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ON THE DEGENERATION OF ASYMPTOTICALLY CONICAL

CALABI-YAU METRICS

TRISTAN C. COLLINS, BIN GUO, AND FREID TONG

Abstract. We study the degenerations of asymptotically conical Ricci-flat Kähler met-
rics as the Kähler class degenerates to a semi-positive class. We show that under appropri-
ate assumptions, the Ricci-flat Kähler metrics converge to a incomplete smooth Ricci-flat
Kähler metric away from a compact subvariety. As a consequence, we construct singular
Calabi-Yau metrics with asymptotically conical behaviour at infinity on certain quasi-
projective varieties and we show that the metric geometry of these singular metrics are
homeomorphic to the topology of the singular variety. Finally, we will apply our results to
study several classes of examples of geometric transitions between Calabi-Yau manifolds.

1. Introduction

Following Yau’s resolution of the Calabi Conjecture [63] the study of Ricci-flat Kähler
metrics has played a central role in geometric analysis. Subsequently, motivated by ques-
tions in differential geometry, mathematical physics, and algebraic geometry there has been
a great deal of interest in extensions of Yau’s theorem to the complete, non-compact setting
[53, 54, 18, 31, 32, 61, 62, 28, 15, 16, 17, 35, 25, 2, 3], the degeneration of Calabi-Yau metrics
(see, for example, the surveys [57, 56, 58] and the references there in), and the existence
of Calabi-Yau metrics on singular spaces (see for example [24, 51]). In this paper we initi-
ate the study of degenerations of non-compact Calabi-Yau manifolds, and the existence of
Calabi-Yau metrics on certain non-compact singular varieties.

In the compact setting, a special class of Calabi-Yau degenerations are obtained by
degenerating the Kähler class. More precisely, fix a compact Calabi-Yau manifold X, and
let K ⊂ H1,1(X,R) denote the Kähler cone, consisting of all (1, 1) cohomology classes
admitting a Kähler representative; K is an open convex cone in H1,1(X,R). For each
class [ω] ∈ K, Yau’s theorem [63] yields the existence of a unique Ricci-flat Kähler metric
ωCY ∈ [ω]. Choose a family of Kähler classes [ωt] ∈ K, t ∈ (0, 1] such that [ωt] → [α] ∈ ∂K
as t→ 0. We are interested in understanding the geometry of (X,ωt,CY ) as t→ 0. Roughly
speaking this question can be divided into two cases; the collapsing case, when

∫
X α

n = 0,

and the non-collapsing case, when
∫
X α

n > 0. The non-collapsing case, is reasonably well
understood, thanks to work of Tosatti [59] and the first author and Tosatti [13].

One way to construct a non-collapsed family of Calabi-Yau manifolds is as follows;
suppose X0 is a normal, Gorenstein, projective variety with KX0 trivial. Suppose that
π : X → X0 is a crepant resolution of singularities, and let [α] = π∗[ω0] for some Kähler
class [ω0] onX0. A family of Kähler classes onX converging to [α] gives rise to non-collapsed
family of Calabi-Yau metrics. In this case, the results of [13] say that the Calabi-Yau metrics
ωt,CY converge in C∞

loc(X\Exc(π)), to an incomplete metric ω0,CY and (X,ωt,CY ) Gromov-

Hausdorff converge to the completion (X\Exc(π), ω0,CY ). ω0,CY descends to a Ricci-flat
metric on Xreg

0 , and one can ask whether the metric geometry of ω0,CY is related to the
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geometry of the X0. In this case, assuming that [α] ∈ H1,1(X,Q), Song [51], proved that

(X\Exc(π), ω0,CY ) = (Xreg
0 , ω0,CY ) is homeomorphic to X0. In particular, this yields the

existence of a natural Calabi-Yau metric on the singular variety X0.
In this paper we study degenerations of Calabi-Yau metrics on complete non-compact

Calabi-Yau manifolds asymptotic to a cone. Complete, non-compact Calabi-Yau manifolds
were first constructed by Tian-Yau in [53, 54], and a plethora of examples are now known to
exist. A particular subset of these are Calabi-Yau manifolds which are asymptotic to a cone
at infinity, these are sometimes called asymptotically conical Calabi-Yau manifolds. Conical
Calabi-Yau manifolds are of fundamental importance, since they arise as blow-up limits at
the singular points in the limit of a non-collapsing family of Kähler-Einstein manifolds (or
more generally Kähler manifolds with bounded Ricci curvature). The conical asymptotics
should be regarded here as akin to the non-collapsing condition in the setting of compact
Calabi-Yau manifolds discussed above.

The first analytic construction of asymptotically conical Calabi-Yau manifolds was given
in [54] and [2, 3], and the construction has been further refined by the work of many authors,
see [32, 61, 62, 28, 15, 16, 17, 35, 25] and the references therein. One nice improvement
given by these refinements is that, in analogy with Yau’s theorem in the compact case [63],
one is able to produce an asymptotically conical Ricci-flat Kähler metric in every suitable
Kähler class on an asymptotically conical Kähler manifold X. In particular, this yields
families of degenerating asymptotically conical Ricci-flat Käher metrics, and one can then
ask what properties limits of these spaces possess.

The motivation for studying these limits is two-fold. First, there is a broad class of non-
compact examples which are expected to model the local behavior of Calabi-Yau metrics
on compact Calabi-Yau manifolds near certain singular limits. Understanding the behavior
of these “local” models through singular transitions will help to sharpen our understanding
of the degeneration of Ricci-flat metrics in the compact setting. Secondly, understanding
these metric limits allows us to prove the existence of asymptotically conical Calabi-Yau
metrics on singular spaces. These metrics can be viewed as interpolating between affine
varieties with conical Calabi-Yau metrics (or equivalently, Sasaki-Einstein manifolds).

Let us describe the set-up under consideration and state our main theorems. The ter-
minologies used in this section will be explained in the next section. Let (X,J, ω,Ω) be an
open Kähler manifold with trivial canonical bundle, with only one end which is asymptotic
to a Calabi-Yau cone (C, JC , ωC ,ΩC) with rate ν > 0. Consider a linear family of ν-almost

compactly supported Kähler classes [αt] = (1 − t)[α0] + t[α1] ∈ H1,1
ν (X) for t ∈ (0, 1].

Suppose [α0] satisfies the following assumption.

Assumption 1. [α0] contains a semi-positive form α0, and there exists ε0 > 0 and a
ψ ∈ PSH(X,α0) such that α0 + i∂∂̄ψ > ε0ω for some Kähler form ω on X. Furthermore,
assume that ψ is smooth away from a compact analytic subvariety V ⊂ X, and V = {ψ =
−∞}.

Remark 1. We expect that Assumption 1 essentially always applies, possibly after weak-
ening the semi-positivity assumption. In fact, in analogy with the main result of [13], we
expect that

V =
⋃

Y⊂X:
∫
Y αdimY

0 =0

Y

where the union is taken over compact, irreducible analytic subvarieties. We will prove this
in a large class of examples; see the discussion in Section 3.1.
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In [15], it is proved that for t ∈ (0, 1] there exists a unique asymptotically conical Ricci-
flat Kähler metric ωt,CY ∈ [αt] satisfying the complex Monge-Ampère equation

ωnt,CY = in
2
Ω ∧ Ω̄

Our first theorem is the following,

Theorem 1.1. Let 0 < ν < 2n and consider a linear family of ν-almost compactly supported
Kähler classes [ωt] = (1 − t)[α0] + t[ω] ∈ H1,1

ν (X,R) for t ∈ (0, 1]. Suppose [α0] satisfies
Assumption 1. Let ωt,CY be the asymptotically conical Calabi-Yau metrics in [ωt]. Then,
as t → 0, the Ricci-flat Kähler metrics ωt,CY converge in C∞

loc(X \ V ) to an incomplete
Ricci-flat Kähler metric ω0,CY on X \ V satisfying

(1.1) ωn0,CY = in
2
Ω ∧ Ω̄.

Moreover, we have

(1) ω0,CY extends across V as a positive current with locally bounded potentials and (1.1)
holds globally in the sense of Bedford-Taylor [4].

(2) ω0,CY is asymptotically conical at infinity and, outside of a compact set K ⊂ X,

ω0,CY satisfies |∇k(ω0,CY − ωC)|ωC
= O(r−ν−k), where r(x) = dist(x0, x) is the

distance to a fixed point with respect to the conical Kähler metric ωC .
(3) ω0,CY is unique in the sense that, if ω is any closed positive current in the class

[ω0,CY ] with locally bounded potentials, which is smooth on X\V , asymptotically
conical at any rate δ > 0, and satisfying (1.1) on X in the sense of Bedford-Taylor,
then ω = ω0,CY .

