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Abstract

The increasing availability of large collections of electronic health record (EHR) data and unprecedented technical

advances in deep learning (DL) have sparked a surge of research interest in developing DL based clinical decision

support systems for diagnosis, prognosis, and treatment. Despite the recognition of the value of deep learning

in healthcare, impediments to further adoption in real healthcare settings remain due to the black-box nature

of DL. Therefore, there is an emerging need for interpretable DL, which allows end users to evaluate the model

decision making to know whether to accept or reject predictions and recommendations before an action is taken.

In this review, we focus on the interpretability of the DL models in healthcare. We start by introducing the

methods for interpretability in depth and comprehensively as a methodological reference for future researchers

or clinical practitioners in this field. Besides the methods’ details, we also include a discussion of advantages

and disadvantages of these methods and which scenarios each of them is suitable for, so that interested readers

can know how to compare and choose among them for use. Moreover, we discuss how these methods, originally

developed for solving general-domain problems, have been adapted and applied to healthcare problems and how

they can help physicians better understand these data-driven technologies. Overall, we hope this survey can help

researchers and practitioners in both artificial intelligence (AI) and clinical fields understand what methods we

have for enhancing the interpretability of their DL models and choose the optimal one accordingly.

This article is categorized under:

Keywords: Interpretable Deep Learning, Deep Learning in medicine

1 Introduction
In recent years, the wide adoption of electronic health record (EHR) systems by healthcare
organizations and subsequent availability of large collections of EHR data have made the ap-
plication of Artificial Intelligence (AI) techniques in healthcare more feasible. The EHR data
contain rich, longitudinal, and patient-specific information including both structured data (e.g.,
patient demographics, diagnoses, procedures) as well as unstructured data, such as physician
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notes and medical images [Mesko, 2017]. Meanwhile, deep learning (DL), a family of machine
learning (ML) models based on deep neural networks, has achieved remarkable progress in the
last decade on various datasets for different modalities including images, natural language, and
structured time series data [LeCun et al., 2015]. The availability of large-scale data and unprece-
dented technical advances have come together to spark a surge of research interest in developing
a variety of deep learning based clinical decision support systems for diagnosis, prognosis and
treatment [Murdoch and Detsky, 2013].

Despite the recognition of the value of deep learning in healthcare, impediments to further
adoption in real healthcare settings remain [Tonekaboni et al., 2019a]. One pivotal impediment
relates to the black box nature, or opacity, of deep learning algorithms, in which there is no
easily discernible logic connecting the data about a case to the decisions of the model. Health-
care abounds with possible “high stakes” applications of deep learning algorithms: predicting a
patient’s likelihood of readmission to the hospital [Ashfaq et al., 2019], making the diagnosis of
a patient’s disease [Esteva et al., 2017], suggesting the optimal drug prescription and therapy
plan [Rough et al., 2020], just to name a few. In these critical use cases that include clinical
decision making, there is some hesitation in the deployment of such models because the cost of
model mis-classification is potentially high [Mozaffari-Kermani et al., 2014]. Moreover, it has
been widely demonstrated that deep learning models are not robust and may easily encounter
failures in the face of both artificial and natural noise [Szegedy et al., 2014, Finlayson et al.,
2019a, Jin et al., 2020].

Artificial intelligence (AI) systems are, on the whole, not expected to act autonomously in
patient care, but to serve as decision support for human clinicians. To support the required
communication between such systems and people, and to allow the person to assess the reliability
of the system’s advice, we seek to build systems that are interpretable. Interpretable DL allows
algorithm designers to interrogate, understand, debug, and even improve the systems to be
deployed by analyzing and interpreting the behavior of black-box DL systems. From the end
user perspective, interpretable DL allows end users to evaluate the model decision making to
determine whether to accept or reject predictions and recommendations before an action is taken.

In particular, in this review we focus on the interpretability of the DL models in health care. Such
models are known for both their complexity and high performance on a variety of tasks, yet the
decisions and recommendations of deep learning systems may be biased [Gianfrancesco et al.,
2018]. Interpretability can offer one effective approach to ensuring that such systems are free
from bias and fair in scoring different ethnic and social groups [Hajian et al., 2016]. Many DL
systems have already been deployed to make decisions and recommendations in non-healthcare
settings for tens of millions of people around the world (e.g., Netflix, Google, Amazon) and we
hope that DL applied in healthcare will also become widespread [Esteva et al., 2019]. To this
end, we need help from interpretability to better understand the resulting models to help prevent
potential negative impacts. Lastly, there are some legal regulations such as the European Union
(EU)’s General Data Protection Regulation (GDPR) that require organizations that use patient
data for predictions and recommendations to provide on demand explanations for an output of
the algorithm, which is called a “right to explanation” [Tesfay et al., 2018, Edwards and Veale,
2018]. The inability to provide such explanations on demand may result in large penalties for
the organizations involved.

It should be noted that the notion of explanation of a decision in itself is not a very well defined
concept: indeed the original EU GDPR Recital 71 does not provide a clear definition beyond
stating a person’s right to obtain it. There have been active discussions in the community
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on this notion [Lipton, 2018]; for instance, [Muggleton et al., 2018] proposed an operational
definition of comprehensibility and interpretability based on the ultra-strong criteria for Machine
Learning proposed by [Michie, 1988] and Inductive Logic Programming [Kovalerchuk et al.,
2021]. However, no single uniform definition has been reached: for any complex model with no
superficial components, any simple explanation is inherently unfaithful to the underlying model.
The decision on what definition of explanation to use necessarily affects the properties of the
methods used to produce them: for example focusing on producing a per example explanation
vs. the structure of the network analysis favors local (why this particular example resulted in
a given prediction) explanation over global ones (what kinds of knowledge are encoded in the
model and how they affect predictions). In this work, we first cover the most common type
of interpretation method, in which an explanation is an assignment of a score to each input
element that reflects its importance to a model’s conclusions. We also briefly discuss example
based explanation methods. Other approaches to interpretability include a more recent focus on
feature interactions for neural networks [Sundararajan et al., 2020, Tsang et al., 2018, Tsang
et al., 2020] and whole network behavior analysis [Carter et al., 2019].

It is conventionally thought that there is a trade-off between model interpretability and perfor-
mance (e.g., F1, accuracy). For example, more interpretable models such as regression models
and decision trees often perform less well on many prediction tasks compared to less interpretable
models such as deep learning models. With this constraint, researchers have to balance the desire
for the most highly performing model against adequate interpretability. Fortunately in the last
few years, researchers have proposed many new methods that can maintain the model perfor-
mance while producing good explanations, such as LIME [Ribeiro et al., 2016a], RETAIN [Choi
et al., 2016], and SHAP [Lundberg and Lee, 2017], described below. And many of them have
been adapted and applied to healthcare problems with good interpretability achieved. This survey
aims to provide a comprehensive and in-depth summary and discussion over such methods.

Previous surveys on explainable ML for healthcare [Ahmad et al., 2018, Holzinger et al.,
2019, Wiens et al., 2019, Tonekaboni et al., 2019a, Vellido, 2019, Payrovnaziri et al., 2020]
mainly discuss the definition, concept, importance, application, evaluation, and high-level
overview of methods for interpretability. In contrast, we will focus on introducing the meth-
ods for interpretability in depth so as to provide methodological guidance for future researchers
or clinical practitioners in this field. Besides the methods’ details, we will also include a discussion
of advantages and disadvantages of these methods and which scenarios each of them is suitable
for, so that interested readers can know how to compare and choose among them for use. More-
over, we will discuss how these methods originally developed for solving general-domain problems
have been adapted and applied to healthcare problems and how they can help physicians better
understand these data-driven technologies. Overall, we hope this survey can help researchers
and practitioners in both AI and clinical fields understand what methods we have for enhancing
the interpretability of their DL models and choose the optimal one accordingly based on a deep
and thorough understanding. For readers’ convenience, we have provided a map between all
abbreviations to be used and their corresponding full names in Table 2.

