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ABSTRACT
Aggregating data is fundamental to data analytics, data exploration,
and OLAP. Approximate query processing (AQP) techniques are
often used to accelerate computation of aggregates using samples, for
which confidence intervals (CIs) are widely used to quantify the asso-
ciated error. CIs used in practice fall into two categories: techniques
that are tight but not correct, i.e., they yield tight intervals but only
offer asymptotic guarantees, making them unreliable, or techniques
that are correct but not tight, i.e., they offer rigorous guarantees, but
are overly conservative, leading to confidence intervals that are too
loose to be useful. In this paper, we develop a CI technique that is
both correct and tighter than traditional approaches. Starting from
conservative CIs, we identify two issues they often face: pessimistic
mass allocation (PMA) and phantom outlier sensitivity (PHOS).
By developing a novel range-trimming technique for eliminating
PHOS and pairing it with known CI techniques without PMA, we
develop a technique for computing CIs with strong guarantees that
requires fewer samples for the same width. We implement our
techniques underneath a sampling-optimized in-memory column
store and show how to accelerate queries involving aggregates on real
and synthetic datasets with speedups of up to 124× over traditional
AQP-with-guarantees and more than 1000× over exact methods.

1. INTRODUCTION
Primitives for aggregation like AVG, SUM, and COUNT are key

to making sense of and drawing insights from large volumes of
data, powering applications in OLAP, exploratory data analysis, and
visual analytics. Accelerating their computation is therefore of great
importance. Approximate Query Processing (AQP) is commonly
used to accelerate computation of these aggregates by estimating
them on a subset or sample of the full data. Reasoning about the
error of the estimates as introduced by approximation is crucial:
consumers of approximate answers—ranging from human decision
makers to automated processes—rely on confidence intervals (CIs)
or error bounds as the foundation for understanding the quality of
the approximate answer. Therefore, many AQP techniques come
with CIs to allow for more confident or informed decisions made
using approximate estimates.

Error bounding, or CI computation techniques take a confidence
parameter δ ∈ [0, 1], with the semantics that the returned intervals
[g`, gr ] fail to enclose the true aggregate g? at most δ of the time.
One can tune δ to be as small as needed (δ = 10−15 throughout
this paper), at the cost of requiring more samples to achieve the
same interval width (gr − g`). Likewise, for a given δ, taking more
samples typically causes the error bounding procedure to return a
narrower confidence interval. Since δ is typically small, we use
the phrase “with high probability” (w.h.p.) as shorthand for “with

SELECT Origin, AVG(DepDelay) FROM flights
GROUP BY Origin HAVING AVG(DepDelay) < 0

Figure 1: Origin airports with negative average delay. In this query, the
AVG aggregates are consumed both by the user and by the system.

probability greater than (1 − δ)”. CI computation techniques need
to satisfy two goals: (i) compactness: by minimizing the interval
width gr − g` , and (ii) correctness: by ensuring that g? ∈ [g`, gr ]
with high probability. However, achieving both compactness and
correctness is difficult.
We outline the shortcomings of existing techniques, that either

prefer compactness over correctness (asymptotic techniques), or
correctness over compactness (conservative techniques), below:
Compactness without Correctness. Asymptotic error bounding
techniques such as bootstrap CIs [25, 24, 71] or central limit theorem
(CLT)-based CIs [61, 34] make assumptions about the distribution
taken by the data given a “large enough” sample size. These
procedures typically give CIs that are much tighter (and therefore
more useful for drawing inferences about the query results), and
have enjoyed numerous applications in database and visual analytics
systems [56, 52, 53, 44, 28, 42], including Aqua [5], BlinkDB [7, 6],
DBO [39], and online aggregation [35], and have furthermore seen
a number of DBMS-specific extensions [71, 55].

However, these asymptotic techniques result in intervals that only
enclose the true aggregate w.h.p. in the limit as the size of the
sample grows to infinity.1 That is, these techniques are correct in
the limit as the sample size approaches infinity, but they provide no
real guarantees for any given finite instance, potentially leading to
failures downstream. For example, consider the query in Figure 1,
which determines origin airports whose departing flights are ahead-
of-schedule, on average. An AQP system could use CIs to facilitate
early stopping by using them to infer on which side of the HAVING
threshold the various groups appear. If such a system relies on
asymptotic CIs, it is prone to serious types of error, called subset
error and superset error [52], whereby certain tuples may be missing,
and other tuples may appear spuriously.
Correctness without Compactness. Recognizing the downsides
of asymptotic approaches, recent work [21, 8, 40, 59, 50] has begun
to adopt conservative error bounders, which leverage concentration
inequalities to compute CIs. These procedures return bounds that
follow probably approximately correct (PAC) [63] semantics: given
δ ∈ [0, 1], the probability that the procedure returns lower and upper
bounds [g`, gr ] around the approximate aggregate ĝ that fail to
enclose the true aggregate g? should be at most δ for any sample size
1The error of CLT-basedmethods shrinks asO

(
1/
√

m
)
, but with con-

stants depending on unknowns such as the third absolute normalized
moment, according to the Berry-Esseen theorem [13, 26].
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Figure 2: Few points may lie near the range bounds a and b, and with filters
applied, the true range could be significantly smaller than (b − a).

(in contrast with asymptotic techniques, for which the probability
converges to δ given a large enough sample). These techniques have
been used in online aggregation [35, 31] and more recently in work
on visual analytics [8, 40, 59, 50].
In general, conservative methods such as those based on Hoeffd-

ing’s inequality [36] or on the Hoeffding-Serfling inequality [60]
rely on a-priori knowledge of range bounds a and b between which
the data fall (typically inferred during data loading). Although they
achieve the correctness goal of error bounders, when used for AVG,
the CI width for Hoeffding-based error bounders scales with the
range size (b− a), creating at least two major issues in the context of
a relational database, illustrated in Figure 2. (i) First, the presence
of a very few outliers can significantly widen the range [a, b] (and
therefore the CI width), even though most of the data may lie in a
much smaller effective range. In Figure 2, we see that even though
the range of salaries is b − a when $pred = true, most of the
data is concentrated in the center of the range. (ii) Second, pred-
icates and groupings may be applied during data exploration, so
that the filtered data lies in a smaller range than [a, b]; in Figure 2,
with $pred = pi, we see that the range of filtered salaries is much
smaller than even the $pred = true case. However, direct appli-
cation of Hoeffding-based methods do not account for the tighter
range of the filtered data, instead treating the sampled tuples as if
they were taken from the original (unfiltered) data.

Key Research Challenges and Contributions. With this back-
ground in mind, this paper aims to preserve correctness (or safety)
of conservative error bounders for AVG, SUM, and COUNT aggre-
gates while also providing compactness (for speed). We encounter
a number of challenges toward this end:
1. Identifying conservative error bounder pathologies. To improve
the viability of approacheswith strict correctness guarantees, wemust
first determine the circumstances under which conservative error
bounders are too conservative, and understand when fundamental
limits prevent improvements without sacrificing guarantees.
Our contribution: We identify two issues in range-based concen-
tration inequalities that cause unnecessary looseness when used to
compute conservative error bounds for AVG. The first, pessimistic
mass allocation (PMA), refers to the unnecessary placement of
unseen probability mass at endpoints a and b of the range enclosing
the data. The second, phantom outlier sensitivity (PHOS), occurs
when computation of the lower confidence bound g` depends on the
upper range bound b even without observed samples near b, and vice
versa for a dependency from a to gr . PHOS captures the intuition
that unobserved large (small) values should not loosen g` (gr ).
2. Correcting error bounder pathologies. After identifying cor-
rectable issues with existing conservative error bounders, we need
to develop novel techniques that address these issues, while keep-
ing in mind that these techniques should be efficient in terms of
computation and memory.

Our contribution: We develop a simple and general error bounding
technique, range trimming, that corrects PHOS without sacrificing
desirable PAC semantics. At a high level, range trimming operates
by making error bounders asymmetric, so that g` depends only on
the MAX value seen (and not on b), and gr depends only on the
MIN value seen, yielding tighter intervals when (MAX − MIN) is
smaller than (b − a). Range trimming can be used with any existing
conservative range-based error bounder (i.e., an error bounder whose
only assumption is that data falls in [a, b]). We show how range
trimming can be used to develop an error bounder for AVG (and by
extension SUM) with neither PHOS nor PMA by using it alongside a
bounder based on Bernstein’s inequality.
3. Minimizing sampling overhead. In order to enjoy the benefits of
early termination for queries with multiple aggregates, we need to
ensure that termination is not bottlenecked on any single aggregate,
allowing query processing to adaptively sample from the most
informative locations on physical storage while simultaneously
minimizing overhead.
Our contribution: We show how to couple our approach with a
sampling-optimized column store that takes without-replacement
samples in a locality-aware manner, and that leverages bitmap
indexes to prioritize samples that enable earlier termination in
the case of GROUP BY clauses. Furthermore, although existing
conservative error bounders assume knowledge of the dataset size
(an unreasonable assumption when a filter of unknown selectivity is
applied), we show how to circumvent this limitation by computing
an upper bound on this size online.
Impact. We develop error bounding techniques that more effectively
leverage distributional information of the underlying data, and that
therefore often lead to tighter error bounds as compared with those
yielded by typical conservative error bounders. When used in
conjunction with a sampling-optimized column store for in-memory
analytics, we demonstrate speedups of more than 1000× over exact
techniques and up to 124× over traditional conservative approximate
techniques, all without sacrificing strong correctness guarantees.
Extensibility. While our presentation focuses on confidence inter-
vals for queries over a single table with simple AVG aggregates,
we note that our techniques are more general and can be used to
facilitate SUM and COUNT aggregates, queries over views formed
from joins in a snowflake schema, and queries with general UDFs —
we discuss these extensions in Section 4.1 and more in the appendix.
Outline. The rest of this paper is organized as follows. Section 2
discusses existing conservative error bounders and their prior usage
in the DBMS literature, and develops a conceptual framework for
identifying issues with these error bounders. In Section 3 we develop
the theory behind our RangeTrim technique, and show how to fix
issues with previous error bounders in Section 2. Section 4 addresses
systems issues that appear when sampling without replacement and
develops FastFrame, our sampling-optimized column store, and
Section 5 empirically evaluates our techniques in the context of this
system. We survey additional related work in Section 6.

2. DBMS ERROR BOUND INTEGRATION
In this section, we first describe applications of confidence inter-

vals for facilitating query processing in a database system (§2.1).
Next, we surveymethods for computing error bounds with guarantees
applicable to DBMS aggregates (§2.2) identify their shortcomings
(§2.3) and conclude with a formal problem statement (§2.4).

2.1 DBMS CI Applications
Consider the query in Figure 1. In this query, AVG aggregates

are both displayed as output in the query results, and are also used
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Symbols / Terms Descriptions

D, N, S, c,m
Dataset, num. points in dataset (i.e. |D|),
sample, num. points taken (for c) or desired
(for m) in sample (i.e. |S |)

g?, ĝ, g`, gr True aggregate, estimate, error bounds

a, b, σ2, σ̂2 δ, ε
Range bounds, variance, empirical vari-
ance, error probability upper bound, error

F, F̂, L,U
True / empirical CDF, lower and upper
bounds on true CDF

Lbound, Rbound
Confidence lower (resp. upper) bounding
routines parameterized on a, b, N , and other
sample state(see §2.2.2).

SSI, PMA, PHOS Sample-size-independent, pessimistic
mass allocation, phantomoutlier sensitivity

Table 1: Glossary of terms / notation.

to filter the set of tuples in the output. This reflects two major
applications of confidence intervals in a DBMS setting: CIs that
are explicitly used downstream, i.e., by an analyst, or CIs that are
implicitly used by automated processes.

Explicit Use of Downstream CIs. When approximating aggregates
in a DBMS, confidence intervals can be included in the output
displayed to users. For this application, in which CIs are explicitly
displayed to users, the AVG aggregates belonging to the groups
output by the query in Figure 1 are augmented with confidence
intervals and included in the output. This application helps users to
reason about uncertainty in approximate answers and has seen prior
usage in the database and visual analytics literature [35, 28].

Implicit Use of Downstream CIs. Confidence intervals have been
applied toward facilitating various other kinds of downstream ap-
plications, for example in order to enable early stopping. Example
applications from prior literature include high-level accuracy con-
tracts [53, 55] (i.e., guaranteeing query results are within ε of the
correct), ranking query results [40, 50], and bounding relative er-
ror [8]. In all cases, the user need not ever observe the interval: the
goal is to provide early stopping while ensuring correct results. We
consider these applications later in our experiments in Section 5.