The reader may wish to compare this result with the analogous result in the compact
case [13, Theorem 1.6]. As discussed before, a natural way to construct examples where
Theorem 1.1 applies is to consider resolutions of singular varieties.

Theorem 1.2. Let (X0,Ω) be a normal, log-terminal, Gorenstein variety with KX0 trivial,
and suppose that X0 has compactly supported singularities and admits a crepant resolution of
singularities π : (X,Ω) → (X0,Ω). Suppose that L→ X0 is an ample line bundle on X0 (see
Section 5 for the definition of ampleness in this context). Let [α0] = π∗c1(L) ∈ H2(X,R)

and suppose that (X,J, ω,Ω) and [ωt] = (1 − t)[α0] + t[ω] ∈ H1,1
ν (X,R) is a family of

Kähler classes satisfying the same hypothesis as in Theorem 1.1. (In particular [α0] satisfies
Assumption 1) In the situation above the singular Ricci-flat current ω0,CY descends to a
Ricci-flat Kähler current on X0 and satisfies

(1) ω0,CY is a smooth Ricci-flat Kähler metric on π−1(Xreg
0 ).

(2) ω0,CY descends to a Kähler current on X0, (i.e. ω0,CY > ω for some smooth Kähler
form ω on X0)

(3) (Xreg
0 , ω0,CY ) is homeomorphic to X0.

(4) (X,ωt,CY , p) pointed Gromov-Hausdorff converges to X0 with the distance function
induced by ω0,CY .

A couple of remarks are in order concerning the assumptions of Theorem 1.2

Remark 2. (1) Theorem 1.2 requires that Assumption 1 to hold for the class [α0]. As
pointed out in Remark 1, we expect that in this situation that we can always take

V = π−1(Xsing
0 ), and we will prove this is a large number of cases in Lemma 3.3.

Although we don’t actually need to assume this for the proof of Theorem 1.2.
(2) The assumption on the existence of an ample line bundle L may seem at odds with

our discussion earlier in the introduction. In many cases where Theorem 1.2 applies,
we will take L = OX0 . This can be done, for example, when X0 is affine which is a
natural setting for studying Calabi-Yau varieties with isolated singularities.
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We apply these results to study several classes of examples. Let us briefly describe one
particular class. Consider the quasi-homogeneous affine variety

Yp,q := {xy + zp − wq = 0} ⊂ C4,

where without loss of generality we can assume p 6 q. Yp,q is normal, Gorenstein and
log-terminal, and by [12] Yp,q admits a conical Calabi-Yau metric if and only if q < 2p.
A result of Katz [33] says that the Yp,p admits p inequivalent small (and hence crepant)
resolutions resolutions µi : Y

i → Yp,p (and if p 6= q then no small resolution exists). We
therefore have the following picture

Y 1 Y 2 · · · Y p−1 Y p

Yp,p

µ1 µ2 µp−1 µp

with each pair Y i, Y j related by a flop. When p = 2, this is the well-known example of the
Atiyah flop [1]. In Section 6 we apply our results to this setting.

Corollary 1.3. Let Y i be a small resolution of the Yp,p singularity, and let ω0 denote the
Calabi-Yau metric on Yp,p. Let [ωt] := (1 − t)[α0] + t[ω] be any linear family of Kähler
classes on Y i, where [α0] ∈ H1,1(Y i,Q) is not Kähler. Then for all t > 0 there is an
asymptotically conical Calabi-Yau metric ωt,CY ∈ [ωt]. Furthermore, there is a partial

resolution µ̄i : Y → Yp,p and a map ν : Y i → Y such that the following diagram commutes

Y i Y

Yp,p

ν

µi
µ̄i

As t → 0, ωt,CY converge in C∞
loc(Y

i\Exc(ν)) to an incomplete, asymptotically conical

Calabi-Yau metric ω on Y reg and (Y i, ωt) Gromov-Hausdorff converges to (Y reg, ω) which

is homeomorphic to Y . Furthermore, if [α0] = 0 then Y = Yp,p, µ̄i is the identity, and
ω̄ = ω0 the Calabi-Yau metric on Yp,p. In particular, when [α0] = 0, for any i, j the flop
from Y i to Y j is continuous in the Gromov-Hausdorff topology in the sense that

(Y i, ·ωt,CY ) (Yp,p, ω0) (Y j , ·ωt,CY )GH GH

A second general class of examples we consider gives rise to the following specific example.
Let X be a del Pezzo surface of degree d > 2, and let X̃ = BlpX be the blow-up at a point

p ∈ X. Assume that X̃ is Fano (and if d = 8 assume that X̃ is toric). Then the canonical
cone

C := Spec
⊕

m>0

H0(X̃,−K⊗m
X̃

)

admits a conical Calabi-Yau metric [40, 52, 55, 26, 12]. Then we prove

Corollary 1.4. In the above setting, there is an asymptotically conical Calabi-Yau metric
on the relative spectrum Z := Spec (KX ⊗mp) which is asymptotic at infinity to the conical
Calabi-Yau metric on C.

The metric on Z is constructed as a limit of asymptotically conical Calabi-Yau metrics
on a small resolution, and we again obtain a Gromov-Hausdorff covergence statement; see
Section 6 for a complete discussion.

We will explain a speculative picture in which that space Z can be viewed as a cobordism
between Sasakian manifolds; in this case, the link of the A1 singularity (topologically S2 ×



ON THE DEGENERATION OF ASYMPTOTICALLY CONICAL CALABI-YAU METRICS 5

S3) and the link of the cone C (topologically #(9− d+1)S2 ×S3). The Calabi-Yau metric
on Z upgrades this to a cobordism of Sasaki-Einstein manifolds. In this picture the volume
of the geodesic spheres can be viewed as a sort of Morse function.

The examples above all come from (partial-)resolutions of Calabi-Yau cones. Our theo-
rem can also yield examples where the complex structure at ∞ is not biholomorphic to the
asymptotic cone.

Let X be an asymptotically conical Calabi-Yau manifold, then by [29], there exist a
normal Stein space Y with finitely many isolated singularities and there is a holomorphic
map π : X → Y with connected fibers, is an biholomorphim outside the singularities of Y
and π⋆OY = OX . The map π contracts the maximal compact analytic subset of X and Y
is called the Remmert reduction of X. Since Y is a Stein space, it properly embeds into
CN for some N sufficiently large. The singularities of Y are rational [15, Theorem A.2],
and hence Cohen-Macaulay, and since KX is trivial and Y is normal, it follows that KY is
trivial and Y is Gorenstein. Hence π is a crepant resolution of Y .

Corollary 1.5. Assuming Assumption 1 holds for [α0] = 0, applying our theorem with
[α0] = 0 ∈ H2(X,R), ω0,CY descends to a singular CY current on Y and the AC Calabi-Yau
metrics ωt,CY in the classes t[ω] ∈ H2(X,R) Gromov-Hausdorff coverge to the Remmert
reduction Y .

The outline of this paper is as follows. In Section 2 we discuss some basic properties of
asymptotically conical Kähler manifolds, and state two main propositions (Propositions 2.5,
and 2.6). We give the proof of Theorem 1.1 assuming these two propositions. In Section 3
we discuss the construction of good background metrics, and prove Proposition 2.5. In
Section 4 we prove some a priori estimates and deduce Proposition 2.6, completing the
proof of Theorem 1.1. In Section 5 we use L2 estimates to prove Theorem 1.2. Finally, in
Section 6 we explain examples where Theorems 1.1 and 1.2 are applicable, and discuss a
speculative Morse theoretic picture.

Acknowledgements:. The authors are grateful to D. H. Phong for his interest and
encouragement. The authors are also grateful to R. Conlon and H.-J. Hein for explaining
aspects of their papers [15, 16, 17].

2. Preliminaries

2.1. Asymptotically conical Kähler manifolds. We quote here some basic definitions
and an existence theorem for asymptotically conical Calabi Yau metrics from [15].

Definition 2.1. (A) An open Kähler cone (C, JC , ωC , gC) is a Riemannian cone (C, gC )
with smooth link L that is additionally equipped with a complex structure JC such
that the Kähler form is ωC = i∂∂̄r2C where rC is the distance function from the tip
of the cone.

(B) A Calabi-Yau cone (C, JC , ωC , gC ,ΩC) is a Kähler cone with an additional holomor-

phic volume form ΩC such that ωnC = in
2
ΩC ∧ Ω̄C .