Paper Selection: We first conducted a systematic search of papers using MEDLINE, IEEE
Xplore, Association for Computing Machinery (ACM), and ACL Anthology databases, several
prestigious clinical journals’ websites such as Nature, JAMA, JAMIA, BMC, Elsevier, Springer,
Plos One, etc., as well as the top AI conferences such as NeurIPS, ICML, ICLR, AAAI, KDD, etc..
The keywords for our searches are: (explainable OR explainability OR interpretable OR inter-
pretability OR understandable OR understandability OR comprehensible OR comprehensibility)
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AND (machine learning OR artificial intelligence OR deep learning OR AI OR neural network).
After initial searching, we conducted manual filtering by reading titles and abstracts and only
retained three types of works for subsequent careful reading: interpretability methods developed
for general domain problems, interpretability methods specifically developed for healthcare prob-
lems, and healthcare applications that involve interpretability. We only covered the methods
that can interpret DL models. The literature of explanation methods for DL grows rapidly, so
any review of this type is captive to its date of completion. Searching the above-mentioned
sources with the keywords we used for recent articles should help to bring an appreciation of the
field up to date.

2 Interpretability Methods
In this section, we will introduce various kinds of interpretability methods, which aim to assign an
attribution value, sometimes also called ”relevance” or ”contribution”, to each input feature of
a network. Such interpretability methods can thus be called attribution methods. More formally,
consider a deep neural network (DNN) that takes an input x = [x1, ..., xN ] and produces an
output S(x) = [S1(x), ..., SC(x)], where C is the total number of output neurons. Given a
specific target neuron c, the goal of an attribution method is to determine the contribution
Rc = [Rc

1, ..., R
c
N ] of each input feature xi to the output Sc. For a classification task, the

target neuron of interest is usually the output neuron associated with the correct class for a
given sample. The obtained attribution maps are usually displayed as heatmaps, where one color
indicates features that contribute positively to the activation of the target output while another
color indicates features that have a suppressing effect on it.

To organize our presentation, we classify all attribution methods into the following categories:
back-propagation based, attention based, feature perturbation based, model distillation based,
and game theory based. We also include example and generative based interpretation for DL
methods for completeness. More technical details for each category will be elaborated below.

2.1 Back-propagation
The most popularly used interpretability method is based on back-propagation of either gra-
dients [Simonyan et al., 2014] or activation values [Bach et al., 2015]. This line of meth-
ods starts from the Saliency Map [Simonyan et al., 2014], which follows the normal gradient
back-propagation process and constructs attributions by taking the absolute value of the partial

derivative of the target output Sc with respect to the input features xi, i.e., |∂Sc(x)
∂xi
|. Intuitively,

the absolute value of the gradient indicates those input features that can be perturbed the
least in order for the target output to change the most. However, the absolute value prevents
the detection of positive and negative evidence that might be present in the input. To make
the reconstructed heatmaps significantly more accurate for convolutional neural network (CNN)
models, Deconvolution [Zeiler and Fergus, 2014a] and Guided Back-propagation [Springenberg
et al., 2015] were proposed and these two methods and the Saliency Map method differ mainly
in the way they handle back-propagation through the rectified linear (ReLU) non-linearity. As
illustrated in Figure 1a, for normal gradient back-propagation in the Saliency Map method, when
the activation values in the lower layer are negative, the corresponding back-propagated gradi-
ents are masked out. In contrast, the Deconvolution method masks out the gradients when
they themselves are negative, while the Guided Back-propagation approach combines these two
methods: those gradients are masked out for which at least one of these two values is negative.
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Gradient * Input [Shrikumar et al., 2017b] was proposed as a technique to improve the sharpness
of the attribution maps. The attribution is computed taking the (signed) partial derivatives of
the output with respect to the input and multiplying them with the input itself. Integrated
Gradients [Sundararajan et al., 2017] is similar to Gradient * Input, with the main difference
being that Integrated Gradients computes the average gradient as the input varies along a linear
path from a baseline x̃ to x. The baseline is defined by the user and often chosen to be zero.
Please refer to Figure 1b for the mathematical definition for both methods.

Pixel-space gradient visualizations such as the above-mentioned Guided Back-propagation and
Deconvolution are high-resolution and highlight fine-grained details in the image, but are not
class-discriminative, i.e., the attribution value plots for different classes may look similar. In
contrast, localization approaches like Class Activation Mapping (CAM) [Zhou et al., 2016] are
highly class-discriminative (e.g., the ‘cat’ explanation exclusively highlights the ‘cat’ regions but
not ‘dog’ regions in an image containing both a cat and dog). This approach modifies image
classification CNN architectures by replacing fully-connected layers with convolutional layers and
global average pooling, thus achieving class-specific feature maps. A drawback of CAM is that
it requires feature maps to directly precede softmax layers, so it is only applicable to particular
kinds of CNN architectures. To solve this shortcoming, Grad-CAM [Selvaraju et al., 2017] was
introduced as a generalization to CAM, which uses the gradient information flowing into the last
convolutional layer of the CNN to understand the importance of each neuron for a decision of
interest. Furthermore, it is combined with existing pixel-space gradient visualizations to create
Guided Grad-CAM visualizations that are both high-resolution and class-discriminative.

Besides gradients, back-propagation of activation values can also be leveraged as an interpretabil-
ity approach. Layer-wise Relevance Propagation (LRP) [Bach et al., 2015] is the first to adopt
this method, where the algorithm starts at the output layer L and assigns the relevance of the
target neuron equal to the output of the neuron itself (i.e., the activation value of the neuron)
and the relevance of all other neurons to zero, as shown in Eq. 1. Then the recursive back-
propagation rule (called the ε-rule) for the redistribution of a layer’s relevance to the preceding

layer is described in Eq. 2, where we define zji = w
(l+1,l)
ji x

(l)
i to be the weighted activation of

a neuron i onto neuron j in the next layer and bj the additive bias of unit j. Once the back-

propagation reaches the input layer, the final attributions are defined as Rc
i (x) = r

(1)
i . As an

alternative, DeepLIFT [Shrikumar et al., 2017a] proceeds in a backward fashion similar to LRP
but calibrates all relevance scores by subtracting reference values that are determined by running
a forward pass through the network using the baseline x̄ as input and recording the activation of
each unit. Although LRP and DeepLIFT were invented based on back-propagation of activation
values, it has been demonstrated in [Ancona et al., 2018] that they can also be computed by
applying the chain rule for gradients and the converted equations are summarized in Figure 1b.

r
(L)
i =

{
Si(x) if unit i is the target unit of interest

0 otherwise
(1)

rli =
∑
j

zji∑
i′(zji′ + bj) + ε · sign(

∑
i′(zji′ + bj))

rl+1
j (2)
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(a) Comparison among normal gradient back-
propagation, Deconvolution, and Guided Back-
propagation in terms of how they handle back-
propagation through the rectified linear (ReLU) non-
linearity.

(b) Mathematical formulation of four back-
propagation based attribution methods. The orig-
inal equations of ε-LRP and DeepLIFT are trans-
formed so that they can be calcuated based on gra-
dients.

Figure 1: Mathematical formulation of different back-propagation based interpretability methods.

2.2 Feature perturbation
Compared to back-propagation based methods, which compute gradients of outputs with re-
spect to input features, feature perturbation methods explicitly examine the change in model
confidence resulting from occluding or ablating certain features.

