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Abstract
We study projection-free methods for constrained Riemannian optimization. In partic-
ular, we propose a Riemannian Frank-Wolfe (RFW) method that handles constraints
directly, in contrast to prior methods that rely on (potentially costly) projections. We
analyze non-asymptotic convergence rates of RFW to an optimum for geodesically
convex problems, and to a critical point for nonconvex objectives. We also present a
practical setting under which RFW can attain a linear convergence rate. As a concrete
example, we specialize RFW to the manifold of positive definite matrices and apply it
to two tasks: (i) computing the matrix geometric mean (Riemannian centroid); and (ii)
computing the Bures-Wasserstein barycenter. Both tasks involve geodesically convex
interval constraints, for which we show that the Riemannian “linear” oracle required
by RFW admits a closed form solution; this result may be of independent interest.
We complement our theoretical results with an empirical comparison of RFW against
state-of-the-art Riemannian optimization methods, and observe that RFW performs
competitively on the task of computing Riemannian centroids.
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1 Introduction

We study the following constrained optimization problem

min
x∈X⊆M

φ(x), (1)

where φ : M → R is a differentiable function and X is a compact geodesically
convex (henceforth, g-convex) subset of a Riemannian manifold M. The objective
φ may be g-convex or nonconvex. When the constraint set X is “simple” one may
solve (1) via Riemannian projected-gradient. But in many cases, projection onto X
can be expensive to compute, motivating us to seek projection-free methods.

Euclidean (M ≡ R
n) projection-free methods based on the Frank-Wolfe (FW)

scheme [20] have recently witnessed a surge of interest in machine learning and
related fields [29, 36]. Instead of projection, such FW methods rely on access to a
“linear” oracle, that is, a subroutine that solves the problem

min
z∈X

〈z, ∇φ(x)〉 , (2)

which can sometimes bemuch simpler than projection ontoX . This attractive property
of FWmethods has been exploited in convex [2, 29], nonconvex [35], submodular [12,
21], and stochastic [24, 52] optimization problems; among others.

But as far as we are aware, FW methods have not been studied for Riemannian
manifolds. Our work fills this gap in the literature by developing, analyzing, and
experimenting with Riemannian Frank-Wolfe (RFW) methods. In addition to adapting
FW to the Riemannian setting, there is one more challenge that we must overcome:
RFW requires access to a Riemannian analog of the linear oracle (2), which can be
hard even for g-convex problems.

Therefore, to complement our theoretical analysis of RFW, we discuss in detail
practical settings that admit efficient Riemannian “linear” oracles. Specifically, we
discuss problems whereM = Pd , the manifold of (Hermitian) positive definite matri-
ces, and X is a g-convex semidefinite interval; then problem (1) assumes the form

min
X∈X⊆Pd

φ(X), where X := {X ∈ Pd | L 	 X 	 U }, (3)

where L and U are positive definite matrices. An important instance of (3) is the
following g-convex optimization problem (see §4 for details and notation):

min
X∈Pd

n∑

i=1
wiδ

2
R(X , Ai ), where w ∈ Δn, A1, . . . , An ∈ Pd , (4)

which computes the Riemannian centroid of a set of positive definite matrices (also
known as the “matrix geometric mean” and the “Karcher mean”) [5, 32, 37]. We will
show that RFW offers a simple approach for solving (4) that performs competitively
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against recently published state-of-the-art Riemannian approaches. As a second appli-
cation, we show that RFW allows for an efficient computation of Bures-Wasserstein
barycenters on the Gaussian density manifold.

Summary of results. The key contributions of this paper are as follows:

1. We introduce a Riemannian Frank-Wolfe (RFW) algorithm for addressing con-
strained g-convex optimization on Riemannian manifolds. We show that RFW
attains a non-asymptotic O(1/k) rate of convergence to the optimal objective
value, k being the number of iterations (Theorem 1). Furthermore, under addi-
tional assumptions on the objective function and the constraints, we show that
RFW can even attain linear convergence rates (Theorem 2). In the nonconvex case,
RFW attains a non-asymptotic O(1/

√
k) rate of convergence to first-order critical

points (Theorem 3). These rates are comparable to the best known guarantees for
the classical Euclidean Frank-Wolfe algorithm [29, 36].

2. While the Euclidean “linear” oracle is a convex problem, the Riemannian “linear”
oracle is nonconvex. Therefore, the key challenge of developing RFW lies in
efficiently solving the “linear” oracle. We address this problem with the following
contributions:

– We specialize RFW for g-convex problems of the form (3) on the manifold
of Hermitian positive definite (HPD) matrices. Importantly, for this problem
we develop a closed-form solution to the Riemannian “linear” oracle, which
involves solving a nonconvex semi-definite program (SDP), see Theorem 4.
We then apply RFW to computing the Riemannian mean of HPD matrices.
In comparison with state-of-the-art methods, we observe that RFW performs
competitively. Furthermore, we implementRFW for the computation ofBures-
Wasserstein barycenters on the Gaussian density manifold.

– We show that we can recover a sublinear convergence rate, even if the Rieman-
nian “linear” oracle can only be solved approximately, e.g., using relaxations
or iterative solvers. This makes the approach applicable to a wider range of
constrained optimization problems.

We believe that the closed-form solutions for the HPD “linear” oracle, which involve
a nonconvex SDP, should be of wider interest too. A similar approach can be used to
solve the Euclidean linear oracle, a convex SDP, in closed form (Appendix 1). More
broadly, we hope that our results encourage others to study RFW as well as other
examples of problems with efficient Riemannian “linear” oracles.

Related work. Riemannian optimization has a venerable history. The books [1, 58]
provide a historical perspective as well as basic theory. The focus of these books and
of numerous older works on Riemannian optimization, e.g.,[19, 25, 41, 53], is almost
exclusively on asymptotic analysis. More recently, non-asymptotic convergence anal-
ysis quantifying the iteration complexity of Riemannian optimization algorithms has
begun to be pursued [3, 10, 66]. Specifically, it is known that first-order methods, such
as Riemannian Gradient Descent, achieve a sublinear iteration complexity. However,
to the best of our knowledge, all these works either focus on unconstrained Rie-
mannian optimization, or handle constraints via projections. In contrast, we explore
constrained g-convex optimization within an abstract RFW framework, by assuming
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access to a Riemannian “linear” oracle. Several applications of Riemannian optimiza-
tion are known, including to matrix factorization on fixed-rank manifolds [57, 59],
dictionary learning [16, 56], classical optimization under orthogonality constraints
[19], averages of rotation matrices [46], elliptical distributions in statistics [54, 68],
and Gaussian mixture models [27]. Explicit theory of g-convexity on HPD matrices
is studied in [55]. Additional related work corresponding to the Riemannian mean of
HPD matrices is discussed in Sect. 4.

2 Background

We begin by noting some background and notation from Riemannian geometry. For a
deeper treatment we refer the reader to [15, 31].

A smooth manifold M is a locally Euclidean space equipped with a differential
structure. At any point x ∈ M, the set of tangent vectors forms the tangent space
TxM. Our focus is on Riemannian manifolds, i.e., smooth manifolds with a smoothly
varying inner product 〈ξ, η〉x defined on the TxM at each point x ∈ M. We write
‖ξ‖x :=

√〈ξ, ξ 〉x for ξ ∈ TxM; for brevity, we will drop the subscript on the norm
whenever the associated tangent space is clear from context. Furthermore, we assume
M to be complete, which ensures that the following map is defined on the whole
tangent space: We define the exponential map as a mapping from TxM to M by
Expx : TxM → M such that y = Expx (gx ) ∈ M along a geodesic γ : [0, 1] →
M with γ (0) = x , γ (1) = y and γ̇ (0) = gx ∈ TxM. We can define an inverse
exponential map Exp−1x : M → TxM as a diffeomorphism from the neighborhood
of x ∈ M onto the neighborhood of 0 ∈ TxM with Exp−1x (x) = 0. Note, that the
completeness of M ensures that both maps are well-defined.