Definition 2.2. (A) A Kähler manifold (X,J, g, ω) is called asymptotically conical if
there exist a Kähler cone (C, JC , gC , ωC) and a diffeomorphism Φ : C \ BR(o) →
X \K for some K ⊂⊂ X and o is the vertex of the cone C, and ν > 0 such that
the following hold

|∇k(Φ∗J − JC)|gC+|∇k(Φ∗ω − ωC)|gC= O(r−ν−kC ), ∀k ∈ N

where the covariant derivatives are taken with respect to gC . We say that X as-
ymptotic to C with rate ν.
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(B) We say that an open Calabi-Yau manifold (X,J, ω,Ω) is asymptotic to the Calabi-
Yau cone (C, JC , ωC ,ΩC) with rate ν if (X,J, g, ω) is asymptotic to the Kähler cone
(C, JC , gC , ωC) with rate ν, and, in addition

|∇k(Φ∗Ω− ΩC)|gC= O(r−ν−kC )

Remark 3. (1) On any asymptotically conical Kähler manifold, we can always find a
smooth function r : X → R>0 satisfying r = rC · Φ−1 away from some compact
set K where rC is the radial distance on the cone C, and furthermore, r satisfies:
|∇r|+r|∇2r|6 C. We will call such an r a radius function.

(2) In fact, it is shown in [15, Lemma 2.14] that Φ∗J − JC always decays at the same
rate as Φ∗Ω− ΩC , so it suffices just to assume |∇k(Φ∗Ω− ΩC)|gC= O(r−ν−k).

(3) We will often say (X,J, g, ω) is an asymptotically conical Kähler manifold if it is
asymptotic to some Kähler cone (C, JC , gC , ωC) at some rate ν > 0 by some map
Φ. We will therefore often suppress the map Φ, with the understanding that all
asymptotics are measured with respect to the diffeomorphism Φ. Furthermore,
when Φ is implicit, we will often abuse notation and write ωC , JC ,ΩC in place of
Φ−1)∗ωC , (Φ

−1)∗JC , (Φ
−1)∗ΩC .

(4) On an asymptotically conical Kähler manifold with rate ν we will often refer to a
(1, 1) form α being asymptotically conical. By this we mean that there is a compact
setK such that, onX\K the form α defines an asymptotically conical Kähler metric
with rate ν.

We now quote a versions of the ∂∂̄-lemma which hold on asymptotically conical Calabi-
Yau manifolds, see [15] for a proof.

Proposition 2.1 (∂∂̄-lemma, [15], Corollary A.3). Suppose X is an asymptotically conical
Kähler manifold with trivial canonical bundle, then

(1) If α is an exact real (1, 1)-form on X, then α = i∂∂̄u for some smooth function u.
(2) If dimCX > 2, then if α is an exact real (1, 1)-form on X \ K for some compact

subset K, then there exist a compact set K ′ containing K such that α = i∂∂̄u on
X \K ′.

2.2. Kähler classes on AC Kähler manifolds. We recall the definition of a ν-almost
compactly supported class, this is defined in [15], but our definition is slightly different.

Definition 2.3. Let X be an asymptotically conical Kähler manifold, then for any class
[α] ∈ H2(X,R), we say that

(1) [α] is a Kähler class if it contains a positive real (1, 1)-form α > 0
(2) [α] is a ν-almost compactly supported class if it contains a real (1, 1)-form ξ satis-

fying |∇kξ|= O(r−ν−k)

and we will denote the set of all ν-almost compactly supported classes by H1,1
ν (X).

Remark 4. Definition 2.3 is slightly more restrictive than the definition given in [15] where
it is only required that the form ξ be defined away from a compact set. But by the second
part of Proposition 2.1, the condition in [15] implies our condition in the case when X has
trivial canonical bundle and dimCX > 2.

In [15], it is shown that if [α] is a ν-almost compactly supported and Kähler, then one
can always construct an asymptotically conical Kähler form ω ∈ [α] with |∇k(ω − ωC)|=
O(r−ν−k). We will recall this construction below in Section 3.
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2.3. Weighted Hölder spaces and solvability of Poisson’s equation. Let us recall
some useful Holder spaces defined on asymptotically conical manifolds and some basic
theorems regarding the solvability of Poisson equations, which will be useful for us later
on. For a detailed treatment of these material, see [38, 39].

Definition 2.4. Let X be a AC Kähler manifold as above.

(1) We define the Ck,α−γ (X) norm of a function as follows

‖u‖
Ck,α

−γ
=

k∑

j=0

sup
X

|rγ+j∇ju|+[∇ku]Cα
−γ−k−α

where r is a radius function and

[∇ku]Cα
−γ−k−α

= sup
x 6=y,d(x,y)6δ

[
min(r(x), r(y))γ+k+α

|∇ku(x)−∇ku(y)|
|d(x, y)|α

]

where δ > 0 is the convexity radius of X (i.e. balls of radius less than δ are convex),
and |∇ku(x)−∇ku(y)| is defined by parallel transporting ∇ku(x) along the minimal
geodesic from x to y.

(2) We define C∞
−γ(X) to be the intersection of Ck,α−γ (X) over all k > 0.

(3) We will also often use the following space C∞
−γ(X \ V ), which we define to be the

space of functions u ∈ C∞
loc(X \V ) such that (1−χ)u ∈ C∞

−γ(X), where χ is a cutoff
function with compact support that is equal to 1 in a neighborhood of V . Where
V is the compact analytic subset coming from Assumption 1.

With these definitions, we now recall a quantitative version of the ∂∂-Lemma for asymp-
totically conical Kähler manifolds with non-negative Ricci curvature, which is proved in
[15].

Proposition 2.2 (Quantitative ∂∂̄-lemma, [15], Theorem 3.11). Suppose X is an asymp-
totically conical Kähler manifold with Ric > 0, then there exist ε0 > 0, such that for any η
an exact (1, 1)-form with η ∈ C∞

−ε(X) for 0 < ε < ε0, then η = i∂∂̄u for u ∈ C∞
2−ε.

Now we wish to recall some Fredholm theory in the spaces Ck,α−γ (X), which is a Banach
space with the norm ‖·‖

Ck,α
−γ

defined above. In this setting, the Laplace operator ∆ :

Ck+2,α
−γ+2 (X) → Ck,α−γ (X) is a bounded map of Banach spaces, and there is a well-developed

Fredholm theory for these spaces on an asymptotically conical manifold (see, e.g. [39]),
which we summarize below.

Definition 2.5. Let (C, gC ) be a Riemannian cone of real dimension n over a smooth
compact manifold Ln−1, then we denote the set of exceptional weights of the cone C,

P =

{
−n− 2

2
±
√

(n− 2)2

4
+ λ : λ is an eigenvalue of ∆Ln−1

}
.

These correspond to the growth rates of homogenous harmonic functions on the cone
(C, gC).

The following theorem summarizes Fredholm theory on an asymptotically conical mani-
fold

Theorem 2.3 ([39], Theorem 6.10). Suppose (X, g) is an asymptotically conical Kähler
manifold of dimension 2n. Consider the mapping

(2.1) ∆ : Ck+2,α
−γ (X) → Ck,α−γ−2(X)

and let P be the set of exceptional weights of the asymptotic cone (C, gC). Then:
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(1) The operator (2.1) Fredholm if −γ /∈ P .
(2) The operator (2.1) is surjective if −γ ∈ (2− 2n,∞) \ P
(3) The operator (2.1) is injective if −γ ∈ (−∞, 0) \ P

Remark 5. We note that P ∩ (2 − 2n, 0) = ∅, hence (2.1) is an isomorphism for all −γ ∈
(2− 2n, 0).

Now we state a general theorem regarding the solvability of the complex Monge-Ampère
equation on an asymptotically conical Kähler manifold, which is proved in [15].

Theorem 2.4 ([15], Theorem 2.4). Let (X,J, ω) be a open Kähler manifold asymptotic
to a Kähler cone (C, JC , ωC) with rate ν > 0, and suppose f ∈ C∞

−γ−2(X), then following
Complex Monge-Ampere equation then admits a solution

(ω + i∂∂̄ϕ)n = efωn

with ωϕ = ω + i∂∂̄ϕ > 0 and

(1) If γ + 2 > 2n, then we can take ϕ ∈ C∞
2−2n and ϕ is the unique solution in C∞

2−2n.
(2) If γ + 2 ∈ (2, 2n) then we can take ϕ ∈ C∞

−γ and ϕ is the unique solution in C∞
−γ .

(3) If γ + 2 ∈ (0, 2) and −γ is not an exceptional weight, we can take ϕ ∈ C∞
−γ.

2.4. Proof of Theorem 1.1. We breakdown the proof of Theorem 1.1 in the following
two propositions, and we will give the proof of Theorem 1.1 assuming these results. We
will prove Proposition 2.5 in Section 3 and Proposition 2.6 in Section 4. Theorem 1.2 will
be proved in section 5.

