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Abstract

Quantitative estimates of reaction barriers are essential for developing kinetic mech-

anisms and predicting reaction outcomes. However, the lack of experimental data

and the steep scaling of accurate quantum calculations often hinder the ability to ob-

tain reliable kinetic values. Here, we train a directed message passing neural network

on nearly 24,000 diverse gas-phase reactions calculated at CCSD(T)-F12a/cc-pVDZ-

F12//ωB97X-D3/def2-TZVP. Our model uses 75% fewer parameters from previous

studies, an improved reaction representation, and proper data splits to accurately es-

timate performance on unseen reactions. Using information from only the reactant

and product, our model quickly predicts barrier heights with a testing MAE of 2.6

kcal mol−1 relative to the coupled-cluster data, making it more accurate than a good

density functional theory calculation. Further, our results show that future modeling

efforts to estimate reaction properties would significantly benefit from fine-tuning cal-

ibration using a transfer learning technique. We anticipate this model will accelerate

and improve kinetic predictions for small molecule chemistry.
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Introduction

Accurately predicting the time evolution of reacting chemical systems and the yields of var-

ious products and side products has been one of the main projects of physical chemistry for

more than 135 years.1,2 Some important systems have been very heavily studied, leading to

chemical kinetic model predictions so compelling that they drive governmental and business

decisions, and have even led to major international treaties (e.g. the Montreal Protocol).3,4

If a large number of data are available, one can make useful predictions, e.g. regarding which

organic synthesis routes are likely to succeed at specified reaction conditions.5,6 However,

data relevant to a particular system of interest are usually scarce, and it is often imprac-

tical to do enough experiments to develop a predictive model with the desired accuracy or

generalizability.

Over the last ∼25 years, it has become possible to accurately compute the rate coeffi-

cients of individual reactions using quantum chemistry and rate theory.7,8 This suggests it

might be possible to accurately predict the behavior of a reacting system even before any

experimental data are available on that system, with many ramifications.9 Indeed, recently

several research groups have constructed models to quantitatively predict the time-evolution

of diverse chemical systems, based largely on parameters derived from quantum chemistry

rather than experiment. For example, earlier this year our group has published models for

combustion,10 pyrolysis,11,12 and the degradation of pharmaceutical compounds.13 However,

because quantum chemistry calculations of rate coefficients are slow, only a small fraction

of the numerous rate coefficients in these models have been computed accurately, which can

make the predictions somewhat erratic. The vision of reliable predictive chemical kinetics

can only be realized if accurate rate coefficients can be calculated much more rapidly than

is possible today.

The traditional workflow to obtain kinetic parameters, shown in Figure 1, is quite in-

volved.7,8 The process starts by constructing 3D structures for the reactant(s) and product(s),

which are optimized using quantum chemical methods. The search for a good 3D structure
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for the transition state (TS) often consumes the most human time, since automated saddle

point finders are not yet sufficiently reliable.14,15 After the most promising TS structure is

identified, it is typically optimized using a more accurate method, and often an intrinsic

reaction coordinate (IRC) calculation is run to confirm it connects the reactant(s) and prod-

uct(s). Then the energy of reactant(s) and TS is re-computed at a high-level of theory (e.g.

coupled-cluster) with zero-point energy corrections to provide an accurate reaction barrier.

If the studied structures are flexible with many rotatable bonds or other large-amplitude

motions, conformational effects must also be considered. This is usually done by approxi-

mating each hindered internal rotor as independent,16–18 but often this approximation is not

accurate, requiring some treatment of the coupling between different rotors.19 Alternative

methods which involve multiple conformational minima for reactants and transition states

and couple conformational effects with low frequency anharmonic torsional modes–such as

the multistructure methods developed by Truhlar and coworkers–are becoming popular, but

it can be challenging to find all the conformers.20–23 The workflow culminates in calculat-

ing the partition functions, which canonical transition state theory (TST) uses to estimate

the high-pressure limit rate coefficient k∞(T ), including effects of symmetry/reaction path

degeneracy, tunneling, and other corrections.8,24–26

Given the importance and impact of kinetic models, several efforts have been made to

accelerate portions of the traditional workflow in Figure 1, either by accelerating individual

steps, or by skipping over steps, illustrated as arrows in the interior of the figure. Many

programs have been published for rapid conformer generation of stable species.23,27–30 Several

methods also exist for generating good TS guesses, such as using hand-made templates31–33

or deep learning.34–36

Despite all these advances, calculations of rate coefficients are still limited by the accurate

yet expensive quantum methods used to find the saddle point geometry, and the poor scaling

of the even more expensive methods used to compute its energy. For example, coupled-

cluster CCSD(T)-F12 calculations are commonly considered the gold-standard in quantum
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chemistry due to their reliable single point energies and reaction energies,37–42 yet they scale

as O(N7), where N is the number of orbitals.43 For some reactions, even CCSD(T) is not

accurate enough, and more expensive calculations are required.8

Since so many computer resources and human efforts are required to obtain each reli-

able value, especially for reactions of large molecules, it would be advantageous to directly

estimate kinetic parameters instead. Indeed, established methods for directly estimating bar-

rier heights or log(k∞(T )) from reactant and product identities include simple models such

as Evans-Polanyi relationships44 and the Hammett correlations.45 In his textbook, Benson

presented simple methods to predict Arrhenius A-factors.46 Several authors have extended