Since tangent spaces are local notions, one cannot directly compare vectors lying in
different tangent spaces. To tackle this issue, we use the concept of parallel transport:
the idea is to transport (map) a tangent vector along a geodesic to the respective other
tangent space. More precisely, let x, y ∈ M with x �= y. We transport gx ∈ TxM
along a geodesic γ (where γ (0) = x and γ (1) = y) to the tangent space TyM; we
denote this by Γ

y
x gx . Importantly, the inner product on the tangent spaces is preserved

under parallel transport, so that 〈ξx , ηx 〉x =
〈
Γ

y
x ξx , Γ

y
x ηx

〉
y , where ξx , ηx ∈ TxM,

while 〈·, ·〉x and 〈·, ·〉y are the respective inner products.

2.1 Gradients, convexity, smoothness

Recall that the Riemannian gradient grad φ(x) is the unique vector in TxM such that
the directional derivative

Dφ(x)[v] = 〈grad φ(x), v〉x , ∀v ∈ TxM.

Whenoptimizing functions using gradients, it is useful to impose someadded structure.
The twomain properties that we require are sufficiently smooth gradients and geodesic
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convexity. We say φ :M→ R is L-smooth, or that it has L-Lipschitz gradients, if

‖ grad φ(y)− Γ
y

x grad φ(x)‖ ≤ Ld(x, y) ∀ x, y ∈M , (5)

where d(x, y) is the geodesic distance between x and y; equivalently,

φ(y) ≤ φ(x)+
〈
gx , Exp

−1
x (y)

〉

x
+ L

2 d2(x, y) ∀x, y ∈M; gx ∈ TxM . (6)

We say φ :M→ R is geodesically convex (g-convex) if

φ(y) ≥ φ(x)+
〈
gx , Exp

−1
x (y)

〉

x
∀x, y ∈M; gx ∈ TxM , (7)

and call it μ-strongly g-convex (μ ≥ 0) if

φ(y) ≥ φ(x)+
〈
gx , Exp

−1
x (y)

〉

x
+ μ

2 d2(x, y) ∀x, y ∈M; gx ∈ TxM . (8)

The following observation underscores the reason why g-convexity is a valuable
geometric property for optimization.

Proposition 1 (Optimality) Let x∗ ∈ X ⊂M be a local optimum for (1). Then, x∗ is

globally optimal, and
〈
grad φ(x∗), Exp−1x∗ (y)

〉

x∗
≥ 0 for all y ∈ X .

2.2 Projection-free vs. Projection-basedmethods

The growing body of literature on Riemannian optimization considers mostly
projection-based methods, such as Riemannian Gradient Decent (RGD) or Rieman-
nian Steepest Decent (RSD) [1]. Such methods and their convergence guarantees
typically require Lipschitz assumptions. However, the objectives of many classic opti-
mization and machine learning tasks are not Lipschitz on the whole manifold. In such
cases, an additional compactness argument is required. However, in projection-based
methods, the typically used retraction back onto the manifold may not be guaranteed
to land in this compact set. Thus, in each iteration, an additional and potentially expen-
sive projection step is needed to ensure that the update remains in the compact region
where the gradient is Lipschitz. On the other hand, projection-free methods, such as
FW, bypass this issue, because their update is guaranteed to stay within the compact
feasible region. Importantly, in some problems, the Riemannian linear oracle at the
heart of FW can be less expensive than computing a projection back onto the compact
set. A detailed numerical study comparing the complexity of projections with that of
computing linear minimizers in the Euclidean case can be found in [18]. The efficiency
of linear minimizers is especially significant for the applications highlighted in this
paper, where the linear oracle even admits a closed form solution (see Sect. 4.1).
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2.3 Constrained optimization in Riemannian space

A large body of literature has considered the problem of translating a constrained
Euclidean optimization problem into an unconstrained Riemannian problem, by
encoding the primary constraint in the manifold structure. However, often a problem
has additional constraints, requiring a Riemannian approach to constrained optimiza-
tion. We list below notable examples, including those that will be covered in the
application section of the paper.

Examples on the manifold of positive definite matrices include the computation of
Riemannian centroids (with interval constraints, see Sect. 4.2.1) and learning deter-
minantal point processes (with interval constraints [44]). A related problem is that of
computing Wasserstein-Barycenters on the Bures manifold (wirh interval constraints,
see Sect. 4.3.1). The k-means clustering algorithm corresponds to an optimization task
on the Stiefel manifold with equality and inequality constraints [14]. Non-negative
PCA can be computed on the sphere with equality constraints [47]. The synchroniza-
tion of data matrices can be written as an optimization task on the manifold of the
orthogonal group with a determinant constraint (see [61, Sect. 5]). Computing a mini-
mum balanced cut for graph bisection can be computed on the Oblique manifold with
quadratic equality constraints [41].

3 Riemannian Frank-wolfe

The condition
〈
grad φ(x∗), Exp−1x∗ (y)

〉

x∗
≥ 0 for all y ∈ X in Proposition 1 lies at the

heart of Frank-Wolfe (also known as “conditional gradient”) methods. In particular,
if this condition is not satisfied, then there must be a feasible descent direction — FW
schemes seek such a direction and update their iterates [20, 29]. This high-level idea
is equally valid in the Riemannian setting. Algorithm 1 recalls the basic (Euclidean)
FW method, which solves minx∈X φ(x), and Algorithm 2 introduces its Riemannian
version (RFW), obtained by simply replacing Euclidean objects with their Riemannian
counterparts. In the following, 〈·, ·〉 will denote 〈·, ·〉xk

unless otherwise specified.

Algorithm 1 Euclidean Frank-Wolfe without line-search
1: Initialize with a feasible point x0 ∈ X ⊂ R

n

2: for k = 0, 1, . . . do
3: Compute zk ← argmin

z∈X
〈∇φ(xk ), z − xk 〉

4: Let sk ← 2
k+2

5: Update xk+1 ← (1− sk )xk + sk zk
6: end for

Notice that to implement Algorithm 1, X must be compact and convex. Convexity
ensures that after the update in Step 5, xk+1 remains feasible, while compactness
ensures that the linear oracle in Step 3 has a solution. To obtain RFW, we first replace
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the linear oracle (Step 3 in Algorithm 1) with the Riemannian “linear oracle”:

min
z∈X

〈
grad φ(xk), Exp

−1
xk

(z)
〉
, (9)

where now X is assumed to be a compact g-convex set. Similarly, observe that Step 5
of Algorithm 1 updates the current iterate xk along a straight line joining xk with zk .
Thus, by analogy, we replace this step by moving xk along a geodesic joining xk with
zk . The resulting RFW algorithm is presented as Alg 2.

Algorithm 2 Riemannian Frank-Wolfe (RFW) for g-convex optimization
1: Initialize x0 ∈ X ⊆M; assume access to the geodesic map γ : [0, 1] →M
2: for k = 0, 1, . . . do
3: zk ← argmin

z∈X

〈
grad φ(xk ), Exp−1xk (z)

〉

4: Let sk ← 2
k+2

5: xk+1 ← γ (sk ), where γ (0) = xk and γ (1) = zk
6: end for

While we obtained Algorithm 2 purely by analogy, we must still show that this
analogy results in a valid algorithm. In particular, we need to show that Algorithm 2
converges to a solution of (1). We will in fact prove a stronger result that RFW con-
verges globally at the rate O(1/k), i.e., φ(xk)−φ(x∗) = O(1/k), which matches the
rate of the Euclidean FW method.