Proposition 2.5 (Constructing background metrics). Suppose ν > 0, and let (X,J, ω,Ω) be
an asymptotic to a Calabi-Yau cone (C, JC , ωC ,ΩC) with rate ν. Suppose that −ν ∈ (−2n, 0)

and −ν + 2 is not an exceptional weight. Suppose [αt] = (1 − t)[α0] + t[α1] ∈ H1,1
ν (X) is

a linear family of Kähler classes in H1,1
ν for t ∈ (0, 1], and suppose that [α0] ∈ H1,1

ν has
a semi-positive representative α0. Then there exists ε > 0, a compact set K ⊂ X and a
smooth family of real (1, 1)-forms ω̂t ∈ [αt] for t ∈ [0, ε] satisfying the following:

(1) ω̂t > 0 for all t ∈ (0, ε].
(2) ω̂0 > 0 and ω̂0 = α0 on a compact set K ⊂⊂ X. (In fact, we can choose this

compact set K to be as large as we like)
(3) On X\K there holds |∇k(ω̂t − ωC)|gC6 Cr−ν−k for all t ∈ [0, ε] for a constant C

independent of t.

(4) There exist γ > 0 such that, on X\K the Ricci potentials ft = log in
2
Ω∧Ω̄
ω̂n
t

satisfy

the asymptotics |∇kft|6 Cr−γ−2−k uniformly in t.

Proposition 2.6 (A priori estimates). Let (X,J, ω,Ω) be asymptotic to a Calabi-Yau cone

(C, JC , ωC ,ΩC) with rate ν > 0, and H1,1
ν (X) ∋ [αt] = (1 − t)[α0] + t[α1] is a linear

family of Kähler classes for t ∈ (0, 1] satisfying Assumption 1, and let ω̂t ∈ [αt] be the
forms constructed in Proposition 2.5. Let ϕt be the solution of the complex Monge-Ampère
equations

(2.2) (ω̂t + i∂∂̄ϕt)
n = eftω̂nt (= in

2
Ω ∧ Ω̄)

obtained from Theorem 2.4. Then the following estimates hold uniformly in t

(1) |ϕt|6 C.
(2) ϕt is uniformly bounded in C∞

loc(X \ V ).
(3) There exist a compact subset K ⊂ X containing V such that the following estimate

hold outside of K
|∇kϕt|6 Cr−γ−k

for C independent of t.
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Now we prove Theorem 1.1 given the above two propositions

Proof of Theorem 1.1. Let [αt] = (1−t)[α]+t[εω], then by Proposition 2.5, we can construct
a sequence of background metrics ω̂t ∈ [αt] satisfying the properties stated in the Propo-
sition. Then using these as background metrics, we can write down a family of complex
Monge-Ampere equations

(ω̂t + i∂∂̄ϕt)
n = eftω̂nt (= in

2
Ω ∧ Ω̄)

then by the Theorem 2.4, the equations are solvable for t > 0, and Proposition 2.6 applies
to the family of solutions ϕt. Once we have the a priori estimate, it’s then clear that by
taking a subsequence, we can take a limit ϕti → ϕ0 in C∞

loc(X \ V ), which satisfies the
equation

(2.3) (ω̂0 + i∂∂̄ϕ0)
n = in

2
Ω ∧ Ω̄

smoothly away from the analytic set V . Moreover, ϕ0 is a bounded by the uniform C0

estimate of ϕt, hence ω̂0+i∂∂̄ϕ0 extends as a non-negative current on X by [30], and it does
not charge any analytic subsets, so the equation (2.3) holds globally. From Proposition 2.5
(2), and Proposition 2.6 (3), we see that ωϕ0 is asymptotically conical. It only remains
to establish the incompleteness and uniqueness statements of ωϕ0 in Theorem 1.1. The
incompleteness of ωϕ0 follows from the diameter bound in Lemma 4.14, while the uniqueness
is established in Theorem 4.15 �

3. Background metrics

The goal of this section is to prove Proposition 2.5, which constructs a family of “good”
background metrics ω̂t ∈ [αt] whose Ricci potentials decay faster than quadratically. Indeed,
it is easy to construct ωt ∈ [αt] satisfying only the first two conditions of Proposition 2.5.
However, the proof of the a priori estimates of Proposition 2.6 depends crucially on the
additional decay of the Ricci potentials. This idea is used in [15] (see also [14, Prop.
4.2.6]).

From now on we fix an open Calabi-Yau manifold (X,J,Ω) asymptotic to some Calabi-
Yau cone (C, JC ,ΩC , ωC , gC) at rate ν > 0. In the following proposition, we summarize
a construction of asymptotically conical Kähler (semipositive) forms in almost compactly
support classes, which is based on [15].

Proposition 3.1. Suppose [α] ∈ H1,1
ν (X) contains a (semi-)positive form α, then there

exist a (semi-)positive form ω ∈ [α] which agrees with α in a compact set K and satisfies
the asymptotics |∇k(ω − ωC)|= O(r−ν−k) for r ≫ 1.

Proof. This follows from construction in [15, Theorem 2.4].
�

Proposition 3.2. Suppose that (X,J,Ω, ωt, gt)t∈[0,1] are a smooth family of data which
is asymptotic to the cone (C, JC ,ΩC , ωC , gC) at the rate −ν ∈ (−2, 0). Suppose that for
t ∈ (0, 1], ωt are asymptotically conical Kähler metrics and ω0 is asymptotically conical
and semi-positive (1, 1) form. Let ft, t ∈ [0, 1] be the Ricci potentials of ωt, defined by

eft = in
2
Ω∧Ω̄
ωn
t

, and suppose there is a compact set K ⊂ X so that on X\K, ft satisfy the

following asymptotics:

(1) |ft|6 Cr−β

(2) |∇kft|gC6 Cr−β−k

where C is independent of t and ν 6 β < 2n− 2 and −β + 2 is not an exceptional weight.
Then there exist ε > 0 and a family of functions ut for t ∈ [0, ε] such that the following

are satisfied
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(1) There exist a compact subset K ⊂ X such that supp(ut) ⊂ X \K
(2) ωt + i∂∂̄ut > 0 on supp(ut)
(3) |∇kut|gC6 Cr−β+2−k

(4) |∇k ∂ut
∂t |gC6 Cr−β+2−k

(5) Away from a compact set K, we have

(ωt + i∂∂̄ut)
n = eft−f

′
tωnt = e−f

′
t in

2
Ω ∧ Ω̄

where |∇kf
′

t |6 Cr−2β−k outside a compact set K.

where the constant C is independent of t. In particular, this means if we set ω′
t = ωt+i∂∂̄ut,

then ω′
t converges to ωC at the same rate as ωt, but the Ricci potentials f ′t of ω

′
t decays a

rate of −2β.

Proof. We can essentially follow the same procedure as in [15, Lemma 2.12]. First we want
to solve the equation

∆ωt ût = 2ft

for t > 0, away from a compact set while controlling of the growth of the solutions.
We now fix a standard cutoff function χ : R → R with

χ(x) =

{
0 for x 6 1

1 for x > 2

and satisfy 0 6 χ 6 1, |χ′|6 2, |χ′′|6 5. Then we define ζR : X → R by setting ζR(x) =

χ( r(x)R ), and let ĝ be any metric on X. Then set

ḡt = (1− ζR)ĝ + gt

Since ω0 is semi-positive and asymptotically conical we can choose R sufficiently large so
that ḡ0 is an asymptotically conical Riemannian metric. Then for all t ∈ [0, 1], gt defines
a background metric and for t ∈ (0, 1], this metric is equal to the ωt away from a compact
set.

If −β + 2 is not an exceptional weight, then ∆ḡt : C
∞
−β+2 → C∞

−β is surjective by Theo-
rem 2.3, so we can always solve the equation

∆ḡt ût = 2ζRft

for ût ∈ C∞
−β+2. In fact, by the Implicit Function Theorem [22, Proposition 4.2.19], we can

find a family of smoothly varying solutions for t ∈ [0, ε), and such that following bounds
hold uniformly for small t.

(1) |∇kût|6 Cr−β+2−k

(2) |∇k ∂ût
∂t |6 Cr−β+2−k

If we set ut = ζS ût then ut is supported on supp(ζS), and then we have

|i∂∂̄ut| 6 |ζS ||∂∂̄ût|+|ût||∂∂̄ζS |+2|∂ζS ||∂ut|
6 CζSr

−β + Cr−β+2|∂∂̄ζS |+Cr−β+1|∇ζS |
6 Cr−β(ζS + r|∇ζS|+r2|i∂∂̄ζS|)
6 Cr−β(ζS + S|∇ζS|+S2|i∂∂̄ζS|)

but since ζS(x) = χ( r(x)S ), we see that

|∇ζS|= S−1|χ′∇r|6 CS−1

and

|i∂∂̄ζS|6 S−2|χ′′||∇r|2+|χ′|S−1|i∂∂̄r|6 CS−2



ON THE DEGENERATION OF ASYMPTOTICALLY CONICAL CALABI-YAU METRICS 11

where we used that r|i∂∂̄r|6 C. So we have

|i∂∂̄ut|6 Cr−β(ζS + C)

and i∂∂̄ut is supported on the support of ζS . Hence for S sufficiently large, we can ensure
that ωt + i∂∂̄ut > 0 on the supp(ut).