The idea of masking parts of the input and measuring the model’s change in confidence was
introduced in a model agnostic context, pre-DL by works such as [Štrumbelj et al., 2009] and
[Robnik-Šikonja and Kononenko, 2008]. Based on some of these works, there have been multiple
methods in DL for feature perturbation, attempting to explain the model based on the change
in output classification confidence upon perturbation of features. These include model agnostic
works based on conditional multivariate analysis and deep visualization [Zintgraf et al., 2017]
(based on the instance-specific method known as prediction difference analysis) and explicit
erasure of parts of input representations [Li et al., 2016]; as well as convolution neural network
specific identification of image regions for which the model reacts most to perturbation [Zeiler
and Fergus, 2014b] and image masking models that are trained to manipulate scores outputted
by the predictive model by masking salient parts of the input image [Dabkowski and Gal, 2017].
Similar to image masking models, recent model-agnostic methods use generative models to
sample plausible in-fills (as opposed to full masking) and optimize to find image regions that
most change the classifier decision after in-filling [Chang et al., 2019].

In the direction of more theoretically grounded variable importance-based techniques, [Fisher
et al., 2019] measure the model prediction difference upon adding noise to the features. Addi-
tionally, various adversarial perturbation techniques have been introduced that add noise to the
feature representations, falling in the category of Evasion Attacks [Tabassi et al., 2019]. Evasion
Attacks involve finding small input perturbations that cause large changes in the loss function
and lead to mispredictions. These input perturbations are usually found by solving constrained
optimization problems. These include gradient-based search algorithms like Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [Szegedy et al., 2013], Fast Gradient Sign Method
(FGSM) [Goodfellow et al., 2015], Jacobian-based Saliency Map Attack (JSMA) [Papernot et al.,
2016a] and Projected Gradient Descent (PGD) [Madry et al., 2018] among others. For detailed
surveys on adversarial perturbation techniques in computer vision see [Akhtar and Mian, 2018];
for surveys on adversarial attacks in general see [Chakraborty et al., 2018] and [Yuan et al.,
2019]. While the goal of these methods is to actively change model confidence for the purpose
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of attacking the model, they take advantage of the black box nature of DL models and have led
to creation of techniques that can be used to deploy more robust and interpretable models.

2.3 Attention
Attention mechanisms have played an important role in model interpretations and the attention
weights have been widely adopted as a proxy to explain a given model’s decision making [Xu
et al., 2015, Xie et al., 2017, Clark et al., 2019, Voita et al., 2019].

Historically, attention mechanisms have been introduced in the context of sequence to sequence
text model alignment as the way to directly incorporate the importance of the context to any
given word representation. Each input word in a given context is represented by a weighted
sum of the representations of other words. Naturally, the dynamic weights for each word can be
interpreted as the contribution (or importance) of the words to a given word representation.

While the exact architecture of the attention-utilizing models differs from model to model, all
of them make use of the set of computations known as the attention mechanism. The basic
building block of attention is a generalized trainable function [Bahdanau et al., 2014, Vaswani
et al., 2017]:

Attention(V,Q,K) = Score(WqQ,WkK)�WvV (3)

where Q and K represent the context of a given element, V the unmodified element contribution
to the representation without the context being taken into an account, and the set of weights
Wk,Wq,Wv are the adaptable weights that represent the learned elements’ contributions.

The output of the Score function is known as the attention weights and represents the contribu-
tions of the other elements of the input to the representation of the given element or sequence
as a whole; in the naive interpretation setting, a high post-training attention weight of an input
feature or a set of features corresponds to a higher importance of the given feature value in
producing a prediction.

Note that this methods of producing interpretation is intrinsically linked to the model itself and
constitutes a direct interpretation of the outputs of the parts of a given attention-utilizing model
(attention scores) as an explanation for the prediction. Since attention scores are often computed
over already pooled representations of the elements and sequences, the element scores do not
necessarily represent the direct feature contributions [Jain and Wallace, 2019, Brunner et al.,
2019, Zhong et al., 2019].

The majority of work on attention based interpretability has been in the general time-series
processing field due to both the success of the attention-using models and the natural idea of
viewing the contribution of the other elements of the sequence to the current state [Sezer et al.,
2020, Fawaz et al., 2019, Wang et al., 2019, Ardabili et al., 2019].

Fully-attention based models and attention based interpretations are also popular in natural
language processing (NLP) due to the compositional nature of syntax and meaning [Wolf et al.,
2020].

2.4 Model distillation
Model distillation (also known as Network distillation) is a model compression technique where
a simpler model (student) is “taught” by a more complex model (teacher). While the original
use of the technique focused on the improved performance or compactness of the student model
[Hinton et al., 2015], it is important to note that if the simpler model is naturally interpretable,
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the transfer results in an “interpretable” model explaining the behavior of the more complex
teacher model.

A complex model’s behavior may be approximated either locally, by fitting a simpler model
around a given example to produce an explanation for a given point [Ribeiro et al., 2016a],
or globally, by fitting one simple model directly to the teacher model, using all the training
data [Lakkaraju et al., 2017].

Due to the explicit “interpretation” use case of the technique, the student models are in general
limited to either generalized linear models [Ribeiro et al., 2016a], decision trees [Craven and
Shavlik, 1995, Schmitz et al., 1999, Plumb et al., 2018] or direct rules or set inductions [Sethi
et al., 2012, Lakkaraju et al., 2017, Ribeiro et al., 2018, Zilke et al., 2016]

The most influential member of this family of interpretation producing techniques is LIME
[Ribeiro et al., 2016a], a general method for generating local explanation for a specific input
case. The local model that serves as an explanation for a given point is obtained by minimizing

ξ(x∗) = argmin
g∈G

L(f, g, πx∗) + Ω(g) (4)

where G is a class of the interpretable models used to produce an explanation, πx∗ defines the
neighborhood of points near x∗, L is the measure of the difference between the original model
and the explanation model prediction in that neighborhood, and Ω(g) is a complexity measure
of the explanation model.

In practice, in the classical LIME use, L is set to be the distance weighted squared loss between
the original model and the explanation model prediction computed over a randomly sampled set
of data points biased to lie near x∗ by πx∗ . The explanation model class G is the class of all
linear models and Ω(g) is a regularization term to prevent overfitting.

The vast majority of local knowledge distillation for interpretability models are the result of
modifying Lime in either the neighborhood construction (ALIME [Shankaranarayana and Runje,
2019]), sampling (MPS-LIME [Shi et al., 2020]) and input structure constraining procedure
(GraphLime [Huang et al., 2020]) or the nature of the explanation model (SurvLIME [Kovalev
et al., 2020], GRAPHLime [Huang et al., 2020]). Another popular trend is producing semi-global
explanation models through LIME-like fitting procedures (LIME-SUP [Hu et al., 2018], Klime
[Hall et al., 2017], NormLime [Ahern et al., 2019], DLIME [Zafar and Khan, 2019], ILIME [Shawi
et al., 2019]).

2.5 Game theory based Interpretability Methods
DL models can also be interpreted via Shapley value, a game theory concept inspired by local
surrogate models [Lundberg and Lee, 2017]. Shapley value is a concept of fair distribution
of gains and losses to several unequal players in a cooperative game [Shapley, 1953]. It is an
average value of all marginal contributions to all possible interactions of features (i.e., players
in the game) given a particular example. Therefore, the Shapley value can explain how feature
values contribute to the model prediction of the given example by comparing against the average
prediction for the whole dataset. Nevertheless, the Shapley value approximation is not easy to
compute when the learning model becomes complicated.

Recently, researchers proposed a unified framework, SHAP (SHapley Additive exPlanations)
values, to approximate the classical Shapley values with conditional expectations for various
kinds of machine learning models, which include linear models, tree models [Lundberg et al.,
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2018a], and even complicated deep neural networks [Lundberg and Lee, 2017]. SHAP has been
widely used recently for DL interpretation, yet researchers also admit to concerns about this
popular interpretability method.

