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Demonstrating a quantum computational advantage will require high-fidelity control and readout of
multiqubit systems. As system size increases, multiplexed qubit readout becomes a practical necessity to
limit the growth of resource overhead. Many contemporary qubit-state discriminators presume single-qubit
operating conditions or require considerable computational effort, limiting their potential extensibility.
Here, we present multiqubit readout using neural networks as state discriminators. We compare our
approach to contemporary methods employed on a quantum device with five superconducting qubits and
frequency-multiplexed readout. We find that fully connected feedforward neural networks increase the
qubit-state-assignment fidelity for our system. Relative to contemporary discriminators, the assignment
error rate is reduced by up to 25% due to the compensation of system-dependent nonidealities such as
readout crosstalk, which is reduced by up to one order of magnitude. Our work demonstrates a poten-
tially extensible building block for high-fidelity readout relevant to both near-term devices and future
fault-tolerant systems.

DOI: 10.1103/PhysRevApplied.17.014024

I. INTRODUCTION

Quantum computers hold the promise to solve particular
computational tasks substantially faster than conventional
computers [1,2]. Depending on the computational task,
such quantum devices need to be composed of hundreds to
millions of high-fidelity qubits. An increase from a few to
many qubits is generally accompanied by the challenge of
maintaining low error rates for qubit control and readout.

Over the past two decades, superconducting qubits have
emerged as a leading platform for quantum computing [3,
4]. Today, individual qubits with coherence times exceed-
ing 100 μs [5], gate times of a few tens of nanoseconds
[6], and individual single- and two-qubit gate-operation
fidelities above the most lenient thresholds for quantum
error correction have been demonstrated for devices with
up to 50 qubits [6,7]. However, considerable work is still

*blienhar@mit.edu
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needed to retain and even further improve these fidelities
as systems increase in size and complexity [8].

Errors arise during all stages of the circuit model: ini-
tialization [9,10], computation [11,12], and readout [13].
In many implementations, qubit readout plays a key role
beyond merely measuring the computational output. For
example, protocols for quantum error correction require
repeated readout of syndrome qubits [8,14,15]. Even with-
out error correction, many of the noisy intermediate-scale
quantum (NISQ) [16] era algorithms involve an iterative
optimization that generates a target quantum state based
on prior trial-state measurements of qubits [17,18]. In
addition, diagnosing qubit-readout errors in postprocessing
requires computationally expensive statistical analyses of
repeated computation and measurement [6,19,20]. Devel-
oping accurate and resource-efficient qubit-state readout is
a key challenge toward realizing useful tasks for quantum
information processing [21].

In this work, we present machine-learning-enabled
qubit-state discrimination. We evaluate the qubit-state dis-
crimination performance of deep neural networks (DNNs)
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relative to contemporary methods used for superconduct-
ing qubits. Nonlinear filters such as DNNs can better
cope with system-dependent nonidealities, such as read-
out crosstalk. To evaluate these different qubit-state dis-
criminator techniques, we use a quantum system com-
prising five frequency-tunable transmon qubits read out
simultaneously via a common feedline using a standard
frequency multiplexing approach. In contrast to single-
qubit readout, such a multiqubit system is subject to
nonidealities, such as readout crosstalk, that may bene-
fit from more sophisticated discriminators. We show that
a DNN classifier can efficiently converge to a higher-
performing multiqubit discriminator with sufficient train-
ing. In our five-qubit system, we show that qubit-state-
assignment errors are reduced by up to 25% for multiqubit
architectures sharing a readout transmission line [6,22,
23]. By examining the qubit-state-assignment performance
using a confusion matrix and the cross-fidelity metric,
we attribute the reduction to the DNN compensating for
crosstalk.

For systems with multiple superconducting qubits, read-
out crosstalk is a combination of (1) interactions between
the generated readout probe signals, (2) photon population
due to a residual coupling to a probe tone or neigh-
boring readout resonators, (3) coupling between readout
resonator and neighboring qubits, and (4) interactions
between reflected or transmitted readout signals in the
amplifier chain, mixers, or during analog demodulation
and digitization. Fast readout, such as that necessary for
ancilla qubits as part of a protocol for quantum error
correction, requires wide resonator linewidths κ . The fre-
quency spacing between readout resonators is constrained
by the qubit transition frequency, the number of frequency-
multiplexed probe tones, and the readout amplifier chain
bandwidth. Readout crosstalk is proportional to the spec-
tral overlap between resonators, and thus, the wider the res-
onator linewidths, the more readout crosstalk. Therefore,
readout crosstalk is expected to be a particularly significant
error source for fast frequency-multiplexed ancilla qubit
readout.

It has been shown that neural networks can learn
the quantum evolution of a single superconducting qubit
using merely measurement data and without introducing
the rules of quantum mechanics [24]. Statistical learning
algorithms have been applied to superconducting qubit
readout in the form of support vector machines [20],
hidden Markov models [25], or a reservoir computing
approach [26]. Using DNNs, improved single-qubit read-
out fidelity has previously been demonstrated for trapped
ions and spin qubits [27–29]. In this paper, we extend the
application of neural networks to superconducting qubit
readout and, more generally, to dispersive qubit read-
out. Furthermore, we demonstrate readout discrimination
using a DNN of multiple simultaneously read out qubits
on a single feedline. While we apply our methods to a

superconducting qubit system, we anticipate that they will
generalize to other platforms.

II. SUPERCONDUCTING QUBIT READOUT

Superconducting qubit readout is generally performed
today under the paradigm of circuit quantum electrody-
namics (cQED) in the dispersive regime [30]. Here, the
qubit is coupled to a far-detuned resonator, such that
their interaction can be treated perturbatively. The leading-
order effect on the resonator is a qubit-state-dependent
frequency shift Ĥdisp = χ â†âσ̂z, where â is the resonator
lower operator, σ̂z the Pauli-Z operator describing the qubit
state, and χ the dispersive frequency shift. As a result,
a coherent microwave signal incident on the resonator
acquires a qubit-state-dependent phase shift upon trans-
mission or reflection. The readout resonator population
has to remain below a critical photon number, typically
tens to hundreds of photons, to remain in the dispersive
readout regime. Low-noise cryogenic preamplification—a
JTWPA [31] at the mixing chamber (20 mK) and a HEMT
at 3 K—are used to improve the SNR. Subsequent het-
erodyne detection and digitization of the amplified signal
imprints the information of the qubit state in the in-phase
(I ) and quadrature (Q) components of the output signal, as
depicted in Fig. 1(a).

For multiqubit systems, there are three main qubit-state-
readout approaches. First, each qubit can be measured
with a separate readout resonator, feedline, and ampli-
fier chain—a resource-intensive approach with minimal
crosstalk. Alternatively, more-resource-efficient readout
architectures have several qubits coupled to a single read-
out resonator [32] or use frequency-multiplexed readout
signals from multiple readout resonators [33] sharing a
single feedline and amplifier chain [34]. In many contem-
porary architectures, Purcell filters are added to further
reduce residual off-resonant energy decay from the qubits
to the resonators [35,36].

For a qubit with static coupling to its readout res-
onator, energy decay and excitation during the readout
are typically the primary sources of qubit measurement
errors. In addition, a frequency-multiplexed readout signal
contains state information on multiple qubits and is suscep-
tible to crosstalk-induced qubit-state-readout errors. Such
crosstalk errors occur due to intrinsic interactions between
the qubits themselves, qubits coupling parasitically to the
readout resonators associated with other qubits, or insuffi-
cient spectral separation between readout frequencies [22].

