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EQUIVARIANT COHOMOLOGY AND SMOOTH P-TORAIL ACTIONS

JEANNE DUFLOT

Submitted to the Department of Mathematics
on May 6, 1980 in partial fulfillment

of the requirements for the Degree of Doctor
of Philosophy in Mathematics

ABSTRACT

et G be a compact Lie group and let X be a
space on which G acts continuously. Choose a classifying
bundle PG + BG for principal G-bundles. G acts freely
on the contractible space PG, and there is a diagonal action
of G on PG x X. Let PG x  X denote the orbit space
of this diagonal action. Let p be a prime integer.

The mod-p equivariant cohomology ring of the G-
space X 1s defined by the formula

HE (X, Z/p2) = H*(X 2% PG, Z2/pZ).
One result of this thesis gives a lower bound on

the depth of HE (X, Z2/pZ) . ~

Theorem: The depth of HX(X, Z/pZ) is greater
than or equal to the maximum rank of a central p-torus acting
trivially on X.

The second result of the thesis concerns the
differentiable action of a p-torus A on a manifold M .

We define a filtration on Hx (M, Z/pZ) and identify the
successive quotients of this“ filtration as the equivariant
cohomology rings associated to ¢ertain subsets of M . As
a consequence of this , we obtain an equation that expresses

the Poincare series of the graded ring HY (M, Z/pZ) in terms
of the Poincare series of the cohomology Pings of these sub-
sets.
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Introduction

Let G be a compact Lie group and let X be a space

on which G acts continuously. Choose a classifying bundle

PG » BG for principal G-bundles. The group G acts free-

ly on the contractible space PG , and there is a diagonal

action of Gon PG x X . Let PG x° X denote the orbit

space of this diagonal action.

Let p be a prime integer. The mod-p equivariant co-

homology ring of the G-space X is defined by the formula

HE (X, Z/p2) = H*(PG © X, 2/p2).

In a series of papers [Ql, Q2] Daniel Quillen investi-

gated the algebraic structure of this ring. For example,

suppose X has finite-dimensional mod-p cohomology. In

this case Quillen proves the following

Theorem: (Theorem 7.7 of [Ql]) Krull dimen-

sion of the commutative ring

X, 2/p2) = | HZ'(X, 2/p2)

HE (X, Z2/pZ) p=

= p odd

2

is equal to the maximum rank of a p-torus A of G such that

 &gt; 2g

Here a p-torus is a direct product of cyclic groups of

order p , and the rank of a p-torus A is the number of

cyclic factors of A .

Chapter Two of this thesis contains a result in the

same spirit as the above theorem of Quillen's. This result
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gives a lower bound on the depth of HE (X, Z/pZ). The main

theorem of Chapter Two is

Theorem 2.1: The depth of HE (X, 2/pZ) is great-

er than or equal to the maximum rank of a central p-torus

acting trivially on X .

The second result of the thesis, contained in Chapter

Three, concerns the differentiable action of a p-torus A on

manifold M . In this section, we allow p = 0 , and inter-

pret a O0-torus as an ordinary torus, i.e. a product of cir-

cles. Also, we do not consider the case p = 2 . The main

theorem, Theorem 3.13, defines a filtration

_- — *0 =Fy&lt;Fy 2 ... &lt; FSF =HIM, k)

on HX (M4, k) (where k is a field of characteristic p ),

and identifies the successive quotients of this filtration

as the equivariant cohomology groups associated to certain

subsets of M . As a consequence of this theorem we obtain

an equation (Theorem 3.14) that expresses the Poincaré series

of the graded ring HX (M,Z2/p2Z) in terms of the Poincaré ser-

ies of the cohomology rings of these subsets.

In case M 1s totally non-homologous to zero in the

fibration PA xt M = My &gt; BA, we recover (Corollary 3.17)

a result of Borel's [Bl]; namely,

dim_H*(M, k) = dim_H*(M", k).

In addition, we obtain in this corollary equations relating

the k-Euler characteristics of M and ut
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Chapter One

The purpose of this preliminary chapter is to state some

basic definitions and results, and to set notation.

Let G be a compact Lie group. There is a classifying

bundle PG * BG for principal G-bundles with paracompact

base. The spaces PG and BG may be assumed to be (para-

compact) CW complexes. This bundle is characterized up to

homotopy equivalence as the orbit projection PG * PG/G

of the free action of G on a contractible space PG

(e.g., see [H]).

Suppose that G acts continuously on a topological

space Xo. We define

_ G

Xa = PG ¥ X

to be the orbit space of the diagonal action of G on

PG x X. We assume that the space X is such that Xs is

a paracompact, locally contractible Hausdorff space. For

example, take X to be locally compact, paracompact, local-

ly contractible and Hausdorff.

If R is a commutative ring, define the equivariant

cohomology ring of the G-space X with coefficients in R

to be

HX (X, R) = H* (X,, R),

where the right hand side of the equation is ordinary sing-

alar cohomology with coefficients in R. The restrictions

on X enable us to say that this definition of equivariant

cohomology agrees with that of Borel [Bl] and Quillen [Ql]
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(they use sheaf cohomology); so we may use some results of

their work.

We will make use of the following properties.

1.1) [01, sect. 1] HE (X, R) is independent of the

choice of classifying bundle for G .

1.2) [@l, (1.5)] Functoriality: If u:G~~G'is a

homomorphism of compact Lie groups and £:X + X' is u-equi-

variant, then there is a homomorphism (u,£) *:HE, (X', R) -

HE (X, R). If f£ and u are inclusions, this homomorphism

will be denoted "res".

1.3) If X = pt is a point, then HE (pt, R) =

H* (PG x° X, R) = H*(BG, R). So, if G is finite, HX

HE (PE, R) is classical group cohomology with coefficients in

the trivial G-module R.

We will continue the list of properties after introdu-

cing some notation. _

Let xeX be a point of X

Gx = {gx| geG} is the orbit of x

and

G, = {geG| gx =x} is the isotropy group at x

The orbit Gx is homeomorphic to the homogeneous space

G/G.,- Denote the orbit space of the G-action on X by

X/G.

1.4) If xeX, HE (Gx, R) = H* (BG, R). This is be-

cause Gx = G/G,, ,and PG/G,, ~ PG = (G/G,) is a classify-

ing space for G

1.5) fol, (1.10)  (1.11 | Consider the two maps
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BG ry Xa Su wifdr

Each of these maps has an associated spectral sequence.

a) There is the Serre spectral sequence of the fibra-

tion X., - BG -

H* (BG, {H*(X, R)}) 3 H* (Xe

Here, {++} denotes local coefficients.

b) For the map Xs g X/G we have the Leray spec-

“ral sequence:

JH*(X/G, ‘H*q) zz H*(Xg, R)
sg

The cohomology on the left is sheaf cohomology with coeffi-

cients in the sheaf associated to the presheaf

-1
Po HEC TW, R)

on X/G. The stalk of this sheaf at xeX is H* (BG,, R)

(Ql, p. 553].