Benson’s popular thermochemical group additivity approach46–48 to estimate activation en-

ergies,49,50 A-factors,51 and rates.52 Unfortunately, linear models are an inherently limited

representation, so the simple Benson-type groups that work so well for predicting the ther-

mochemistry of many organics are not sufficient for predicting rate coefficients over a broad

range of reactions. Much larger supergroups53 or decision trees54–56 are needed to reach

acceptable accuracy. Still, the supergroups and decision trees are often manually defined

for each reaction type, which is tedious and error-prone. Thus, there has been interest in

automating tree construction57,58 to facilitate the incorporation of new training reactions,

but the process is still cumbersome.
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Traditional Workflow Accelerated Steps This Work
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Figure 1: The conventional quantum chemistry and TST workflow for predicting a high-
pressure limit rate coefficient is shown by the dark arrows. Several methods have been
proposed in literature (and in the present work, shown by orange arrows) to accelerate steps
in the process: a) Initial conformer generation ref 23,27–30,59–61 b) TS guess generation ref
32 c) Estimating barrier heights from 2D representation ref 44,49,55,57,62–65 d) Estimating
rate coefficient from 2D representation ref 51,52,66–68 e) Semi-empirical optimization ref 69
f) TS guess generation ref 33–36,70–73 g) Estimating barrier heights from 3D representation
ref 74,75 h) Estimating rate coefficient from 3D representation ref 76,77 i) Accelerating TS
optimization ref 78–80 j) Estimating barrier height from un-optimized TS guess k) Estimat-
ing rate coefficient from optimized TS ref 81 l) Estimating barrier height from optimized TS
ref 82,83

Recent work has focused on other nonlinear methods to predict kinetic parameters. For

example, Heinen et al. 65 trained a kernel ridge regression (KRR) model to predict activation

energies. The model was fit to their previously generated dataset82 of SN2 and E2 reactions

with single point energies computed at DF-LCCSD/cc-TZVP. Stuyver et al.63 trained a

graph neural network (GNN), augmented with quantum descriptors, on the same dataset.

In both cases, random splits gave a testing MAE of ∼2.5 kcal mol−1. The relatively low
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error is expected since the test set had a similar composition as the training set i.e. it is a

measure of interpolation. To assess generalizability, Stuyver et al. also restricted training

to three of the four nucleophiles in the dataset, reserving the fourth only for the test set.

Although their augmented GNN extrapolated better than KRR to the unseen nucleophile,

both models showed significantly higher testing errors relative to random splitting. Further,

since all reactions start from a substituted ethyl-based scaffold, it is unclear how well these

models would generalize to other reactants.

Estimators for activation energy have also been applied to catalysis. Takahashi et al.75

trained several types of models (linear, random forest, and support vector regression) to

predict the activation energy for a small dataset of heterogeneous catalytic reactions. When

using a random split, testing errors were ∼0.90 eV (>20 kcal mol−1) for all models, much

too large to be useful. Similarly, Singh et al. 74 trained a feed forward neural network (FFN)

model to predict reaction barriers for a small dataset containing dehydrogenation reactions

as well as N2 and O2 dissociations. They report a testing error of 0.22 eV when using a

random split.

Komp and Valleau 84 trained two different FFNs to predict the natural logarithm of the

“partition function” at a given temperature. The first model takes the molecular geometry

and inverse temperature as input to predict the “partition function” of a molecule. The

second model uses the geometry and “partition function” of the reactant and product as

well as the inverse temperature to predict a “partition function” of the TS. Unfortunately,

the quantities used by those authors for training and testing their model were not the true

partition functions that appear in rate theory, but instead rigid-rotor harmonic-oscillator

(RRHO) partition functions of a single conformer of the TS, reactant or product. However,

the great majority of the species in their data set have rotatable bonds and a large number

of low-energy conformers, and many of the “product” structures and vibrational frequencies

they used were actually properties of van der Waals complexes of two or three product

molecules. Partition functions are drastically affected by conformers and rotors,19–23 which
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is why the refined dataset from ref 42 published high-pressure limit TST rate coefficients

for only a small subset of the reactions–those where the TS and the reactant(s) were rigid

so there was only one low-lying conformer. Further, in the Komp and Valleau paper, no

analysis was provided for how sensitive the model predictions are to the input 3D geometry;

as shown in our results section below, this could be a significant problem.

Another focus is using machine learning (ML) methods to directly estimate k∞(T ). Hous-

ton et al. 76 used Gaussian process regression (GPR) on 13 reactions to predict bimolecular

rate constants over a large temperature range. As a follow up, Nandi et al. 77 clustered the

input data, retrained the GPR model on each cluster, and then predicted rate coefficients for

the O(3P) + HCl reaction. In other work, Komp et al.81 trained a FFN on ∼1.5 million data

points to predict the product of k∞(T ) with the reactant partition function for 1D barrier

problems. FFNs have also been fit to the rate coefficients from small datasets of hydroxyl

radical reactions66,67 and ionic liquids.68 In all these cases, the data sets employed did not

cover much reaction space.

Still another approach is to use ∆-ML, a technique developed by Ramakrishnan et al. 85

in which a model is fit to the residuals between a high- and low-level of theory. Thus,

rather than directly predicting a high-quality value for the parameter of interest, the ∆-ML

model predicts the correction to the low-level value, which should be relatively inexpensive

to calculate. In the context of kinetics, Bragato et al.83 showed that using KRR for ∆-ML

outperformed direct ML approaches for predicting barrier heights from von Rudorff et al.’s82

SN2 dataset.

In the remainder of this paper, we present a new model for estimating the zero-point

energy corrected barrier height from either 2D or 3D structures of the reactants and products.

Many of the ML models summarized here, as well as in recent reviews,86–88 are trained

on relatively small datasets from a specific reaction family, which severely hinders their

generalizability. In contrast, our goal is to develop a deep learning model that quickly predicts

accurate barrier heights for a diverse set of reactions. Our model uses information from only
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the reactant and product so future workflows could avoid the often delicate and challenging

task of finding the TS geometry. This model would be useful for directly estimating barrier

heights during the automated generation of kinetic models;55 it would also offer substantial

speedup when refining existing kinetic models by avoiding the need for a TS geometry.