As a result of crosstalk, state transitions due to deco-
herence, and other nonidealities [37], multiqubit hetero-
dyne signals are more complicated than for single qubits,
making state discrimination more challenging. There has
been significant progress in reducing error rates and mea-
surement times for both single- and multiqubit devices
[22,38]. However, managing, classifying, and extracting
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FIG. 1. Measurement setup and chip. (a) Schematic of control and readout of superconducting qubits. The control and readout
pulses, generated by an arbitrary waveform generator (AWG) and up-converted to GHz frequencies using a local oscillator (LO), are
sent through attenuated signal lines to the readout resonator on the five-qubit chip. The transmitted readout signal is amplified by
a Josephson traveling-wave parametric amplifier (JTWPA), a HEMT, and a room-temperature amplifier. Subsequently, the signal is
down-converted to MHz frequencies and digitized—in-phase I IF[n] and quadrature QIF[n] sequences at intermediate frequencies (IF).
Colored optical micrograph (b) and the circuit schematic (c) comprising five superconducting transmon qubits. The qubit transition
frequencies are tuned via a global flux bias. Each qubit is capacitively coupled to a quarter-wave readout resonator that couples
inductively to a bandpass (Purcell) filtered feedline. (d) The resonator frequencies ωres/2π are near 7 GHz with χ/κeff ratios ranging
from 0.12 to 0.19, where χ and κeff are, respectively, the dispersive shift and the effective resonator decay rate through the feedline.
Table of the qubit lifetimes (T1) and operating frequencies (ωqubit/2π ). Qubit colors indicate the qubit operating frequency: red (purple)
→ lowest (highest) operating frequency.

useful information from the measured signal remains a
challenge in light of the complex error mechanisms, such
as crosstalk, introduced by multiplexed readout at scale.

Here, we focus on multiple frequency-tunable transmon
qubits [39] arranged in a linear array with operating fre-
quencies ωqubit/2π between 4.3 and 5.2 GHz and qubit
lifetimes T1 ranging from 7 to 40 μs (see Appendix B for
additional details). The qubits are connected via individual
coplanar waveguide resonators to the same Purcell-filtered
feedline, as depicted in Figs. 1(b) and 1(c). The frequency-
multiplexed readout tone comprises superposed baseband
signals at IFs between 10 to 150 MHz up-converted to the
individual readout resonator frequencies ωres. After pass-
ing the feedline, the transmitted and phase-shifted tones
are down-converted to IF. Up- and down-conversion is
conducted with a shared local oscillator at 7.127 GHz.
Lastly, the down-converted I and Q components of the

signal are digitized with a 2-ns sampling period. The
resulting sequences, I IF[n] and QIF[n], are subsequently
digitally processed—the focus of this work—to extract the
individual qubit states.

III. QUBIT-STATE DISCRIMINATION

We employ supervised machine learning methods to
improve readout of superconducting qubit states. This
requires a classifier capable of distinguishing the qubit-
state-dependent phase shift encoded in the discrete-time
I IF[n] and QIF[n] sequences. This section also reviews the
current approaches to state discrimination (which we use
as comparative benchmarks).

Boxcar filters average the equal-weighted digitally
demodulated elements of the I IF[n] and QIF[n] discrete-
time readout signal. The digital demodulation employed
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here is further elaborated in Appendix D. Each box-
car filtered digitally demodulated sequence I[n] and
Q[n] results in a single two-dimensional data point
in the IQ plane [4]. Subsequently, the resulting data
set can be further processed and discriminated such
as, for example, with a support vector machine (see
Appendix D).

Matched filter windows are generalized windowing
functions with each element optimized to maximize the
SNR within a given system noise model [40]. The box-
car window is the simplest example of a filter in the
absence of such a noise model. For additive stationary
noise independent of the qubit state and diagonal Gaussian
covariance matrices, the optimal filter in terms of the SNR
uses a “window” or “kernel,” proportional to the difference
between the mean ground- and excited-state-readout sig-
nal, referred to as a “matched filter” in Ref. [41], “mode
matched filter” in Ref. [22], or as “Fisher’s linear discrim-
inant” in the context of statistics and machine learning
[42]. Applying such a matched filter reduces each readout
single-shot measurement to a single one-dimensional value
dependent on the qubit-state-dependent phase, allowing
the qubit states to be discriminated by a simple threshold
classifier. Here, we refer to a discriminator composed of a
matched filter [41] and subsequently optimized threshold
as MF.

While MFs are computationally efficient and provably
optimal (for stationary noise) for single qubits, the compu-
tational complexity to derive multiqubit MFs scales expo-
nentially in the number of qubits, N [43]. Consequently,
in practice, multiqubit readout is conducted per qubit with
individually optimized single-qubit MFs—the approach
used for many contemporary single- and multiqubit read-
out schemes [6,22,41,44,45] and does not account for
noise sources and nonidealities present in multiqubit sys-
tems.

The MF kernel ki[n] is equal to the difference between
the mean ground- and excited-state readout signal normal-
ized by its standard deviation, which must be measured
experimentally using calibration runs with known qubit
states. In our setup, the highest qubit-state-assignment
fidelity for MFs is achieved using time traces recorded
with the other qubits (spectator qubits) initialized in their
ground states, as depicted in Fig. 2(a). This is a conse-
quence of the simple noise model presumed for the MF,
and thus, the MF discriminator does not capture multiqubit
readout crosstalk. In this paper we use the MF as a base-
line to compare the following methods (see Appendix D
for other variations of all the methods).

Support vector machines (SVMs) are quadratic pro-
grams [46,47] with the objective to maximize the distance
between each data point and a decision boundary, a learned
hyperplane separating two distinct classes. SVMs are a
purely geometric approach to discrimination. For a sin-
gle superconducting qubit, it has been reported that SVMs

generate decision boundaries superior to that of MFs, as
realistic noise deviates from the simple single-qubit noise
model assumed for the MF [20].

Similar to the MF approach, multiqubit-state discrimi-
nation can be conducted using a SVM classifier per qubit-
readout signal. In contrast to our MF tune up, we find that
the highest assignment fidelity is achieved when the SVMs
are trained using qubit-state measurement traces with the
spectator qubits prepared in all combinations of ground and
excited states.

Alternatively, multiqubit states can be discriminated
by a single SVM composed of several hyperplanes that
partition the full multidimensional IQ space, shown in
Fig. 2(c). Such a multiqubit SVM can be tuned using a
“one-versus-all” strategy. We solve 2N (N, the number of
qubits) two-class discrimination problems with a single-
qubit state as one class and the remaining qubit states as
the other. In our analysis, LSVMs used as parallel single-
and multiqubit discriminators outperform their nonlinear
counterparts in robustness, computational efficiency, and
assignment fidelity (see Appendix C2).

Deep neural networks are mapping functions com-
posed of arbitrarily connected nodes arranged in layers
[48]. Depending on the layer organization and the func-
tions governing the connections between nodes, differ-
ent neural network archetypes can be generated. Here,
we investigate three of the most common and success-
ful DNNs: fully connected feedforward neural networks,
convolutional neural networks, and recurrent neural net-
works. We find a fully connected FNN—implemented in
PyTorch [49]—outperforms the other network architec-
tures in qubit-state-assignment fidelity. Our FNN archi-
tecture is composed of three hidden layers (first, sec-
ond, and third layers consist of 1000, 500, and 250
nodes, respectively) that use scaled exponential linear
unit (SELU) activation functions [50], and a softmax
applied to the 2N -node output layer. The network is trained
(validation-training set ratio of 0.35) using the Adam
optimizer [51] with categorical cross-entropy as the loss
function.

In contrast to the MF and LSVM, the FNN can directly
discriminate the frequency-multiplexed multiqubit read-
out sequences I IF[n] and QIF[n] without demodulation or
filtering (see Appendix D for additional information and
results). Training the network directly on the multiplexed
readout signal bypasses the need for further preprocessing
stages, suggesting a more efficient use of the measurement
output, as illustrated in Fig. 2(d). In addition, fewer inde-
pendent operations in the readout chain may reduce the
possibility of systematic errors.