First, the SHAP for neural networks (KernelSHAP) is based on an assumption of model linear-
ity. To mitigate the problem, [Ancona et al., 2019] propose a polynomial-time approximation
algorithm of Shapley values, Deep Approximate Shapley Propagation (DASP), to learn a better
Shapley value approximation in non-linear models, especially deeper neural networks. DASP is a
perturbation-based method using uncertainty propagation in the neural networks. It requires a
polynomial number of network evaluations, which is faster than other sampling-based methods,
without losing approximation performance. Also, [Sundararajan and Najmi, 2020] show that
SHAP, or other methods using Shapley values with conditional expectations, can be sensitive to
data sparsity and yield counterintuitive attributions that make an incorrect model interpretation.
They propose a technique, Baseline Shapley, to provide a good unique result.

2.6 Example based Interpretability Methods
Instead of explaining the model using the attributive contribution of input data points, example
based methods interpret the model behavior using only the particular training data points that
are representative or influential for the model prediction.

For DL models, there are several interpretation methods based on example-level information.
For example, the influence function [Koh and Liang, 2017], example-level feature selection [Chen
et al., 2018], contextual decomposition (CD) [Murdoch et al., 2018], and the combination of
both prototypes and criticism samples—data points that can’t be represented by prototypes [Kim
et al., 2016]. Other popular methods for interpretation, such as LIME [Ribeiro et al., 2016a]
(Section 2.4) and SHAP [Lundberg and Lee, 2017] (Section 2.5), also provide example-level
model interpretability.

The influence function is an example of example-based interpretability [Koh and Liang, 2017],
which can be used in both computer vision [Koh and Liang, 2017], and NLP [Han et al., 2020b].
The goal of the influence function is to measure the change in the loss function as we add a
small perturbation, weight, or remove a influence instance, which is a representative, influential
training point. Under the smoothness assumptions, the influence function can be computed using
the inverse of the Hessian matrix of the loss function or by using the Hessian-vector products
to approximate the result. The influence function can also be used to generate an adversarial
attack.

Researchers developed DL-based instance-wise feature selection at the example-level for feature
importance measurement [Chen et al., 2018]. Instance-wise feature selection (L2X, Learning to
Explain) measures feature importance locally for each specific example and therefore indicates
which features are the key for the model to make its prediction on that instance. L2X is trained to
maximize the mutual information between selected features and the response variable, where the
conditional distribution of the response variable given the input is the model to be explained. To
solve an intractable issue of direct estimation of mutual information and discrete feature subset
sampling, the authors apply a variational approximation for mutual information, then develop
a continuous reparameterization of the sampling distribution. The method has been applied to
CNN and hierarchical long short-term memory (LSTM) on different datasets and yields a better
explanation performance quantitatively and qualitatively.

CD is an interpretation method to analyze individual predictions by decomposing the output
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of LSTMs without any changes to the underlying model [Murdoch et al., 2018]. In NLP, it
decomposes an LSTM into a sum of two contributions: those resulting solely from the given
phrase and those involving other factors. CD captures the contributions of combinations of
words or variables to the final prediction of an LSTM. In the study, researchers demonstrate
that CD can explain both NLP and general LSTM applications. For example, they model
for sentiment analysis by identifying words and phrases of differing sentiment within a given
review and extracting positive and negative words from the model. The CD method can be
further extended to a more general version, contextual decomposition explanation penalization
(CDEP) [Rieger et al., 2020]. CDEP is a method that allows the insertion of domain knowledge
into a model to ignore spurious correlations, correct errors and generalize to different types of
dataset shifts. It is general and can be applied to different neural network architectures.

For graph neural networks, [Ying et al., 2019] further propose a model-agnostic GnnExplainer
to provide interpretability on graph-based tasks, such as node and graph classification. By
identifying the prediction-relevant edges, GnnExplainer can highlight local subgraph structures
and small subsets of important features to the prediction. The method can be used for single
and multiple instance explanations in a graph.

To tackle the real-world data, which may not have a set of prototypical examples representing
the data well, we can also utilize both the prototypical examples and criticism samples that
don’t fit the model well [Kim et al., 2016]. The MMD-critic (maximum mean discrepancy-critic)
method uses a Bayesian approach to select the prototype and criticism samples and to provide
explanations that can facilitate human reasoning and understanding of the model.

2.7 Generative based Interpretability Methods
The basis of generative based methods for explaining a model’s behavior uses information that
does not occur explicitly in attributes of the input, but is derived from external knowledge
sources, from a causal model, or from explainable probabilistic modeling.

For example, the state-of-the-art general domain neural question answering (QA) system at-
tempts to provide human-understandable explanations for better commonsense reasoning, yet to
interpret how the model utilizes common sense knowledge, a common-sense explanation genera-
tion framework is required [Rajani et al., 2019]. Researchers collect human narrative explanations
for common sense reasoning and pretrain language models [Rajani et al., 2019], which can gener-
ate explanations and be used concurrently with the QA system (Commonsense Auto-Generated
Explanations (CAGE) framework). They further transfer knowledge (generated explanations) to
out-of-domain tasks and demonstrate the capacity of pretrained language models for common
sense reasoning.

Generative Explanation Framework (GEF) is another hybrid generative-discriminative method
that explicitly captures the information inferred from raw texts, generates abstractive, fine-
grained explanations (attributes), and simultaneously conducts classification tasks. It can in-
terpret the predicted classification results and improve the overall performance at the same
time [Liu et al., 2019]. More specifically, the authors introduce the explainable factor (EF) and
the minimum risk training (MRT) approach that learn to generate more reasonable explanations.
They pretrain a classifier using explanations as inputs to classify texts, then adopt the classifier
to jointly train a text encoder by computing EF, which is the semantic distance between gener-
ated explanations, gold standard explanations, and inputs, and then minimizing MRT loss that
considers both the distance between predicted overall labels and ground truth labels, as well as
the semantic distance represented in EF. GEF is a model-agnostic method that can be used in
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different neural network architectures.

[Madumal et al., 2020] introduced action influence models that utilize the structural causal
model to generate the explanation of the behavior of model-free reinforcement learning agents
through knowing the cause-effect relationships using counterfactual analysis. The proposed
model has been evaluated on deep reinforcement learning algorithms, such as Deep Q Network
(DQN) [Mnih et al., 2013], Double DQN (DDQN) [Van Hasselt et al., 2016], Proximal Policy
Optimization (PPO) [Schulman et al., 2017], and Advantage Actor Critic (A2C) [Mnih et al.,
2016].

[Wisdom et al., 2016] developed a model-based interpretation method, sequential iterative soft-
thresholding algorithm (SISTA), to construct recurrent neural network (RNN) without black-box
components like LSTMs, via the trained weights of the explicit probabilistic model.

3 Methods for Interpretability in Healthcare
In the last section, we have summarized the methodology for each class of interpretation methods.
Most of these methods were initially proposed for general domain applications. In order to
deploy them to healthcare problems, some customization needs to be performed. Therefore in
this section, we discuss how each class of interpretation methods can be adapted to healthcare
systems. We also discuss what kinds of clinical/medical observations and findings we can make
with the help of these interpretation methods.

3.1 Back-propagation
Back-propagation based interpretability methods have been widely used to help visualize and
analyze those DL models adopted for healthcare problems, which include computer vision,
NLP [Gehrmann et al., 2018], time series analysis, and static features-based predictive mod-
eling. We would like to summarize these successful applications and categorize them based on
the applied task types.