Lastly, this model would allow for quantitative ranking of potential reactions produced from

an automated enumeration.14,15,89,90

Our work brings several advances over a recent study, which trained a graph neural

network to predict barrier heights on a similar dataset calculated at a lower level of theory.91

First, our model is trained on a refined dataset that allows barrier height predictions to

approach coupled-cluster accuracy. As shown below, our new model’s predictions are about

1 kcal mol−1 more accurate than a good density functional theory (DFT) calculation and

offer a ∼105 factor speedup. Our model also uses an improved reaction representation, which

substantially improves the accuracy, and it uses 75% fewer parameters than models from

previously published works,62,92 making our lightweight model more practical to integrate

into prediction workflows. Importantly, our training procedure uses proper data splits to

accurately estimate the model’s performance on unseen reactions. Finally, our work also

compares performance of models using 2D and 3D information, highlighting opportunities

for future innovation.

Methods

Dataset

To train our model, we leverage a recently refined gas-phase dataset of elementary reac-

tions with atom-mapped SMILES.42,93 These data span a diverse set of reactions, whose

neutral molecules involve carbon, hydrogen, nitrogen, and oxygen and contain up to seven

heavy atoms. Reactions are available at three levels of theory: B97-D3/def2-mSVP, ωB97X-

D3/def2-TZVP, and CCSD(T)-F12a/cc-pVDZ-F12//ωB97X-D3/def2-TZVP. Data from all
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levels of theory are used in a transfer learning approach, which first trains the model on

a larger dataset with lower accuracy and then fine-tunes the model with a slightly smaller

dataset with higher accuracy calculations. Similar to in ref. 62 and 94, the model is ini-

tialized with the final weights from the previous run and then uses a smaller learning rate.

The final model is evaluated against the coupled-cluster values. At each level, the zero-point

energies from the harmonic vibrational analysis were added to the reactant, product, and

TS energies. These energies used scaled vibrational frequencies to account for anharmonic

effects.95,96 The barrier heights were calculated by subtracting the resulting TS and reac-

tant energies. Reaction enthalpies were calculated by subtracting the resulting product and

reactant energies, which include bond additivity corrections as described in ref 42. These

reactions largely overlap with those used to train the model in ref. 62. However, ref. 42 re-

fined the energies of each species using coupled-cluster calculations. All of the earlier works

fitting these reactions62,84,92 only had access to DFT energies. Suspecting convergence errors

in the quantum chemistry, we removed any reaction in which the coupled-cluster reaction

enthalpy is over 10 kcal mol−1 above the barrier height.

All reactions contain one reactant and one to three products. All the transition states

and unimolecular reactants have an even number of electrons, and were computed as singlets

(S=0). Almost all of the products also have an even number of electrons. However, there

are 49 reactions unique to the larger B97-D3 dataset whose product was a pair of radicals

(each product had an odd number electrons). We modeled these odd-electron species as

doublets (S=1
2
). We augment our data by including the reverse reactions, which results

in approximately 33,000 reactions at B97-D3 and 24,000 reactions at both the ωB97X-D3

and CCSD(T)-F12a levels. When creating training, validation, and testing sets, we use five

folds, each with an 85:5:10 split. To create these sets, we use a scaffold split on the reactant

SMILES, which partitions the data based on the Bemis-Murcko scaffold97 as calculated

by RDKit.98 Scaffold splits are a better measure of generalizability compared to random

splits.92,99–103 When assigning reactions to each set, we place each pair of forward and reverse
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reactions in the same set. Otherwise, if we separate forward and reverse reactions between

sets, the model’s testing error will be polluted by data leakage–the same transition state

would appear in both the training and test set–and so will not reflect the true performance

of the model when evaluating a new reaction.92

2D D-MPNN Model

When developing data-driven methods to predict barrier heights, graph neural networks

(GNNs) are a natural choice; here, molecules are abstracted as graphs where atoms are

graph nodes and bonds are graph edges.104 GNNs operate by updating representations of

nodes or edges with the information from neighboring nodes or edges, propagating informa-

tion throughout the graph. For our work, we adapt Chemprop,99 a directed message passing

neural network (D-MPNN), which is a type of GNN that passes messages across directed

bonds. Like other GNNs, the D-MPNN architecture builds a learned molecular representa-

tion by aggregating atomic representations after the message passing phase and feeding this

representation through a dense layer to predict the molecular property of interest.

Extending the D-MPNN architecture to reaction properties is an intriguing way to model

barrier heights. Grambow et al. 62 altered Chemprop to predict reaction properties by em-

bedding the reactant and product with the same D-MPNN, subtracting the learned atomic

representations, and passing the aggregated molecular representation through a FFN to ob-

tain the final prediction. Heid and Green 92 showed that using the established condensed

graph of reaction (CGR) representation105 improved Chemprop’s performance on barrier

height prediction. A key aspect of the CGR representation is that it removes disjoint graphs

present in bimolecular reactions and allows message passing between all atoms, overcoming

a limitation of the Grambow et al. method. Since CGR is a superposition of the reactant

and product graphs, only one graph is input to the model, leaving the rest of Chemprop’s

architecture unchanged.

Here, we extend the CGR version of Chemprop by incorporating additional atom and
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bond features. We also concatenate additional features before the dense layer readout, such

as reaction enthalpy, to improve prediction performance. Table 1 shows the improvement

from each modification, and the Supporting Information contains more detail about the

network, training procedure, and hyperparameter optimization. Our modified code and final

weights are freely available on GitHub.106

3D DimeReaction Model

Since models based on molecular geometries have worked well for property prediction,107

neural network potentials,108 and excited-state dynamics,109 we also explored 3D networks

for predicting the reaction barrier. We start with DimeNet++,110 which is a faster and more

accurate version of the original DimeNet model.111 Both are directional message passing

networks that operate on 3D coordinates and have shown promising results for property

prediction of individual molecules, such as on the popular QM9 dataset.112 Here, we extend

the architecture so that it can predict reaction properties. We follow a similar approach from

Grambow et al.62 by passing the reactant and product through the same DimeNet++ model,

subtracting the learned molecular representation, and passing the result to a dense layer to

predict the regression target. Our modified code and final weights are freely available on

GitHub.113

Our DimeReaction model is trained on the unimolecular reactions from the dataset. Since

the model operates on molecular coordinates, reactions with multiple products should not be

arbitrarily aligned in 3D space. However, properly translating and rotating those molecules

to form a multi-product complex is beyond the scope of this work. Further, the unimolecular

reactions account for about 70% of the data, giving nearly 17,000 reactions after augmenting

with the reverse reactions which are also unimolecular. As before, a scaffold split is used to

create the training, validation, and testing sets with an 85:5:10 split, and each pair of forward

and reverse reactions is placed in the same set. The model is trained on only one fold of

the data since preliminary results indicated sub-par performance relative to the 2D-MPNN
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model. Additional detail can be found in the Supporting Information.

