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Abstract

The most prevalent post-transcriptional mRNA modification, N6-Methyladenosine (m6A), plays 

diverse RNA-regulatory roles, but its genetic control in human tissues remains uncharted. Here, 

we report 129 transcriptome-wide m6A profiles, covering 91 individuals and 4 tissues (brain, 

lung, muscle and heart) from GTEx/eGTEx. We integrate these with inter-individual genetic 

and expression variation, revealing 8,843 tissue-specific and 469 tissue-shared m6A-QTLs, 

which are modestly enriched in but mostly orthogonal to eQTLs. We integrate m6A-QTLs 

with disease genetics, identifying 184 GWAS-colocalized m6A-QTL loci, including brain m6A-

QTLs underlying neuroticism, depression, schizophrenia, and anxiety; lung m6A-QTLs underlying 

expiratory flow and asthma; and heart/muscle m6A-QTLs underlying coronary artery disease. 

Lastly, we predict novel m6A regulators that show preferential binding in m6A-QTLs, protein 

interactions with known m6A regulators, and expression correlation with m6A levels of their 

targets. Our results provide important insights and resources for understanding both cis and trans 
regulation of epitranscriptomic modifications, their inter-individual variation, and their roles in 

human disease.
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Analysis of 129 N6-methyladenosine (m6A) profiles across 4 tissues (brain, lung, muscle and 

heart) identifies 8,843 tissue-specific and 469 tissue-shared m6A quantitative trait loci (QTLs). 

184 m6A-QTLs colocalize with GWAS signals.

Introduction

Genome-wide association studies (GWAS) identified >100,000 genetic loci associated with 

complex traits and diseases, but 93% do not affect protein-coding regions directly and 

remain largely uninterpreted, hindering the search for deciphering the molecular basis of 

human disease1,2. To bridge this gap between genetic variation and disease phenotypes, 

many studies profiled diverse molecular processes affected by non-coding variants, revealing 

thousands of genetic variants impacting gene expression (expression Quantitative Trait 

Loci, eQTLs), mRNA splicing (sQTLs), DNA methylation (meQTL), histone acetylation 

(haQTLs), RNA editing (edQTL), and protein levels (pQTLs)3–11, and providing insights 

into increasing numbers of GWAS loci. However, the role of genetic variants affecting 

post-transcriptional mRNA modifications in human tissues and complex diseases remains 

uncharacterized.

More than 150 types of post-transcriptional RNA modifications regulate non-coding 

RNAs and protein-coding messenger RNA (mRNA) transcripts, similar to epigenomic 

modifications of DNA and histone modifications12,13. Among many such mRNA 

“epitranscriptomic” marks, N6-methyladenosine (m6A) is the most prevalent, and 

most frequently associated with development and disease12,14–18. m6A modulates 

mRNA maturation, degradation, export, and translation efficiency, and is involved 

in spermatogenesis, stem cell differentiation, immune response, neurodevelopment, 

tumorigenesis, and other processes14,16,17,19–21. It is deposited by m6A “writer” 

methyltransferases (METTL3, METTL14) and adaptors (WTAP, VIRMA, ZC3H13, 

HAKAI, RBM15, RBM15B)12,22 at preferential sequence motifs12, removed by m6A 

“eraser” demethylases (FTO/ALKBH9, ALKBH5), and recognized by m6A “readers” 

(YT521-B Homology, YTH family) and other direct or indirect binders (IGF2BP1–

3, FMR1, HNRNPC/G, HNRNPA2B1), with different “readers” leading to decay 

(e.g. YTHDF2) or stabilization (IGF2BPs). However, many m6A regulators remain 

uncharacterized23–25.

Diverse diseases are linked to m6A dysregulation, including glioblastoma, lung cancer, 

and acute myeloid leukemia16,20, and m6A loci are enriched in disease-associated variants 

indicating possibly causal roles26,27. Genetic loci controlling m6A level as a quantitative 

trait (m6A Quantitative Trait Loci, m6A-QTLs) were identified in lymphoblastoid cell lines 

derived from 60 individuals of YRI ancestry (Yoruban from Nigeria)28, but m6A-QTLs 

remain uncharacterized in primary human tissues or in other genetic backgrounds.

Here, we report a collection of transcriptome-wide post-transcriptional modifications in 

human primary tissues, spanning 176 samples across 107 individuals in brain, lung, heart 

and muscle. We discover 9,312 m6A-QTLs in brain, lung, heart, and muscle targeting 1,270 

m6A sites (g-m6As). Most m6A-QTLs are distinct from eQTLs, but the small subset of 

eQTL-colocalized m6A-QTLs are preferentially degradation-associated. m6A-QTLs enrich 
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in disease-associated loci. Several m6A-QTLs help elucidate GWAS loci, including brain 

m6A-QTLs for psychiatric disorders, lung m6A-QTLs for expiratory flow and asthma, and 

heart/muscle m6A-QTLs for heart diseases and blood pressure loci. We predict new m6A-

regulating RNA-binding proteins (RBPs) with preferential binding in m6A-QTL single-

nucleotide polymorphisms (SNPs), experimentally confirmed interactions with known m6A 

regulators, and significant expression correlation with m6A levels of their targets.

Results

m6A variation across tissues and individuals

We generated 176 transcriptome-wide m6A profiles across 107 individuals in human 

brain, lung, heart and muscle (Supplementary Table 1), as part of the enhancing GTEx 

(eGTEx) consortium29. We selected individuals from the Genotype-Tissue Expression 

(GTEx) project4,8,30, enabling us to directly compare our discovered m6A-QTLs with 

mRNA expression eQTLs and other pre- and post-transcriptional processes.

We extended methylated-RNA immunoprecipitation sequencing (meRIP-seq)18,31,32 

protocols for m6A identification and quantification, which we optimized for 400-fold-

reduced starting material from GTEx compared to previous studies31, and used matched 

RNA-seq as background (Fig. 1a). Our aggregated meRIP-seq signal showed strong 

enrichment surrounding the known GGACH m6A deposition sequence motif (centered on 

the modified A base) (Extended Data Fig. 1a). After stringent quality controls using peak 

calling, positional enrichment, and consensus motif enrichment, we focused on a subset 

of 129 high-quality m6A maps across 91 individuals that also have genetic information, 

including 53 brain, 12 heart, 32 muscle and 32 lung samples (Fig. 1a, Extended Data Fig. 

1a–c).

Across all samples, we found >278,000 multiply detected m6A sites (detected in ≥2 

individuals), with an average of ~20,000 sites per sample (Extended Data Fig. 1d). Our 

profiling greatly expanded the previously known set of m6A methylated sites, with 77% of 

our multiply detected sites in brain, 60% in heart sites, 58% in muscle, and 72% in lung not 

previously reported33 (Extended Data Fig. 1e). Our m6A sites were enriched for the known 

m6A consensus motif, and showed enrichment near stop codons, consistent with previous 

studies31,32,34 (Extended Data Fig. 1b–c). Previously undetected m6A sites showed equally 

strong positional (Extended Data Fig. 1f) and motif enrichment (P adj = 5.7 × 10−26, Fisher 

test) with previously detected sites, confirming their high quality.

Clustering all m6A profiles by their global similarity, we found that the tissue profiled was 

the primary driver of variation (Fig. 1b), with brain samples most distinct, heart and muscle 

clustering first together and then with lung, consistent with tissue-specific biology26,27,35 

and with RNA-based tissue similarity (Extended Data Fig. 1g). Genes harboring tissue-

specific m6As showed tissue-relevant functional enrichments (Extended Data Fig. 1h), 

including synaptic and neuronal pathways in brain, and cardiomyopathy and muscle-related 

functions in muscle and heart. Noteworthy examples of tissue-specific methylation include 

brain-specific m6A in POU3F2 (Fig. 1c), where m6A regulates glioblastoma36, and lung-

specific m6A for EGFR (Fig. 1d), where m6A promotes lung cancer35. While genes with 
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tissue-shared m6As show little expression difference across tissues (Fig. 1e), tissue-specific 

m6As do not primary stem from mRNA tissue-specific expression: for 72.8% of tissue-

specific m6A cases, the corresponding transcript was broadly expressed in the other tissues 

but m6A modifications were not detected in those tissues (Fig. 1f), indicating that m6A can 

lead to tissue-specific functions for otherwise broadly expressed transcripts.

m6A genetic driver discovery and validation

We next sought to recognize m6A-QTLs and their target m6A sites (genetically driven m6A 

sites, g-m6As). Given the smaller sample size in heart, we called m6A-QTLs in heart and 

muscle jointly to gain power, as heart and muscle were previously shown to share many 

eQTLs8, and co-cluster for both GTEx mRNA data (Extended Data Fig. 1g) and our m6A 

data (Fig. 1b).