Goal. In this paper, we are primarily concerned with enabling
CI compactness (to reduce query latency) without sacrificing CI
correctness (thereby ensuring safety), for both explicit and implicit
applications of CIs. The major goal is therefore to develop CI
techniques that are as tight as possible, while always enclosing the
quantity in question. Throughout this section and Section 3, we will
focus our discussion on CIs for AVG aggregates; we will cover SUM
and COUNT aggregates in Section 4.

2.2 Computing CIs in a DBMS
We now describe methods for computing error bounds with accu-

racy guarantees in a database system, along with any assumptions
required. Relevant notation is summarized in Table 1. We begin by
defining error bounders, bounds, and confidence intervals.
Definition 1 [(1 − δ) error bounders and bounds]. A procedure P
that returns error bounds [g`, gr ] for some aggregate g? given a
sample is a (1 − δ) error bounder if, across all possible samples,
P

(
g? < [g`, gr ]

)
< δ. [g`, gr ] is called the (1 − δ) confidence

interval for g?, and g` and gr are collectively referred to as (1 − δ)
error or confidence bounds.
In contrast with asymptotic error bounders that only satisfy

P
(
g? < [g`, gr ]

)
≈ δ for large-enough sample sizes, the (1− δ) error

bounders from Definition 1 always satisfy P
(
g? < [g`, gr ]

)
< δ for

any sample size, so we call them sample-size-independent (SSI).

2.2.1 Assumptions Applicable to Data in a DBMS
In the case of AVG aggregates, all error bounding procedures

require some prior knowledge about the data overwhich they operate –
otherwise, outliers can have arbitrarily strong effects on the aggregate
in question. Weaker assumptions are more general, but typically
yield more conservative bounds.
In this paper, we make two assumptions about the data D over

which queries operate: first, that every datapoint x ∈ D lies in some
interval [a, b]; second, that datapoints can be effectively sampled
without replacement from D. We now discuss these assumptions in
the context of prior work and show that they can be implemented
effectively within real systems.

Known Range Bounds. As in prior work [35], we assume that the
database catalog maintains range bounds a and b for the MIN and
MAX of each continuous column, inferred, for example, during data
loading. (Note that we do not require [a, b] = [MIN,MAX], but only
that [a, b] ⊇ [MIN,MAX].) These assumptions are more applicable
in the context of a database as compared with stronger distributional
assumptions (e.g., that the data are normal or that they obey a tighter
sub-Gaussian parameter than that implied by the range bounds [64])
and can be easily maintained in the case of insertions. We refer
to bounders that assume knowledge of a and b as range-based
error bounders throughout this paper. Furthermore, we show in the
appendix (§B) that it is possible to leverage the range assumption
even in the case of aggregates involving arbitrary expressions over
multiple columns by first solving an optimization problem for derived
range bounds a′ and b′ that enclose the transformed data.

Sampling Without Replacement. Estimates for AVG aggregates
generally converge faster for samples taken without replacement than
samples taken with replacement [60, 12]. In the context of a DBMS,
sampling with replacement has traditionally been considered easier
than sampling without replacement, since the system does not need
to “remember” the samples already taken [54, 40]. Sampling as
traditionally implemented, however, also has poor locality properties,
as nearly every read operation results in a cache miss. Another
approach taken in prior work [58, 69, 70, 50] is to materialize
samples ahead-of-time by performing a single up-front shuffle of
the entire relation, so that sampling without replacement can be
implemented via a scan of the data regardless of any applied filters
or other transformations. Since this approach is valid for multiple
queries executed during ad-hoc, exploratory workloads (in contrast
with approaches that use workload assumptions to pre-materialize
stratified samples [30, 7]), we design our system architecture around
this approach, described in more detail in Section 4.

2.2.2 State for DBMS Error Bounds
OLAP queries must operate over many tuples, so it is desirable

that aggregations and their error bounders maintain small of memory
footprints as possible as new tuples are examined, although we will
see in Section 2.2.3 that some bounders must maintain state which
grows with the number of tuples examined. To better understand
implementation details for error bounders within the context of a
DBMS, we present error bounders in terms of the following interface:
Ê init_state(): Initializes state needed for error bounds.
Ë update_state(S, v): Given the current state S and a newly-seen
value v, compute new state S′.

Ì Lbound(S, a, b, N, δ): Return a confidence lower bound for a
sample whose relevant statistics are captured in state S, assuming
the sample came from a finite dataset D of N values in [a, b].
The probability that the sample leads to this function returning a
value greater than AVG(D) is < δ.

3



Algorithm 1: Hoeffding-Serfling error bounder [60]
1 function init_state() Ê

2 return
{
m: 0, ĝ: 0

}
;

3 function update_state(S, v) Ë
4 m′ ← S.m + 1;
5 ĝ′ ← S.ĝ + (v − S.ĝ)/m′;
6 return

{
m: m′, ĝ: ĝ′

}
;

7 function Lbound(S, a, b, N, δ) [60] Ì

8 ε ← (b − a) ·
√

log (1/δ)
2·S .m · (1 − S .m−1

N );
9 return S.ĝ − ε;

10 function Rbound(S, a, b, N, δ) Í
11 S.ĝ← (a + b) − S.ĝ;
12 return (a + b) − Lbound(S, a, b, N, δ);

Í Rbound(S, a, b, N, δ): Symmetric to Lbound for the confidence
upper bound. Can typically be implemented in terms of Lbound
after a suitable transformation of S.

The state S captures information such as the count of tuples examined
and the current running average, as well as anything else required
by Lbound and Rbound. The state initialization and update logic
is analogous to state maintenance logic for aggregates functions as
implemented in existing commercial database systems [2, 3, 4].
Note that both Lbound and Rbound depend on the range bounds

a and b, as well as the data size N (allowing for tighter bounds when
sampling without replacement).

2.2.3 Error Bounds for Finite and Bounded Data
In this section, we review some techniques for computing confi-

dence intervals that leverage only the assumptions discussed in the
previous subsection: that samples are taken without-replacement
from data bounded in some a priori-known range [a, b]. Our goal is
not to be exhaustive but representative, drawing attention to previous
applications in the DB literature (and lack thereof). Further details
about these bounders, such as implementation pseudocode and full
restatements of relevant theorems, are available in our extended
technical report [49].

Hoeffding-Serfling-based Bounder. An error bounder based on
the Hoeffding-Serfling inequality [60] computes CIs whose widths
depend only on the range (b − a) and the number of samples m, and
that have size O

(
(b − a)/

√
m
)
(if we ignore the sampling fraction

term). While asymptotically optimal for worst-case data distributed
with half of the points at a and the other half at b, it is needlessly wide
in practice, when few points occur near a or b. An implementation
of this bounder in terms of our interface from Section 2.2.2 is given
in Algorithm 1. We give a statement of the Hoeffding-Serfling
inequality and derive the corresponding error bounder.

Lemma1 (Hoeffding-Serfling Inequality [60]). LetD = x1, . . . , xN
be a set of N values in [a, b] with average value AVG(D) = µ. Let
X1, . . . , XN be a sequence of random variables drawn from D
without replacement. For every 1 ≤ m ≤ N and ε > 0,

P

(
max

1≤k≤m

∑k
t=1(Xt − µ)

N − k
≥ mε

N − m

)
≤ δ

where

δ = exp

(
− 2mε2

(1 − m−1
N )(b − a)2

)

Algorithm 2: Empirical Bernstein-Serfling err. bounder [12]

1 function init_state() Ê

2 return
{
m: 0, ĝ: 0, M2: 0

}
;

3 function update_state(S, v) Ë
4 m′ ← S.m + 1;
5 ĝ′ ← S.ĝ + (v − S.ĝ)/m′;
6 M′2 ← S.M2 + v

2;
7 return

{
m: m′, ĝ: ĝ′, M2: M′2

}
;

8 function Lbound(S, a, b, N, δ) [12] Ì

9 κ ← 7/3 + 3/
√

2;
10 ρ← I {S.m ≤ N/2} · (1 − S .m−1

N );
11 ρ← ρ + I {S.m > N/2} · ((1 − S .m

N ) · (1 +
1

S .m ));

12 ε ←
√
S.M2/S.m − S.ĝ2 ·

√
2ρ·log (5/δ)

S .m + κ · (b − a) · log (5/δ)
S .m ;

13 return S.ĝ − ε;
14 function Rbound(S, a, b, N, δ) Í
15 S.ĝ← (a + b) − S.ĝ;
16 return (a + b) − Lbound(S, a, b, N, δ);

By focusing on k = m and inverting the probability expression,
we may compute a 1 − δ lower confidence bound as

1
m

m∑
t=1

Xt − (b − a)

√
(1 − m−1

N )(log 1
δ )

2m

and likewise for a upper confidence bound (replacing “−” with “+”),
so that (1− δ2 ) lower and upper confidence bounds may be combined
to yield a (1 − δ) confidence interval (via a union bound).
Empirical Bernstein-Serfling-based Bounder. A concentration
inequality for sampling without replacement given in [12], the
Bernstein-Serfling inequality assumes knowledge of both (b− a) and
VAR(D) = σ2 = 1

N

∑
x∈D (x − AVG(D))2. We defer a statement

of the full result to the appendix. Here we note that inverting the
inequality gives error bounds as

1
m

m∑
t=1

Xt ± O
(
σ/
√

m + (b − a)/m
)

if we again ignore the sampling fraction term. Comparing these
error bounds to those of Hoeffding-Serfling, which has widths of
size O

(
(b − a)/

√
m
)
(again ignoring the sampling fraction), we see

that error bounds derived from the Bernstein-Serfling inequality can
be significantly tighter when σ is small compared to (b − a).
Knowledge of VAR(D) typically cannot be assumed in a set-

ting where AVG(D) is unknown. Fortunately, there also exists an
empirical variant of the Bernstein-Serfling inequality (also given
in [12], like the non-empirical variant). The analysis for the em-
pirical Bernstein-Serfling inequality proceeds by augmenting the
analysis for the non-empirical variant with a concentration inequality
relating the estimator σ̂2 = 1

m

∑m
t=1(Xt − X̄)2 to VAR(D). We again

deferring the full statement to the appendix. This yields (1− δ) error
bounds given by

1
m

m∑
t=1

Xt ± O
(
σ̂/
√

m + (b − a)/m
)

Note that these error bounds differ from the those of the non-
empirical variant only in that σ is replaced by σ̂ (modulo slightly
worse constants hidden by the asymptotic notation). Although σ̂ is
a random quantity, it concentrates near σ, so that an error bounder
based on the empirical Bernstein-Serfling bound returns bounds
of asymptotically the same width as those returned by an error
bounder based on the non-empirical variant and with full access to
σ2, w.h.p. Algorithm 2 gives an implementation of an empirical

4



Algorithm 3: Anderson/DKW error bounder [23, 10, 51]

1 function init_state() Ê
2 return {}

3 function update_state(S, v) Ë
4 return S ∪ {v }

5 function Lbound(S, a, b, N, δ) Ì

6 ε ←
√

log (1/δ)
2·|S | ;

7 F̂ ← empirical CDF based on S;
8 S′ ← {x ∈ S : F̂(x) ≤ 1 − ε };
9 return ε · a + (1 − ε) · AVG(S′);

10 function Rbound(S, a, b, N, δ) Í
11 return (a + b) − Lbound((a + b) − S, a, b, N, δ);

Bernstein-Serfling-based error bounder in terms of our interface
from Section 2.2.2. Note that Algorithm 2 as presented shows
computation of the sample variance in terms of the second moment
M2 =

∑
v2 for the sake of exposition; a real implementation might

use amore numerically stable one-pass algorithm for the variance [67,
17, 45].
Anderson/DKW-based Bounder. Anderson described a way to
compute distribution-free / nonparametric error bounds for the mean
given error bounds for the cumulative distribution function (CDF)
in [10]. Denoting the true and empirical CDF for some distribution
supported on [a, b] with F and F̂, respectively, Anderson showed
how to use high-probability bounds α and β such that

F̂ − α � F � F̂ + β

to get high-probability bounds on the mean of F. To see how, recall
the following identity:

Lemma 2. Consider a CDF F supported on [a, b]. Then the mean
µ of the distribution corresponding to F satisfies

µ = b −
∫ b

a
F(x)dx

Thus, given lower and upper bounds L and U on the CDF F that
satisfy ∀x ∈ [a, b], L(x) ≤ F(x) ≤ U(x), error bounds around the
mean may be computed as[

b −
∫ b

a
U(x)dx , b −

∫ b

a
L(x)dx

]
since L � F � U implies −U � −F � −L.

