % 2nd-order model 

  

A_buff   = A3_buff; % Order selection 

  

% options.FreqUnits = 'Hz'; 

% figure; h=bodeplot(A_buff,{1,1e10}); grid title('Open-Loop Gain A') 

% setoptions(h,'FreqUnits','Hz'); 

  

  

% Ideal Op-Amp 

TF_buff_ideal = R2_buff/R1_buff; % Ideal Op-Amp 

  

% Loop Transmission, Non-Ideal Op-Amp 

FF_int_buff = (R2_buff/(R1_buff+R2_buff)) * A_buff; % Feed Forward, internal 

OpAmp Loop 

FB_int_buff = R1_buff/R2_buff; % Feedback path of internal OpAmp Loop 

TF_buff_nonideal = FF_int_buff/(1+FF_int_buff*FB_int_buff); 
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TF_buff_nonideal = 10; %  % For simplicity in Fomcon 

  

% Plots 

figure; 

bode(TF_buff_nonideal,logspace(1,11,2000)) 

grid; title('Bode, sensor buffer') 

h = gcr; setoptions(h,'FreqUnits','Hz') 

legend('ideal','non-ideal') 

hold off 

  

  

%% -----------[ Model Selection: Model with or without back-emf ]----------- 

% Select the Actuator Model 

% Gp=He; % without eddy 

Gp = He_eddy;  % with eddy 

  

  

%% ---------------------------[ Block Diagram]----------------------------- 

F  = 1/Z1; % input block 

  

P  = Gp; % Actuator 

  

% C  = FF_Comp_nonideal * TF_pAmp_nonideal_comp; % non-ideal op-amp, Power op-

amp with compensator 

C  = FF_Comp_nonideal * TF_pAmp_nonideal; % non-ideal op-amp, Power op-amp 

without compensator 

Ci = FF_Comp_ideal * TF_pAmp_ideal; % ideal op-amp 

  

H  = Rs * TF_buff_nonideal * FB_Comp_nonideal; % non-ideal op-amp 

Hi = Rs * TF_buff_ideal * FB_Comp_ideal; % ideal op-amp 

  

  

%% ----------------[ Current Loop, Loop Transmission PCH]------------------- 

  

LT_CurrentLoop       = P*C*H;  % Closed-Loop, Non-Ideal OpAmps 

LT_CurrentLoop_ideal = P*Ci*Hi;  % Closed-Loop, Ideal OpAmps 

  

  

% The loop excluding compensator, ideal 

LT_CurrentLoop_rest       = P*TF_pAmp_nonideal*TF_buff_nonideal;  % Closed-

Loop, Non-Ideal OpAmps 

LT_CurrentLoop_ideal_rest = P*TF_pAmp_ideal*TF_buff_ideal;  % Closed-Loop, 

Ideal OpAmps 

  

  

% Plots 

% Decomposition of Loop Transmission, non-ideal model of op-amps 

figure; hold on 

bode(Loop_Comp,logspace(1,7,2000)); 

bode(LT_CurrentLoop_rest,logspace(1,7,2000)) 

bode(LT_CurrentLoop,logspace(1,7,2000)) 

grid; h = gcr; setoptions(h,'FreqUnits','Hz') 

title('Decomposition of Loop Transmision, nonideal op-amps '); 

legend('Compensator','Rest of the Loop','Loop Transmission') 

hold off; xlim([10^1 10^5]) 

  

% Decomposition of Loop Transmission, ideal model of op-amps 

figure; hold on 

bode(Loop_Comp_ideal,logspace(1,7,2000)); 

bode(LT_CurrentLoop_ideal_rest,logspace(1,7,2000)) 

bode(LT_CurrentLoop_ideal,logspace(1,7,2000)) 

grid; h = gcr; setoptions(h,'FreqUnits','Hz') 
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title('Decomposition of Loop Transmision, ideal op-amps '); 

legend('Compensator','Rest of the Loop','Loop Transmission') 

hold off; xlim([10^1 10^5]) 

  

  

figure; hold on 

bode(LT_CurrentLoop,logspace(1,7,2000)); 

bode(LT_CurrentLoop_ideal,logspace(1,7,2000)) 

grid; h = gcr; setoptions(h,'FreqUnits','Hz') 

title('Loop Transmision Bode ');legend('non-ideal OpAmps','ideal OpAmps') 

hold off; xlim([10^1 10^5]) 

  

  

%% ----------[Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]------------ 

% Reference tracking PCF/1+PCH 

  

GANG1  = 1/(1+P*C*H)*(F*P*C);  % Closed-Loop, Non-Ideal OpAmps 

GANGi1 = F*P*Ci/(1+P*Ci*Hi);  % Closed-Loop, Ideal OpAmps 

  

DC_gain_CurrentLoop_PureIntegrator = R2_Comp/R1_Comp 

DC_gain_dB_CurrentLoop_PureIntegrator = 20*log10(R2_Comp/R1_Comp) 

  

  

%% -------[Gang 2: Reference to Power Op-Amp output Voltage FC/1+PCH]------ 

  

GANG2  = (1/(1+P*C*H))*F*C;     % Closed-Loop, Non-Ideal OpAmps 

GANGi2 = (1/(1+P*Ci*Hi))*F*Ci;  % Closed-Loop, Ideal OpAmps 

  

%% ---------------[Gang 3: Disturbance Rejection  P/1+PCH]----------------- 

% Disturbance to plant output 

GANG3  = P/(1+P*C*H);    % Closed-Loop, Non-Ideal OpAmps 

GANGi3 = P/(1+P*Ci*Hi);  % Closed-Loop, Ideal OpAmps 

  

%% --------------------[Gang 4: Sensitivity 1/1+PCH]----------------------- 

% measurement noise to plant output 

GANG4  = 1/(1+P*C*H);    % Closed-Loop, Non-Ideal OpAmps 

GANGi4 = 1/(1+P*Ci*Hi);  % Closed-Loop, Ideal OpAmps 

  

%% ------------------[Gang 5: Noise Sensitivity CH/1+PCH]------------------ 

% Noise to controller (power op-amp) output 

GANG5  = (1/(1+P*C*H))*(C*H);      % Closed-Loop, Non-Ideal OpAmps 

GANGi5 = 1/(1+P*Ci*Hi)*(Ci*Hi);  % Closed-Loop, Ideal OpAmps 

  

%% --------------[Gang 6: Complementary Sensitivity PCH/1+PCH]------------- 

% Disturbance to controller (power op-amp) output 

GANG6  = P*C*H/(1+P*C*H);     % Closed-Loop, Non-Ideal OpAmps 

GANGi6 = P*Ci*Hi/(1+P*Ci*Hi); % Closed-Loop, Ideal OpAmps 

  

  

%% -----[ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------ 

  

% ----- Bode Plot ----- 

f_range = logspace(1,7,3000); % Frequency range of plots 

x_lim = [10^1 10^5]; 

  

% Gang 1 

figure; hold on 

bode(GANG1,f_range) 

bode(GANGi1,f_range) 

grid; h = gcr; setoptions(h,'FreqUnits','Hz') 

title('G1: Reference Tracking FPC/1+PCH') 

legend('non-ideal OpAmps','ideal OpAmps') 

hold off; xlim(x_lim) 
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% Gang 2 

figure; hold on 

bode(GANG2,f_range) 

bode(GANGi2,f_range) 

grid; h = gcr; setoptions(h,'FreqUnits','Hz') 

title('G2: Ref to P-OpAmp Output FC/1+PCH') 

legend('non-ideal OpAmps','ideal OpAmps') 

hold off; xlim(x_lim) 

  

  

% Gang 3 

figure; hold on 

bode(GANG3,f_range) 

bode(GANGi3,f_range) 

grid; h = gcr; setoptions(h,'FreqUnits','Hz') 

title('Loop Transmision Bode ') 

legend('non-ideal OpAmps','ideal OpAmps') 

hold off; xlim(x_lim) 

title('G3: Disturbance Rejection P/1+PCH'); 

  

  

% Gang 4 

figure; hold on 

bode(GANG4,f_range) 

bode(GANGi4,f_range) 

grid; h = gcr; setoptions(h,'FreqUnits','Hz') 

title('Loop Transmision Bode ') 

legend('non-ideal OpAmps','ideal OpAmps') 

hold off; xlim(x_lim) 

title('G4: Sensitivity 1/1+PCH'); 

  

% Gang 5 

figure; hold on 

bode(GANG5,f_range) 

bode(GANGi5,f_range) 

grid; h = gcr; setoptions(h,'FreqUnits','Hz') 

title('Loop Transmision Bode ') 

legend('non-ideal OpAmps','ideal OpAmps') 

hold off; xlim(x_lim) 

title('G5: Noise Sensitivity CH/1+PCH'); 

  

  

% Gang 6 

figure; hold on 

bode(GANG6,f_range) 

bode(GANGi6,f_range) 

grid; h = gcr; setoptions(h,'FreqUnits','Hz') 

title('Loop Transmision Bode ') 

legend('non-ideal OpAmps','ideal OpAmps') 

hold off; xlim(x_lim) 
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Appendix O 

Matlab code for Modeling and Simulation of 

Position Control, and Initialization for Simulink 
 

The code is given below: 

 

 

 
%-------------------------------------------------------------------------% 

%  Position Control Design for Actuator C506 and Simulink Initialization  % 

%                Sajjad Mohammadi, EECS, MIT, August 2021                 % 

%-------------------------------------------------------------------------% 

  

% Note: the file related to the Current loop modeling needs to be run first 

% as its transfer functions are empl 

  

% Position Control Design for Actuator C506 and Simulink Initialization 

% [1] Motor parameters (SI units) 

% [2] Loop Shaping in Frequency Domain 

% [3] Pole Placement with Voltage Drive 

% [4] Pole Placement with Current Drive 

% [5] Nonlinear Control in Frequency Domain 

% [6] Nonlinear Control with Pole Placement 

  

% clc; clear; close all 

  

%% ___________________[ Motor parameters (SI units) ]______________________ 

J  = 1.5077e-09; % Inretia/mass without mirror from Solid Works [kg.m^2]  

kd = 4.4881e-07; % damping 

ks = 0.0013;  % spring 

Krest=ks/2; % spring 

  

Rc = 1.76; % coil resistance [ohm] 

Rs = 0.1; % sense resistor [ohm] 

R  = Rc+Rs; 

Lc  = 280e-6; % coil inductance [H] 