1.6) If G acts freely on X, then

H* (X/G, R) &gt; HX (X, R)

(We assume that X is paracompact, locally contractible,

and Hausdorff; since the action of G on X is free,

X/G 1s also paracompact, locally contractible and Haus-

dorff.) This follows from 1.5b) (see [Ql, (1.12)1).

1.7) If G acts with finite isotropy groups on X

and R is a field of characteristic zero, then

ETE, R) &gt; HE (X, R) .
The Leray spectral sequence gives the isomorphism (e.g., see

[Ql]) because at (Be, Ry = 0 if 4i&gt;0 since R has

characteristic zero, and G,, is finite [C-E}l. Again,
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gH (X/G, R) denotes sheaf cohomology with constant coeffi-

cients. The only place we use 1.5) - 1.7) is in Chapter

Three, and there we do not denote the distinction between

J BF (X/G, R) and H*(X/G, R) .

1.8) If G acts trivially on X , and R is a field,

then H*(X,, R) = H*(BG, R) @ H*(X, R) . This is the

Kunneth isomorphism for Xs = BG x X

Next, we discuss orientability, G-vector

and characteristic classes.

bundlias r

A real vector bundle (or a disk bundle) v:E - X of

constant fibre dimension n is R-orientable if there is

a class UeH T(E, Eq» R) (Eq = E - X, where X is consi-

dered as the O-section of v) such that for each =xeX, the

image of U under

res:H(E, Ey, R) ~ HY (w(x), v(x) - {0}, R) = R

is a generator of R . The cohomology class U is called

an orientation class for v . Of course, if Vv has different

fibre dimensions over different components of X , we will

say that Vv is R-orientable if and only if the restriction

of Vv to each component is R-orientable.

A complex vector bundle is R-orientable for any ring

R, and any vector bundle is Z/2Z-orientable [M]. Also,

a vector bundle is R-orientable if and only if its associa-

ted disk bundle is R-orientable.

For an R-orientable real vector bundle Vv:E &gt; X of

constant fibre dimension n , there is an Euler class

a(V) € 7 (X, R) [M,S]. Also, there is the Thom isomorphism
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for U [M, S]:

(x, ) 5 BE, R) 3 ESE, E., R)
Pp + U 4 0

EE

The composition of T and res H(z, Eqs R) ~» g(x, R)

is multiplication by e(v) = (p ) T(U) IM,S].

If Vv:E - X 1s a complex vector bundle of constant

fibre dimension n , there are Chern classes (e.g., see

[H]) c; (v) £ r?t (x, 2) of v. Via the map Z » R, we con-

sider c; (v) € gt(x, R). Regard v as a real vector bundle

of dimension 2n . It is R-orientable, so we have an Euler

class e(v) e 128(x, R). The Euler class e (Vv) is equal to

c, (Vv) , the top Chern class of Vv [H, M].

We define real or complex G-vector bundles over the

G-space X as in Atiyah [Al]and Atiyah and Segal [A-S].

Namely, a real (or complex) G-vector bundle ¢&amp;£:E - X over

X consists of a G-space E and an equivariant map E + X

such that E£:E - X 1is a real (or complex) vector bundle

over X , and for each geG , the map £&amp;(x) &gt; &amp;(gx) is

a vector space map. Here, E(x) is the fibre of E&amp;:E + X

over XeX .

If £:E = X is a G-vector bundle over X , then

£cEq = PG &lt;© E &gt; PG xC X = Xa

is a vector bundle [A-S].with the same fibres as § ; i.e.,

2g ([Prxl]) = §&amp;(x) -for Ip, x] e PG © X. As usual, we have

chosen a classifying bundle PG » BG for G .

The assignment §&amp; i&gt; Ea has at least the following two

properties:
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1) (ve vg = Vg @® Ve

and

2° If Y &lt; X is G-invariant, then

| ee

A Va
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Chapter Two

The main theorem of this chapter is Theorem 2.1. In

the proof of Theorem 2.1, we construct a regular sequence

of length n in HE (X, z/pZ) , where n is the rank of

a central p-torus acting trivially on X

Section One: A Regular Sequence in HX (X, Z/pZ)
——

Let G be a finite group acting on a space X . In

this section, the cohomology groups have coefficients in

Z2/pZ, where p is a fixed prime, unless otherwise indi-

cated,

rat

 oJ

Ye.

av_
Vo = &gt;) Hot (pt)

i&gt;0
HX = oD Ht (pt)

G £&gt;0 G

P Cid” -

P = 2

H is a commutative ring. The graded group HE (X) may be

considered as an H-module via the map X + pt . An H-se-

guence on M.= HZ (X) (or on any H-module M) may be de-

fined in the following way [XK].

A sequence of elements Xyr Ryo

of positive degree in H is said to be an H-sequence on M

lor a regular sequence on M) if

and

xq is not a zero divisor

if for each i&gt;1,

on Vi

is not a zero divisor on M/A reee, x; IM .
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Let n &gt; 0 . For each i such

that 1&lt;i&lt;n , the sequence of elements Kir eee 1X of

H is an H-sequence on HE (X) if and only if Ris eee
» —- * 3 -—

is an H-sequence on HE (X) and Xip1¢ +++ rr X, is an H

sequence on HE(X) / (xq, cee x, HE (X) .

Theorems of Evens [E] and Venkov ([V], see also [Ql])

XxX.

show that H is Noetherian and that HE (X) is a finitely

generated H-module if H*(X) is finite dimensional over

z/PZ. In this case, any two maximal H-sequences have the

same length (e.g., see [K]; in Theorem 121, take the ideal

I to be the positive degree elements of H ). This com-~

mon length we call the depth of HE (X)

Here is the main theorem.

Theorem 2.1 Let A be a p-torus that is contained

in the center of G . Suppose also that A acts trivially

on X . Then there is a regular sequence on HE (X) of

length greater than or equal to rank (A). Thus if H* (X)

is finite dimensional over Z/pZ , then

depth HE (X) &gt; rank (A)

This theorem will be proved by induction on the rank

»

 et he 3

Proof

case One: Rank(a) = 1 .

Let A be a cyclic group of order p contained

in the center of G , such that xB =X. Let 2 = N/p

be the index of A in G , where N is the order of GG.
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Consider the representation p:A + &amp;* given by

o(a) = e2mi/P where a 1s a fixed generator for A .

Corresponding to this one-dimensional representation of A

there is the ¢-dimensional induced representation, ind(p),

of G .

The representation pp of A gives an A-action

on C. Using this action, we may define a one-dimensional

vector bundle, also called p , over the classifying space

BA for A :

Pe
PA x C -&gt; BA [22

Similarly, there is an g¢-dimensional complex vector

bundle, ind(p), over the classifying space BG for ¢g :

PG x° C ind (p) BG .

There are Chern classes for these vector bundles,

c, (0)e Bil(pt, 2) = H°M(BA, 2) and c,(p) e¢ HOU(BG, 2) [a2].

