
MIT Open Access Articles

TSM: Temporal Shift Module for Efficient and
Scalable Video Understanding on Edge Devices

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lin, Ji, Gan, Chuang, Wang, Kuan and Han, Song. 2020. "TSM: Temporal Shift Module
for Efficient and Scalable Video Understanding on Edge Devices." IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18 (6).

As Published: 10.1109/TPAMI.2020.3029799

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/143616

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/143616
http://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 1

TSM: Temporal Shift Module for Efficient and
Scalable Video Understanding on Edge Devices

Ji Lin, Chuang Gan, Kuan Wang and Song Han

Abstract—The explosive growth in video streaming requires video understanding at high accuracy and low computation cost.
Conventional 2D CNNs are computationally cheap but cannot capture temporal relationships; 3D CNN based methods can achieve good
performance but are computationally intensive. In this paper, we propose a generic and effective Temporal Shift Module (TSM) that enjoys
both high efficiency and high performance. The key idea of TSM is to shift part of the channels along the temporal dimension, thus
facilitate information exchanged among neighboring frames. It can be inserted into 2D CNNs to achieve temporal modeling at zero
computation and zero parameters. TSM offers several unique advantages. Firstly, TSM has high performance; it ranks the first on the
Something-Something leaderboard upon submission. Secondly, TSM has high efficiency; it achieves a high frame rate of 74fps and 29fps
for online video recognition on Jetson Nano and Galaxy Note8. Thirdly, TSM has higher scalability compared to 3D networks, enabling
large-scale Kinetics training on 1,536 GPUs in 15 minutes. Lastly, TSM enables action concepts learning, which 2D networks cannot
model; we visualize the category attention map and find that spatial-temporal action detector emerges during the training of classification
tasks. The code is publicly available at https://github.com/mit-han-lab/temporal-shift-module.

Index Terms—Temporal Shift Module, Video Recognition, Video Object Detection, Distributed Training, Edge Device, Network Dissection.

F

1 INTRODUCTION

HARDWARE-EFFICIENT video understanding is an important
step towards real-world deployment, both on the cloud and on

the edge. For example, there are over 105 hours of videos uploaded
to YouTube every day to be processed for recommendation and
ads ranking; tera-bytes of sensitive videos in hospitals need to be
processed locally on edge devices to protect privacy. All these
industry applications require both accurate and efficient video
understanding.

Deep learning has become the standard for video understanding
over the years [4], [52], [58], [59], [63], [68], [72]. One key
difference between video recognition and image recognition is the
need for temporal modeling. For example, to distinguish between
opening and closing a box, reversing the order will give opposite
results, so temporal modeling is critical. Existing efficient video
understanding approaches directly use 2D CNN [28], [46], [58],
[68]. However, 2D CNN on individual frames could not capture
the temporal information very well. 3D CNNs [4], [52] can jointly
learn spatial and temporal features but the computation cost is
large, making the deployment on edge devices difficult; it cannot
be applied to real-time online video recognition. There are works to
trade off between temporal modeling and computation, such as post-
hoc fusion [8], [12], [16], [68] and mid-level temporal fusion [54],
[63], [72]. Such methods sacrifice the low-level temporal modeling
for efficiency, but much of the useful information is lost during the
feature extraction before the temporal fusion happens.

In this paper, we propose a new perspective for efficient
temporal modeling in video understanding by proposing a novel
Temporal Shift Module (TSM). Concretely, an activation in a video
model can be represented as A ∈ RN×C×T×H×W , where N is

• J. Lin, K. Wang, S. Han are with the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology.
E-mail: {jilin, kuanwang, songhan}@mit.edu

• C. Gan is with MIT-IBM Watson AI Lab.
E-mail: ganchuang@csail.mit.edu

Channel C

Te
m

po
ra

l T

(a) The original tensor
without shift.

pad zerote
m

po
ra

l s
hi

ft

truncate
T

C

H,W

(b) Offline temporal
shift (bi-direction).

t=0

t=3
…

t=1

t=2

Channel C

(c) Online temporal shift
(uni-direction).

Fig. 1. Temporal Shift Module (TSM) performs efficient temporal
modeling by moving the feature map along the temporal dimension.
It is computationally free on top of a 2D convolution, but achieves
strong temporal modeling ability. TSM efficiently supports both offline
and online video recognition. Bi-directional TSM mingles both past
and future frames with the current frame, which is suitable for high-
throughput offline video recognition. Uni-directional TSM mingles
only the past frame with the current frame, which is suitable for
low-latency online video recognition.

the batch size, C is the number of channels, T is the temporal
dimension, H and W are the spatial resolutions. Traditional 2D
CNNs operate independently over the dimension T ; thus no
temporal modeling takes effects (Figure 1a). In contrast, our
Temporal Shift Module (TSM) shifts the channels along the
temporal dimension, both forward and backward. As shown in
Figure 1b, the information from neighboring frames is mingled with
the current frame after shifting. Our intuition is: the convolution
operation consists of shift and multiply-accumulate. We shift in
the time dimension by ±1 and fold the multiply-accumulate from
time dimension to channel dimension. For real-time online video
understanding, future frames can’t get shifted to the present, so
we use a uni-directional TSM (Figure 1c) to perform online video
understanding.

Despite the zero-computation nature of the shift operation, we
empirically find that simply adopting the spatial shift strategy [61]

ar
X

iv
:2

10
9.

13
22

7v
1

 [
cs

.C
V

]
 2

7
Se

p
20

21

https://github.com/mit-han-lab/temporal-shift-module

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 2

used in image classifications introduces two major issues for video
understanding: (1) it is not efficient: shift operation is conceptually
zero FLOP but incurs data movement. The additional cost of data
movement is non-negligible and will result in latency increase. This
phenomenon has been exacerbated in the video networks since
they usually have a large memory consumption (5D activation).
(2) It is not accurate: shifting too many channels in a network
will significantly hurt the spatial modeling ability and result
in performance degradation. To tackle the problems, we make
two technical contributions. (1) We use a temporal partial shift
strategy: instead of shifting all the channels, we shift only a small
portion of the channels for efficient temporal fusion. Such strategy
significantly cuts down the data movement cost (Figure 2a). (2) We
insert TSM inside residual branch rather than outside so that the
activation of the current frame is preserved, which does not harm
the spatial feature learning capability of the 2D CNN backbone.

To verify the effectiveness of TSM, we carried out compre-
hensive experiments: (1) we show that TSM consistently improve
the video recognition performance compared to 2D model without
incurring extra computation or parameters; it also achieves state-
of-the-art performance on multiple action recognition dataset; (2)
TSM has much better accuracy-computation trade-off compared
to prior works. The contributions of our paper are summarized as
follows:

• We provide a new perspective for efficient video model design
by temporal shift, which is computationally free but has strong
spatio-temporal modeling ability.

• We observed that naive shift cannot achieve high efficiency or
high performance. We then proposed two technical modifica-
tions partial shift and residual shift to realize a high efficiency
model design.

• We propose bi-directional TSM for offline video understanding
that achieves state-of-the-art performance. It ranks the first on
Something-Something leaderboard upon publication.

• We propose uni-directional TSM for online real-time video
recognition with strong temporal modeling capacity at low
latency on edge devices.

• With the efficient design of TSM, we scale up the training
of video network to 1,536 GPUs, and finish the training on
Kinetics dataset in 15 minutes, without losing accuracy. To
the best of our knowledge, we are the first to systematically
investigate the large-scale training on video recognition.

• We provide an in-depth analysis to understand the learned
knowledge inside the TSM module, and find that spatial-
temporal action detector automatically emerges during training
using only classification labels.

2 RELATED WORK

In this section, we briefly review four related topics: 1) Deep
Video Recognition, 2) Temporal Modeling, and 3) Efficient Neural
Networks.

2.1 Deep Video Recognition

2.1.1 2D CNN.

Using the 2D CNN is a straightforward way to conduct video
recognition [2], [11], [12], [14], [28], [46], [58]. For example,
Simonyan et al. [46] designed a two-stream CNN for RGB input
(spatial stream) and optical flow [65] input (temporal stream)
respectively. Temporal Segment Networks (TSN) [58] extracted
averaged features from strided sampled frames. Such methods are

more efficient compared to 3D counterparts but cannot infer the
temporal order or more complicated temporal relationships.

2.1.2 3D CNN.

3D convolutional neural networks can jointly learn spatio-temporal
features. Tran et al. [52] proposed a 3D CNN based on VGG
models, named C3D, to learn spatio-temporal features from a
frame sequence. Carreira and Zisserman [4] proposed to inflate
all the 2D convolution filters in an Inception V1 model [50] into
3D convolutions. However, 3D CNNs are computationally heavy,
making the deployment difficult. They also have more parameters
than 2D counterparts, thus are more prone to over-fitting. On the
other hand, our TSM has the same spatial-temporal modeling ability
as 3D CNN while enjoying the same computation and parameters
as the 2D CNNs.

2.1.3 Trade-offs.

There have been attempts to trade off expressiveness and compu-
tation costs. Lee et al. [31] proposed a motion filter to generate
spatio-temporal features from 2D CNN. Tran et al. [54] and Xie et
al. [63] proposed to study mixed 2D and 3D networks, either first
using 3D and later 2D (bottom-heavy) or first 2D and later 3D
(top-heavy) architecture. ECO [72] also uses a similar top-heavy
architecture to achieve a very efficient framework. Another way
to save computation is to decompose the 3D convolution into a
2D spatial convolution and a 1D temporal convolution [39], [49],
[54]. For mixed 2D-3D CNNs, they still need to remove low-level
temporal modeling or high-level temporal modeling. Compared
to decomposed convolutions, our method completely removes the
computation cost of temporal modeling has enjoys better hardware
efficiency.