% kt = 1.836e-3; % torque/force constant, Typical 

kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021 

kb = kt;                 % Back-emf Constant [Vs/rad] 

  

  

% Bandwidth and damping of closed-loop poles 

zeta = 0.8; %damping 

BW = 500; % bandwidth of Position Controller [Hz] 

wn = 2*pi*BW; % Natural frequency of the desired poles 

wc = 2*pi*BW; % Crossover frequency of position loop 

  

% Reference Position 

f_ref = 20; % Frequency (Hz) 

A_ref = 10; % Amplitude (Hz) 

  

% Current Loop Dynamic for Controls with Current drive 

% it includes inverse ofits DC gain 

G_CurrentLoop = (1/DC_gain_CurrentLoop_NonPureIntegrator) * GANGi1; 

  

% Angular Position Reference 

T_ref = 1/f_ref; 

t = 0:T_ref/10000:2.5*T_ref; 



346 

 

theta_ref = A_ref*square(2*pi*f_ref*t); 

  

% Saturation Voltage of Power Op-Amp 

V_sat = 21; % volt 

  

s=tf('s'); 

%% __________________[ Loop Shaping in Frequency Domain ]__________________ 

% Small-Signal Linear Control System Design using the Linearized Model 

% Electrical Dynamic is removed by the haigh bandwidth current loop 

% Lead-Lag controller is used 

% A low-pass filter is in the DSP after reading the position sensor with ADC 

% The sensor function and its inverse are calcelled out 

% The DC gain of the current loop and its inverse gian in the DSP are canceled 

out 

fprintf('Loop Shaping in Frequency Domain') 

s=tf('s'); 

  

  

% Mechanical Dynamic: 

G_mech = tf([kt],[J kd ks]); % Torque/Icoil 

  

% Lead-Lag Compenstor:  Kp * (1+Ki/s) * (alpha*tau*s+1)/(tau*s+1) 

%Lag: 

Ki=wc/10 % One decade before wc 

C_lg=1+Ki/s; % Lag 

  

% Lead: 

alpha=15; % pole-zero ratio to get a phase compensation of 55 degrees 

tau=1/(wc*sqrt(alpha)) 

% tau=1e-4 % rounding 

C_ld=(alpha*tau*s+1)/(tau*s+1); % Lead 

  

% Low-Pass Filter 

fb_filter=5000; % break frequency Hz 

wb=2*pi*fb_filter; % one decade above wc 

H_LPF=wb/(s+wb); 

  

% Loop Gain Kp 

G_aux = C_lg*C_ld*G_mech; % Loop Transmision excluding Kp 

[mag,phase,wout] = bode(G_aux,wc); % calculating magnitude at wc 

Kp=1/mag % calculating Kp as the gain required to have unity loop magnitude at 

wc 

  

Phase_margin=180+phase % Phase margin 

  

% Position Controller 

Cp=Kp*C_lg*C_ld; 

  

% Loop Transmission 

LT_p=Cp*G_mech; % Without current loop dynamic 

LT_p_CurrentLoop=Cp*G_mech*G_CurrentLoop; % With current loop dynamic 

  

  

% ----------------------------[ Block Diagram]----------------------------- 

F_p=1; % input block 

P_p=G_mech; % Mechanical Dynamic, Without current loop dynamic 

P_p_CurrentLoop=G_mech*G_CurrentLoop; % Mechanical Dynamic, With current loop 

dynamic 

C_p = Cp; % Lead-Lag Compensator 

H_p = 1; % Low-pass filter 

  

  

% ----------------[ Current Loop, Loop Transmission PCH]------------------- 
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options = bodeoptions; 

options.FreqUnits = 'Hz'; 

bode(G_mech,options); grid; title ('Bode: Mechanical Dynamic H_m') 

  

figure; bode(C_lg,C_ld,C_lg*C_ld); grid 

legend('Lag','Lead','Lead-Lag') 

  

figure; bode(LT_p,Cp,G_mech); grid 

legend('Loop Tranmission','Compensator C_p','Plant H_m') 

title('Bode, Without current loop dynamic') 

  

figure; bode(LT_p_CurrentLoop,Cp,G_mech,G_CurrentLoop); grid 

legend('Loop Tranmission','Compensator C_p','Plant H_m','Current Loop') 

title('Bode, With current loop dynamic') 

  

% ----------[Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]------------ 

% Reference tracking PCF/1+PCH 

GANG1_p       = F_p*P_p*C_p/(1+P_p*C_p*H_p);  % Closed-Loop 

GANG1_p_CurrentLoop       = 

F_p*P_p_CurrentLoop*C_p/(1+P_p_CurrentLoop*C_p*H_p);  % Closed-Loop 

  

% -------[Gang 2: Reference to Controller output Voltage FC/1+PCH]------ 

GANG2_p       = F_p*C_p/(1+P_p*C_p*H_p);  % Closed-Loop 

GANG2_p_CurrentLoop       = F_p*C_p/(1+P_p_CurrentLoop*C_p*H_p);  % Closed-Loop 

  

% ---------------[Gang 3: Disturbance Rejection  P/1+PCH]----------------- 

% Disturbance to plant output 

GANG3_p       = P_p/(1+P_p*C_p*H_p);  % Closed-Loop 

GANG3_p_CurrentLoop       = P_p_CurrentLoop/(1+P_p_CurrentLoop*C_p*H_p);  % 

Closed-Loop 

  

% --------------------[Gang 4: Sensitivity 1/1+PCH]----------------------- 

% measurement noise to plant output 

GANG4_p       = 1/(1+P_p*C_p*H_p);  % Closed-Loop 

GANG4_p_CurrentLoop       = 1/(1+P_p_CurrentLoop*C_p*H_p);  % Closed-Loop 

  

% ------------------[Gang 5: Noise Sensitivity CH/1+PCH]------------------ 

% Noise to controller  output 

GANG5_p       = C_p*H_p/(1+P_p*C_p*H_p);  % Closed-Loop 

GANG5_p_CurrentLoop       = C_p*H_p/(1+P_p_CurrentLoop*C_p*H_p);  % Closed-Loop 

  

% --------------[Gang 6: Complementary Sensitivity PCH/1+PCH]------------- 

% Disturbance to controller output 

GANG6_p       = P_p*C_p*H_p/(1+P_p*C_p*H_p);  % Closed-Loop 

GANG6_p_CurrentLoop       = 

P_p_CurrentLoop*C_p*H_p/(1+P_p_CurrentLoop*C_p*H_p);  % Closed-Loop 

  

  

  

% -----[ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------ 

  

% ----- Bode Plot ----- 

f_bode=1e5; %frequency range to plot 

  

figure 

subplot(3,2,1) 

  options.FreqUnits = 'Hz'; 

  h=bodeplot(GANG1_p,GANG1_p_CurrentLoop,{10,f_bode}); grid; 

  setoptions(h,'FreqUnits','Hz'); 

  title('G1: Reference Tracking FPC/1+PCH') 

  legend('Withou current loop dynamic','With current loop dynamic') 
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subplot(3,2,2) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG2_p,GANG2_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G2: Ref to Controller Output FC/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,3) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG3_p,GANG3_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G3: Disturbance Rejection P/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,4) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG4_p,GANG4_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G4: Sensitivity 1/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,5) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG5_p,GANG5_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G5: Noise Sensitivity CH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,6) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG6_p,GANG6_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G6: Compl Sensitivity PCH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

  

% ----- Magnitude-only Bode Plot ----- 

figure 

subplot(3,2,1) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG1_p,GANG1_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G1: Reference Tracking FPC/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,2) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG2_p,GANG2_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G2: Ref to Controller Output FC/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,3) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG3_p,GANG3_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G3: Disturbance Rejection P/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,4) 
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   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG4_p,GANG4_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G4: Sensitivity 1/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,5) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG5_p,GANG5_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G5: Noise Sensitivity CH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,6) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG6_p,GANG6_p_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G6: Compl Sensitivity PCH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

  

% ----- Pole-Zero Map ----- 

figure 

subplot(3,2,1) 

  pzmap(GANG1_p) 

  title('G1: Reference Tracking FPC/1+PCH') 

  

subplot(3,2,2) 

   pzmap(GANG2_p) 

   title('G2: Ref to Controller Output FC/1+PCH') 

  

subplot(3,2,3) 

   pzmap(GANG3_p) 

   title('G3: Disturbance Rejection P/1+PCH') 

  

subplot(3,2,4) 

   pzmap(GANG4_p) 

   title('G4: Sensitivity 1/1+PCH') 

  

subplot(3,2,5) 

   pzmap(GANG5_p) 

   title('G5: Noise Sensitivity CH/1+PCH') 

  

subplot(3,2,6) 

   pzmap(GANG6_p) 

   title('G6: Compl Sensitivity PCH/1+PCH') 

  

  

% ----- Step Response ----- 

figure 

subplot(3,2,1) 

   % Step Response 

   [yy,tt]=lsim(GANG1_p,theta_ref*(pi/180),t); 

   [yy2,tt2]=lsim(GANG1_p_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,theta_ref,'--',tt,yy*(180/pi),tt2,yy2*(180/pi),'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Position (degree)') 

   title('G1: Reference Tracking FPC/1+PCH') 

  

subplot(3,2,2) 

   [yy,tt]=lsim(GANG2_p,theta_ref*(pi/180),t); 
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   [yy2,tt2]=lsim(GANG2_p_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy,tt2,yy2,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('i_r_e_f (A)') 

   title('G2: Ref to Controller Output FC/1+PCH') 

  

subplot(3,2,3) 

   [yy,tt]=lsim(GANG3_p,theta_ref*(pi/180),t); 

   [yy2,tt2]=lsim(GANG3_p_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy,tt2,yy2,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Amplitude') 

   title('G3: Disturbance Rejection P/1+PCH') 

  

subplot(3,2,4) 

   [yy,tt]=lsim(GANG4_p,theta_ref*(pi/180),t); 

   [yy2,tt2]=lsim(GANG4_p_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy,tt2,yy2,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Amplitude') 

   title('G4: Sensitivity 1/1+PCH') 

  

subplot(3,2,5) 

   [yy,tt]=lsim(GANG5_p,theta_ref*(pi/180),t); 

   [yy2,tt2]=lsim(GANG5_p_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy,tt2,yy2,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Amplitude') 

   title('G5: Noise Sensitivity CH/1+PCH') 

  

subplot(3,2,6) 

   [yy,tt]=lsim(GANG6_p,theta_ref*(pi/180),t); 

   [yy2,tt2]=lsim(GANG6_p_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy,tt2,yy2,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Amplitude') 

   title('G6: Compl Sensitivity PCH/1+PCH') 

  

  

  

%% __________________[ Pole Placement with Voltage Drive ]_________________ 

% Small Signal control using Linear Model 

% Linearized State Space Model (order: n=3) 

% x1= angular pos (theta), x2 = angular velocity (omega), x3 = current(i) 

% dX=A3*X+B3*u  , u=coil voltage 

% y =C3*X+D3*u 

fprintf(['________________________________________\n\n\n',... 