Anderson used the Dvoretzky-Kiefer-Wolfowitz (DKW) inequal-
ity [23] to compute α and β. Informally, DKW states that the
empirical CDF F̂ computed from i.i.d. samples taken from a distri-
bution with CDF F concentrates around F everywhere:

Lemma 3 (DKW Inequality [23, 51]). Let X1, . . . , Xm
iid∼ F, and

let F̂ be the empirical CDF corresponding to the sample {Xi}. Then
for every ε > 0,

P

(
sup

t∈dom(F)
|F̂(t) − F(t)| > ε

)
≤ 2 exp

(
−2mε2

)
The DKW inequality provides a method to obtain the values of α

and β, since it implies that

F̂ −
√

log 2/δ
2m

� F � F̂ +

√
log 2/δ

2m

with probability greater than 1 − δ. At the time [10] was published,
however, the constant in front of the DKW inequality had not yet

Error Bounder PMA PHOS Sampling Memory
Hoeffding(-Serfling) X X R* (NR) O (1)
Berstein(-Serfling) X R* (NR) O (1)
Anderson/DKW X R, NR O (m)

Table 2: Summary of properties exhibited by various error bounders. R =
sampling with replacement, NR = without. A * indicates that the non-Serfling
variant also holds for NR sampling.

been proved by Massart [51], so it appears that Anderson computed
α and β using a lookup table.

AlthoughLemma3 as stated applies for samplingwith replacement
from an infinite population, please see Appendix C for a proof that
DKW still holds when X1, . . . , Xm are drawn without replacement
from a finite population of size N , for any N > 0, stated as the
following theorem:

Theorem 1. For any N > 0, the DKW inequality applies for
sampling without replacement from a finite dataset of size N .

The procedure just described for computing error bounds around
the mean of a distribution given i.i.d. samples thus also works for
computing error bounds around AVG(D) given without-replacement
samples from the finite dataset D. It is presented in terms of our
interface from Section 2.2.2 in Algorithm 3.
Applications in Prior DB Literature. To our knowledge, Hoeffd-
ing andHoeffding-Serfling-based bounders are the onlySSI bounders
that have seen extensive use in the DB literature for computing error
bounds for AVG [40, 8, 35, 31]. We are aware of one incorrect
application of the empirical Bernstein-Serfling inequality [20] (in-
correct because the procedure given in [20] continuously recomputes
confidence (1 − δ) intervals as more samples are taken, so that the
overall procedure is no longer guaranteed to fail with probability
at most δ). Overall, we consider it somewhat surprising that error
bounders derived from the empirical Bernstein-Serfling inequality
from [12] have not seen more widespread usage, as they are nearly
as simple to compute as those derived from the Hoeffding-Serfling
inequality and typically yield error bounds that are much tighter.

2.3 Error Bounder Pathologies
As a major technical contribution of this work, we identify two

problems that cause SSI error bounders to be too conservative.
These pathologies, which we refer to as pessimistic mass allocation
(PMA) and phantom outlier sensitivity (PHOS), are based on simple
intuitions about how error bounders should behave: namely, they
should return tighter bounds when observing samples with fewer
extreme values, and error lower bounds (respectively error upper
bounds) should only be looser due to potential large values (resp.
small values) if such values are actually observed.

2.3.1 Pessimistic Mass Allocation
PMA, defined as follows, captures the intuition that error bounders
should be sensitive to the observed sample values:
Definition 2 [PMA]. An error bounding procedure P exhibits pes-
simistic mass allocation (PMA) if there exists a dataset D bounded
in [a, b], a value a′ with a < a′ < b, and a set S ⊆ D with values
in [a, a′) such that, for S′ = {max (x, a′) : x ∈ S}, P returns a
confidence interval of the same width for both S and S′. P likewise
exhibits PMA if there exists some b′ with a < b′ < b and an S with
values in (b′, b] such that, for S′ = {min (x, b′) : x ∈ S}, P returns
a confidence interval of the same width for both S and S′.

That is, an error bounder P has PMA if it is possible to replace the
smallest (largest) elements in a sample with something larger (resp.
smaller) without shrinking the width of P’s returned confidence
interval. Intuitively, P is overly-pessimistic about how mass in
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Figure 3: Error bounds from the DKW inequality exhibit pessimistic mass
allocation.

the underlying distribution from which it is sampling is allocated,
despite contrary evidence observed in the sample.

2.3.2 Phantom Outlier Sensitivity
PHOS captures the intuition that unobserved extreme values should
not affect both lower and upper error bounds:
Definition 3 [PHOS]. An error bounding procedure P exhibits
phantom outlier sensitivity (PHOS) if, for data falling in [a, b], P’s
returned confidence lower bound g` depends on the value of b, and
similarly if the gr returned by P depends on a.
To understand PHOS intuitively, consider the case of computing

a confidence lower bound. Given a sample S, the worse P “believes”
S could be shifted (on average) toward larger values as compared to
D, the smaller of a confidence lower bound it should return. In what
ways could S be shifted toward higher values? One possibility is if
small elements are underrepresented in S. The other possibility, and
the one we are interested in, is if large elements are overrepresented in
S. For this reason, a confidence lower bound should only be affected
by datapoints near the upper range bound b if it actually observes
them, and the appearance of b in the computation of a confidence
lower bound is a potential source of unnecessary conservativeness.

2.3.3 Examples of PMA and PHOS in Error Bounders
In this section, we give examples of PMA and PHOS in the

context of previously-discussed error bounders. Table 2 summarizes
pathologies exhibited by various SSI error bounders.
Hoeffding-based. Hoeffding-based error bounders suffer from both
PMA and PHOS. They have PMA since their returned CIs have widths
depending only on the range of the data, (b − a), and the number
of samples. As such, replacing values in the sample with larger or
smaller values does not affect the width of the returned error bounds.
Such bounders also have PHOS since they have symmetric error,
with both ends of the confidence interval depending on both range
bounds a and b.
Berstein-based. Bernstein-based error bounders do not suffer from
PMA. To see this, notice that increasing the smallest values in some
sample will also reduce the sample variance, affecting the width
of the returned confidence interval, and likewise for decreasing the
largest values in the sample. These bounders do, however, suffer
from PHOS. Like Hoeffding-based bounders, they return confidence
intervals with symmetric error, so that each end of the confidence
interval is affected by both ends of the data range a and b.
We will see in our experiments that these bounds can yield

significant speedups as compared with Hoeffding-based bounds,
when used to facilitate early termination of approximate queries.
Anderson/DKW-based. Anderson/DKW-based error bounders are
interesting in that they suffer from PMA, but not PHOS. Consider the
ε mass unaccounted for when computing a confidence lower bound
using an Anderson/DKW-based bounder. As shown in Figure 3, it
all goes toward to lower range bound, a, which is sufficient for PMA.
On the other hand, where does it come from? It comes from the

ε-fraction largest observed points. This does not depend at all on
the value of the upper range bound b, indicating that the confidence
lower bound does not suffer from PHOS. Symmetric statements hold
for the confidence upper bound, of course.

2.4 Problem Statement
We are now ready to give a formal problem statement.

Problem 1. Design an SSI error bounder that, given a without-
replacement sample from any D with elements from [a, b] ⊆ R,
suffers from neither PMA nor PHOS when computing (1 − δ) error
bounds for AVG(D), for any 0 < δ < 1.
Our solution to Problem 1 is given in Section 3 and relies on a

technique we call range trimming in order to systematically eliminate
PHOS from any range-based error bounder.
Although the solution as presented in Section 3 additionally

assumes knowledge of the size of D, Section 4 shows how our
real-world implementation circumvents this limitation.

3. FIXING BOUNDER PATHOLOGIES
From our discussion in Section 2.3, we see that there do exist

error bounders with either PMA or PHOS, but not both. We first
argue that error bounders without PHOS must be asymmetric; that
is, they cannot compute bounds of the form ĝ ± ε, where the same
ε is both added and subtracted to the sample average ĝ in order
to compute bounds. Next, we describe how to use a process we
call range trimming to convert any symmetric, ranged-based error
bounder to an asymmetric one without PHOS.

3.1 Decoupling Lower and Upper Bounds
Excepting an error bounder based on DKW, all of the error bound-

ers surveyed suffer from PHOS. This is because all the other error
bounders are based on concentration inequalities with symmetric
error — that is, they return confidence intervals [g`, gr ] of the form
[ĝ − ε, ĝ + ε]. At a high level, it is precisely this symmetry that
causes PHOS. Although a confidence lower bound should not have
any dependency on b, it is intuitively unavoidable that it has some
dependency on a. Reiterating, an estimate ĝ could be an overesti-
mate because of (i) not enough observed values near a, or (ii) too
many observed values near b. A similar statement holds regarding
confidence upper bounds, with the roles of a and b reversed.
We hypothesize that it is impossible for any confidence lower

bound (resp. upper bound) to completely eliminate the dependency
on a (resp. b), since it is always possible that the confidence bounding
procedure got “unlucky” and operated on a sample in which values
near a (resp. b) were underrepresented. Taking this hypothesis as
given, this means that any symmetric confidence bounding procedure
that returns bounds of the form [ĝ−ε, ĝ+ε]will have ε dependent on
both a and b—that is, any symmetric confidence bounding procedure
will have PHOS. As such, the first step to eliminating PHOS from
range-based confidence bounders is to accept asymmetric error as a
hard requirement: that is, we must consider confidence bounding
procedures that return bounds of the form [ĝ − ε`, ĝ + εr ] for which
ε` and εr are not necessarily equal.

3.2 Range Trimming
Our approach to deriving an error bounder with neither PMA nor

PHOS is to start with a symmetric bounder without PMA (such as
that of Algorithm 2) and “asymmetrize” it so that Lbound becomes
independent of b, and Rbound becomes independent of a, thereby
eliminating PHOS. The result, given in Algorithm 4, wraps any
existing range-based error bounder.
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a
<latexit sha1_base64="eYrhQu1fyNEgt/0lZW+/+AqersU=">AAAClHicbVHbTttAEF2bXiC9BSrx0pdVA1JfGtm0EqjqQ1qoxFMFogGkOIrGm3FYsRezu0ZElr+of9O3/g1rYyRIGGmlM+ecmZ2dTXPBrYui/0G48uz5i5era51Xr9+8fddd3zi1ujAMh0wLbc5TsCi4wqHjTuB5bhBkKvAsvdyv9bNrNJZr9cfNcxxLmCmecQbOU5Pu3+1EgrtgIMqDalImAq88cVOeVBX9TJOyTZKqs2Cc1UauHhibpDEqzdUUlaNbJ41232PrG00SakHmAmlmtHzK27ZZ9sKk24v6URN0GcQt6JE2jibdf8lUs0L69kyAtaM4yt24BOM4E1h1ksJiDuwSZjjyUIFEOy6bpVZ02zNTmmnjjx+vYR9WlCCtncvUO+vF2EWtJp/SRoXL9sYlV3nhULG7i7JCUKdp/UN0yg0yJ+YeADPcz0rZBRhgzv9jxy8hXnzyMjjd6cdf+jvHX3uDn+06VskH8pF8IjHZJQNySI7IkLBgPdgNBsGPcDP8Hu6Hv+6sYdDWvCePIvx9Cwvpx4w=</latexit>

b
<latexit sha1_base64="jugEVuXIU67YS32RF3FTWeNuWJc="></latexit>

max S
<latexit sha1_base64="Orp9jhHueZMY7AIUO/CUGHGmOy8="></latexit>

min S
<latexit sha1_base64="LhqWD+2YTvWoK3eIUp8JWrL0O5E=">AAACnXicbZHfTtswFMadAAM6Nsq4GxdYK5W4WZUAEmhXlcYkQAiBoBSpqSrHPSkW/hNsB62K8lZ7kt3xNjghF7RwJEvf+c7PPvZxnHJmbBA8e/7C4tKn5ZXVxue1L1/Xmxvfbo3KNIUeVVzpu5gY4ExCzzLL4S7VQETMoR8//C7r/SfQhil5Y6cpDAWZSJYwSqyzRs1/7UgQe08Jz4+LUR5xeHTG3/y6KPBPHOV1EhWNOXBSgky+AaukAqVicgzS4p3r2UN2fuEowoaIlANuJ1qJD+n6pBm6guvSqNkKOkEV+L0Ia9FCdVyOmv+jsaKZcF0oJ8YMwiC1w5xoyyiHohFlBlJCH8gEBk5KIsAM82q6BW47Z4wTpd1yt6zctztyIoyZitiR5YTMfK00P6oNMpscDXMm08yCpK+Nkoxjq3D5VXjMNFDLp04Qqpm7K6b3RBNq3Yc23BDC+Se/F7d7nXC/s3d10Ooe1eNYQVvoB9pFITpEXXSCLlEPUe+71/VOvTN/2//jn/sXr6jv1Xs20Uz4/Re1DstD</latexit>

