

Breaking down hidden barriers

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation	Gallant, Betar M. 2021. "Breaking down hidden barriers." Nature Energy, 6 (1).
As Published	10.1038/S41560-020-00754-W
Publisher	Springer Science and Business Media LLC
Version	Author's final manuscript
Citable link	https://hdl.handle.net/1721.1/143496
Terms of Use	Creative Commons Attribution-Noncommercial-Share Alike
Detailed Terms	http://creativecommons.org/licenses/by-nc-sa/4.0/

DSpace@MIT

CO₂ utilization

Breaking down hidden barriers

 CO_2 capture and its electrochemical conversion to valorized products are energy-intense processes. Now, researchers report that judicious control of the electrode interface and reactant transport unlock a lower-energy pathway allowing direct conversion of CO_2 from the captured state to CO.

Betar M. Gallant

Electrochemical upgrading of carbon dioxide to value-added chemicals or fuels has been a longsought target, but is energy-intensive.¹ An upstream process is also needed to capture and separate the CO₂ from flue gas emissions to yield a concentrated, purified stream for use in electrochemical reactors. Today's capture is based on aqueous amine chemisorption; ² while the CO₂ absorption step is energetically downhill, large energy barriers arise from the need to regenerate the CO₂-saturated solution by thermal or pressure-swing desorption. This step involves breaking the nitrogen-carbon bond formed between amine and CO₂ during capture and can consume up to 30% of a plant's power³.

To address these pitfalls, an attractive possibility is to do away with the intervening regeneration step and conduct electrochemistry directly on CO_2 in the captured state. This would rely on electrons supplied at an electrode, rather than heat, to cleave the N-C bond; instead of regenerating CO_2 , electrons drive further reaction of CO_2 to products while freeing the amine for further CO_2 uptake. Prior efforts have demonstrated the feasibility of electrochemical N-C bond cleavage upon reduction in amine- CO_2 systems ^{4,5}. However, these proof-of-concept studies used nonaqueous electrolytes, where CO_2 -derived products such as carbonates are produced rather than formally-reduced gases or liquids. Writing in *Nature Energy*, Edward Sargent and coworkers at the University of Toronto and Seoul National University now report conversion of amine-bound CO_2 to a valorized chemical, carbon monoxide (CO), in aqueous solution, exhibiting Faradaic yields up to 72% at high areal currents.⁶

During classical capture reactions, CO₂ reacts with a primary alkylamine, forming negativelycharged carbamate anions alongside an equimolar amount of alkyl ammonium cations. It is the carbamate containing the CO₂ that Sargent and colleagues target for electrochemistry (Figure 1). The generated ions act as an electrolyte but, depending on amine structure, can be bulky, which affects how they behave under applied potential.

The researchers found that when electrochemical reduction is conducted directly on solutions of monoethanolamine bound to CO₂, low Faradaic efficiencies (FE, <5%) of CO were attained. Spectroscopy experiments revealed that the positively-charged, sterically-hindering ammonium cations preferentially adsorbed in the electrode double layer under negative polarization. Here they act as a barrier, effectively blocking the desired electron transfer to the carbamate.

Building upon these insights, the researchers found that the blocking interface was disrupted by including a supporting electrolyte salt containing compact cations such as potassium, rubidium or cesium. These cations were found to displace the alkylammonium ions and form a denser electrochemical double layer. This enabled closer carbamate approach, unlocking its electrochemical activity. With cesium ions, the Faradaic efficiency increased up to 30%. Further gains were attained by operating at elevated temperatures of 60 °C in a flow-cell configuration, which helped overcome mass transport limits associated with the bulky reactants and also provided thermal activation of the N-C bond. Even with less-active potassium ions, up to 70% FE to CO was attained at 50 mA/cm² by using the improved configuration.

Using the obtained FE, the researchers showed that the projected energy needed from point of emission to electrochemical conversion of CO₂ can be lowered somewhat in the integrated system. Sargent and colleagues' approach needs 24 kJ/ton of product, compared to 30 and 29 kJ/ton, for state-of-the-art alkaline flow cells and membrane electrode assembly cells, respectively. More significantly, an improvement in overall CO₂ utilization is achieved using amines, yielding more attractive economics compared to the above counterparts, where CO₂ is more readily lost to parasitic processes.

These findings mark a new step in CO_2 capture and utilization, showing the feasibility of creating formally-reduced products from amine- CO_2 solutions for the first time. Importantly, the results confirm that amines can act more generally — now in aqueous, in addition to nonaqueous, environments — as a facilitator for CO_2 electrochemistry, opening broader areas of study across an expanded range of electrolyte media.

However, several aspects of the current system will benefit from continued research before practicality can be fully assessed. The high FEs were achieved using a Ag catalyst, which is already known to be a good electrocatalyst capable exceeding 80% FE for conventional CO_2 reduction to CO ⁷ — higher than achieved so far using amines. Notably, on carbon electrodes without Ag, the researchers reported that only hydrogen was formed. More efforts are needed to understand the catalyst's role and examine whether amines can attain benchmark FE performance, or whether there are limitations inherent to the modified reaction pathways.

In addition, while up to ten cycles of capture-reduction were demonstrated indicating a potential for amine re-use, the conditions – 30 °C, with less-active potassium ions – corresponded to the lower end of reported FEs of ~20%. Thus, it remains to be seen whether high efficiencies and durability can be combined.

The work also shines a light on numerous variables that are ripe for further study and optimization. The researchers focused on a single amine, MEA; the role of the amine structure in the thermodynamics, kinetics, products and FE of amine- CO_2 reduction warrants further fundamental research. In addition, deeper insights into the complex interactions between amine, CO_2 , salt cations and anions, and water at the electrochemical interface will support pursuit of pathways to further-reduced products, if such pathways exist. Excitingly, new groundwork is being laid that expands the toolbox of known molecular-electrochemical means to manipulate CO_2 ,^{8,9} indicating an emerging era of research at the intersection of two previously-disparate fields with potential to lower critical energy barriers and cost.

Betar M. Gallant, Assistant Professor Department of Mechanical Engineering, MIT bgallant@mit.edu

The author declares no competing interests.

References

- Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO₂ to liquid fuels. Chem. Soc. Rev. 38, 89-99 (2009).
- 2. Rochelle, G. T., Amine scrubbing for CO₂ capture. Science 325, 1652-1654 (2009).
- 3. Herzog, H. J., Carbon capture. The MIT Press: Cambridge, MA (2018).
- 4. Khurram, A., He, M., & Gallant, B. M. Tailoring the discharge reaction in Li-CO₂ batteries through incorporation of CO₂ capture chemistry. Joule 2, 2649-2666 (2018).
- Khurram, A., Yin, Y., Yan, L., Zhou, L., & Gallant, B. M. Promoting amine-activated electrochemical CO₂ conversion with alkali salts. J. Phys. Chem. C 123, 18222-18231 (2019).

- [to be added]Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W., & Bell, A. T., Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO₂ over Ag and Cu. J. Am. Chem. Soc. 138, 13006-13012 (2016).
- Cole, E. B., Lakkaraju, P. S., Rampulla, D. M., Morris, A. J., Abelev, E. & Bocarsly, A.
 B. Using a one-electron shuttle for the multielectron reduction of CO₂ to Methanol: Kinetic, mechanistic, and structural insights. J. Am. Chem. Soc. 132, 11539-11551 (2010).
- Costentin, C., Drouet, S., Robert, M., & Saveant, J. M. A local proton source enhances CO₂ electroreduction to CO by a molecular Fe catalyst. Science 338, 90-94 (2012).