2.2 Temporal Modeling

A direct way for temporal modeling is to use 3D CNN based
methods as discussed above. Wang et al. [59] proposed a spatial-
temporal non-local module to capture long-range dependencies.
Wang et al. [60] proposed to represent videos as space-time region
graphs. An alternative way to model the temporal relationships
is to use 2D CNN + post-hoc fusion [8], [12], [16], [68]. Some
works use LSTM [24] to aggregate the 2D CNN features [8], [13],
[15], [48], [64]. Attention mechanism also proves to be effective
for temporal modeling [32], [37], [44]. Zhou et al. [68] proposed
Temporal Relation Network to learn and reason about temporal
dependencies. The former category is computational heavy, while
the latter cannot capture the useful low-level information that is lost
during feature extraction. Our method offers an efficient solution at
the cost of 2D CNNs, while enabling both low-level and high-level
temporal modeling, just like 3D-CNN based methods.

2.3 Efficient Neural Networks

The efficiency of 2D CNN has been extensively studied. Some
works focused on designing an efficient model [25], [26], [42],
[66]. Recently neural architecture search [36], [73], [74] has
been introduced to find an efficient architecture automatically [3],
[51]. Another way is to prune, quantize and compress an existing
model for efficient deployment [19], [20], [23], [34], [57], [70].
Address shift, which is a hardware-friendly primitive, has also
been exploited for compact 2D CNN design on image recognition
tasks [61], [67]. Nevertheless, we observe that directly adopting
the shift operation on video recognition task neither maintains
efficiency nor accuracy, due to the complexity of the video data.

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 3

3 TEMPORAL SHIFT MODULE (TSM)
We first explain the intuition behind TSM: data movement and
computation can be separated in a convolution. However, we
observe that such naive shift operation neither achieves high
efficiency nor high performance. To tackle the problem, we propose
two techniques minimizing the data movement and increasing the
model capacity, which leads to the efficient TSM module.

3.1 Intuition

Let us first consider a normal convolution operation. For brevity,
we used a 1-D convolution with the kernel size of 3 as an example.
Suppose the weight of the convolution is W = (w1, w2, w3), and
the input X is a 1-D vector with infinite length. The convolution
operator Y = Conv(W,X) can be written as: Yi = w1Xi−1 +
w2Xi + w3Xi+1. We can decouple the operation of convolution
into two steps: shift and multiply-accumulate: we shift the input X
by −1, 0,+1 and multiply by w1, w2, w3 respectively, which sum
up to be Y . Formally, the shift operation is:

X−1
i = Xi−1, X0

i = Xi, X+1
i = Xi+1 (1)

and the multiply-accumulate operation is:

Y = w1X
−1 + w2X

0 + w3X
+1 (2)

The first step shift can be conducted without any multiplication.
While the second step is more computationally expensive, our
Temporal Shift module merges the multiply-accumulate into the
following 2D convolution, so it introduces no extra cost compared
to 2D CNN based models.

The proposed Temporal Shift module is described in Figure 1.
In Figure 1a, we describe a tensor with C channels and T frames.
The features at different time stamps are denoted as different colors
in each row. Along the temporal dimension, we shift part of the
channels by −1, another part by +1, leaving the rest un-shifted
(Figure 1b). For online video recognition setting, we also provide
an online version of TSM (Figure 1c). In the online setting, we
cannot access future frames, therefore, we only shift from past
frames to future frames in a uni-directional fashion.

3.2 Naive Shift Does Not Work

Despite the simple philosophy behind the proposed module,
we find that directly applying the spatial shift strategy [61] to
the temporal dimension cannot provide high performance nor
efficiency. To be specific, if we shift all or most of the channels,
it brings two disasters: (1) Worse efficiency due to large data
movement. The shift operation enjoys no computation, but it
involves data movement. Data movement increases the memory
footprint and inference latency on hardware. Worse still, such
effect is exacerbated in the video understanding networks due
to large activation size (5D tensor). When using the naive shift
strategy shifting every map, we observe a 13.7% increase in
CPU latency and 12.4% increase in GPU latency, making the
overall inference slow. (2) Performance degradation due to
worse spatial modeling ability. By shifting part of the channels
to neighboring frames, the information contained in the channels
is no longer accessible for the current frame, which may harm the
spatial modeling ability of the 2D CNN backbone. We observe a
2.6% accuracy drop when using the naive shift implementation
compared to the 2D CNN baseline (TSN).

3.3 Module Design

To tackle the two problem from naive shift implementation, we
discuss two technical contributions.

Table 1-1

Proportion P100 latency P100 TX2 latency TX2 CPU latency CPU

0 16.76 0 275.12 0 1,296.59 0

1/8 17.20 0.02625298329 279.3 0.01519337017 1,336 0.0303874008

1/4 17.42 0.03937947494 283.14 0.02915091596 1,352.96 0.04346786571

1/2 17.90 0.06801909308 290.69 0.05659348648 1,400.2 0.07990189651

1 18.84 0.1241050119 305.06 0.1088252399 1,474.47 0.1371906308

0 1/8 1/4 1/2 1

P100
TX2
CPU

Naive shift:
large overhead

Table 1

In-place TSM Residual TSM 2D baseline

0 0.707 0.707 0.707

1/8 0.739 0.745 0.707

1/4 0.738 0.747 0.707

1/2 0.719 0.74 0.707

1 0.6814 0.7143 0.707

0.707

0 1/8 1/4 1/2 1

In-place TSM
Residual TSM

Naive shift:
low acc.L

at
en

cy
 O

ve
rh

ea
d

Shift Proportion

A
cc

ur
ac

y

0%

3%

6%

9%

12%

15%

Shift Proportion

69%

71%

73%

75%

67%

Our Choice

2D baseline

Our Choice

�1

(a) Overhead vs. proportion.

Table 1-1

Proportion P100 latency P100 TX2 latency TX2 CPU latency CPU

0 16.76 0 275.12 0 1,296.59 0

1/8 17.20 0.02625298329 279.3 0.01519337017 1,336 0.0303874008

1/4 17.42 0.03937947494 283.14 0.02915091596 1,352.96 0.04346786571

1/2 17.90 0.06801909308 290.69 0.05659348648 1,400.2 0.07990189651

1 18.84 0.1241050119 305.06 0.1088252399 1,474.47 0.1371906308

0 1/8 1/4 1/2 1

P100
TX2
CPU

Naive shift:
large overhead

Table 1

In-place TSM Residual TSM 2D baseline

0 0.707 0.707 0.707

1/8 0.739 0.745 0.707

1/4 0.738 0.747 0.707

1/2 0.719 0.74 0.707

1 0.6814 0.7143 0.707

0.707

0 1/8 1/4 1/2 1

In-place TSM
Residual TSM

Naive shift:
low acc.L

at
en

cy
 O

ve
rh

ea
d

Shift Proportion

A
cc

ur
ac

y

0%

3%

6%

9%

12%

15%

Shift Proportion

69%

71%

73%

75%

67%

Our Choice

2D baseline

Our Choice

�1

(b) Residual vs. in-place.

Fig. 2. (a) Latency overhead of TSM due to data movement. (b)
Residual TSM achieve better performance than in-place shift. We
choose 1/4 proportion residual shift as our default setting. It achieves
higher accuracy with a negligible overhead.

3.3.1 Reducing Data Movement.

To study the effect of data movement, we first measured the
inference latency of TSM models and 2D baseline on different
hardware devices. We shifted different proportion of the channels
and measured the latency. We measured models with ResNet-50
backbone and 8-frame input using no shift (2D baseline), partial
shift (1/8, 1/4, 1/2) and all shift (shift all the channels). The
timing was measure on server GPU (NVIDIA Tesla P100), mobile
GPU (NVIDIA Jetson TX2) and CPU (Intel Xeon E5-2690). We
report the average latency from 1000 runs after 200 warm-up runs.
We show the overhead of the shift operation as the percentage of
the original 2D CNN inference time in 2a. We observe the same
overhead trend for different devices. If we shift all the channels, the
latency overhead takes up to 13.7% of the inference time on CPU,
which is definitely non-negligible during inference. On the other
hand, if we only shift a small proportion of the channels, e.g., 1/8,
we can limit the latency overhead to only 3%. Therefore, we use
partial shift strategy in our TSM implementation to significantly
bring down the memory movement cost.

3.3.2 Keeping Spatial Feature Learning Capacity.

We need to balance the model capacity for spatial feature learning
and temporal feature learning. A straight-forward way to apply
TSM is to insert it before each convolutional layer or residual
block, as illustrated in Figure 3a. We call such implementation
in-place shift. It harms the spatial feature learning capability of
the backbone model, especially when we shift a large amount of
channels, since the information stored in the shifted channels is
lost for the current frame.

To address such issue, we propose a variant of the shift module.
Instead of inserting it in-place, we put the TSM inside the residual
branch in a residual block. We denote such version of shift as
residual shift as shown in 3b. Residual shift can address the
degraded spatial feature learning problem, as all the information in
the original activation is still accessible after temporal shift through
identity mapping.

To verify our assumption, we compared the performance of
in-place shift and residual shift on Kinetics [29] dataset. We studied
the experiments under different shift proportion setting. The results
are shown in 2b. We can see that residual shift achieves better
performance than in-place shift for all shift proportion. Even we
shift all the channels to neighboring frames, due to the shortcut
connection, residual shift still achieves better performance than the

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 4

shift convX Y

X Y+ X Y+

X Y+
conv1 shift conv2

shift conv
shift conv

(a) In-place TSM.

shift convX Y

X Y+ X Y+

X Y+
conv1 shift conv2

shift conv
shift conv

(b) Residual TSM.

Fig. 3. Residual shift is better than in-place shift. In-place shift happens
before a convolution layer (or a residual block). Residual shift fuses
temporal information inside a residual branch.