Dataset D
<latexit sha1_base64="riGcafz8wGHRvF/8FccN+TxqwVU=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM9gKrkpSF7pwUbALlxXsA9pQJtNJO3QyCTM3QgkFf8WNC0Xc+h3u/BsnbRbaemDgcO493DPHjwXX4DjfVmFtfWNzq7hd2tnd2z+wD4/aOkoUZS0aiUh1faKZ4JK1gINg3VgxEvqCdfzJbTbvPDKleSQfYBozLyQjyQNOCRhpYJ80CBg74Eo/JDCmRKSNWWVgl52qMwdeJW5OyihHc2B/9YcRTUImgQqidc91YvBSooBTwWalfqJZTOiEjFjPUElCpr10Hn+Gz40yxEGkzJOA5+pvR0pCraehbzazjHp5lon/zXoJBNdeymWcAJN0cShIBIYIZ13gIVeMgpgaQqjiJiumY6IIBdNYyZTgLn95lbRrVfeyWruvles3eR1FdIrO0AVy0RWqozvURC1EUYqe0St6s56sF+vd+lisFqzcc4z+wPr8AWaolRk=</latexit>

Sample S
<latexit sha1_base64="QImFTtUbRRFurcV7+g9fOfxL/Sw=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstLAgsbHEIEiEC9lb5mDD3t5ld8+EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxLBtXHdbye3tr6xuZXfLuzs7u0fFA+PWjpOFcMmi0Ws2gHVKLjEpuFGYDtRSKNA4EMwupn5D0+oNI/lvRkn6Ed0IHnIGTVWemzQKBFIyo1yr1hyK+4cZJV4GSlBhnqv+NXtxyyNUBomqNYdz02MP6HKcCZwWuimGhPKRnSAHUsljVD7k/nFU3JmlT4JY2VLGjJXf09MaKT1OApsZ0TNUC97M/E/r5Oa8MqfcJmkBiVbLApTQUxMZu+TPlfIjBhbQpni9lbChlRRZmxIBRuCt/zyKmlVK95FpXpXLdWuszjycAKncA4eXEINbqEOTWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBEDI/3</latexit>

S � {max S}:
sample from

<latexit sha1_base64="pnq4fd6vwJCQxooYYTMCwcKu/dM="></latexit>

D<max S
<latexit sha1_base64="++79/4JsmXbYsBkbmYBgwhbaJ+8=">AAACFnicbVDLSsNAFJ34rPUVdekmWAQ3lqQKuuiioAuXFe0DmlAmk0k7dPJg5kYsIV/hxl9x40IRt+LOv3HSRtDWAwOHc+6de+9xY84kmOaXtrC4tLyyWlorr29sbm3rO7ttGSWC0BaJeCS6LpaUs5C2gAGn3VhQHLicdtzRRe537qiQLApvYRxTJ8CDkPmMYFBSXz+2PerbHgb1B6R2gGFIME8vs6z8o/bTutLv05ss6+sVs2pOYMwTqyAVVKDZ1z9tLyJJQEMgHEvZs8wYnBQLYIRTNSORNMZkhAe0p2iIAyqddHJWZhwqxTP8SKgXgjFRf3ekOJByHLiqMt9bznq5+J/XS8A/d1IWxgnQkEwH+Qk3IDLyjAyPCUqAjxXBRDC1q0GGWGACKsmyCsGaPXmetGtV66Rauz6tNOpFHCW0jw7QEbLQGWqgK9RELUTQA3pCL+hVe9SetTftfVq6oBU9e+gPtI9v4cmgbg==</latexit>

S � {min S}:
sample from

<latexit sha1_base64="+G9nlNMes8/nTInuAJkV7P5bAKU=">AAACknicbVFNT9wwEHVSSiHlYyncuFhdkHphlSxCRRxaEBw4cADRBaTNauV4J4uFP4LtVF1F+UH8HW78G5wQEOx2JEtv3nszHo+TjDNjw/DJ8z/NfZ7/srAYfF1aXlltrX27MirXFHpUcaVvEmKAMwk9yyyHm0wDEQmH6+TuuNKv/4I2TMk/dpLBQJCxZCmjxDpq2HrYjgWxt5Tw4qQcFjGHe0f8Ky7LEu/guGiSuAymjOPKyOQ7Y53URqmYHIG0eOuy1l57bB3gOMaGiIwDTrUSwYz1rc2Md9hqh52wDjwLoga0URPnw9ZjPFI0F6475cSYfhRmdlAQbRnlUAZxbiAj9I6Moe+gJALMoKhXWuJtx4xwqrQ7brqafV9REGHMRCTOWa3FTGsV+T+tn9t0f1AwmeUWJH25KM05tgpX/4NHTAO1fOIAoZq5WTG9JZpQ634xcEuIpp88C666nWi3073otg/3m3UsoE30Hf1AEfqJDtEpOkc9RL1Vb8/75f32N/wD/8g/frH6XlOzjj6Ef/YM+7HHOA==</latexit>

D>min S
<latexit sha1_base64="E1agMr0nUJRd5W6T7fm1s/AOxRw="></latexit>

max {D<max S}
<latexit sha1_base64="/HlN4+nvLZGHgA8hi0vqkCkURJE="></latexit>

min {D>min S}
<latexit sha1_base64="TGYQ3aUl0bnkoqESpGPBZ8/oARA="></latexit>

Figure 4: Range trimming eliminates PHOS for range-based error bounders.

Algorithm 4: The RangeTrim meta-algorithm
Input: Dataset D of N values in [a, b], error prob. δ, sample size m
Output: Error bounds that fail to enclose AVG(D) with probability < δ

1 S` ← init_state();
2 Sr ← init_state();
3 a′ ← sample_without_replacement(D);
4 b′ ← a′;
5 for i = 1 to m − 1 do
6 v ← sample_without_replacement(D);
7 S` ← update_state(S`,min(v, b′));
8 Sr ← update_state(Sr ,max(v, a′));
9 a′ ← min(a′, v);

10 b′ ← max(b′, v);
11 end
12 return

[
Lbound(S`, a, b

′, N − 1, δ2 ), Rbound(Sr , a
′, b, N − 1, δ2 )

]
;

Besides the memory required to maintain state for the left and
right error bounders, S` and Sr , Algorithm 4 requires O (1) extra
memory to maintain the MIN and MAX element seen so far (which
replace a and b when computing Rbound and Lbound, respectively).
When D contains unique elements, Algorithm 4 conceptually

performs the following steps:
1. Sample S without replacement from D.
2. Use Lbound to compute a 1 − δ

2 lower confidence bound for
AVG(D<max S), with S − {max S} as the sample, and with a and
max S in place of the normal range bounds a and b, respectively.

3. Use Rbound to compute a 1 − δ
2 upper confidence bound for

AVG(D>min S), with S − {min S} as the sample, and with min S
substituted for the range bound lower bound a.

Note that we use D<x and D>x as shorthand for D ∩ (−∞, x) and
D ∩ (x,∞), respectively. The primary difference between these
high-level steps and the pseudocode presented in Algorithm 4 is
that Algorithm 4 maintains min S and max S in an online, streaming
fashion (so that the sample S does not need to be stored in memory),
and that the confidence interval returned by Algorithm 4 is valid
even when D contains duplicates (although the returned confidence
bounds will bound the AVG of sets that differ slightly from D<max S
and D>min S). That said, we restrict our discussion and analysis to
the case where D contains unique elements, for simplicity.

Correctness of Algorithm 4 crucially depends on the fact that, con-
ditioned on the value ofmax S (and for any such value), the remaining
elements in S (namely S − {max S}) constitute a uniform without-
replacement sample from D<max S , with a symmetric statement for
min S and S − {min S}. At a high level, this means that a confidence
lower bound computed over S − {max S} is a valid confidence lower
bound for AVG(D<max S), and since AVG(D<max S) ≤ AVG(D), it
is also a valid confidence lower bound for AVG(D), with symmetric
statements holding for the confidence upper bound, S− {min S}, and
D>min S . These core ideas are illustrated in Figure 4.

3.3 Proof of Correctness
In this section, we prove correctness of Algorithm 4 (that is, that

it returns intervals that fail to enclose AVG(D) with probability less
than δ). For the sake of simplicity, our analysis assumes that D
contains no duplicate values, although we show how to remove this
assumption at the end of this section. To begin, we first prove a
crucial lemma about the sampling distribution of S− {max S}, given
that S was sampled uniformly without-replacement from D.

Lemma 4. Given a dataset D of N unique real values in [a, b] and
a uniform without-replacement sample S of m values from D, if
we denote b′ = max S, the set S − {b′} takes the distribution of a
uniform without-replacement sample from D<b′ = D ∩ [a, b′), for
any applicable value of b′ ∈ D.

Proof. Because S is drawn uniformly without-replacement from D,
any particular instance satisfies

PD [S = s] =
(
|D|
|s |

)−1
I {s ⊆ D} =

(
N
m

)−1
I {s ⊆ D}

where we use the notation PD [S = s] to denote the probability that s
was drawn uniformly without-replacement fromD, and I {·} denotes
the indicator function. We need to show that, for any b′ ∈ D,

PD
[
S = s |max S = b′

]
= PD<b′

[
S = s − {b′}

]
I
{
max(s) = b′

}
First, letting s′ be any set such that |s′ | = m − 1, we have that

PD<b′
[
S = s′

]
=

(
|D<b′ |
m − 1

)−1
I
{
s′ ⊆ D<b′

}
Next, consider PD [S = s |max S = b′]. Bayes’ rule gives that

PD
[
S = s |max S = b′

]
=
PD [S = s ∧max S = b′]
PD [max S = b′]

We have PD [S = s ∧max S = b′] = PD [S = s] I {max(s) = b′}
which is a known quantity, so the key is to compute the denominator
PD [max S = b′]. Using the assumption that D contains unique
elements, we may proceed by analogy with binary strings. The rank
of b′ within D (starting from the smallest element) is 1 + |D<b′ |,
so we need to compute the number of binary strings of length N
containing m 1’s and (N − m) 0’s such that position 1 + |D<b′ |
has a 1, and the remaining (m − 1) 1’s are all at positions less than
1 + |D<b′ |. This is precisely the same as the number of binary
strings of length |D<b′ | with (m − 1) 1’s and (|D<b′ | − m + 1) 0’s.
Putting everything together,

PD
[
S = s |max S = b′

]
=
PD [S = s] I {max(s) = b′}

PD [max S = b′]

=

(N
m

)−1
I {s ⊆ D ∧max(s) = b′}( |D<b′ |

m−1
)
/
(N
m

)
=

(
|D<b′ |
m − 1

)−1
I
{
s ⊆ D ∧max(s) = b′

}
=

(
|D<b′ |
m − 1

)−1
I
{
s − {b′} ⊆ D<b′ ∧max(s) = b′

}
= PD<b′

[
S = s − {b′}

]
I
{
max(s) = b′

}
which is precisely what we wanted to show.

Wrinkle in Lemma 4 and Fix. The proof of Lemma 4 assumes
unique values; we show here how to remove this assumption without
loss of generality. The uniqueness assumption as used is necessary
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only to ensure that elements of D are totally ordered under some
relation “≺” (with “≺” ≡ “<” in the proof). To fix, we can simply
augment every v ∈ D with an additional unique label (where the set
of labels are totally ordered) such that item v becomes v′ ≡ (v, vi).
Then, define “≺” as a relation such that v′ ≺ w′ if v < w, or v = w
and vi < wi . In this way, any v′,w′ ∈ D ′ satisfy exactly one
of v′ ≺ w′ or w′ ≺ v′, and the proof of Lemma 4 goes through,
replacing D with D ′ and “<” with “≺” where appropriate.