Results and Discussion

2D D-MPNN Model

The testing mean absolute error (MAE) is 2.89 ± 0.16 kcal mol−1 and the root-mean-

square error (RMSE) is 4.90 ± 0.16 kcal mol−1, such that the bounds correspond to one

standard deviation calculated across five folds. The parity plot in Figure 2a shows the

model’s predictive power across the entire range of data; accuracy is maintained even in

regions where the data are sparser. The residuals are centered around zero, indicating no

systematic over- or under-prediction, which is further supported by the error histogram in

Figure 2b. 95% of the reaction barriers are predicted within 6 kcal mol−1 of the calculated

coupled-cluster value.

The overall testing performance is improved by using ensembles of models, which is

consistent with previous literature.99,114 For a given fold, different initializations are used

when training a model on that data split. The predictions are then averaged from each

ensemble and compared to the target values from the respective test set. Here, five different

initializations are used for each of the five data splits, resulting in a total of 25 models. The

weights for all 25 models are published on GitHub.106 Ensembling lowers the testing MAE

(RMSE) to 2.57 ± 0.13 (4.58 ± 0.16) kcal mol−1.

It is also important to examine model performance specifically on low barrier reactions

since these are the most feasible reaction pathways included in kinetic models. For example,

filtering the testing reactions to those with ∆E0 < 50 kcal mol−1 gives a testing MAE

(RMSE) of 2.07 ± 0.18 (3.76 ± 0.33) kcal mol−1, which is a slight improvement compared

to the test errors for all reactions. The subsequent analysis and all figures and tables use

weights from the first initial seed within each fold since the purpose is simply to explain

interesting trends rather than obtain the best predictions for each intermediate case.
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a b

c d

Figure 2: Deep learning model results for predicting reaction barriers. Error bars indicate
one standard deviation calculated across the five folds. (a) Parity plot of model predictions
vs “true” (CCSD(T)-F12a) barriers ∆E0 for the first fold. (b) Histogram of testing errors
(predicted minus “true”) for the first fold. (c) Testing MAE vs. the number of data points
at each stage of training. These reactions are present in all three level of theory datasets.
(d) Testing MAE vs. number of coupled-cluster training reactions. Each point shows a
model pretrained on all B97-D3 and ωB97X-D3 reactions and then fine-tuned with increasing
amounts of high-accuracy data.

Figure 2c shows that the model strongly benefits from additional training data. The

learning curve (how the model improves as more training data is added) has not yet shown

asymptotic behavior, which implies further improvement may be possible with more data.

The slope of the learning curve is similar to those we have observed when developing models

for other chemical properties using Chemprop.115 To ensure that the only variable changing

was dataset size, each plotted point uses the exact same reactions and data splits for all three

quantum chemistry datasets (one for each level of theory) for the transfer learning scheme.

As described in ref 42, a barrier height calculated at ωB97X-D3 has an MAE of about

3.5 kcal mol−1 from the coupled-cluster value. Thus, this is the ideal prediction error that
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one could expect when training a model only on DFT data. Indeed, the previous model

from Grambow et al.,62 which was trained to predict ωB97X-D3 values, has an MAE of

4.74 ± 0.10 kcal mol−1 relative to the coupled-cluster values (approximately twice as large

as the model error from this work). Thus, Figure 2d is particularly exciting since it shows

that even a small amount of fine-tuning gives a meaningful improvement to our model’s

predictions. Each plotted point shows a model pretrained on both the B97-D3 and ωB97X-

D3 datasets and then fine-tuned with increasing amounts of high accuracy data. The same

coupled-cluster validation and test set is used during each run. Although the model certainly

benefits from additional coupled-cluster values, performing such calculations, which scale as

O(N7), may not always be practical for large datasets or for large molecules. However, we

find that using these high-accuracy calculations for even just 50 reactions (augmented with

the reverse to yield 100 total training reactions), lowers the testing MAE by over 1 kcal

mol−1. Similar behavior was observed in some of our prior transfer learning studies, where

models built on large DFT data sets were fine-tuned using a small number of more accurate

data.94,115 We believe this works because the model trained from the DFT data on a large

number of reactions has learned how a wide variety of chemical structures affect the barrier

height. But the DFT numbers are rough and benefit from calibration using a few high-

accuracy numbers. We suggest this type of fine-tuning may be a good strategy whenever

DFT gives reasonable predictions of a chemical property, one can afford to generate a large

DFT data set, and one has a smaller high-accuracy data set.

Table 1 demonstrates how various factors contribute to improving model performance.

The biggest improvement comes from optimizing the hyperparameters (see Supporting In-

formation) and allowing enough degrees of freedom for the model to capture the diverse

chemistry in this dataset. Adding ring size to both the atom and bond features further

improves the model. We also use tried using RDKit98 to generate molecular feature vec-

tors116 for each SMILES and pass the difference of the product and reactant vector as input

to the dense layer. However, this does not improve results. Some recent work has shown
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that using quantum mechanical descriptors can improve model performance for reaction

prediction. Similar to both Stuyver and Coley 63 and Guan et al.,101 we use the D-MPNN

network developed by Guan et al.101 without modification to predict atomic descriptors that

are concatenated with the learned atomic representations before the aggregated molecular

representation is passed to the dense layer. However, we observe no effect of using these

descriptors. Finally, using reaction enthalpy as an input to the dense layer, rather than

co-training on both the barrier height and enthalpy as in ref 62, further improves the perfor-

mance. This approach requires quantum calculations for the reactant and product to obtain

the reaction enthalpy; however, this is often easier than obtaining a TS, so our model still

offers substantial time savings compared to the traditional workflow outlined in Figure 1.