2D baseline. Another finding is that the performance is related to
the proportion of shifted channels: if the proportion is too small,
the ability of temporal reasoning may not be enough to handle
complicated temporal relationships; if too large, the spatial feature
learning ability may be hurt. For residual shift, we found that the
performance reaches the peak when 1/4 (1/8 for each direction)
of the channels are shifted. Therefore, we use this setting for the
rest of the paper.

4 TSM VIDEO NETWORK

4.1 Offline Models with Bi-directional TSM

We insert bi-directional TSM to build offline video recognition
models. Given a video V , we first sample T frames Fi, F1, ..., FT

from the video. After frame sampling, 2D CNN baselines process
each of the frames individually, and the output logits are averaged
to give the final prediction. Our proposed TSM model has exactly
the same parameters and computation cost as 2D model. During
the inference of convolution layers, the frames are still running
independently just like the 2D CNNs. The difference is that
TSM is inserted for each residual block, which enables temporal
information fusion at no computation. For each inserted temporal
shift module, the temporal receptive field will be enlarged by 2,
as if running a convolution with the kernel size of 3 along the
temporal dimension. Therefore, our TSM model has a very large
temporal receptive field to conduct highly complicated temporal
modeling. In this paper, we used ResNet-50 [22] as the backbone
unless otherwise specified.

A unique advantage of TSM is that it can easily convert any
off-the-shelf 2D CNN model into a pseudo-3D model that can
handle both spatial and temporal information, without adding
additional computation. Thus the deployment of our framework
is hardware friendly: we only need to support the operations in
2D CNNs, which are already well-optimized at both framework
level (CuDNN [6], MKL-DNN, TVM [5]) and hardware level
(CPU/GPU/TPU/FPGA).

4.2 Online Models with Uni-directional TSM

Video understanding from online video streams is important in real-
life scenarios. Many real-time applications requires online video
recognition with low latency, such as AR/VR and self-driving. In
this section, we show that we can adapt TSM to achieve online
video recognition while with multi-level temporal fusion.

As shown in Figure 1, offline TSM shifts part of the channels
bi-directionally, which requires features from future frames to
replace the features in the current frame. If we only shift the
feature from previous frames to current frames, we can achieve
online recognition with uni-directional TSM.

The inference graph of uni-directional TSM for online video
recognition is shown in Figure 4. During inference, for each frame,
we save the first 1/8 feature maps of each residual block and cache
it in the memory. For the next frame, we replace the first 1/8 of
the current feature maps with the cached feature maps. We use the

Ft

Conv

Feature

Feature

… Cached in
Memory

Shift out Replace

Feature

Feature

Ft+1

Shift out Replace

Feature

Feature

FN

…

…

…

yt yt+1 yN

Conv

Conv

Conv

Conv

Conv

… …

Fig. 4. Uni-directional TSM for online video recognition.

combination of 7/8 current feature maps and 1/8 old feature maps
to generate the next layer, and repeat. Using the uni-directional
TSM for online video recognition shares several unique advantages:

1. Low latency inference. For each frame, we only need to
replace and cache 1/8 of the features, without incurring any extra
computations. Therefore, the latency of giving per-frame prediction
is almost the same as the 2D CNN baseline. Existing methods
like [72] use multiple frames to give one prediction, which may
leads to large latency.

2. Low memory consumption. Since we only cache a small
portion of the features in the memory, the memory consumption is
low. For ResNet-50, we only need 0.9MB memory cache to store
the intermediate feature.

3. Multi-level temporal fusion. Most of the online method
only enables late temporal fusion after feature extraction like [68]
or mid level temporal fusion [72], while our TSM enables all levels
of temporal fusion. Through experiments (Table 2) we find that
multi-level temporal fusion is very important for complex temporal
modeling.

5 EXPERIMENTS

We first show that TSM can significantly improve the performance
of 2D CNN on video recognition while being computationally
free and hardware efficient. It further demonstrated state-of-the-art
performance on temporal-related datasets, arriving at a much better
accuracy-computation pareto curve. TSM models achieve an order
of magnitude speed up in measured GPU throughput compared
to conventional I3D model from [60]. Finally, we leverage uni-
directional TSM to conduct low-latency and real-time online
prediction on both video recognition and object detection.

5.1 Setups

5.1.1 Training & Testing.

We conducted experiments on video action recognition tasks. The
training parameters for the Kinetics dataset are: 100 training epochs,
initial learning rate 0.01 (decays by 0.1 at epoch 40&80), weight
decay 1e-4, batch size 64, and dropout 0.5. For other datasets,
we scale the training epochs by half. For most of the datasets,
the model is fine-tuned from ImageNet pre-trained weights; while
HMDB-51 [30] and UCF-101 [47] are too small and prone to
over-fitting [58], we followed the common practice [58], [59] to
fine-tune from Kinetics [29] pre-trained weights and freeze the
Batch Normalization [27] layers. For testing, when pursue high
accuracy, we followed the common setting in [59], [60] to sample
multiple clips per video (10 for Kinetics, 2 for others) and use the

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 5

Dataset Model Acc1 Acc5 ∆ Acc1

L
es

s
Te

m
po

ra
l Kinetics TSN 70.6 89.2 +3.5Ours 74.1 91.2

UCF101 TSN 91.7 99.2 +4.2Ours 95.9 99.7

HMDB51 TSN 64.7 89.9 +8.8Ours 73.5 94.3

M
or

e
Te

m
po

ra
l Something

V1
TSN 20.5 47.5 +28.0Ours 47.3 76.2

Something
V2

TSN 30.4 61.0 +31.3Ours 61.7 87.4

Jester TSN 83.9 99.6 +11.7Ours 97.0 99.9

TABLE 1. Our method consistently outperforms 2D counterparts on
multiple datasets at zero extra computation (protocol: ResNet-50 8f
input, 10 clips for Kinetics, 2 for others, full-resolution).

full resolution image with shorter side 256 for evaluation, so that
we can give a direct comparison; when we consider the efficiency
(e.g., as in Table 2), we used just 1 clip per video and the center
224×224 crop for evaluation. We keep the same protocol for the
methods compared in the same table.

5.1.2 Model.

To have an apple-to-apple comparison with the state-of-the-art
method [60], we used the same backbone (ResNet-50) on the
dataset (Something-Something-V1 [18]).This dataset focuses on
temporal modeling. The difference is that [60] used 3D ResNet-
50, while we used 2D ResNet-50 as the backbone to demonstrate
efficiency.

5.1.3 Datasets.

Kinetics dataset [29] is a large-scale action recognition dataset
with 400 classes. As pointed in [63], [68], datasets like Something-
Something (V1&V2) [18], Charades [45], and Jester [38] are
more focused on modeling the temporal relationships , while
UCF101 [47], HMDB51 [30], and Kinetics [29] are less sensitive to
temporal relationships. Since TSM focuses on temporal modeling,
we mainly focus on datasets with stronger temporal relationships
like Something-Something. Nevertheless, we also observed strong
results on the other datasets and reported it.

5.2 Improving 2D CNN Baselines

We can seamlessly inject TSM into a normal 2D CNN and
improve its performance on video recognition. In this section,
we demonstrate a 2D CNN baseline can significantly benefit from
TSM with double-digits accuracy improvement. We chose TSN [58]
as the 2D CNN baseline. We used the same training and testing
protocol for TSN and our TSM. The only difference is with or
without TSM.

5.2.1 Comparing Different Datasets.

We compare the results on several action recognition datasets in
Table 1. The chart is split into two parts. The upper part contains
datasets Kinetics [29], UCF101 [47], HMDB51 [30], where tempo-
ral relationships are less important, while our TSM still consistently
outperforms the 2D TSN baseline at no extra computation. For
the lower part, we present the results on Something-Something V1
and V2 [18] and Jester [38], which depend heavily on temporal
relationships. 2D CNN baseline cannot achieve a good accuracy,

but once equipped with TSM, the performance improved by double
digits.

5.2.2 Scaling over Backbones.

TSM scales well to backbones of different sizes. We show
the Kinetics top-1 accuracy with MobileNet-V2 [42], ResNet-
50 [22], ResNext-101 [62] and ResNet-50 + Non-local module [59]
backbones in Table 3. TSM consistently improves the accuracy
over different backbones, even for NL R-50, which already has
temporal modeling ability.

5.3 Comparison with State-of-the-Arts

TSM not only significantly improves the 2D baseline but also
outperforms state-of-the-art methods, which heavily rely on 3D
convolutions. We compared the performance of our offline (bi-
directional) TSM model with state-of-the-art methods on both
Something-Something V1&V2 because these two datasets focus
on temporal modeling.

5.3.1 Something-Something-V1.

Something-Something-V1 is a challenging dataset, as activity
cannot be inferred merely from individual frames (e.g., pushing
something from right to left). We compared TSM with current
state-of-the-art methods in Table 2. We only applied center crop
during testing to ensure the efficiency unless otherwise specified.
TSM achieves the first place on the leaderboard upon publication.

We first show the results of the 2D based methods TSN [58] and
TRN [68]. TSN with different backbones fails to achieve decent
performance (<20% Top-1) due to the lack of temporal modeling.
For TRN, although late temporal fusion is added after feature
extraction, the performance is still significantly lower than state-of-
the-art methods, showing the importance of temporal fusion across
all levels.

The second section shows the state-of-the-art efficient video
understanding framework ECO [72]. ECO uses an early 2D + late
3D architecture which enables medium-level temporal fusion.
Compared to ECO, our method achieves better performance at a
smaller FLOPs. For example, when using 8 frames as input, our
TSM achieves 45.6% top-1 accuracy with 33G FLOPs, which is
4.2% higher accuracy than ECO with 1.9× less computation. The
ensemble versions of ECO (ECOEnLite and ECOEnLiteRGB+Flow,
using an ensemble of {16, 20, 24, 32} frames as input) did achieve
competitive results, but the computation and parameters are too
large for deployment. While our model is much more efficient: we
only used {8, 16} frames model for ensemble (TSMEn), and the
model achieves better performance using 2.7× less computation
and 3.1× fewer parameters.