We next give a symmetric statement for S − {min S} andD>min S
as the below corollary:

Corollary 1. Given a datasetD of N unique real values in [a, b] and
a uniform without-replacement sample S of m values from D such
that min S = a′, the set S − {a′} is a uniform without-replacement
sample fromD>a′ = D∩(a′, b], for any applicable value of a′ ∈ D.

Monotonicity Property and Correctness Proof. Before proving
the main result, we briefly describe the dataset size monotonicity
property obeyed by all bounders in this paper. THis fact will be
used in the main correctness proof. When N is unknown, an upper
bound on N suffices, because bounders in this paper all satisfy the
following: for any S, a, b, N , δ, and N ′ > N ,

Lbound(S, a, b, N ′, δ) ≤ Lbound(S, a, b, N, δ)

Rbound(S, a, b, N ′, δ) ≥ Rbound(S, a, b, N, δ)

That is, using an upper bound for N can only make the CI looser, and
since SSI range-based error bounders with the correct dataset size N
fail with probability at most δ, they must also fail with probability at
most δ for any N ′ > N .

We are now ready to prove correctness of Algorithm 4.

Theorem 2. Given SSI range-based bounders Lbound and Rbound
for computing lower (resp. upper) confidence bounds and a dataset
D of N unique values known to all fall in the interval [a, b] ⊆ R,
Algorithm 4 returns a (1 − δ) confidence interval for AVG(D).

Proof. Algorithm 4 proceeds by drawing S uniformly and without
replacement from D and computing a′ = min S, b′ = max S, S` ,
and Sr , where the latter two quantities capture relevant statistics from
the sample S − {b′} and S − {a′}, respectively, so we treat S` and Sr
as if S` = S− {b′} and Sr = S− {a′}. By Lemma 4, we have that S`
is a uniform sample of m−1 values drawn without replacement from
D<b′ , and likewise by Corollary 1 Sr is a uniform sample of m − 1
values drawn without replacement from D>a′ . Because Lbound
and Rbound are assumed to be SSI, range-based error bounders, we
have that

P

(
Lbound(S`, a, b′, N − 1,

δ

2
) > AVG(D)

)
(1)

≤ P
(
Lbound(S`, a, b′, |D<b′ |,

δ

2
) > AVG(D)

)
(2)

≤ P
(
Lbound(S`, a, b′, |D<b′ |,

δ

2
) > AVG(D<b′)

)
<
δ

2
(3)

and symmetrically for Rbound(Sr, a′, b, N − 1, δ2 ), but with “>” re-
placed with “<” in the probability expression above, and replacing
D<b′ with D>a′ . (1) → (2) follows from the dataset size mono-
tonicity property of Lbound (§2.2.2), applicable since N − 1 ≥
|D<b′ |, and (2) → (3) follows since AVG(D<b′) ≤ AVG(D), as
the former is clipped above b′ (and similarly for Rbound since
AVG(D>a′) ≥ AVG(D)). Union bounding over the cases for each
of Lbound and Rbound, the probability that Algorithm 4 returns an
interval that does not enclose AVG(D) is at most δ.

4. SYSTEM CONSIDERATIONS
In this section, we address a number of implementation issues that

become pertinent when applying techniques of previous sections
in a real system. Although the techniques presented in this section
are auxiliary to our primary contribution and can be used with
any CI approach, they are developed with SSI error bounders and
strong probabilistic guarantees in mind. First, we describe how to
augment the techniques of Section 3, which apply for a fixed sample
size taken without replacement from a finite dataset of known size,
with locality-aware scan-based without-replacement sampling that
need not know N , and we further describe how to use this layout to
facilitate SUM and COUNT aggregations (§4.1). Next, we describe
an optional stopping routine that does not require a sample size to
be specified up-front (§4.2). Finally, we describe an active scanning
architectural optimization that prioritizes samples that facilitate early
termination (§4.3), all without losing guarantees proved in Section 3.

These system details are implemented within the context of Fast-
Frame, which is our general relational column store for approximate
report generation with guarantees. FastFrame uses the error bound-
ers from Section 3 and pairs them with a practical architecture for
without-replacement sampling. FastFrame uses block-based bitmaps
over categorical attributes (similar to [50]) for efficient processing
of queries with predicates or groups. Furthermore, for continuous
attributes, FastFrame stores the minimum and maximum values in
a catalog, to be used as the range bounds a and b for the desired
range-based error bounder.

4.1 Scan-Based Sampling for DB Aggregates
Wenowdescribe howFastFrame implementswithout-replacement

sampling in a locality-aware manner by scanning over pre-shuffled
data, and furthermore how this approach can be used to compute CIs
for COUNT and SUM. The up-front shuffling cost need only be paid
once in order to facilitate many queries, although care must be taken
to set the error probability δ small enough when running multiple
queries to avoid losing error bounder guarantees. The high-level
idea behind this implementation of without-replacement sampling
is not new and has been used in prior work for approximate query
processing [58, 69, 70, 50] and other analytics [27]. We begin by
introducing scrambles and aggregate views:
Definition 4 [Scramble]. A scramble is an ordered copy of a rela-
tional table that has been permuted randomly, allowing for scan-
based without-replacement sampling.
Scanning a continuous column in a scramble is equivalent to

sampling without replacement. In fact, scanning any subset of
data in a continuous column in a scramble (assuming the subset is
chosen without knowledge of the order of data) is also equivalent to
sampling without replacement, so that scanning a scramble can be
used to sample without replacement for any aggregate appearing in
a query containing arbitrary filters or GROUP BY clauses. We call
such subsets aggregate views:
Definition 5 [Aggregate View]. An aggregate view for some aggre-
gate A appearing in a query (possibly belonging to a group induced
by a GROUP BY clause) is the set of values in a scramble that
contribute toward the computation of A.

Note that δ must be divided by the number of aggregate views in
a query (or an upper bound) to preserve error guarantees.
Computing CIs for COUNT. Ensuring that data in a scramble
are permuted randomly makes it easy to compute bounds on the
selectivities of aggregate views, and by extension on the COUNT of
tuples in each aggregate view, using existing techniques [32, 33].
One can conceptually assign each row of a scramble a 1 if it belongs
to the aggregate view of interest, and a 0 otherwise. The AVG of this
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“derived” view (over the whole scramble) is exactly the selectivity
of the aggregate view, and we can use a Hoeffding-Serfling-based
bounder to compute a CI for the selectivity (using range bounds of
a = 0 and b = 1). Multiplying these bounds by the total number of
rows in the scramble then yields a CI for the COUNT of rows that
participate in the aggregate view.
In more detail, for a scramble with R rows, N of which are

in the sample view V for a query Q, the number of rows seen
that belong to V , mv , after scanning r rows of the scramble is a
hypergeometric random variable [15] whose mean is the selectivity
σv of V multiplied by r , σv · r . One could use bounds specifically
tailored to the hypergeometric distribution (or even perform an exact
computation) to compute an upper bound on σv that holds w.h.p.,
but in this work we use a simple strategy that uses Hoeffding-Serfling
to bound σv , stated as follows.

Lemma 5. The probability that a scan of a scramble of size R
that has processed r rows so far sees fewer than (σv − ε) · r
or more than (σv + ε) · r rows belonging to V is at most δ, for

ε =

√
log(2/δ)

2r · (1 − r−1
R ).

Proof. Follows immediately from application of the Hoeffding-
Serfling inequality [60].

Lemma 5 implies that, for a scan that has seen mv rows so far
belonging to V , σv is within

σ̂v ± ε =
mv

r
±

√
log(2/δ)

2r
·
(
1 − r − 1

R

)
w.h.p. This in turn implies that N , the number of tuples belonging
to V , is within [N−, N+] = [(σ̂v − ε) · R, (σ̂v + ε) · R], w.h.p.
Combining Lemma 5 with error bounders. For error bounders
Lbound and Rbound of the form described in Section 3 that require
the data range bounds a and b as well as the data size N , a (1 − δ)
confidence interval is computed as

[Lbound(S, a, b, N, δ/2), Rbound(S, a, b, N, δ/2)]

The following theorem describes how to use Lemma 5 to compute
(1 − δ) error bounds when N is unknown.

Theorem 3. Consider a query Q operating over some size-R scram-
ble with corresponding sample view V . Suppose a scan the scramble
that has processed k rows so far has seen mv rows belonging to V
(from which S is computed). Letting

N+ = ©«mv

r
+

√
log(1/(1 − α) · δ)

2r
·
(
1 − r − 1

R

)ª®¬ · R
then the interval[
Lbound(S, a, b, N+, α · δ/2), Rbound(S, a, b, N+, α · δ/2)

]
is a (1 − δ) confidence interval for the mean of V , for any α ∈ (0, 1).

Proof. Conditioning over whether N ≤ N+ or N > N+, the prob-
ability that the aforementioned interval [L, R] fails to contain the
desired mean µ is

P
(
µ < [L, R] | N > N+

)
· P

(
N > N+

)
+P

(
µ < [L, R] | N ≤ N+

)
· P

(
N ≤ N+

)
≤ P

(
N > N+

)
+ P

(
µ < [L, R] | N ≤ N+

)
By Lemma 5, the first probability is at most (1 − α) · δ, and Lbound
and Rbound are such that the probability of the second term is at

Algorithm 5: The OptStop meta-algorithm
Input: Dataset D of N values in [a, b], error probability δ
Output: Error bounds that fail to enclose AVG(D) with probability < δ

1 S ← init_state();
2 for k = 1 to∞ do
3 for i = 1 to B do
4 v ← sample_without_replacement(D);
5 S ← update_state(S, v);
6 end
7 δ′ ← (6/π2) · (δ/k2);
8 Lk ←Lbound(S, a, b, δ

′
2 );

9 Rk ←Rbound(S, a, b, δ
′

2 );
10 if should_stop(

[
max j≤k {L j },min j≤k {R j }

]
) then

11 break;
12 end
13 end
14 return

[
maxk {Lk },mink {Rk }

]
most α · δ. The sum of these equals δ, implying that the interval is a
valid (1 − δ) confidence interval, completing the proof.

Throughout Section 5, we fix α = 0.99, giving most of the weight
to the confidence interval computation, corresponding to a looser
upper bound for N .

Computing CIs for SUM. Now that we have established how to
compute CIs for AVG and COUNT, we briefly describe how to
combine these two techniques to compute CIs for SUM. Given a
(1 − δ

2 ) confidence interval for COUNT as [c`, cr ] and a (1 − δ
2 )

confidence interval for SUM as [g`, gr ], union bounding gives
[c` · g`, cr · gr ] as a (1 − δ) confidence interval for SUM.

4.2 Optional Stopping
The techniques discussed in Section 3 describe how to compute

high-probability bounds on error given statistics computed from
a particular sample of m datapoints. Fixing a sample size ahead
of time is oftentimes impractical, since it is usually unknown how
many samples are needed to ensure CIs that are “just tight enough”
to facilitate downstream applications on the part of the user or the
system. For example, one approach (e.g. taken by VerdictDB [55])
is to first compute error bounds around an approximate aggregate,
and then run an exact query if these bounds are too loose.
Another approach, which we take in this paper, is to continue

taking samples until a bound on the error is provably small enough.
For this approach, care must be taken to avoid losing guarantees
offered by range-based error bounders, since the tighter of two (1−δ)
confidence intervals for a particular aggregate is itself not necessarily
a (1 − δ) confidence interval.

Various techniques have been developed for computing sequentially-
valid confidence intervals as new samples are taken [65, 72, 40, 48,
47, 46]. In addition to techniques for sequential estimation [65]
for sequences of i.i.d. random variables from a known family of
distributions, various concentration results applicable to AVG which
make no distributional assumptions have likewise been derived [72,
40]. Unfortunately, these existing results are derived from variants
of Hoeffding’s inequality, and therefore suffer from PMA. For the
sake of simplicity, we use a much simpler meta-algorithm that can be
used in conjunction with any range-based error bounder, including
those that leverage our RangeTrim technique, given in Algorithm 5.
Although Algorithm 5 requires more samples than the aforemen-
tioned techniques when used in conjunction with Hoeffding- or
Hoeffding-Serfling-based error bounders, we consider the tradeoff
worthwhile due to its generality and simplicity and leave better
sequential error bounders to future work.
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Analysis of Algorithm 5. Algorithm 5 proceeds in “rounds”, with
each iteration of the outer loop on line 2 forming a round. During
each round, B without-replacement samples are taken and used to
incrementally update the state of any range-based error bounder that
implements our interface from Section 2.2.2. At the end of each
round, confidence intervals are recomputed, with the input error
probability δ′ decayed “enough” to ensure that the probability of
error across all rounds is at most δ. If the stopping condition on
line 10 is met, then the algorithm terminates; otherwise, it proceeds
to the next round, decaying δ′ appropriately to control the overall
error probability.