IV. RESULTS

We now present our five-qubit readout experiment
results, comparing the performance of parallelized
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FIG. 2. Measurement data processing and discrimination. (a) Superconducting qubit-state discrimination can be accomplished using
a single-qubit matched filter (MF) with kernel ki[n], which serves as a windowing function that projects the readout signals to a single
axis and subsequent discriminator threshold optimization (no pulse applied, denoted by ∅, qubit initialized in the ground state: ∅ → |0〉
and labeled as 0; π -pulse applied, denoted by π , qubit initialized in the excited state: π → |1〉 and labeled as 1). We analyze (b)
single-qubit linear support vector machines (SQ LSVMs), (c) multiqubit LSVMs (MQ LSVMs), and (d) fully connected feedforward
NNs as alternatives to MFs. The qubit-state-assignment fidelity of the MF and LSVM is maximized if the intermediate frequency
signal (zIF[n] = I IF[n] + jQIF[n]) is digitally demodulated (e.g., for resonator 1: zIF[n].∗−j ωIF

1 n = I1[n] + jQ1[n] with .∗ indicating
an elementwise multiplication). The training data is relabeled to train five parallel single-qubit discriminators (MF, SQ LSVM). The
training data can either be limited to measurements during which spectator qubits are kept in their ground state (denoted by ∅) or
in all combinations of the ground and excited state (symbolized by ∗). The MQ LSVM as a single multiqubit discriminator requires
the digitally demodulated data to be stacked and concatenated to form a single data block. The feedforward NN does not require any
digital demodulation or preprocessing.

single-qubit MFs, parallelized SQ LSVM, MQ LSVM,
and FNN approaches. The same qubit-readout sequences
I IF[n] and QIF[n]—with varying amounts of preprocess-
ing [Fig. 2]—are used for all approaches. We compare
the discrimination results, a five-bit string with each bit
representing the assigned state of a qubit. The qubit-state-
assignment fidelity for qubit i is

Fi = 1 − [P(0i|πi) + P(1i|∅i)]/2, (1)

where P(0i|πi) is the conditional probability of assigning
the ground state with label 0 to qubit i when prepared in the
excited state with a π -pulse applied. P(1i|∅i) is the condi-
tional probability of assigning the excited state with label

1 to qubit i when prepared in the ground state (no pulse
applied: ∅).

The data to train and evaluate the discriminator perfor-
mance is acquired using the five-qubit chip introduced in
Figs. 1(b) and 1(c). For five qubits, all 32 qubit-state per-
mutations are sequentially initialized and the measurement
output is recorded. The generated data set contains 50 000
single-shot sequences I IF[n] and QIF[n] recorded over 2 μs
for each qubit-state configuration. The recorded data set is
subsequently divided into a randomized training and test
set (15 000 traces per qubit-state configuration for train-
ing and 35 000 for testing). All of the following results
are evaluated using 35 000 single-shot measurements per
qubit-state configuration.
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We quantify the assignment fidelity per qubit using the
geometric mean assignment fidelity,

FGM = (F1F2F3F4F5)
1/5, (2)

with each qubit-state-assignment fidelity defined by
Eq. (1). Both SVM approaches improve the assignment
fidelity relative to the MF, with the parallelized single-
qubit SVM outperforming the multiqubit approach by
0.3% after a 1-μs measurement time. For multiclass
discriminators such as the MQ LSVM, geometric con-
straints result in ambiguous regions without a unique
class assigned [52], which leads to poor performance
relative to the other approaches. After a 1-μs-long mea-
surement time, the FNN, compared to the MF, increases

the qubit-state-assignment fidelity from 0.885 to 0.913—a
reduction of the single-qubit assignment error [1 − (1 −
FFNN)/(1 − FMF)] by 0.244. Compared to the SQ LSVM,
the FNN increases the qubit-state-assignment fidelity from
0.905 to 0.913 and thus reduces the single-qubit assign-
ment error by 0.084. The FNN yields the highest qubit-
state-assignment fidelity regardless of measurement time
[Fig. 3(a)]. See Appendix D for additional comparison of
discriminators and data-processing methods.

Next, we evaluate the assignment fidelity for differ-
ent numbers of training samples per qubit configuration,
presented in Fig. 3(b). The assignment fidelity of five par-
allel single-qubit discriminators (MF, SQ LSVM) saturates
around 1000 training samples per qubit-state configura-
tion. The assignment fidelity of the FNN exceeds that of

F
G

M

10 10 10
Number of training samples

0.92

0.88

0.84

0.80

0.76

MF
SQ LSVM
MQ LSVM
FNN

(a) (b)

(c)

0.5 1.0 1.5 2.0

Measurement time (µs)

0.92

0.88

0.84

0.80

0.76

MF
SQ LSVM
MQ LSVM
FNN

0.98

0.96

0.94

0.92

Qubit

MF
SQ LSVM
MQ LSVM
FNN

1
2 3
4 5

0.76
0.74
0.72

Qubit Qubit Qubit Qubit

F
G

M
F

as
si

gn
m

en
t

Q
ub

its

3 42

1 2 3 4 5

FIG. 3. Qubit-state-assignment fidelity. (a) Geometric mean qubit-state-assignment fidelity FGM [Eq. (2)] for five qubits versus
measurement time for the MF, SQ LSVM, MQ LSVM, and the fully connected feedforward neural network (FNN). (b) FGM versus
the number of training instances for each of the 32 qubit-state configurations evaluated after a measurement time of 1 μs [vertical
dashed-dotted line in (a)]. (c) Achievable assignment fidelity Fassignment per qubit when N = {1, 2, . . . , 5} qubits are simultaneously
discriminated after a 1-μs measurement time. For each N -qubit discrimination task, the spectator qubits are initialized in their ground
state. Single-qubit discrimination (N = 1): the first data point of each of the five panels represents the single-qubit Fassignment defined by
Eq. (1), while the states of the four spectator qubits are not discriminated and initialized in their ground state. When employed as single-
qubit discriminators, all methods perform similarly. Two-qubit discrimination (N = 2): the following four data points show Fassignment
when the state of each panel’s qubit is simultaneously discriminated with the state of one other qubit. N -qubit discrimination (N > 2):
the state of each panel’s qubit is simultaneously discriminated with the states of N − 1 other qubits. For each N -qubit discrimination
task, the nonspectator qubits are indicated with a colored square at the graph bottom.

014024-6



DNN QUBIT STATE DISCRIMINATION... PHYS. REV. APPLIED 17, 014024 (2022)

TABLE I. Qubit-assignment fidelity if discriminated individually, F1Q
i , and in parallel with all other qubits, F5Q

i . The last five
columns present the assignment fidelity for an N -qubit discrimination process with N = {1, 2, . . . , 5}. 〈FNQ〉 represents the mean
assignment fidelity of all qubit permutations. The single-qubit assignment fidelity is similar for all discriminator approaches. For a
two-qubit discrimination task, the SQ LSVM and FNN outperform the MF and MQ LSVM. For N -discrimination tasks with N > 2,
the FNN outperforms all other methods.