To recognize and remove “unwanted” global variation that confounds and hides subtle 

effects of cis-acting genetic variants8,37, we used a Bayesian factor based tool (PEER37). 

We removed the top 7 factors in brain, top 5 in muscle/heart, and top 2 in lung, as 

inclusion of additional factors led to rapid decrease in the number of g-m6As (Fig. 2a), and 

additional factors were highly correlated with each other, indicating signal saturation (Fig. 

2b, Extended Data Fig. 2a). The removed factors correlated with batch, sex, age, ethnicity, 

as expected, and also immune disease, psychiatric traits, and medication history (Fig. 2c, 

Extended Data Fig. 2b), which are expected confounders acting in non-local ways whose 

removal decreases noise during QTL analyses.

We used FastQTL to perform a permutation-based m6A-QTL search for each m6A site, 

calculating the empirical P value for the SNP with the strongest genetic effect for 

each m6A site. As m6A modifications are deposited both co-transcriptionally and post-

transcriptionally, we searched for m6A-SNPs in promoter regions (where they can act at the 

DNA level), in introns (where they can act both at the DNA level and at the RNA level prior 

to splicing), and in exons (including UTRs and coding regions, where they act at the DNA 

level or RNA level, either pre- or post-splicing).

This resulted in 9,312 m6A-QTLs targeting 1,058 genes across the four tissues, of which 

~5,200 m6A-QTLs act in brain (472 genes), ~3,100 in lung (401 genes), and ~2,100 in 

muscle/heart (279 genes), after correcting for multiple-SNP testing in each locus (empirical 

P < 0.005) (Fig. 2d, Extended Data Fig. 2c–d, Supplementary Table 2). The higher sample 

size in brain allowed us to also report ~1,300 higher-confidence brain m6A-QTLs (targeting 

94 genes) (Supplementary Table 3), using two rounds of multiple-testing correction for 

both multiple SNPs and multiple m6A targets (see Methods). These m6A-QTLs showed 

substantial genotype-driven differences in m6A levels between individuals, and often 

affected m6A levels of biologically important genes in relevant tissues, including neuronal-

function genes PADI2, MOBP, DLG1 in brain, lung-function and respiratory genes CFLAR, 
SPTBN1, SLIT2 in lung, and skeletal/heart-muscle-function genes PDIA6, SSR1, HSPA8 in 

muscle/heart (Fig. 2e, Extended Data Fig. 2c–d).

To validate our m6A-QTL results (in our “discovery study”), we used m6A levels 

measured in muscle, heart, and lung from two individuals26 (“validation study”). As 
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two individuals are insufficient for m6A-QTL discovery, we tested whether effect size 

direction matched between the two studies, focusing on N = 281 m6A-QTL SNPs (5.6%) 

for which the two individuals from the validation study have different genotypes, and 

separating our m6A-QTLs into positive-effect (minor allele shows significantly higher m6A 

level), negative-effect (minor allele significantly lower), and no-effect (no significant m6A 

difference). Despite using only two individuals, and despite potential population-specific 

effects (between our European-ancestry discovery study and the Asian-ancestry validation) 

that may reduce agreement, we found a consistent and significant agreement between our 

discovery study and the validation study (Fig. 2f): our positive-effect m6A-QTLs showed 

28% higher median m6A level in the validation study (P = 0.04, Wilcoxon test), our 

negative-effect m6A-QTLs showed 36% lower median m6A levels in validation (P = 5.5 

× 10−5, Wilcoxon test), and our no-effect SNPs showed only 1.007-fold difference between 

alleles (used as the baseline to compute the aforementioned P values).

Tissue specificity of m6A-QTLs

Only 5.0% of m6A-QTLs (6.8% of g-m6As) were shared between any pair of tissues (Fig. 

3a,b, Extended Data Fig. 3a), even though 46% of m6A peaks were shared (Fig. 1f–g), with 

tissue-specific m6A-QTLs enriched in distinct functional pathways (Extended Data Fig. 3b), 

including synaptic function and signalling in brain.

To evaluate whether m6A-QTL specificity stemmed from biological factors or lack of 

discovery power, we tested whether the 8,800 tissue-specific m6A-QTLs (~95% of all 

m6A-QTLs) showed consistent directionality in the tissues where they were not discovered 

as m6A-QTLs. We reasoned that if the m6A-QTL effects were shared in those tissues, 

we would see common directionality, despite having limited power to detect them, with 

complete sharing resulting in 100% effect directionality agreement, and complete tissue 

specificity resulting in 50% effect directionality agreement expected by chance. Indeed, we 

found a gradual transition from 100% consistency to near-50% consistency (Fig. 3c,d), at 

decreasing P value thresholds for the second tissue: (i) the 469 shared m6A-QTLs (5%) 

that were significant in both tissues showed 100% directionality consistency, providing 

strong confirmation of our results based on independent discovery in multiple tissues (red 

in Fig. 3d); (ii) an additional 592 m6A-QTLs (6.4%) that were significant in one tissue (P 
< 0.005) and near-threshold P values in another tissue (0.005 < P < 0.05) showed 99% 

consistency, indicating that our current threshold for m6A-QTL discovery is quite stringent, 

and that even looser thresholds for m6A-QTL discovery would still result in additional 

meaningful m6A-QTLs; (iii) another ~1,680 m6A-QTLs (~18%) that were significant in one 

tissue and sub-threshold in the second tissue (0.05 < P < 0.5) showed 92% consistency, 

indicating increasing numbers of false positives at those thresholds; (iv) the remaining 

~6,600 m6A-QTLs (~71%) that were significant in one tissue and showed P > 0.5 in the 

second tissue showed only 60% consistency in m6A genetic effect directionality (near the 

50% expected by chance), indicating that the vast majority of calls would be false positives 

at such thresholds.

Leveraging the fact that our m6A profiling was done in individuals from the GTEx cohort, 

we also directly compared the tissue sharing of eQTLs and the tissue sharing of m6A-QTLs 
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in the exact same cohort of individuals, by subsampling the transcriptional data from GTEx 

to the specific individuals studied here, thus matching discovery power, allele frequencies, 

and potential trans-acting or environmental effects. In the most stringent eQTL threshold 

(two-step correction, FDR = 0.1), we found that 14% of eQTLs were independently 

discovered in multiple tissues (Extended Data Fig. 3c), substantially more than the 5% 

sharing found for m6A-QTLs, suggesting that m6A-QTLs are approximately 3-fold more 

tissue-specific than eQTLs for matched cohorts. Repeating our directionality consistency 

analysis for eQTLs across both the full GTEx cohort and a sample-size-matched subsampled 

GTEx dataset, we found that directionality consistency is robust to sample size (90% for 

full dataset vs. 89% for subsampled eQTLs, Extended Data Fig. 3d–e), and is substantially 

higher for eQTLs than for m6A-QTLs (89% for eQTLs vs. 71% for m6A-QTLs, compared 

to 50% expected by chance, Extended Data Fig. 3e, Fig. 3d), indicative of approximately 

twice as much eQTL tissue sharing than m6A-QTL tissue sharing. We also used simulations 

with matching effect size, minor allele frequency, and sample size under the assumption of 

100% tissue-sharing, and found much higher overlap and directionality consistency between 

tissues than observed in our measurements (38%−90% vs. ~5%, Extended Data Fig. 3f–i), 

indicating that the observed tissue specificity is not simply stemming from discovery power.

We next asked whether the tissue specificity of m6A-QTLs stems from strong differences in 

gene expression levels. We first evaluated whether genes with tissue-specific m6A-QTLs 

in a given tissue show higher relative expression levels than genes with tissue-shared 

m6A-QTLs in the same tissue (Extended Data Fig. 3j), and found that in all cases there 

was no substantial difference in expression level between tissue-specific and tissue-shared 

m6A-QTLs. We next evaluated whether genes with tissue-specific m6A-QTLs in a given 

tissue show higher expression levels in that tissue than in tissues where they lack m6A-QTLs 

(Extended Data Fig. 3k), and found that in 4 out of 6 pairwise comparisons, the differences 

in expression are not significant, and in the last two comparisons, gene expression levels 

are within 50% of each other. These results indicate that the observed m6A-QTL tissue 

specificity is not simply stemming from differences in expression levels.