Away from the compact set K, we have

(ωt + i∂∂̄ut)
n

ωnt
= 1 + ft +O(|i∂∂̄ut|2)

= 1 + ft +O(r−2β)

so setting f ′t = ft − log (ωt+i∂∂̄ut)n

ωn
t

, we have

(ωt + i∂∂̄ut)
n = eft−f

′
tωnt

and f ′t = ft − log(1 + ft +O(r−2β)) has the desired asymptotics. �

Remark 6. If −β + 2 is an exceptional weight, we can apply the proposition with β + ε
in place of β for ε arbitrarily small (since the exceptional weights are discrete). We can
then repeatedly apply Proposition 3.2 to improve the decay of Ricci potential for a family
of metrics until we obtain the decays we need.

The two previous propositions combined proves Proposition 2.5.

Proof of Proposition 2.5. By Proposition 3.1, we can find a semi-positive form ω0 ∈ [α0]
satisfying the asymptotics |∇k(ωC − ω0)|= O(r−ν−k) and a metric ω1 ∈ [α1] satisfying
the same asymptotics, then if we write ωt by linearly interpolating between ω0 and ω1,
then clearly ωt are positive for t > 0 and satisfy the desired asymptotics, and the Ricci
potentials ft satisfy |∇kft|6 C(1 + r)−ν−k. If ν > 2, then we can take γ = ν and we are
done, otherwise, we can apply Proposition 3.2 repeatedly to improve the asymptotics of the
Ricci potentials until they decay faster than quadratically. �

3.1. Kähler currents and Null loci in the asymptotically conical case. Before
proceeding we would like to briefly discuss Assumption 1. Recall that if (X,ω) is compact
Kähler and let K be the Kähler cone of X. Let [α] ∈ K is a nef class with

∫
X α

n > 0, then,
by results of Demailly-Păun [21] there is a function ψ : X → R ∪ {−∞} such that

α+
√
−1∂∂̄ψ > εω

for some ε > 0, ψ is smooth on the complement of an analytic subset Z, and {ψ = −∞} = Z.
Furthermore, by results of the first author and Tosatti [13] ψ can be chosen so that the
analytic subvariety Z is given by

Null(α) :=
⋃

∫
V
αdimV =0

V

where the union is taken over irreducible analyitic subvarieties V ⊂ X. We expect that a
similar result holds in the asymptotically conical setting. We make the following conjecture

Conjecture 1. Suppose [α] ∈ H1,1
ν (X,R) is a limit of ν-almost compactly support Kähler

classes. Then there is a function ψ : X → R ∪ {−∞} such that α +
√
−1∂∂̄ψ > εω for

some asymptotically conical Kähler form ω. Define

(3.1) Null(α) :=
⋃

∫
V
αdimV =0

V
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where the union is taken over all compact, irreducible, analytic subvarieties V ⊂ X. Then
Null(α) is an analytic subvariety, and ψ can be chosen so that ψ is smooth on X\Null(α)
and

{ψ = −∞} = Null(α).

At a purely moral level, the reason that non-compact analytic subvarieties should not
enter into the definition of Null(α) in the asymptotically conical setting is that, at least
when [α] admits a semi-positive representative, Proposition 3.1 yields the existence of a
form α̂ ∈ [α] which is asymptotically conical. Thus, if V is a non-compact subvariety, then∫
V α̂

dimV = +∞. Of course, this is purely moral reasoning, since the integral
∫
V α̂

dimV is
not independent of the representative of [α].

Lemma 3.3. Conjecture 1 holds when, [α] is semi-positive and the cone at infinity is
quasi-regular.

Recall that the cone (C, JC ,ΩC , ωC , gC) is quasi-regular if the holomorphic vector field

rC
∂
∂rC

−
√
−1JC

(
rC

∂
∂rC

)
integrates to define a C∗ action.

Proof. By a result of Conlon-Hein [17], building on work of Li [35], if (X,J,Ω, ω, g) is
asymptotically conical Calabi-Yau with quasi-regular Calabi-Yau cone at infinity, then there
is a complex, projective orbifold M without codimension 1 singularities, and a orbidivisor
D with positive normal orbibundle such that M = X ∪ D, and −KM = q[D] for some
q > 1. Furthermore, every Kähler form on X is cohomologous to the restriction of a
Kähler form on M , and the restriction map H1,1(M) → H2(X) is surjective. Let [ωt] =
(1 − t)[α0] + t[ω0] ∈ H1,1(X) be a family of ν-almost compactly supported Kähler classes
for t ∈ (0, 1] such that [α0] is semi-positive. In fact, according to [15, Proposition 2.5]
all Kähler classes on X are 2-almost compactly supported, so the assumption of almost
compact support can be dropped. Let [ω̂], [α̂0] ∈ H1,1(M) be such that [ω̂] is Kähler, and
[ω̂]|X = [ω0], [α̂0]|X = [α0]. Since α0 is semi-positive, and D has positive normal bundle,
the argument in the proof of [17, Theorem A] shows that we can find a constant C > 0 so
that [α̂0] +C[D] is semi-positive, and positive in a neighborhood of D. Furthermore, since
D|D is positive, after possibly increasing C we can assume that

∫

M
([α̂0] + C[D])n > 0

Let π : M → M be a resolution of singularities, obtained by blowing up smooth centers.
Since X is smooth, and M has only codimension 2 singularities, we can assume that π|X is
an isomorphism, and that π is an isomorphism at the generic point of D. Let E denote the
exceptional divisor of π, and let D̄ = π−1(D) be the total transform of D. Now we have

π∗[α̂0] + C[D̄]

is nef, and big by Demailly-Păun [21]. By the results of [21] and the first author and
Tosatti [13] there is a Kähler current in π∗[α̂0] +C[D̄] which is smooth on the complement
of Null(π∗[α̂0] + C[D̄]). Let Y ⊂ M̄ be an irreducible analytic subvariety of dimension
p > 0. If Y ∩ π−1(D) = ∅, then

∫

Y
(π∗[α̂0] + C[D̄])p =

∫

π(Y )
αp0

and so Y ⊂ Null(π∗[α̂0] + C[D̄]) if and only if π(Y ) ⊂ Null([α0]). Now suppose that Y ∩
π−1(D)∩π−1(X) 6= ∅. Let α̂0+CβD+

√
−1∂∂̄u be the smooth semi-positive representative
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of [α̂0] + C[D] which is positive in a neighborhood of D. Then, since π is an isomorphism
at the generic point of Y we have
∫

Y
(π∗[α̂0]+C[D̄])p =

∫

Y \(E∩Y )
[π∗(α̂0+CβD+

√
−1∂∂̄u)]p

∫

π(Y )
(α̂0+CβD+

√
−1∂∂̄u)p > 0,

where the last inequality follows from the fact that α̂0 + CβD +
√
−1∂∂̄u > 0 and there is

a neighborhood of π(Y ) ∩D where α̂0 + CβD +
√
−1∂∂̄u > 0. Thus we have

Null(π∗[α̂0] + C[D̄]) ∩ (π−1(D))c = π−1 (Null([α0])) .

Since π : M̄\π−1(D) → X is an isomorphism, the result follows.
�

4. A priori estimates

In this section, we prove Proposition 2.6. Let us first recall the general setup of the
proposition. Let (X,J, ω,Ω) be an asymptotically conical Calabi-Yau manifold which is
asymptotic to the Calabi-Yau cone (C, JC , ωC ,ΩC) with rate ν > 0, and [αt] = (1− t)[α0]+

t[α1] ∈ H1,1
ν for t ∈ [0, 1] is a family of ν-almost compactly supported classes such that [αt]

is Kähler for t > 0. Suppose [α0] satisfies Assumption 1. Then let ω̂t ∈ [αt] for t ∈ (0, 1] be a
family of asymptotically conical Kähler metrics satisfying the conclusion of Proposition 2.5.
Then by Theorem 2.4, we can solve the equation

(ω̂t + i∂∂̄ϕt)
n = in

2
Ω ∧ Ω̄(= eftω̂nt )

for ϕt ∈ C∞
−γ(X), the our goal in this section is to prove a priori estimates on the potentials

ϕt that are uniform in t as t→ 0.