Qubit 1 Qubit 2 Qubit 3 Qubit 4 Qubit 5 〈F1Q〉 〈F2Q〉 〈F3Q〉 〈F4Q〉 〈F5Q〉
F1Q

1 F5Q
1 F1Q

2 F5Q
2 F1Q

3 F5Q
3 F1Q

4 F5Q
4 F1Q

5 F5Q
5

MF 0.971 0.968 0.740 0.719 0.962 0.914 0.946 0.934 0.976 0.967 0.9185 0.9100 0.9042 0.8993 0.8946
SQ LSVM 0.970 0.969 0.740 0.744 0.963 0.924 0.951 0.943 0.976 0.968 0.9201 0.9148 0.9112 0.9083 0.9053
MQ LSVM 0.970 0.963 0.740 0.737 0.963 0.926 0.951 0.933 0.976 0.963 0.9201 0.9130 0.9078 0.9033 0.8997
FNN 0.970 0.969 0.735 0.753 0.962 0.943 0.953 0.946 0.975 0.970 0.9188 0.9141 0.9129 0.9126 0.9122

parallelized single-qubit discriminators after 2500 train-
ing samples and saturates around 10 000 training samples
per qubit-state configuration. We estimate that the multi-
qubit LSVM plateaus after approximately 40 000 training
samples per qubit-state configuration. The FNN architec-
ture here is solely optimized to maximize the qubit-state-
assignment fidelity, with no consideration of the size of
training data required. Thus, these results should not be
taken as an indication that DNN approaches will generi-
cally perform poorly for small training sets. The remaining
discriminator analysis is conducted after a 1-μs measure-
ment time and 10 000 training samples per qubit-state
configuration.

The assignment fidelity per qubit, discriminated indi-
vidually and in parallel with up to N = 5 qubits, is pre-
sented in Fig. 3(c). For N -qubit discrimination tasks with
N > 2, the FNN starts outperforming its discriminator
alternatives. Except for qubit 2, the per-qubit-assignment
fidelity decreases with an increasing number of discrim-
inated qubits. We observe a more substantial assignment
fidelity decrease if the resonators involved in the dis-
crimination are proximal in frequency, suggesting the
occurrence of readout crosstalk. In addition to readout
crosstalk, qubit 3 reveals control crosstalk with qubit 1
and 5, the qubits closest in frequency. Under the assump-
tion of additive stationary noise independent of the qubit
state and diagonal Gaussian covariance matrices, the esti-
mated upper qubit-state-assignment fidelity bound per
qubit for MFs [20] including the label confidence are
FMF

1 ≈ 0.974, FMF
2 ≈ 0.773, FMF

3 ≈ 0.965, FMF
4 ≈ 0.95,

and FMF
5 ≈ 0.979, respectively (see Appendix C1 for addi-

tional details). FMF
2 is primarily reduced due to T1 events

and limited qubit-state separation in the IQ plane. The
different discriminators yield a similar assignment fidelity
within a few tenths of a percent of the upper MF assign-
ment fidelity bound—except for qubit 2 where it is off
by a few percent—when tasked to discriminate a single
qubit, as shown in Table I. The small discrepancy between
this upper bound and the achieved assignment fidelity sug-
gests that the noise sources affecting single-qubit readout

in our devices are reasonably well approximated by addi-
tive stationary noise independent of the qubit state and
diagonal Gaussian covariance matrices. As the number of
simultaneously discriminated qubits increases, the assign-
ment fidelity increasingly deviates from FMF

i , revealing
system dynamics unaccounted for by the Gaussian noise
model.

The confusion matrix, a matrix Passign with the qubit-
state-assignment probability distribution for each prepared
qubit-state configuration as rows, provides further insight
into the underlying error mechanisms. The confusion
matrix is the identity matrix if each prepared state is cor-
rectly labeled and assigned. In practice, in addition to
misclassification, the preparation of states can be imper-
fect. We estimate the mean state preparation fidelities for
each qubit (see Appendix C1): Fprep

1 ≈ 0.995, Fprep
2 ≈

0.986, Fprep
3 ≈ 0.977, Fprep

4 ≈ 0.976, and Fprep
5 ≈ 0.985.

The qubit-state-dependent assignment probability of our
FNN relative to the MF is expressed as the difference
between their respective confusion matrices, PFNN

assign and
PMF

assign, shown in Fig. 4(a). The FNN generally reduces the
erroneous off-diagonal assignment probabilities relative to
the MF. The most significant exception being the lower off-
diagonal elements corresponding to decay of qubit 2, as
presented in Fig. 4(b).

Deviations from the ideal confusion matrix occur due
to initialization errors, state transitions during the mea-
surement, or readout crosstalk. Typically, the qubit-state
misclassifications in the lower off-diagonal block outweigh
those of the upper off-diagonal due to the greater like-
lihood of decay events at cryogenic temperatures. Here,
for a 1-μs-long measurement, qubit 2—the qubit with the
shortest lifetime—has a 15% probability of T1 decay, such
that for a significant portion of the training measurements
with qubit 2 excited, the final state of qubit 2 is the ground
state.

As shown in Fig. 4(b), the FNN is more likely to assign
a ground-state label to qubit 2 than an excited-state label,
whereas the MF reveals the reverse trend. This suggests
that the assignment probabilities of the FNN agree better
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FIG. 4. Assignment fidelity analysis. (a) Difference between
the confusion (assignment probability) matrix of the FNN PFNN

assign

and of the MF PMF
assign. The rows of the confusion matrix encom-

pass the discriminator’s probability distribution to assign each
of the 32 qubit-state configurations to the row’s prepared qubit-
state configuration (no pulse applied, qubit initialized in the
ground state: ∅ → 0; π -pulse applied, qubit initialized in the
excited state: π → 1). An increase (decrease) in the relative
state-assignment probability is marked in red (blue). Red diag-
onal and blue off-diagonal elements indicate an improvement of
the FNN over MF discrimination performance. (b) The cutouts
[bold frame in the lower right corner of (a)] of the FNN, MF,
and resulting relative confusion matrix display the most promi-
nent pattern that arises due to the discrimination of qubit 2. (c)
The FNN and MF cross-fidelity matrices, as defined in Eq. (3),
indicate the discrimination correlation. The off diagonals are ide-
ally 0. A positive (negative) matrix off-diagonal entry indicates
qubit-state assignment to be correlated (anticorrelated).

with the expected error model. However, we can attribute
the pattern of the MF assignment probability to a train-
ing bias. Since measurements with qubit 2 prepared in the

excited state and corrupted by a T1 decay have integrated
signals similar to measurements with qubit 2 prepared in
the ground state, the threshold optimizer overcompensates
to correctly classify T1 decay corrupted excited-state mea-
surements at the cost of misclassification of ground-state
measurements. This results in the misclassification pattern
seen in Fig. 4(b) for PMF

assign.
From the confusion matrix, we can further extract the

probability distribution of the nonzero Hamming distance.
This is the probability distribution describing the num-
ber of misassigned qubits per qubit-state configuration.
The assignment errors of the FNN (MF) occur in 85.8%
(83.8%) of the cases as single-qubit, 13.2% (15.0%) as
two-qubit, and 0.8% (1.0%) as three-qubit errors. The
reduction of assignment errors for the FNN compared to
the MF is not specific to a unique Hamming distance error,
indicating a consistent reduction of crosstalk.

To further study crosstalk, we consider the cross-fidelity
matrix, which describes correlations between the assign-
ment fidelities of individual qubits [22]. The cross-fidelity
FCF

ij is defined as

FCF
ij = 〈1 − [

P
(
1i|∅j

) + P
(
0i|πj

)]〉, (3)

where ∅j (πj ) represent the preparation of qubit j in the
ground (excited) state and 0i (1i) the subsequent assign-
ment to the ground (excited) state (〈f 〉 denotes the mean
value of a function f ). A positive (negative) off diago-
nal indicates a correlation (anticorrelation) between the
two qubits. Such correlations can occur due to readout
crosstalk. The off-diagonal entries for the FNN are all less
than one percent, and are drastically reduced relative to the
MF. Relative to the MF, the mean cross-fidelity, 〈|FCF

ij |〉,
for nearest neighbors (j = i ± 1) is reduced by one order
of magnitude from 〈|FMF CF

j =i±1 |〉 = 0.02 to 〈|FFNN CF
j =i±1 |〉 =

0.002. For neighboring readout resonators, the spectral
overlap is maximized, and thus readout crosstalk is most
likely to occur. In general, relative to the MF, the FNN
reduces the mean cross-fidelity for all j �= i, as presented
in Table II. The FNN’s reduction of assignment correla-
tions by up to one order of magnitude corroborates the
claim of the FNN’s diminishing readout-crosstalk-related
discrimination errors.