         'Pole Placement with Voltage Drive']) 

  

A3 = [0       1      0 

     -ks/J  -kd/J   kt/J 

      0     -kb/Lc  -R/Lc]; 

      

B3 = [0 

      0 

      1/Lc]; 

     

% all states as output 

C3 = eye(3);  

D3 = [0; 0; 0]; 

   

% Angular Position Tracking 

C3_act = [1 0 0]; 

D3_act = 0; 

     

%Open-Loop System 

sys3 = ss(A3,B3,C3,D3); 
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% Controllability 

Mc3 = ctrb(A3,B3) % Controllability Matrix  

Mc3 = [B3 A3*B3 A3^2*B3] 

  

rank_Mc3=rank(Mc3); 

if rank_Mc3==3; disp(['It is ontrollable. Rank of Mc is ', num2str(rank_Mc3)]) 

else; disp('It is NOT ontrollable') 

end 

  

% Observability 

Mo3 = obsv(A3,C3_act) % Observability Matrix 

Mo3 = [C3_act 

       C3_act*A3 

       C3_act*A3^2] 

  

rank_Mo3=rank(Mo3); 

if rank_Mo3==3; disp(['It is observable. Rank of Mo is ', num2str(rank_Mo3)]) 

else; disp('It is NOT observable') 

end  

  

  

% Pole Placement 

% Desired closed-loop poles on a circle with eadius of wn 

lambda_d3 = [-zeta*wn+i*wn*sqrt(1-zeta^2), -zeta*wn-i*wn*sqrt(1-zeta^2), -wn]; 

% Desired characteristic Polynomial 

phi_d3 = @(S)(S^2+2*zeta*wn*S+wn^2*eye(size(S)))*(S+wn*eye(size(S))); 

  

% Feedback Gains K3=[k1 k2 k3] by Ackermann's formula 

K3 = place(A3, B3, lambda_d3) 

K3=[0 0 1]*inv(Mc3)*phi_d3(A3) %  Ackermann's formula 

  

% Untary gain for angular position tracking 

G3 = -inv(C3_act*inv(A3-B3*K3)*B3) 

  

%Closed-Loop System 

sys3_cl = ss(A3-B3*K3,B3,C3,D3); % Controller 

  

  

  

% Full-Order State Observer 

% Desired closed-loop poles of the Observer 

lambda_e3 = [-10*wn, -10*wn, -10*wn]; % 5 to 10 times faster than controller 

% Desired characteristic Polynomial 

phi_e3 = @(S)(S+10*wn*eye(size(S)))^3; 

% Observer Gains L3=[L1 L2 L3] by Ackermann's formula 

L3=acker(A3',C3_act', lambda_e3)' %  with Matlab 

L3=phi_e3(A3)*inv(Mo3)*[0 0 1]' %  Ackermann's formula 

  

  

% Eigenvalues of Controller, Observer and Compensator: 

fprintf('Eigenvalues of Controller, Observer and Compensator') 

eig_A_BK_3 = eig(A3-B3*K3) 

eig_A_LC_3 = eig(A3-L3*C3_act) 

eig_A_BK_LC_3 = eig(A3-B3*K3-L3*C3_act) 

  

  

% Plots 

% Open-Loop Responses 

figure; step(sys3); grid 

title('Step Response (Open-Loop, Voltage Drive)') 

  

figure; pzmap(sys3) 

title('Open-Loop A, Voltage Drive') 
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figure; bode(sys3); grid 

title('Bode (Open-Loop, Voltage Drive)') 

  

  

% Closed-Loop Responses 

% Step Response 

[yy3,tt3]=lsim(sys3_cl,G3*theta_ref*(pi/180),t); 

u3=G3*theta_ref*(pi/180)-K3*yy3'; % Control signal u=Vref 

  

figure % subplot(4,1,1) 

   plot(tt3,theta_ref,'g--',... 

        tt3-T_ref, yy3(:,1)*(180/pi),'r',...  % shifted by one period 

        Step_theta_VD(:,1)   , Step_theta_VD(:,2),'k',... % Experiment 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Position (degree)') 

   xlim([0 0.99*T_ref]); ylim([-5.5 5.5]) 

   legend('Reference','Model','Experiment') 

   title('Step Response (Closed-Loop, Voltage Drive)') 

    

figure % subplot(4,1,2) 

   plot(tt3-T_ref, yy3(:,2),'r',...  % shifted by one period 

   Step_Velocity_VD(:,1), Step_Velocity_VD(:,2),'k',... % Experiment 

   'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Velocity (rad/sec)') 

   legend('Model','Experiment') 

   xlim([0 0.99*T_ref]); ylim([-180 180]) 

  

figure % subplot(4,1,3) 

   plot(tt3-T_ref, yy3(:,3),'r',...  % shifted by one period 

        Step_Current_VD(:,1), Step_Current_VD(:,2),'k',... %Experiment 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Current (A)') 

   legend('Model','Experiment') 

   xlim([0 0.99*T_ref]); ylim([-0.35 0.35]) 

  

figure % subplot(4,1,4) 

   plot(tt3-T_ref, u3,'r',...  % shifted by one period 

   Step_Voltage_VD(:,1), Step_Voltage_VD(:,2),'k',... % Experiment 

   'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('V_c (v)') 

   xlim([0 0.99*T_ref]); ylim([-1.2 1.2]) 

   legend('Model','Experiment') 

  

  

% pole-zero map 

figure; 

plot(real(eig_A_BK_3),imag(eig_A_BK_3),'x',real(eig_A_LC_3),imag(eig_A_LC_3),'x

',... 

             real(eig_A_BK_LC_3),imag(eig_A_BK_LC_3),'x','LineWidth',1) 

legend('Controller A-Bk (closed-loop)','Observer A-LC','Compensator A-BK-LC') 

xlabel('Real Axis'); ylabel('Imaginary Axis') 

title('pole map (Pole Placement, Voltage Dive)') 

  

  

figure; bode(sys3_cl); grid 

title('Bode (Closed-Loop, Voltage Drive)') 

  

  

% ----------------------[  Frequency Responses ]--------------------------- 

ff = logspace(1,4,2000);% frequency [Hz] 

omegaa=2*pi*ff; 

S = 1i * omegaa; 
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Ts=1/(160000); 

  

  

% Loop Transmission 

for kk=1:length(S) 

    LT3_delay(kk) = exp(-S(kk)*Ts) * K3*inv(S(kk)*eye(3)-A3)*B3; % with delay 

    LT3(kk) = K3*inv(S(kk)*eye(3)-A3)*B3; 

end 

  

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(LT3_delay)),'g',... % with delay 

            ff, 20*log10(abs(LT3)),'r--',... % without delay 

            Freq_expr_VD, Mag_LT_VD_expr,'k--',... 

   'LineWidth',1.1); grid 

   ylabel('Magnitude (dB)') 

   xlim([10^1 10^4]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*angle(LT3_delay),'g',... % with delay 

            ff, (180/pi)*angle(LT3),'r--',... % without delay 

            Freq_expr_VD, Phase_LT_VD,'k--',... 

            'LineWidth',1.1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model with delay','Model','Expr'); title('Loop Transmission') 

   xlim([10^1 10^4]); ylim([-180 0]); yticks([-180, -90, 0]) 

    

  

% -------- Gang 1 ----------- 

  

for kk=1:length(S) 

    G1_VD(kk) = G3*[1 0 0]*inv(S(kk)*eye(3)-(A3-B3*K3))*B3; 

    G1_VD_delay(kk) = exp(-S(kk)*Ts)*G3*[1 0 0]*inv(S(kk)*eye(3)-(A3-

B3*K3))*B3; 

end 

  

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(G1_VD_delay)),'g',...  

            ff, 20*log10(abs(G1_VD)),'r--',...  

            Bode_G1_VD(:,1), Bode_G1_VD(:,2),'k--',... 

   'LineWidth',1); grid 

   ylabel('Magnitude (dB)') 

   xlim([10^1 10^4]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*unwrap(angle(G1_VD_delay)),'g',... 

            ff, (180/pi)*unwrap(angle(G1_VD)),'r--',... 

            Bode_G1_VD(:,1), unwrap(Bode_G1_VD(:,3)),'k--',... 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model with delay','Model','Expr'); title('Gang 1') 

   xlim([10^1 3*10^3]) 

  

    

    

% -------- Gang 4 ----------- 

% Loop Transmission 

G4_delay = 1./(1+LT3_delay); 

  

  

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(G4_delay)),'g',... % with delay 
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            ff, 20*log10(abs(1./(1+LT3))),'r--',... % without delay 

            Freq_expr_VD, Mag_G4_VD,'k--',... % obtained as 1/(1+LT) 

   'LineWidth',1.1); grid 

   ylabel('Magnitude (dB)') 

   xlim([10^1 10^4]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*angle(G4_delay),'g',... % with delay 

            ff, (180/pi)*angle(1./(1+LT3)),'r--',... % without delay 

            Freq_expr_VD, Phase_G4_VD,'k--',... 

            'LineWidth',1.1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model with delay','Model','Expr'); title('Loop Transmission') 

   xlim([10^1 10^4]) 

    

  

    

    

%% __________________[ Pole Placement with Current Drive ]_________________ 

% Small Signal using Linear Model 

% Linearized State Space Model (order: n=2) 

% x1= angular pos (theta), x2 = angular velocity (omega) 

% dX=A2*X+B2*u  , u=coil current 

% y =C2*X+D2*u 

fprintf(['________________________________________\n\n\n',... 