We next asked whether the primary tissue m6A-QTLs discovered here were already captured 

in the m6A-QTLs previously reported28 in immortalized lymphoblastoid cell lines (LCLs), 

derived from peripheral B lymphocytes by Epstein-Barr virus (EBV) transformation in 60 

Geuvadis YRI samples30,38. As a benchmark, we first evaluated the sharing of eQTLs from 

the four primary tissues profiled here in the full GTEx cohort (205 Brain, 515 Lung, 386 

Heart, and 706 Muscle samples) and eQTLs from YRI LCLs in the full Geuvadis cohort 

(89 LCL samples)30,38. This comparison showed strong eQTL sharing between primary 

tissues in mostly EUR samples (R2 = 0.66–0.80) but very low sharing with YRI LCLs (R2 = 

0.06–0.12) (Extended Data Fig. 3l), as expected given the substantially different biology 

of immortalized cell lines and primary tissues, compounded with potential differences 

between EUR and YRI ancestry groups, and indicating that the two capture different 

parts of biological diversity. Consistent with these eQTL results, we found our m6A-QTLs 

in primarily EUR-ancestry tissues showed were largely distinct from m6A-QTLs of YRI-

ancestry immortalized cell lines, with only 0.8% shared m6A-QTLs (Extended Data Fig. 

3m), very low correlation (R2 = 0.0007–0.021, Extended Data Fig. 3n), and only 51.25% 

directionality agreement (Extended Data Fig. 3o), which is close to the 50% expected by 
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chance (P = 0.31) and substantially lower than the 71% consistency found between tissues 

(P <2.2 × 10−16). However, the 0.8% of m6A-QTLs that were shared (N = 26) showed 

100% consistent directionality (green dots in Extended Data Fig. 3n), providing a form of 

additional validation for the validity of both studies. These results highlight the importance 

of also profiling m6A-QTLs in primary human tissues of multiple ancestry backgrounds, as 

they capture additional biological information not captured in immortalized cell lines from a 

single ancestry background.

m6A-QTLs and eQTLs sometimes overlap but are mostly independent

As m6A can increase mRNA stability (e.g. via IGF2BP39) or degradation (e.g. via 

YTHDF240), m6A-QTL effects may be positively or negatively correlated with m6A target 

gene expression. Across all SNPs, m6A-QTLs showed a mild but significant enrichment in 

GTEx matched-tissue eQTLs, across brain (1.5-fold, P = 8.3 × 10−7, prefrontal cortex BA9 

eQTLs), muscle/heart (2-fold, P = 0.0026, muscle eQTLs; 1.6-fold, P = 0.0050, left ventricle 

eQTLs), and lung (1.6-fold, P = 0.0030, lung eQTLs) (Fig. 4a). Fold-enrichments were 

similar when exonic and intronic QTLs were considered separately, although significance 

levels were lower due to fewer data points (Extended Data Fig. 4a–b).

Among m6A-QTLs co-localized with eQTLs in matched individuals (after PEER factor 

removal) (Extended Data Fig. 4c), 23% were positively correlated with gene expression, 

reflecting stability-increasing effects (Fig. 4b–c, teal points), and 77% were negatively 

correlated, reflecting degradation effects (Fig. 4b–c, red points). Repressive-effect m6A-

QTLs were significantly higher (OR = 2.5, P = 2.3 × 10−14, Fisher test) indicating 

more widespread degradation effects in the tissues studied here. Degradation-mediating 

g-m6As preferentially localized in CDS and 3’-UTRs, and stabilization-mediating g-m6As 

preferentially localized in lncRNAs and 5’-UTRs, although these differences were not 

significant due to small counts (Extended Data Fig. 4d).

Despite these enrichments, 88% of m6A-QTLs showed no significant eQTL effect and 94% 

of eQTLs showed no significant m6A-QTL effect in matched samples (no P value < 0.005, 

no effect size > 0.5, Fig. 4c–d), and m6A-QTL target genes (gmGenes, for genetically 

controlled m6A-levels genes) and eQTL target genes (eGenes) showed very little overlap 

(Extended Data Fig. 4e, P = 0.21), with 93% of gmGenes lacking eQTLs and 96% of 

eGenes lacking m6A-QTLs, indicating that m6A-QTL effects are not simply a consequence 

of changes in expression. Even across the full GTEx cohort for matching tissues, 79% of 

m6A-QTLs do not show any eQTL effect (Extended Data Fig. 4f), and conversely 99% of 

eQTLs do not show any m6A-QTL effect (Extended Data Fig. 4g). Even when a gmGene 

was also an eGene, their lead QTL SNPs differed greatly (~10-kb average distance, Fig. 4e), 

indicating that m6A-QTLs and eQTLs constitute largely independent gene-regulatory paths.

m6A-QTLs help interpret GWAS loci

Given the known roles of m6A in multiple human diseases16,17,20,21, including cancer, 

immune disease, and brain disorders, we next asked whether our discovered m6A-QTLs can 

help shed light into potential mechanisms for currently unexplained genome-wide significant 

and sub-threshold GWAS loci, and possibly implicate m6A function in additional disorders.
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We found 179 m6A-QTLs colocalized with 80 GWAS traits (Supplementary Table 4), with 

88% (N = 157) of lead SNPs outside protein-coding exons, and 82% (N = 147) distinct 

from eQTLs in the full GTEx cohort for our tissues, thus providing new tissue-specific 

mechanistic hypotheses for these loci, including candidate causal variants, target genes, and 

tissues of action.

For brain, 71 m6A-QTLs colocalize with GWAS variants. Neuroticism-associated 

rs12471193 is a brain m6A-QTL for potassium channel gene KCNJ3, a neuronal excitability 

regulator implicated in multiple brain disorders41 (Fig. 5a, Supplementary Table 4). 

Depression-associated rs1827603 is a brain m6A-QTL for postsynaptic receptor GRM542 

(Fig. 5a–b). Schizophrenia-associated rs7285557 is a brain m6A-QTL for a brain-enriched 

lincRNA, LINC00634, down-regulated in schizophrenia43. Anxiety-associated rs1541627 is 

a brain m6A-QTL for synaptic plasticity regulator ANKS1B44.

For lung, 62 m6A-QTLs colocalize with GWAS variants. Peak expiratory flow (PEF)-

associated intronic rs682164 is a lung m6A-QTL for retinoid-responsive CXXC5 that 

attenuates lung fibrosis in mice45. PEF-associated rs79966207 is a lung m6A-QTL for 

Plexin-B2 (PLXNB2) acting in adult lung bronchial epithelium46 (Fig. 5c, Extended Data 

Fig. 5a). Asthma-associated rs3194051 is a lung m6A-QTL for immune-related IL-7 that 

contributes to atopic asthma, acting in bronchoalveolar lavage fluid, and regulating airway 

eosinophilia47. Forced expiratory volume (FEV1)-associated rs35956171 is a lung m6A-

QTL for alveolar fatty acid oxidation regulator CPT1A, implicated in acute lung injury48 

(Extended Data Fig. 5a, Supplementary Table 4).

In heart/muscle, 50 m6A-QTLs colocalize with GWAS variants (Extended Data Fig. 

5b). Coronary-artery-disease (CAD)-associated rs888298 is a muscle/heart m6A-QTL 

targeting cardiac myocyte mitochondrial oxidation regulator WIPI1 involved in signaling 

and autophagy49. Heart-pulse-rate-associated rs6791834 is a muscle/heart m6A-QTL for 

myocyte microtubule differentiation regulator MAP4 involved in heart development50. 

High-blood-pressure-associated rs56104944 is a muscle/heart m6A-QTL for heat shock 

protein HSPA4 involved in cardiac hypertrophy and fibrosis51 (Extended Data Fig. 5b, 

Supplementary Table 4).

Beyond GWAS SNPs, m6A-QTLs helped interpret 3’-UTR and intronic SNPs from ClinVar 

(Supplementary Table 5). Congenital-cataract-associated rs13069079 is an intronic brain 

m6A-QTL for eye segment morphology regulator FYCO152 (Extended Data Fig. 5c). 

Nemaline-myopathy and familial-restrictive-cardiomyopathy-associated rs605430 is a 5’-

UTR muscle/heart m6A-QTL for actin isoform ACTA1, essential for muscle contraction in 

sarcomeric thin filaments of skeletal muscle53 (Extended Data Fig. 5d).

Tissue-specific m6A-QTL-GWAS enrichments

We next assessed global tissue-specific m6A-QTL enrichments for GWAS variants by 

heritability partitioning54,55 after correcting for eQTLs, and found 27 significantly enriched 

traits (P ≤ 0.05) (Fig. 5d), indicating m6A-QTLs capture residual heritability beyond eQTLs. 

These results held even after correcting for coding regions, UTRs, promoters, and conserved 
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regions (Extended Data Fig. 5e), indicating they are not simply driven by fortuitous 

overlaps.

Brain m6A-QTLs enriched for 6 traits, including ALS, tense mood, schizophrenia, 

and Alzheimer’s disease (AD) (Fig. 5d), consistent m6A roles in brain disorders17,21. 