TABLE II. Mean absolute value, 〈| · |〉, of the qubit-state-
assignment correlations between readout resonators i and j (i �=
j ) extracted from the cross-fidelity matrix FCF when using a MF
or FNN discriminator.

〈|FCF
j =i±1|〉 〈|FCF

j =i±2|〉 〈|FCF
j =i±3|〉 〈|FCF

j =i±4|〉
MF 0.020 0.015 0.006 ∼ 0
FNN 0.002 0.005 0.002 ∼ 0
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V. CONCLUSION

We demonstrate an approach to multiqubit readout
using neural networks as multiqubit state discriminators
that is more crosstalk resilient than other contemporary
approaches. We find that a fully connected FNN increases
the readout assignment fidelity for a multiqubit system
compared to contemporary methods. We observe that the
FNN compensates system nonidealities such as readout
crosstalk more effectively relative to alternatives such as
MFs or SVMs. The assignment error rate is diminished
by up to 25% and crosstalk-induced discrimination errors
are suppressed by up to one order of magnitude. The rel-
ative assignment fidelity improvement of the FNN over
its contemporary alternatives grows as the number of
simultaneously read out and multiplexed qubits increases.

While FNNs are initially more resource intensive in
training, its recalibration can be significantly more effi-
cient due to transfer learning [53]. Periodic recalibration
of control and readout parameters is necessary as quantum
systems drift in time. For a marginal drift, neural net-
works can be updated at a fraction of the initial resource
requirements. Furthermore, to speed up qubit readout, the
techniques developed here can be transitioned to dedicated
hardware such as field-programmable gate arrays (FPGAs)
[28].

We test our FNN multiqubit-state discrimination
approach on a quantum system with five superconducting
qubits and frequency-multiplexed readout. While the read-
out fidelity of qubit 2 is relatively marginal, four qubits
reveal multiqubit readout fidelities comparable with con-
temporary multiqubit systems, albeit with measurement
times around 1 μs (see Appendix D for additional details),
much longer than the state of the art of 100 ns for single-
qubit systems [38]. We demonstrate an improvement using
FNN for all qubits. The next step is to test the perfor-
mance of FNNs on higher-fidelity multiqubit systems with
measurement times below 100 ns to assess if the advan-
tage is retained on already high-performing devices. FNNs
offer a readout-state discrimination approach tailored to
the underlying system. They can be readily employed to
more general discrimination tasks than we consider here,
such as multilevel readout in a qudit architecture [54–57].
This work presents a potential building block to scal-
ing quantum processors while maintaining high-fidelity
readout.
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APPENDIX A: MEASUREMENT SETUP

Qubit control and readout pulses—envelopes with
cosine shaped rising and falling edges encompassing
a plateau—are programmed in Labber. They are cre-
ated using three—two for control and one for read-
out—Keysight M3202A PXI AWGs with a sampling rate
of 1 G sample s−1. The in-phase (I ) and quadrature (Q)
components of the signals at MHz frequencies are up-
converted to the qubit transition frequency using an IQ
mixer and a LO (Rohde and Schwarz SGS100A) per AWG.
The control and readout tones are combined and sent to
the qubit chip in the dilution refrigerator via a single
microwave line attenuated by 60 dB.

The qubit chip is mounted in a microwave package fol-
lowing design principles as reported in Refs. [58,59]. A
coil—centered above the qubit chip—is mounted in the
device package. A global flux bias � is applied through
that coil to the superconducting quantum interference
devices (SQUIDs) of the qubits using a Yokogawa GS200.

The readout signal, upon acquisition of a qubit-state-
dependent phase shift, is first amplified using a JTWPA
with near quantum-limited performance over a bandwidth
of more than 2 GHz and a 1-dB compression point of
approximately −100 dBm [31]. An Agilent E8267D sig-
nal generator provides the pump tone for the JTWPA. The
microwave line carrying the pump tone is attenuated by 50
dB and fed into the JTWPA via a set of directional couplers
and isolators located in the mixing chamber of the refriger-
ator. The signal is further amplified by a HEMT amplifier
that is thermally anchored to the 3-K stage.

At room temperature, the readout signal is amplified, IQ
mixed with the LO at 7.127 GHz, and fed into a heterodyne
detector. The I and Q components of the readout signal are
digitized with a Keysight M3102A PXI analog-to-digital
converter (ADC) at a sampling rate of 500 M sample s−1.
The subsequent digital signal processing to distinguish
qubit states is the focus of this paper.

APPENDIX B: FIVE-QUBIT CHIP

The quantum system five superconducting qubits is fab-
ricated on a (001) silicon substrate (> 3500 � cm) by
dry etching a molecular-beam epitaxy (MBE) grown alu-
minum film in an optical lithography process before being
diced into 5 × 5 mm2 chips, as described in Ref. [60].

The superconducting chip consists of coplanar waveg-
uides and five frequency-tunable transmon qubits [39].
The target qubit transition frequencies alternate between
4.3 and 5.2 GHz. The qubits are detuned (→ operating
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TABLE III. Chip comprising five superconducting frequency-
tunable transmon qubits with alternating transition frequencies.
A normalized magnetic flux bias �/�0 (magnetic flux quan-
tum �0) detunes the qubits from their idling to their operating
frequency. The qubit anharmonicities α are in the moderate trans-
mon regime. The qubit lifetimes T1, Ramsey coherence times
T2R, and spin-echo relaxation times T2E are measured at the qubit
operating frequency.

ωqubit/2π

Idle Biased Bias α/2π T1 T2R T2E

Qubit (GHz)
(

�
�0

)
(MHz) (μs) (μs) (μs)

1 5.249 5.092 0.124 −212 40.8 1.3 7.4
2 4.708 4.404 0.160 −216 6.4 0.6 4.1
3 5.202 5.000 0.166 −204 21.4 1.0 7.2
4 4.560 4.309 0.154 −214 11.8 0.8 5.4
5 5.196 5.165 0.085 −200 23.4 7.6 31.8

frequency) to limit qubit-qubit and control crosstalk. The
capacitive nearest-neighbor (next-nearest-neighbor) qubit-
qubit coupling rate, JNN (JNNN), is designed (using COMSOL
Multiphysics®) to be JNN/2π ≈ 14 MHz (JNNN/2π <

1 MHz) and at the qubit operating frequency < 0.3 MHz
(< 0.01 MHz) [61]. Each qubit couples capacitively to a
quarter-wave resonator that couples inductively to a shared
bandpass (Purcell) filtered feedline. Neighboring readout
resonator frequencies differ by approximately 50 MHz.
The qubit and resonator operation parameters are included
in Tables III and IV.

APPENDIX C: QUBIT-STATE DISCRIMINATORS

The study of computational algorithms with the abil-
ity to improve through experience is typically referred
to as machine learning [42]. These algorithms strive to
identify patterns in sample data, called training data, and
create an approximate model of an underlying decision

TABLE IV. Chip comprising five superconducting readout res-
onators at bare resonance frequencies approximately 7 GHz.
Signals are up-converted from MHz IFs utilizing a common local
oscillator at ωLO/2π = 7.127 GHz. Each resonator couples to
a designated qubit with strength g, leading to a dispersive shift
χ . The effective resonator decay rate through the Purcell filter
is κeff. The qubit-resonator interaction remains in the disper-
sive regime for readout resonator photon populations below the
critical photon number ncrit.