The third section contains previous state-of-the-art methods:
Non-local I3D + GCN [60], that enables all-level temporal fusion.
The GCN needs a Region Proposal Network [40] trained on
MSCOCO object detection dataset [35] to generate the bounding
boxes, which is unfair to compare since external data (MSCOCO)
and extra training cost is introduced. Thus we compared TSM to
its CNN part: Non-local I3D. Our TSM (8f) achieves 1.2% better
accuracy with 10× fewer FLOPs on the validation set compared
to the Non-local I3D network. Note that techniques like Non-local
module [59] are orthogonal to our work, which could also be added
to our framework to boost the performance further.

1. We reported the performance of NL I3D described in [60], which is a
variant of the original NL I3D [59]. It uses fewer temporal dimension pooling
to achieve good performance, but also incur larger computation.

2. Includes parameters and FLOPs of the Region Proposal Network.

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 6

Model Backbone #Frame FLOPs/Video #Param. Val Top-1 Val Top-5 Test Top-1
TSN [68] BNInception 8 16G 10.7M 19.5 - -

TSN (our impl.) ResNet-50 8 33G 24.3M 19.7 46.6 -
TRN-Multiscale [68] BNInception 8 16G 18.3M 34.4 - 33.6

TRN-Multiscale (our impl.) ResNet-50 8 33G 31.8M 38.9 68.1 -
Two-stream TRNRGB+Flow [68] BNInception 8+8 - 36.6M 42.0 - 40.7

ECO [72] BNIncep+3D Res18 8 32G 47.5M 39.6 - -
ECO [72] BNIncep+3D Res18 16 64G 47.5M 41.4 - -

ECOEnLite [72] BNIncep+3D Res18 92 267G 150M 46.4 - 42.3
ECOEnLiteRGB+Flow [72] BNIncep+3D Res18 92+92 - 300M 49.5 - 43.9

I3D from [60] 3D ResNet-50 32×2clip 153G1×2 28.0M 41.6 72.2 -
Non-local I3D from [60] 3D ResNet-50 32×2clip 168G1×2 35.3M 44.4 76.0 -

Non-local I3D + GCN [60] 3D ResNet-50+GCN 32×2clip 303G2×2 62.2M2 46.1 76.8 45.0

CorrNet-50 [56] R(2+1)D-50 32×10clip 115G×10 - 49.3 - -
ip-CSN-152 [53] 3D ResNet-152 32×10clip 83.3G×10 33.0M 53.3 - -

TSM ResNet-50 8 33G 24.3M 45.6 74.2 -
TSM ResNet-50 16 65G 24.3M 47.2 77.1 46.0

TSMEn ResNet-50 24 98G 48.6M 49.7 78.5 -
TSMRGB+Flow ResNet-50 16+16 - 48.6M 52.6 81.9 50.7

TABLE 2. Comparing TSM against other methods on Something-Something dataset (center crop, 1 clip/video unless otherwise specified).

Mb-V2 R-50 RX-101 NL R-50
TSN 66.5 70.7 72.4 74.6
TSM 69.5 74.1 76.3 75.7

∆Acc. +3.0 +3.4 +3.9 +1.1

TABLE 3. TSM can consistently improve the performance over
different backbones on Kinetics dataset.

We further include two recent state-of-the-art methods that
achieve state-of-the-art performance: CorrNet [56] and CSN [53].
For CorrNet, we compare to CorrNet-50 which has a similar
backbone shape; For CSN, we compare to ip-CSN-152, which is
the largest model and achieves the highest accuracy. Both methods
achieve high accuracy on Something-Something dataset. However,
they still require sampling 10 clips to get the average prediction.
The total computation is larger than 800G FLOPs, which is not
practical for edge deployment.

5.3.2 Generalize to Other Modalities.

We also show that our proposed method can generalize to other
modalities like optical flow. To extract the optical flow information
between frames, we followed [58] to use the TVL1 optical flow
algorithm [65] implemented in OpenCV with CUDA. We conducted
two-stream experiments on both Something-Something V1 and V2
datasets, and it consistently improves over the RGB performance:
introducing optical flow branch brings 5.4% and 2.6% top-1
improvement on V1 and V2.

5.3.3 Something-Something-V2.

We also show the result on Something-Something-V2 dataset,
which is a newer release to its previous version. The results
compared to other state-of-the-art methods are shown in Table 4.
On Something-Something-V2 dataset, we achieved state-of-the-art
performance while only using RGB input.

Method Val Test
Top-1 Top-5 Top-1 Top-5

TSN (our impl.) 30.0 60.5 - -
MultiScale TRN [68] 48.8 77.6 50.9 79.3
2-Stream TRN [68] 55.5 83.1 56.2 83.2

TSM8F 59.1 85.6 - -
TSM16F 63.4 88.5 64.3 89.6

TSMRGB+Flow 66.0 90.5 66.6 91.3

TABLE 4. Results on Something-Something-V2. Our TSM achieves
state-of-the-art performance.

38

41

43

46

48

51

0 100 200 300 400 500 600 700

Ours ECO [] I3D from [] Storage

FLOPs/Video (G)

A
cc

ur
ac

y
(%

) ECOEnLite

TSMEn

NL I3D+GCN

NL I3D

I3DECO16F

ECO8F

TSM16F

30M 100M 150M

Parameters

TSM8F

61 50

Fig. 5. TSM enjoys better accuracy-cost trade-off than I3D family and
ECO family on Something-Something-V1 [18] dataset. (GCN includes
the cost of ResNet-50 RPN to generate region proposals.)

5.3.4 Cost vs. Accuracy.

Our TSM model achieves very competitive performance while
enjoying high efficiency and low computation cost for fast inference.
We show the FLOPs for each model in Table 2. Although GCN
itself is light, the method used a ResNet-50 based Region Proposal
Network [40] to extract bounding boxes, whose cost is also

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 7

Model Latency/Clip Top-1

I3D NL R-50 [59] 30.7ms 74.9%
SlowFast R-50 [10] 33.3ms 75.6%
TSM NL R-50 25.6ms 75.7%

X3D-M [9] 73.5ms 76.0%
ir-CSN-152 [53] 138.6ms 76.8%
TSM RX-101 40.7ms 76.3%

TABLE 5. Compare to state-of-the-art methods on Kinetics. TSM can
achieve higher or comparable performance at a lower inference latency.

considered in the chart. Note that the computation cost of optical
flow extraction is usually larger than the video recognition model
itself. Therefore, we do not report the FLOPs of two-stream based
methods.

We show the accuracy, FLOPs, and number of parameters
trade-off in Figure 5. The accuracy is tested on the validation set of
Something-Something-V1 dataset, and the number of parameters is
indicated by the area of the circles. We can see that our TSM based
methods have a better Pareto curve than both previous state-of-the-
art efficient models (ECO based models) and high-performance
models (non-local I3D based models). TSM models are both
efficient and accurate. It can achieve state-of-the-art accuracy at
high efficiency: it achieves better performance while consuming
3× less computation than the ECO family . Considering that ECO
is already an efficiency-oriented design, our method enjoys highly
competitive hardware efficiency.

5.3.5 Kinetics.

Although Kinetics does not focus on temporal modeling (Table 1),
we compare TSM with state-of-the-art methods on Kinetics to give
a comprehensive comparison. The results are show in Table 5.

We compare to several state-of-the-art methods: Non-local
networks [59] (I3D NL R-50), SlowFast [10] (SlowFast R-50),
X3D [9] (X3D-M), and CSN [53] (ir-CSN-152). We report the
latency and accuracy trade-off of different methods. The latency
is measured on NVIDIA RTX 2080 Ti GPU using batch size 1.
We first warm-up the inference for 100 iterations and measure
the average latency of the next 200 iterations. TSM can achieve
higher or comparable performance at a lower inference latency.
TSM (TSM NL R-50) achieves same-level of accuracy compared
to SlowFast network (SlowFast R-50) at 1.3× lower latency. TSM
(TSM RX-101) also outperforms X3D (X3D-M) at 1.8× lower
latency. Notice that though X3D has a small computation FLOPs,
its inferior hardware efficiency leads to the slow inference speed.
ir-CSN-152 achieves slightly higher accuracy than TSM, but TSM
runs 3.4× faster. TSM is very competitive for accuracy-speed
trade-off.

5.4 Latency and Throughput Speedup

The measured inference latency and throughput are important for
the large-scale video understanding. TSM has low latency and high
throughput. We performed measurement on a single NVIDIA Tesla
P100 GPU. We used batch size of 1 for latency measurement; batch
size of16 for throughput measurement. We made two comparisons:

(1) Compared with the I3D model from [60], our method is
faster by an order of magnitude at 1.8% higher accuracy (Table 6).
We also compared our method to the state-of-the-art efficient model
ECO [72]: Our TSM model has 1.75× lower latency (17.4ms vs.
30.6ms), 1.7× higher throughput, and achieves 2% better accuracy.

Model Efficiency Statistics Accuracy

FLOPs Param. Latency Thrput. Sth. Kinetics

I3D from [60] 306G 35.3M 165.3ms 6.1V/s 41.6% -
ECO16F [72] 64G 47.5M 30.6ms 45.6V/s 41.4% -

I3D from [59] 33G 29.3M 25.8ms 42.4V/s - 73.3%
I3Dreplace 48G 33.0M 28.0ms 37.9V/s 44.9% -

TSM8F 33G 24.3M 17.4ms 77.4V/s 45.6% 74.1%
TSM16F 65G 24.3M 29.0ms 39.5V/s 47.2% 74.7%

TABLE 6. TSM enjoys low GPU inference latency and high through-
put. V/s means videos per second, higher the better (Measured on
NVIDIA Tesla P100 GPU).