4.1. Uniform estimates. In this section, we prove a uniform bound for ϕt that is inde-
pendent of t. In the compact case, such an estimate can be proved using pluripotential
theory following the seminal work of Kolodziej [34], see [24]. Pluripotential methods allow
one to obtain an estimate with a sharper dependence on the data of the right hand side.
However, such methods are hard to adapt to the non-compact setting and no proper ana-
logue of such estimates are known. It would be of interest to try to find extensions of the
pluripotential estimates to the non-compact setting, as it would give a sharper estimates
which would apply more generally to singular Calabi-Yau manifolds not admitting crepant
resolutions.

Instead, we will use an idea based on the original argument of Yau [63] using the Moser
iteration. However, following an idea of Tosatti [59] we perform the Moser iteration using
the Calabi-Yau metrics ωϕt := ω̂t + i∂∂̄ϕt as background metrics. The advantage of this
trick is that since the metrics ωϕt are Ricci flat and asymptotically conical, they have a
uniform Sobolev inequality by results of Croke [19] and Yau [64].

Proposition 4.1. The metrics ωϕt satisfy a uniform Sobolev inequality of the form

(4.1)

(∫

X
|u| 2n

n−1 in
2
Ω ∧ Ω̄

)n−1
n

6 C

∫

X
|du|2ωϕt

in
2
Ω ∧ Ω̄

Proof. It suffices to prove the result for compact supported smooth functions. Results of
Croke [19] and Yau [64] show that for a compactly supported function u, with supp(u) ⊂ Ω
for an arbitrary relatively compact set Ω ⊂ X, (4.1) holds for a constant C, depending
on an upper bound for the diameter of Ω, a lower bound for the volume of Ω, and a
lower bound for the Ricci curvature. We only need to exploit the scale invariance of these
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quantities for asymptotically conical Calabi-Yau metrics. Fix a point x0 ∈ X. Since ωϕt

are asymptotically conical, for R sufficiently large we have

Volωϕt
(BR(x0)) ∼ R2nVolωC

(L)

where L is the link of the cone, identified with {rC = 1} ⊂ C, and the volume is computed
using the conical Calabi-Yau metric ωC . Therefore, if ωR = R−2ωϕt, then with respect
to the rescaled metric the diameter is 1, and the volume is VolωC

(L). Since (4.1) is scale
invariant, the result follows. �

Proposition 4.2. Given solutions ϕt to (2.2), with |∇kϕ|= O(r−γ−k) we have the following
uniform estimate for the potential

|ϕt|6 C‖ϕt‖Lp(in2Ω∧Ω̄)

for any p > 2n−2
γ > 1 and C depending on n, p, and a uniform bound on ‖e−ft − 1‖Lq for

q ∈ [p,∞].

Proof. If we set Tt =
∑n−1

k=0 ω
k
ϕt

∧ ω̂n−1−k
t , then we can rewrite the equation as

−i∂∂̄ϕt ∧ Tt = (e−ft − 1)in
2
Ω ∧ Ω̄

multiplying both sides by |ϕt|p−2ϕt and integrating, we get

−
∫

M
|ϕt|p−2ϕti∂∂̄ϕt ∧ Tt =

∫

M
|ϕt|p−2ϕt(e

−ft − 1)in
2
Ω ∧ Ω̄

we will integrate by parts on the first term

−
∫

M
|ϕt|p−2ϕti∂∂̄ϕt ∧ Tt = lim

R→∞

(
−
∫

BR

|ϕt|p−2ϕti∂∂̄ϕt ∧ Tt
)

= lim
R→∞

(
(p − 1)

∫

Br

|ϕt|p−2i∂ϕt ∧ ∂̄ϕt ∧ Tt −
∫

∂BR

|ϕt|p−2ϕti∂̄ϕt ∧ Tt
)

=
4(p− 1)

p2

∫

M
i∂|ϕt|

p
2∧∂̄|ϕt|

p
2∧Tt − lim

R→∞

∫

∂BR

|ϕt|p−2ϕti∂̄ϕt ∧ Tt
︸ ︷︷ ︸

=0 for p> 2n−2
γ

Combined with the Sobolev inequality, we have

(∫

M
|ϕt|p

n
n−1 in

2
Ω ∧ Ω̄

)n−1
n

6 C
np2

4(p − 1)

∫

M
|ϕt|p−1|e−ft − 1|in2

Ω ∧ Ω̄

for any p > 2n−2
γ . By Hölder’s inequality, we have (below 1

q +
1
q′ = 1)

(4.2) ‖ϕt‖p
L
p n
n−1

6 C
np2

4(p − 1)
‖|ϕt|p−1‖Lq‖e−ft − 1‖Lq′= C

np2

4(p − 1)
‖ϕt‖p−1

Lq(p−1)‖e−ft − 1‖Lq′

picking q such that q = p
p−1 > 1, we get

‖ϕt‖p
L
p n
n−1

6
CSnp

2

4(p − 1)
‖ϕt‖p−1

Lp ‖e−ft − 1‖Lp

6
CCSnp

2

4(p − 1)
‖ϕt‖p−1

Lp

a standard Moser iteration argument gives the result.
�
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Proposition 4.3. For any p > 2n
γ , we have a uniform Lp estimate of the form

‖ϕt‖Lp6 C

for C depending on n, p and ‖e−ft − 1‖
L

np
n+p

.

Proof. In equation (4.2), if we pick q = p
p−1

n
n−1 , then q

′ = np
n+p+1 and we get

‖ϕt‖Lp n
n−1

6 C
np2

4(p − 1)
‖e−ft − 1‖

L
np

n+p−1

relabelling p to be np
n−1 gives us our result. �

Corollary 4.4. The potentials ϕt are bounded in Lp uniformly in t for any p ∈ (2nγ ,∞],

‖ϕt‖Lp6 Cp

In particular, the potentials ϕt are uniformly bounded in C0.

Proof. This follows by combining Proposition 4.2 and Proposition 4.3. Note that since
|ft|6 Cr−γ−2 outside a fixed compact set, we have an estimate ‖e−ft − 1‖

L
np
n+p

6 C for a

constant C independent of p, t for any p > 2n−2
γ . �

4.2. Convergence of the metric away from the degeneracy locus. In this section,
we prove an estimate for ∂∂̄ϕt away from V , the subvariety coming from Assumption 1.
Recall that by Assumption 1, there exist ψ ∈ PSH(X,α0) which is smooth outside of V
and goes to −∞ near V , the idea is to use this function as a barrier function in the C2

estimate, and this is first used by Tsuji in in [60] to study Kähler-Ricci flow. We remark
that this is the only part of the Theorem that uses the current in Assumption 1.

Before we prove the estimate, we first construct a slightly more better behaved barrier
function ψε ∈ PSH(X, ω̂0) which is compactly supported. Recall that from the construction
of ω̂0, ω̂0 is equal to α0 on a large compact set. (which from the construction can be as
large as one want)

Lemma 4.5. There exist ψε ∈ PSH(X, ω̂0) which is compactly supported and satisfy ω̂0 +
i∂∂̄ψε > εω, and is smooth outside V and goes to −∞ near V .

Proof. Recall by [15, Lemma 2.15], we know that r2κ for κ ∈ (0, 1) is strictly plurisubhar-
monic for r sufficiently large, and satisfies

|∇r2κ|= O(r2κ−1) |i∂∂̄r2κ|= O(r2κ−2)

Pick Ψ : R+ → R+ smooth satisfy Ψ′,Ψ′′ > 0 and

Ψ(x) =

{
T + 2 for x < T + 1

x for x > T + 3

then as in [15, Lemma 2.15], for T ≫ 1, Ψ(r2κ) is plurisubharmonic and equal to r2κ for r
sufficiently large.

We set
ψε = (1− ζS)ψ + C(1− ζR)Ψ(r2κ)

where S,C,R are chosen as follows. First we pick S ≫ 1 large enough such that ω̂0 = α0 on
{r 6 S} and i∂∂̄Ψ(r2κ) > 0 on {S 6 r 6 2S}, which implies that ω̂0+i∂∂̄ψε = α0+i∂∂̄ψ >

ε0ω on {r 6 S}. Then pick C ≫ 1 large enough so that Ci∂∂̄Ψ(r2κ) > i∂∂̄((1 − ζS)ψ) on
{S 6 r 6 2S}. Finally, we pick R ≫ S such that ω̂0 + i∂∂̄ψε > 0 on {R 6 r 6 2R}, which
is possible since for R large, we have

|i∂∂̄(1− ζR)Ψ(r2κ)|6 |∇2ζR||r2κ|+|∇2Ψ(r2κ)||1− ζR|+|∇ζR||∇r2κ|6 CR2(κ−1) ≪ 1
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Then ω̂0 + i∂∂̄ψε > 0 and ω̂0 + i∂∂̄ψε > ε0ω on the compact set K containing V , hence
there exist an ε > 0 such that ω̂0 + i∂∂̄ψε > εω holds. �

Now we prove the main estimate of this section.