Alternatively, the predicted enthalpy from our co-trained model could serve as input to the

final model, which offers further time savings and only minimal increases in testing error

(see Supporting Information).

Table 1: Sequential optimization study showing the improvement in testing error
(kcal mol−1). Each row includes all changes from the previous row. Results are
from the first fold of cross-validation.

B97-D3 ωB97X-D3 CCSD(T)-F12a

Description MAE RMSE MAE RMSE MAE RMSE

Default 6.74 10.22 5.30 8.17 5.07 8.18
+Optimize hyperparameters 5.70 9.29 3.61 6.08 3.44 5.86
+Ring features 5.28 8.79 3.33 5.77 3.24 5.66
+Input dH 4.81 7.88 3.06 5.15 2.98 4.96

As mentioned above, creating proper data splits is essential to evaluating model perfor-

mance. We use a scaffold split on the reactants from the forward reactions to create training,

validation, and testing sets. The reverse reaction is then added to the corresponding set,

which ensures that each set is independent. In contrast, the previous work from Grambow

et al.62 performed a scaffold split on the reactants from the forward and reverse reactions.

However, since the reactant and product of the same reaction can have different scaffolds,
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the forward reaction could be placed in the training set while the reverse reaction could be

placed in the test set. Indeed, ∼80% of the testing reactions from Grambow et al. had their

forward or reverse counterpart in the training set. This data leakage resulted in underes-

timating the true testing error since the regression task had accidentally been reframed as

an easier problem.92 Rather than asking the model to produce a barrier height for a new

reaction, the data leakage meant that the model was mostly predicting a barrier height for a

reaction it has already seen in either the forward or reverse direction. The dramatic impact

on model performance is shown in Table 2.

Table 2: Importance of independent data splits on Ea testing errors (kcal mol−1).
Results are from the first fold of cross-validation.

Proper B97-D3 ωB97X-D3 CCSD(T)-F12a

Model Hyperparameters Splits MAE RMSE MAE RMSE MAE RMSE

Grambow et al. Grambow et al. No 2.99 5.87 1.91 3.35 1.87 3.29
Grambow et al. Grambow et al. Yes 8.15 11.46 5.94 8.55 5.50 7.97
Grambow et al. This work Yes 7.16 10.85 5.13 7.71 4.31 6.93
This work This work Yes 4.81 7.88 3.06 5.15 2.98 4.96

3D DimeReaction Model

One hypothesis is that using 3D information may improve the predictive capabilities rela-

tive to using a 2D attributed graph. Since obtaining a TS geometry is difficult, our ideal

DimeReaction model would receive an optimized structure for the reactant and product and

then predict a barrier height. We find that model performance is better when only training

on the coupled-cluster data, rather than performing transfer learning as described earlier.

Still, results from this approach were quite poor with a barrier height testing MAE (RMSE)

of 6.20 (10.10) kcal mol−1. Although this large error is surprising, additional tests indi-

cate that the DimeNet++ model functions as intended. For example, training a multi-task

model that predicts both Ea and dH yields excellent performance on reaction enthalpy with

a testing MAE of 1.78 kcal mol−1. Thus, when the regression target is a function of the

input geometries, such as using reactant and product structures to predict reaction enthalpy

17



rather than the barrier height, the model performs well. Additional results and analysis are

provided in the Supporting Information.

Another potential workflow is using the difference between the learned representations of

the reactant and TS geometries (rather than the reactant and product) since these directly

correspond to a barrier height. To test this idea, we first considered the ideal scenario of using

optimized TS structures. As expected, this resulted in a very low testing error—lower than

our best 2D model—shown as the first row in Table 3. While it is chemically satisfying to

see the reactant and TS encode more information about the barrier height than the reactant

and product, using an optimized TS geometry here is not sensible, at least not for molecules

in this size range. Once one has the optimal TS geometry, it is not expensive to perform

a single-point coupled-cluster calculation and then proceed with canonical transition state

theory to compute k∞(T ).

A more practical workflow involves quickly generating a TS guess and training a model

to operate on this non-optimized structure. Several methods exist for generating TS guesses,

from using hand-made templates31–33 to using deep learning,34–36 so it should be quite prac-

tical for future users to quickly obtain a TS guess. To first get an idea of how much a

non-optimized TS structure would impact the results, we add increasing amounts of Gaus-

sian noise to the optimized structures that were then used as input to the model. As seen

in Table 3, the model is very sensitive to the TS structure, as testing performance quickly

decreases when adding noise. We next use one TS guess predictor to quickly generate TS

guesses. The graph network from Pattanaik et al. 34 had achieved a testing RMSD of 0.28

Å. Using this network to generate TS guesses that were used as input to our DimeReaction

model, we obtain a testing MAE (RMSE) of 6.19 (9.26) kcal mol−1, which is inline with the

trend from Table 3.
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Table 3: Impact of noisy TS inputs on DimeReaction’s testing errors (kcal mol−1).
The first row corresponds to using an optimized TS structure with no added
noise.

σ RMSD (Å) MAE RMSE

0 0 2.25 3.91
0.05 0.086 3.62 5.66
0.10 0.173 4.81 7.16
0.15 0.260 6.28 8.83
0.20 0.346 7.42 10.42

The sensitivity of the 3D reaction model renders it impractical compared to the 2D

workflow. However, it highlights an area of further research; future studies should investigate

methods to quickly and accurately produce 3D TS guesses, which can subsequently be used

in predicting kinetic parameters. Currently, available estimators achieve geometric errors

on TS structure generation that are much too high for such modeling efforts. As another

idea, the sensitivity could make DimeNet++ quite useful for screening which initial guess

geometries are worth the computational expense for optimization and frequency calculation.