    'Pole Placement with Current Drive']) 

  

    A2 = [0      1 

         -ks/J  -kd/J]; 

    B2 = [0 

          kt/J];  

       

% all states as output 

    C2 = eye(2); 

    D2 = [0 

          0]; 

  

% Angular Position Tracking 

    C2_act = [1 0]; 

    D2_act = [0]; 

  

% Controllability 

Mc2 = ctrb(A2,B2) % Controllability Matrix 

Mc2 = [B2 A2*B2] 

  

rank_Mc2=rank(Mc2) 

if rank_Mc2==2; disp(['It is ontrollable. Rank of Mc is ', num2str(rank_Mc2)]) 

else; disp('It is NOT ontrollable') 

end 

  

% Observability 

Mo2 = obsv(A2,C2_act) % Observability Matrix 

Mo2 = [C2_act 

       C2_act*A2] 

  

rank_Mo2=rank(Mo2) 

if rank_Mo2==2; disp(['It is observable. Rank of Mo is ', num2str(rank_Mo2)]) 

else; disp('It is NOT observable') 

end  

  

% Mechanical Dynamic: 

G_mech = tf([kt],[J kd ks]); % Torque/Icoil 

  

%Open-Loop System 
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sys2=ss(A2,B2,C2,D2); 

     

% Pole Placement 

% Desired clodes-loop poles: lambda1, lambda2 

% Desired Characteristic Equation: Phi_d=(lambda-lambda1)*(lambda-lambda2) 

% Observability Matrix Mc=[B2, A2*B2] 

% Ackermann's formula: K=[0 1]*inv(Mc)*Phi_d(A2) 

  

% Desired closed-loop poles on a circle with eadius of wn 

lambda_d2 = [-zeta*wn+i*wn*sqrt(1-zeta^2), -zeta*wn-i*wn*sqrt(1-zeta^2)]; 

% Desired characteristic Polynomial 

phi_d2 = @(S)(S^2+2*zeta*wn*S+wn^2*eye(size(S))); 

  

% Feedback Gains K2=[k1 k2] by Ackermann's formula 

K2 = place(A2, B2, lambda_d2) 

K2=[0 1]*inv(Mc2)*phi_d2(A2) %  Ackermann's formula 

  

% Unitary gain for angular position tracking 

G2 = -inv(C2_act*inv(A2-B2*K2)*B2)  

  

%Closed-Loop System 

% Without Current Loop Dynamic: 

sys2_cl = ss(A2-B2*K2,B2,C2,D2); 

% With Current Loop Dynamic: 

% calculations: (G=system, H=Current Loop time inverse of DC gain) 

% (1) dX=A*X+B*u,y=C*X+D*u => G(s)=X(s)/U(s)=C*inv(sI-A)*B+D => X(s)=G(s)U(x) 

% (2) U(s)=H(s)*(R(s)-k*X(s)) 

% (1)&(2) => X(s)=G(s)*H(s)*(R(s)-k*X(s))=G(s)*H(s)*R(s)-G(s)*H(s)*k*X(s) 

% => (I+G(s)H(s)k)*X(s)=G(s)H(s)R(s) => X(s)=inv((I+G(s)H(s)k))*G(s)H(s)R(s) 

GG2 = [G_mech ; s*G_mech]; % Mechanical dynamic, input=Ic, outputs=[position, 

velocity] 

sys2_cl_CurrentLoop = inv(eye(2)+GG2*G_CurrentLoop*K2)*GG2*G_CurrentLoop; 

  

% Full-Order State Observer 

% Desired closed-loop poles of the Observer 

lambda_e2 = [-10*wn, -10*wn]; % 5 to 10 times faster than controller 

% Desired characteristic Polynomial 

phi_e2 = @(S)(S+10*wn*eye(size(S)))^2; 

  

% Observer Gains L2=[L1 L2] by Ackermann's formula 

L2=acker(A2',C2_act', lambda_e2)' %  with Matlab 

L2=phi_e2(A2)*inv(Mo2)*[0 1]' %  Ackermann's formula 

  

% Eigenvalues of Controller, Observer and Compensator: 

fprintf('Eigenvalues of Controller, Full-Order Observer and Compensator') 

eig_A_BK_2 = eig(A2-B2*K2) 

eig_A_LC_2 = eig(A2-L2*C2_act) 

eig_A_BK_LC_2 = eig(A2-B2*K2-L2*C2_act) 

  

  

    A2 = [0      1 

         -ks/J  -kd/J]; 

    B2 = [0 

          kt/J];  

  

% Reduced-Order State Observer 

% Partitioning of matrix A2 and B2 

Ae11 = A2(1,1); 

Ae12 = A2(1,2); 

Ae21 = A2(2,1); 

Ae22 = A2(2,2); 

  

Be1 = B2(1); 
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Be2 = B2(2); 

  

% Observability 

fprintf('Reduced-Order Observer:') 

Mo2_ro = obsv(Ae22,Ae12) % Observability Matrix (Aa=Ae22, C=Ae12) 

Mo2_ro = [Ae12] 

  

rank_Mo2_ro=rank(Mo2_ro) 

if rank_Mo2_ro==1; disp(['It is observable. Rank of Mo is ', 

num2str(rank_Mo2_ro)]) 

else; disp('It is NOT observable') 

end  

  

  

% Desired closed-loop poles of the Observer 

lambda_e2_ro = [-10*wn]; % 5 to 10 times faster than controller 

% Desired characteristic Polynomial 

phi_e2_ro = @(S)(S+10*wn*eye(size(S))); 

  

% Observer Gains L2=[L1 L2] by Ackermann's formula 

L2_ro=acker(Ae22',Ae12', lambda_e2_ro)' %  with Matlab 

L2_ro=phi_e2_ro(Ae22)*inv(Mo2_ro)*[1]' %  Ackermann's formula 

L2_ro = -lambda_e2_ro-kd/J % Hand calculations 

  

  

fprintf('Eigenvalues of Controller and Reduced-Order Observer') 

eig_A_BK_2 = eig(A2-B2*K2) 

eig_A_LC_2_ro = eig(Ae22-L2_ro*Ae12) 

  

  

% Plots 

% Open-Loop Responses 

figure; step(sys2); grid 

title('Step Response (Open-Loop, Current Drive)') 

  

figure; pzmap(sys2) 

title('Open-Loop A, Current Drive') 

  

figure; bode(sys2); grid 

title('Bode (Open-Loop, Current Drive)') 

  

  

% Closed-Loop Responses 

% Step Response 

% Without Dynamic of Current Loop 

[yy2,tt2]=lsim(sys2_cl,G2*theta_ref*(pi/180),t);  

u2=G2*theta_ref*(pi/180)-K2*yy2'; % Control signal u=Iref 

% With Dynamic of Current Loop 

[yy2_CurrentLoop,tt2_CurrentLoop] = 

lsim(sys2_cl_CurrentLoop,G2*theta_ref*(pi/180),t);  

u2_CurrentLoop = G2*theta_ref*(pi/180)-K2*yy2_CurrentLoop'; % Control signal 

u=Iref 

  

  

% Coil current Ic 

% Without Dynamic of Current Loop 

[yy_ic_i,tt_ic_i]=lsim((1/DC_gain_CurrentLoop_NonPureIntegrator)*GANGi1,u2_Curr

entLoop,tt2_CurrentLoop);  

% With Dynamic of Current Loop 

[yy_ic,tt_ic]=lsim((1/DC_gain_CurrentLoop_NonPureIntegrator)*GANG1,u2_CurrentLo

op,tt2_CurrentLoop);  

  

% Coil Viltage 
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% Without Dynamic of Current Loop 

[yy_vc_i,tt_vc_i]=lsim((1/DC_gain_CurrentLoop_NonPureIntegrator)*GANGi2,u2_Curr

entLoop,tt2_CurrentLoop);  

% With Dynamic of Current Loop 

[yy_vc,tt_vc]=lsim((1/DC_gain_CurrentLoop_NonPureIntegrator)*GANG2,u2_CurrentLo

op,tt2_CurrentLoop);  

  

  

  

figure % subplot(5,1,1) 

   plot(tt2, theta_ref,'g--',... % reference 

        ...% tt2-T_ref, yy2(:,1)*(180/pi),... % without current loop dynamic 

        tt2_CurrentLoop-T_ref, yy2_CurrentLoop(:,1)*(180/pi),'r',... % with 

current loop dynamic 

        Step_theta_CD(:,1)   , Step_theta_CD(:,2),'k--',... % Experiment, 

steady state error=0.005 

        'LineWidth',1); grid 

   title('Step Response (Closed-Loop, Current Drive)') 

   legend('Reference \theta_r_e_f','\theta without current loop dynamicp',... 

          '\theta with current loop dynamic','Experiment') 

   xlabel('Time (sec)');ylabel('Position (degree)') 

   xlim([0 0.99*T_ref]); ylim([-5.5 5.5]) 

  

    

figure % subplot(5,1,2) 

   plot(...% tt2-T_ref, yy2(:,2),... 

        tt2_CurrentLoop-T_ref, yy2_CurrentLoop(:,2),'r',... % with current loop 

dynamic 

        Step_Velocity_CD(:,1), Step_Velocity_CD(:,2),'k--',... 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Velocity (rad/sec)') 

   legend('Without current loop dynamic','With current loop dynamic',... 

           'Experiment') 

      xlim([0 0.99*T_ref]); ylim([-270 270]) 

        

figure % subplot(5,1,3) 

   plot(...% tt2-T_ref, u2,... % without current loop dynamic 

        tt2_CurrentLoop-T_ref, u2_CurrentLoop,'r',... % with current loop 

dynamic, Iref 

        Step_DAC_CD_large10(:,1), Step_DAC_CD_large10(:,2),'k--',... % data for 

5deg is missing, so 10 is used with scaling, it is multiplied by Iref=-

(R2/R1)*DAC 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('u=i_r_e_f (A)') 

   legend('Without current loop dynamic','With current loop 

dynamic','Experiment') 

   xlim([0 0.99*T_ref]); ylim([-1.4 1.4]) 

  

figure % subplot(5,1,4) 

   plot(...% tt_ic_i-T_ref,yy_ic_i,... % without current loop dynamic 

        tt_ic-T_ref,yy_ic,'r',... % with current loop dynamic, Ic 

        Step_Current_CD(:,1) , Step_Current_CD(:,2),'k--',... 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('I_c (A)') 

   legend('Without current loop dynamic','With current loop 

dynamic','Experiment') 

   xlim([0 0.99*T_ref]); ylim([-1.4 1.4]) 

  

figure % subplot(5,1,5) 

   plot(...%tt_vc_i-T_ref, yy_vc_i,... % without current loop dynamic 

        tt_vc-T_ref, yy_vc,... % with current loop dynamic 

        Step_Voltage_CD(:,1), Step_Voltage_CD(:,2),... 