Via the homomorphism Z »- Z/pZ , we obtain mod-p Chern

classes c,(p) © g%L (Ba) = HoT and c, (ind(p)) e HT (BG) =

r2

In Corollary 2.4 we will prove that e = c, (ind (p))

is a non-zero-divisor on HE (X). The key result used to

prove this Corollary is Lemma 2.2. Before stating Lemma

2.2, we must state some results of Section Two of this chap-

ter

Since A acts trivially on X , we have the spectral

sequence of Section Two:

“+ % = * * *
F H (Xs /a ’ {HZ} = H* (7

We also show in Section Two that because A is central
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in G , and coefficients are in a field, that

Pd _ ,P qd, . p q
£3 BY (XgnrHp) (Xen) &amp; pny Ha

Now, it is well known that

Hy

.

Z/pZ [cq (0) ] ®Y, jpgh [¥] p odd
(a polynomial algebra on c; (po) ten-
sored with an exterior algebra on

xX = B(cy(p)), the Bockstein of c, (p))

2/22 [y] 3
Ps

(a polynomial algebra on vy , where
Y'y = ¢cy(p) )

(see, e.g. [Ql]).

Lemma 2-2 (Evens [E]) Let ae HEM (x) be any cohomology

class such that HM (x) +&gt; HO = Ey’ takes a to
c, (0) where M&gt;0. Then

a) cq (0) € 2M for every r&gt;2

b) Multiplication by cy (p)™ induces an isomorphism
* 5 x =

A gr JTeM for every r&gt;2 and j&gt;0 (8 '9 =

® lr) *
i&gt;0

BE _

and Es =¢)  E3f+2 Eg

Proof of Lemma 2.2:

a) We have the fibration (see Section Two!)

BA + PG x° X &gt; p (c/a) xP x

giving rise to the spectral sequence. It is enough to note
1 + = ’ M » - » a - 1 -

that that cy (0)° 1s the restriction to the cohomology of

the fibre of the class a in the cohomology of the total
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space. Thus, for every r&gt;2 , a_(cy (0)™ = 0 , where d.

is the r-th differential of the spectral sequence.

b) Multiplication by cp (0) is an isomorphism

B* (X5 a) &amp;pg HY &gt; H* (Xea)&amp;pg Hy FAH
for every Jj&gt;0, since cq (p) is a polynomial generator of

HY . So, for r=2 , Db) is true.

Suppose b) has been proven for r&gt;2 5&gt;0.

Consider the following diagram:

 -— -|14+2M
a

1 2M ol ~r,j—r+1+2M
d

| rep (0) [ep (a |
 om

Jd r J +r—-1
4
as

=.  PF
x

% ,vn

4 A

d.. is the differential of the spectral seguence.

sc. (p)
=

 Vv

,~r+1

The dia-

gram is commutative since

M _ M M, |
d. (cq (p) x) = cy(p)ed (x) + d,.(cq (p) ) *X

by the multiplicative property of d_, and since

M mepeet.
d_(c,(p)™) = 0

If j-r+130, then by induction all the vertical maps

are isomorphisms, so the induced map on homology,

i,j i,j+2M
Ertl ” Ertl ’

M
rea. (0)

is an isomorphism.

T 9-r+1&lt;0 , gttT,3-wtl = 0 , and a diagram chase
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i, i,j+2M ; . . .

shows that E41 . Toy M E411 1s an isomorphism in
1

this case also.

 ois] i+2M+2,j=-2M=-1¢) dome Bonzo EoM+2
* 9 _

Suppose that Jj&lt;2M , then Ameo (Eomin? = 0 since the

spectral sequence is first quadrant. If j&gt;2M, there is an

integer m&gt;0 such that Jj = 2mM + k , where k&lt;2M . Let

y € geld, = het ; then Db) and induction on m show

—_ Mm, * i,k —
that y = (cq (p) ) x , for some XEE Spo . So Aopen (¥) =

mM mM _ _

cpp) dopa (X) 2 dpyyple (Tex = 0 + 0 = 0

So, doM+2 = 0 , and E5fio = EX=*

Corollary 2.3 The cohomology class ao of Lemma 2.2

nt

is not a zero divisor on HE (X) ‘

Proof: Lemma 2.2 shows that multiplication by cy (0)

is injective on E** . So multiplication by ao , which

restricts to cy (0) , must be injective on HE (X) . QED

Getting back to the case at hand, we have

Corollary -2.4 The cohomology class e = c, (ind (p))

a non—-zero-divisor on HE (X) .

Proof: Since A is contained in the center of

the Mackey induction formula [Se] shows that

res, (ind, ~(p)) =2%0 =080&amp; .. &amp;

G,

2 +imes
Th Ae

] _ . _ _ 2

res(c, (ind (p)) = c,(res(ind(p))) = e, {4p} = ¢4(p)

by various properties of Chern classes (see, e.g., [H])

Now use Corollary &lt;2-3-QED
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Thus, Theorem 2.1 is true in case rank (A) equals one.

To complete the proof of Theorem 2.1 we prove

Case Two:- Rank (A) &gt; 1. -

Proof: Let A be a p-torus of rank 0 r Ty  te 7 COIl—~

tained in the center of G such that

B= {xeX|ax=x VaeA} = ZX

Let &amp; = N/p" be the index of A in G . Let Aq be a

subgroup of rank 1 in A and write A = A, x B , where

B is a p-torus of rank n-1 .

There is a one-dimensional representation

0A; xB &gt; &amp;* of A given by po on Ay (op is the same

representation as in Case One ) and the trivial repre-

: _ : _ 2%

sentation on B . Let e = c, (ind,  .(p)) e H.,"&lt; H be the

top Chern class of the {-dimensional representation

1 A «IT % *

ind, sp) of G . If TeSy GEE &gt; 5 , then we have

res, gle) = cy (0? . This. follows from the Mackey induc-

tion formula, which implies that

res, _glind, ~(p)) = resp »areSang (ind, (0)
res, a (%p)
29

and standard properties of Chern classes.

By Corollary 2-4, e is not a zero divisor on HX (X) .

The finite group G acts on o2* via ind, (Pp) and

therefore on g2* x X diagonally. So there is a vector bun-

le

pe x° (@*Y x x)
i

-

L J
a
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and the associated (orientable) sphere bundle is

pc x° (s¥7! x x) 8 pe xx

recall that ind, .(p) is-unitary, since p is unitary.

Associated to this sphere bundle £° is a mod-p Euler class;

it is the top Chern class of the vector bundle £&amp; . There-

fore this Euler class is equal to e

There is the exact Gysin sequence

\

* a

chy H &gt; Zin
-

for pron

"——

w=1
x X)Li3

The map 172% (x) + HY (x) is multiplication by e as

indicated, and since e is a non-zero-divisor, this map is

injective. So there is a short exact sequence of H-modules

y
ay

b H* (X

where H* (X.) = @ HY(X) .
i&gt;0

- H*
’

Gs &lt;&lt;[
J l=1

Mul:si_iilicac.,on D 7

4 / 2)

2

So

is an

0)

H-module map since e has even degree

1]e

This short exact sequence shows that there is an H-mod-

isomorphism

20-1
x X) a [ H* (X.) /(e)H*(X.)