3.1 Convergence analysis

We make the following smoothness assumption:

Assumption 1 (Smoothness) The objective φ has a locally Lipschitz continuous gra-
dient on X , that is, there exists a constant L such that for all x, y ∈ X we have

‖grad φ(y)− Γ
y

x grad φ(x)‖ ≤ L d(x, y). (10)

Next, we introduce a quantity that will play a central role in the convergence rate of
RFW, namely the curvature constant

Mφ := sup
x,y,z∈X

2
η2

[
φ(y)− φ(x)−

〈
grad φ(x), Exp−1x (y)

〉]
. (11)

Ananalogous quantity is used in the analysis of theEuclideanFW [29]. In the following
we adapt proof techniques from [29] to the Riemannian setting. Here and in the
following, y = γ (η) for some η ∈ [0, 1] and a geodesic map γ : [0, 1] → M
with γ (0) = x and γ (1) = z (denoted in the following as γxz). Lemma 1 relates the
curvature constant (11) to the Lipschitz constant L .
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Lemma 1 Let φ :M→ R be L-smooth on X , and let diam(X ) := supx,y∈X d(x, y).
Then, the curvature constant Mφ satisfies the bound Mφ ≤ L diam(X )2.

Proof Let x, z ∈ X and η ∈ (0, 1); let y = γxz(η) be a point on the geodesic joining
x with z. This implies 1

η2
d(x, y)2 = d(x, z)2. From (6) we know that

∣∣∣φ(y)− φ(x)− 〈grad φ(x),Exp−1x (y)〉
∣∣∣
2 ≤ L

2
d(x, y)2

whereupon using the definition of the curvature constant we obtain

Mφ ≤ sup
2

η2

L

2
d(x, y)2 = sup L d(x, z)2 ≤ L · diam(X )2 . (12)

��
We note below an analog of the Lipschitz inequality (6) using the constant Mφ .

Lemma 2 (Lipschitz) Let x, y, z ∈ X and η ∈ [0, 1] with y = γxz(η). Then,

φ(y) ≤ φ(x)+ η
〈
grad φ(x), Exp−1x (z)

〉
+ 1

2η
2Mφ .

Proof From definition (11) of the constant Mφ we see that

Mφ ≥ 2
η2

(
φ(y)− φ(x)−

〈
grad φ(x), Exp−1x (y)

〉)
,

which we can rewrite as

φ(y) ≤ φ(x)+
〈
grad φ(x), Exp−1x (y)

〉
+ 1

2η
2Mφ. (13)

Furthermore, since y = γxz(η), we have Exp−1x (y) = η Exp−1x (z), and therefore

〈
grad φ(x), Exp−1x (y)

〉
=

〈
grad φ(x), η Exp−1x (z)

〉
= η

〈
grad φ(x), Exp−1x (z)

〉
.

Plugging this equation into (13) the claim follows. ��
We need one more technical lemma (easily verified by a quick induction).

Lemma 3 (Stepsize for RFW) Let (ak)k∈I be a nonnegative sequence that fulfills

ak+1 ≤ (1− sk)ak + 1
2 s2k Mφ. (14)

If sk = 2
(k+2) , then, ak ≤ 2Mφ

(k+2) .

We are now ready to state our first main convergence result, Theorem 1 that estab-
lishes a global iteration complexity for RFW.
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Theorem 1 (Rate) Let sk = 2
k+2 , and let X∗ be a minimum of φ. Then, the sequence

of iterates Xk generated by Algorithm 2 satisfies φ(Xk)− φ(X∗) = O(1/k).

Proof The proof of this claim is straightforward; indeed

φ(Xk+1)− φ(X∗)

≤ φ(Xk)− φ(X∗)+ sk

〈
grad φ(Xk), Exp

−1
Xk

(Zk)
〉
+ 1

2 s2k Mφ

≤ φ(Xk)− φ(X∗)+ sk

〈
grad φ(Xk), Exp

−1
Xk

(X∗)
〉
+ 1

2 s2k Mφ

≤ φ(Xk)− φ(X∗)− sk(φ(Xk)− φ(X∗))+ 1
2 s2k Mφ

= (1− sk)(φ(Xk)− φ(X∗))+ 1
2 s2k Mφ,

where the first inequality follows from Lemma 2, while the second one from Zk being
an argmin obtained in Step 3 of the algorithm. The third inequality follows from
g-convexity of φ. Setting ak = φ(Xk)− φ(X∗) in Lemma 3 we immediately obtain

φ(Xk)− φ(X∗) ≤ 2Mφ

k + 2
, k ≥ 0,

which is the desired O(1/k) convergence rate. ��
Theorem 1 provides a global sublinear convergence rate for RFW. Typically, FW
methods trade off their simplicity for this slower convergence rate, and even for smooth
strongly convex objectives they do not attain linear convergence rates [29]. We study
in Sect. 3.2 a setting that permits RFW to attain a linear rate of convergence.

3.2 Linear convergence ofRFW

In general, the sublinear convergence rate that we derived in the previous section is
best-possible for Frank-Wolfe methods. This is due to the following phenomenon,
which has been studied extensively in the Euclidean setting [13, 62]: If the optimum
lies on the boundary of the constraint set X , then the FW updates “zig-zag”, resulting
in a slower convergence. In this case, the upper bound on the global convergence
rate is tight. If, however, the optimum lies in the strict interior of the constraint set,
Euclidean FW is known to converge at a linear rate [22, 23]. Remarkably, under
a similar assumption, RFW also displays global linear convergence, which we will
formally prove below (Theorem 2). Notably, for the special case of the geometric
matrix mean that we analyze in the next section, this strict interiority assumption will
always be valid, provided that not all the matrices are the same.

3.2.1 Linear convergence under strict interior assumption

We use a Riemannian extension to the well-known Polyak-Łojasiewicz (PL) inequal-
ity [42, 49], which we define below. Consider the minimization

min
x∈M

f (x),
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and let f ∗ be the optimal function value. We say that f satisfies the PL inequality if
for some μ > 0,

1
2‖grad f (x)‖2 ≥ μ

(
f (x)− f ∗

) ∀x, y ∈M. (15)

Inequality (15) is weaker than strong convexity (and is in fact implied by it). It has been
widely used for establishing linear convergence rates of gradient-based methods; see
[33] for several (Euclidean) examples, and [65] for a Riemannian example. We will
make use of inequality (15) for obtaining linear convergence of RFW, by combining
it with a strict interiority condition on the minimum.

Theorem 2 (Linear convergence RFW) Suppose that φ is strongly g-convex with con-
stant μ and that its minimum lies in a ball of radius r that strictly inside the constraint

set X . Define Δk := φ(Xk) − φ(X∗) and let the step-size sk = r
√

μΔk√
2Mφ

. Then, RFW

converges linearly since it satisfies

Δk+1 ≤
(
1− r2μ

4Mφ

)
Δk .

Proof Let Br (X∗) ⊂ X be a ball of radius r containing the optimum. Let

Wk := argmaxξ∈TXk‖ξ‖≤1
〈ξ, grad φ(Xk)〉

be the direction of steepest descent in the tangent space TXk . The point Pk =
ExpXk

(r Wk) lies in X . Consider now the following inequality

〈
−Exp−1Xk

(Pk), grad φ(Xk)
〉
= −〈grad φ(Xk), r Wk〉 = −r‖grad φ(Xk)‖, (16)

which follows upon using the definition of Wk . Thus, we have the bound

Δk+1 ≤ Δk + sk

〈
grad φ(Xk), Exp

−1
Xk

(Xk+1)
〉
+ 1

2 s2k Mφ

≤ Δk − skr‖grad φ(Xk)‖ + 1
2 s2k Mφ

≤ Δk − skr
√
2μ

√
Δk + 1

2 s2k Mφ,

where the first inequality follows from the Lipschitz-bound (Lemma 2), the second
one from (16), and the third one from the PL inequality (which, in turn holds due to

the μ-strong g-convexity of φ). Now setting the step size sk = r
√

μΔk√
2Mφ

, we obtain

Δk+1 ≤
(
1− r2μ

4Mφ

)
Δk,

which delivers the claimed linear convergence rate. ��
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Theorem 2 provides a setting where RFW can converge fast, however, it uses step
sizes sk that require knowing φ(X∗)1; in case the optimal value is not available, we
can use a worse value, which will still yield the desired inequality.