        'LineWidth',1); grid 
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   xlabel('Time (sec)');ylabel('V_c (v)') 

   legend('Without current loop dynamic','With current loop dynamic') 

  

  

% pole-zero map 

figure; 

plot(real(eig_A_BK_2),imag(eig_A_BK_2),'x',real(eig_A_LC_2),imag(eig_A_LC_2),'x

',... 

             real(eig_A_BK_LC_2),imag(eig_A_BK_LC_2),'x','LineWidth',1) 

legend('Controller A-Bk (closed-loop)','Full-Order Observer A-LC','Compensator 

A-BK-LC') 

xlabel('Real Axis'); ylabel('Imaginary Axis') 

title('pole map (Pole Placement, Voltage Dive)') 

  

figure; 

plot(real(eig_A_BK_2),imag(eig_A_BK_2),'x',real(eig_A_LC_2_ro),imag(eig_A_LC_2_

ro)... 

             ,'x','LineWidth',1) 

legend('Controller A-Bk (closed-loop)','Reduced-Order Observer A-LC') 

xlabel('Real Axis'); ylabel('Imaginary Axis') 

title('pole-zero map (Pole Placement, Voltage Dive)') 

  

figure; bode(sys2_cl,sys2_cl_CurrentLoop); grid 

title('Bode (Closed-Loop, Current Drive)') 

legend('Without current loop dynamic','With current loop dynamic') 

  

  

% Large signal:  -10 to 10 degrees 

figure % subplot(5,1,1) 

   plot(tt2, theta_ref,'g--',... % reference 

        ...% tt2-T_ref, yy2(:,1)*(180/pi),... % without current loop dynamic 

        tt2_CurrentLoop-T_ref, yy2_CurrentLoop(:,1)*(180/pi),'r',... % with 

current loop dynamic 

        Step_theta_CD_large10(:,1)   , Step_theta_CD_large10(:,2),'k--',... % 

Experiment, steady state error=0.005 

        'LineWidth',1); grid 

   title('Step Response (Closed-Loop, Current Drive)') 

   legend('Reference \theta_r_e_f','\theta with current loop 

dynamic','Experiment') 

   xlabel('Time (sec)');ylabel('Position (degree)') 

   xlim([0 0.99*T_ref]); ylim([-10.5 10.5]) 

  

  

    

figure % subplot(5,1,4) 

   plot(...% tt_ic_i-T_ref,yy_ic_i,... % without current loop dynamic 

        tt_ic-T_ref,yy_ic,'r',... % with current loop dynamic 

        Step_Current_CD_large10(:,1) , Step_Current_CD_large10(:,2),'k',... 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('I_c (A)') 

   legend('Without current loop dynamic','With current loop 

dynamic','Experiment') 

   xlim([0 0.99*T_ref]); ylim([-2.4 2.4]) 

  

  

% ----------------------[  Frequency Responses ]--------------------------- 

ff = logspace(1,4,2000);% frequency [Hz] 

omegaa=2*pi*ff; 

S = 1i * omegaa; 

  

% Loop Transmission 

Ts=1/(30e3); 

for kk=1:length(S) 
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    LT2_delay(kk) = exp(-S(kk)*Ts) * K2*inv(S(kk)*eye(2)-A2)*B2; % with delay 

    LT2(kk) = K2*inv(S(kk)*eye(2)-A2)*B2; 

end 

  

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(LT2_delay)),'g',... % with delay 

            ff, 20*log10(abs(LT2)),'r--',... % without delay 

            Bode_LT_CD(:,1), Bode_LT_CD(:,2),'k--',... 

   'LineWidth',1.1); grid 

   ylabel('Magnitude (dB)') 

   xlim([10^1 10^4]); ylim([-30 37]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*unwrap(angle(LT2_delay)),'g',... % with delay 

            ff, (180/pi)*angle(LT2),'r--',... % without delay 

            Bode_LT_CD(:,1), Bode_LT_CD(:,3),'k--',... 

            'LineWidth',1.1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model with delay','Model','Expr'); title('Loop Transmission') 

   xlim([10^1 10^4]); ylim([-220 3]) 

    

  

% -------- Gang 1 ----------- 

ff = logspace(1,4,2000);% frequency [Hz] 

omegaa=2*pi*ff; 

S = 1i * omegaa; 

Ts=1/(16e3); 

  

    exp(-S(kk)*Ts); 

  

for kk=1:length(S) 

    G1_CD(kk) = G2*[1 0]*inv(S(kk)*eye(2)-(A2-B2*K2))*B2; 

    G1_CD_delay(kk) = exp(-S(kk)*Ts)* G2*[1 0]*inv(S(kk)*eye(2)-(A2-B2*K2))*B2; 

end 

  

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(G1_CD_delay)),'g',... 

            ff, 20*log10(abs(G1_CD)),'r--',... 

            Bode_G1_CD(:,1), Bode_G1_CD(:,2),'k--',... 

   'LineWidth',1); grid 

   ylabel('Magnitude (dB)'); xlim([10^1 10^4]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*unwrap(angle(G1_CD_delay)),'g',... 

            ff, (180/pi)*unwrap(angle(G1_CD)),'r--',... 

            Bode_G1_CD(:,1), unwrap(Bode_G1_CD(:,3)),'k--',... 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model with delay','Model','Expr'); title('Gang 1'); xlim([10^1 

3*10^3]) 

  

  

  

% -------- Gang 4 ----------- 

% Loop Transmission 

G4_CD_delay = 1./(1+LT2_delay); 

  

  

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(G4_CD_delay)),'g',... % with delay 

            ff, 20*log10(abs(1./(1+LT2))),'r--',... % without delay 

            Freq_expr_CD, Mag_G4_CD,'k--',... % obtained as 1/(1+LT) 



360 

 

   'LineWidth',1.1); grid 

   ylabel('Magnitude (dB)') 

   xlim([10^1 10^4]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*angle(G4_CD_delay),'g',... % with delay 

            ff, (180/pi)*angle(1./(1+LT2)),'r--',... % without delay 

            Freq_expr_CD, Phase_G4_CD,'k--',... 

            'LineWidth',1.1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model with delay','Model','Expr'); title('Sensitivity') 

   xlim([10^1 10^4])   

    

  

  

  

%% _____________[ Nonlinear Control in Frequency Domain ]__________________ 

% Feedback Linearization, Current Drive, Frequency Domain 

% Nonlinear Model 

% dx1 = x2 

% dx2 = f(x)+g(x)*u(t) = v    , u=coil current 

  

% Nonlinear Compensation v = f+g*u 

% u=(v-f)/g 

  

% Linear Model with input v (compensated with feedback linearization v=f+g*u) 

% dx1 = x2 

% dx2 = v 

% Lead-Lag Control 

  

fprintf(['________________________________________\n\n\n',... 

    'Nonlinear Control in Frequency Domain']) 

  

s=tf('s'); 

  

% Mechanical Dynamic: 

G_mech_nl = tf([1],[1 0 0]); % Torque/Icoil 

  

% Lead-Lag Compenstor:  Kp * (1+Ki/s) * (alpha*tau*s+1)/(tau*s+1) 

%Lag: 

Ki_nl=0;%wc/10 % One decade before wc 

C_lg_nl=1+Ki_nl/s; % Lag 

  

% Lead: 

alpha_nl=10; % pole-zero ratio to get a phase compensation of 55 degrees 

tau_nl=1/(wc*sqrt(alpha_nl)) 

% tau=1e-4 % rounding 

C_ld_nl=(alpha_nl*tau_nl*s+1)/(tau_nl*s+1); % Lead 

  

% Loop Gain Kp 

G_aux_nl = C_lg_nl*C_ld_nl*G_mech_nl; % Loop Transmision excluding Kp 

[mag_nl,phase_nl,wout] = bode(G_aux_nl,wc); % calculating magnitude at wc 

Kp_nl = 1/mag_nl % calculating Kp as the gain required to have unity loop 

magnitude at wc 

  

Phase_margin_nl =  180+phase_nl % Phase margin 

  

% Position Controller 

Cp_nl=Kp_nl * C_lg_nl * C_ld_nl; 

  

% Loop Transmission 

LT_nl = Cp_nl * G_mech_nl; % Without current loop dynamic 

LT_nl_CurrentLoop=Cp_nl*G_mech_nl*G_CurrentLoop; % With current loop dynamic 
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% ---------------------------[ Block Diagram]----------------------------- 

F_nl = 1; % input block 

P_nl=G_mech_nl; % Mechanical Dynamic, Without current loop dynamic 

P_nl_CurrentLoop=G_mech_nl*G_CurrentLoop; % Mechanical Dynamic, With current 

loop dynamic 

C_nl = Cp_nl; % Lead-Lag Compensator 

H_nl = 1; % Low-pass filter 

  

  

% ----------------[ Current Loop, Loop Transmission PCH]------------------- 

options = bodeoptions; 

options.FreqUnits = 'Hz'; 

bode(G_mech_nl,options); grid; title ('Bode: Mechanical Dynamic H_m=1/s^2') 

title('Nonlinear Control, Frequency Domain') 

  

figure; bode(C_lg_nl,C_ld_nl,C_lg_nl*C_ld_nl); grid 

legend('Lag','Lead','Lead-Lag') 

title('Nonlinear Control, Frequency Domain') 

  

figure; bode(LT_nl,Cp_nl,G_mech_nl); grid 

legend('Loop Tranmission','Compensator C_p','Plant H_m') 

title('Bode, Without current loop dynamic') 

  

figure; bode(LT_nl_CurrentLoop,Cp,G_mech_nl,G_CurrentLoop); grid 

legend('Loop Tranmission','Compensator C_p','Plant H_m','Current Loop') 

title('Bode, With current loop dynamic') 

  

  

% ----------[Gang 1: Closed-Loop Reference Tracking FPC/1+PCH]------------ 

% Reference tracking PCF/1+PCH 

GANG1_nl       = F_nl*P_nl*C_nl/(1+P_nl*C_nl*H_nl);  % Closed-Loop 

GANG1_nl_CurrentLoop = 

F_nl*P_nl_CurrentLoop*C_nl/(1+P_nl_CurrentLoop*C_nl*H_nl); % Closed-Loop, with 

current-loop dynamic 

  

% -------[Gang 2: Reference to Controller output v(t), FC/1+PCH]------ 

GANG2_nl       = F_nl*C_nl/(1+P_nl*C_nl*H_nl);  % Closed-Loop 

GANG2_nl_CurrentLoop = F_nl*C_nl/(1+P_nl_CurrentLoop*C_nl*H_nl); % Closed-Loop, 

with current-loop dynamic 

  