We now give a proof of correctness of Algorithm 5.

Theorem 4. With probability at least (1 − δ), the {Lk } and {Rk }
computed by Algorithm 5 satisfy AVG(D) ∈ [Lk, Rk ] for every k in
the outer loop. In particular, AVG(D) ∈ [maxk≥1 Lk,mink≥1 Rk ]
with probability at least (1 − δ).

Proof. Denote the δ′ used at iteration k with δk . Union bounding
over rounds, the probability of a mistake is at most∑

k≥1
δk =

6
π2

∑
k≥1

δ

k2 =
6
π2 ·

π2

6
δ = δ

using the identity
∑

k≥1
1
k2 =

π2

6 , completing the proof.

FastFrame performs I/O at the level of blocks, so instead of
computing bounds every B samples as described in the pseudocode
of Algorithm 5, we compute bounds after every B block read. In our
experiments (Section 5), we set B = 40000. We leave development
of alternative approaches to future work.
Stopping Conditions for Algorithm 5. Correctness of Algorithm 5
is independent of whether the error bounder uses our RangeTrim
technique (please see Appendix A in the appendex for an imple-
mentation of our RangeTrim technique in terms of the interface
from Section 2.2.2), and it is furthermore independent of stopping
condition. We consider several stopping conditions used in our
system implementation:
Ê Desired Samples Taken (c ≥ m): If a fixed number of samples
are requested, do not use Algorithm 5; instead, terminate query
processing once a desired number of tuples contribute to the
partial aggregate(s) in the query.

Ë Sufficient Absolute Accuracy (ĝr − ĝ` < ε): The interval width
is sufficiently small.

Ì Sufficient Relative Accuracy (max{ gr−ĝgr
,
ĝ−g` )
g`
} < ε): The

interval width is sufficiently small (relative to the possible correct
values implied by the interval).

Í Threshold Side Determined (v < [g`, gr ]): The interval does
not contain some threshold value v, indicating that the true AVG
is w.h.p. either less than or greater than the threshold v.

Î Top- or Bottom-K Separated: In a query with multiple groups,
the error bounds of the groups with either K smallest or largest
aggregates do not intersect those of any of the remaining groups.

Ï Groups Ordered Correctly: In a query with multiple groups,
the error bounds for each group intersect none of the other
groups’ error bounds, indicating that the correct ordering of group
aggregates has been determined [40].

Different stopping conditions apply to different queries. For example,
stopping conditionsÌ andÍmight be used for the query in Figure 1.

4.3 Active Scanning
For queries with GROUP BYs, different groups may require

different numbers of samples to achieve stopping conditions of

the types considered in Section 4.2. For simple scans that simply
read blocks of the scramble in the order in which they appear, it is
impossible to control the relative number of tuples for each group,
leading to potential inefficiencies. For example, consider one of
the queries in our experiments, F-q2, which selects airlines with
average delay above some threshold. This query uses stopping
condition Í in order to determine when to terminate, since, when
this stopping condition has been achieved, it as been determined
w.h.p. whether each airline has average delay above or below the
threshold. Those groups (airlines) for which the average delay is
near $thresh require more samples than those for which the average
delay is far from $thresh in order to achieve condition Í. If these
groups are sparse within the scramble, a scan will look at much more
data than necessary.
For this reason, we process queries that perform GROUP BYs

with an adaptive sampling approach using active scanning, which is
a block-skipping technique that only processes blocks that contain
tuples for so-called active groups, skipping any other blocks. The
notion of an active group depends on the stopping condition, but in
brief, active groups are groups that should be prioritized for sampling
to more quickly achieve a corresponding stopping condition.
Active Groups for Stopping Conditions. We now describe how
we determine active groups, or groups that should be prioritized for
sampling, for each of the stopping conditions discussed in §4.2.
Ê (Desired Samples Taken): Under this condition, we consider a
group active as long as fewer than the desired m samples have been
taken that contribute to that group’s aggregate.
Ë (Sufficient Absolute Accuracy): We consider a group active as
long as its confidence bounds exceed ε in width; i.e., ĝr − ĝ` ≥ ε.
Ì (Sufficient Relative Accuracy): Same as the previous, but a group
is active if max{ gr−ĝgr

,
ĝ−g` )
g`
} ≥ ε.

Í (Threshold Side Determined): A group is active as long as the
threshold side has not been determined; i.e., v ∈ [g`, gr ].
Î (Top- or Bottom-K Separated): The activeness condition for
this stopping condition is the most complicated out of any we
consider. First, consider the sorting the aggregates for all the groups
in increasing order. A group among the top-K is active if its lower
confidence bound g` crosses the midpoint between the aggregate
value for the smallest of the top-K and the largest of the bottom
N − K . Likewise, a group among the bottom N − K is active if
its upper confidence bound gr crosses this midpoint. Analogous
statements hold if we consider the separation between the bottom-K
and the top N −K as the stopping condition, but with the aggregates
sorted in decreasing order.
Ï (Groups Ordered Correctly): A group is active if its interval
[g`, gr ] intersects the interval of any other group.
Async Lookahead. We furthermore accelerate active scanning
with an asynchronous lookahead technique from prior work [50],
which we briefly describe here. Active scanning with lookahead
uses block-based bitmap indexes to efficiently check whether a block
contains tuples for any active group. Instead of synchronously
checking whether a given block contains tuples for active groups by
iterating over each active group and querying the index, a separate
lookahead thread iterates over a batch of 1024 blocks and marks
blocks for processing or skipping, for each group. By iterating over
an entire batch of 1024 blocks for a given active group, bitmaps for
the group tend to be in cache more often, making the index lookup
operation more efficient. We refer the reader to [50] for more details.
In our experiments in Section 5, we set the block size to 25 rows, so
a batch of 1024 blocks contains a total of 25600 rows.

5. EMPIRICAL STUDY
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Dataset Size #Tuples #Attributes Replications
Flights 32 GiB 606 million 5 5×

Table 3: Descriptions of Flights Dataset

Query Stop When Parameters Varied

F-q1 (Ì) max{ gr−ĝgr
,
ĝ−g` )
g`
} < ε

$airport (Figure 6),
ε (Figure 7(a))

F-q2 (Í) $thresh < [g`, gr ] $thresh (Figure 7(b))

F-q3 (Î) bottom-2 separated $min_dep_time
(Figure 8)

F-q4 (Í) 10 < [g`, gr ] N/A
F-q5 (Í) 0 < [g`, gr ] N/A
F-q6 (Î) top-5 separated N/A
F-q7 (Ï) groups ordered N/A
F-q8 (Î) top-1 separated N/A
F-q9 (Î) top-1 separated N/A

Table 4: Summary of stopping conditions used for queries provided in
Figure 5. Template variable arguments shown in blue.

In this section, we perform an extensive empirical evaluation of
various error bounders and sampling strategies on real data.

5.1 Flights Dataset and Queries
We evaluate various error bounding techniques on the publicly

available Flights dataset [1], extracting attributes for origin airport,
airline, departure delay, departure time, and day of week. The details
for this dataset are summarized in Table 3. The replication value
indicates how many times the dataset was replicated to create a
larger dataset and ensure sufficient scale for our experiments. We
eliminated rows with “N/A” or erroneous values for any column
appearing in one or more of our queries.

Queries and Query Templates. We evaluate our techniques on a
diverse set of queries that include various filters and GROUP BY
clauses and exercise all the stopping conditions described in Sec-
tion 4.2 (except conditions Ê and Ë, which gives similar behavior
to condition Ì). The queries themselves are given in Figure 5, and
the accompanying stopping conditions are summarized in Table 4.
Additionally, several queries are parametrized, in order to reveal
interesting data-dependent behavior by varying corresponding pa-
rameters. Any query parameters varied are also summarized in
Table 4, with parameters shown in blue.

5.2 Experimental Setup
The core of our experiments consists of two ablation studies,

intended to evaluate the impact of both our error bounder innovations
and that of our architectural innovations. In particular, we evaluate
various error bounders with and without our RangeTrim technique
developed in Section 3, and for the best error bounder (Bernstein+RT),
we furthermore evaluate the impact of leaving out features of our
active scanning sampling strategy described in Section 4.
We set δ = 10−15 for all queries, as we expect users of with-

guarantees AQP to desire results that are correct in an effectively
deterministic manner. Union bounding over the number of queries
run, the upper bound on the error probability will still be sufficiently
small to guarantee correctness of all queries, for any practical number
of queries encountered.
Approaches. We used the following strategies to bound error when
running queries in Figure 5:

Error Bounders.

• Bernstein+RT. This uses the empirical Bernstein-Serfling error
bounder described in Section 2.3, coupled with our RangeTrim
technique described in Section 3, which eliminates PHOS.

• Bernstein. Same as the previous, but without RangeTrim. Bern-
stein and Bernstein+RT are included to evaluate the impact of an
error bounder without PMA.

• Hoeffding+RT. This uses the Hoeffding-Serfling error bounder
described in Section 2.3, coupled with our RangeTrim technique
described in Section 3, which eliminates PHOS from Hoeffding
(but does not fix PMA).
• Hoeffding. Same as the previous, but without RangeTrim.
• Exact. This strawman approach eschews approximation and runs
queries exactly, to serve as a simple baseline.

We furthermore used the following strategies for sampling when
running queries in Figure 5:

Sampling Strategies.
• ActivePeek. This uses the active scanning technique to priori-
tize groups that are preventing satisfaction of various stopping
conditions, along with cache-efficient queries to bitmaps with
lookahead (see Section 4.3 for details).

• ActiveSync. This uses active scanning, but processes each block
synchronously when deciding whether to read it, incurring high
overhead since queries to bitmaps typically result in cache misses.

• Scan. This strategy does not leverage bitmaps in order to
decide whether to read a block for active scanning (but may
leverage bitmaps for evaluation of whether a block contains
tuples that satisfy a fixed predicate, such as the one appearing in
F-q1). Without any predicate, this approach simply processes all
blocks in the scramble sequentially. Note that the Exact baseline
described previously always uses Scan, as only approximate
approaches can prune groups.

Environment. Experiments were run on single Intel Xeon E5-2630
node with 125 GiB of RAM and with 8 physical cores (16 logical)
each running at 2.40 GHz, although we restrict our experiments to
a single thread (excepting the ActivePeek sampling strategy, which
uses one extra thread), noting that our techniques can be easily
parallelized. The Level 1, Level 2, and Level 3 CPU cache sizes
are, respectively: 512 KiB, 2048 KiB, and 20480 KiB. We ran
Linux with kernel version 2.6.32. We report results for data stored
in-memory, since the cost of main memory has decreased to the
point that many interactive workloads can be performed entirely
in-core. Each approximate query was started from a random position
in the shuffled data. We found wall clock time to be stable for all
approaches, and report times as the average of 3 runs for all methods.

5.3 Metrics
We gather several metrics in order to test two hypothesis: one,

that our error bounding strategies in conjunction with our sampling
strategies lead to speedups over simpler baselines; and two, that they
do so without sacrificing correctness of query results.