Remark 1 (Necessity of strict interior assumption) For optimization tasks with poly-
tope constraints that do not fulfill a strict interior assumption as the one described
above, several EFW variants achieve linear convergence [36]. Notable examples
include Away-step FW [23, 62], Pairwise FW [45] and Fully-corrective FW [26].
One may ask, whether these variants can be generalized to the Riemannian case. The
first difficulty lies in finding a Riemannian equivalent of the polytope constraint set,
which is defined as the convex hull of a finite set of vectors (atoms). Naturally, we
could consider the convex hull of a finite set of points on a manifold, which is the
intersection of all convex set that contain them. Unfortunately, such a set is in general
not compact – compactness is only guaranteed for Hadamard manifolds under addi-
tional, restrictive conditions [39]. Even in this special case, ensuring that the resulting
constraint sets have sufficiently “good” geometry is not straightforward.

3.3 RFW for nonconvex problems

Finally, we want to consider the case where φ in Eq. 1 may be nonconvex. In this
case, we cannot hope to find the global minimum with first-order methods, such as
RFW. However, we can compute first-order critical point via RFW. For the setup and
analysis, we follow the Euclidean case [35].

We first introduce the Frank-Wolfe gap as a criterion for evaluating convergence
rates. For X ∈ X , we write

G(X) := max
Z∈X

〈
Exp−1Z (X), − grad φ(X)

〉
. (17)

With this, we can show the following sublinear convergence guarantee:

Theorem 3 (Rate (nonconvex case)) Let G̃k := min0≤k≤K G(Xk) (where G(Xk)

denotes the Frank-Wolfe gap at Xk). After K iterations of Algorithm 2, we have
G̃k ≤ max{2h0,Mφ}√

K+1 .

The proof utilizes techniques similar to those in [35, Theorem 1].

4 Specializing RFW for HPDmatrices

In this section we study a concrete setting for RFW, namely, a class of g-convex
optimization problems with Hermitian positive definite (HPD)matrices.Wewill show
that the Riemannian linear oracle (9) admits an efficient solution for this class of
problems, thereby allowing an efficient implementation of Algorithm 2. The concrete

1 This step size choice is reminiscent of the so-called “Polyak stepsizes” used in the convergence analysis
of subgradient methods [50].
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class of problems that we consider is the following:

min
X∈X⊆Pd

φ(X), where X := {X ∈ Pd | L 	 X 	 U }, (18)

where φ is a g-convex function and X is a “positive definite interval” (which is easily
seen to be a g-convex set).Note that the setX actually does not admit an easy projection
for matrices. Problem (18) captures several g-convex optimization problems, of which
perhaps the best known is the taskof computing thematrix geometricmean (also known
as the the Riemannian centroid or Karcher mean)—see Sect. 4.2.1.

We briefly recall some facts about the Riemannian geometry of HPD matrices
below. For a comprehensive overview, see, e.g., [5, Chapter 6]. We denote by Hd the
set of d × d Hermitian matrices. The most common Riemannian geometry on Pd is
induced by

〈A, B〉X := tr(X−1AX−1B), where A, B ∈ Hd . (19)

This metric induces the geodesic γ : [0, 1] → Pd between X , Y ∈ Pd given by

γ (t) := X 1/2(X−1/2Y X−1/2)t X 1/2, t ∈ [0, 1]. (20)

The corresponding Riemannian distance is

d(X , Y ) := ‖log(X−1/2Y X−1/2)‖F, X , Y ∈ Pd . (21)

The Riemannian gradient grad φ is obtained from the Euclidean one (∇φ) as follows

grad φ(X) = X∇Hφ(X)X , (22)

where ∇Hφ(X) := 1
2

(∇φ(X)+ (∇φ(X))∗
)
denotes the (Hermitian) symmetrization

of the gradient. The exponential map and its inverse at a point P ∈ Pd are given by

ExpX (A) = X 1/2 exp(X−1/2 AX−1/2)X 1/2, A ∈ TXPd ≡ Hd ,

Exp−1X (Y ) = X 1/2 log(X−1/2Y X−1/2)X 1/2, X , Y ∈ Pd ,

where exp(·) and log(·) denote the matrix exponential and logarithm, respectively.
Observe that using (22) we obtain the identity

〈
grad φ(X), Exp−1X (Y )

〉

X
=

〈
X 1/2∇Hφ(X)X 1/2, log(X−1/2Y X−1/2)

〉
. (23)

With these details, Algorithm 2 can almost be applied to (18) — the most crucial
remaining component is the Riemannian linear oracle, which we now describe.
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4.1 Solving the Riemannian linear oracle

For solving (18), the Riemannian linear oracle (see (9)) requires solving

min
L	Z	U

〈
X

1/2
k ∇Hφ(Xk)X

1/2
k , log

(
X−1/2

k Z X−1/2
k

)〉
. (24)

Problem (24) is a non-convex optimization problem over HPD matrices. However,
remarkably, it turns out to have a closed form solution. Theorem4presents this solution
and is our main technical result for Sect. 4.

Theorem 4 Let L, U ∈ Pd such that L ≺ U. Let S ∈ Hd and X ∈ Pd be arbitrary.
Then, the solution to the optimization problem

min
L	Z	U

tr(S log(X Z X)), (25)

is given by Z = X−1Q
(

P∗[− sgn(D)]+P + L̂
)

Q∗X−1, where S = Q DQ∗ is a

diagonalization of S, Û − L̂ = P∗P with L̂ = Q∗X L X Q and Û = Q∗XU X Q.

For the proof of Theorem 4, we need a fundamental lemma about eigenvalues of
Hermitian matrices (Lemmas 4). First, we need to introduce some additional notation.

For x ∈ R
d , let x↓ =

(
x↓1 , . . . , x↓d

)
denote the vector with entries of x in decreasing

order, i.e., x↓1 ≥ . . . ≥ x↓d . For x, y ∈ R
d we say that x is weakly majorized by y

(x ≺w y), if
∑k

i=1 x↓i ≤
∑k

i=1 y↓i for 1 ≤ k ≤ d. We can now recall the following
lemma on eigenvalues of Hermitian matrices, which can be found, e.g., in [4, Problem
III.6.14]:

Lemma 4 ([4]) Let X , Y be HPD matrices. Then

λ↓(X) · λ↑(Y ) ≺w λ(XY ) ≺w λ↓(X) · λ↓(Y ),

where λ↓(X) (λ↑) denote eigenvalues of X arranged in decreasing (increasing) order,
≺w denotes the weak majorization order and · denotes the elementwise product. If
X , Y are Hermitian, we have

〈
λ↓(X), λ↑(Y )

〉
≤ tr(XY ) ≤

〈
λ↓(X), λ↓(Y )

〉
,

with equality, if the the product XY is symmetric.

Remark 2 We recall a well-known fact on solving the trace minimization problem
minY tr XY . Diagonalizing X , Y allows for rewriting the minimization problem as
minS tr DQT SQ, where D, S are diagonal and Q orthogonal. To see for which S
the minimum is attained, note that min

∑
i j di s j q2

i j ≥ min
∑

i j di s j ri j , where (ri j )

is doubly-stochastic. By Birkhoff’s theorem the minimum occurs for permutation
matrices, i.e., min

∑
i di sσ(i). By the rearrangement inequality this is minimized, if

the order of the indices is reversed.
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Proof (Theorem 4) First, introduce the variable Y = X Z X ; then (25) becomes

min
L ′	Y	U ′ tr(S log Y ), (26)

where the constraints have also been modified to L ′ 	 Y 	 U ′, where L ′ = X L X and
U ′ = XU X . Diagonalizing S as S = Q DQ∗, we see that tr(S log Y ) = tr(D log W ),
where W = Q∗Y Q. Thus, instead of (26) it suffices to solve

min
L ′′	W	U ′′ tr(D log W ), (27)

where L ′′ = Q∗L ′Q and U ′′ = Q∗U ′Q. We have strict inequality U ′′ � L ′′, thus,
our constraints are 0 ≺ W − L ′′ 	 U ′′ − L ′′, which we may rewrite as 0 ≺ R 	 I ,
where R = (U ′′ − L ′′)−1/2(W − L ′′)(U ′′ − L ′′)−1/2. Notice that

W = (U ′′ − L ′′)1/2R(U ′′ − L ′′)1/2 + L ′′.