3

induced by 6

The isomorphism © provides the inductive step. For,

mow does B act on ge¥-i Xx X ? In fact, B acts trivially.



2

To show this, it is enough to note that

1) resp, (ind,  ~(p)) = 2

2-dimensional trivial representation)

(Proof: B is central since A is. So

resy, (ind, ~(p)) = resp, ,(res, (ind, ~(o0))

resp a (20)

Leresy , (p)
hy Q -

and

2) x= = X ; this follows because x = X and B&lt;A

Since rank(B) &lt; rank(A) , B is central, and

(24-1 xX x) EB nm Ra x X , we may use: induction to obtain

an H-seguence

29-1
of length n-1 on H*((S xX X) .

phism § ;

Using the isomor-

is an H-sequence of length n on H* (X45)

So, Theorem 2.1 is proved. QED

It is nice to notice that it is possible to actually

write down an H-sequence on H* (Xe) . Write

A = Aq X Ry X oo oo o X A,

as a direct product of cyclic groups of order p . For

l1&lt;i&lt;n, let oA + {* be the one-dimensional repre-

sentation of A given by the trivial representation of A

on all but the i-th factor of A and by (our usual) op

ON A... If e;, = c, (ind, ~(p;)) , the proof of Theorem



2.1 shows that es y eS is an H-sequence on H* (X.) ‘

Also,

1.5 )/ {eq * eo r ~
- X)

I
) 7 -— -—

a Ea X) )

) factors

where G acts on (s2%"1,1 via ind(s,) on the
Q- i .

tor (for 1&lt;j&lt;i) and on (5? 11 x X diagonally.

j-th fac-

Section Two: A Spectral Sequence

This section constructs the spectral sequence used in

the proof of Lemma 2.2 of Section One.

Let G be a compact Lie group acting on a space ie

Suppose that N is a closed normal subgroup of G that acts

trivially on X .

In this section we point out that there is a fibration

EN wi X wpG La /N

yiving rise to a Serre spectral sequence

H* (Xo nr {ax}) &gt;
-

H* 7.)
x

denotes local coefficients.)

We assume that cohomology has coefficients in a fixed

commutative ring R , unless otherwise noted.

To get the fibration

_N -m
 on

-

 ]

X/ 'N



-

or

oy

CSN

2
we start with a classifying bundle P(G/N) =» B(G/N)

for principal G/N-bundles. Then, there exists a classify-

ing bundle PG &gt; BG for principal G-bundles and a comm-

atative diagram

A)
pip

 Ud

BG

PIG/N)

| &amp;

B (G/N)
«

with f a fibration.

To see this, use Borel's diagram [B2]. Namely, let

P - B be any classifying bundle for principal G-bundles.

Form the diagram

P &gt; P(G,/N)
2 2

2 { =|

3/ NN)

-

3 =
pr1

P
—y

P (G/N)  =&gt;

pr2

B(G/N)

Here G acts on P(G/N) via the homomorphism =w:G =» G/N;

and the space P =C P(G/N) is, as usual, the orbit space of

the diagonal action of G on P x P(G/N)

Then the right half of the above diagram
pr,

PG = P x P(G/N) &gt; 2 P (G/N)

&gt;

13 P
a

+ P (G/N) &gt;

pr,

is the desired diagram ATA] We

B(G/N)

must verify



ES
SLT"ain.§

l) that P x P(G/N) + P i&gt; P(G/N) is a classifying

bundle for G and

2) that pr, is a fibration

Now, P x P(G/N) 1s a contractible space on which G

acts freely, and P x P(G/N) its orbit space. Therefore,

PG + BG is a classifying bundle for G . So 1) is true.

To see 2) , we show that P x P(G/N) + B(G/N) is

Pr,

locally a product. Since £ is locally a product, suppose
-1

that UW is an open set in B(G/N) with Ux G/N = §&amp; (U) .

The action of G/N , and hence of G , is given by transla-

tion on the second factor in this product. So

57," (U) = px® UxG/N) = (Px® G/N) xU

and is locally a product. The fibre is

p x° ¢/N = P/N = BN

a classifying space for N

Since N acts trivially on P(G/N) there is a comm-

1tative diagram

27

8B)

PG/N = P/N x P (G/N)

¥ p- 3
~(3

L
P (G/N)

VE
B(G/N)

pr, = f

and the big square [1 is cartesian.

Now, replace the fibres of the principal G/N-bundles

41d ©” by the G/N-space X , forming the commutative
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de

diagram of fibrations

A)
~/

P,N

P I

3

(G/N) = BN fee

PG/N xC/N X

7
a

£
a p/n) =°/N x

J

B { S/N)
g

The indicated square is cartesian. The only thing left to do

is to notice that PG/N =" X is homeomorphic to PG © X.

So, rewriting the diagram © as ©) , we have a comm-

atative diagram of fibrations, with the indicated square

cartesian:

x
—

—-
J

—?

“yf

l
“1

[4

v
BG

 1d
a—

X6/N

B (G/N)

The fibration Xs &gt; Xa /N is induced from the map

BG + B(G/N) . Therefore, if the local coefficient sys-

tem {Hk} is trivial for the latter fibration, it is trivial

for the former fibration [S].

From this it follows that if N is central

coefficients are in a field F , then

* * ~ * *EZ* = H¥(X,,) ®, H}

in G y and

For, {Ht} is trivial for BG =» B(G/N) since N is

central (see, e.g. [ 1), so

ot % = * * ~7 H (Xo m7 HY )
dd
-

’
—

ad *Lom) pp HY
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Chapter Three: Smooth Actions

Let A be a p-torus where p is zero, or an odd

prime. We consider smooth actions of A in this chapter.

The main result is Theorem 3.13 of Section Three.

Section One: Gysin Sequences

Section One constructs the Gysin sequences for the em-

bedding of a closed invariant submanifold in a differentia-

ble manifold. The results of this section are well known.

Since they hold for smooth compact Lie group action, and not

just toral actions, we let G be a compact Lie group acting

smoothly on a differentiable manifold M . The manifold

M has a smooth G-invariant Riemannian metric. If Y is

a closed G-invariant submanifold of M , then the normal

bundle Vv:N + Y is a G-vector bundle since the metric de-

fining Vv is G-invariant.