In computer vision tasks, many powerful DL models have achieved close to expert doctor per-
formance [Esteva et al., 2017, Ran et al., 2020] and thus it is very meaningful to study how
these models can accomplish such great success [Singh et al., 2020b]. [Xie et al., 2019] adopted
CAM [Zhou et al., 2016] to generate heatmaps separately for melanoma and nevus cells in skin
cancer histology images so that the morphological difference between these two types of cells
can be visualized: the melanoma cells are of irregular shape and the nevus cells are distinctly
shaped and regularly distributed. [Zhang et al., 2021] used Grad-CAM to provide an explainable
heatmap for an attention network built for classifying chest CT images for COVID-19 diagnosis,
while Grad-CAM was also used to explain a graph convolutional network for secondary pulmonary
tuberculosis diagnosis based on chest CT images [Wang et al., 2021]. Integrated Gradients [Sun-
dararajan et al., 2017] was used to visualize the features of a CNN model used for classifying
estrogen receptor status from breast magnetic resonance imaging (MRI) images [Pereira et al.,
2018], where the model was found to have learned relevant features in both spatial and dynamic
domains with different contributions from both. Overall, back-propagation based methods have
been used to visualize and interpret various medical imaging modalities such as brain MRI [Eitel
et al., 2019], retinal imaging [Sayres et al., 2019, Singh et al., 2020a], breast imaging [Pa-
panastasopoulos et al., 2020, Kim et al., 2018], skin imaging [Young et al., 2019], computed
tomography (CT) scans [Couteaux et al., 2019], and chest X-rays [Linda, 2020].

For features-based predictive modeling, back-propagation based interpretability methods can be
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applied to both static and time-series analysis. For static analysis (e.g., therapy recommendation
based on a fixed set of features), fully connected neural networks are typically utilized for mod-
eling and thus are the target to be interpreted. Commonly-used interpretability methods include
DeepLIFT [Fiosina et al., 2020], LRP [Li et al., 2018, Zihni et al., 2020], etc. For time-series
analysis, besides being able to analyze which features are more important or relevant to the
prediction among all features used [Yang et al., 2018], it is noteworthy that we can also analyze
what temporal patterns are more influential to the final model decision [Mayampurath et al.,
2019, Suresh et al., 2017].

3.2 Feature perturbation
Feature perturbation methods have primarily been discussed in the context of adversarial attacks
in the healthcare domain [Finlayson et al., 2019a], mainly as potential future risks due to the
ready acceptance of machine learning in diagnosis and insurance claims approval. Nevertheless,
the features that are most influential if altered by an attacker are also the ones to which the
model’s responses are most sensitive [Finlayson et al., 2019a].

[Finlayson et al., 2019b] perform adversarial perturbations (a variation on FGSM attack [Good-
fellow et al., 2015]) by addition of gradient-based noise to three highly accurate deep learning
systems for medical imaging. By attacking models that classify diabetic retinopathy, pneumoth-
orax and melanoma, they show vulnerabilities in three of the most highly visible successes for
medical deep learning. In addition, they discuss hypothetical scenarios of how attackers could
take advantage of the vulnerabilities the systems demonstrate. More broadly, they comment on
industries and scenarios that could be affected by adversarial attacks in the future: insurance
fraud and determining pharmaceutical and device approvals. They discuss the challenging trade-
off between forestalling approval until a resilient algorithm is built and the harm that delaying
the deployment of a technology impacting healthcare delivery for millions could entail.

[Iqtidar Newaz et al., 2020] show vulnerability in smart healthcare systems (SHS) by manipulating
device readings to alter patient status. By performing two types of attacks, including Evasion
Attacks [Tabassi et al., 2019], they identify flaws in an underlying ML model in a SHS. Employing
feature perturbation methods such as FGSM [Goodfellow et al., 2015], randomized gradient-free
attacks based on [Carlini and Wagner, 2017], [Croce et al., 2019], and [Croce and Hein, 2018]
and zeroth order optimization based attacks [Chen et al., 2017], they are able to alter patient
status for ML models based on patient vital signs.

[Chen et al., 2020] generate adversarial examples based on perturbation techniques for electro-
cardiograms. They use techniques from [Carlini and Wagner, 2017] and [Athalye et al., 2018]
to misguide arrhythmia classification. In a similar application, [Han et al., 2020a] introduce a
smooth method for perturbing input features to misclassify arrhythmia.

For temporal data in EHR, [Sun et al., 2018] introduce an optimization based attack strategy,
similar to [Chen et al., 2017], to perturb EHR input data. [An et al., 2019] introduce a JSMA and
attention-based attack by jointly modeling the saliency map and attention mechanism. Finally,
in a domain agnostic setting, [Naseer et al., 2019] introduce cross-domain transferability of
adversarial perturbations using a generative adversarial network (GAN)-based framework. They
show how networks trained on medical imaging datasets can be used to fool ImageNet based
classifiers. Successful transferability of adversarial perturbations can make it even simpler to
fool healthcare models across multiple task domains, and potentially modalities. One such
paper examines the effect of universal adversarial perturbations in the medical imaging space
[Hirano et al., 2021].
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Several methods have been proposed in the general domain to counter these adversarial attacks,
namely proactive defense ([Cisse et al., 2017, Gu and Rigazio, 2014, Papernot et al., 2016b],
[Shaham et al., 2018]) and reactive defense ([Feinman et al., 2017, Grosse et al., 2017, Lu et al.,
2017]). Proactive defense methods increase the robustness of models retroactively, whereas
reactive defense models detect the adversarial examples. There are also other methods, such
as using collaborative multi-task learning ([Wang et al., 2020]). While it may seem that the
possibility of adversarial perturbations works against the recommendation of using deep learning
in healthcare settings, there are recent works pushing the boundaries by actively examining the
reasons for the susceptibility of healthcare data to attacks ([Ma et al., 2021]). Since feature
perturbation techniques have strong policy-level implications in healthcare, it is also imperative
to tailor general domain defense methods to the healthcare setting.

3.3 Attention
Attention architectures designed with a special consideration for interpretability are routinely
used for EHR-based longitudinal prediction tasks such as heart failure prediction [Choi et al.,
2016, Kaji et al., 2019], sepsis [Kaji et al., 2019], intensive care unit (ICU) mortality [Shi et al.,
2019], automated diagnosis, and disease progression modeling [Gao et al., 2019, Mullenbach
et al., 2018, Ma et al., 2017, Bai et al., 2018, Alaa and van der Schaar, 2019]. The underlying
representation of such a model is often produced by an LSTM variant with the attention used
to compute the contribution of a given feature or time step element of the sequence to the
prediction. The best known model of this kind is RETAIN [Choi et al., 2016], which includes
computing the attention weights over both the time-step of the time-series and the individual
features of the inputs.

Pure attention-based architectures such as the Transformer have revolutionized NLP-based
modeling, allowing the use of massive unlabeled medical text for pretraining [Lee et al.,
2020, Alsentzer et al., 2019, Beltagy et al., 2019]. Adoption of such models for non-text data
is still relatively rare [Li et al., 2020b, Rajan et al., 2017].

A special variant of the attention mechanism that seeks to address interpretability allows the
model to output uncertainty on each input feature and use the aggregated uncertainty informa-
tion for prediction [Heo et al., 2018].

Despite the widespread use of the attention maps as explanations, we would caution against the
direct interpretation of attention as an element’s contributions to the prediction in the medical
domain. More studies are needed to disentangle self-attention produced representations from
the context contribution itself.

3.4 Model distillation
LIME [Ribeiro et al., 2016a] is one of the most popular techniques used to produce instance-level
explanations for black-box model predictions in medical AI. The model-agnostic nature of the
technique has led to its use in a diverse set of longitudinal EHR-based prediction tasks such as
heart failure prediction [Khedkar et al., 2020], cancer type and severity inferences [Moreira et al.,
2020], breast cancer survival prediction [Hendriks et al., 2020], and predicting development of
hypertension [Elshawi et al., 2019].