ωres/2π ωIF/2π g/2π χ/2π κeff/2π

Resonator (GHz) (MHz) (MHz) (MHz) (MHz) ncrit

1 7.06 −65 116.3 0.83 4.29 33.8
2 7.10 −26 143.3 0.51 4.25 55.3
3 7.15 24 125.7 0.77 4.41 34.9
4 7.20 70 133.1 0.49 3.33 56.9
5 7.25 127 125.4 0.80 6.90 33.0

process without explicit instructions. While many machine
learning ideas are several decades old, they only recently
became widely applicable due to the development of suf-
ficient computational resources and are applied today in
image processing [62], natural language processing [63],
or playing advanced games such as chess [64].

Machine learning can be broadly divided into three
categories: unsupervised, supervised, and reinforcement
learning. Here, we focus on supervised learning methods
that learn an input-output mapping function using a trusted
set of input-output pairs (training set). Typically, the input-
output pairs for training are acquired by the “supervisor,”
hence the terminology. The quality of the learned map-
ping function can be probed utilizing an additional set of
trusted input-output pairs (test set). The comparison of per-
formance of a supervised learning method on the training
set compared to the test set is referred to as generalization.

1. Matched-filter threshold discriminator

To reduce the computational discrimination effort, the
elements of a measured single-shot readout trace are often
summed up before a discriminator is applied. Filtering the
readout traces before they are summed up further simpli-
fies the discrimination process. Filtering in this context
means multiplying each element n, [S]n = In + jQn, of a
discrete signal S = ([S]1, [S]2, . . . , [S]N ) by a window or
kernel weight kn. If the weights are all unity over a par-
ticular range and zero otherwise, the filter is referred to
as a boxcar filter. In general, the filtered signal S can be
computed as

S =
N∑

n

kn[S]n =
∑

n

kn(In + jQn). (C1)

For a boxcar filter, S is a scalar complex number. The
discrimination process is consequently a two-dimensional
discrimination task.

A matched filter, as we use the term in this paper, is
a filter designed to optimize the SNR, and projects the
complex input signal to a single dimension. Hence, the
resulting S can be linearly separated [40]. For two-class
discrimination (such as in qubit readout) the matched filter
is given by

kn = 〈[S0]n − [S1]n〉
var([S0]n) + var([S1]n)

, (C2)

where S0 and S1 are the signals of the two classes [〈f 〉
denotes the mean value of signal f and var(f ) the variance
of f ]. Assuming the noise in the signal is stationary and
Gaussian distributed, this is the optimal weighting function
[41,42], and the optimized discriminator threshold is then
located at 0, the axis origin [41].
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FIG. 5. Readout data statistics. (a) Magnitude of the time-bin weights of the qubit-specific matched-filter shapes derived using
prepared ground and excited states. A rectangular window (RW) is applied to each matched-filter kernel to reduce the impact of qubit-
energy decays and maximize qubit-state-assignment fidelities. The resulting matched-filter windows are shaded in gray. (b) Histograms
of the qubit-state-readout single-shot traces are shown after applying the optimized 1-μs-long matched filter. The dashed lines represent
the optimized thresholds with the states to the right attributed to the ground state and left to the excited state. Using bimodal Gaussian-
fit functions for the ground state (green) and trimodal Gaussian-fit functions for the excited state (blue) provides insight into the
underlying dynamics such as thermal excitation or qubit-energy decays (see Table V). (c) Boxcar-filtered single-shot traces of ground
(black) and excited states (gray) are plotted in the IQ plane. A linear support vector machine trained on the two-dimensional data
generates the qubit-specific colored discrimination boundary.

For superconducting qubits, this matched filter is equal
to the difference between the mean ground- and excited-
state-readout signals normalized by the signal variance,
which must be measured experimentally using calibration
runs with known qubit states—as described and termed
“matched filter” in Ref. [41], “mode matched filter” in
Ref. [22], or as “Fisher’s linear discriminant” in Ref. [42].
While filtering is typically not considered as an example
of a learning algorithm, the filter estimation and threshold
optimization can be thought of as a “training” step.

In our implementation, as illustrated in Fig. 5(a), the
matched-filter kernel is additionally multiplied with a
boxcar filter to limit the impact of nonidealities such

as qubit-energy decay. After matched-filter summation
[Eq. (C1)], an optimized threshold partitions the one-
dimensional projection into ground- and excited-state
classes, depicted in Fig. 5(b). Finally, the concatenation
of the one-bit labels assigned by each single-qubit dis-
criminator results in the assigned five-qubit-state label.
Note, the demodulation step at intermediate frequencies
using e−j ωIF

i n with ωIF
i defined in Table IV (as described

in Ref. [4]) can be incorporated in the kernel tune up.
Assuming the noise affects both qubit states equally, the

achievable assignment fidelity depends on the separation
R between the ground- and excited-state-readout signals,
S0 and S1, referred to as the Fisher criterion [65]. The
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TABLE V. Numerical values extracted from Gaussian fits to readout data distribution after a 1-μs measurement time using a matched
filter, as illustrated in Figs. 5(a) and 5(b). The peak ratio of bimodal Gaussian fits (with equal variance) to the readout-trace histograms
of qubits initialized in the ground state (no pulse applied: ∅) provide insight into the thermal excitation probability P(1|∅). Comparing
the peak ratios for trimodal Gaussian fits to the readout-trace histograms of qubits initialized in the excited state (π -pulse applied:
π ) indicate the conditional probability for qubit-energy decays P(0|π) and second-excited-state population P(2|π). Flabel = 1 −
[P(1|∅) + P(0|π)]/2 denotes a lower boundary for the initialization fidelity and thus the label accuracy using the conditional state
transition rates. Fπ represents the fitted π -pulse fidelities resulting in the preparation fidelities Fprep = {1 + [1 − 2P(1|∅)]Fπ }/2.
〈S0〉, 〈S1〉, and var(S) are the mean ground state, mean excited state, and variance of both states used to derive the Fisher criterion R
and achievable assignment fidelity Fach [see Eqs. (C3), (C4)]. FMF, the product of Flabel and Fach, is an estimate for an upper qubit-
state-assignment fidelity bound for a classifier composed of a matched filter and the subsequent optimized threshold, here referred to
as MF.

Qubit P(1i|∅i) P(2i|∅i) P(0i|πi) P(2i|πi) Flabel Fπ Fprep 〈S0〉 〈S1〉 var(S) R Fach FMF

1 0.005 
 0.001 0.038 0.001 0.979 0.999 0.995 1.061 −0.947 0.388 26.817 0.995 0.974
2 0.003 
 0.001 0.106 0.019 0.946 0.977 0.986 0.523 −1.145 0.963 3.001 0.807 0.773
3 0.006 
 0.001 0.057 0.052 0.968 0.965 0.977 0.731 −1.181 0.355 28.927 0.996 0.965
4 0.009 0.018 0.051 0.734 0.961 0.970 0.976 1.003 −0.101 0.247 19.953 0.987 0.950
5 0.003 
 0.001 0.036 
 0.001 0.981 0.976 0.985 0.852 −1.164 0.348 33.614 0.998 0.979

separation R is defined as

R = (〈S0〉 − 〈S1〉)2/var(S), (C3)

with the same variance for both states, var(S) = var(S0) =
var(S1). For additive Gaussian noise with a diagonal
covariance matrix, R is maximized by the matched-filter
kernel of Eq. (C2) [41,42], with the maximally achievable
assignment fidelity

Fach = 1
2

[
1 + erf

(√
R/8

)]
, (C4)

with erf(z), the Gauss error function of z [20].
For each qubit state, the filtered-signal (S) histograms

that result after the matched filter are fit with Gaussian
functions, shown in Fig. 5(b). For the fit functions, we
assume the readout noise for both qubit states has the same
variance, in order to evaluate the maximally achievable
discrimination fidelity Fach under ideal noise conditions,
as presented in Table V. Fitting the ground state with a
bimodal, and the excited state with a trimodal Gaussian fit
reveals nonidealities due to state transition dynamics such
as thermal excitations or qubit-energy decays. The product
of the label, Flabel, and achievable, Fach, fidelities provides
an estimation of the upper boundary for the MF discrimi-
nator qubit-state-assignment fidelity FMF, as shown in the
last column of Table V.