Let R be a fixed commutative ring. We assume that v,

and also

V.,. PO GC x PG

No,
“T

are R-orientable vector bundles (see Chapter One). In this

section, cohomology groups will have coefficients in the

ring R

Proposition 3.1 Suppose that Vv and Va have con-

stant fibre dimension d over R . Then there is an exact



FWa ~~ 7

equivariant Gysin sequence for the embedding Y + M

 BD
J .

v) IN HL ‘M)
vee

we

hd ~rN 3
ne

7)  an -

If res, HEM) &gt; HE (Y) , then resy vv

plication by the Euler class of Vg

Proof: To get the exact sequence, start by considering

the total space D of the disk bundle associated to v as

being smoothly and equivariantly embedded as a closed G-in-

variant tubular neighborhood of Y [Br]. There is the exact

sequence of the ipair (M,, (M-Y) .) -
x

‘M, M-Y) —
r

1 "1 SSS Sy evess

By excision of the open set Ug = (M-D) /

gE (M, M-Y) &gt; ge D, D-Y)G ’ ~ a ’

for every i. The space Ys is equivariantly embedded in

Dg as the zero section of the disk bundle associated to

Var so there is a Thom isomorphism

-"

The composition

HS (Y) &gt; 1. (0D, D-Y)
Ta

is multiplication by the Euler class

gt tC
—y
. =

D,

&gt;
4

H.
A

TC=

of v._

dna?

"Ca

» The Gysin

L,

(Y)
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sequence is:

 Db _.

HT (M-v) &gt; HTT (Y) ..
}
: $ -1 v6 sT {Tg

att (p, D-v) &gt; HET M-Y) gltdtl (ym, M-v) 2H:  (D, D-Y)
OED.

. res
4pttd oy) &gt;

More generally, we have

Proposition 3.2 Suppose that Y = YJ XY, is the finite

disjoint union of closed G-invariant submanifolds Y such

that vig has constant fibre dimension d, - Then

1) hens is an exact Gysin triangle of R-modules

15M

bn

fkSEC 7)

where HX(-) = ® HE.f=

and

2) the composition

H"

Comin HA (M=-Y)

oq ”n =f
-

h_
B A

pun &gt; HE (Yg)
r=

is zero if oo # 8 and is multiplication by the Euler class

of Vv.| _ : = i

G' (Ys = ly Vg if a = B

Here the inclusion HX (Y ) &gt; = Y} comes from the

isomorphism
 ly
1 a

-

a
5 \
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Proof: To see this, note that we may assume that the

closed invariant tubular neighborhood D of Y is the dis-

joint union of invariant tubular neighborhoods D, of Y,6 .

Proceeding as in Proposition 3.1, start with the exact se-

quence of the pair (M,, (M-Y).): and then use the isomor-

phisms

IT 7) =&gt;

DrePres

F HEY )
 A

CL.
®HL(D , D -Y )
a 3 a a

ls res
a a

HX(D, D-Y) .

The map Te, is the Thom isomorphism for (Y,) &gt; (Dy) ¢

It is clear that 2) holds since the D,'s are dis-

joint. The Gysin map 2 mixes degree, as does the map

HE (M-Y) + HE (Y) in the Gysin triangle, if the d's

are different. QED

For later use, we note that the Gysin triangle

(for G = [e] , the identity group) implies that if any two

of the three groups H*(M), H*(M-Y), or H*(Y) , is finite

dimensional over the coefficient field R , then so is the

third group.

Section Two: The Decomposition of the Normal Bundle

In this section we go back to considering smooth toral

actions. Let M be a differentiable manifold on which a

p-torus A (p is zero, or an odd prime) acts smoothly.

As in Section One, assume that M has a smooth A-invariant
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Riemannian metric.

Let B be a nontrivial subtorus of A, and let Y be

a smooth closed A-invariant submanifold of M on which B

acts trivially. If v:N =» Y is the normal bundle to Y,

the subtorus B acts (by restriction of the A-action) on

N. This B-action is an automorphism on each fibre of Vv

since B acts trivially on Y . Throughout this section we

assume that the actions of B on the fibres of Vv have no

nonzero fixed vectors. Let CC = A/B, and fix once and for

all an isomorphism A = B x C . The p-torus C acts by

restriction on N and Y making v into a C-vector bundle.

Proposition 3.3 gives a decomposition of the normal

bundle corresponding to the irreducible nontrivial real

characters of B . Under "constant codimension" assump-

tions on Y , we then get a factorization of the Euler class

of Vv (Proposition 3.6). Finally, we show that this Euler

class acts as a non-zero-divisor on HX (Y) (Propositions

3.9 and 3.10).

We begin by listing the irreducible nontrivial complex

characters of B. They are one-dimensional and occur in

conjugate pairs: Ixy X33 . Since p#2 , the nontrivial

irreducible real characters of B are two-dimensional; they

are x; X47 . Given the list { X51 x4} of irreducible

complex characters, X3 + X3 is the character associated

to the real representation op_.:B =~ GL(V.) given by
2

(here, V., = RR")
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0

0 4 (b) (x,y) = X 4B). (x + iy) =

-

R . .

e x4(b)  Imx,(b) |
-Im y  (b) Re y.(b)| lyL,

for each DbeB

The real vector space vy has a natural complex

structure 249, &gt; Vy given by J(x,y) = (-y, x). Note

that b.J(x,y) = x.(b)-i(x+iy) = ix 4b)» (x+iy) =

J(be (x,¥)), if beB . Let Y 5 be the B=-vector bundle

Y x Vv, v; Y ; the action of B is given by 05 on V,

The vector bundle Y5 of course has a complex structure

given by J .

ar

Proposition 3.3 (Atiyah, [Al]) Let Y be a smooth

closed A-invariant submanifold of M on which B acts

trivially, with normal bundle v:N + Y. Then (recall

that the indices Jj index the nontrivial irreducible real

characters of B )

B
. = Hom s 7 = Hom iy ¥a) £5 8 {Y5 ) [ (v4 )1)

is a (real) vector bundle over Y . There is an action of

C on the total space of ey making 2 into a C-vector

bundle. Also, the vector bundle 24 has a complex struc-

ture given by J.

b) The vector bundle 4 ©r = has a complex structure

and an A-action making it ipto an A-vector bundle over  Y.

c) If the actions of B on the fibres of v have no non-

trivial fixed vectors, then v = z Ys oN ey; as A-bundles.

Thus, Vv has a complex structure.



 ™
 or commas

Proof: a) For the fact that € is a vector bundle over

Y ,see Ativah [Al] . If f ¢ Hom (y, (¥) v(y)) , for yey,

and if ¢&amp;ceC, then cf ¢ Hom (vy (ev) v(cy)) is given by
(cf) (cy,v) = cef(y,v) . Since A is abelian and £f is

a B-homomorphism, cf is a B-homomorphism. The complex

structure on € 3 is given by J; i.e., if

fe Homy (y 5 (x), v({x)) then Jf ¢ Homg, (v4 (x) v(x)) is given
by (Jf) (x,v) = E(x, Jv) . 72 (£) = =f since f£ is

linear, and Jf is a B-=homomorphism since J(bv) = bJ(v)

for wv V. = (x).eV, Y 5 )

b) It is clear that Y 5 =; has a complex structure;

the A-action on ff &amp; € is given by the isomorphism

A=Bx CC.

~

for xe¥Y

There is a natural map

3
; v4 (x) Er Homy(vy5(x),v(x))= Vv (x)
This map is an isomorphism because

1) There are no nonzero fixed vectors in the

B-action on v(x) , so that v(x) = x ny (x) V, as B-vec-
J

tor spaces. (The nonnegative integers n(x) are constant

on the A-orbit (=C-orbit) of a component of Y.)