Thus, problem (27) now turns into

min
0≺R	I

tr(D log(P∗R P + L ′′)) , (28)

where U ′′ − L ′′ = P∗P . We want to construct an R that attains the minimum. Note
that using Lemma 4 we see that

tr(D log(P∗R P + L ′′)) ≥ λ↑(D) · λ↓ (
log(P∗R P + L ′′)

)
.

Remark 2 ensures that the minimum attains the lower bound, i.e., the minimum is
attained by matching the eigenvalues of D and log(P∗R P + L ′′) in reverse orders.
Note that the matrix logarithm log(·) and the map R �→ P∗R P + L ′′ are operator
monotone. Now, without loss of generality, assume that R is diagonal and recall that,
by construction 0 ≺ R 	 I . Consider

rii =
{
0 dii ≥ 0

1 dii < 0.
(29)

This ensures that

1. if dii > 0, the corresponding element of λ↓(log(P∗R P + L ′′)) is minimized,
2. if dii ≤ 0, the corresponding element of λ↓(log(P∗R P + L ′′)) is maximized.

With that, the minimum of the trace is attained. Thus, we see that

Y = Q(P∗R P + L ′′)Q∗ = Q(P∗
[− sgn(D)

]
+ P + L ′′)Q∗

and we immediately obtain the optimal Z = X−1Y X−1. ��
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Remark 3 Computing the optimal direction Zk takes one Cholesky factorization, two
matrix square roots (Schur method), eight matrix multiplications, and one eigenvalue
decomposition. This gives a complexity of O(N 3). On our machines, we report ≈
1
3 N 3 + 2× 28.3̄N 3 + 8× 2N 3 + 20N 3 ≈ 93N 3.

4.2 Application to the Riemannianmean

4.2.1 Computing the Riemannian mean

Statistical inference frequently involves computing averages of input quantities. Typ-
ically encountered data lies in Euclidean spaces where arithmetic means are the
“natural” notions of averaging. However, the Euclidean setting is not always the most
natural or efficient way to represent data. Many applications involve non-Euclidean
data such as graphs, strings, or matrices [38, 48]. In such applications, it is often
beneficial to represent the data in its natural space and adapt classical tools to the
specific setting. In other cases, a problem might be very hard to solve in Euclidean
space but may become more accessible when viewed through a different geometric
lens. Specifically, with a suitable choice of the Riemannian metric, a Euclidean non-
convex problem may be geodesically convex. Hence, we can give global convergence
guarantees for solving such problems with Riemannian optimization methods.

This section considers one of these cases, namely the problem of determining the
geometric matrix mean (Karcher mean problem).While there exists an intuitive notion
for the geometric mean of sets of positive real numbers, this notion does not immedi-
ately generalize to sets of positive definitematrices due to the lack of commutativity on
matrix spaces. Over a collection of Hermitian, positive definite matrices the geometric
mean can be viewed as the geometric optimization problem

G := argmin
X�0

[
φ(X) =

∑m

i=1 wiδ
2
R(X , Ai )

]
, (30)

where δR denotes the Riemannian metric. In a Euclidean setting, the problem is non-
convex. However, one can viewHermitian, positivematrices as points on aRiemannian
manifold and compute the geometric mean as the Riemannian centroid. The corre-
sponding optimization problem (Eq. 30) is geodesically convex [51]. In this section,
we look at the problem through both geometric lenses and provide efficient algorith-
mic solutions while illustrating the benefits of switching geometric lenses in geometric
optimization problems.

There exists a large body of work on the problem of computing the geometric
matrix means [30]. Classic algorithms likeNewton’s method orGradient Decent (GD)
have been successfully applied to the problem. Standard toolboxes implement effi-
cient variations of GD like Steppest Decent or Conjugate Gradient (Manopt [11]) or
Richardson-like linear-gradient decent (Matrix Means Toolbox [9]). Recent work by
Yuan et al. [64] analyzes condition numbers of Hessians in Riemannian and Euclidean
steepest-decent approaches that provide theoretical arguments for the good perfor-
mance of Riemannian approaches.
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Recently, T. Zhang developed a majorization-minimization approach with asymp-
totic linear convergence [67]. In this section, we use the Riemannian Frank-Wolfe
algorithm for computing the geometric matrix mean. Here, we exploit the strong
geodesic convexity of the problem to achieve global linear convergence. To comple-
ment this analysis, we show that recent advances in nonconvex analysis [35] can be
used to develop a Frank-Wolfe scheme (EFW) for the nonconvex Euclidean case (see
Appendix 1).

In the simple case of two PSDmatrices, X and Y, one can view the geometric mean
as their metric midpoint computed by [34]

G(X , Y ) = X#t Y = X
1
2

(
X−

1
2 Y X−

1
2

)t
X

1
2 . (31)

More generally, for a collection of M matrices, the geometric mean can be seen as a
minimization problem of the sum of squares of distances [6],

G(A1, . . . , AM ) = argmin
X�0

M∑

i=1
δ2R(X , Ai ) , (32)

where δR(X , Y ) = ‖log(X− 1
2 Y X− 1

2 )‖F as introduced earlier. Here we consider the
more general weighted geometric mean:

G(A1, . . . , AM ) = argmin
X�0

M∑

i=1
wiδ

2
R(X , Ai ) . (33)

E. Cartan showed in a Riemannian setting that a global minimum exists, which led to
the term Cartan mean frequently used in the literature. In this setting, one can view
the collection of matrices as points on a Riemannian manifold. H. Karcher associated
the minimization problem with that of finding centers of masses on these manifolds
[32], hence motivating a second term to describe the geometric matrix mean (Karcher
mean).

The geometric matrix mean enjoys several key properties. We list below the ones
of crucial importance to our paper and refer the reader to [37, 40] for a more extensive
list. To state these results, we recall the general form of the two other basic means
of operators: the (weighted) harmonic and arithmetic means, denoted by H and A
respectively.

H :=
(∑M

i=1 wi A−1i

)−1
, A :=

∑M

i=1 wi Ai .

Then, one can show the following well-known operator inequality that relates H ,
G, and A:
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Lemma 5 (Means Inequality, [5]) Let A1, . . . , AM > 0, and let H , G, and A denote
their (weighted) harmonic, geometric, and arithmetic means, respectively. Then,

H 	 G 	 A . (34)

The key computational burden of all our algorithms lies in computing the gradient
of the objective function (30). A short calculation (see e.g., [5, Ch. 6]) shows that if
f (X) = δ2R(X , A), then ∇ f (X) = X−1 log(X A−1). Thus, we immediately obtain

∇φ(X) =
∑

i
wi X−1 log(X A−1i ).