Proposition 4.6. There are uniform constants B,C > 0, independent of t such that the
following estimate holds:

|∂∂̄ϕt|6 Ce−Bψε .

Proof. By the well-known computation of Aubin and Yau, we have

∆ϕt log Trωωϕt > −ATrϕtω

where A is a lower bound for the bisectional curvatures of ω. Then if we pick N ≫ B
sufficiently large, we have

∆ϕt (log Trωωϕt +Bψε −Nϕt) > (Bε−A)Trϕtω −BTrϕtω̂0 +NTrϕtω̂t −Nn

> C

(
ωn

nin
2
Ω ∧ Ω̄

Trωωϕt

) 1
n−1

−Bn

since ψε goes to −∞ near V and the function log Trωωϕt +Bψε−Nϕt goes to 0 at infinity,
either log Trωωϕt+Bψε−Nϕt is always non-positive, in which case we are done, or maximum
is achieved in the interior, and applying the maximum principle gives

Trωωϕt 6 CeB(supψε−ψε)

from which the estimate follows. �

Remark 7. This argument is the only place where we used the Kähler current in Assump-
tion 1. In the situation where [α0] = π∗c1(L) where π : X → X0 is a crepant resolution
of a singular Calabi-Yau variety with compactly supported singularities and L → X0 is
an ample line bundle on X0, the above C2 estimate can be replaced by the argument in

Lemma 5.1, and the convergence holds away from π−1(Xsing
0 ). In that case we do not need

the Kähler current in Assumption 1 to prove Theorem 1.1.

The higher order estimates follow from the standard methods of Yau [63, 45, 50].

Proposition 4.7 (Higher order estimates). We have a uniform estimate

‖ϕt‖Ck,α
loc (K)

6 C(K, k, α)

for any K ⊂⊂ X \ V and C independent of t.

Proof. This follows from the local estimates in [50]. �

Corollary 4.8. The metrics ωϕt converge after passing to a subsequence in C∞
loc
(X \V ) to

a possibly incomplete metric ωϕ0 on X \V , which is uniformly equivalent to ωC at infinity.

So far, we’ve shown the first two parts of Proposition 2.6, in the next section we prove
decay estimates for ϕt.

4.3. Decay estimates. In this section, we prove uniform decay estimates for ϕt. We use
the method of Moser iteration with a weight, similar to the technique used in [32, Chap 8].
However, as in Section 4.1, we use the Ricci flat metrics ωϕt , exploiting the uniform control
of the Sobolev constants.

Recall that r : X → R>0 is a radius function such that |∇r|+r|i∂∂̄r|6 C, and it’s not
hard to see that we can also assume that r = const on a compact set K containing the
singular set V .
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Definition 4.1. We define the following weighted Lp norms,

‖u‖
Lp
δ (i

n2Ω∧Ω̄)
=

(∫

X
|urδ|pr−2nin

2
Ω ∧ Ω̄

) 1
p

Remark 8. Notice if we let p → ∞, then the Lpδ norms converge to the L∞
δ norm given by

‖u‖L∞
δ
= supX |urδ|

Proposition 4.9. For any δ < γ, we have a uniform bound of the form

‖ϕt‖Lp
δ (ω

n
ϕt

)6 C

for any p ∈ (0, 2nδ ], and constant depending on p, δ.

Proof. If p = 2n
δ , then this is simply the L

2n
δ norm, which is bounded if δ < γ by Proposition

4.3. If p < 2n
δ , then

∫

X
|ϕrδ|pr−2nωnϕt

6

(∫

X
|ϕt|pq

) 1
q
(∫

X
r

q
q−1

(δp−2n)
ωnϕt

) q−1
q

the first term is bounded if q > 2n
γp by Proposition 4.3, and the second term is finite if

q < 2n
δp , so we just need to pick q ∈ (2nγp ,

2n
δp ) with q > 1, which is possible since p < 2n

δ . �

Proposition 4.10. For any δ < γ, p > 1, we have

‖ϕtrδ‖p
L
p n
n−1 (r−2nωn

ϕt
)
6

Cp2

p− 1

(
‖ϕtrδ‖p−1

Lp−1(r−2nωn
ϕt

)
+‖ϕtrδ‖pLp(r−2nωn

ϕt
)

)

for C depending on the Sobolev constant of ωϕt, δ and the dimension n.

Proof. We use the same method as in [32, Proposition 8.6.7], but using the Calabi-Yau
metrics ωϕt as the background metrics. The reason is because the metrics ωϕt are Ricci-flat
and hence have a uniform Sobolev inequality. First we set

Tt =
n−1∑

k=0

ωkϕt
∧ ω̂n−1−k

t .

If q − pγ < −2n+ 2, then Stoke’s theorem gives the following two identities

0 =

∫

X

i∂
(
rq|ϕt|p−2ϕt∂̄ϕt ∧ Tt

)

= (p− 1)

∫

X

rq|ϕt|p−2i∂ϕt ∧ ∂̄ϕt ∧ Tt + q

∫

X

rq−1|ϕt|p−2ϕti∂r ∧ ∂̄ϕt ∧ Tt +
∫

X

rq |ϕt|p−2ϕti∂∂̄ϕt ∧ Tt

and

0 = −
∫

X
i∂̄
(
rq−1|ϕt|pi∂r ∧ Tt

)

= p

∫

X
rq−1|ϕt|p−2ϕti∂r ∧ ∂̄ϕt ∧ Tt + (q − 1)

∫

X
rq−2|ϕt|pi∂r ∧ ∂̄r ∧ Tt +

∫

X
rq−1|ϕt|pi∂∂̄r ∧ Tt
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using these identities, we can obtain through integration by parts
∫

X
|∇(|ϕt|

p
2 r

q
2 )|2ωϕt

ωnϕt
= n

∫

X
i∂(|ϕt|

p
2 r

q
2 ) ∧ ∂̄(|ϕt|

p
2 r

q
2 ) ∧ ωn−1

ϕt

6 n

∫

X
i∂(|ϕt|

p
2 r

q
2 ) ∧ ∂̄(|ϕt|

p
2 r

q
2 ) ∧ Tt

= − np2

4(p− 1)

∫

X
ϕt|ϕt|p−2rqi∂∂̄ϕt ∧ Tt

+
mq

4(p − 1)

∫

X
|ϕt|prq−2[(p+ q − 2)i∂r ∧ ∂̄r − (p − 2)ri∂∂̄r] ∧ Tt

= − np2

4(p− 1)

∫

X
ϕt|ϕt|p−2rq(eft − 1)ωnϕt

+
mq

4(p − 1)

∫

X
|ϕt|prq−2[(p+ q − 2)i∂r ∧ ∂̄r − (p − 2)ri∂∂̄r] ∧ Tt

where in the last equality, we used the equation i∂∂̄ϕt ∧ Tt = (eft − 1)ωnϕt
. Now we claim

there also exist a uniform constant C independent of t and r such that
∣∣∣∣
[(p + q − 2)i∂r ∧ ∂̄r − (p − 2)ri∂∂̄r] ∧ Tt

in2Ω ∧ Ω̄

∣∣∣∣ 6 C(p+ |q|)

recall that we chose r so that r = const on a compact set K containing V , so the left
hand side of the expression is 0 on K. By Corollary 4.8 we know that |Tt|6 C on X \K,
and because r is a radius function we also have |∇r|+r|∂∂̄r|6 C, hence the expression also
holds on X \K. Putting it together, we see that the expression holds on all of X.

This then combined with the Sobolev inequality, we conclude that

(∫

X
|ϕt|p

n
n−1 rq

n
n−1ωnϕt

)n−1
n

6
Cnp2

4(p − 1)

∫

X
|e−ft−1||ϕt|p−1rqωnϕt

+
Cq(p+ q)

4(p − 1)

∫

X
|ϕt|prq−2ωnϕt

for any δ < γ we can set q = 2(1 − n) + pδ and use the fact that |eft − 1|6 Cr−γ−2 to
obtain,

(∫

X
|ϕtrδ|p

n
n−1 r−2nωnϕt

)n−1
n

6 C
p2

4(p − 1)

(∫

X
|ϕt|p−1rpδ−γr−2nωnϕt

+

∫

X
|ϕtrδ|pr−2nωnϕt

)

= C
p2

4(p − 1)

(∫

X
|ϕtrδ|p−1rδ−γr−2nωnϕt

+

∫

X
|ϕtrδ|pr−2nωnϕt

)

and since δ < γ, which means for any p > 1, we have

‖ϕtrδ‖p
L
p n
n−1 (r−2nωn

ϕt
)
6

Cp2

p− 1

(
‖ϕtrδ‖p−1

Lp−1(r−2nωn
ϕt

)
+‖ϕtrδ‖pLp(r−2nωn

ϕt
)

)

�

Corollary 4.11. For any δ < γ, we have a uniform bound of the form

|ϕt|6 Cr−δ

for C depending on δ.