- omn.d

 vy

J-

Schur’'s

 Mn

Lemma

- I
Ly A

B

) Ek

Re = j=k

\_
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Now, follow Atiyah [Al] to show that Vv = 5 Y Ey £

as B-vector bundles. Using the isomorphism A = B x C,

it is easy to see that the isomorphism is A-equivariant

too. QED

Now, for each subtorus B of A, the fixed point set

ve = {meM am=m VYaecB} is a smooth closed submanifold

of M [Br]. The fixed point set ME is A-invariant since

B is normal in A. Proposition 3.3 has two immediate cor-

ollaries that we use later on in Section Three.

Corollary 3.4 For each subtorus B of Aa, the

bundle v:N -» ME has a complex structure.

Proof: Consider N as being equivariantly embedded

as an invariant open tubular neighborhood of ME . Since

B has no fixed points on N-M&gt; the B-action on N has no

nonzero fixed vectors. Proposition 3.3 c¢) shows that

has a complex structure. QED

Corollary 3.5 1) Every component of o&gt; has even

codimension in M , and 2) v is an R-orientable vector

bundle for any commutative ring R.

Proof: Corollary 3.4 shows that

structure. QED

 Vv has = SUMP Lay

We now look at some Euler classes. We fix a field k

of characteristic p and consider cohomology with coeffi-

cients in k .

First, suppose that A acts. transitively on the set of

components of Y . Then each subbundle v4 ®p € in the
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decomposition Vv = z vg © 2 has constant fibre dimension

5 over L. So Vv has constant fibre dimension d = 2% By

ver R

Proposition 3.6

set of components of Y , and the s,'s are as above. Let

Suppose A acts transitively on the

2s.
2. ¢ Hy J (y, k) be the top Chern class of the bundle

( £.) . If e ¢ u2d(y k) is the top Chern class ofvy &amp; e402 Bn VY
then e = TI e.

5 4
Proof: Since v = J Y5 By ey we have

Va = 2 (vy oie €5)a . The result follows from the sum form-

ula for Chern classes. QED

Before stating Proposition 3.7 we note that for any A-

space W (no smoothness restrictions) on which B acts tri-

vially, that there is a Kunneth isomorphism

(*) HX (W, k) &lt; HE (pt, k) &amp;) HE(W, k)
To see this, suppose PB, PC are total spaces of classifying

bundles for B, C respectively. Then PB x PC is the total

space of a classifying bundle for A . Since there is a

homeomorphism

PB/B x (PC x° W) ~~
a

-

a

(PB x PC) x W

the isomorphism (*) is a consequence of the ordinary Kun-

neth isomorphism.

Now we state

Proposition 3.7 Suppose A acts transitively on the

set of components of Y and the s.'s and e.'s are as
rr

in Proposition 3.6 . Then, using the Kunneth isomorphism
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1%} -

— —
ey

+

o~ — r

oo cy (75) @ ®sy-rtey)c]

for each 3j, where Cg es is the (s.-r)-th Chern

class of (e5) and cy (vy) is .the/first Chern class of

—_ BY.:PB x Vv. PB/B
3 J

(Here, B acts on vy via the character

roof: Let pr, and pr, be the projections

kh]

-— &lt;4 /R PB,3 XL.
“a

24

Jnder the homeomorphism

h:PB/B x Y, = %,

the vector bundle (v4 Sy ©50a over Ya corresponds to

the vector bundle pr} (vy) By pry((e,)) over PB/B x Y,

(compare fibres). Since Ys is a complex line bundle, the

proposition follows from the well known

Lemma: 3.8 If £&amp;:E +&gt; X is an r-dimensional complex

vector bundle over X and vy:L =» X is a line bundle,

then the top Chern class c ly ®E&amp;) ¢e 2% (x, k) of yv ®c¢

aguals
z .

&gt; i

Lz cy (v) c._;(€)1=0

2(r-1i) . .

where c.-; (©) € H (X, k) is the (r-i)-th Chern class

of &amp; and Cy (vy) is the first Chern class of vy.

Proof: We may use the splitting principle [H] to reduce
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to the case where ¢{ is a direct sum of line bundles. The

result follows from a straightforward calculation. QED

Proposition 3.9 If A acts transitively on the set

of components of Y , then the Euler class e of the normal

bundle to Y is a non-zero-divisor on HX (Y, ky .

Proof: Proposition 3.6 shows that e = Te.
7]

We show that each 2, is a non-zero-divisor on H*(Y, k).

Fix an. index Jj . If p is odd, we may regard

HE (pt, k) = HE as the tensor product over k of a

polynomial algebra on cy (vy) and (rank(B)) - 1 other

polynomial generators, and an exterior algebra on (rank(B))

generators of degree one. If p is zero, HX is a poly-

nomial algebra on cy (vy) and (rank(B)) - 1 other poly-

nomial generators of degree two. We write this as

kle. (v.) , ... C3 = cad

H*
B

L keg (v2) ; ees  KC 0

(see, e.g. [Ql1).

The Kunneth isomorphism (*) gives

~ * *HX (Y, k) = HEY, k) ® HX

in

OED

Proposition 3.7 shows that 2 is a monic polynomial

Cs SEY ,therefore it cannot be a zero-divisor in

7

HEY, X) @ A @ klc) (F.), -..]
r k) A

p odd

HA (Y, kK) &amp;, kl; (¥.), ... Pr = 0
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We generalize Proposition 3.9 by weakening the hypothe-

sis of a transitive A-action on the set of components of VY.

Proposition 3.10 Suppose Y has constant codimension

d in M , and has only a finite number of components. Then

e, the Euler class of Vv:N =» Y , is a non-zero-divisor

on HY (Y, k).

Proof. We write Y = J Y as the finite disjoint

union of A-invariant closed submanifolds Y such that

A acts transitively on the set of components of each Y,

Then, the following diagram commutes, where e, is the

Euler class of Val (vy, = tly 1,

2. i+d
@ Hp (Xr k)

T PD res
o o

i+d
&gt; Ha (Y, k)

Since each e, is a non-zero-divisor on HR (XY, k) by

Proposition 3.9, 7 e is a non-zero-divisor on &amp; H*(Y , k),
aq a A a

Pres
2 al

—

y

so e 1s a non-zero-divisor on HY (Y, k). QED

Section Three: A Filtration on Hx (M)
—

Let A and M be as in Section Two. Suppose n =

rank (A) and r = dim(M) . The cohomology groups in this

section have coefficients in a field k of characteristic

p (p is zero, or an odd prime). In this section we define

filtration on HX (M) ; in Theorem 3.13, we identify the
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successive quotients of this filtration using the results

of Sections One and Two. In the last part of this section

we obtain an expression for the k-Poincare series of

HR (M, k) (Theorem 3.14) and make some calculations using

this series.