Model Latency Kinetics UCF101 HMDB51 Something
TSN 4.7ms 70.6% 91.7% 64.7% 20.5%

+Offline - 74.1% 95.9% 73.5% 47.3%
+Online 4.8ms 74.3% 95.5% 73.6% 46.3%

TABLE 7. Comparing the accuracy of offline TSM and online TSM
on different datasets. Online TSM brings negligible latency overhead.

ECO has a two-branch (2D+3D) architecture, while TSM only
needs the in-expensive 2D backbone.

(2) We then compared TSM to efficient 3D model designs. One
way is to only inflate the first 1 × 1 convolution in each of the
block as in [59], denoted as ”I3D from [59]” in the table. Although
the FLOPs are similiar due to pooling, it suffers from 1.5× higher
latency and only 55% the throughput compared with TSM, with
worse accuracy. We speculate the reason is that TSM model only
uses 2D convolution which is highly optimized for hardware. To
exclude the factors of backbone design, we replace every TSM
primitive with 3 × 1 × 1 convolution and denote this model as
I3Dreplace. It is still much slower than TSM and performs worse.

5.5 Online Recognition with TSM

5.5.1 Online vs. Offline

Online TSM models shift the feature maps uni-directionally so that
it can give predictions in real time. We compare the performance
of offline and online TSM models to show that online TSM can
still achieve comparable performance. Follow [72], we use the
prediction averaged from all the frames to compare with offline
models, i.e., we compare the performance after observing the
whole videos. The performance is provided in Table 7. We can see
that for less temporal related datasets like Kinetics, UCF101 and
HMDB51, the online models achieve comparable and sometimes
even better performance compared to the offline models. While
for more temporal related datasets Something-Something, online
model performs worse than offline model by 1.0%. Nevertheless,
the performance of online model is still significantly better than
the 2D baseline.

We also compare the per-frame prediction latency of pure 2D
backbone (TSN) and our online TSM model. We compile both
models with TVM [5] on GPU. Our online TSM model only adds
to less than 0.1ms latency overhead per frame while bringing up
to 25% accuracy improvement. It demonstrates online TSM is
hardware-efficient for latency-critical real-time applications.

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 8

R-FCN TSM

frame1

frame2

frame3

frame4

frame5

R-FCN TSM

frame1

frame2

frame3

frame4

frame5

R-FCN TSM

frame1

frame2

frame3

frame4

frame5

R-FCN TSM

frame1

frame2

frame3

frame4

frame5

Fig. 6. TSM improves detection results with the help of temporal cues. For the left video, 2D baseline R-FCN generates false positive due to the
glare of car headlight on frame 2/3/4, while TSM does not have such issue by considering the temporal information. For the right video, R-FCN
generates false positive surrounding the bus due to occlusion by the traffic sign on frame 2/3/4. Also, it fails to detect motorcycle on frame 4 due
to occlusion. TSM model addresses such issues with the help of temporal information.

Table 1

Proportion ECO (s=8) ECO (s=12) ECO (s=20) TSM-v1 TSM-v2 TSM TSM

10 83.24 83.06 81.42 90.69521544 87.94607454 90.69521544 89.84932593

20 86.28 86.10 84.35 92.06978588 90.5630452 92.06978588 91.09172614

40 89.24 89.29 88.26 93.28575205 92.96854348 93.28575205 92.73063706

60 90.85 90.70 91.01 93.39148824 94.6603225 94.02590537 93.49722443

80 91.6 92.33 92.33 93.39148824 95.13613534 94.26381179 93.78799894

100 92.02 92.44 92.97 93.47079038 95.24187153 94.356330955 94.07877346

Table 1-1

A
cc

ur
ac

y
%

80

84

88

92

96

10 20 40 60 80 100

ECO (s=8)
ECO (s=12)
ECO (s=20)
TSM

Video Observation %

A
cc

ur
ac

y
%

0
10
20
30
40
50

25 50 100

2D TRN TSM

Video Observation %

0
20
40
60
80

100

25 50 100

2D TRN TSM

Video Observation %
(a) Something-Something (b) Jester

1

Fig. 7. Early recognition on UCF101. TSM gives high prediction
accuracy after only observing a small portion of the video.

Table 1

Proportion ECO (s=8) ECO (s=12) ECO (s=20) TSM-v1 TSM-v2 TSM TSM

10 83.24 83.06 81.42 90.69521544 87.94607454 90.69521544 89.84932593

20 86.28 86.10 84.35 92.06978588 90.5630452 92.06978588 91.09172614

40 89.24 89.29 88.26 93.28575205 92.96854348 93.28575205 92.73063706

60 90.85 90.70 91.01 93.39148824 94.6603225 94.02590537 93.49722443

80 91.6 92.33 92.33 93.39148824 95.13613534 94.26381179 93.78799894

100 92.02 92.44 92.97 93.47079038 95.24187153 94.356330955 94.07877346

Table 1-1

A
cc

ur
ac

y
%

80

84

88

92

96

10 20 40 60 80 100

ECO (s=8)
ECO (s=12)
ECO (s=20)
TSM

Video Observation %

A
cc

ur
ac

y
%

0
10
20
30
40
50

25 50 100

2D TRN TSM

Video Observation %

0
20
40
60
80

100

25 50 100
Video Observation %

(a) Something-Something (b) Jester

1

Fig. 8. Early recognition on Something-Something and Jester datasets.
TSM consistently outperforms TRN [68] at various portions by a large
margin.

5.5.2 Early Recognition

Early recognition aims to classify the video while only observing a
small portion of the frames. It gives fast response to the input video
stream. Here we compare the early video recognition performance
with ECO [72] on UCF101 (Figure 7) and TRN [68] on Something-
Something and Jester (Figure 8). Compared to ECO, TSM gives

Devices Jetson Nano Jetson TX2 Rasp. Note8 Pixel1
CPU GPU CPU GPU

FPS 20.9 74.6 27.5 117.6 14.4 29.0 21.1
Power (watt) 4.8 4.5 5.6 5.8 3.8 - -

TABLE 8. TSM efficiently runs on edge devices with low latency.

much higher accuracy, especially when only observing a small
portion of the frames. For example, when only observing the first
10% of video frames, TSM model can achieve 90% accuracy, which
is 6.6% higher than the best ECO model. TSM also consistently
outperforms TRN at various observation percentages by a large
margin.

5.5.3 Edge Deployment

TSM is mobile device friendly. We build an online TSM model
with MobileNet-V2 backbone, which achieves 69.5% accuracy on
Kinetics. The latency and energy on NVIDIA Jetson Nano & TX2,
Raspberry Pi 4B, Samsung Galaxy Note8, Google Pixel-1 is shown
in Table 8. The models are compiled using TVM [5]. Power is
measured with a power meter, subtracting the static power. TSM
achieves low latency and low power on edge devices.

6 ONLINE OBJECT DETECTION

Real-time online video object detection is an important application
in self-driving vehicles, robotics, etc. Most exiting methods treat
video detection as image detection per frame, which is not robust
since temporal information is not considered. Other methods on
video object detection [71] fuses information along temporal

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 9

Model Online Need
Flow Latency mAP

Overall Slow Medium Fast

R-FCN [7] X 1× 74.7 83.6 72.5 51.4
FGFA [71] X 2.5× 75.9 84.0 74.4 55.6

Online TSM X 1× 76.3 83.4 74.8 56.0

TABLE 9. Video detection results on ImageNet-VID.

dimension after the 2D feature is extracted by the backbone, which
results in high latency, and also loses low-level temporal cues.

Here we show that we can enable temporal fusion in online
video object detection by injecting our uni-directional TSM into
the backbone. We show that we can significantly improve the
performance of video detection by simply modifying the backbone
with online TSM, without changing the detection module design or
using optical flow features.

We conducted experiments with R-FCN [7] detector on
ImageNet-VID [41] dataset. Following the setting in [71], we used
ResNet-101 [22] as the backbone for R-FCN detector. For TSM
experiments, we inserted uni-directional TSM to the backbone,
while keeping other settings the same. We used the official training
code of [71] to conduct the experiments, and the results are shown
in Table 9. Compared to 2D baseline R-FCN [7], our online TSM
model significantly improves the performance, especially on the fast
moving objects, where TSM increases mAP by 4.6%. FGFA [71]
is a strong baseline that uses optical flow to aggregate the temporal
information from 21 frames (past 10 frames and future 10 frames)
for offline video detection. Compared to FGFA, TSM can achieve
similar or higher performance while enabling online recognition
(using information from only past frames) at much smaller latency
per frame. The latency overhead of TSM module itself is less than
1ms per frame, making it a practical tool for real deployment.

We visualize the detection results of two video clips in Figure 6.
In the left video clip, 2D baseline R-FCN generates false positive
due to the glare of car headlight on frame 2/3/4, while TSM
suppresses false positive. In the right video clip, R-FCN generates
false positive surrounding the bus due to occlusion by the traffic
sign on frame 2/3/4. Also, it fails to detect motorcycle on frame 4
due to occlusion. TSM model addresses such issues with the help
of temporal information.

7 SCALABILITY IN DISTRIBUTED TRAINING

In this section, we study how the design of TSM helps to improve
the scalability in distributed training of video models.

7.1 Factor of Video Network Design

To study the distributed training scalability, we first discuss
the factors that might affect the scalability of video network
training [33].

7.1.1 Temporal modeling unit.

3D convolution is the most widely used operator for spatial-
temporal modeling. However, it suffers from two problems: (1)
large computation and large parameter size, which slows down
training and communication; (2) low hardware efficiency compared
to 2D convolution. Give the same amount of FLOPs, 3D kernels
run 1.2 to 3 times slower than 2D on cuDNN [6]. On the other
hand, our TSM module is a highly efficient alternative.

