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OPEn: An Open-ended Physics Environment for Learning Without a Task

Chuang Gan1,2, Abhishek Bhandwaldar2, Antonio Torralba1, Joshua B. Tenenbaum1, Phillip Isola1

Abstract— Humans have mental models that allow them to
plan, experiment, and reason in the physical world. How should
an intelligent agent go about learning such models? In this
paper, we will study if models of the world learned in an open-
ended physics environment, without any specific tasks, can be
reused for downstream physics reasoning tasks. To this end, we
build a benchmark Open-ended Physics Environment (OPEn)
and also design several tasks to test learning representations in
this environment explicitly. This setting reflects the conditions
in which real agents (i.e. rolling robots) find themselves, where
they may be placed in a new kind of environment and must
adapt without any teacher to tell them how this environment
works. This setting is challenging because it requires solving
an exploration problem in addition to a model building and
representation learning problem. We test several existing RL-
based exploration methods on this benchmark and find that
an agent using unsupervised contrastive learning for repre-
sentation learning, and impact-driven learning for exploration,
achieved the best results. However, all models still fall short in
sample efficiency when transferring to the downstream tasks.
We expect that OPEn will encourage the development of novel
rolling robot agents that can build reusable mental models of
the world that facilitate many tasks.

I. INTRODUCTION

Reinforcement learning (RL) excels at specialist intelli-
gence. When given a narrowly defined task, and a well-shaped
reward function, training standard RL algorithms with a large
amount of task-specific environment interactions can achieve
impressive performance, yielding agents that beat humans
at many video games [32] and board games [47]. Typically,
however, the agent that masters one game, say Go, might
have no idea how to make sense of a different game, such
as Space Invaders. In contrast, human intelligence works
differently. From infancy, humans have a mental model to
infer the physical structure of the world, which is essential
for making physical inferences about the world, predicting
what will happen next, and planning actions.

Motivated by the age-old idea that model-building is
critical to general intelligence, jointly learning a model
and exploring the environment has received considerable
recent attention [36], [20], [25], [46]. However, this challenge
remains a mostly open research problem. Unlike past work
that built models via either random exploration [20] or
downstream task optimization [25], a more fundamental
question is: how should an agent go about learning a useful
model of the world when it is placed in an environment
without an explicit task?

Although open-ended learning is a classic problem, most
current RL environments are oriented toward learning to
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solve a specific task. For example, the clear goal in game
environments like ALE [6] is to achieve a high score in
the game. Although such environments can and have been
used to study task-agnostic learning (e.g., [38]), doing so
leaves the concern that the game task is so intimately baked
into the environment that it inevitably shapes learning. More
recently, research has extended toward environments that
support families of tasks [54], such as random variations of
physical parameters in robot simulations [16] or procedurally
generated levels of a game [13], [41]. Nonetheless, these
families are still typically focused on meta-task, such as
“pick and place", “maze navigation," or “killing enemies in
a platformer". We instead propose an environment that is
designed from the ground up to be a “sandbox", where the
implicit meta-task is simply to learn about how a physical
world works.

To this end, we build an Open-ended Physics Environment
(OPEn) to combine the idea of active learning, whereby a
learner gets to pick the datapoints it trains on, and world
modeling, where a learner attempts to model the dynamics
of an environment. The design of this benchmark platform
reflect two perspectives that we believed are essential for
model building:
• Active exploration. Active exploration has the chance to

be more efficient than passive learning since training data
can be selected based on what would be most informative
to the agent at any given moment. But more than this,
passive learning is simply not an option in many settings.
Passive learning relies on the agent being fed a data stream
to learn from. Often this data stream is a highly instructive
teaching signal, as is the case in so-called “unsupervised"
learning from human-curated datasets like Imagenet [42].
In ecological settings, agents are not given Imagenet – they
must explore the world to seek out useful data to learn
from.

• Physical interaction. Interacting with an environment is
a form of intervention that allows us to understand how
their actions could affect the world and then build causal
models of the world.
As shown in Figure 1, our environment includes a sandbox

for learning, and a suite of evaluation metrics to probe what
was learned. In the sandbox, the rolling robot agent is allowed
to explore the world by interacting with objects. There are
no pre-defined tasks or extrinsic rewards. The rolling robot
must use its intrinsic motivations to actively explore the
environment and build a model of its.

For evaluation, we propose an initial suite of tasks that may
probe what was learned. On each task, the agent finetunes
its policy using extrinsic rewards associated with that task.
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Fig. 1. Problem setup: a rolling robot agent is allowed to explore the sandbox-like 3D physical world by interacting with objects without any pre-defined
tasks or extrinsic rewards. The green and blue loops indicate learning within an environment and swapping to a new environment, respectively.