For each point meM, define an integer, rk m , as

follows. Let A = {acA | am=m} be the isotropy group at

m . If (A) denotes the connected component of the

identity in A , define

(rank(a)  y ~daAa

zo. Mm =

\_rank (A) 4) p =
0 &lt; i &lt; n+l , let

0

For

A. = {meM | rk m

ilyol

My =M &gt; Moo&gt; My &gt; eee &gt; Moo&gt; My =f
is a decreasing filtration of M by A-invariant subsets.

Proposition 3.11 Each M. is closed in M .

Proof: Any meM has an open neighborhood U such

that for each xeU , A is a subgroup of A_([Br, pg. 86],

this theorem is a consequence of the existence of slices for

differentiable actions). Thus if rk m &lt; i , then rk x &lt; i

for xeU . So M, is closed. Cr

So, we have an increasing filtration of

A-invariant submanifolds:

J &lt; M-M; &lt; ooo &lt; M=-M &lt;M

Let Moy = {meM | rk m = i} for each i such that
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0 &lt; i . We } = = M, - iL &lt;n have Mii) M, i+1 &lt; M M.q

Let § = {(a), | meM}

Proposition 3.12 Suppose that S is finite. Then for

each i such that 0 &lt; i &lt;n, Mei is a smooth closed

A-invariant submanifold of M - Mig

Proof: We need only show that Mi) is a submanifold

of M - M1 . We use the fact that the fixed point set of

a smooth action of a compact Lie group on a differentiable

manifold is a submanifold [Br] . Given this fact we proceed.

LL"y
n

3.

-
—~—

(a | rk m = i} P x oleA

1a), rk m= i} p=20

The set S. is finite for each i . We claim that

Moi) = Um - Mii1
BeS,

"

apd

and that this union is disjoint, so that Mii) is a sub-

manifold of M - M1 .

The equality holds because

. - »

vii

" -

 he dede

X € (M - M )U i+l

B &lt;A, for some B e S; and Xe M-M

rk x &gt; rank(B) = i for some B ¢ S, and

rk x &lt; 1i+1l

i He
-

—m

do rk x =

The union is disjoint, because if

B B~”

B &lt;A and B” &lt; SI So, &lt; B , B”&gt;, the subgroup gen-

erated by B and B® , is in A . If
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ar
I

rk &lt;{B, BD &gt; i, so rk x &gt; i , contradicting XeM 4 . QED

Define an increasing filtration on HX (M) :

F+l 0 E
3

&lt; Fo -1

oy
res

F. = ker (HZ (M) -&gt; HR (M = M.))

7 = —_ J
q HY (M) @ Hy (M)

j&gt;0

From now on we assume that the set 5 = {(A ),| meM}

is finite. Let the sets S; for 1 such that 0 &lt; i &lt;n

be defined as in Proposition 3.12.

Theorem 3.13 If Miy has only a finite number of

components for every i , then

L 0

%Fit
~»

J ~ M,.,) as k-modules(1)

and

L

2) HX (M)
J

3

» * -HY (M M.) is

surjective for 0 &lt; i &lt;n .

Proof: Let C, = {cc} be the set of components of

Mog If ce C,. let ¢c= asc. Then c¢ is a closed
ach

A-invariant submanifold of Miiy , and Mig) is the dis-

joint union of &lt;¢'s . Note that the normal bundle to each

c in M - M.,, has constant fibre dimension.

By Proposition 3.2 of Section One, there is an exact

Gysin triangle for each i such that 0 &lt; i
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H¥ (M - ML)
T

= “A
™~,
“\

+(Hy Moiy ss -HY (M M.)

We will show that 2x is injective.

are short exact sequences of k-modules

Given this, there

Vy ih)
®,

H* M - M5) “= H XK
"

— i

for each 1 such that 0 &lt; i &lt;n. Since

%* -— * -_ 1 5 1 1HX (M M.q) - HX (M M) is surjective for each i such

that 0 &lt; 1 &lt;n, by induction we see that

* =] %* — * -—HZ (M) HX (M Moi) -&gt; HY (M M.)
is surjective, yielding part 2) of the theorem. Part 1)

of the theorem follows in view of the following commutative

diagram of exact sequences for 0 &lt; i &lt;n

J

)

J
Fol

|
HY (M) =

3

b
Foo» FF &gt;

|
HY (M)

0

l,
0 THR) &gt; HRM =)

J

}

- 0.HY (M Mo)
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So, it remains to show that On is injective. We

use the results of Section Two.

For each 4d such that 0 &lt; 4d &lt; r , let Y. a be
— —- r

the union of the components of Mi) of codimension d

in M - M. . The set Y. is a closed A- invariant sub-
i+l i,d

manifold of M - M1 .

For each BeS, , let

Y
B.4d

»
——

- \Yoo. 0 = m,
RB

Theal

a) Yo a is a closed A-invariant (smooth) submanifold
7

M=Mof

b) B acts trivially on Yo qa
; . . B

c) since Ya 1s a submanifold of (M M1)

the normal bundle to ¥Y in M - M, has no nonzero
B,d i+l

fixed vectors under the action of B (Corollary 3.4),

d) Y3 a has a finite number of components, each of

which has codimension 4d in M - M4 .

We have verified the hypotheses of Proposition 3.10 of

Section Two, and may conclude that 5 4 , the Euler class

of the embedding Ys a -&gt; M-M. 4 , 1s a non-zero-divisor

on HX (Yp 4) ‘

We also have
r

2) M,. = U Uv |
(1) Bes, d=0 B,d

r and this union

is disjoint.

Using this decomposicion of Ms) , Proposition 3.2



sfa
fs

shows that the composition

q
A
-

ni

I

r ~

* - * -_3,8 7 © © Hv,go © HEM) &gt; HEM - Mg)
Be S,d=0 5

 AY |
HA (Ms)!
A

rv
&amp; ©@H*(Y )

BeS.d=0 A "B,d

b
*HE (Vp 40)

is multiplication by es 4 if (B,d) = (B®, 47) ; and is
7

zero if (B, 4d) # (B”, 4°) . Thus SA is injective. For,

1 1 * 3 +

identify HX (M44) wi%th
r

® ® HX (Y_ .)
BeS d=0 A "B,d

T ‘her:

res ¢ 0.) ( ©
A 53 Yg gq! = (( ® res_. ,.)°e0 )( ZT vy )

B~.d~ BT ,d A B.,d B,d

5 (res_. ,.°0d )( ZT vy )
aA B”,d A 3.4 B,d

Loe y
3a B,d *B,d

Since multiplication by ey a is injective,
7

Ly 5.4 Yg 4 = 0 1if and only 1f each Yggq 1s zero.

Therefore, reseed, is injective, so On is injective. QED

The k-Poincare series of a graded k-module H* = (@ gt



that is finitely generated in each dimension is defined as

P.S. H¥ = § (dimEH)t
i&gt; 0

If H*(M) is finite dimensional over k , then HX (M)

is finitely generated as a ring over k [E,V], so the

Poincare series of Hx (M) is defined.