It should be noted that the LIME variants are not widely used, despite the potential clinical
usefulness of such interpretation methods. Among the potentially useful variants for ML in
medicine are SurvLIME [Kovalev et al., 2020], introduced specifically for producing Cox propor-
tional hazards explanations for black-box survival models, and DLIME [Zafar and Khan, 2019],
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a hierarchical clustering neighborhood based semi-global LIME variant for producing more con-
sistent explanations for predictions over similar inputs.

3.5 Game theory based Interpretability
The game theory based SHAP algorithm has been widely applied in the medical domain for
feature contribution analysis due to its ability to explain not only individual predictions but also
global model behavior via the aggregation of Shapley values. SHAP is also model-agnostic, so
that it can be applied to various machine learning algorithms [Lundberg and Lee, 2017, Lundberg
et al., 2018b].

In the direct usage of SHAP for deep learning in healthcare, [Arcadu et al., 2019] applied
SHAP to find the crucial regions, which are peripheral fields, for identifying diabetic retinopathy
progression. Also, for the interpretation of medical imaging, [Young et al., 2019] and [Pianpanit
et al., 2019] utilized KernelSHAP to generate the saliency maps for interpreting the deep neural
networks for melanoma prediction and Parkinson’s disease prediction, respectively. [Levy et al.,
2019] also adopted SHAP to interpret the portal region prediction in pathology slide imaging.
Beyond medical imaging, [Boshra et al., 2019] used SHAP to investigate the features’ influence
on concussion identification given the electroencephalography (EEG) signals.

[Ancona et al., 2019] uses the DASP algorithm to approximate the Shapley values and yields the
explanation of the deep learning models and applies it to a fully-connected network model for
predicting the Parkinson’s disease rating scale (UPDRS), which is a regression task to predict
the severity of Parkinson’s disease based on 18 clinical features in a telemonitoring dataset.

In [Lundberg et al., 2018b], they also have anesthesiologists consulted to ensure that their model
explanations are clinically meaningful. The anesthesiologists were asked to justify the SHAP
explanations with the change in model output when a feature is perturbed. [Li et al., 2020a]
also shows that it is possible to use SHAP for modeling and visualizing nonlinear relationship
between prostate-specific antigen and Gleason score in prostate cancer that is consistent with the
prior knowledge in the medical literature. Such clinical evaluations help the medical community
to accept the interpretation method better.

Other works mentioned in this section also provide explanations that are aligned with prior
knowledge and ground truth given by the dataset via visualization or computing quantitative
metrics, yet none of them are justified by a formal clinical user study. Further study is needed
for these methods and applications in healthcare.

One major concern of using SHAP in the medical domain is that the Shapley value and SHAP
was originally derived from economics tasks, where the cost is additive. However, clinical features
are usually heterogeneous, and the Shapley values derived from the model may not be meaningful
in the domain [Kovalerchuk et al., 2021]. Further investigation is needed to justify real-world
clinical use of SHAP-based interpretations.

3.6 Example based Interpretability
Example-based model interpretation provides a mental model that allows clinicians to refer to
some similar cases, prototypes, or clusters given a new case.

Researchers utilize CDEP to ignore spurious confounders in skin cancer diagnosis [Rieger et al.,
2020]. The study uses a publicly available image dataset from ISIC (International Skin Imaging
Collaboration), which has colorful patches present in approximately 50% of the non-cancerous
images but not in the cancerous images. It can be problematic if the learned model uses such
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spurious patch features as an indicator but not the critical underlying information for skin cancer
prediction. The CDEP helps penalize the patches for having zero importance during training
and mitigates the issue.

Although yielding better model performance with a quasi-explanation with a skin cancer clas-
sification example, CDEP has not yet been justified by a formal clinical user study and not yet
been accepted by the medical community. It is still at the research rather than the deployment
stage.

3.7 Generative based Interpretability
DL interpretability can also be learned based on expert-interpretable features provided during
the learning process.

To provide visually interpretable evidence for breast cancer diagnostic decisions, [Kim et al.,
2018] developed an interpretability framework that includes a breast imaging reporting and data
system (BIRADS) guided diagnosis network and a BIRADS critic network. The interpretable 2D
BIRADS guide map, which is generated from the visual feature encoder, can help the diagnosis
network focus on the critical areas related to the human-understandable BIRADS lexicon via the
critic network.

The study shows that with the BIRADS guide map, the performance is significantly higher than
the network without the guide map. This finding also indicates the critical role and necessity of
integrating medical domain knowledge while deploying machine learning models in healthcare.

For radiology, [Shen et al., 2019] proposed an interpretable deep hierarchical semantic convo-
lutional neural network (HSCNN) for pulmonary nodule malignancy prediction on CT images.
HSCNN generates the binarized low-level expert-interpretable diagnostic semantic features that
are commonly used by radiologists, such as sphericity, margin, and calcification; these are inputs
to the high-level classification model, along with the latent representations learned from the
visual encoder.

Both [Kim et al., 2018] and [Shen et al., 2019] demonstrate that the image guide map and label
generation process may help clinicians curate the raw image information to high-level diagnostic
criteria, yet the method is not yet justified by formal clinical user studies. Further study is needed
for these methods to be accepted by the medical community.

4 Discussion

4.1 Dimensions of different interpretability methods
The current literature presents several different classification schemes for interpretation methods
in DL [Lipton, 2018, Doshi-Velez and Kim, 2017, Pedreschi et al., 2019]. In addition to the
methodology motivated classification used in the Interpretability methods section of the paper,
we present two different questions that every interpretation producing method naturally poses:

1. Model Dependence: Does the explanation model depend on the internal structure of the
model it is explaining or can it be used for producing an explanation of any “black-box”
model?

2. Explanation Scope: Does the explanation model focus on producing an explanation for
a given input-prediction pair or is it attempting to create a unified global explanation of
the model’s behavior?
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A characterization of the most commonly used methods to produce interpretations in health care
with respect to these aspects is presented in Table 1.

In general, the vast majority of the methods are explicitly local, producing the explanation for
a given decision only, with some attempts at aggregation of the local explanation into patterns
[Ramamurthy et al., 2020, Lakkaraju et al., 2019].

The community appears to be deeply split on the issue of model dependence, with the proponents
citing the necessity of explanation fidelity [Rudin, 2019], while opponents doubt the inherent
fidelity of the directly model-dependent explanations [Jacovi and Goldberg, 2020] and stress the
need for flexible model-independent explanation methods [Ribeiro et al., 2016b].

4.2 Credibility and Trustworthiness of Interpretability Methods
In this section we will discuss two aspects of the methods used to produce interpretations of
decision models used in health care:

1. How faithful is the interpretation to the underlying decision making model?

2. How understandable are the interpretations to human expert users?

The two aspects are often at odds with each other: A complex model decision might require
a rather complex explanation to cover all of the possible aspects of the model’s behaviors on
different inputs, which might not look easy to understand to humans.

4.2.1 Faithfulness of the interpretation
We first discuss the direct correspondence between the produced interpretation and the model’s
decision making, known in the literature under the terms Fidelity [Jacovi and Goldberg, 2020] or
Faithfulness [Rudin, 2019]. A perfectly faithful interpretation accurately represents the decision
making of the model being explained. If the interpretation is constrained to agree with the
model’s behavior on all possible inputs, then no simpler explanation than the original model
is possible. Even model dependent explanation producing methods may not be faithful to the
original model because, as a simplified model, they may not include all parts of the original
decision making process [Jain and Wallace, 2019].

When using an explanation producing model for black-box models trained on complex healthcare
data, we recommend the user to consider the following issues to gain more insight into the
explanation model’s faithfulness.

1. For explanations that, in themselves, are predictive models, look at the prediction agree-
ment between the explanation model and the original: if the concordance is low, then the
model is not faithful.