4.2.2 Implementation

We compute the geometric matrix mean with Algorithm 2. For the PSDmanifold, line
3 can be written as

Zk ← argmin
H	Z	A

〈
X

1/2
k ∇φ(Xk)X

1/2
k , log

(
X−1/2

k Z X−1/2
k

)〉
. (35)

Note that the operator inequality H 	 G 	 A given by Lemma 5 plays a crucial
role: It shows that the optimal solution lies in a compact set so we may as well
impose this compact set as a constraint to the optimization problem (i.e., we set
X = {H 	 Z 	 A}). We implement the linear oracles as discussed above: In the
Euclidean case, a closed-form solution is given by

Z = H + P∗Q[− sgn(Λ)]+Q∗P, (36)

where A − H = P∗P and P∇φ(Xk)P∗ = QΛQ∗ (see Thm. 7). Analogously, for
the Riemannian case, the “linear” oracle

min
H	Z	A

〈∇φ(Xk), log(Z)〉 , (37)

is well defined and solved by

Z = Q
(

P∗[− sgn(Λ)]+P + Ĥ
)

Q∗ , (38)

with Â − Ĥ = P∗P , Â = Q∗AQ, Ĥ = Q∗H Q and ∇φ(Xk) = QΛQ∗ (see Thm.
4). The resulting Frank-Wolfe method for the geometric matrix mean is given by
Algorithm 3.
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Algorithm 3 FW for fast Geometric mean (GM)/ Wasserstein mean (WM)

1: (A1, . . . , AN ), w ∈ R
N+

2: X̄ ≈ argmin
X�0

∑
i wi δ

2
R(X , Ai )

3: β = min1≤i≤N λmin(Ai )

4: for k = 0, 1, . . . do
5: Compute gradient.
6: GM: ∇φ(Xk ) = X−1k

(∑
i wi log(Xk A−1i )

)

7: WM: ∇φ(Xk ) =∑
i wi

(
I − (Ai Xk )−1/2Ai

)

8: Compute Zk :

9: GM: Zk ← argmin
H	Z	A

〈
X1/2

k ∇φ(Xk )X1/2
k , log(X−1/2k Z X−1/2k )

〉

10: WM: Zk ← argmin
β I	Z	A

〈
X1/2

k ∇φ(Xk )X1/2
k , log(X−1/2k Z X−1/2k )

〉

11: Let αk ← 2
k+2 .

12: Update X :
13: Xk+1 ← Xk#αk Zk
14: end for
15: return X̄ = Xk

4.3 Application to Bures-wasserstein barycenters

4.3.1 Computing Bures-Wasserstein barycenters on the Gaussian density manifold

As a second application of RFW, we consider the computation of Bures-Wasserstein
barycenters of multivariate (centered) Gaussians. This application is motivated by
optimal transport theory; in particular, the Bures-Wasserstein barycenter is the solu-
tion to the multi-marginal transport problem [8, 43]: Let {Ai }mi=1 ∈ Pd and w =
(w1, . . . , wm) a vector of weights (

∑
i wi = 1; wi > 0,∀i). The minimization task

min
X∈Pd
X�0

m∑

i=1
wi d

2
W (X , Ai ) (39)

is called multi-marginal transport problem. Its unique minimizer

Ω(w; {Ai }) = argmin
X�0

m∑

i=1
wi d

2
W (X , Ai ) ∈ Pd

is the Bures-Wasserstein barycenter. Here, dW denotes the Wasserstein distance

dW (X , Y ) = [
tr(X + Y )− 2tr

(
X1/2Y X1/2)1/2]1/2 . (40)

To see the connection to optimal transport, note that Eq. 39 corresponds to a least-
squares optimization over a set of multivariate center Gaussians with respect to the
Wasserstein distance. The Gaussian density manifold is isomorphic to the manifold of
symmetric positive definitematrices, which allows for a direct application of RFW and
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the setup in the previous section to Eq. 39, albeit with a different set of constraints.
In the following, we discuss a suitable set of constraints and adapt RFW for the
computation of the Bures-Wasserstein barycenter (short: Wasserstein mean).

First, note that as for the Karcher mean, one can show that the Wasserstein mean
of two matrices is given in closed form; namely as

X♦t Y = (1− t)2X + t2Y + t(1− t)
(
(XY )1/2 + (Y X)1/2

)
. (41)

However, the computation of the barycenter of m matrices (m > 2) requires solving a
quadratic optimization problem. Note, that Eq. 41 defines a geodesic map from X to
Y . Unfortunately, an analog of the means inequality does not hold in the Wasserstein
case. However, one can show, that the arithmetic matrix mean always gives an upper
bound, providing one-sided constraints [7]:

Ai♦t A j 	 Ai + A j

2
,

and similarly for the arithmetic mean A(w; {Ai }) of m matrices. Moreover, one can
show that α I 	 X [8], where α is the minimal eigenvalue over {Ai }mi=1, i.e.

α = min
1≤ j≤m

λmin(A j ) .

In summary, this gives the following constraints on the Wasserstein mean:

α I 	 Ω(w; {Ai }) 	 A(w; {Ai }) . (42)

Next, we will derive the gradient of the objective function. According to Eq. 39,
the objective is given as

φ(X) :=
∑

j
w j

[
tr(A j )+ tr(X)− 2 tr

(
A1/2

j X A1/2
j

)1/2]1/2
. (43)

Two expressions for the gradient of (43) are derived in the following.

Lemma 6 Let φ be given by (43). Then, its gradient is

∇φ(X ,A) =
∑

j

ω j

(
I − A j#X−1

)
. (44)

Proof

∇φ(X ,A) = d

d X

∑

j

w j tr A j

︸ ︷︷ ︸
vanishes

+ d

d X

∑

j

w j

(
tr(X)− 2 tr

(
A1/2

j X A1/2
j

)1/2)

=
∑

j

w j
d

d X
tr(X)−

∑

j

w j2
d

d X
tr

(
A1/2

j X A1/2
j

)1/2
.
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Note that d
d X tr(X) = I . Consider

2
d

d X
tr

(
A1/2X A1/2)1/2 (1)= 2

d

d X

[((
A1/2X A1/2)1/2)∗((

A1/2X A1/2)1/2)]1/2

(2)= 2
d

d X

(
A1/2X A1/2)1/2

= A1/2(A1/2X A1/2)−1/2A1/2

= A1/2(A−1/2X−1A−1/2
)1/2

A1/2

= A#X−1 ,

where (1) follows from the chain rule and (2) from A and X being symmetric and
positive definite: If A and X are symmetric and positive definite, then A has a unique
positive definite root A1/2 and therefore

(
A1/2X A1/2)∗ = (

A1/2∗X∗A1/2∗) = A1/2X A1/2 .

Putting everything together, the desired expression follows as

∇φ(X ,A) =
∑

j

ω j
(
I − A j#X−1

)
. (45)

��

4.3.2 Implementation

Given a set of constraints and an expression for the gradient, we can solve Eq. 39 with
RFW using the following setup: We write the log-linear oracle as

Zk ∈ argmin
α I	Z	A

〈grad φ(X),Exp−1X (Z)〉 , (46)

where grad φ(X) is the Riemannian gradient of φ and Exp−1X (Z) the exponential map
with respect to the Riemannian metric. The constraints are given by Eq. 42. Since the
constraint set is given by an interval of the form L 	 Z 	 U , the oracle can be solved
in closed form using Theorem 4. The resulting algorithm is given in Algorithm 3.

5 Approximately solving the Riemannian “linear” oracle

In the previous section, we have given examples of applications where the Riemannian
“linear” oracle can be solved in closed form – rendering the resulting RFW algorithm
into a practical method. Unfortunately, the “linear” oracle is in general a nonconvex
subroutine. Therefore, it can be challenging to find efficient solutions for constrained
problems in practice.
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One remedy for such situations is to solve the “linear” oracle only approximately. In
the following, we show that we can recover sublinear convergence rates for RFW, even
if we solve the “linear” oracle only approximately. This extension greatly widens the
range of possible applications for RFW. For instance, while we currently do not have
closed-form solutions for the“linear” oracle in some of the examples in Sect. 2.3, we
could find approximate solutions via relaxations or iteratively solving the respective
subroutine.

In the following, we say that Z ′ ∈ X is a δ-approximate linear minimizer, if

〈
grad φ(Xk), Exp

−1
Xk

(Z ′)
〉
≤ min

Z∈X

〈
Exp−1Xk

(Z), grad φ(Xk)
〉
+ 1

2
δηMφ .