7.1.2 Backbone topology.

Existing video networks usually sample many frames as input
(32 frames [59] or 64 frames [4]), and perform temporal pooling
later to progressively reduce the temporal resolution (Figure 10a).
Another way is to sample fewer frames (e.g. 8 frames [58]) as
input while keeping the same temporal resolution to keep the
information (Figure 10b). Although the overall computation of the
two designs are similar, the former significantly increases the data
loading traffic, making the system I/O heavy, which could be quite
challenging in a distributed system considering the limited disk
bandwidth.

7.2 Design Guidelines to Video Model Architecture

To tackle the challenge in a distributed training systems, we
propose three video model design guidelines: (1) To increase
the computation efficiency, use operators with lower FLOPs and
higher hardware efficiency; (2) To reduce data loading traffic, use
a network topology with higher FLOPs/data ratio; (3) To reduce
the networking traffic, use operators with fewer parameters.

We show the advantage of the above three design guidelines by
experimenting on three models in Table 10. All the models use the
ResNet-50 backbone to exclude the influence of spatial modeling.
The model architectures are introduced as follows.

(1) The first model is an I3D model from [21]. The model
takes 16 frames as input and inflate all the 3× 3 convolutions to
3×3×3. It performs temporal dimension pooling by four times to
reduce the temporal resolution. We denote the model as I3D3×3×3.

(2) The second model is an I3D model from [59], taking 32
frames as input and inflating the first 1× 1 convolution in every
other ResBlock. It applies temporal dimension pooling by three
times. We denote this more computation and parameter efficient
design as I3D3×1×1.

(3) The third model is built with TSM. The TSM operator is
inserted into every ResBlock. The model takes 8 frames as input
and performs no temporal pooling. We denote this model as TSM.

7.2.1 Computation Efficiency.

Computation efficiency is the most direct factor that influence the
training time. As shown in Table 10, TSM8f has 1.2× fewer FLOPs
compared to I3D3×3×3 and roughly the same FLOPs compared to
I3D3×1×1. However, the actual inference throughput also depends
on the hardware utilization. We measure the inference throughput
(defined as videos per second) of the three models on a single
NVIDIA Tesla P100 GPU using batch size 16. We also measured
the hardware utilization, defined as achieved FLOPs/second over
peak FLOPs/second. The inference throughput and the hardware
efficiency comparison is shown in Figure 9a. We can find that the
model is more hardware efficient if it has more 2D convolutions
than 3D: TSM is a fully 2D CNN, therefore it has the best hardware
utilization (2.0×); while the last several stage of I3D3×3×3 (res4,
res5) have few temporal resolution (as shown in Table 11), it is
more similar to 2D convolution and thus is 1.8× more hardware
efficient than I3D3×1×1 (1.0×).

7.2.2 Data Loading Efficiency.

Video datasets are usually very large. For a distributed system
like the Summit supercomputer, the data is usually stored in
High Performance Storage System (HPSS) shared across all the
worker nodes. Such file systems usually have great sequential I/O
performance but inferior random access performance. Therefore,
large data traffic could easily become the system bottleneck.

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 10

Acc.↑ FLOPs↓ #Param.↓ Input size↓ Throughput↑ Compute/IO↑

I3D3×3×3 [21] 68.0% 40G 47.0M 16×3×2242 63.1V/s (1.5×) 16.6k (2.4×)
I3D3×1×1 [59] 73.3% 33G 29.3M 32×3×2242 41.9V/s (1.0×) 6.85k (1×)

TSM 74.1% 33G 24.3M 8×3×2242 84.8V/s (2.0×) 27.4k (4×)

TABLE 10. Efficiency statistics of different models. Arrows show the better direction.

0

0.5

1

1.5

2

Throughput Hardware Utilization

I3D I3D TSMI3D3x3x3 I3D3x1x1 TSM8f

1x

2.0x

1x

2.0x
1.5x

1.8x

0.8

0.85

0.9

0.95

1

1 16 32 64 128

TSM
I3D

Number of Nodes

Sc
al

ab
ili

ty

0

0.2

0.4

0.6

I3D3 I3D1 TSM

I/O Time (not hidden)
Compute Time

I3D3x3x3 I3D3x1x1 TSM8f

B
at

ch
 T

ra
in

in
g

T
im

e
(s

)

(a) TSM has fewer FLOPs, better throughput and
utilization.

0

0.5

1

1.5

2

Throughput Hardware Efficiency

I3D I3D TSMI3D3x3x3 I3D3x1x1 TSM8f

1x

2.0x

1x

2.0x
1.5x

1.8x

0.8

0.85

0.9

0.95

1

1 16 32 64 128

TSM
I3D

Number of Nodes

Sc
al

ab
ili

ty

0

0.2

0.4

0.6

I3D3 I3D1 TSM

I/O Time (not hidden)
Compute Time

I3D3x3x3 I3D3x1x1 TSM8f

B
at

ch
 T

ra
in

in
g

T
im

e
(s

)
(b) TSM is I/O light, decreasing the total batch
time.

0

0.5

1

1.5

2

Throughput Hardware Utilization

I3D I3D TSMI3D3x3x3 I3D3x1x1 TSM8f

1x

2.0x

1x

2.0x
1.5x

1.8x

80%

85%

90%

95%

100%

1 4 16 32

I3D
TSM

Number of GPUs

Sc
al

ab
ili

ty

0

0.2

0.4

0.6

I3D3 I3D1 TSM

I/O Time (not hidden)
Compute Time

I3D3x3x3 I3D3x1x1 TSM8f

B
at

ch
 T

ra
in

in
g

T
im

e
(s

)

I3D3x3x3
TSM8f

(c) TSM has better scalability due to smaller
model size.

Fig. 9. Analyzing how different design aspects influence the distributed training scalability of video recognition models: (a) computation
efficiency; (b) data loading efficiency; (c) networking efficiency.

Block data conv1 pool1 res2 res3 res3 res4 res5 global pool
I3D3×3×3 16 16 8 8 - 4 2 1 1
I3D3×1×1 32 16 8 8 4 4 4 4 1
TSM8f 8 8 8 8 - 8 8 8 1

TABLE 11. The temporal resolution of output feature map for each block. TSM is a fully 2D structure, enjoying the best hardware efficiency.
The last several stages of I3D3×3×3 have fewer temporal resolution, making it more similar to 2D CNN, thus enjoying better hardware efficiency
compared to I3D3×1×1.

H

WT=8

H

W

T=8

T=8

T=16

T=8

T=4

I/O
Heavy

I/O
Efficient

Input data

Feature F1

F2
Feature F1

F2

Input data

(a) Pooled-up

H

WT=8

H

W

T=8

T=8

T=16

T=8

T=4

I/O
Heavy

I/O
Efficient

Input data

Feature F1

F2
Feature F1

F2

Input data

(b) Straight-up (ours)

Fig. 10. Two kinds of video backbone design. Straight-up backbone
does not perform temporal pooling and is more data efficient. Pooled-
up version requires many input frames and drains I/O.

Previous popular I3D models [4], [21] takes many frames per
video (16 or 32) as input and perform down-sample over temporal
dimension. We argue that such design is a waste of disk bandwidth:
a TSM8f only takes 8 frames as input while achieving better
accuracy. The intuition is that nearby frames are similar; loading
too many similar frames is redundant. We empirically test the data
loading bottleneck on Summit. To exclude the communication cost
from the experiments, we perform timing on single-node training.
We measure the total time of one-batch training and the time for
data loading (that is not hidden by the computation). As shown
in Figure 9b, for I3D3×1×1, it takes 32 frames as input. The data
loading time cannot be hidden by the computation, therefore data
I/O becomes the bottleneck. I3D3×3×3 that takes 16 frame as input
has less problem on data loading, while TSM8f can fully hide the
data loading time with computation. We also compute the model
FLOPs divided by the input data size as a measurement of data
efficiency. The value is denoted as ”Compute/IO” as in Table 10.

For scalable video recognition models, we want a model with larger
Compute/IO ratio.

7.2.3 Networking Efficiency.

In distributed training system, the communication time can be
modelled as:

communication time = latency +
model size
bandwidth

(3)

The latency and bandwidth is determined by the network condition,
which cannot be optimized through model design. However, we can
reduce the model size to reduce the communication cost. Both I3D
models inflate some of the 2D convolution kernels to 3D, which
will increase the number of parameters by kT . While TSM module
does not introduce extra parameters. Therefore, it has the same
model size as the 2D counterpart. For example, I3D3×3×3 has 1.9×
larger model size than TSM8f, which introduces almost two times
of network communication during distributed training. To test the
influence of model size on scalability, we measure the scalability
on a 8 node cluster. Each computer has 4 NVIDIA TESLA P100
GPUs. We define the scalability as the actual training speed divided
by the ideal training speed (single machine training speed * number
of nodes). The results are shown in Figure 9c. Even with the high-
speed connection, the scalability of I3D3×3×3 quickly drops as the
number of training nodes increase: the scalability is smaller than
85% when applied to 8 nodes. While TSM8f model still has over
98% of scalability thanks to the smaller model size thus smaller
networking traffic.

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 11

Fig. 11. Kinetics top-1 validation accuracy vs. mini-batch size. The
performance of the model does not degrade when we scale up the
mini-batch size to 12k. The mean and standard deviation (the scale of
the STD is hardly visible) are shown in the figure.