Interestingly, AD GWAS variants enrich for GTEx eQTLs56 and our m6A-QTLs in bulk 

brain samples (composed primarily of neurons), while epigenomic enrichments implicate 

immune and microglia cells57–59, indicating both neurons and immune cells may mediate 

AD genetic effects.

Lung m6A-QTLs enriched for 19 traits, including both lung-related traits of forced vital 

capacity (FVC), forced expiratory volume in one second (FEV1), and asthma (Fig. 5d), and 

blood- and immune-related traits, that may reflect immune roles of lung tissue60–62.

Muscle/heart m6A-QTLs enriched for 8 traits, including hypertension, high blood pressure, 

and gout (Fig. 5d), reinforcing reports of m6A regulators (FTO, METTL3, ALKBH5) 

on cardiovascular diseases63, and suggesting potential interactions between trans-regulator 

effects and cis-m6A-QTL effects.

Novel m6A regulators prediction

As only a small number of m6A regulators are known, accounting for only a small fraction 

of the observed complexity of m6A dynamics22, we next used our m6A-QTLs to help 

reveal candidate novel m6A regulators, by searching for RNA-binding-proteins (RBPs) that 

preferentially bind m6A-QTL regions using CLIP-seq data for 171 RBPs across ~34M target 

sites64.

We predicted 69 candidate m6A regulators in all three tissues, of which 26 are shared by at 

least two tissues (Bonferroni-adj. P = 0.05, Fig. 6a, Extended Data Fig. 6a, Supplementary 

Table 6), including one m6A writer adapter (RBM15), four known m6A readers (YTHDF2, 

YTHDC1, FMR1, HNRNPC), and four previously proposed candidate m6A readers using 

preferential binding of m6A-modified oligonucleotides23,24 (CPSF6, NUDT21, TARDBP, 

PRPF8), consistent with evidence that m6A readers can impact m6A level by protecting m6A 

from demethylation by m6A erasers65,66.

Our candidates formed a tight protein-protein interactions (PPI) network with several 

known m6A readers/writers/erasers, suggesting m6A cofactor interactions22 reminiscent of 

pre-transcriptional and splicing regulators. For example, DD3X3 showed experimentally 

validated interactions with known m6A eraser ALKBH5 (Fig. 6b), with which it was 

shown to modulate mRNA demethylation67. An additional five RBPs (ATXN2, EFTUD2, 

UPF1, NCBP2, LARP4; Fig. 6b, dotted circles) showed multiple interactions with both 

m6A writers (purple) and readers (green), indicating they may function as adapter proteins 

between them.

We also found several cases where allele-specific RBP binding68 overlapped our m6A-

QTLs, including: SRSF1 and PRPF8 for brain m6A-QTLs; NCBP2, TARDBP, UCHL5 and 

ZNF622 for lung m6A-QTLs; and RBM15 for muscle/heart m6A-QTLs (Supplementary 

Table 7).
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Seven of our 26 candidates were also supported by significant correlations (across 

individuals, adjusted q < 0.1) between RBP expression levels (measured by GTEx RNA-seq) 

and m6A level of RBP-bound m6A-QTL targets (measured by our eGTEx m6A levels) 

(Fig. 6a, ii). For example, known m6A writer RBM15 and predicted regulator FIP1L1 

(which directly interacts with known writer ZC3H13), and 5 additional RBPs (FMR1, 

NUDT21, STAU1, UCHL5, ZNF622) were all positively correlated with m6A methylation 

level of their CLIP-inferred bound targets, consistent with contributions to m6A deposition 

or blocking demethylation (Fig. 6a,c, Extended Data Fig. 6c–d). By contrast, TARDBP, 

CSTF2T, CPSF7, and GEMIN5 were negatively correlated with m6A methylation level of 

their CLIP-inferred bound targets, consistent with contributions to m6A demethylation or 

blocking deposition (Fig. 6a,d).

Discussion

Our study reports epitranscriptomic inter-individual variation in post-transcriptional m6A 

mRNA modifications across multiple primary human tissues, and its integration with genetic 

variation, expression variation, disease-associated loci, and RBP binding, to recognize cis- 
and trans-acting drivers of mRNA modifications and their roles in human disease.

We generated transcriptome-wide post-transcriptional modification profiles in human, 

spanning 176 experiments across 107 individuals in brain, lung, heart and muscle, filtered 

to 129 high-quality experiments using stop-codon and m6A-consensus-motif enrichment and 

other quality control metrics. We report 278k multiply detected m6A sites, greatly expanding 

known m6A-modified loci, and implicating ~43% of all protein-coding genes.

We defined m6A-QTLs at both a stringent threshold for pinpointing individual m6A-QTLs 

and a more inclusive threshold for recognizing functional properties of m6A-QTLs, as 

biologically meaningful GWAS enrichments continue well past stringent thresholds to even 

nominally significant thresholds69,70. We show that m6A-QTLs at both thresholds are highly 

reliable, with ~100% directionality consistency between tissues, and significant validation in 

an independent cohort. Even near-threshold and sub-threshold m6A-QTLs showed >90% 

consistency, indicating that even looser thresholds may capture additional reliable and 

biologically meaningful m6A-QTLs.

We found that m6A-QTLs are approximately 3-fold more tissue-specific than eQTLs 

for matched cohorts, which may stem from tissue-specific co-transcriptional and post-

transcriptional m6A regulators12,71, and selective pressures against variants with multi-tissue 

effects, similar to GWAS variants that primarily localize in tissue-specific enhancers rather 

than tissue-shared promoters. However, the ~470 tissue-shared m6A-QTLs were >99% 

consistent in effect directionality between tissues, and even sub-threshold m6A-QTLs were 

>90% consistent in directionality, indicating that m6A trans-acting regulators rarely change 

direction of effect, even though their activity level for different targets may vary across 

tissues.

We provided several lines of evidence that the observed m6A-QTL tissue-specificity 

is biological rather than technical, including: (a) using simulations to assess the m6A-
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QTL calling power, and confirming that our observed data are more tissue-specific than 

expected even at matching MAF, effect size, and sample size; (b) partitioning cross-tissue 

comparisons of m6A-QTLs across different P value thresholds, and showing that “no-effect” 

m6A-QTLs show near-random directionality, indicating that lack of m6A-QTL effect is not 

stemming from threshold effects; and (c) showing that m6A-QTLs are substantially more 

tissue-specific than eQTLs, by subsampling GTEx eQTLs to matched individual donors, 

thus controlling for sample size, discovery power, allele frequency, and potential trans-acting 

effects.

We note however that as mRNA expression measurements are more robust and biologically 

more stable, while m6A may be more variable due to both biological and technical reasons, 

which may partly account for the observed increased tissue-specificity of m6A-QTLs. 

Moreover, we expect the fraction of tissue-sharing to increase for m6A-QTLs with increased 

discovery power at larger sample sizes, as previously observed for eQTLs4,8,30. However, 

our directionality consistency analysis indicates that the large majority of m6A-QTLs are 

tissue-specific irrespective of discovery power, as GTEx eQTL directionality shows near-

perfect agreement at ~20-fold reduced sample sizes (e.g. from 706 individuals to 38 for 

muscle eQTLs), thus enabling us to estimate the fraction of true m6A-QTL effects even at 

much lower discovery thresholds.

Our results shed light on ~400 intronic and exonic eQTLs whose mechanism of action 

was not previously characterized, by showing that they act as tissue-specific m6A-QTLs, 

which may mediate their effect on expression levels through mRNA degradation or stability, 

as previously shown for the YTHDF2 and IGFBP family regulators respectively. The 

two directionalities of effect showed uneven proportions among m6A-QTLs that also 

impact expression: only one quarter of increased-m6A alleles showed increased expression 

indicating roles in mRNA stability, while three quarters showed decreased expression 

indicating roles in mRNA degradation. In the vast majority of cases however, m6A-QTLs 

acted through distinct sets of SNPs from eQTLs, thus expanding the set of genetic variants 

known to affect molecular phenotypes of protein-coding genes, and helping shed function on 

potential disease-associated variants.