Conclusion

To accurately predict the time evolution of a reacting chemical system, one needs a quick

way to estimate rate coefficients to decide which of the many conceivable reactions are

important enough to include in the kinetic model. Due to the high computational cost,

it is usually impractical to directly compute k∞(T ) for all of the reactions in a system of

interest. Methods are needed to accelerate or bypass some of the computational bottlenecks

in the conventional TST workflow based on high-accuracy quantum chemistry. Even rough

estimates can be helpful in deciding which reactions require expensive calculations. The need

for fast estimates of rate coefficients has been recognized for many decades, and excellent

estimators have been developed for certain reaction families. However, data scarcity has

made it difficult to develop models that generalize well over a broad range of reactions.
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With recent advances in compute power, we can now routinely generate large datasets with

DFT and sometimes higher-level quantum chemistry methods, opening up the possibility of

constructing accurate estimators with much broader scope using machine learning techniques.

For instance, the generation of new high-quality kinetics datasets42,91 allowed the 2D

D-MPNN model presented here to quickly predict reliable values for barrier heights across

a diverse set of thousands of gas-phase reactions. The model gives more accurate barrier

heights on average than good (e.g. ωB97X-D3/def2-TZVP) DFT calculations for vastly

lower computational cost. By directly estimating barrier heights, we anticipate the model

will be useful during the automated generation of kinetic models by reducing the amount

of computational effort devoted to reactions which cannot be important. The new model

can also quickly rank the most feasible (lower barrier) reactions produced from an auto-

mated enumeration of possible reactions, making the process of discovering new low-barrier

reactions much more efficient. Combining this barrier height estimator with other methods

for computing or estimating Arrhenius A-factors would allow rapid estimation of reasonable

rate coefficients.

Going forward, existing kinetics datasets should be expanded. As shown in Figure 2c,

additional data would be beneficial for reducing the errors in predicted barrier heights.

Although the dataset from Spiekermann et al.42 is the largest coupled-cluster reaction barrier

dataset to our knowledge, it is still relatively limited; its species contain at most only seven

heavy atoms, they only include the elements H, C, N, and O, all transition states are closed

shell singlets, no ions are included, and there are only gas-phase reactions. The dataset

used in this work also contains only a single conformer for each species, so some of the

prediction error may be due to not using the lowest energy conformers when calculating the

barrier height. Future dataset generation should perform thorough conformer searches. This

would also facilitate computation of k∞(T ) for reactions where the reactant(s) and/or TS

are non-rigid e.g. because they contain internal rotors.

When it comes to training models, using proper data splits is essential to evaluating
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model performance. As shown by Table 2, each pair of forward and reverse reactions must

be placed in the same set to ensure that the training, validation, and testing sets are in-

dependent. Otherwise, the model’s testing error will appear unrealistically low since it has

been polluted by data leakage. Scaffold splitting is also considered a better measure of gener-

alizability.92,99–103 In contrast, random splitting creates an easier prediction task that is less

useful at measuring extrapolation capabilities. Finally, we emphasize the importance of fine-

tuning models using whatever high-accuracy data is available. As shown in Figure 2d, even

small amounts of high-accuracy data give meaningful improvements to model predictions.
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S1: Graph Network Description

S1.1: Architecture and Featurization

For our experiments, we rely on Chemprop, a deep learning property prediction framework

built by Yang et al. S1 Chemprop takes SMILESS2 strings as input and outputs the single or

multiple properties of interest. While Chemprop is really a general-use framework that can

train a range of machine learning models, the heart of Chemprop’s innovation is their directed

message passing neural network (D-MPNN) architecture, which we adapt here. Crucially,

we include the additional architectural choices made by the original authors (i.e. input and

output neural layers), which makes the D-MPNN architecture and the resultant Chemprop

property prediction framework so successful.

The D-MPNN method builds on the formalization of message passing neural networks

(MPNNs) developed by Gilmer et al. S3 Generally, MPNNs operate on molecules by rep-

resenting them as attributed graphs with nodes (atoms) and edges (covalent bonds) with

associated feature vectors. During the message passing phase, hidden representations of

nodes are updated with information from neighboring nodes and edges; this builds updated

feature vectors for all nodes in the graph. During the readout phase, atom representations

are aggregated and fed through a dense layer for property prediction. Yang et al. S1 introduce

messages over directed edges rather than over nodes, which makes the resulting D-MPNN

architecture more expressive than traditional MPNNs. Gasteiger et al. recently formalized

the D-MPNN concept as message passing over the line graph of the original molecular graph,

which we see as a useful way of thinking about the D-MPNN architecture.

Since we are learning properties of reactions and not individual molecules, we must

featurize multiple molecular graphs (i.e. reactants and products). Grambow et al. S5 ac-

complished this by individually featurizing the reactant and product graphs with D-MPNNs

and subtracting the learned product atomic representations from those of the reactant. We

do not use this strategy in our work. Here, we use the established condensed graph of re-
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action (CGR) representation,S6 which was recently incorporated in Chemprop.S7 CGR is a

superposition of the reactant and product graphs; thus it requires atom-mapped reactions to

compare the atoms and bonds between the reactant and product (i.e. we must know which

reactant atoms led to which product atoms, usually defined by an annotation within the

reaction SMILES string). A key aspect of the CGR representation is that it removes disjoint

graphs present in bimolecular reactions and allows message passing between all atoms, a

limitation of the Grambow et al. method. Using the CGR representation as input allows the

rest of the Chemprop architecture to remain unchanged.

Upon creating the new condensed graph, initial feature vectors are created with RDKitS8

for each atom and bond for both the reactant and product. This creates three possible

combinations of features for the single CGR. First, the feature vectors from the reactant and

product can be concatenated together (reac prod). Second, the reactant feature vector can

be concatenated with the difference of the product and reactant feature vectors (reac diff).