The intent is not that these evaluation tasks become the
learning targets themselves, but rather that they just reveal
what was learned in the open-ended phase. As such, this
suite should be expanded over time, so that users of the
benchmark do not overfit to any particular set of evaluation
tasks. Moreover, methods that use our benchmark should not
be solely measured in terms of how well they do on the
evaluation tasks, but also on whether or not they “cheated"
by explicitly turning themselves toward the evaluation tasks.
This may seem a delicate balance at first glance – how can
we really tell that an algorithm was agnostic to the evaluation
suite – but we note that this approach has lead to significant
progress in unsupervised and self-supervised learning, where
the goal is to develop general-purpose representations but
the standard practice is, like ours, to evaluate by finetuning
on a suite of specific tasks.

We test several existing RL-based agents on this benchmark
by transferring their learned representations to the tasks in
our evaluation suite and find that an agent using unsupervised
contrastive representation learning for model building, and
impact-driven exploration, achieved the best results. However,
all models still fall short in sample efficiency when transfer-
ring their representations to the downstream tasks. To sum
up, our work makes the following contributions:

• We introduce a new physical reasoning task, focusing
on open-ended learning with active interactions and task-
agnostic model-building.

• We build a 3D physical environment with fairly photo-
realistic images and provide high-fidelity physical simula-
tion to facilitate research on embodied intelligence in more
challenging scenarios.

• We test several agents on this benchmark and find an
agent that adopts impact-driven exploration, and contrastive

Dataset Realisic 3D Interactive Explicit task

Phyre [3] × × X X

IntPhy [40] X X × X

CATER [19] X X × X

CoPhy [4] X X × X

CLEVRER [53] X X × X

OPEn X X X ×

TABLE I
COMPARISON BETWEEN OPEN AND OTHER PHYSICS BENCHMARKS.

unsupervised representations learning achieves the best
results. All models fall short on sample efficiency.

II. RELATED WORK

Benchmarks for Physics Reasoning. Our work is in the do-
main of physical scene understanding [5], [1], [24], [23], [11],
[18], [15]. Recently, several datasets have been developed for
physics reasoning. Intphys[40] proposed a synthetic dataset
for visual intuitive physics reasoning. CATER [19] introduced
a video dataset for compositional temporal reasoning. CO-
PHY [4] studied counterfactual physical dynamics prediction.
CLEVRER [53] investigated casual reasoning in collision
events and also grounding it to the language domain. Phyre [3]
designed several puzzles to examine agents’ ability to use
tools. As summarized in Table I, our new benchmark goes
beyond these existing datasets in two ways: 1) it is interactive,
thereby supporting open-ended exploration (Phyre is also
interactive, but 2D), 2) the learning phase is task-agnostic
with no explicit goals, rewards, or supervision provided.
Open-ended Learning. Open-endedness is the problem of
creating systems that develop ever-increasing abilities over



time, rather than saturating when they manage to solve a
narrowly defined task [28]. The evolution of life on Earth is
the prototypical example of open-endedness in action. Human
learning and culture also seem to exhibit open-endedness –
we are ever striving toward greater understanding and control
over our environment. Open-endedness has recently become
a popular topic in the machine learning community, with the
striking success of self-play algorithms like AlphaGo [48].
Many other multiagent environments have also demonstrated
some level of open-ended, emergent behaviors (e.g., [49],
[51], [2]). In the single-agent setting, research on open-ended
learning has focused on the problem of intrinsic motivation.
Rather than learning from a task or from external rewards,
intrinsically motivated agents have to make up their own tasks
and goals. Commonly, this is formalized as novelty search or
curiosity (e.g., [43], [14], [36], [37], [21], [28], [29], [38], [9]).
While most work in this area has focused on exploring a fixed
environment, the idea has also been applied to procedurally
generating a curriculum of environments [52], [10], [35].
Nonetheless, standard benchmarks for open-ended learning
are lacking, which is what we attempt to address with this
paper. In addition, there is little work that evaluates whether
models and skills learned through open-ended exploration
are useful for downstream tasks (an exception is [10]). We
address this aspect via our suite of evaluation tasks.
Model-based RL Model-based RL has received considerable
attention in recent years. Several works have shown that
learning an internal model of the world can significantly
improve data efficiency in RL [34], [12], [20], [33], [25].
For example, [34] uses video prediction to improve sample-
efficiency on Atari games. [30] further predicts the reward
of the environment to improve exploration. [20] proposed to
train a generative model as a world model of the environment,
and then use the learned features as inputs to train a simple
policy to solve Vizdoom and 2D racing games. Most recently,
several works have shown that contrastive learning [50] and
data augmentation [26], [27] for representation learning can
also be helpful for planning and control tasks. However, little
work has been tested on open-ended exploration in a 3D
physical world, which our work studies.