Correctness of Query Results. The most important metric is
the fraction of queries run that returned correct results. Across
all methods, all queries, and all parameter settings, results either
matched the ground truth determined from an Exact evaluation, or
were within error tolerance in the case of F-q1 and F-q7. This is
expected, given that we are considering SSI error bounders with
strong probabilistic guarantees in this paper, coupledwith the fact that
ourRangeTrim technique and system architecture do not compromise
these guarantees. As such, we expect fewer than δ = 10−15 fraction
of queries to yield incorrect results, which rounds down to a cool 0.
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# F-q1: avg delay for $airport
SELECT AVG(DepDelay) FROM flights WHERE Origin = $airport

# F-q2: airlines with avg delay above $thresh
SELECT Airline FROM flights
GROUP BY Airline HAVING AVG(DepDelay) > $thresh

# F-q3: 2 airlines with min avg delay after $min_dep_time
SELECT Airline FROM flights WHERE DepTime >

$min_dep_time
GROUP BY Airline ORDER BY AVG(DepDelay) ASC LIMIT 2

# F-q4: whether ORD has avg delay > 10
SELECT (CASE WHEN AVG(DepDelay) > 10 THEN 1 ELSE 0 END)
FROM flights WHERE Origin = 'ORD'

# F-q5: airports with negative avg departure delay
SELECT Origin FROM flights
GROUP BY Origin HAVING AVG(DepDelay) < 0

# F-q6: 5 worst days for afternoon delays across airports
SELECT DayOfWeek, Origin FROM flights
WHERE DepTime > 1:50pm GROUP BY DayOfWeek, Origin
ORDER BY AVG(DepDelay) DESC LIMIT 5

# F-q7: avg delay by day of week for airline HP
SELECT DayOfWeek, AVG(DepDelay) FROM flights
WHERE Airline = 'HP' GROUP BY DayOfWeek

# F-q8: origin airport with highest departure delay
SELECT Origin FROM flights GROUP BY Origin
ORDER BY AVG(DepDelay) DESC LIMIT 1

# F-q9: airline with maximum avg delay
SELECT Airline FROM flights GROUP BY Airline
ORDER BY AVG(DepDelay) DESC LIMIT 1

Figure 5: SQL and semantics for Flights queries. Template parameters are shown in $blue.
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Figure 6: Effect of query selectivity on wall time and blocks fetched, for
selectivity determined by varying the origin airport used to filter F-q1[ε = .5].
Note that Bernstein shows inverse time for clarity.

Estimate Error. For a given requested error bound ε supplied to
applicable queries, we measure the actual error. The observed error
should always fall within the requested error bound.
Wall-ClockTime. Our primarymetric evaluates the end-to-end time
required for various error bounders and various sampling strategies
(where the Exact baseline is included as a “sampling strategy”),
across all the queries considered.
Number of Blocks Fetched. We also measure the number of blocks
fetched from main memory into CPU cache when using various
approaches. This is mainly due to the fact that error bounders
incur additional CPU overhead and therefore wall-clock time, with
Bernstein and Bernstein+RT incurring the highest overhead, so mea-
suring blocks fetched for these approaches removes this confounding
variable by decoupling performance from CPU attributes.

5.4 Results
In this section, we present results of our empirical study.

5.4.1 Impact of Error Bounder Used
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Figure 7: (a): Effect of requestedmaximum relative error ε on actual relative
error achieved for F-q1. (b): Data required for different HAVING thresholds
used in F-q2. The group aggregates for also displayed for comparison.
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Figure 8: Effect of minimum departure time on blocks fetched for F-q3.

Summary. Using the Bernstein+RT error bounder resulted in
enormous speedups (more than 1000× over Exact and up to 124×
over Hoeffding), and additionally was almost always on par or
better than Bernstein (2× faster under certain conditions).
We evaluate Hoeffding+RT and Bernstein+RT error bounders,

along with Hoeffding and Bernstein (to ablate our RangeTrim tech-
nique) and an Exact query processor (to ablate any benefits due to
approximation) against all the queries in Figure 5, with the resulting
time measurements summarized in Table 5.
We can make a number of interesting observations. First of all,

note that all error bounders incur additional overhead — in the case
of F-q5 where techniques like Hoeffding and Hoeffding+RT needed to
process all the data in order to terminate (due to PMA), they actually
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Query Avg Speedup over Exact (raw time in (s))
Exact (s) Hoeffding Hoeffding+RT Bernstein Bernstein+RT

F-q1[$airport=’ORD’,ε = .5] 21.40 61.58× (0.35) 60.17× (0.36) 1721.06× (0.01) 3093.02× (0.01)
F-q2[$thresh=0] 46.10 267.75× (0.17) 374.92× (0.12) 2440.25× (0.02) 5135.43× (0.01)
F-q3[$min_dep_time=10:50pm] 28.14 1.19× (23.58) 1.74× (16.14) 9.57× (2.94) 18.58× (1.51)
F-q4 21.03 13.38× (1.57) 13.64× (1.54) 991.50× (0.02) 956.72× (0.02)
F-q5 49.15 0.48× (102.41) 0.90× (54.62) 1.86× (26.47) 3.77× (13.05)
F-q6 65.74 1.19× (55.09) 1.26× (52.01) 12.48× (5.27) 21.63× (3.04)
F-q7 29.62 0.99× (29.93) 1.00× (29.77) 2.21× (13.39) 2.51× (11.79)
F-q8 49.31 1.08× (45.47) 1.08× (45.87) 5.60× (8.81) 5.83× (8.45)
F-q9 46.69 1.16× (40.33) 1.34× (34.81) 143.84× (0.32) 157.94× (0.30)

Table 5: Summary of average query speedups and latencies for various error bounders.

Query Avg Speedup over Scan (time in (s))
Scan (s) ActiveSync ActivePeek

F-q3[10:50pm] 2.04 1.15× (1.76) 1.20× (1.69)
F-q5 45.18 1.11× (40.74) 3.43× (13.18)
F-q6 4.10 1.24× (3.32) 1.36× (3.03)
F-q7 11.05 1.14× (9.68) 1.13× (9.80)
F-q8 47.12 1.40× (33.76) 5.35× (8.81)

Table 6: Summary of query speedups and latencies for various sampling
strategies, restricted to GROUP BY queries that take more than 500ms for
Scan with Bernstein+RT.

ran more slowly than Exact. Using Bernstein, which does not suffer
from PMA, yielded significant benefits over Exact, Hoeffding, and
Hoeffding+RT across all queries. In cases where Hoeffding and
Hoeffding+RT showed improvements over Exact, Bernstein amplified
these improvements (F-q1, F-q2).

UsingRangeTrim in conjunctionwith bothHoeffding andBernstein
typically led to similar performance, with a few queries exhibiting
clearly superior performance (F-q5, F-q6, and F-q3). These queries
have the following in common: they all have sparse groups with low
selectivity (either because of the large number of groups in the case
of F-q5 and F-q3, or because of the restrictive filter in the case of
F-q5), and they are all “easy” to approximate, in that none of the
groups require too many samples in order to achieve the relevant
stopping condition. (F-q8 also has many groups, but some of them
require many samples due to a large number of airports with average
delay near the max.) This is an ideal condition for Bernstein+RT to
show benefit: sparse groups will bottleneck the query, butRangeTrim
will achieve termination faster since these sparse groups tend to have
fewer outliers than do non-sparse groups. For such bottlenecking
sparse groups, the range bounds for the DepDelay column are overly-
conservative and dominate the sampling complexity. In this case,
Bernstein, which has PHOS, will require twice as many samples for
such groups — and since these groups are the bottleneck, it will
require roughly twice as much time, an intuition reflected in Table 5.

5.4.2 Impact of Sampling Strategy Used
Summary. Using ActivePeek sampling was almost always better
than ActiveSync, in some cases significantly (more than 3× for
F-q5 and F-q8), while ActiveSync sampling only showed modest
gains against simple Scan-based sampling (up to 1.40×, F-q8).

We evaluate the impact of various sampling strategies when used
in conjunction with the Bernstein+RT error bounder, the results of
which are summarized in Table 6. In some cases (F-q5 and F-q8),
the performance of the Scan baseline when used in conjunction with
Bernstein+RT was on par with that of the Exact baseline, indicating
that some form of block skipping can be crucial for queries with
GROUP BYs. When implementing active scanning synchronously,

however, the improvement was mediocre across the board, while
the active scanning with lookahead achieved significantly better
performance for F-q5 and F-q8. It is no coincidence that these are
the same queries for which Scan performance using approximation
is similar to Exact performance. This indicates that there were a few
sparse groups preventing termination when Scan is used, which is
the very case for which the greatest benefit can be derived from (an
efficient implementation of) block skipping.

5.4.3 Impact of Data and Query Characteristics
To better understand various data- and query-dependent aspects of
our techniques, we now study the effect of varying the parameters
supplied to F-q1, F-q2, and F-q3.
Selectivity σ of filter.
Summary. Wall clock time decreases as the fraction of tuples
passing F-q1’s filter increase, while blocks fetched first increases,
then decreases. RangeTrim gives the most benefit for filters of
intermediate selectivity.
Different Origin attribute values used for filtering F-q1 have

different selectivities. By varying the filter attribute value, we reveal
interesting behavior impacted by the selectivity of the filter. (We
consider selectivity as a number and not a quality, so that larger
proportions of tuples satisfy predicates with higher selectivity.)
For all four error bounding techniques considered, wall time and
blocks fetched are plotted versus query selectivity in Figure 6.
Bernstein and Bernstein+RT are plotted separately from Hoeffding
and Hoeffding+RT for presentation.

As selectivity increases, wall-clock time decreases, as one might
expect, with the benefits of RangeTrim being more obvious for Ho-
effding than for Bernstein. The performance gap between techniques
with and without RangeTrim generally decreases with increasing
selectivity — perhaps because filters with higher selectivity tend to
have range bounds that are not as conservative when compared with
the a priori range bounds known to hold for the entire column.

Interestingly, as selectivity increases, the number of blocks fetched
first increases, then decreases. This is likely because the sparsest fil-
ters require examining all the data before terminating, obviating early
stopping benefits. After a certain point, however, early termination
kicks in, happening more quickly as fewer tuples are filtered.
ε for stopping condition Ì.
Summary. For different upper bounds on relative error, the actual
relative error in the query result is always within the requested
error, for all error bounders applied to F-q1. The achieved relative
error drops to 0 more quickly for the more conservative bounders
Hoeffding and Hoeffding+RT as the requested error is decreased.
By varying the requested maximum relative error ε for query F-q1,

we reveal its impact on the relative error achieved for various error
bounders, shown in Figure 7(a). The main takeaways are that, for
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all error bounders, the achieved relative error generally decreases as
the requested error bound decreases, with Hoeffding-based bounders
dropping more quickly, as they are more conservative due to PMA.
HAVING threshold for stopping condition Í.
Summary. HAVING thresholds that are closer to group aggregates
require more samples in order to achieve stopping condition Í,
and Hoeffding-based error bounders in particular are more sensi-
tive than Bernstein-based error bounders for the same threshold.
By varying the HAVING threshold used to filter groups / airlines

post-aggregate in F-q2 and measuring its effect on the number of
blocks fetched for a particular query, we reveal interesting data-
dependent behavior impacted by the true aggregates for each airline,
depicted in Figure 7(b). This figure also plots the group aggregates
using a horizontal bar chart sharing the same x-axis as the HAVING
threshold, revealing that it is “harder” to determine which side of
the HAVING threshold a given group is if its aggregate is close to
the threshold. Indeed, from Figure 7(b), we see that the initial
thresholds near 0 are very easy for all groups, allowing for very
fast termination. The first spike in number of blocks fetched occurs
between 6 and 7, corresponding to the aggregate for airline NW.
At and after this point, we see spikes in blocks fetched for both
Hoeffding-based and Bernstein-based error bounders whenever the
threshold approaches one or more airline aggregate values, although
we note that Bernstein-based error bounders appear to be more
robust, requiring the threshold to be much closer before they are
adversely affected as compared to Hoeffding-based bounders.
Minimum Departure Time for F-q3.
Summary. As the minimum departure time is increased, the
spread of average delay between airlines increases, making it
easier to separate the two airlines with the minimum average
delays and achieve stopping conditionÎ earlier. At the same time,
termination becomes bottlenecked on sparse airlines, increasing
the gap between similar bounders with and without RangeTrim.
By varying the minimum departure time $min_dep_time in

F-q3, we reveal its impact on the number of blocks fetched for
various error bounders, shown in Figure 8. This plot exhibits two
interesting data-dependent behaviors worth unpacking. First, as the
$min_dep_time increases, the variance in average delay between
different airlines increases, perhaps because some airlines tend to
have flights that are delayed more for later flights as compared with
other airlines. This makes it easier to achieve stopping condition Î,
since the average delays become more spread out with increasing
minimum departure time, so we observe a decreasing trend in the
number of blocks fetched. At the same time, as $min_dep_time
increases, the selectivity of the various groups decreases. Since all
the groups are sparser, the groups for which stopping condition Î is
bottlenecked are also sparser. Since we have an “easy” query (due
to the higher variance between groups) for which sparse groups are
bottlenecking termination, we tend to see a bigger performance gap
between bounders with and without our RangeTrim technique.