Our results also revealed the widespread role of m6A-QTLs in human disease. At the 

genome-wide level, we found that m6A-QTLs were significantly enriched for disease-

associated genetic loci and showed compelling tissue-specific enrichments, with psychiatric 

and neurodegenerative traits enriched in brain m6A-QTLs, respiratory traits enriched in lung 

m6A-QTLs, blood pressure traits enriched in muscle/heart m6A-QTLs. At the single-locus 

level, we also found multiple tissue-specific examples of m6A-QTLs affecting biologically 

meaningful target genes through colocalization analysis with GWAS SNPs, thus providing 

new insights and candidate mechanistic hypotheses for GWAS hits that were previously 

uncharacterized. While experimental validation of these hypotheses through CRISPR-Cas9 

genome editing requires tissue systems and animal models of human disease that are not 

yet developed and will take years to complete for heart, muscle, lung, and brain, they 

can help guide future experiments and pre-clinical studies by expanding the diversity of 

mechanistic hypotheses underlying human disease genetics to include epitranscriptomic 
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molecular phenotypes, and they demonstrate the broad utility of our results for the field of 

human genetics and GWAS interpretation.

Our results also revealed 26 RNA-binding proteins as m6A regulator candidates, greatly 

expanding the set of factors and co-factors currently implicated in m6A regulation, which 

can help guide the systematic dissection of m6A regulatory circuitry. All 26 RBPs showed 

preferential mRNA binding in m6A-QTL loci, 20 also showed protein-protein interactions 

with known m6A regulators, 7 showed allele-specific RBP binding overlapping our m6A-

QTLs, and 11 also showed significant expression correlation with m6A levels of their 

targets. Five of the putative novel regulators (UPF1, NCBP2, LARP4, ATXN2, EFTUD2) 

were particularly intriguing, as they showed multiple interactions with both m6A writers and 

readers, indicating possible functions as adapter proteins between them. The tight network 

of our predicted m6A regulators and known m6A regulators suggests extensive cooperation 

of multiple co-factors guiding m6A methylation, similar to current pre-transcriptional and 

splicing regulatory models.

Our study has several limitations. First, our study is still confined to a relatively small 

number of tissues and a small number of individuals, due to the difficulty and sample 

requirements of profiling m6A in primary human tissues. Thus our study only identified 

the strongest m6A-QTLs, and we expect future studies to reveal many more m6A-QTLs, 

which we estimate will show a modestly higher overlap between tissues, although still 

substantially lower than for eQTLs. Second, our antibody-based m6A profiling does not 

provide single-nucleotide resolution and is not fully quantitative. We expect future studies 

to overcome these limitations, although existing methods that rely on restriction enzymes 

are confined to specific sequence contexts72–76 and can only detect a subset of m6A 

sites. Third, similar to GTEx, our study only sampled m6A levels at bulk-tissue resolution, 

without distinguishing between different cell types within them. We expect that single-cell 

profiling of m6A modifications, when such technologies become available, will help reveal 

the specific cell types where our m6A-QTLs act, and to also reveal additional single-cell 

m6A-QTLs that are not captured at the bulk level. Lastly, we focused on polyadenylated 

protein-coding mRNAs, while m6A methylation can affect chromatin-associated RNAs and 

other non-coding RNAs, whose inter-individual m6A variation may be highly informative in 

gene regulation and disease studies.

Overall, our datasets and analyses provide a foundation to bridge genetic variation 

with epitranscriptomic regulation and human disease in human primary tissues. This 

is particularly important as m6A is increasingly recognized to play important roles in 

human disease, and many disease-associated variants remain uninterpreted. The resulting 

m6A-QTLs, target genes, upstream regulators, and biological insights can help further our 

understanding of epitranscriptomic gene-regulatory control, and help pave the path for new 

therapeutic targets in human disease.
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Methods

m6A RIP-seq across human tissues

Samples collection by GTEx consortium, with donor enrollment and consent, 

histopathological review procedures, biospecimen procurement methods and fixation, 

and informed consent approval as previously described77. m6A profiling was performed 

across four eGTEx tissues, including Brain cortex (n = 53), Lung (n = 32), Muscle - 

Skeletal (n = 32) and Heart - Left Ventricle (n = 12), using an optimized version of 

methylated RNA immunoprecipitation sequencing (meRIP-seq). Figure 1a created with 

BioRender.com. These four tissue types were chosen as they are highly disease-relevant 

and are representative for different germ layers (brain: ectoderm; muscle/heart: mesoderm; 

lung: endoderm).To minimize potential confounding factors introduced by experimental 

differences, the samples from each tissue were balanced across the three experimental 

batches (Supplementary Table 1). We adopted the protocols from Batista et al. (2014)78, 

adapted to enable 400-fold less starting material available for the eGTEx samples. We 

calibrated the m6A-Dynabeads complex by coupling the synaptic system anti m6A-antibody 

to magnetic beads at a ratio of 5 μg of antibody for 1 mg of Dynabeads, and adjusting the 

reaction conditions and volume of m6A/Dynabeads complex to 25 μl of m6A/Dynabeads 

complex in a total volume of 50 μl IP volume. The new wash steps were set at 100 μl 

volume, and the new elution steps were established at 4 consecutive elution steps each using 

50 μl of elution buffer at 52°C for 5 minutes under gentle rotation. The combined 240 μl 

elution was then precipitated by addition of 400 mM NaCl, 2 μl of ultra-pure Glycogen at 20 

mg/ml and 2.5 times the volume of 200° proof ethanol at −20°C for one hour or overnight. 

The RNA was precipitated at 4°C for 25 minutes by centrifugation at 13,000g. The pellet 

was then washed twice in 70% ethanol, dried at 25°C for 15 minutes, and re-suspended in 

7 μl of ultrapure H2O prior library construction. We used the SMARTer Stranded RNA-Seq 

Kit from Clontech/Takada which is optimized to work with 100 pg of starting material. The 

libraries were sent for 2×45-bp pair-end sequencing.

m6A sites identification and quantification

The RNA-seq (without immunoprecipitation) data were taken from the GTEx portal (V8; 

https://gtexportal.org/home/datasets) as input for m6A peak calling and quantification. Reads 

from the RNA-seq and meRIP-seq were first aligned against tRNA (Downloaded from 

UCSC Table Browser) and rRNA (downloaded from NCBI nucleotides) using bowtie2 

(v2.3.4.3)79, with the unmapped reads kept for further analysis. The remaining reads were 

mapped to hg38 human genome using hisat2 (v2.1.0)80, with GENCODE (v26; downloaded 

from https://gtexportal.org/home/datasets) as annotation, and with the following parameters: 

-k 1 --no-discordant. Peak calling was carried out using MACS2 (version 2.1.1), with the 

parameters of -- nomodel and --extsize 100. Peak processing performed using bedtools 

(v2.28.0). The high-confidence peaks were selected by requiring q value ≤ 10−5 and fold-

change ≥ 3. The raw methylation level for each m6A site was quantified as28:

log ReadsPeak, MeRIP/ReadsPeak, RNA‐seq / ReadsTotal, MeRIP/ReadsTotal, RNA‐seq
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The m6A level matrix across samples and peaks was further normalized prior to m6A-QTL 

calling (see the “m6A normalization” section below).

m6A sites quality control metrics

To evaluate if the m6A immunoprecipitation was successful, we used deeptools (v3.0.2) to 

examine the reads density of meRIP sequencing surrounding the GGACH motif, comparing 

to other control sequence motifs, including the reverse complement sequence (DGTCC), 

reverse sequence (HCAGG) and complement sequence (CCTGD). We then evaluated the 

quality of the identified m6A peaks using the two well-recognized m6A metrics: m6A 

consensus sequence and distribution along mRNA. For the distribution evaluation, we first 

converted the genomic m6A positions to transcriptomic coordinate, and then calculated 

the density of m6A along the mRNA structure. For each individual sample, we performed 

motif analysis using AME (v5.0.3) from the MEME toolset by examining the enrichment 

of m6A motif (GGACH) over the randomly shuffled sequences with the nucleotide content 

preserved. The enrichment P value of motif was calculated by AME based on Fisher’s exact 

test, and multiple test correction was performed using Bonferroni.

Tissue-specificity of m6A sites

We performed hierarchical clustering with the global sequencing signals by segmenting 

the genome into 200-kb bins. For the individual m6A, we defined an m6A site as tissue-

specific m6A if it occurred in only one of the four tissues. We then further categorized the 

tissue-specific m6A into two groups: the expression specificity induced tissue-specific m6A 

and epitranscriptome-layer tissue-specific m6A, depending on whether the tissue specificity 

mainly comes from the gene expression level. A tissue-specific m6A is considered as 

expression specificity induced tissue-specific m6A when the expression of the host gene in 

the tissue is 10 times higher than in any of the other tissues, whereas the rest were defined as 

epitranscriptomic-layer tissue-specific m6A.

m6A and SNPs pre-filtration

For each tissue, we filtered out the variants with less than 8 minor allele individuals (minor 

allele homozygotes + heterozygotes) to avoid false signals caused by a small number of 

individuals and to lower the multi-test correction burden. Additionally, we envision that 

m6A regulation may take place a) at DNA level, where a SNP in DNA may affect m6A 

given that the installation process happens co-transcriptionally; b) at RNA level, where 

a SNP in a transcript can modulate the m6A level in cis in the same RNA molecule in 

a post transcriptional fashion. Therefore, to ensure both the sensitivity and the biological 

rationality, we specified the m6A-QTL searching regions to be the promoter plus the gene 

body for each m6A in a gene.