#Node #GPU Batch #Frames Accuracy Time Note

1 6 96 768 74.12±0.11 49h 55m Baseline

8 48 384 3,072 74.12±0.08 7h 7m

same level
of

accuracy

16 96 768 6,144 74.18±0.14 3h 38m
32 192 1,536 12,288 74.14±0.10 1h 50m
64 384 3,072 24,576 74.10±0.08 55m 56s
128 768 6,144 49,152 73.99±0.04 28m 14s
256 1536 12,288 98,304 73.99±0.07 14m 13s

384 2304 18,432 147,456 72.52±0.07 10m 9s
lose

accuracy512* 3072 24,576 196,608 69.80±0.13 -
1024* 6144 49,152 393,216 62.22±0.17 -

TABLE 12. Detailed statistics of different mini-batch size (* indicates
simulated performance).

7.3 Large-scale Distributed Training on Summit

We scale up the training of video recognition model on Summit
supercomputer. With the help of above hardware-aware model
design techniques, we can scale up the training to 1536 GPUs,
finishing the training of Kinetics in 15 minutes.

7.3.1 Setups

Summit [55] or OLCF-4 is a supercomputer at Oak Ridge
National Laboratory, which as of September 2019 is the fastest
supercomputer in the world. It consists of approximately 4,600
compute nodes, each with two IBM POWER9 processors and
six NVIDIA Volta V100 accelerators. The POWER9 processor is
connected via dual NVLINK bricks, each capable of a 25GB/s
transfer rate in each direction. Nodes contain 512 GB of DDR4
memory for use by the POWER9 processors and 96 GB of High
Bandwidth Memory (HBM2) for use by the accelerators 3.

We used PyTorch and Horovod [43] for distributed training. The
framework uses ring-allreduce algorithm to perform synchronized
SGD. The training is accelerated by CUDA and cuDNN. We used
NVIDIA Collective Communication Library (NCCL) 4 for most of
the communication.

For training on Kinetics, we used the same hyper-parameter at
the same batch size, applying a linear scaling rule [17].

7.3.2 Experiments

Baseline. For the baseline, we trained a ResNet-50 TSM8f model
on a single Summit node with 6 GPUs, each GPU contains 16
video clips, resulting in a total batch size of kn = 96. We evaluate

3. https://www.olcf.ornl.gov/for-users/system-user-guides/summit/
summit-user-guide

4. https://developer.nvidia.com/nccl

1.6×

2.9×

Fig. 12. The training speed and scalability of distributed synchronous
SGD training. TSM8f achieves a good scalability (>80%) even when
using 1536 GPUs. TSM8f can achieve 1.6× higher training speed
compared to I3D3×3×3 and 2.9× compared to I3D3×1×1, showing the
effectiveness of the proposed design guidelines.

the performance of last 5 checkpoints, it achieves a top-1 accuracy
of 74.12± 0.11%.
Performance vs. Batch Size. We first compare the training error
vs. the batch size. As shown in [17], the accuracy will not degrade
when the batch size is relatively small. Therefore, our experiments
start from 8 computing nodes (48 GPUs, 384 video clips, 3072
frames) to 1024 computing nodes (6144 GPUs, 49152 video clips,
393216 frames) . Note that each sample in a video recognition
model is a video clip consisting of several frames/images (in our
case, 8). Therefore, the actual number of images used in one batch
could be much larger than ImageNet training (e.g., 98k vs. 8k [17]).

We first plot the error vs. batch size trade-off in Figure 11. The
error does not increase when we scale the number of computing
nodes up to 256 (1536 GPU), where the batch size is 12288, the
total frame number is 98304. The detailed statistics are shown in
Table 12. The scalability of TSM model is very close to the ideal
case. Note that due to quota limitation, the largest physical nodes
we used is 384 with 2304 GPUs. For 512 and 1024 nodes, we used
gradient accumulation to simulate the training process (denoted by
*).

We also provide the training and testing convergence curves
using 768, 1536 and 3072 GPUs in Figure 13. For 768 GPUs and
1536 GPUs, although the convergence of large-batch distributed
training is slower than single-machine training baseline, the final
converged accuracy is similar, so that the model does not lose
accuracy. For 3072 GPUs, the accuracy degrades for both training
and testing.
Scalabilty. We test the scalability of distributed training on Summit.
According to the results from last section, we can keep the accuracy
all the way to 256 computing nodes. Therefore, we sweep the
number of computing nodes from 1 to 256 to measure the scalability.
We keep a batch size of 8 for each GPU and each node has 6
GPUs. So the batch sizes change from 48 to 18,432. Each video
clips contains 8 frames in our model, resulting a total number
of frames from 384 to 147,456. We measure the training speed
(videos/second) to get the actual speed-up. We calculate the ideal
training speed using the single node training speed multiplied by
number of nodes. The comparison of different models is provided
in Figure 12. The actual training speed is just marginally below the
ideal scaling, achieving > 80% scaling efficiency. We also provide
the detailed overall training time in Table 12. With 1536 GPUs,
we can finish the Kinetics training with TSM within 14 minutes
and 13 seconds, achieving a top-1 accuracy of 74.0%. The overall
training speed of TSM8f is 1.6× larger than I3D3×3×3 and 2.9×

https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide
https://developer.nvidia.com/nccl

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 12

(a) Mini-batch size 6k. (b) Mini-batch size 12k. (c) Mini-batch size 25k (degrade).

Fig. 13. The learning curve for baseline training and large-batch distributed training (batch size 6144, 12228, 24576). The performance does not
degrade for batch size 6144 and 12228, while degrades for a batch size of 24576.

Plugging something into something

Hitting something with something

Removing something, revealing something behind

Frame t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

TSN

TSM
(Ours)

TSN

TSM
(Ours)

TSN

TSM
(Ours)

Fig. 14. Spatial-temporal action detector emerges in TSM video classification models, while single-frame baseline (TSN) cannot localize the
action. Italic title indicates the action category. In the first example, our TSM model precisely localize the “hitting” action, while TSN can only
highlight the object. In the second example, TSM localizes the “plugging” action but not the other hand motion. Finally, TSM accurately locates
the temporal region where the “removing” action happens.

larger than I3D3×1×1, showing the advantage of hardware-aware
model design.

8 VIDEO NETWORK DISSECTION

In this section, we dissect the trained TSM model to understand
how it learns temporal information compared to 2D networks.

To investigate what the action recognition network is learning,
we adopt a similar method as in [69] to get the Class Activation
Mapping (CAM), which shows the salience of each class over the
input image. Take ResNet backbone as an example, the original

output for the video network is:

logit = fc(pool(xconv)) (4)

where xconv is the output activation of the last convolutional
layer (e.g., has shape 1 × 2048 × 8 × 7 × 7), pool is the global
average pooling over both spatial and temporal dimension (reduce
the shape to 1 × 2048), and fc is the last fully connected layer
for classification. To get CAM, we remove the global average
pooling layer, and change the fc layer to a 1× 1× 1 convolution
using the same weights, which results in a output tensor of shape
1×#class× 8× 7× 7. We use the CAM map of the predicted

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 13

category (highest probability) as the attention of the network.
For visualization, we used a similar method as in [1]. Specifi-

cally, we first resize the spatial resolution of CAM feature map to
the size of the input video clip (1×#class× 8× 224× 224) with
bilinear interpolation and use a threshold to divide the attention
foreground and background. We set the threshold to preserve 20%
of the pixels over the validation set.

We perform experiments on Something-Something V2 [18]
dataset. And some results are shown in Figure 14. We compare
the attention distribution between our TSM model and 2D baseline
TSN. The background of the category-aware attention map is
darkened. We find that spatial-temporal action detector emerges in
TSM video network, even though we only provide classification
label during the training. TSM models can accurately localize the
“action”, instead of the “object”. For example, in the first video
clip labeled as “Hitting something with something”, TSM model
only highlights the region where a pen is hitting the card box,
i.e., when and where the action is happening. However, for the
2D baseline, since it does not have the temporal information, it
only highlights the object box. The same situation happens for the
following two video clips. Note that in the third clip (“Removing
something, revealing something behind”), the 5-th frame and the 6-
th frame look exactly the same, while with the help of the temporal
modeling, TSM model can tell that the 5-th frame is part of the
action while the 6-th frame not.

9 CONCLUSION

We propose Temporal Shift Module for hardware-efficient video
recognition. It can be inserted into 2D CNN backbone to enable
joint spatial-temporal modeling at no additional cost. The module
shifts part of the channels along temporal dimension to exchange
information with neighboring frames. Our framework is both
efficient and accurate, enabling low-latency video recognition on
edge devices. It has better scalability than 3D networks, enabling
large-scale training on video recognition. We also show that spatial-
temporal action detector emerges in TSM network.