6. RELATED WORK
In this section, we survey related literature and highlight similari-

ties and differences with this work.
Approximate Query Processing (AQP). We survey the AQP lit-
erature along two dimensions: first, online versus offline; second,
approaches with strong versus asymptotic guarantees.
Online versus Offline AQP. Online sampling-based AQP schemes
select samples as queries are issued, contrasted with offline schemes
which compute strata ahead of time. Although our approach does
perform a shuffle offline, it is nevertheless closer to online schemes,

as it uses the scramble to compute samples on the fly as in [50, 27,
58, 69, 70]. Online schemes can use index structures like bitmaps
to materialize relevant samples on-the-fly [35, 40, 59, 50], or obey
an accuracy constraint for computing predefined aggregates without
indices [37, 38]. Offline schemes, on the other hand, materialize
samples ahead-of-time [21, 7, 6, 30] based off workload assumptions,
sometimes tuning the computed strata as new workload information
is available [7, 30].
While we implement our error bounders without PMA or PHOS

in the context of a system for online AQP, our core algorithmic
techniques are orthogonal to the exact approach, and could be paired
with either online or offline schemes.
Sample-size-independent versus Asymptotic Guarantees. Most of
the AQP systems from prior work have traditionally leveraged
asymptotic error bounders [7, 6, 5, 55], though some have mentioned
allowing either approach as an option [35]. Other approaches
have leveraged deterministic [57, 32] or concentration-based error
bounding techniques [21, 8, 50, 59, 40] under range-based or other
very mild assumptions. In some cases, novel asymptotic error
bounding techniques have been developed [55, 71, 32] to be used
in conjunction with existing systems. Our approach is analogous to
these, but instead of basing our techniques on asymptotic methods,
we develop error bounding techniques with guarantees independent
of sample size, starting from existing concentration-based methods
and systematically ameliorating various pathologies.

Access Patterns for Informative Samples. Anumber of techniques
have been developed to optimize access to relevant data for analytical
queries. Sampling-based approaches [40, 54, 19, 18, 43, 69, 50, 11,
33, 30, 21] attempt to retrieve tuples that will shrink approximation
error as quickly as possible. Index structures such as bitmaps [40,
50] or inverted indexes [21] have been employed to facilitate this, or
to simply accelerate exact analytical queries by quickly retrieving
relevant tuples [68, 16, 41]. We make use of the sampling engine
developed in [50], which leverages bitmaps and active scanning to
adaptively prioritize different groups in the data while a query is
running. While ourRangeTrim technique is technically orthogonal to
whatever data access method is employed, it demonstrates the most
gains over existing error bounding techniques when few samples
are needed to terminate. Active scanning is particularly useful for
skipping to data needed to terminate when they are sparse.

Another access strategy worth mentioning explicitly comes from
from [18] and leverages an outlier index. Outlier indexing [18]
works by computing approximate aggregates derived by combining
an estimate from the main table and an exact aggregate from the
so-called “outlier index”, which stores all the rows with outlier values.
The benefit of the outlier index is that it shrinks the range of the
data from which samples are taken, allowing for faster convergence
of approximate answers. One could think of the outlier index
as an offline analogy of our own RangeTrim technique. Outlier
indexing has some additional limitations that RangeTrim does not
have; namely, it cannot be used to facilitate queries with aggregates
involving arbitrary expressions, since such expressions can drastically
change the set of outlying values. That said, for simple aggregates
the two approaches are orthogonal, and could be leveraged together.

Priority sampling [22, 9, 62]is also particularly useful for coping
with outliers. If the attribute being aggregated has values {wi},
priority sampling computes {αi} (where αi

iid∼ Unif(0, 1)) and
estimates

∑
i wi using the subset of the {wi} with the k largest

priorities, where the priority for the ith tuple is given by wi/αi .
While priority sampling applies in the presence of arbitrary filters
and can furthermore be modified to allow for computation of AVG
aggregates in addition to SUM, it has the drawback that the attribute
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or expression being aggregated must be known ahead of time (to say
nothing of arbitrary expressions), so that the tuples can be sorted in
descending order of priority, a limitation our techniques do not have.
Statistical Estimators andConfidence Intervals. Thewell-known
error bounders in statistics and probability leverage asymptotic tech-
niques [61, 24, 25, 34],while those that give strong guarantees
independent of sample size beyond Hoeffding’s and Serfling’s semi-
nal work [36, 60] are relatively more obscure [29, 10]. We surveyed
these in Section 2 when we discussed the empirical Bernstein-
Serfling error bounder developed by Bardenet et al. [12], which we
adapt for use in a database setting with our RangeTrim technique.

7. CONCLUSION AND FUTURE WORK
We categorized existing conservative error bounders in terms

of two pathologies, PMA and PHOS, and developed a technique,
RangeTrim, for eliminating PHOS from any range-based error
bounder. We showed the advantage of using the empirical Bernstein-
Serfling bounder in the context of a real system we are developing,
FastFrame, that accelerates approximate queries significantly over a
Hoeffding-Serfling-based error bounder, which suffers from PMA.
We furthermore showed that augmenting this error bounder with
our RangeTrim technique leads to an additional 2× in the best case,
without ever hurting performance in the worst case. By implement-
ing our distribution-aware techniques in the context of FastFrame,
which is aware of practical considerations such as locality, optional
stopping, and block skipping in order to prioritize groups that require
more samples in order to facilitate early termination, we demonstrate
significant speedups (more than 1000× over exact processing and
up to 124× over traditional techniques based on Hoeffding) without
losing guarantees. This suggests a viable path toward practical
with-guarantees AQP for workload-agnostic analytics; future work
could include, for example, the development of an optimizer that
intelligently determines when to leverage traditional data layouts
and index structures for exact query processing and when to leverage
a scramble for approximate results with exact quality.
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APPENDIX
A. RangeTrim Bounder Pseudocode

Algorithm 6: RangeTrim error bounder
Input: Inner SSI range-based error bounder inner

1 function init_state()
2 return

{
3 S`: inner.init_state(),
4 Sr : inner.init_state(),
5 a′: undefined,
6 b′: undefined}
7 ;
8 function update_state(S, v)
9 if a′, b′ are undefined then

10 S′` ← S` ;
11 S′r ← Sr ;
12 a′′ ← v;
13 b′′ ← v;
14 else
15 S′` ← inner.update_state(S`,min (v, b′));
16 S′r ← inner.update_state(Sr ,max (v, a′));
17 a′′ ← min (a′, v);
18 b′′ ← max (b′, v);
19 return

{
S`: S′`, Sr : S′r , a′: a′′, b′: b′′

}
;

20 function Lbound(S, a, b, N, δ)
21 return inner.Lbound(S.S`, a, S.b′, N − 1, δ);

22 function Rbound(S, a, b, N, δ)
23 return inner.Rbound(S.Sr , S.a′, b, N − 1, δ);

We give an implementation of our RangeTrim technique in terms
of the interface from Section 2.2.2 in Algorithm 6.

B. Handling Arbitrary Expressions
In this paper, we assumed that column ci was known to lie in

some range [ai, bi]. We then showed how to feed these bounds
into our RangeTrim procedure to compute conservative CIs for, e.g.,
AVG(ci). In general, however, we may want to compute an aggregate
involving an arbitrary expression in terms of several columns. That
is, we may want to compute CIs for, e.g., AVG( f (c1, . . . , cn)). We
now show how to do so for a large class of f by optimizing over
such f (while using the individual bounds [ai, bi] for each column
as constraints) in order to compute derived range bounds of the form[

inf
c1,...,cn

f (c1, . . . , cn), sup
c1,...,cn

f (c1, . . . , cn)
]

Applicable Expressions. To compute a derived lower range bound,
we need to be able to either solve or compute a lower bound for the
following optimization problem:

min
c1,...,cn

f (c1, . . . , cn)

s.t. ai ≤ ci ≤ bi, ∀1 ≤ i ≤ n

The case for the derived upper range bound is analogous, but with
f replaced by − f . We show how to compute both lower and upper
derived bounds under two kinds of conditions: (i) the monotonicity
condition; i.e., f is monotone in each ci , and (ii) the convexity
condition; i.e., either f or − f is convex. This handles a large number
of expressions in practice.
1. Expressions Monotone in each Column. If f is monotone in each
column ci , one simply needs to check whether ai or bi gives the
smaller (resp. larger) value when computing the lower (resp. upper)
bound, and evaluate f on the boundaries for each of these cases.

2. Convex or Concave Expressions. Without loss of generality,
we now consider the case of convex f . A large body of existing
work focuses on minimizing a convex function subject to convex
constraints; please see Boyd et al. [14] for relevant background. In
our case, the constraints are all linear (and are sometimes referred to
as “box” constraints), and most kinds of convex functions in practice
can be optimized efficiently with off-the-shelf software under such
constraints, so we do not go into detail here.
Maximizing a f under box constraints is more difficult. Since

f is convex, the maximum (and therefore the derived upper range
bound we seek) will occur at some set of boundary points; i.e., if
ai ≤ ci ≤ bi , we know that the maximum will occur at one of
ci = ai or ci = bi . If we have n columns involved in the expression
f , however, we will require evaluating f on all 2n combinations of
boundary points for the constraints. Fortunately, database aggregates
over expressions typically do not involve more than 2 or 3 columns,
and any n ≤ 20 or so can be handled without trouble.

Example 1. Suppose the user issues a query to compute AVG((2c1+
3c2−1)2) involving columns c1 and c2, where we have range bounds
c1 ∈ [−3, 1] and c2 ∈ [−1, 3]. The minimum of (2c1 + 3c2 − 1)2
subject to these constraints is simply 0, and can be found via
quadratic programming. The maximum can be obtained by checking
the boundaries (−3,−1), (−3, 3), (1,−1), and (1, 3), and we see that
it occurs at (1, 3), for which (2 · 1 + 3 · 3 − 1)2 = 100; thus, the
derived range bounds will be [0, 100].

C. Proof of Theorem 1
In Section 2.2.3, we claimed that the DKW inequality holds for

sampling without replacement from a finite population; we now
sketch the proof.

Theorem 1. For any N > 0, the DKW inequality applies for
sampling without replacement from a finite dataset of size N .

Proof. Sketch: following the original paper from Wald and Wol-
fowitz on confidence limits for CDFs [66], it suffices to consider the
CDF for mass distributed uniformly at each integer 1, 2, . . . , N . For
each without-replacement sample size m and each deviation ε, we
would like to be able to claim that

P
(
sup |FN − F̂N,m | ≥ ε

)
< P

(
sup |FN ′ − F̂N ′,m | ≥ ε

)
for every N ′ > N — that is, in some sense, the CDF becomes
monotonically “harder” to estimate as we increase the dataset size.
Unfortunately, this turns out to not be the case, but in fact the claim
follows if we merely prove the weaker condition that

P
(
sup |FN − F̂N,m | ≥ ε

)
< P

(
sup |FN ′ − F̂N ′,m | ≥ ε

)
for infinitely many N ′ > N , implying that, as N ′ →∞, the resulting
probability to which P

(
sup |FN ′ − F̂N ′,m |

)
converges (necessarily

bounded by the probability computed in the DKW inequality) is an
upper bound for the corresponding probability at every finite N ′,
from which the claim would follow.
We show this via construction: namely, we show that, for every

N , m, and ε,

P
(
sup |FN − F̂N,m | ≥ ε

)
< P

(
sup |F2N − F̂2N,m | ≥ ε

)
That is, the CDF becomes monotonically harder to estimate each
time we double the dataset size. To show this, we consider two
cases. Case 1: if point 2i − 1 is sampled, then point 2i is not
sampled, and vice versa for every i = 1, . . . , N . Conditioned on
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this event, the probability that sup |F2N − F̂2N,m | ≥ ε at least the
(unconditioned) probability that sup |FN − F̂N,m | ≥ ε, since samples
at odd indices can only increase the deviation, and samples at even
indices cannot decrease it. Case 2: there is at least one i for which
points at both indices 2i − 1 and 2i are sampled. Each such point is
conceptually similar to reducing m by 1 in the original dataset of
size N , but randomly weighting one of the samples by 2 instead of
1. It can be shown that each time this is done, the probability that
sup |FN − F̂N,m | ≥ ε increases.
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