2. While it is hard to estimate the fidelity of an explanation method, consider computing re-
cently proposed fidelity measures over the set of the explanation methods you are planning
to use [Yeh et al., 2019].

3. Consider running “feature occlusion” sanity checks, to check if changing those model
elements according to the explanation change the original predictions [Hooker et al., 2018].

4. Due to the nature of some interpretation producing models, the same model might produce
different explanations for the same pair of input-outputs over multiple runs.
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Class: Model Scope Dep. Potential Issues Ref.

Back-prop.
Integrated Gra-
dients

L I More computationally expensive than Gradients
* Inputs, the baseline needs to be carefully se-
lected/tuned for some cases

[Sundararajan
et al.,
2017]

CAM L I Label/class discriminative features revealed by this
method may not be convincing and accurate for
some data samples

[Zhou
et al.,
2016]

LRP L I Initially proposed for interpreting multi-layer per-
ceptions and hard to generalize well to more com-
plex neural networks such as LSTM and Trans-
formers

[Bach
et al.,
2015]

Feat perturbation
Prediction Dif-
ference Analy-
sis

L I Computationally expensive. Simulates the ab-
sence of feature via marginalization, rather than
exact knowledge of model behavior without the
feature present.

[Zintgraf
et al.,
2017]

Representation
Erasure

G I Computationally expensive, requires several steps
of probing. Injects random noise into input for
representation erasure.

[Li
et al.,
2016]

Counterfactual
Generation

L I Computationally expensive due to intermediate
generative stage for injecting noise respecting data
distribution. Involves similar marginalization ap-
proximations as Prediction Difference Analysis.

[Chang
et al.,
2019]

Attention
RETAIN L D Attention weight correspond to the importance of

the intermediate representations to the final rep-
resentation, not the input elements directly.

[Choi
et al.,
2016]

Attend and Di-
agnose

L D Same issues as retain, exacerbated by the use of
the fully-additional architecture of the model

[Rajan
et al.,
2017]

Model distillation
LIME L D The explanation is not cross instances consistent

and might vary wildly for even for very similar in-
stances. Possible issues on discontinuous data.
Might produce inconsistent results across the mul-
tiple runs

[Ribeiro
et al.,
2016a]

Anchors S I Might produce inconsistent results across multiple
runs. The explanation might be too specific and
not very robust at the decision boundary

[Ribeiro
et al.,
2018]

Game theory
SHAP L I Computationally expensive. Require the access to

training data for interpretation.
[Lundberg
and
Lee,
2017]

Example
Influence func-
tion

L I Won’t work for models without differentiable pa-
rameters and losses. Only an approximation. No
clear cut of “influential” and “non-influential”.
May not be human-interpretable if there are too
many feature values in a prototype.

[Koh
and
Liang,
2017]

Contextual de-
composition

L D Only for LSTM. Require further algorithm modi-
fications to extend the method for other network
architecture.

[Murdoch
et al.,
2018]

Generative
CAGE L D Require high-quality external knowledge resources.

Task-specific method.
[Rajani
et al.,
2019]

Table 1: Most popular methods intended for providing interpretation (cited more than 50 times),
Scope : Local, Semi-Global, Global. Model Dependence: Dependent, Independent17

https://github.com/ankurtaly/Integrated-Gradients
https://github.com/ankurtaly/Integrated-Gradients
https://github.com/ramprs/grad-cam
https://github.com/alewarne/Layerwise-Relevance-Propagation-for-LSTMs
https://github.com/lmzintgraf/DeepVis-PredDiff
https://github.com/lmzintgraf/DeepVis-PredDiff
https://github.com/lmzintgraf/DeepVis-PredDiff
https://arxiv.org/pdf/1612.08220.pdf
https://arxiv.org/pdf/1612.08220.pdf
https://github.com/zzzace2000/FIDO-saliency
https://github.com/zzzace2000/FIDO-saliency
https://github.com/mp2893/retain
https://github.com/khirotaka/SAnD
https://github.com/khirotaka/SAnD
https://github.com/marcotcr/lime
https://github.com/marcotcr/anchor
https://github.com/slundberg/shap
https://github.com/kohpangwei/influence-release
https://github.com/kohpangwei/influence-release
https://github.com/jamie-murdoch/ContextualDecomposition
https://github.com/jamie-murdoch/ContextualDecomposition


4.2.2 Plausibility of the interpretation as defined by the expert user
Traditionally, clinicians tend to embrace expert-curated models, such as the APACHE (Acute
Physiology and Chronic Health Evaluation) score for evaluating the patient severity in the
ICU [Knaus et al., 1985], due to the consistency between used model features and domain
knowledge. In contrast, machine learning approaches for healthcare problems aim to further
improve performance by learning a much more complex representations from raw features while
sacrificing model transparency. Machine learning interpretability methods may provide human-
understandable explanations, yet it is crucial that the explanations should be aligned with our
knowledge to be trustable, especially for real-world deployment in the healthcare domain. How-
ever, current deployments with interpretability methods mainly focus only on helping to debug
the model for engineers, but not the real-world use for end users [Bhatt et al., 2020b]. The
appropriate interpretability methods should be selected and evaluated both to help model devel-
opers (data scientists and machine learning practitioners) understand how their models behave,
and to assist clinicians to understand the rationale for model predictions for decision making.

For model developers, researchers evaluate their use of interpretability methods with differ-
ent levels of model transparency (generalized additive models (GAMs) and SHAP), from both
quantitative (machine-learned interpretability) and qualitative (visualization) perspectives using
interviews and surveys [Kaur et al., 2020]. The results, however, show that developers usually
over-trust the methods and this may lead to their misuse, especially over-relying on their “think-
ing fast (system 1)” [Kahneman, 2011] since the good visualization may sway human thought,
but may not fully explain the behavior of the system and may be incorrectly interpreted by de-
velopers. Moreover, visualization sometimes is not able to be fully understood and interpreted
correctly by the model developers. The authors point out that developers usually just focus on
superficial values for model debugging instead of using explanations to dig deeper into data or
model problems. They also enumerate the common issues faced by developers, which include
missing values, data change over time, data duplication, redundant features, ad-hoc categoriza-
tion, and difficulties of debugging the methods based on explanations. The developers are also
shown to be biased toward model deployment even after recognizing suspicious aspects of the
models.

From a clinical perspective, it is necessary and critical to have clinically relevant features that
align with medical knowledge and clinical practice [Caruana et al., 2015], while under-performing
models may still be acceptable as long as the errors are explainable. In [Tonekaboni et al., 2019b],
the authors survey clinicians in the ICU and emergency department to understand the clinicians’
need for explanation, which is mainly to justify their clinical decision-making to patients and
colleagues.

Depending on the problem scope, different levels of interpretability may be considered by clin-
icians. [Elshawi et al., 2019] conduct a case study of the hypertension risk prediction problem
using the random forest algorithm and explore the important factors with different model-agnostic
interpretability techniques at either global or local-level interpretation. They find that different
interpretability methods in general provide insights from different perspectives to assist clinicians
to have a better understanding of the model behavior depending on clinical applications. Global
methods can generalize over the whole cohort while local methods show the explanation for spe-
cific instances. Thus, applications such as the hypertension risk prediction problem may focus
on global risk factors derived from either global interpretability methods, mainly non-DL based
techniques such as feature importance and partial dependence plot, or the aggregation of local
explainers (e.g. SHAP, LIME) [Elshawi et al., 2019], while disease progression prediction requires
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integrated interpretations at local, cohort-specific and global levels [Ahmad et al., 2018].