REFERENCES

[1] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio
Torralba. Network dissection: Quantifying interpretability of deep visual
representations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6541–6549, 2017. 13

[2] Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea Vedaldi, and
Stephen Gould. Dynamic image networks for action recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3034–3042, 2016. 2

[3] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural
architecture search on target task and hardware. In International
Conference on Learning Representations, 2019. 2

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, pages 4724–4733. IEEE,
2017. 1, 2, 9, 10

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. {TVM}: An automated end-to-end optimizing compiler for deep
learning. In 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pages 578–594, 2018. 4, 7, 8

[6] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014. 4, 9

[7] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: Object detection
via region-based fully convolutional networks. 2016. 9

[8] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus
Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell.
Long-term recurrent convolutional networks for visual recognition and

description. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2625–2634, 2015. 1, 2

[9] Christoph Feichtenhofer. X3d: Expanding architectures for efficient video
recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 203–213, 2020. 7

[10] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He.
Slowfast networks for video recognition. In Proceedings of the IEEE
international conference on computer vision, pages 6202–6211, 2019. 7

[11] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Spatiotemporal
residual networks for video action recognition. In Advances in neural
information processing systems, pages 3468–3476, 2016. 2

[12] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convo-
lutional two-stream network fusion for video action recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1933–1941, 2016. 1, 2

[13] Chuang Gan, Chen Sun, Lixin Duan, and Boqing Gong. Webly-supervised
video recognition by mutually voting for relevant web images and web
video frames. In European Conference on Computer Vision, pages 849–
866. Springer, 2016. 2

[14] Chuang Gan, Naiyan Wang, Yi Yang, Dit-Yan Yeung, and Alex G
Hauptmann. Devnet: A deep event network for multimedia event detection
and evidence recounting. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2568–2577, 2015. 2

[15] Chuang Gan, Ting Yao, Kuiyuan Yang, Yi Yang, and Tao Mei. You lead,
we exceed: Labor-free video concept learning by jointly exploiting web
videos and images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 923–932, 2016. 2

[16] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, and Bryan
Russell. Actionvlad: Learning spatio-temporal aggregation for action
classification. In CVPR, volume 2, page 3, 2017. 1, 2

[17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017. 11

[18] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna
Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo
Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The” something
something” video database for learning and evaluating visual common
sense. In The IEEE International Conference on Computer Vision (ICCV),
volume 1, page 3, 2017. 5, 6, 13

[19] Song Han, Huizi Mao, and William J Dally. Deep compression:
Compressing deep neural networks with pruning, trained quantization and
huffman coding. International Conference on Learning Representations,
2016. 2

[20] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135–1143, 2015. 2

[21] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal
3d cnns retrace the history of 2d cnns and imagenet? In Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, pages
6546–6555, 2018. 9, 10

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016. 4, 5, 9

[23] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han.
Amc: Automl for model compression and acceleration on mobile devices.
In Proceedings of the European Conference on Computer Vision (ECCV),
pages 784–800, 2018. 2

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997. 2

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017. 2

[26] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016. 2

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015. 4

[28] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with
convolutional neural networks. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 1725–1732, 2014. 1, 2

[29] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier,
Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 14

Natsev, et al. The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017. 3, 4, 5

[30] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote, Tomaso Poggio,
and Thomas Serre. Hmdb: a large video database for human motion
recognition. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2556–2563. IEEE, 2011. 4, 5

[31] Myunggi Lee, Seungeui Lee, Sungjoon Son, Gyutae Park, and Nojun
Kwak. Motion feature network: Fixed motion filter for action recognition.
In Proceedings of the European Conference on Computer Vision (ECCV),
pages 387–403, 2018. 2

[32] Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain, and
Cees GM Snoek. Videolstm convolves, attends and flows for action
recognition. Computer Vision and Image Understanding, 166:41–50,
2018. 2

[33] Ji Lin, Chuang Gan, and Song Han. Training kinetics in 15 minutes: Large-
scale distributed training on videos. arXiv preprint arXiv:1910.00932,
2019. 9

[34] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning.
In Advances in Neural Information Processing Systems, pages 2181–2191,
2017. 2

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European conference on computer vision,
pages 740–755. Springer, 2014. 5

[36] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural
architecture search. arXiv preprint arXiv:1712.00559, 2017. 2

[37] Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao Liu, and
Shilei Wen. Attention clusters: Purely attention based local feature
integration for video classification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7834–7843, 2018. 2

[38] Joanna Materzynska, Guillaume Berger, Ingo Bax, and Roland Memisevic.
The jester dataset: A large-scale video dataset of human gestures. In The
IEEE International Conference on Computer Vision (ICCV) Workshops,
Oct 2019. 5

[39] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal repre-
sentation with pseudo-3d residual networks. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 5534–5542. IEEE, 2017. 2

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015.
5, 6

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252, 2015. 9

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018. 2, 5

[43] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed
deep learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018. 11

[44] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Action recog-
nition using visual attention. arXiv preprint arXiv:1511.04119, 2015.
2

[45] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan
Laptev, and Abhinav Gupta. Hollywood in homes: Crowdsourcing
data collection for activity understanding. In European Conference on
Computer Vision, pages 510–526. Springer, 2016. 5

[46] Karen Simonyan and Andrew Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances in neural
information processing systems, pages 568–576, 2014. 1, 2

[47] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A
dataset of 101 human actions classes from videos in the wild. arXiv
preprint arXiv:1212.0402, 2012. 4, 5

[48] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsu-
pervised learning of video representations using lstms. In International
conference on machine learning, pages 843–852, 2015. 2

[49] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E Shi. Human action
recognition using factorized spatio-temporal convolutional networks. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 4597–4605, 2015. 2

[50] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.
2

[51] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V
Le. Mnasnet: Platform-aware neural architecture search for mobile. arXiv
preprint arXiv:1807.11626, 2018. 2

[52] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. Learning spatiotemporal features with 3d convolutional networks.
In Proceedings of the IEEE international conference on computer vision,
pages 4489–4497, 2015. 1, 2

[53] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feiszli. Video classifi-
cation with channel-separated convolutional networks. In Proceedings of
the IEEE International Conference on Computer Vision, pages 5552–5561,
2019. 6, 7

[54] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and
Manohar Paluri. A closer look at spatiotemporal convolutions for action
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6450–6459, 2018. 1, 2

[55] Sudharshan S Vazhkudai, Bronis R de Supinski, Arthur S Bland, Al Geist,
James Sexton, Jim Kahle, Christopher J Zimmer, Scott Atchley, Sarp
Oral, Don E Maxwell, et al. The design, deployment, and evaluation
of the coral pre-exascale systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, page 52. IEEE Press, 2018. 11

[56] Heng Wang, Du Tran, Lorenzo Torresani, and Matt Feiszli. Video
modeling with correlation networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 352–361,
2020. 6

[57] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-
aware automated quantization. arXiv preprint arXiv:1811.08886, 2018.
2

[58] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou
Tang, and Luc Van Gool. Temporal segment networks: Towards good
practices for deep action recognition. In European Conference on
Computer Vision, pages 20–36. Springer, 2016. 1, 2, 4, 5, 6, 9

[59] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-
local neural networks. arXiv preprint arXiv:1711.07971, 10, 2017. 1, 2,
4, 5, 7, 9, 10

[60] Xiaolong Wang and Abhinav Gupta. Videos as space-time region graphs.
arXiv preprint arXiv:1806.01810, 2018. 2, 4, 5, 6, 7

[61] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah
Golmant, Amir Gholaminejad, Joseph Gonzalez, and Kurt Keutzer. Shift:
A zero flop, zero parameter alternative to spatial convolutions. arXiv
preprint arXiv:1711.08141, 2017. 1, 2, 3

[62] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming
He. Aggregated residual transformations for deep neural networks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1492–1500, 2017. 5

[63] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy.
Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs
in video classification. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 305–321, 2018. 1, 2, 5

[64] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan,
Oriol Vinyals, Rajat Monga, and George Toderici. Beyond short snippets:
Deep networks for video classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4694–4702,
2015. 2

[65] Christopher Zach, Thomas Pock, and Horst Bischof. A duality based
approach for realtime tv-l 1 optical flow. In Joint Pattern Recognition
Symposium, pages 214–223. Springer, 2007. 2, 6

[66] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet:
An extremely efficient convolutional neural network for mobile devices.
CoRR, abs/1707.01083, 2017. 2

[67] Huasong Zhong, Xianggen Liu, Yihui He, Yuchun Ma, and Kris Kitani.
Shift-based primitives for efficient convolutional neural networks. arXiv
preprint arXiv:1809.08458, 2018. 2

[68] Bolei Zhou, Alex Andonian, and Antonio Torralba. Temporal relational
reasoning in videos. arXiv preprint arXiv:1711.08496, 2017. 1, 2, 4, 5, 6,
8

[69] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Learning deep features for discriminative localization. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2921–2929, 2016. 12

[70] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained
ternary quantization. International Conference on Learning Representa-
tions, 2016. 2

[71] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-
guided feature aggregation for video object detection. In Proceedings of
the IEEE International Conference on Computer Vision, pages 408–417,
2017. 8, 9

Journal of LATEX Class Files, Vol. 14, No. 8, August 2015 15

[72] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas Brox. Eco:
Efficient convolutional network for online video understanding. arXiv
preprint arXiv:1804.09066, 2018. 1, 2, 4, 5, 6, 7, 8

[73] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016. 2

[74] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning
transferable architectures for scalable image recognition. arXiv preprint
arXiv:1707.07012, 2(6), 2017. 2

ACKNOWLEDGMENTS

We thank MIT Quest for Intelligence, MIT-IBM Watson AI Lab,
MIT-SenseTime Alliance, Samsung, SONY, AWS, Google for
supporting this research. We thank Oak Ridge National Lab for
Summit supercomputer. We thank John Cohn for the support for
our work.

Ji Lin is currently a second-year Ph.D. student
at MIT EECS. Previously, he graduated from
Department of Electronic Engineering, Tsinghua
University. His research interests lie in efficient
and hardware-friendly machine learning and its
applications.

Chuang Gan is a research staff member at MIT-
IBM Watson AI Lab. He is also an affiliated
researcher at MIT EECS. His research interests
focus on computer vision and machine learning.

Kuan Wang is a fourth-year undergraduate de-
gree at Tsinghua University, and a visiting student
at MIT, advised by Dr. Song Han. His current
research interests lie on the intersection of com-
puter vision, deep learning and efficient hardware
architecture. He is a student member of the IEEE.

Song Han is an assistant professor at MIT EECS
Department. Dr. Han received the Ph.D. degree
in Electrical Engineering from Stanford University
and B.S. degree in Electrical Engineering from
Tsinghua University. Dr. Han’s research focuses
on efficient deep learning computing at the inter-
section between machine learning and computer
architecture. He proposed “Deep Compression”
and the “Efficient Inference Engine” that impacted
the industry. He is a recipient of NSF CAREER
Award, MIT Technology Review Innovators Under

35, best paper award at the ICLR’16 and FPGA’17, Facebook Faculty
Award, SONY Faculty Award, AWS Machine Learning Research Award.
Contact: songhan@mit.edu.