For m6A-QTL calling, we selected the high-confidence m6A sites by requiring either 1) the 

m6A peak was previously curated33 and meanwhile was captured in a tissue for no less than 

2 individuals; or 2) the m6A peak was captured across 20% of the samples in a tissue.
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m6A normalization

The m6A signal matrix of one tissue was further processed and normalized prior to 

QTL identification: 1) the m6A with more than 20% of the missing values (caused by 

the undetectable RNA expression) across individuals were excluded; 2) the IP efficiency 

differences between samples and the GC content across peaks were corrected following 

a well-established procedures28; 3) the IP- and GC-corrected m6A matrix was further 

standardized by subtracting the mean plus dividing by the s.d. for each peak across all 

the samples in that tissue; 4) lastly, the matrix was quantile-normalized across all the peaks. 

The resulting m6A matrix was used for latent factor identification and m6A-QTL calling.

Latent factor identification and removal

To regress out the unwanted variance stemming from non-genetic factors, we employed 

PEER37 (R package 1.0) to identify the latent covariates for the samples in each tissue. We 

chose the PEER factors for QTL calling based on: a) maximizing the number of g-m6A 

identified (Fig. 2b); b) the intra PEER factor correlation (Fig. 2a, Extended Data Fig. 2a–

b). We included top 7, 2, 5 PEER factors for brain, lung, muscle/heart, respectively, plus 

experimental batch and top three genotype PCs as covariates for m6A-QTL calling.

m6A-QTL identification

We used FastQTL81 (v2.0) for m6A-QTL identification with the PEER factors included as 

covariates as described above. The searching window was set to the gene body plus the 

promoter (1 kb upstream of the transcription start site). To identify g-m6A, the nominal P 
value of the lead SNP of each m6A peak was corrected to get an empirical P value that 

accounts for the multiple variants tested. Empirical P value was extrapolated based on beta 

distribution fitting to the permutation results by FastQTL (parameter --permute 1000). We 

applied a threshold of empirical P value < 0.005 on the lead variant to identify g-m6A, 

and then for each g-m6A we applied the nominal P value threshold that corresponds to 

the empirical P value of 0.005 for each locus to identify m6A-QTL (Supplementary Table 

2). Particularly given larger sample size in brain, we provided a higher-confidence sets of g-

m6As and m6A-QTLs by further correcting the empirical P value with Benjamini-Hochberg 

procedure and applying a threshold of FDR < 0.2 (Supplementary Table 3).

m6A-QTL validation

To validate the m6A-QTLs we identified in an unbiased way, we utilized an independent 

dataset published by another study26, from which we got the m6A profiles of heart, muscle 

and lung, each with two adult post-mortem individuals. Although brain samples are available 

from this study, the region they used was from cerebrum, which is much larger and more 

complex than the cortex region used by our m6A-QTL analysis. Given the complexity of the 

human brain, we did not include the brain samples in the validation. To do the validation, 

we first grouped the m6A-QTLs from our study based on the direction of effect size, where 

“+” represent the m6A level increases from major to minor alleles, and the “-” represents 

the opposite, together with a “control” group of SNPs which are not m6A-QTL. We then 

used samtools (v1.9) to call SNPs with RNA-seq data of each individual from the validation 

study. The SNPs with different genotypes in the two individuals were kept for further usage. 
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For each SNP, the individual with more minor alleles were regarded as “Minor” while the 

other one regarded as “Major”. The m6A fold change of the “Minor” individual over the 

“Major” one was calculated for each variant in the validation cohort, and compared across 

the “−”, “+” and “control” groups defined from this study by Wilcoxon rank-sum test.

Simulation analysis for m6A-QTL calling power evaluation

We carried out simulations to assess the power of m6A-QTL calling, and thus to assess 

the extent of m6A-QTL tissue-specificity driven by the current sample sizes, following the 

simulation strategy from an eQTL power analysis paper82. Specifically, we used the effect 

size, MAF, and sample size parameters observed from the lead m6A-QTLs we identified, 

and performed the same number of simulations as the number of g-m6As identified in 

each tissue following a simple linear regression: m6A = βg + ∈, where ∈ ~ N(0,1); g 
denotes genotypes, assuming each g-m6A site is only regulated by one single SNP. We 

also simulated the same number of controls with the effect size set to 0. For m6A-QTLs 

identified in each tissue, we simulated a corresponding set of m6As with the sample sizes 

of other tissues. m6A-QTL was mapped with linear regression in the simulation dataset. 

The m6A-QTL overlap rate and directionality consistency were calculated by comparing the 

simulated dataset with the real dataset from which the m6A-QTL parameters were used for 

simulation.

Enrichment testing and overlap analysis between m6A-QTL and eQTL

The enrichment analysis of m6A-QTLs versus eQTLs were carried out using GARFIELD83 

(version 2). The most updated version of eQTLs were used (V8), which are available in 

the GTEx portal (https://gtexportal.org/home/). The enrichment of m6A-QTLs in eQTLs was 

quantified with odd ratios and significance was calculated using a generalized linear model, 

with minor allele frequency, distance to TSS and number of LD proxies (r2 > 0.8) accounted 

for (see Garfield manual for details). To test if the overlap between eGenes and gmGenes 

is more than expected by chance (i.e. Fig. 4e), we randomly sampled the same number of 

eGenes and gmGenes from the expressed gene pool in our data (n = 26,359) for 10,000 

times, the P value was calculated as the percentage of cases where the overlap between the 

randomly sampled genes was greater than the observed overlap.

To enable a more accurate comparison between the effect of m6A-QTLs on m6A versus 

the effect of eQTLs on the corresponding gene expression, we re-performed eQTL analysis 

in each tissue using the same cohort as used in m6A-QTL calling. Similar to m6A-QTL 

analysis, we first used PEER to capture the unwanted variance and included the first 6, 3 

and 4 PEER factors for brain, lung and muscle/heart as covariates during eQTL calling. The 

slopes of eQTLs and m6A-QTLs were then compared. Correlation of the slopes between the 

overlapped m6A-QTLs and eQTLs (separated by effect directionality) was calculated using 

a two-sided pearson correlation test, P value was calculated with linear regression.

GWAS heritability partition of m6A-QTL

Enrichment analysis of m6A-QTLs in GWAS was performed using stratified LD score 

regression (S-LDSC, v1.0.1) based on the tutorial54. The enrichment was calculated as the 

proportion of heritability over the proportion of SNPs, then the standard error was estimated 
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and used for P value calculation. We used two baseline models: 1) baseline v1.2 (provided 

by LDSC) plus eQTLs from the same tissue (Fig. s5e); 2) baseline v1.2 with the gene-body 

related annotations excluded (coding region, UTRs, promoter, conserved region), and with 

the eQTLs from the same tissue included (Fig. 5d). We used two sets of m6A-QTLs with 

different thresholds, which were P < 10−3 and P < 10−4. respectively. For brain m6A-QTL 

heritability analysis, we further included the high confidence m6A-QTLs that were identified 

with two rounds of multiple-test correction (labeled as “2StepAdj.” in the figure). The 

GWAS summary statistics files were downloaded from a) the files curated by the Alkes 

group (https://data.broadinstitute.org/alkesgroup/LDSCORE/independent_sumstats/); b) UK 

Biobank; and c) respiratory traits from GWAS Atlas. Disease relevant traits were selected.

Colocalization analysis between m6A-QTLs and GWAS loci

Colocalization analysis between m6A-QTLs and GWAS variants was carried out using a 

Bayes Factor colocalization framework by Coloc84. GWAS loci (filtered by P < 10−4) that 

overlap with g-m6As were used for colocalization tests. The ratio between PP3 (posterior 

probability of both traits are associated with different causal variants) and PP4 (posterior 

probability of both traits are associated with the same causal variant) was calculated, and 

those loci with PP3/PP4 < 0.05 and PP4 > 0.1 were selected as the GWAS-m6A-QTL 

colocalized events.