We give the following sublinear convergence guarantee:

Theorem 5 Let X∗ be a minimum of a geodesically convex function φ and δ ≥ 0 the
accuracy to which the “linear” oracle is solved in each round. Then, the sequence of
iterates Xk generated by Algorithm 2 satisfies

φ(Xk)− φ(X∗) ≤ 2Mφ

k + 2
(1+ δ) .

The proof relies on adapting proof techniques from [17, 29] to the Riemannian setting.
It utilizes the following auxiliary lemma:

Lemma 7 For a steps size η ∈ (0, 1) and accuracy δ, we have

φ(Xk+1) ≤ φ(Xk)− η
〈
grad φ(Xk), ExpXk

(Z ′)
〉+ 1

2
η2Mφ(1+ δ) .

A proof of the Lemma can be found in Appendix 1. The proof of Theorem 5 follows
then from Lemma 3 and 8 similar to Theorem 1.

6 Computational experiments

In this section, we will remark on the implementation of Algorithm 3 and show numer-
ical results for computing Riemannian centroids for different parameter choices. To
evaluate the efficiency of our method, we compare the performance of RFW against
that of a selection of state-of-the-art methods. Additionally, we use Algorithm 3
to compute Wasserstein barycenters of positive definite matrices. All computational
experiments are performed using Matlab.

6.1 Computational considerations

When implementing the algorithm we can take advantage of the positive definite-
ness of the input matrices. For example, if using Matlab, rather than computing
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X−1 log(X A−1i ), it is more preferable to compute

X−1/2 log(X 1/2 A−1i X 1/2)X 1/2,

because both X−1/2 and log(X 1/2 A−1i X 1/2) can be computed by suitable eigendecom-
position. In contrast, computing log(X A−1i ) invokes the matrix logarithm (logm in
Matlab), which can be much slower.

To save on computation time, we prefer to use a diminishing scalar as the stepsize
in Algorithm 3. In principle, this simple stepsize selection could be replaced by a more
sophisticated Armijo-like line-search or even exact minimization by solving

αk ← argmin
α∈[0,1]

φ(Xk + αk(Zk − Xk)) . (47)

This stepsize tuning may accelerate the convergence speed of the algorithm, but it
must be combined with a more computational intensive strategy of “away” steps [23]
to obtain a geometric rate of convergence. However, we prefer Algorithm 3 for its
simplicity and efficiency.

Theorems 1 and 3 show that Algorithm 2 converges at the global (non-asymptotic)
rates O(1/ε) (g-convex RFW) and O(1/ε2) (nonconvex RFW). However, by further
exploiting the simple structure of the constraint set and the “curvature” of the objective
function, we might obtain a stronger convergence result.

6.2 Numerical results

Wepresent numerical results for computing theRiemannian andWassersteinmeans for
sets of positive definitematrices.We test ourmethods on bothwell- and ill-conditioned
matrices; the generation of sample matrices is described in the appendix. An extended
arXiv version of the paper [61] contains additional examples and numerical experi-
ments.

6.2.1 Computing the Riemannian Mean

To test the efficiency of our method, we implement RFW (Algorithm 3) inMatlab
and compare its performance on the problem of computing the Riemannian mean
against related state-of-the-art Riemannian optimization methods:

1. Riemannian L-BFGS (R- LBFGS2) is a quasi-Newton method that iteratively
approximates the Hessian for evaluating second-order information [63].

2. Riemannian Barzilai–Borwein (BB) is a first-order gradient-based method for
constrained and unconstrained optimization. It evaluates second-order information
from an approximated Hessian to choose the stepsize [28]. We use the Manopt
version of RBB.

2 Also known as LRBFGS.
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Fig. 1 Performance of EFW and RFW in comparison with state-of-the-art methods for well-conditioned
(left) and ill-conditioned inputs (right) of different sizes (n: size ofmatrices,m: number ofmatrices, Max I t :
maximum number of iterations). All tasks are initialized with the harmonic mean X0 = H M

3. Matrix Means Toolbox (MM) [9] is an efficient Matlab toolbox for matrix opti-
mization. Its implementation of the geometric mean problem uses a Richardson-
like iteration of the form

Xk+1 ← Xk − αXk

n∑

i=1
log(A−1i Xk) ,

with a suitable α > 0.
4. Zhang [67] is a recently published majorization-minimization method for com-

puting the geometric matrix mean.

Note that this selection reflects a broad spectrum of commonly used methods for Rie-
mannian optimization. It ranges from highly specialized approaches that are targeted
to the Karcher mean (MM), to more general and versatile methods (e.g., R- LBFGS).
A careful evaluation should take both computing time and algorithmic features, such
as the number of calls to oracles and loss functions, into account. We perform and
further discuss such an evaluation below. For completeness, we also compare against
RFW’s Euclidean counterpart EFW (Algorithm 4).
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Fig. 2 Performance of EFW and RFW in comparison with state-of-the-art methods for well-conditioned
(left) and ill-conditioned inputs (right) and different initializations: X0 = H M (top) and X0 = A1 (bottom)

Fig. 3 Gradient norms at each iteration for EFW and RFW in comparison with R-LBFGS

We generate a set A of m positive definite matrices of size n and compute the
geometric mean with EFW and RFW as specified in Algorithms 3 and 4. To evaluate
the performance of the algorithm, we compute the cost function

f (X , A) =
M∑

i=1
‖log

(
X−

1
2 Ai X−

1
2

)
‖2F , (48)
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Table 1 Number of calls to the gradient and cost functions until reaching convergence, averaged over ten
experiments with N = 40, M = 10 and K = 30. Note that the competitive performance of EFW/ RFW is
partially due to avoiding internal calls to the cost function, significantly increasing the efficiency of both
methods compared to the other methods

after each iteration. We further include an experiment, where we report the gradient
norm ‖grad f ‖F .

Figure 1 shows performance comparisons of all methods for different parameter
choices and conditionnumbers. In a secondexperiment (Fig. 2)wecompare inputswith
different condition numbers for two initialization, the harmonic mean and a matrix
Ai ∈ A. We observe that RFW outperforms BB for all inputs and initializations.
Furthermore, RFW performs competitively in comparison with R- LBFGS, Zhang’s
Method andMM. The competetive performance of RFW is consistent across different
initializations. In a third experiment we compared the accuracy reached by RFW
with R- LBFGS as the (in our experiments) most accurate Riemannian state-of-the-art
method (Fig. 3). We observe that RFW reaches a medium accuracy fast; however,
ultimately R-LBFGS reaches a higher accuracy.

In comparison with EFW, we observe that RFW reaches a similar performance and
accuracy. The numerical advantage of EFWmay be due to implementation differences
between Riemannian and Euclidean methods.

In addition, we include a comparison of the number of internal calls to cost and
gradient functions (Fig. 1) for all methods. Note that this comparison evaluates algo-
rithmic features and is therefore machine-independent. The reported numbers were
obtained by averaging counts over ten experiments with identical parameter choices.
We observe that RFW (and EFW) avoid internal calls to the gradient and cost function,
requiring only a single gradient evaluation per iteration. This results in the acceleration
(i.e., faster convergence) observed in the plots.

6.2.2 ComputingWasserstein barycenters

To demonstrate the versatility of our approach, we use RFW to compute Bures-
Wasserstein barycenters. For this, we adapt the above-described setup to implement
Algorithm 3. Fig. 4 shows the performance of RFW on both well- and ill-conditioned
matrices. We compare three different initializations in each experiment: In (1), we
choose an arbitrary element of A as starting point (X0 ∼ U(A)). The other experi-
ments start at the lower and upper bounds of the constraint set, i.e., (2) X0 is set to
the arithmetic mean of A and (3) X0 = α I , where α is the smallest eigenvalue over
A. Our results suggest that RFW performs well when initialized from any point in the
feasible region, even on sets of ill-conditioned matrices.
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7 Discussion

We presented a Riemannian version of the classical Frank-Wolfe method that enables
constrained optimization on Riemannian (more precisely, on Hadamard) manifolds.
Similar to the Euclidean case, we recover sublinear convergence rates for Riemannian
Frank-Wolfe for both geodesically convex andnonconvex objectives.Under the stricter
assumption of μ-strongly g-convex objectives and a strict interiority condition on
the constraint set, we show that even linear convergence rates can be attained by
Riemannian Frank-Wolfe. To our knowledge, this work represents the first extension
of Frank-Wolfe methods to a manifold setting.