% ---------------[Gang 3: Disturbance Rejection  P/1+PCH]----------------- 

% Disturbance to plant output 

GANG3_nl       = P_nl/(1+P_nl*C_nl*H_nl);  % Closed-Loop 

GANG3_nl_CurrentLoop = P_nl_CurrentLoop/(1+P_nl_CurrentLoop*C_nl*H_nl); % 

Closed-Loop, with current-loop dynamic 

  

% --------------------[Gang 4: Sensitivity 1/1+PCH]----------------------- 

% measurement noise to plant output 

GANG4_nl       = 1/(1+P_nl*C_nl*H_nl);  % Closed-Loop 

GANG4_nl_CurrentLoop = 1/(1+P_nl_CurrentLoop*C_nl*H_nl); % Closed-Loop, with 

current-loop dynamic 

  

% ------------------[Gang 5: Noise Sensitivity CH/1+PCH]------------------ 

% Noise to controller  output 

GANG5_nl       = C_nl*H_nl/(1+P_nl*C_nl*H_nl);  % Closed-Loop 

GANG5_nl_CurrentLoop = C_nl*H_nl/(1+P_nl_CurrentLoop*C_nl*H_nl); % Closed-Loop, 

with current-loop dynamic 

  

% --------------[Gang 6: Complementary Sensitivity PCH/1+PCH]------------- 

% Disturbance to controller output 

GANG6_nl       = P_nl*C_nl*H_nl/(1+P_nl*C_nl*H_nl);  % Closed-Loop 
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GANG6_nl_CurrentLoop = 

P_nl_CurrentLoop*C_nl*H_nl/(1+P_nl_CurrentLoop*C_nl*H_nl); % Closed-Loop, with 

current-loop dynamic 

  

  

  

% -----[ FPC/1+PCH, FC/1+PCH, P/1+PCH, 1/1+PCH, CH/1+PCH, PCH/1+PCH]------ 

  

  

% ----- Bode Plot ----- 

f_bode=1e5; %frequency range to plot 

  

figure 

subplot(3,2,1) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG1_nl,GANG1_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G1: Reference Tracking FPC/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

  

subplot(3,2,2) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG2_nl,GANG2_nl_CurrentLoop,{10,f_bode}); grid; 

setoptions(h,'FreqUnits','Hz'); 

title('G2: Ref to Controller Output v(t), FC/1+PCH') 

legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,3) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG3_nl,GANG3_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G3: Disturbance Rejection P/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,4) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG4_nl,GANG4_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G4: Sensitivity 1/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,5) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG5_nl,GANG5_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G5: Noise Sensitivity CH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,6) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG6_nl,GANG6_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   title('G6: Compl Sensitivity PCH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

  

% ----- Magnitude-only Bode Plot ----- 

figure 

subplot(3,2,1) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG1_nl,GANG1_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 
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   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G1: Reference Tracking FPC/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,2) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG2_nl,GANG2_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G2: Ref to Controller Output v(t), FC/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,3) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG3_nl,GANG3_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G3: Disturbance Rejection P/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,4) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG4_nl,GANG4_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G4: Sensitivity 1/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,5) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG5_nl,GANG5_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G5: Noise Sensitivity CH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,6) 

   options.FreqUnits = 'Hz'; 

   h=bodeplot(GANG6_nl,GANG6_nl_CurrentLoop,{10,f_bode}); grid; 

   setoptions(h,'FreqUnits','Hz'); 

   setoptions(h,'FreqUnits','Hz','PhaseVisible','off'); 

   title('G6: Compl Sensitivity PCH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

  

% ----- Pole-Zero Map ----- 

figure 

subplot(3,2,1) 

   pzmap(GANG1_nl) 

   title('G1: Reference Tracking FPC/1+PCH') 

subplot(3,2,2) 

   pzmap(GANG2_nl) 

   title('G2: Ref to Controller Output v(t), FC/1+PCH') 

subplot(3,2,3) 

   pzmap(GANG3_nl) 

   title('G3: Disturbance Rejection P/1+PCH') 

subplot(3,2,4) 

   pzmap(GANG4_nl) 

   title('G4: Sensitivity 1/1+PCH') 

subplot(3,2,5) 

   pzmap(GANG5_nl) 

   title('G5: Noise Sensitivity CH/1+PCH') 

subplot(3,2,6) 
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   pzmap(GANG6_nl) 

   title('G6: Compl Sensitivity PCH/1+PCH') 

  

  

% ----- Step Response ----- 

figure 

subplot(3,2,1) 

   % Step Response 

   [yy_position,tt]=lsim(GANG1_nl,theta_ref*(pi/180),t); 

   

[yy_position_CurrentLoop,tt2]=lsim(GANG1_nl_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,theta_ref,'--

',tt,yy_position*(180/pi),tt2,yy_position_CurrentLoop*(180/pi),'LineWidth',1); 

grid 

   xlabel('Time (sec)');ylabel('Position (degree)') 

   title('G1: Reference Tracking FPC/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,2) 

   [yy_v,tt]=lsim(GANG2_nl,theta_ref*(pi/180),t); 

   [yy_v_CurrentLoop,tt2]=lsim(GANG2_nl_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy_v,tt2,yy_v_CurrentLoop,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('v(t)') 

   title('G2: Ref to Controller Output v(t), FC/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,3) 

   [yy,tt]=lsim(GANG3_nl,theta_ref*(pi/180),t); 

   [yy2,tt2]=lsim(GANG3_nl_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy,tt2,yy2,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Amplitude') 

   title('G3: Disturbance Rejection P/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,4) 

   [yy,tt]=lsim(GANG4_nl,theta_ref*(pi/180),t); 

   [yy2,tt2]=lsim(GANG4_nl_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy,tt2,yy2,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Amplitude') 

   title('G4: Sensitivity 1/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,5) 

   [yy,tt]=lsim(GANG5_nl,theta_ref*(pi/180),t); 

   [yy2,tt2]=lsim(GANG5_nl_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy,tt2,yy2,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Amplitude') 

   title('G5: Noise Sensitivity CH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

subplot(3,2,6) 

   [yy,tt]=lsim(GANG6_nl,theta_ref*(pi/180),t); 

   [yy2,tt2]=lsim(GANG6_nl_CurrentLoop,theta_ref*(pi/180),t); 

   plot(tt,yy,tt2,yy2,'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Amplitude') 

   title('G6: Compl Sensitivity PCH/1+PCH') 

   legend('Withou current loop dynamic','With current loop dynamic') 

  

  

% ------------------------------------------------------ 

% Velocity 

% Without Dynamic of Current Loop 

Ref2Velocity = s*GANG1_nl; 
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[yy_velocity,tt]=lsim(Ref2Velocity,theta_ref*(pi/180),t); % Velocity 

% Without Dynamic of Current Loop 

Ref2Velocity_CurrentLoop = s*GANG1_nl_CurrentLoop; 

[yy_velocity_CurrentLoop,tt2]=lsim(Ref2Velocity_CurrentLoop,theta_ref*(pi/180),

t); % Velocity 

% Plot 

figure; plot(tt,yy_velocity,tt2,yy_velocity_CurrentLoop,'LineWidth',1); grid 

xlabel('Time (sec)');ylabel('velocity(rad/sec)') 

title('Nonlinear Control, Frequency Domain') 

legend('Withou current loop dynamic','With current loop dynamic') 

  

% Current Reference Iref: u=(v-f)/g 

% Without Dynamic of Current Loop 

u2nl_Iref = ( yy_v-(1/J)*(-kd*yy_velocity-Krest.*sin(2*yy_position)) )./( 

kt*cos(yy_position)/J ); 

  

% With Dynamic of Current Loop, Ic=G_CurrentLoop*Iref 

u2nl_Iref_CurrentLoop = ( yy_v-(1/J)*(-kd*yy_velocity_CurrentLoop-

Krest.*sin(2*yy_position_CurrentLoop)) )./( kt*cos(yy_position_CurrentLoop)/J 

); 

[u2nl_Ic,tt]=lsim(G_CurrentLoop,u2nl_Iref_CurrentLoop,tt); % Ic 

  

figure; plot(tt,u2nl_Iref,tt2,u2nl_Iref_CurrentLoop,tt2,u2nl_Ic,'LineWidth',1); 

grid 

xlabel('Time (sec)');ylabel('Iref, Ic(A)') 

title('u=I_r_e_f, Nonlinear Control, Frequency Domain') 

legend('Withou current loop dynamic u=Iref=Ic','With current loop dynamic, 

u=Iref','With current loop dynamic, Ic') 

  

  

  

  

%% _________________[Nonlinear Control with Pole Placement]________________ 

% Feedback Linearization, Current Drive, State Space Control 

% Nonlinear Model 

% dx1 = x2 

% dx2 = f(x)+g(x)*u(t) = v    , u=coil current 

  

% Nonlinear Compensation v = f+g*u 

% u=(v-f)/g 

  

% Linear Model with input v (compensated with feedback linearization v=f+g*u) 

% dx1 = x2 

% dx2 = v 

fprintf(['________________________________________\n\n\n',... 