Enrichment analysis of m6A-QTLs in RBP binding

To predict potential indirect m6A regulators that function through binding to m6A-QTLs, we 

carried out enrichment analysis between m6A-QTLs and RBP binding sites. We downloaded 

the binding sites of 171 RBPs curated by POSTAR2 database64, and then performed 

enrichment analysis against m6A-QTLs using GARFIELD83. The enrichment of m6A-QTLs 

in RBP binding sites was quantified as odd ratios, and significance was calculated using the 

generalized linear model, with minor allele frequency, distance to TSS and number of LD 

proxies (r2 > 0.8) accounted for. The RBPs with less than 100 baseline SNPs overlapping 

binding sites (NAnnot < 100) were excluded to ensure the detection reliability. RBPs 

showing a Bonferroni adjusted P value < 0.05 were selected as potential m6A regulators.

To further prioritize the enriched RBPs, we carried out a RBP-expression vs. m6A level 

correlation analysis. For each enriched RBP, we first calculated an “aggregated” m6A score 

for each individual, where the methylation levels of the m6A sites whose corresponding 

m6A-QTLs are within the RBP binding sites were aggregated, and then performed 

regression between the aggregated m6A level and the gene expression level of the RBP 

across each individual. P values were calculated based on linear regression, and multiple test 

correction was performed by Benjamini & Hochberg (BH) correction. FDR of adjusted P 
value < 0.1 was used as the threshold.

Protein-Protein-Interaction (PPI) analysis

We examined the protein-protein interaction network composed of the enriched RBPs 

and the known m6A regulators (writer/reader/eraser) using the “STRINGdb” R package 

(v1.24.0)85. Only the interactions with the source of “Experiments” were considered.
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Data availability

All eGTEx protected data, including m6A sequencing reads and matched RNA-seq 

data are available on dbGaP with accession number phs000424.v8.p2. Additionally, the 

data can be accessed via AnVIL with authentication: https://anvil.terra.bio/#workspaces/

anvil-datastorage/AnVIL_GTEx_V8_hg38. Since the raw sequencing data with genetic 

information are protected, application and authentication are needed before accessing 

the data. All non-protected data of m6A can be visualized via the GTEx Portal 

(www.gtexportal.org) as part of eGTEx v8. The m6A-QTLs identified in each tissue can 

be downloaded from the supplementary tables. The eQTL datasets are from GTEx v8, 

which can be accessed at https://gtexportal.org/home/datasets. The LCL m6A-QTL datasets 

from Zhang et al. can be downloaded from https://doi.org/10.5281/zenodo.3870952. The 

previously curated m6A sites can be downloaded from RMBase (http://rna.sysu.edu.cn/

rmbase/). The RNA binding sites can be downloaded from http://lulab.life.tsinghua.edu.cn/

postar/.

Code availability

Code for m6A data processing, m6A-QTL calling, relevant functional analyses, and 

additional supplementary information can be found in: http://compbio.mit.edu/m6AQTLs/ 

and also Zenodo with DOI: 10.5281/zenodo.4764136.
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Extended Data

Extended Data Fig. 1. m6A landscape across tissues.
a. Positional enrichment for aggregated meRIP-seq signal surrounding the known m6A 

motif (GGACH) vs. three control sequences (colors). b. m6A peak positional density 

(y-axis) along the gene structure (x-axis) in brain, lung, heart and muscle. c. Cumulative 

distribution (y-axis) of GGACH motif enrichment (-log10q-value, x-axis) across samples 

(teal) vs. shuffled controls (salmon). d. Peak Count per sample. e. Peaks shared by 
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fewer individuals (left) are more likely previously-undetected (red). f. Similar to b for for 

only previously-unreported m6A peaks found in >=2 individuals in our study. g. Pearson 

correlation (heatmap) and hierarchical clustering (tree) of mRNA-seq profiles across the 129 

GTEx samples (rows/columns) that match the individuals profiled here shows tissue-specific 

clustering (colors) and co-clustering of heart and muscle, as shown for m6A profiles in Fig. 

1b. h. KEGG pathway enrichments for the genes harboring tissue-specific m6A.

Extended Data Fig. 2. Identification of genetically-driven m6A.
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a. Pearson correlation (color) for PEER factors shows saturation (correlated factors) after 

first 2 factors (red box) in lung (top) and after first 5 factors (red box) in muscle/heart 

(bottom). b. Pearson correlation between PEER factors (columns) and donor phenotypic 

measurements (rows) helps interpret factors in lung and muscle/heart. c-d. Manhattan plot 

of m6A-QTLs in lung (c) and muscle/heart (d), and m6A-QTL examples. Boxes=25%−75% 

percentile; line=median; whiskers=1.5 IQR; p-values=FastQTL linear regressions.

Extended Data Fig. 3. Tissue specificity of m6A-QTL.
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a. Summary of shared/specific g-m6As and m6A across tissues. b. KEGG pathway 

enrichments for tissue-specific gmGenes. c. Tissue-intersections of the eQTLs identified 

from the same samples for m6A-QTL calling. d-e. Correlation between p-value (x-axis) and 

eQTL effect (y-axis) between tissues, with positive- and negative-effect eQTLs separated 

for full GTEx-V8 (d)), and subsampled to individuals used here (e;). f. Nominal p-values (y-

axis) of simulated m6A-QTLs (Positive), and simulated NULL m6A-QTLs controls without 

QTL effects (Control). Boxes=25%−75% percentile; line=median; whiskers=1.5 IQR. g. 

m6A-QTL overlaps between tissues in simulated data show much higher tissue-sharing 

(teal curve) than in observed real data (peach curve). h. Effect sizes directionality between 

m6A-QTL from real tissue data and simulated data are almost 100% consistent. i. Effect 

directionality consistency when m6A-QTLs were identified with 50, 38 and 30 samples. 

j. Gene expression distribution of the tissue-specific vs. tissue-shared m6A-QTLs in each 

tissue. k. Gene expression in tissues for tissue-specific gmGenes in each tissue. Statistical 

test was carried out by two-sided paired Wilcoxon test. l. Correlation (adjusted R2) of 

eQTLs between GTEx primary tissues and YRI LCL cells. Boxes=25%−75% percentile; 

line=median; whiskers=1.5 IQR. m. Comparison of m6A-QTL effects size between this 

study (eGTEx tissues, x-axis) and the other m6A-QTL study (YRI LCLs, y-axis). Green 

dots represent the m6A-QTLs shared by the two studies. Directionality consistency and 

corresponding p-value (vs. the 50% expected by chance) calculated using one-sided Fisher 

exact test (inset box). n. Correlation of m6A-QTLs between eGTEx primary tissues and YRI 

LCLs. o. Correlation between p-value and m6A-QTL effect in LCL cell lines for m6A-QTLs 

identified in eGTEx tissues, with positive- and negative-effect eGTEx m6A-QTLs separated. 

Directionality consistency and corresponding p-value (vs. the 50% expected by chance) 

calculated using one-sided Fisher exact test.
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Extended Data Fig. 4. Comparison between eQTL and m6A-QTL.
a-b. m6A-QTLs show a modest but significant enrichment for eQTLs in the matching 

tissues, with m6A-QTLs separated into exonic (b) and intronic (c). NAnnot=21811, 17687, 

40078, 24317, 39687 for Brain Cortex, Brain Frontal Cortex (BA9), Lung, Heart Left 

Ventricle, Muscle Skeletal (see Methods) for exonic m6A-QTLs. NAnnot=23091, 18724, 

41807, 25927, 42425 for Brain Cortex, Brain Frontal Cortex (BA9), Lung, Heart Left 

Ventricle, Muscle Skeletal (see Methods) for intronic m6A-QTLs. Error bars denote the 

upper bound and the lower bound for the 95% CI of effect size. P-values are calculated 

by Garfield using a logistic regression model with ‘feature matching’. c. Number of 

eQTLs identified (y-axis) for increasing number of PEER factors removed (x-axis) shows 

inflection-point for each tissue (colors). d. Genomic region distribution for g-m6As 

mediating stabilization vs. degradation (p-values: Fisher exact test). e. Overlap between 

gmGenes and eGenes identified from the matching GTEx individuals. f. Effect size 

comparison between m6A-QTL and GTEx eQTL for the m6A-QTLs identified in this study. 
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g. Effect size comparison between m6A-QTL and GTEx eQTL for the eQTLs identified by 

GTEx V8.

Extended Data Fig. 5. Overlap between m6A-QTL and disease GWAS hits.
a-b. Overlaid Manhattan plots showing genomic position (y-axis) and m6A-QTL P-value 

(x-axis) for lead SNPs (points) across traits (colors) that show colocalization between 

GWAS variants and m6A-QTLs in lung (a) and muscle/heart (b). c. Illustrative example 

showing a brain intronic m6A-QTL that is overlapped with a ClinVar-curated variant related 
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to Congenital cataract. d. Illustrative example showing a muscle/heart 5’-UTR m6A-QTL 

that is overlapped with a ClinVar-curated variant related to Nemaline myopathy. Boxes=25%

−75% percentile; line=median; whiskers=1.5 IQR. e. Same plot as Fig. 5d, but shown using 

S-LDSC Baseline v1.2, which corrects for coding region, UTR, intron, promoter, enhancer, 

multiple histone marks, and eQTLs, shows robustness of results to this correction.