2. Support vector machine

SVMs—known for their robustness and good gener-
alization—are fundamental two-class discriminators that
draw a single decision boundary, called a hyperplane, in a
supervised learning scheme [46,47]. The margin between
the classes and the hyperplane can be maximized by penal-
izing misclassified data points and data points within the

margin boundaries. The penalty for data points within the
margin boundaries can be varied using a regularization
term. A lenient penalty results in a so-called soft-margin
SVM, which can better cope with problems that are not
linearly separable.

The hyperplane dimension is equal to the one less
than the number of features—the dimensions of the mea-
surement data. The location of a new data point relative
to the hyperplane decides on the associated label. This
deterministic decision process is not probabilistic, and the
information on the probability of label association is thus
not directly accessible. While hyperplane separations work
only for linearly separable data, nonlinear SVMs use the
kernel trick to map the data points to higher dimensions
via a nonlinear transformation and find a hyperplane in that
higher-order feature space.

Several SVMs can be trained in concert for multiclass
discrimination to divide the feature space into areas asso-
ciated with distinct classes [52]. For an N -class (N > 2)
classification task, the number of necessary hyperplanes
is at least N − 1 if each class is discriminated against the
rest, referred to as “one versus all.” Each class requires
a hyperplane separating itself from the remaining collec-
tive of classes. However, separating space in more than
two classes results in ambiguous areas that cannot be
associated with a single class [42].

Here, we use scikit-learn library to implement single-
qubit and multiqubit linear and nonlinear SVMs in Python
[66]. We employ the LinearSVC implementation for linear
and SVC for nonlinear soft-margin SVMs with regular-
ization parameters optimized per discriminator to deliver
the maximally achievable qubit-state-assignment fidelity.
In general, the training wall-clock-time for an SVM imple-
mented using LinearSVC is significantly reduced relative
to the training time required for SVC SVMs. Nonlinear
SVMs can only be implemented in SVC, as LinearSVC
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does not offer the kernel trick. In addition to the result-
ing unfavorable scaling of the training wall-clock-time of
nonlinear SVMs, the multidimensional optimization prob-
lem, if tasked to discriminate multiple qubit states, mostly
resulted in nonoptimal hyperplanes (for five qubits, non-
linear SVMs achieved an average qubit-state-assignment
fidelity about 10% worse than the one achieved by its lin-
ear counterpart). We limit the study of nonlinear SVMs
to a basic characterization due to the lack of qubit-
state-assignment fidelity robustness and the training-time
requirements (for five qubits more than one day). Hence-
forth, we focus on linear soft-margin SVMs as paral-
lel single-qubit or multiqubit discriminators (in the one-
versus-all mode).

3. Neural networks

Typically, a neural network consists of an input layer
composed of several nodes—the number of nodes depends
on the input data dimension—and an output layer that con-
tains the computed output values. In between the input and
output layer are layers of neurons—so-called hidden lay-
ers as their output value is not directly accessible—with
unique tasks per layer. The input and output channels of
a neuron are called edges, illustrated in Fig. 6(a). Each
neuron can be described as a mathematical function of
incoming weighted parameters—typically output values of
other neurons—and external parameters. The function out-
put generally passes through a nonlinear filter before it can
serve as an input to other neurons, depicted in Fig. 6(b).
Varying the connectivity, neuron functions, and the non-
linear function at each neuron output provides a flexible
toolset to engineer a broad spectrum of neural network
types. Supervised training of such a network can optimize
the weights for each neuron input and external parameter
to almost arbitrarily approximate any function.

We examine various neural-network architectures to
determine the most useful one in improving the qubit-
state-assignment fidelity and measurement time of multi-
qubit devices. We explore fully connected FNNs—among
the most elementary neural networks—convolutional neu-
ral networks (CNNs)—among the most successful image
classification methods in use today—and long short-term
memory recurrent neural networks (LSTM)—among the
most successful architectures in language processing. The
fully connected FNN with three hidden layers excelled in
assignment fidelity compared to the other neural network
types.

Implemented in PyTorch [49], the FNN architecture that
yields the highest assignment fidelity for five qubits is
composed of three hidden layers. The number of nodes
composing the input layer depends on the measurement
time and the size of the discrete time bins—here 2 ns. For
a 1-μs-long measurement time, the input layer contains
1000 nodes with the in-phase and quadrature components
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FIG. 6. Architecture and training of fully connected FNN. (a)
The FNN architecture used here comprises an input layer, three
hidden layers, and an output layer. For a 1-μs-long measurement
time, the input layer consists of 1000 nodes. 1000, 500, and 250
nodes form the first, second, and third hidden layer. The output
layer scales as 2N (N , the number of qubits). For five qubits,
the output layer encompasses 32 nodes. (b) The nodes compos-
ing the hidden layer l are functions that depend on the following
parameter inputs: the output values xl−1

n of the prior layer l − 1
and a node-specific bias b. The output value xl

m of node m corre-
sponds to the weighted (weights wn) sum of the inputs xl−1

n and
the bias b after passing through an activation function, here a
SELU, shown in orange. (c) The training performance is shown
for a FNN tasked to discriminate N qubits with N = 1, 2, . . . , 5.
The generalization—the ratio of the geometric mean test F test

GM
and training qubit-state-assignment fidelity F train

GM —as the num-
ber of epochs increases is shown in black using the left y axis.
The associated standard deviation of the generalization is indi-
cated in gray. The number of epochs to achieve the maximum
qubit-state-assignment fidelity is indicated with a red vertical bar.
The learning rate η, shown in blue and using the right y axis, is
gradually reduced as the number of epochs increases.

alternating. The dimension of the first hidden layer is
equal to, the second hidden layer is half of, and the third
hidden layer is a quarter of the input layer dimension.
Finally, the output layer consists of 2N nodes, with N
being the number of qubits (32 for the five-qubit readout
we focus on here). The activation function, the nonlinear
filter acting on the hidden layer nodes, is a SELU [50],
instead of the common rectified linear unit (ReLU) [67]
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due to its improved robustness and learning rate. The out-
put layer is filtered using a softmax function softmax(xi) =
exp(xi)/

∑
j exp

(
xj

)
.

The architectural complexity of the neural-network
architecture depends on the number of time bins con-
stituting each measurement, the number of multiplexed
frequencies, and the number of qubits. For our investi-
gation, we find that the FNN requires at least two and
optimally three layers. The first hidden layer has the length
of the input layer. The consecutive layers should then have
half the number of nodes of the previous layer. While we
did not observe an improvement in adding more nodes to
the layers, we observe a decrease in assignment fidelity
when the layers comprise fewer than half the nodes of the
prior layer.