In addition to the general results, we present an efficient algorithm for optimization
on Hermitian positive definite matrices. A key highlight of this specialization is a
closed-form solution to the Riemannian “linear” oracle needed by Frank-Wolfe (this
oracle involves solving a nonconvex problem).While we focus on the specific problem
of computing the Karcher mean (also known as the Riemannian centroid or geomet-
ric matrix mean), the derived closed-form solutions apply to more general objective
functions and should be of wider interest for related nonconvex and g-convex prob-
lems. To demonstrate this versatility, we also included an application of RFW to the
computation of Wasserstein barycenters on the Gaussian density manifold. In future
work, we hope to explore other constraint sets and matrix manifolds that admit an
efficient solution to the Riemannian “linear” oracle.

Our algorithm is shown to be competitive against a variety of established and
recently proposed approaches [28, 63, 67] providing evidence for its applicability to
large-scale statistics andmachine learning problems. In follow-up work [60], we show
that RFW extends to nonconvex stochastic settings, further increasing the efficiency
and versatility of Riemannian Frank-Wolfe methods. Exploring the use of this class
of algorithms in large-scale machine learning applications is a promising avenue for
future research.
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A Approximately solving the Riemannian “linear” oracle

We want to prove the following lemma, stated in the main text:

Lemma 8 For a steps size η ∈ (0, 1) and accuracy δ, we have

φ(Xk+1) ≤ φ(Xk)− η
〈
grad φ(Xk), ExpXk

(z′)
〉+ 1

2
η2Mφ(1+ δ) .
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Proof We use again the notation Y = γX Z ′(η) for a point on the geodesic joining X
and Z ′. By Lemma 2, we have

φ(Y ) ≤ φ(X)+ η
〈
grad φ(X), Exp−1X (Z ′)

〉
+ 1

2
η2Mφ.

By construction, we have
〈
grad φ(X), Exp−1X (Z ′)

〉
≤ min

Y∈X

〈
grad φ(X), Exp−1X (Y )

〉
+ 1

2
δηMφ

≤ −(φ(X)− φ(X∗))+ 1

2
δηMφ .

Inserting this above, the claim follows as

φ(Y ) ≤ φ(X)− η(φ(X)− φ(X∗))+ 1

2
δη2Mφ + 1

2
η2Mφ

≤ φ(X)− η(φ(X)− φ(X∗))+ 1

2
δη2Mφ(1+ δ) .

��
B Non-convex Euclidean Frank-Wolfe

Wemake a short digression here tomention nonconvex Euclidean Frank-Wolfe (EFW)
as a potential alternative approach to solving (18). Indeed, the constraint set therein
is not only g-convex, it is also convex in the usual sense. Thus, one can also apply
an EFW scheme to solve (18), albeit with a slower convergence rate. In general, a
g-convex set X need not be Euclidean convex, so this observation does not always
apply.

EFW was recently analyzed in [35]; the convergence rate reported below adapts
one of its main results. The key difference, however, is that due to g-convexity, we can
translate the local result of [35] into a global one for problem (18).

Theorem 6 (Convergence FW-gap ([35])) Define G̃k := min0≤k≤K G(Xk), where
G(Xk) = maxZk∈X 〈Zk − Xk, −∇φ(Xk)〉 is the FW-gap (i.e., measure of conver-
gence) at Xk. Define the curvature constant

Mφ := sup
X ,Y ,Z∈X

Y=X+s(Z−X)

2
s2
[φ(Y )− φ(X)− 〈∇φ(X), Y − X〉] .

Then, after K iterations, EFW satisfies G̃ K ≤ max {2h0,Mφ}√
K+1 .

The proof (a simple adaption of [35]) is similar to that of Theorem3; therefore, we omit
it here. Finally, to implement EFW, we need to also efficiently implement its linear
oracle. Theorem 7 below shows how to; the proof is similar to that of Theorem 4.
It is important to note that this linear oracle involves solving a simple SDP, but it is
unreasonable to require the use of an SDP solver at each iteration. Theorem 7 thus
proves to be crucial, because it yields an easily computed closed-form solution.
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Theorem 7 Let L, U ∈ Pd such that L ≺ U and S ∈ Hd is arbitrary. Let U − L =
P∗P, and P S P∗ = QΛQ∗. Then, the solution to

min
L	Z	U

tr(SZ), (49)

is given by Z = L + P∗Q[− sgn(Λ)]+Q∗P.

Proof First, shift the constraint to 0 	 X− L 	 U − L; then factorize U − L = P∗P ,
and introduce a new variable Y = X − L . Therewith, problem (49) becomes

min
0	Y	U−L

tr(S(Y + L)) .

If L = U , then clearly P = 0, and X = L is the solution. Assume thus, L ≺ U , so
that P is invertible. Thus, the above problem further simplifies to

min
0	(P∗)−1Y P−1	I

tr(SY ) .

Introduce another variable Z = P∗Y P and use circularity of trace to now write

min
0	Z	I

tr(P S P∗Z) .

To obtain the optimal Z , first write the eigenvalue decomposition

P S P∗ = QΛQ∗. (50)

Lemma 4 implies that the trace will be maximized when the eigenvectors of P S P∗
and Z align and their eigenvalues match up. Since 0 	 Z 	 I , we therefore see that
Z = Q DQ∗ is an optimal solution, where D is diagonal with entries

dii =
{
1 if λi (Y ) < 0

0 if λi (Y ) ≥ 0
 ⇒ D = [− sgn(Λ)]+. (51)

Undoing the variable substitutions we obtain X = L + P∗Q[− sgn(Λ)]+Q∗P as
desired. ��
Remark 4 Computing the optimal X requires 1 Cholesky factorization, 5 matrix mul-
tiplications, and 1 eigenvector decomposition. The theoretical complexity of the
Euclidean Linear Oracle can therefore be estimated as O(N 3). On our machine, eigen-
vector decomposition is approximately 8–12 times slower than matrix multiplication.
So the total flop count is approximately ≈ 1

3 N 3 + 5× 2N 3 + 20N 3 ≈ 33N 3.

An implementation of EFW for the computation of Riemannian centroids is shown in
Algorithm 4. Experimental results for EFW in comparisonwithRFW and state-of-the-
art Riemannian optimization methods can be found in the main text (see Sect. 6.2.1).
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Algorithm 4 EFW for fast Geometric mean

1: (A1, . . . , AN ), w ∈ R
N+

2: X̄ ≈ argmin
X�0

∑
i wi δ

2
R(X , Ai )

3: β = min1≤i≤N λmin(Ai )

4: for k = 0, 1, . . . do
5: Compute gradient: ∇φ(Xk ) = X−1k

(∑
i wi log(Xk A−1i )

)

6: Compute Zk : Zk ← argmin
H	Z	A

〈∇φ(Xk ), Z − Xk 〉
7: Let αk ← 2

k+2 .
8: Update X : Xk+1 ← Xk + αk (Zk − Xk ).
9: end for
10: return X̄ = Xk

C Generating Positive Definite Matrices

For testing our methods in the well-conditioned regime, we generate matrices
{Ai }ni=1 ∈ Pd by sampling real matrices of dimension d uniformly at random
Ai ∼ U(Rd×d) and multiplying each with its transpose Ai ← Ai AT

i . This gives
well-conditioned, positive definite matrices. Furthermore, we sample m matrices
Ui ∼ U(Rd×d) with a rank deficit, i.e. rank(U ) < d. Then, setting Bi ← δ I +UiU T

i
with δ being small yields ill-conditioned matrices.
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