    'Nonlinear Control with Pole Placement']) 

  

    A2nl = [0  1 

            0  0]; 

    B2nl = [0 

            1];  

         

% All states as output 

    C2nl = eye(2); 

    D2nl = [0 

            0]; 

  

% Angular Position Tracking 

    C2nl_act = [1 0]; 

    D2nl_act = [0]; 

  

  

% Controllability 
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Mc2nl = ctrb(A2nl,B2nl); % Controllability Matrix 

rank_Mc2nl=rank(Mc2nl) 

if rank_Mc2nl==2; disp(['It is ontrollable. Rank of Mc is ', 

num2str(rank_Mc2nl)]) 

else; disp('It is NOT ontrollable') 

end 

  

% Observability 

Mo2nl = obsv(A2nl,C2nl); % Observability Matrix 

rank_Mo2nl=rank(Mo2nl)     

if rank_Mo2nl==2; disp(['It is observable. Rank of Mo is ', 

num2str(rank_Mo2nl)]) 

else; disp('It is NOT observable') 

end  

  

%Open-Loop System 

sys2nl=ss(A2nl,B2nl,C2nl,D2nl);     

  

% Pole Placement 

% Desired clodes-loop poles: lambda1, lambda2 

% Desired Characteristic Equation: Phi_d=(lambda-lambda1)*(lambda-lambda2) 

% Observability Matrix Mc=[B1nl, A1nl*B1nl] 

%  Ackermann's formula: K=[0 1]*inv(Mc)*Phi_d(A2nl) 

  

% Desired closed-loop poles 

lambda1=-zeta*wn+i*wn*sqrt(1-zeta^2); 

lambda2=-zeta*wn-i*wn*sqrt(1-zeta^2); 

lambda_d2nl=[lambda1 lambda2]; 

% Desired characteristic Polynomial 

phi_d2nl = @(S)(S^2+2*zeta*wn*S+wn^2*eye(size(S))); 

  

% Feedback Gains 

% K2nl= place(A2nl, B2nl, lambda_d2nl) 

K2nl =[lambda1*lambda2  -(lambda1+lambda2)] % Solving equations 

K2nl = place(A2nl, B2nl, lambda_d2nl) 

K2nl =[0 1]*inv(Mc2nl)*phi_d2nl(A2nl) %  Ackermann's formula 

  

  

% Unitary gain for angular position tracking 

C_act2 = [1 0]; 

G2nl = -inv(C_act2*inv(A2nl-B2nl*K2nl)*B2nl) 

  

%Closed-Loop System 

% Without Current Loop Dynamic: 

sys2nl_cl=ss(A2nl-B2nl*K2nl,B2nl,C2nl,D2nl); 

% With Current Loop Dynamic: 

% calculations: (G=system, H=Current Loop time inverse of DC gain) 

% (1) dX=A*X+B*u,y=C*X+D*u => G(s)=X(s)/U(s)=C*inv(sI-A)*B+D => X(s)=G(s)U(x) 

% (2) U(s)=H(s)*(R(s)-k*X(s)) 

% (1)&(2) => X(s)=G(s)*H(s)*(R(s)-k*X(s))=G(s)*H(s)*R(s)-G(s)*H(s)*k*X(s) 

% => (I+G(s)H(s)k)*X(s)=G(s)H(s)R(s) => X(s)=inv((I+G(s)H(s)k))*G(s)H(s)R(s) 

GG2_nl = [1/s^2 ; 1/s]; % Mechanical dynamic, input=Ic, outputs=[position, 

velocity] 

sys2nl_cl_CurrentLoop = 

inv(eye(2)+GG2_nl*G_CurrentLoop*K2nl)*GG2_nl*G_CurrentLoop; 

  

  

% Plots 

% Open-Loop Responses 

figure; step(sys2nl); grid 

title('Step Response (Open-Loop, Nonlinear Control by Pole Placement)') 

  

figure; pzmap(sys2nl) 
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title('Open-Loop A, Nonlinear Control by Pole Placement') 

  

figure; bode(sys2nl); grid 

title('Bode (Open-Loop, Nonlinear Control by Pole Placement)') 

  

  

% Closed-Loop Responses 

% Step Response 

% Without Dynamic of Current Loop, u=Iref=Ic 

[yy2nl,tt2nl] = lsim(sys2nl_cl,G2nl*theta_ref*(pi/180),t); 

v2nl = G2nl*theta_ref*(pi/180)-K2nl*yy2nl'; % v(t) 

u2nl_Iref = ( v2nl-(1/J)*(-kd*yy2nl(:,2)'-Krest.*sin(2*yy2nl(:,1)')) )./( 

kt*cos(yy2nl(:,1)')/J ); 

% With Dynamic of Current Loop, u=Iref, Ic=G_CurrentLoop*Iref 

[yy2nl_CurrentLoop,tt2nl_CurrentLoop]=lsim(sys2nl_cl_CurrentLoop,G2nl*theta_ref

*(pi/180),t);  

v2nl_CurrentLoop=G2nl*theta_ref*(pi/180)-K2nl*yy2nl_CurrentLoop'; % Control 

signal u=Iref 

u2nl_Iref_CurrentLoop = ( v2nl_CurrentLoop-(1/J)*(-kd*yy2nl(:,2)'-

Krest.*sin(2*yy2nl(:,1)')) )./( kt*cos(yy2nl(:,1)')/J ); 

  

[u2nl_Ic_CurrentLoop,tt2nl_CurrentLoop]=lsim(G_CurrentLoop,u2nl_Iref_CurrentLoo

p,tt2nl); % Velocity 

  

  

% Coil Viltage 

% Without Dynamic of Current Loop 

[yy_vc_i,tt_vc_i]=lsim((1/DC_gain_CurrentLoop_NonPureIntegrator)*GANGi2,u2nl_Ir

ef_CurrentLoop,tt2nl_CurrentLoop);  

% With Dynamic of Current Loop 

[yy_vc,tt_vc]=lsim((1/DC_gain_CurrentLoop_NonPureIntegrator)*GANG2,u2nl_Iref_Cu

rrentLoop,tt2nl_CurrentLoop);  

  

  

  

figure % subplot(6,1,1) 

   plot(tt2nl-T_ref,theta_ref,'g--',... 

        ...% tt2nl-T_ref,yy2nl(:,1)*(180/pi),... % withoiut current-loop 

dynamic 

        tt2nl_CurrentLoop-T_ref,yy2nl_CurrentLoop(:,1)*(180/pi),'r',... % with 

current-loop dynamic 

        Step_theta_NL_SS10(:,1), Step_theta_NL_SS10(:,2),'k--',... 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Position (degree)') 

   title('Step Response (Closed-Loop, Nonlinear Control by Pole Placement)') 

   legend('Reference \theta_r_e_f','\theta with current loop dynamic', 

'Experiment') 

   xlim([0 0.99*T_ref]); ylim([-10.5 10.5]) 

    

figure % subplot(6,1,2) 

   plot(...% tt2nl-T_ref,yy2nl(:,2),... 

        tt2nl_CurrentLoop-T_ref,yy2nl_CurrentLoop(:,2),'r',... 

        Step_Velocity_NL_SS10(:,1), Step_Velocity_NL_SS10(:,2),'k--',... 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('Velocity (rad/sec)') 

   legend('With current loop dynamicu=Iref', 'Experiment') 

   xlim([0 0.99*T_ref]); ylim([-550 550]) 

    

figure % subplot(6,1,3) 

   plot(...% tt2nl-T_ref,u2nl_Iref,... 

        tt2nl_CurrentLoop-T_ref,u2nl_Iref_CurrentLoop,'r',... 

        Step_DAC_NL_SS10(:,1), (10/5.1)*Step_DAC_NL_SS10(:,2),'k--',... % 

Iref=-(R2/R1)*DAC 



368 

 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('u=Iref, Ic (A)') 

   legend('With current loop dynamic, u=Iref', 'Experiment') 

   xlim([0 0.99*T_ref]); ylim([-3 3]) 

    

figure %    subplot(6,1,4) 

   plot(tt2nl_CurrentLoop-T_ref,u2nl_Ic_CurrentLoop,'r',... 

        Step_Current_NL_SS10(:,1), Step_Current_NL_SS10(:,2),'k--',... 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('u=Iref, Ic (A)') 

   legend('Ic With current loop dynamic', 'Experiment') 

   xlim([0 0.99*T_ref]); ylim([-3 3]) 

      

figure % subplot(6,1,5) 

   plot(tt_vc_i-T_ref,v2nl,... 

        tt_vc-T_ref,v2nl_CurrentLoop,... 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('signal v(t)') 

   legend('Without current loop dynamic','With current loop dynamic') 

    

figure % subplot(6,1,6) 

   plot(tt2nl-T_ref,yy_vc_i,... 

        tt2nl-T_ref,yy_vc,... 

        ...%% Experiment includes missing data when saved fromscope 

        'LineWidth',1); grid 

   xlabel('Time (sec)');ylabel('V_c(t)') 

   legend('Without current loop dynamic','With current loop dynamic', 

'Experiment') 

    

  

figure; pzmap(sys2nl_cl); % grid([0.2 0.4 0.6 0.8 1],[wn]); axis equal 

title('Closed-Loop A-BK, Nonlinear Control by Pole Placement') 

  

  

figure; bode(sys2nl_cl,sys2nl_cl_CurrentLoop); grid 

title('Bode (Closed-Loop, Nonlinear Control by Pole Placement)') 

legend('Without current loop dynamic','With current loop dynamic') 

  

  

  

  

%  ----------------------[  Frequency Responses ]--------------------------- 

ff = logspace(1,4,2000);% frequency [Hz] 

omegaa=2*pi*ff; 

S = 1i * omegaa; 

  

  

% Loop Transmission 

Ts=1/(100e3); 

for kk=1:length(S) 

    LT2_nl_delay(kk) = exp(-S(kk)*Ts) * K2nl*inv(S(kk)*eye(2)-A2nl)*B2nl; % 

with delay 

    LT2_nl(kk) = K2nl*inv(S(kk)*eye(2)-A2nl)*B2nl; 

end 

  

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(LT2_nl_delay)),'g',... % with delay 

            ff, 20*log10(abs(LT2_nl)),'r--',... % without delay 

   'LineWidth',1.1); grid 

   ylabel('Magnitude (dB)') 

   xlim([10^1 10^4]) 

subplot(2,1,2) 
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   semilogx(ff, (180/pi)*angle(LT2_nl_delay),'g',... % with delay 

            ff, (180/pi)*angle(LT2_nl),'r--',... % without delay 

            'LineWidth',1.1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model with delay','Model'); title('Loop Transmission') 

   xlim([10^1 10^4]) 

    

  

% -------- Gang 1 ----------- 

ff = logspace(1,4,2000);% frequency [Hz] 

omegaa=2*pi*ff; 

S = 1i * omegaa; 

Ts=1/(22e3); 

  

% double integrator, PD and Loop Transmission and Gang 1 with Model 

DI = 1./S.^2; 

DI_delay = exp(-S*Ts)./S.^2; 

PD = wn^2 + 2*zeta*wn*S; % PD, rest of the loop 

LT = DI.*PD; 

LT_delay = exp(-S*Ts).*DI.*PD; % LT with delay 

  

  

for kk=1:length(S) 

    G1_nl(kk) = G2nl*[1 0]*inv(S(kk)*eye(2)-(A2nl-B2nl*K2nl))*B2nl; 

    G1_nl_delay(kk) = exp(-S(kk)*Ts)* G2nl*[1 0]*inv(S(kk)*eye(2)-(A2nl-

B2nl*K2nl))*B2nl; 

end 

  