III. ENVIRONMENT

A. Platform

We build a 3D physical world on top of the TDW
platform [17], which consists of a graphics engine, a physics
engine, and an interaction API.
Graphic engine. TDW adopt Unity’s game-engine technol-
ogy to create a 3D virtual environment. The environment
uses a combination of global illumination and high-resolution
textures as well as the underlying game engine’s capability
to produce near-photo realistic rendering in real-time. We
use directional lighting to simulate a sun-like light source
and customize it by changing the angle and elevation of the
source. We adopt a Unity camera object capable of giving
multi-sensory data such as RGB images, segmentation masks,
normal and depth maps. The camera object can be moved
and rotated in 3D space.

3D Model. Our environment consists of a range of 3D objects,
including primitives, shapes, and models with high-resolution
colliders and materials. The model processing pipeline can
generate object colliders using V-HACD[31], which gives fast
and accurate collision behavior. It also allows users to import
their custom models and customize their visual appearance,
rigid body dynamics, object-to-object dynamics, and limited
object-to-fluid dynamics. We use a 3D table model with the
top surface bounded by re-scaled cube walls as the base
of our scene. The object primitives in our scene consist of
spheres, cubes, and ramps.
Physic simulation. We utilize Nvidia’s Physx physics engine
for simulating rigid body dynamics. We can set different
physical parameters at an object level, which directly affects
the object’s interaction with the environment. We use a
combination of force and drag in our scene, which is applied
to the object’s center of mass, to move it in a controlled
manner. Our platform also supports pausing and stepping of
the environment by a specific number of physics steps.
Interaction API. To support interaction with the environment,
we provide a python API to send and receive commands and
data from the Unity environment. The API is flexible enough
to give users a fine-grain control over creating a scene, ranging
from defining the scene layout to customizing an object’s
physical and visual properties. Therefore, the users could
procedurally generate scene layouts based on their specified
configuration. The API also helps control the simulation by
allowing a series of commands to manipulate the object and
advance physics in the scene. Users can also define the type
of data the environment sends and includes visual information
like images and segmentation masks, state data like object
location, velocity, and interaction data like collisions. We
integrate this API with the OpenAI gym [8] to facilitate
training reinforcement learning algorithms.

B. Problem Setup

Scenario. Our scene is composed of a table with its top
bounded by wall to prevent objects from falling off. The
objects contained in the scene are heavy cubes (blue), light
cubes (purple), three types of the sphere that act as an agent
(red), goals with different rewards (yellow and green), and a
ramp which can be used as a tool. The agent is capable of
executing actions to move in one of the eight directions for
a fixed distance and interacting with the objects in the scene
by colliding with them.
Open-ended exploration. Our environment supports a sand-
box mode that can procedurally generate puzzles with
different objects placed in the scene. During open-ended
exploration, we create several environments with distinctive,
randomly generated configurations and select one at a time for
exploration. The agent is not provided any explicit task or any
extrinsic reward. The environment is non-episodic. In such
an environment, the agent must learn to explore and probe
different objects to learn reusable representations and models
of the world. The learning algorithm is also free to switch
between different environment on demand, allowing the study
of learners that not only explore a single environment but



(d) Tool-use

(c) Avoidance

(b) Preference

(a) Goal-seeking

Fig. 2. Evaluation suite for 4 downstream physical reasoning tasks.

also can create curricula of multiple procedurally generated
environments. In practice, in the methods we compare, we
switch environments whenever the loss of the world model
drops below a certain threshold. When this happens we switch
to the environment with the highest loss among the current
pool (a form of curiosity over environment configurations).
Exploration terminates when no new environment gives the
agent a loss higher than a threshold.
Evaluation suite. To evaluate what was learned by the model,
we use a suite of intelligence tests inspired from [7], meant
to probe the degree to which the agent has acquired general-
purpose representations and skills.
• Goal-seeking. This category tests the agent’s basic ability

to understand goals and perform action towards them. As
shown in figure 2 (a), there is one yellow sphere and several
obstacle cubes on a table. The agent is required to hit the
yellow sphere as fast as possible.