Third, the product feature vector can be concatenated with the difference of the reactant

and product feature vectors (prod diff). More detail about CGR in Chemprop, along with

performance on benchmark datasets, can be found in the original publication.S7

Heid and Green S7 reported that the reac diff CGR representation usually performed

best. However, the reac diff representation of forward and reverse reactions is identical to

the prod diff representation of reverse and forward reactions. Since we had augmented the

datasets at each level of theory with the reverse reactions, we arbitrarily chose the reac diff

CGR representation. Empirically, Table S1 shows that all three CGR representations give

very similar performance; all models use the optimal hyperparameters described in Table S4

and Table S5.

S4



Table S1: Comparison of CGR Representations. Errors are in kcal mol−1, and
results are from the first fold of cross-validation.

B97-D3 ωB97X-D3 CCSD(T)-F12a

Representation MAE RMSE MAE RMSE MAE RMSE

reac diff 4.81 7.88 3.06 5.15 2.98 4.96
prod diff 4.75 7.78 3.06 5.20 2.84 5.00
reac prod 4.89 7.80 3.17 5.33 2.96 5.05

We tried several modifications to the model architecture. By default, the initial features

in Chemprop simply assign whether the bond is in a ring of any size. We modify this by

specifying the actual ring size (mapped to a one-hot vector) and incorporating this for both

the atom and bond feature vectors. As shown in Table S2, this addition improves the testing

RMSE by about 0.4 kcal mol−1. We also allow additional features to be concatenated to the

learned molecular representation that is passed to the feed forward network during readout.

We find that using RDKit molecular features1 and quantum atomic descriptors from Guan

et al.S9 have no effect.

Table S2: Sequential optimization study showing the improvement in testing
error (kcal mol−1). Each row includes all changes from the previous row. Results
are from the first fold of cross-validation.

B97-D3 ωB97X-D3 CCSD(T)-F12a

Description MAE RMSE MAE RMSE MAE RMSE

Default 6.74 10.22 5.30 8.17 5.07 8.18
+Optimize hyperparameters 5.70 9.29 3.61 6.08 3.44 5.86
+Ring features 5.28 8.79 3.33 5.77 3.24 5.66
+Molecular RDKit features 5.41 8.90 3.42 5.90 3.22 5.66
+Atom QM Descriptors 5.25 8.72 3.39 5.83 3.13 5.60

In contrast, using reaction enthalpy as an input to the dense layer improves model per-

formance. Thus, our model enables a workflow for predicting high-quality barrier heights

without the need for a transition state (TS). Researchers only need to obtain the reaction

enthalpy by running quantum calculations for the reactant(s) and product(s). One potential

1https://github.com/bp-kelley/descriptastorus
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drawback of this approach is that quantum calculations can be expensive depending on the

method and basis. An alternative workflow could instead quickly obtain a predicted value as

input to the final model, an approach commonly done by other published works for property

prediction.S10,S11 For example, we could instead use the model from Grambow et al.,S5 which

was co-trained on Ea and dH (without atom or bond corrections) at the ωB97X-D3/def2-

TZVP level of theory, to quickly predict dH. Similarly, we also co-trained a model on Ea

and dH (with atom and bond corrections) at the CCSD(T)-F12a/cc-pVDZ-F12//ωB97X-

D3/def2-TZVP level of theory in this work; testing errors are shown in the third row of Table

S2. Using the predicted enthalpy from either of these models as input to our final model

would be more efficient than using quantum calculations to determine the reaction enthalpy.

As seen in Table S3, using either of these predicted enthalpy values yields very comparable

performance, with just a small 0.17 kcal mol−1 decline in testing MAE as compared to using

the calculated enthalpy. However, these results may be biased since both the model from

Grambow et al.S5 and from this work have already seen nearly all of these reactions during

training; the accuracy when extrapolating to new reactions may be lower.

Table S3: Testing error (kcal mol−1) when using reaction enthalpy calculated
at the respective level of theory or predicted using a pretrained model from
Grambow et al.S5 or this work. Results are from the first fold of cross-validation.

B97-D3 ωB97X-D3 CCSD(T)-F12a

Description MAE RMSE MAE RMSE MAE RMSE

Input dH (predictedS5) 5.18 8.26 3.40 5.59 3.18 5.36
Input dH (our predictions) 4.94 8.08 3.26 5.36 3.15 5.21
Input dH (QM calculation) 4.81 7.88 3.06 5.15 2.98 4.96

S1.2: Training and Hyperparameter Optimization

Training, validation, and testing sets are created using a scaffold split on the reactant

SMILES, which partitions the data based on the Bemis-Murcko scaffoldS12 as calculated by

RDKit. The exact procedure is described in ref S1. Intuitively, a scaffold split is more chal-
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lenging than a random split since validation and testing molecules are deliberately chosen

to have some class imbalance relative to the training set. This causes the testing perfor-

mance to be a better measure of extrapolation to new molecules rather than interpolation

with molecules very similar to those in the training set. As described in the main text,

scaffold splitting was done based on the reactants from the forward reactions. Each pair

of forward and reverse reactions is placed in the same set, which ensures that each set is

independent. The data is split into 85% training, 5% validation, and 10% testing data. To

avoid bias that may be introduced from using just one split, we use 5-fold cross-validation.

Performance on the validation set is used to determine the best model weights as well as to

choose the optimal hyperparameters. We use the Noam learning rate scheduler from Vaswani

et al. S13 during training, which starts by linearly increasing the learning rate from the initial

to the maximum value over a specified number of warm-up epochs. Then the learning rate

is exponentially decreased to the final value over the remaining epochs.

We utilize data at all levels of theory during training. First, the model is pretrained

with the lowest level data from B97-D3/def2-mSVP. The model is then fine-tuned with

the ωB97X-D3/def2-TZVP data and subsequently with the high-quality CCSD(T)-F12a/cc-

pVDZ-F12//ωB97X-D3/def2-TZVP data. We find that model performance is slightly better

when the message passing weights are not frozen after the first round of pretraining. Instead,

the model weights are initialized using the best weights from the previous training run, and all

weights are fine-tuned. We use the provided hyperparameter search code from ChempropS1

to determine the hyperparameters controlling the model architecture and fitting procedure,

which are summarized in Table S4 and Table S5 respectively. Hyperparameters not shown

in the table used the default values from Chemprop.
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Table S4: Optimized hyperparameters for model architecture.