However, different interpretability methods may yield a different subset of clinically relevant
important features due to their ways to obtain feature importance. For instance, SHAP, coeffi-
cient of regression models, and permutation-based feature importance may provide completely
different interpretations even if they are all at the global level. With some clinical examples,
researchers found that the local interpretation methods (LIME and SHAP) of the correctly
predicted samples are in general intuitive and follow common patterns, yet for the incorrectly
predicted cases (either false positive or false negative cases), these local methods can be less
consistent and more difficult to interpret [Elshawi et al., 2019]. Nevertheless, the users may
not be aware of the assumption of using the model and how it makes the decision: e.g., the
additivity assumption of the SHAP algorithm. Interpretability can be quite subjective, and the
computerized techniques for producing interpretations lack the interactivity that is often crucial
when one human expert is trying to convince another [Lahav et al., 2018].

Studies also show shortcomings of some interpretability methods while adopting them for real-
world clinical settings [Tonekaboni et al., 2019b, Elshawi et al., 2019]. For example, the complex
correlation between features in feature importance-based methods, the weak correlation between
feature importance and learned attention weights for recurrent neural encoders [Jain and Wallace,
2019], and the trade-off between performance and explainability for rule-based methods, are all
potential problems of using global interpretability methods [Tonekaboni et al., 2019b]. For local
interpretability methods, researchers also show that clinicians can easily conclude the explanation
at the feature-level using LIME, but the main problem is that the LIME explanation can be quite
unstable, where patients with similar patterns may have very different interpretations [Elshawi
et al., 2019]. Instead, the advantage of the Shapley value interpretation method is that it
makes the instance prediction considering all feature values of the instance, and therefore the
patients with similar feature values will also have similar interpretations [Elshawi et al., 2019].
But the cons of Shapley value-based methods are that they can be computationally expensive
and that they need to access the training data while building model explainers [Lundberg and
Lee, 2017, Janzing et al., 2020].

It is not trivial to select appropriate interpretability methods for real-world healthcare applications.
Researchers therefore provide a list of metrics, including identity, stability, separability, similarity,
time, bias detection and trust, to evaluate different interpretability methods when considering
real-world deployment [ElShawi et al., 2020]. However, they find that there is no consistent
winning method for all metrics across various interpretability methods, such as LIME, SHAP and
Anchors. Thus, it is essential to make a clear plan and think more about the clinical application
and interpretability focus in order to select the reasonable and effective interpretability methods
and metrics for real-world use.

To further achieve the potential clinical impact of deployed models, we should not only focus on
advancing machine learning techniques, but also need to consider human-computer interaction
(HCI), which investigates complex systems from the user viewpoint, and propose better designs
to bridge the gap between users and machines. End users’ involvement in the design of machine
learning tools is also critical to understand the skills and real needs of end users and how they
will utilize the model outputs [Ahmad et al., 2018, Feng and Boyd-Graber, 2019]. [Kaur et al.,
2020] suggest that it may be beneficial to design interpretability tools that allow back-and-forth
communication (human-in-the-loop) to make interpretability a bidirectional exploration, and also
to build tools that can activate thinking via “system 2” for deeper reasoning [Kahneman, 2011].
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4.3 Benchmarking Interpretation Methods
Now we have many different kinds of interpretation methods to choose when we want to analyze
a neural model, although they are still in need of further improvement. At the current state of
the art, which method we should choose still does not have a definite answer. The choice of
the right interpretation method should depend on the specific model type we want to interpret;
however, such a detailed and comprehensive guideline for all kinds of models to be analyzed is
currently not available. Several recent studies started to look into this problem by benchmarking
some popularly used interpretation methods applied to some neural models such as CNN, RNN,
and transformer. For example, [Arras et al., 2019] first use four interpretation methods, namely
LRP, Gradient*Input, occlusion-based explanation [Li et al., 2016], and CD [Murdoch et al.,
2018], to obtain the relevance scores of each word in the text for the LSTM model for text
classification tasks, and then measure the change of accuracy after removing two or three words
in decreasing order of their relevance. By comparing the percentage of accuracy decrement,
they observe that LRP and CD perform on-par with the occlusion-based relevance, with near
100% accuracy change, followed by Gradient*Input which leads to only 66% accuracy change.
This experiment indicates that LRP, CD, and occlusion-based methods can better identify the
most relevant words than Gradient*Input. As a counterpart, [Ismail et al., 2020] argue that one
should not compare interpretation methods solely on the loss of accuracy after masking since
the removal of two or three features may not be sufficient for the model to behave incorrectly.
Instead, they choose to measure the precision and recall of features identified as salient by
comparing against ground truth important features and report the weighted precision and recall
as the benchmarking metric. However, their annotations of which features are important are
synthesized rather than collected by human annotation, which is not that convincing. In a more
theoretical way, [Bhatt et al., 2020a] propose several equations as quantitative evaluation criteria
to measure and compare the sensitivity, faithfulness, and complexity of feature-based explanation
methods.

Through these benchmarking evaluations, we find that different interpretation methods may vary
a lot in their advantages and disadvantages. To make use of this fact, some studies propose to
aggregate two kinds of interpretation methods so that they can complement each other [Ismail
et al., 2020]. For instance, [Bhatt et al., 2020a] develop an aggregation scheme for learning
combinations of various explanation functions, and devise schemes to learn explanations with
lower complexity and lower sensitivity. We hope to see more efforts along this direction to
generalize such an aggregation scheme to a broader range of interpretation methods.

5 Conclusion
In this review, we provided a broad overview of interpretation methods for interpreting the black-
box DL models deployed for healthcare problems. We started by summarizing the methodologies
of seven classes of interpretation methods in Section 2. Then we proceeded to discuss how these
methods, which were initially proposed for general domain applications, are adapted for solving
healthcare problem in Section 3. Finally in Section 4, we continued discussing three important
aspects in the process of applying these interpretation methods to medical/clinical problems:
1. Are these interpretation methods model agnostic? 2. How good are their credibility and
trustworthiness? 3. How to compare the performance of the methods so as to choose the most
appropriate one for use? We hope these summaries and discussions can throw some light onto
the field of explainable DL in healthcare and help healthcare researchers and clinical practitioners
build both high-performing and explainable models.
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Abbreviation Full Form

A2C Advantage Actor Critic
AI Artificial Intelligence
BIRADS Breast Imaging Reporting And Data System
CAGE Commonsense Auto-Generated Explanations
CAM Class Activation Mapping
CD Contextual Decomposition
CDEP Contextual Decomposition Explanation Penalization
CNN Convolutional Neural Network
CT Computed Tomography
DASP Deep Approximate Shapley Propagation
DDQN Double Deep Q Network
DL Deep Learning
DNN Deep Neural Network
DQN Deep Q Network
EEG Electroencephalography
EF Explainable Factor
EHR Electronic Health Record
EU European Union
FGSM Fast Gradient Sign Method
GAM Generalized Additive Models
GAN Generative Adversarial Network
GDPR General Data Protection Regulation
GEF Generative Explanation Framework
HCI Human-Computer Interaction
HSCNN Hierarchical Semantic Convolutional Neural Network
ICU Intensive Care Unit
ISIC International Skin Imaging Collaboration
JSMA Jacobian-based Saliency Map Attack
L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno
L2X Learning to Explain
LIME Local Interpretable Model-agnostic Explanations
LRP Layer-wise Relevance Propagation
LSTM Long Short-Term Memory
ML Machine Learning
MRI Magnetic Resonance Imaging
MRT Minimum Risk Training
NLP Natural Language Processing
PGD Projected Gradient Descent
PPO Proximal Policy Optimization
QA Question Answering
ReLU Rectified Linear Unit
RETAIN Reverse Time Attention Model
RNN Recurrent Neural Network
SHAP Shapley Additive Explanations
SHS Smart Healthcare Systems
SISTA Sequential Iterative Soft-Thresholding Algorithm

Table 2: Glossary of abbreviations and acronyms.
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