It may be possible to reduce the complexity of the neu-
ral network if the number of available training samples
is limited. We find that for a training set of 100 samples
per qubit state, a feedforward neural network consisting
of a single hidden layer and 10 nodes is sufficient for
the readout of the superconducting qubit system described
here [68]. For 20 randomized training sets of 100 sam-
ples per state, the matched filter reaches an assignment
fidelity of 58.9% ± 3.4%, whereas the feedforward neu-
ral network yields 80.0% ± 2.7%. For 5100 samples per
state, the assignment fidelity is comparable for both dis-
criminators: 88.8% for the matched filter and 89.4% for
the feedforward neural network. In general, for small train-
ing sets, the distribution of rare effects such as excited
state decays is not well balanced and thus a training bias
is to be expected. The considerable error bar is a conse-
quence of that training bias. Therefore, larger training sets
are typically preferred.

Multiple training cycles, referred to as epochs, are
required to ensure the discriminator output to converge
to the maximum qubit-state-assignment fidelity. The num-
ber of epochs to reach a convergence plateau depends on
the correction factor per cycle, the learning rate. We start
with a more aggressive learning rate of 0.001—a typical
value for neural networks—and gradually decrease it as
the qubit-state-assignment fidelity starts plateauing around
250 epochs. Furthermore, the entire training set is ran-
domly divided into normalized subtraining units, termed
batches [69]. The batch size specifies after how many
training samples the neural network weights are updated.
The choice of batch size affects the wall-clock-training
time and generalization, or in other words, how well the
discriminator performs on unseen data compared to the
training set. We find that a batch size of 1024 achieves a
good balance between assignment fidelity, generalization,
and wall-clock-training time. We observe an average wall-
clock-training time of about half an hour for five qubits.
The learning rate, generalization, and the optimal number
of epochs as the number of qubits increases is shown in
Fig. 6(c).

APPENDIX D: RESULT ANALYSIS

In addition to a specific choice of discriminator, the
to-be-discriminated data can be differently prepared. Typ-
ically, the discrete-time readout signals at intermediate
frequency, zIF[n] = I IF[n] + jQIF[n], are digitally demod-
ulated following the steps outlined in Fig. 8(a) and Ref
[4]. The signal components Ii[n] = Re (zi[n]) and Qi[n] =
Im (zi[n]) can be boxcar filtered [4] or kept as a sequences
Ii[n] and Qi[n]. For digitally demodulated data and multi-
qubit discrimination, zIF[n] are demodulated at each inter-
mediate frequency. The resulting digitally demodulated
time traces need to be stacked up to form a single data
block before being used as the input to the multiqubit
discriminator.

Furthermore, the training data set can either be com-
posed of all permutations of the qubit states or a specific
subset. Here, we focus on either training discriminators
with qubits not involved in the training process, the spec-
tator qubits, in all combinations of the ground and excited
state (indicated as ∗), or kept in the ground state (denoted
by ∅).

We evaluate the comparison for a measurement time
of 1 μs after which four out of five qubits have reached
their maximum assignment fidelity for matched filters, as
shown in Fig. 7. For five qubits, a 1-μs-long measurement
time, and 10 000 training instances, we show a comparison
of the qubit-state-assignment fidelity of the above intro-
duced single- and multiqubit discriminator approaches in
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FIG. 7. Qubit-state-assignment fidelity. Matched-filter dis-
criminator for each qubit versus measurement time. The maxi-
mum assignment fidelity Fi(ti) for each qubit i is reached after
t1 = 1 μs, t2 = 2 μs, t3 = 0.5 μs, t4 = 0.8 μs, and t5 = 0.5 μs.
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FIG. 8. Measurement data processing and discrimination. (a) M -dimensional data (zIF[n]) processing for single-qubit and multiqubit
discrimination. For single-qubit discrimination, zIF[n] is digitally demodulated at the intermediate frequency of a resonator i. The
resulting signal zi[n] can be simplified with a boxcar filter (BF)

[ 1
M

∑
n zi[n] = Īi + j Q̄i

]
or kept as sequences Ii[n] and Qi[n].

The discriminators can either be trained with the spectator qubits exclusively in their ground state (denoted by ∅) or, alternatively,
in either their ground or excited state (denoted by ∗). For multiqubit discriminators, the digitally demodulated signals zi[n] at all
resonator frequencies i are stacked up. The resulting data block is subsequently used for the discriminator training. Alternatively, the
discriminator can be tasked to discriminate zIF[n] directly without any digital preprocessing. (b) Comparison of the geometric mean
qubit-state-assignment fidelity for five qubits after a 1-μs-long measurement and 10 000 training instances per qubit-state configuration.
All single-qubit discriminators are evaluated using training data with the spectator qubits in the ground as well as all combinations of
ground and excited state. The MF threshold discriminator [the matched filter is part of the discriminator and thus not shown in (a)]
is shown in two configurations; the threshold set to 0 and the threshold optimized. The linear SVM is applied to BF and time-trace
data of Ii[n] and Qi[n]. The multiqubit discriminators are evaluated utilizing digitally demodulated and unprocessed data. Shown are
a multiqubit linear SVM, a recurrent NN, a convolutional NN, and feedforward NN.

Fig. 8(b). Optimizing the threshold of MFs and using
training data with the spectator qubits in the ground state
increases the qubit-state-assignment fidelity. Single-qubit
linear SVMs perform best if tasked to discriminate vector-
ized digitally demodulated data and trained with a data set
with all qubit-state combinations represented.

Multiqubit linear SVMs appear to perform better if
tasked to discriminate digitally demodulated readout sig-
nals. In contrast, the neural networks perform the best
if unprocessed data is used. The feedforward neural net-
work outperforms its counterparts, the recurrent and con-
volutional neural network, in the achieved qubit-state-
assignment fidelity. The RNN processes the data chrono-
logically, whereas the CNN performs temporally local

operations. The fully connected layers of the FNN process
data without the notion of time. We suspect that the FNN
outperforms its neural-network archetype alternatives due
to its temporally unbiased approach and robust training
routine.

In the main part of the paper, we focus on the best per-
forming discriminator approach of each category: matched
filter, single-qubit linear SVM, multiqubit linear SVM, and
neural networks.

Next, we analyze the qubit-state-assignment probabili-
ties using the metric of confusion matrices. Figure 9 illus-
trates the confusion matrix for the FNN and MF discrimi-
nator. For an ideal confusion matrix with all prepared states
agreeing with the assigned state, the confusion matrix is an
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FIG. 9. Qubit-state-assignment fidelity analysis. Confusion (assignment probability) matrix of the FNN (a) and MF (b). The rows
of the confusion matrix encompass the probability distribution of the discriminator to assign each of the 32 qubit-state configurations
to the row’s prepared qubit-state configuration (no pulse applied, qubit initialized in the ground state: ∅ → 0; π -pulse applied, qubit
initialized in the excited state: π → 1). The probabilities of correctly classified states—on the diagonal—are shown in blue, whereas
the misclassification probabilities—the off diagonals—are shown in red. FN, introduced in Eq. (D2), represents a metric to indicate
the overlap between the confusion matrix and an identity matrix (the ideal confusion matrix). FN = 1 if the confusion matrix is an
identity matrix.

identity matrix. To evaluate the overlap between an iden-
tity matrix (entries represented as a Kronecker δij with i
and j representing the indices of the matrix row and col-
umn) and a confusion matrix (with entries cij ), we propose
the following metric based on the Frobenius norm:

||A||F =
√∑

i

∑

j

|cij − δij |2. (D1)

To bound the Frobenius norm between 1 and 0, we nor-
malize the Frobenius norm with the maximum value of
Eq. (D1) (

√
2N+1). The normalized Frobenius norm is

equal to 0 if the confusion matrix is exactly an identity
matrix. An alternative representation more closely related
to the fidelity metric can be expressed as

FN = 1 − ||A||F√
2N+1

. (D2)

The MF achieves FN = 0.644, whereas the FNN yields a
value of FN = 0.691, a relative improvement of 7.3%.
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