Extended Data Fig. 6. Identification of m6A regulator candidates.
a. Enrichment (y axis, log) and corresponding p-value (x-axis, Bonferroni-corrected) 

between m6A-QTL SNPs and RNA binding protein (RBP) binding sites, for each tissue 

(color), highlighting 10 most enriched RBPs in each tissue (labels). b. Quantile-Quantile plot 

showing the p-value distribution observed in the correlation test between RBP expression vs. 

m6A levels (y-axis), compared to the non-target (circle) or permutation controls (triangle) 

(x-axis). Significant RBPs (FDR < 0.1) are shown in red. P-values are calculated by 

two-sided Pearson correlation tests. c. Correlation of predicted m6Aregulator RBP mRNA 
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expression level (x-axis) vs. methylation level of its m6A targets (y-axis) for ZNF622 in 

muscle/heart. Grey shadow denotes the 95% confidence region for the regression fit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design and m6A landscape across tissues.
a. Overview of m6A profiling method and samples. b. Pearson correlation (heatmap) and 

hierarchical clustering (tree) of m6A profiles across 129 samples (rows/columns) shows 

tissue-specific clustering (colors). c. Example of brain-specific m6A (top) in POU3F2 3’-

UTR with brain-specific RNA-seq expression (bottom). d. Example of lung-specific m6A 

(top) in EGFR 3’-UTR despite tissue-shared expression (bottom). d. Tissue-shared m6A 

(top) and corresponding expression (bottom) across peaks (columns) and tissues (rows). f. 
Tissue-specific m6A (top) and corresponding expression (bottom) across peaks (columns) 
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and tissues (rows), showing 72.8% of tissue-specific m6As lack tissue-specific expression 

(e.g. panel d) and 27.2% also show tissue-specific expression (e.g. panel c).
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Figure 2. Genetically driven m6A across tissues.
a. Number of genetically driven m6A sites (nominal P < 10−4, P value by FastQTL linear 

regression) identified (y-axis) for increasing number of PEER factors removed (x-axis) 

shows inflection-point for each tissue (colors). b. Pearson correlation (color) for PEER 

factors in brain shows saturation (correlated factors) after first 7 factors (red box). c. Pearson 

correlation between PEER factors (columns) and donor phenotypic measurements (rows) 

helps interpret factors. d,e. Overlaid Manhattan plot showing genomic position (x-axis) 

and association nominal P value (y-axis) for all m6A-QTLs in brain, highlighting three 

examples. Boxes = 25%−75% percentile (i.e. inter-quartile range; IQR); line = median; 

whiskers = 1.5 IQR. P value by FastQTL linear regression. f. Minor-allele effect size 

in validation cohort (y-axis) for increased-effect m6A-QTLs (+) and decreased-effect m6A-

QTLs (−) relative to non-m6A-QTL (SNPs tested but not significant during m6A-QTL 

calling, ctrl). Data from Liu et al.26, and merged m6A profiles from 2 samples of muscle, 

lung and heart, each. P value using two-sided Wilcoxon test. Boxes = 25%−75% percentile; 

line = median; whiskers = 1.5 IQR.
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Figure 3. m6A-QTL tissue specificity.
a. m6A-QTLs are highly tissue-specific. b. Tissue-specificity of m6A-QTL target peaks: 

among m6A peaks that are m6A-QTL targets (i.e. g-m6A gene) 12%−32% are tissue-specific 

peaks (green), but even among tissue-shared peaks, only 5.0%−6.3% have shared m6A-

QTLs (red). c. m6A-QTL effect size consistency: tissue-shared m6A-QTLs (red triangles) 

show 100% consistent effect sizes between tissues (top-right and bottom-left quadrants), 

and even tissue-specific m6A-QTLs (circles) that are near-threshold in a second tissue (red 

shading) show highly consistent effects (99% agreement for P < 10−2) for all pairs of tissues 

(9 panels). P value by FastQTL linear regression. d. Between-tissue consistency (teal y-axis) 

of m6A-QTL effect size (black y-axis) increases with the significance of Tissue-2 m6A-QTL 

P value (x-axis) for both positive-effect Tissue-1 m6A-QTLs (right half-plane) and negative-

effect Tissue-1 m6A-QTLs (left half-plane). The top histogram shows the distribution of 

cases in each P value; most m6A-QTLs in Tissue-1 show no effect in the second tissue (the 

grey bar in the middle). Percentage of loci in each group and corresponding directionality 

consistency in parentheses. P value by FastQTL linear regression.
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Figure 4. m6A-QTL vs. eQTL comparison.
a. m6A-QTLs show a modest but significant enrichment for eQTLs in matched tissues. 

Enrichment P values calculated using Garfield. NAnnot = 23,231, 18,663, 43,208, 27,398, 

44,602 for Brain Cortex, Brain Frontal Cortex (BA9), Lung, Heart Left Ventricle, Muscle 

Skeletal (see Methods). Error bars denote upper bound and lower bound for 95% CI of 

effect size. P values by Garfield logistic regression with ‘feature matching’. b. Examples of 

m6A-QTLs (left) that are also eQTLs (right), with negative (top) or positive (bottom) effects 

on expression, indicating potential degradation or stabilization effects of m6A, respectively. 

Boxes = 25%−75% percentile; line = median; whiskers = 1.5 IQR. c. Across all SNPs (dots), 

only a minority (colored) affect both m6A (x-axis) and expression (y-axis), while most QTLs 

have independent m6A-vs.-expression effects (grey points). d. Examples of an eQTL with 

no effect on m6A (top) and an m6A-QTL with no effect on expression (bottom). Boxes = 

25%−75% percentile; line = median; whiskers = 1.5 IQR. e. Large distance between lead 

m6A-QTL SNP and lead eQTL SNP (GTEx v8) for matching target genes indicates distinct 

mechanisms of action even when both QTL types are identified.
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Figure 5. GWAS effects of m6A-QTL.
a. Overlaid Manhattan plot showing genomic position (y-axis) and m6A-QTL P value (x-

axis) for lead SNPs (points) across traits (colors) showing colocalization of GWAS variants 

and m6A-QTLs in brain. b. Example GWAS-m6A-QTL co-localization for depression-

associated A-to-G rs1827603, increasing m6A level for GRM5 in brain, with no effect on 

GRM5 expression. Boxes = 25%−75% percentile; line = median; whiskers = 1.5 IQR. c. 
Example GWAS-m6A-QTL co-localization for PEF-related T-to-C rs79966207, increasing 

m6A level for PLXNB2 in lung, with no effect on PLXNB2 expression. Boxes = 25%

−75% percentile; line = median; whiskers = 1.5 IQR. d. GWAS traits (rows) showing 

significant enrichment (heatmap) for m6A-QTLs across tissues (columns) by stratified LD 

score regression (S-LDSC) grouped by enriched tissue, and colored by expected tissue of 

action. Enrichment P value is shown in a color scale, the enrichment folds are shown for 

those traits with P < 0.05. Enrichment P value reported by S-LDSC via z-score calculation, 

not adjusted for multiple tests.
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Figure 6. Predicted m6A regulators.
a. Predicted m6A regulators (rows) supported by three lines of evidence (checkmarks): 

(i) enrichment of RNA binding protein (RBP) regulator-bound sites for m6A-QTLs in 

brain (yellow), lung (green) or muscle/heart (purple); (ii) significantly positive (red plus) 

or negative (green minus) correlation between RBP expression and methylation level its 

m6A targets; (iii) experimentally validated protein-protein interaction with known m6A 

regulators. b. Experimentally determined protein-protein interactions between predicted 

m6A regulators (grey) and known m6A regulators (colors) supported by enriched RBP 

binding in m6A-QTLs (grey), RBP-expression vs. m6A target level (blue checkmark), or 

direct interaction with known m6A regulators (green check). Highlighted RBPs (dashed 

circle) have multiple interactions with both writer adaptors and readers suggesting potential 

adapter roles. c. Examples showing correlation of RBP expression (x-axis) vs. m6A target 

methylation (y-axis) for predicted regulators STAU1 in brain. Grey shadows denote the 

95% confidence region for the regression fit. d. Examples showing correlation of RBP 

expression (x-axis) vs. m6A target methylation (y-axis) for predicted regulators CSTF2T in 

muscle/heart. Grey shadows denote the 95% confidence region for the regression fit.
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