Theorem 3.14 Suppose that H*(M) is finite dimensional

over ke Using the hypotheses and notation of Theorem 3.13

we have

£.S. H, ‘M) =

rank (A) dim M +4
———, P.S. *% z x (1 - £€y 1 S. H (Yg,q/2)

i=0 BeS, d=0
--

vhere e =
1 p odd

2 p=0
Anglin.

Proof: For each i such that 0 &lt; i &lt; n , there is a

short exact sequence

aris

® dim M@ Hf (Y, .)
BeS. d=0 A'"B.,d

-&gt; 1 A - Mog)  —_

asing Theorem 3.13. The Gysin map dn raises degree by d

on the summand HY (Yq a) . Basic properties of Poincaré
’

series and the short exact seguences above vield

rank (A) dim M
d

5 % r tT P.S.H*(Y_. .)
i=0 Bes,  d=0 A°B,d

A) P vy
NN 0

T'o prove the theorem, we need to calculate P.S. HY £



’
f

+4

(which is defined in view of the equation (A)) for a fixed

B € S; and 4d such that 0 &lt;d &lt; dim M .

For a fixed pair (B, 4), Ys.a is an A-invariant

space on which the p-torus B of rank i acts trivially.

Write A = B x C, where CC is a p-torus of rank n-i

By the Kunneth formula (Equation (*) of Section Two) ,

* o~ * * 1HY (Yg 4) HE (Yg 4) © HE . If p is odd, C acts

freely on Yo g If p=0, C acts with finite iso-
r

tropy groups on Yq g ° Thus by 1.6 and 1.7 of Chapter

One, we have that

Sin  ee B

!
*H (Y5 4 ’

J
(a

acts trivially on  ea 3 ‘p,q /= ¥g,a
” A

?
-

rh

~

20,

* ~ * *

HY Og, 4 - H (Yp ¢/B) @®, Hi

Since P.S. HE = 1
(1 - £&amp;5v1

where Ee = | 1p odd
 2 p=0

(this follows from the structure of HE see proof of Prop-

&gt;sition 3.9),

D -.
—  Vv a gq

/7 - cei P.S. H* (Tg 4/3)

The theorem follows. QED

Corollary 3.15 Suppose that H*(M) is finite dimen-

sional over k , and the hypotheses of Theorem 3.13 are sat-



Zi4

isfied. Then

and

3 "rade
-y

0) Lim

c) lim
-.

r _ ;

{1 - tt)" P.S. HY (M) = ae dim H* (M/A) ; P odd,

(L - £)Fp.s T M) 1 © dim #*(MP/a), p=o0,
 Lr BES

(1 + £)Tp = -

M) = 1 x
5X BeS? Tr

wv (MP /A) 9 ty=
a

Here, r = max {rk m | meM} and

y (M°/n) = r (-1)°t dim HT (M°/A) is the k-Euler char-
i

. . B

acteristic of M/A .

Proof: For each i such that 0 &lt; i &lt;n , each

Bes, , and each 4d such that 0 &lt; d &lt; dim M , assume that

H* (Yq a) and H* (Yo ga’ 3) are finite dimensional over k .

(We show this in Lemma 3.16 following the proof of this co-

rollary.)

Since Yo a= gd for d odd (Corollary 3.5 of Section

Two), and S. = @ for i&gt;r , Theorem 3.14 shows that

3} (1 - L)fp.s.g* M)
2

Z z
z2_ 4d even

(1 - £~

E
Ql

*P.S.H (Yg 4/3)

yO (Lt)

where Q(t) is a polynomial in t

For each BeS ; Vi is the disjoint union

4 even Yo a (Proposition 3.12) since M = M - M_ 17 SO



sf

v= /a is the finite disjoint union Vv, Yo ag’ A
d even !

Therefore, H* (ME/2) Bi @ H* (vy a/R) for BeS_ . Now,
ad r

simply calculate the limits of the Corollary by substituting

t=1 (or t =-1, for c¢) if ¢ = 2) in the right hand side

of equation (B) . QFN

Lemma 3.16 Using the notation and assumptions of

Corollary 3.15, H*(Y ) and H*(Y /A) are finite dim-B,d B,d
ensional for each B and 4 . (For the characteristic

zero case, this Lemma uses the fact that S ={(a_),] meM }

is finite.)

Proof: If X is an A-space ET

ensional then

1) a* (x2) is finite dimensional

1 3 finite dim-

[Ql] (this is where

we need finiteness of S|

and

The cohomological dimension of X/A over k is

finite: cd, (X/A) &lt; © . [01].

So, suppose H*(M) is finite dimensional over k .

Then Min) = MP has finite dimensional cohomology (we

abbreviate this to: Min) has FDC) by 1) . The Gysin tri-

angle of Proposition 3.2 shows that M - uP has FDC . Thus

Mip-1y = U (M - mB has FDC by 1) and so M - Mo
BeS 1

has FDC using the Gysin triangle of Proposition 3.2. Cont-

inuing in this manner, we see that (M - M,) and each of

its finitely many components has FDC for every BES,  ; and



Hs

every 1 such that 0 &lt; i &lt; n. ~Therefore- ¥g q ’ which
- - - 7

is the union of components of (M - M.)° if BES. 1» has

FDC for every. B and 4d *)

Now, by 2) cd, (Yg q/ A) &lt; ® , But the equation of

Theorem 3.14 shows that P.S.H*(Yg a/R) is defined, so
7

that Yo a’ A must have FDC . QED

Corollary 3.17 Suppose that H*(M) is finite dimen-

sional. If M is totally non-homologous to zero in the

fibration My + BA, then

1) dim H*(M) = dim H*(M™) (Borel [Bl])

2) xm = xm + 2 Xp) +o...
n

2XM)
P

1
 2
1=0 1

~y

X (M hogy) if Pp 1s odd.

3) Xm) = x) if p is zero.

Proof: The hypothesis that M is totally non-homolo-

gous to zero in My &gt; BA implies that

HE(M) = H*(M) &amp; HY . So,

P.S. H}(M) = 1
En

(1 - t )

P.S. H*(M) ;, where

Ie
1 p odd

2 p=0

Therefore, Theorem 3.14 implies that (n = rank A)

-f

Since

P.S

P

i, A)

SS. H*(M)

dim M a c

&lt;4 (1-t Pres. E (vg a/R)z
=0 BEs. 4al

=

F 0, we must have MS A 0 (as in Borel



+9

‘B1]).

Evaluating (C) at t=1 , we get

dim H*(M) = dim H*(M) |

If p is odd, ¢ = 1 . So, evaluating (C) at +t = =i

we (recall that Ys 4 = fg if d is odd) have

(MM) = x) + 2X (M1,/B)+.

Each Moiy/A is the finite disjoint union

¥ J Yo ; since each p-torus A/B
Bes, d "7 A/B

of rank n-i

{

acts

0 a

freely on

) =

A/B

vy
1,3

L
n-i

&gt;
XxTpgq)

=&gt;)

(M5) /A) = 1 XM sy) . Equation 2)
n-=1i

follows.

For Equation 3), evaluate (C) at t = =1, and note

EFhat e = 7 if p=0 OFD
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