Hyperparameter Value

Hidden size 900
Hidden size 4
Activation function Leaky ReLU
Aggregation sum
Additional FFN Inputs dH

Table S5: Optimized hyperparameters for training.

Hyperparameter Pretraining Fine-Tuning

Epochs 65 55
Initial learning rate 10−4 10−5

Maximum learning rate 10−3 10−4

Final learning rate 10−5 10−6

Warm-up epochs 5 5
Gradient clip 10 10

S1.3: Fitting Error vs. Level Of Theory

Table S6 shows the testing error from training a model on each level of theory (no transfer

learning). Only reactions present in all levels are used i.e. each model had the same data

splits for training, validation, and testing so the only variable changing was the level of

theory for the regression target. We use the optimal hyperparameters from Table S4 and

Table S5. Our results show that is about equally difficult to fit a model to each level of

theory; of course, the predictions will be better from a model trained on the higher level

dataset.

Table S6: Barrier height testing error (kcal mol−1) from training a model on
each level of theory.

Level of Theory MAE RMSE

B97D3 3.95 6.68
ωB97X-D3 3.94 7.04

CCSD(T)-F12a 4.07 7.01

S8



S2: DimeReaction

Our DimeReaction model is an extension of the recently published DimeNet++,S14 which

is directional message passing network that operates on 3D coordinates. DimeNet++ was

designed to predict energies and forces of molecular structures with the intent of speeding up

molecular dynamics simulations, but the architecture has also shown promise in predicting

molecular targets other than energies. More detail about the architecture as well as per-

formance on benchmark datasets can be found in the original publication. In our DimeRe-

action architecture, the QM-optimized reactant and product coordinates are each passed

through the same DimeNet++ model to create a learned representation of each molecule.

The learned representation of the product is then subtracted from that of the product before

passing through a dense layer to predict the barrier height. Although it may be interesting

to explore other architectures, such as subtracting the learned atom representations before

aggregating into a molecular representation, our results from the main text show that model

performance is extremely sensitive to the TS geometry, which precluded efforts to further

modify the architecture.

A scaffold split on the reactant SMILES is again used to create independent sets. As be-

fore, the data is split into 85% training, 5% validation, and and 10% testing, and each pair of

forward and reverse reactions is placed in the same set. Unlike with our modified Chemprop

model, training on only the coupled cluster data yields lower testing errors than using all

three levels in a transfer learning approach. We use the Noam learning rate schedulerS13 dur-

ing training and use Optuna for hyperparameter search;S15 the final hyperparameter values

are shown in Table S7.
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Table S7: Optimized hyperparameters for the DimeReaction model.

Hyperparameter Value

Epochs 100
Warm-up epochs 4
Batch size 32
Learning rate 10−3

Learning rate scheduler Noam
Hidden channels 100
Output embedding channels 100
Output channels 100
Interaction embedding size 64
Basis embedding size 8
Blocks 6
Spherical harmonics 6
Radial basis functions 6
Output layers 2
Layers (FFN) 3
Activation (FFN) SiLU

Using the optimal hyperparameters for network architecture and training procedure, a

few combinations of inputs and training targets are tested. Two types of inputs are ex-

plored, either the optimized reactant and product geometries or the optimized reactant and

TS geometries. The first strategy represents a realistic prediction strategy since reactants

and products are much easier to identify and optimize than a TS. The second strategy better

aligns with chemical intuition, since reaction barriers correspond to the difference in energies

of the TS and the reactant. The dense layer could optionally receive the enthalpy as an addi-

tional input that is concatenated to the difference of the learned molecular representations.

The regression target(s) are either just the barrier height or co-training the model on both

the barrier height and enthalpy.

The results from training on the coupled cluster data for these combinations are summa-

rized in Table S8. For the case when we use reactant and product geometries, using reaction

enthalpy marginally improves the testing errors. However, using a 2D network, such as our

modified Chemprop, yields far better performance, which is quite surprising. For the case
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when we use reactant and TS geometries, testing errors improve over the 2D Chemprop

formulation that had used the CGR of the reactant and product graphs. Although it is

satisfying to see the TS encode more information about the reaction’s barrier height than

the product does, the optimized TS is better used with canonical transition state theory to

calculate the rate constant.

An interesting conclusion comes from row 2 and row 4 in Table S8, both of which train

a multi-task model to predict Ea and dH. When using the optimized reactant and product

geometries as input (row 2), the model gives very good predictions for reaction enthalpy

with a test MAE of 1.78 kcal mol−1. On the contrary, the model trained with optimized

reactants and TSs (row 4) results in a MAE of 5.95 kcal mol−1 for dH, which is quite poor.

These results indicate that the DimeNet++ model functions as intended; it was designed as

a neural network potential. When the output property is a function of the input geometries

(i.e. reactants and products for reaction enthalpy or reactants and TSs for barrier height),

DimeNet++ works well. However, when the output property is not a function of the inputs,

the model performs poorly. This is unfortunate since the more convenient use case would be

to predict barrier height from reactant and product structures.

Table S8: DimeReaction testing errors (kcal mol−1) for combinations of model
inputs and regression targets.

Optimized Input dH Input to FFN Target(s) Ea MAE Ea RMSE dH MAE dH RMSE

Reactant & Product No Ea 6.20 10.10 - -
Reactant & Product No Ea & dH 6.03 9.84 1.78 2.78
Reactant & Product Yes Ea 6.12 9.67 - -

Reactant & TS No Ea 2.25 3.91 - -
Reactant & TS No Ea & dH 2.67 4.60 5.95 11.93
Reactant & TS Yes Ea 2.27 3.95 - -
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