• Preferences. This category tests an agent’s ability to choose
the most rewarding course of action. As shown in figure 2
(b), the agent is presented with two spheres (i.e., yellow and
green) and several obstacle cubes in the scene. Hitting the
green sphere will earn more reward than hitting the yellow
sphere. The agent is required to earn as much reward as
possible with a limited interaction budget.

• Avoidance. This category identifies an agent’s ability to
detect and avoid negative stimuli. As shown in figure 2
(c), the goal is still to hit the yellow sphere, but there is
an orange region on the table. The agent will immediately
die if it enters this region. To achieve success in this task,
the agent needs to understand the goal and the cost.

• Tool-use. This category tests the agent’s ability on a more
challenging task: using tools to achieve goals. As shown in
figure 2 (d), the agent is trapped in a fenced region and has
to use the ramp to get out and hit the yellow sphere. The
agent is required to complete the task as fast as possible.

IV. EXPERIMENTS

A. Compared Methods

We implement seven agents that use intrinsic motivation
for exploration and model learning, and transfer their learned
representations to the tasks in our evaluation suite.
ICM. Intrinsic Curiosity Module (ICM) [38] is a curiosity-
driven exploration strategy. It adopts the prediction errors of
a forward and inverse dynamics model as an intrinsic reward,
which encourage the agent to take actions that improve its
ability to predict the consequence of its actions.
RND. Random Network Distillation (RND) [9] is a counts-
based exploration algorithm. An agent learns a model that
predicts the feature representations of its current state ex-
tracted from a fixed randomly initialized network. The agent
is encouraged to visit more unseen states and improve its
coverage.
ICM + RIDE. Rewarding Impact-driven exploration
(RIDE) [39] defines a novel intrinsic reward that encourages
an agent to take actions that can change the representation of
the environment state. Instead of directly using the prediction
error of the dynamics model as an intrinsic reward, they
propose an impact-driven bonus measured by the distances
between the current and next state in latent feature space.



Approach Goal-seeking Preferences Avoidance Tool-use
PPO (From scratch) 0.509±0.009 0.351±0.02 0.185±0.01 0.113±0.08

ICM 0.508±0.016 0.344±0.01 0.176±0.023 0.118±0.013

ICM + RIDE 0.486±0.005 0.367±0.011 0.178±0.019 0.120±0.012

RND 0.470±0.01 0.266±0.02 0.168±0.01 0.106±0.01

RND + RIDE 0.509±0.014 0.372±0.0129 0.179±0.018 0.116±0.008

CURL + Random 0.149±0.02 0.007±0.05 0.103±0.01 0.045±0.01

CURL+ RIDE 0.532±0.006 0.386±0.04 0.191±0.02 0.125±0.02

Human 0.584±0.008 0.588±0.015 0.453±0.025 0.363±0.023

TABLE II
A-SUCCESS SCORES OF DIFFERENT METHOD ON DIFFERENT TASKS.

Larger state changes lead to higher rewards. We use ICM for
model building and impact-driven rewards for exploration.
RND + RIDE. We use RND for model building and RIDE
for exploration.
CURL + RIDE. CURL [50] adopts contrastive unsupervised
representations learning [22] for model-building and shows
promising results on off-policy control on top of the extracted
features for many plannning and control tasks. We adapt this
baseline to our problem. In particular, we use CURL for
model-building and RIDE for exploration.
CURL + Random. We use data collected from a random
policy as input to CURL.
Plain PPO. PPO [44] is a SOTA policy gradient method for
model-free RL. We train it from scratch.

B. Experiment Setup

Implementation Details. In all experiments, the agent only
takes visual observations as input. The input of the network is
an image of 84×84 size. We set frame rate skip as S=4 for all
the tasks. To train our RL agent, we use PPO [45] based on the
PyTorch implementation. We use a three-layer convolutional
network to encode the image observations. During the open-
ended exploration phase, we share the weights of the policy
and model encoders. We find this strategy is important for
a successful transfer to the downstream tasks. During the
evaluation phase, we use the weights of the pre-trained
encoder as initialization and then fine-tuned the network
to learn a task-specific policy with extrinsic rewards provided
by the task. For open-ended exploration, we set the initial
learning rate as 1e-3, the environment switching threshold
as 0.001, and the maximum interaction budget as 2 million.
For fine-tuning, we set learning rate as 2.5e-4. All evaluation
tasks use 1 million interactions with extrinsic rewards for
policy learning.
Reward function. We use different reward functions to train
RL policies for each evaluation task. In the goal-seeking and
tool-use tasks, we reward the agent with 1 if it hits the yellow
ball, and otherwise 0. In the avoidance task, we only reward
the agent with 1 if it hits the yellow sphere without entering
the danger region. For the preference task, the agent receives
a reward of 0.8 if it hits only the green ball, a reward of 0.2