GG1_delay = exp(-S*Ts).*G2nl.*DI_delay./(1+LT_delay); % Gang 1 with delay = PD 

in series with double integrator with delay 

GG4_delay = 1./(1+LT_delay); % Gang 4 

  

% Double Integrator, Loop Transmission and Gang 1 with Experiment 

% interpolation of double integrator from experiment 

Mag_DI_exprr  = interp1(log10(Freq_DI_expr),Mag_DI_expr,log10(ff)); 

Phase_DI_exprr= interp1(log10(Freq_DI_expr),Phase_DI_expr,log10(ff)); 

Mag_DI_exprr_abs = 10.^(Mag_DI_exprr/20); 

DI_expr = Mag_DI_exprr_abs .*( cosd(Phase_DI_exprr) + 1i* sind(Phase_DI_exprr) 

); % complex number by combining angle and phase 

  

LT_expr = DI_expr.*PD; % loop transmission 

GG1_expr = G2nl*DI_expr./(1+LT_expr); % Gang 1 = PD in series with double 

integrator 

GG4_expr = 1./(1+LT_expr); % Gang 1 = PD in series with double integrator 

  

  

 % remove the problematic element for plots 

fff=ff; 

fff(1149)=[]; % remove the problematic element 

GG1_expr(1149)=[]; % remove the problematic element 

DI_expr(1149)=[]; % remove the problematic element 

LT_expr(1149)=[]; % remove the problematic element 

GG4_expr(1149)=[]; % remove the problematic element 

  

  

% Gang 1 

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(GG1_delay)),'r',... % model with delay 

            ...% ff, 20*log10(abs(G1_nl)),'g',...  % model without delay 

            fff, 20*log10(abs(GG1_expr)),'k--',...  % experiment 

   'LineWidth',1); grid 

   ylabel('Magnitude (dB)'); xlim([10^1 3*10^3]) 
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subplot(2,1,2) 

   semilogx(ff, (180/pi)*unwrap(angle(GG1_delay)),'r',... 

            ...% ff, (180/pi)*unwrap(angle(G1_nl)),'g',... 

            fff, (180/pi)*unwrap(angle(GG1_expr)),'k--',... 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model with delay','Model','Experiment'); title('Gang 1') 

   xlim([10^1 3*10^3]); ylim([-250 0]); yticks([-180 -90 0]) 

  

    

  

% Loop Transmission and double integrator 

figure 

subplot(2,1,1) 

   semilogx( ff, 20*log10(abs(DI)),'g',... % double integrator without delay 

             ff, 20*log10(abs(DI_delay)),'r',... % double integrator with delay 

             fff, 20*log10(abs(DI_expr)),'k--',... % double integrator 

experiment 

             ...% Bode_DoubleIntegrator_NL_SS(:,1), 

Bode_DoubleIntegrator_NL_SS(:,2),'k--',... % Experiment 

             ff, 20*log10(abs(PD)),'r',... % PD 

             ff, 20*log10(abs(LT_delay)),'r-',... % Loop Transmission 

             fff, 20*log10(abs(LT_expr)),'k--',... % Loop Transmission 

Experiment 

             'LineWidth',1.1); grid on 

      xlim([10^1 5*10^3]); ylim([-180 170]); 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*angle(DI)-360,'g--',... 

            ff, (180/pi)*unwrap(angle(DI_delay))-360,'r',... 

            fff, (180/pi)*unwrap(angle(DI_expr)),'k--',... 

        ...% Bode_DoubleIntegrator_NL_SS(:,1), 

unwrap(Bode_DoubleIntegrator_NL_SS(:,3)),'k--',... % Experiment 

            ff, (180/pi)*angle(PD),'r',... 

            ff, (180/pi)*unwrap(angle(LT_delay)),'r',... 

            fff, (180/pi)*unwrap(angle(LT_expr)),'k--',... % Experiment 

        'LineWidth',1.1); grid on 

        legend('DI','DI with delay', 'DI Expr','PD','LT','LT expr') 

   xlim([10^1 5*10^3]); ylim([-270 90]); yticks([-270 -180 -90 0]) 

   yticks([-270 -180 -90 0 90]) 

    

% Gang 4: Sensitivity 

figure 

subplot(2,1,1) 

   semilogx(ff, 20*log10(abs(GG4_delay)),'r',... 

            fff, 20*log10(abs(GG4_expr)),'k--',... 

   'LineWidth',1); grid 

   ylabel('Magnitude (dB)'); xlim([10^2 4.7*10^3]); ylim([-30 5]) 

   yticks([-30 -20 -10 0 5]) 

subplot(2,1,2) 

   semilogx(ff, (180/pi)*unwrap(angle(GG4_delay))-180,'r',... 

            fff, (180/pi)*unwrap(angle(GG4_expr))-180,'k--',... 

            'LineWidth',1); grid 

   xlabel('frequency (Hz)'); ylabel('Angle (deg)') 

   legend('Model with delay','Experiment'); title('Gang 4: Sensitivity') 

   xlim([10^2 4.7*10^3]); ylim([-185 0]) 

   yticks([-180 -90 0]) 

  
  

  
 

  



371 

 

Appendix P 

Matlab Code for New Effectiveness Index 
 

The code is given below: 

 

 

 
% New Effectiveness Index 

% Frequency-Domain Analysis of efficiency 

  

% Gp:      including back-emf 

% Gp_appr: ignoring back-emf 

% Bode Plot of the Plnat C506 

% with/without back-emf 

  

  

J  = 1.5077e-09; % Inretia/mass without mirror from Solid Works 

kd = 4.4881e-07; % damping 

ks = 0.0013; % spring 

  

Rc=1.76; % coil resistance 

Rs=0.1; % sense resistor 

R=Rc+Rs; 

L=280e-6; % coil inductance 

kt = 1.9063e-3; % Experiment at Pangolin 8-8-2021 

  

Gp = tf([J kd ks],[L*J R*J+L*kd R*kd+ks*kd+kt^2 R*ks]); % Icoil/Vcoil  with 

back emf 

Gp_appr = tf([1],[L R]); % Icoil/Vcoil  without back emf 

G_mech = tf([kt 0],[J kd ks]); % Velocity/Icoil 

  

Z_E = tf([kt^2 0],[J kd ks]); % Back-efm impedance 

  

Z_coil = tf([L R],1); % Vcoil/Icoil without back emf 

  

% efficiency=Gp*G_mech*Kf; % efficiency=(T*W)/(V*I)=(kf*I*W)/(V*I)=Kf*W/V 

Eff=tf([kt^2 0],[L*J R*J+L*kd R*kd+ks*kd+kt^2 R*ks]); % 

efficiency=(T*W)/(V*I)=(kf*I*W)/(V*I)=Kf*W/V 

  

figure; 

win=logspace(0,5,1e6); 

[mag_Eff,phase_Eff,w] = bode(Eff,win); 

Efff = mag_Eff .*( cosd(phase_Eff) + 1i* sind(phase_Eff) ); % Complex number 

  

[mag_Z_E,phase_Z_E,w] = bode(Z_E,win); 

Z_EE = mag_Z_E .*( cosd(phase_Z_E) + 1i* sind(phase_Z_E) ); % Complex number 

  

[mag_Z_coil,phase_Z_coil,w] = bode(Z_coil,win); 

Z_coill = mag_Z_coil .*( cosd(phase_Z_coil) + 1i* sind(phase_Z_coil) ); % 

Complex number 

  

  

semilogx(win/(2*pi),squeeze(mag_Eff),'LineWidth',1.1); grid on 

xlabel('frequency (Hz)'); ylabel('Mag (abs)') 

title('efficiency') 

xlim([10^0 10^4]) 

  

figure; 

semilogx(win/(2*pi),20*log10(squeeze(mag_Eff)),'LineWidth',1.1); grid on 

xlabel('frequency (Hz)'); ylabel('Mag (dB)') 
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xlim([10^0 10^4]) 

  

figure 

options = bodeoptions; 

options.FreqUnits = 'Hz'; 

bode(Eff,Z_E,Z_coil,Eff,options); grid on 

legend('Eff','Z_E','Z_coil','Z_t') 

xlim([10^0 10^5]) 

  

  

  

figure; 

subplot(2,1,1) 

semilogx(win/(2*pi),(real(squeeze(Efff))),... 

         win/(2*pi),(real(squeeze(Z_EE))),... 

         win/(2*pi),(real(squeeze(Z_coill))),... 

         win/(2*pi),(real(squeeze(Z_EE+Z_coill))),... 

         'LineWidth',1.1); grid on 

xlabel('frequency (Hz)'); ylabel('Real (abs)') 

xlim([10^0 10^4]) 

xlim([10^0 10^4]) 

  

subplot(2,1,2) 

semilogx(win/(2*pi),(imag(squeeze(Efff))),... 

         win/(2*pi),(imag(squeeze(Z_EE))),... 

         win/(2*pi),(imag(squeeze(Z_coill))),... 

         win/(2*pi),(imag(squeeze(Z_EE+Z_coill))),... 

         'LineWidth',1.1); grid on 

xlabel('frequency (Hz)'); ylabel('Imag (abs)') 

title('efficiency') 

xlim([10^0 10^4]) 

legend('Eff','Z_E','Z_coil','Z_t') 

xlim([10^0 10^4]) 

  

 
 

 

  



373 

 

Appendix Q 

Simulink Implementations 
 

Simulink implementation of the models and control system is kind of an alternative to 

implementation with coding. Each of them has advantages and disadvantages. Coding is better for 

frequency-domain analysis and time domain analysis without nonlinearities, while Simulink is 

better for time-domain analysis including nonlinear terms. The Simulink models are given below: 

 

Current Control loop: 

 
Loop-Shaping Position Control: 
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Loop-Shaping Position Control Including Dynamic of Current Loop: 

 
 

Pole-Placement Position Control with Voltage Drive: 

 
 

Pole-Placement Position Control with Current Drive 

 
 

 

 



375 

 

 

 

Pole-Placement Position Control with Current Drive Including Current Loop 

Dynamic: 

 
 

 

 

 

 

Feedback-Linearization Nonlinear Control with Loop Shaping: 
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Feedback-Linearization Nonlinear Control with Loop Shaping and Including 

Current Loop Dynamic 
 

 

 
Feedback-Linearization Nonlinear Control with Pole-Placement: 
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Feedback-Linearization Nonlinear Control with Pole-Placement and 

Including Current-Loop Dynamic: 
 

 
 

Feedback-Linearization Nonlinear Control with Pole-Placement and 

Including Current-Loop Dynamic and Delay Terms: 
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