if it hits only the yellow ball, and a reward of 1 if it hits
both of them.
Evaluation metrics. We test all the agents on the same set of
100 randomly generated puzzles for each task. To quantify the
performance of different agents, we adopt two metrics: mean
return and A-Success score [3] (i.e., mean returns weighted
by number of actions taken).
• Mean return is defined as average returns over all 100

puzzles, given a task and budget of actions taken. For tasks
of goal-seeking, avoidance and tool-use, the return is either
0 or 1. For preference task, the return for one episode
could be 0, 0.2, 0.8 or 1.

• A-Success [3] is a metric that jointly considers the mean
returns and the number of actions taken. We use a weighted
average of the returns under different action budgets to
reflect how efficiently an agent solves a given task during
the testing phase. Following [2], we formulate it as

A-Success =

N∑
i

αi ∗ si∑N
j=1 αj

,

αi = log(i+ 1)− log(i) , i ∈ {1, 2, ..., N}

(1)

where si is the mean return (that is the average return across
all the testing puzzles for each task) using i actions, αi is a
weight for si, and N denotes the maximum of action steps
we consider. In this paper, we set N = 100 for task 1, 2, 3,
and N = 200 for task 4. Since the weight αi will decrease
as the number of actions i increases, solving a given task
with fewer actions will lead to a higher A-success score.

C. Overall Performance

For all the methods, we experiment with three different
random seeds. Table II summarizes the results measured
by the A-success score for the different agents. From this
table, we find that learning models without a task indeed
can help downstream tasks, if we can design the algorithm
appropriately. For example, CURL+RIDE outperform the
baseline plain PPO for all the four downstream tasks.

We also plot the mean return curves for all seven agents on
four downstream tasks in Figure 3 by averaging 3 runs. These
curves show the mean return as a function of the number of
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Fig. 3. Mean return of different models as a function of number of interactions with the environment during a single test episode.
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Fig. 4. A-success score of different models using 200K, 500K, and 1M interaction steps over the course of fine-tuning.

actions performed for each given task. We calculate the return
by averaging over all 100 testing puzzles in OPEn. From
these curves, we can see that the design of OPEn contains a
diverse set of tasks of various difficulty levels. For instance,
it is relatively easy to solve the goal-seeking task within
100 interactions. However, in the challenging tool use task,
which involves complex cognitive behaviors, i.e. using the
ramp to go out of the fenced region, the mean return at 200
interactions is still not very high.
Human Evaluation. Two authors tested their performance
on same set of 100 puzzles for each task. Their average score
is summarized at the bottom of Table II. We find that when
using 1 million interactions for fine-tuning, the best model can
achieve human-level performance on the basic goal-seeking
task. However, for the other tasks, the performances of all
RL models are significantly worse than the performance of
the authors. These results indicate that current RL algorithms
still struggle on physics reasoning tasks that require advanced
cognitive skills.

D. Results Analysis

Are active explorations important for model-building? In
Table II, we find that an agent (CURL+Random), which takes
random actions to collect data, does not learn an effective
representation for downstream tasks. The CURL+Random

agent is even significantly worse when transferring the
learned representation to the downstream tasks than the plain
PPO model that is trained from scratch on the downstream
tasks. These results provide validation for our claim that
active exploration plays a vital role in learning models and
representations that could be reused.
Sample efficiency for model-adaptation. We also examine
the sample efficiency for model adaptation for different
models. In figure 4, we plot the curve of A-Success score
as a function of the number of fine-tuning interactions with
the environment. In particular, we evaluate different models
trained with 200K, 500K, and 1 million interaction steps with
the environment. We can find that most of the models do not
learn meaningful skills using 200K step interactions. These
results indicate that the representation learned with current
model-building approaches are not highly sample efficient.

V. CONCLUSIONS AND DISCUSSIONS

We have introduced a new benchmark for open-ended
learning in a physics environment. We examined several RL-
based exploration methods and found a model learned through
impact-driven exploration and unsupervised contrastive rep-
resentation learning transfers better to the downstream tasks
compared to alternatives. However, we also found that
no agents could achieve human-level generalization and



fast adaptation. We hope this benchmark can enable the
development of model-building in open environments, and
make progress toward agents that can learn general-purpose
world knowledge that can be used for many tasks.
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