Proof. By Proposition 4.9, we have a weighed Lp bound for any p 6 2n
δ , combined with

the previous proposition, we can use the standard Moser iteration argument starting from
p = 2n

δ > n
n−1 > 1. �
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Proposition 4.12. For any δ < γ, the derivative of the solutions ϕt satisfy uniform decay
estimates on X \K,

|∇kϕt|6 Cr−δ−k

where C = C(n, δ, k) which doesn’t depend on t.

Proof. This follows from the methods of [32, Theorem 8.6.11] verbatim. The point to note
here is that the metrics ωϕt are uniformly equivalent to ωC on the region X \ K, with
bounded derivatives as well, hence the Schauder constants are uniformly controlled on far
away balls. �

Proposition 4.13. If γ ∈ (0, 2n − 2), then in fact we have

|∇kϕt|6 Cr−γ−k

on X \K, and C = C(n, k) independent of t.

Proof. This follows from the same argument as in [32, Chap 8.7, Theorem A2]. �

We can now prove Proposition 2.6, thereby completing the proof of Theorem 1.1.

Proof of Proposition 2.6. Combine Corollary 4.4, Proposition 4.7, Proposition 4.11 and
Proposition 4.13.

�

We now prove the local diameter bound, which will play an important role throughout
the remainder of the paper.

Lemma 4.14. In the setting of Theorem 1.1, let K ⊂ X be a compact subset containing V .
Then the diameter of K with respect to the Calabi-Yau metrics ωt,CY is uniformly bounded
from above as t→ 0.

Diamωϕt
K 6 C

Proof. It suffices to show that the sets KR = {r(x) 6 R} have bounded diameters for R
sufficiently large. Recall that the metrics ωϕt are uniformly asymptotic to ωcone for r large
and t close to 0 by Proposition 4.12. Fix any two points x, y ∈ KR, and joint them by
a length minimizing geodesic γ : [0, L] → X. We claim that γ must lie inside KR2 for R
sufficiently large. Note for R large, on the region {r(x) > R} the metric ωϕt is C∞ close
to a cone metric uniformly in t, and hence for R sufficiently large, the boundary of KR has
diameter bounded by 2πR. However, the distance between the boundary of KR and KR2

on the order of R2, so it’s clear that any minimizing geodesic between two points in KR

cannot leave KR2 . Now consider xi = γ(2i + 1) and disjoint balls B1(xi). Note that these
balls have a fixed lower bound on the volume, since by Bishop-Gromov volume comparison
and the asymptotically conical geometry we have

Vol(B1(xi)) > lim
S→∞

Vol(BS(xi))

S2n
= VolgC (L) =: c > 0

where L is the link of the cone at infinity, identified with {rC = 1} and gC is the conical
Calabi-Yau metric. Thus, we have

∑

i

Vol(B1(xi)) > c
⌊L⌋
2

where c is the non-collapsing constant. On the other hand, these balls must all lie in K2R,
and since the volume form of the Calabi-Yau metrics are fixed, we must have that

c
⌊L⌋
2

6

∫

KR2

in
2
Ω ∧ Ω̄

which gives us a bound for L, which is dωϕt
(x, y). �
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4.4. Uniqueness. In this section, we discuss the uniqueness of the Calabi-Yau currents
constructed in the previous sections.

Theorem 4.15. The current that we constructed ωϕ0 above is unique in the sense that if
ω is another positive current with locally bounded potentials in the same cohomology class
as ωϕ0 which is smooth on X \V , asymptotically conical at infinity with any rate δ > 0 and
satisfies the complex Monge-Ampère equation

ωn = ωnϕ0
= in

2
Ω ∧ Ω̄

in the Bedford-Taylor sense, then ω = ωϕ0.

The proof is modelled after the idea introduced in [15], which relies on the following
crucial Lemma proved in [15].

Lemma 4.16. [15, Corollary 3.9] Suppose (X,ω) is an asymptotically conical Kähler mani-
fold with Ric > 0, then for any ε > 0, any harmonic function u ∈ C∞

2−ε(X) is pluriharmonic.

The idea is to write ω = ωϕ0 + i∂∂̄ψ and use this lemma to improve the asymptotics of
the potential function ψ by subtracting off pluriharmonic functions from it, until we are
left in the case where the potential function is decaying in which case uniqueness follows
from a standard integration by parts argument.

Proposition 4.17. Suppose ϕ ∈ PSH(X,ωϕ0) ∩ L∞(X) ∩ C∞
−ε(X \ V ) is a function such

that the current ωϕ0 + i∂∂̄ϕ satisfies

(ωϕ0 + i∂∂̄ϕ)n = ωnϕ0
= in

2
Ω ∧ Ω̄

in the Bedford Taylor sense, then ϕ = 0.

Proof.

0 = −
∫

BR

|ϕ|p−2ϕ((ωϕ0
+ i∂∂̄ϕ)n − ωn

ϕ0
) = −

∫

BR

|ϕ|p−2ϕi∂∂̄ϕ ∧
(

n−1∑

k=0

ωk
ϕ0

∧ (ωϕ0
+ i∂∂̄ϕ)n−1−k

)

=
4(p− 1)

p2

∫

BR

i∂(|ϕ| p2 ) ∧ ∂̄(|ϕ| p2 ) ∧
(

n−1∑

k=0

ωk
ϕ0

∧ (ωϕ0
+ i∂∂̄ϕ)n−1−k

)

−
∫

∂BR

|ϕ|p−2ϕi∂̄ϕ ∧
(

n−1∑

k=0

ωk
ϕ0

∧ (ωϕ0
+ i∂∂̄ϕ)n−1−k

)

picking p > 2n−2
γ and letting R→ ∞, we get

∫

X
i∂(|ϕ| p2 ) ∧ ∂̄(|ϕ| p2 ) ∧

(
n−1∑

k=0

ωkϕ0
∧ (ωϕ0 + i∂∂̄ϕ)n−1−k

)
= 0

which shows that ϕ = 0. �

Lemma 4.18. Suppose (X,J, g) is an asymptotically conical Calabi-Yau manifold with rate
ν > 0, and η = ηij̄ is a asymptotically conical hermitian metric with rate ν > 0 and let

u ∈ C∞
2−β such that ηij̄uij̄ ∈ C∞

−κ, then there exist ũ ∈ C∞
2−β−ν such that i∂∂̄ũ = i∂∂̄u.

Proof. We have

gij̄uij̄ = (gij̄ − ηij̄)uij̄ + ηij̄uij̄ ∈ C∞
−min(κ,β+ν)

hence we can solve the equation gij̄ ũij̄ = gij̄uij̄ with ũ ∈ C∞
2−min(κ,β+ν) and by Lemma 4.16

we have i∂∂̄ũ = i∂∂̄u. �
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Proof of Theorem 4.15. By the ∂∂̄-Lemma (Proposition 2.1), we can write ω = ωϕ0+ i∂∂̄ψ,
for ψ ∈ PSH(X,ωϕ0) ∩ L∞

loc(X) ∩ C∞
loc(X \ V ), then choose a cutoff χ such that χ has

compact support and χ = 1 on a compact set K containing V , then since i∂∂̄ψ = ω−ωϕ0 ∈
C∞
−ε(X \ V ) for some ε > 0, hence by Proposition 2.2, we can solve i∂∂̄f = i∂∂̄[(1 − χ)ψ]

for f ∈ C∞
γ , γ = 2− ε. Setting ϕ = χψ + f , we have that ϕ ∈ L∞

loc(X) ∩ C∞
γ (X \ V ) and

(ωϕ0 + i∂∂̄ϕ)n = ωnϕ0
= in

2
Ω ∧ Ω̄

If γ < 0, then we are done by Proposition 4.17. If γ > 0, then we proceed by the following:
note that the equation above can be rewritten as

∆ωϕ0
ϕ = −(i∂∂̄ϕ)2 ∧

(
n∑

k=2

(
n

k

)
(i∂∂̄ϕ)k−2 ∧ ωn−kϕ0

ωnϕ0

)
∈ C∞

2γ−4(X \ V )

if χ is the cutoff function as before, then we have ∆ωϕ0
[(1 − χ)ϕ] ∈ C∞

2γ−4(X) if we let
η = χωϕt +(1−χ)ωϕ0 , then η is an asymptotically conical hermitian metric which is equal

to ωϕ0 outside of a compact set, hence ηij̄ [(1 − χ)ϕ]ij̄ ∈ C∞
2γ−4(X), hence we can apply

Lemma 4.18 with κ = 2(2 − γ) and β = 2 − γ, so we can solve i∂∂̄v = i∂∂̄[(1 − χ)ϕ] with
v ∈ C∞

γ−min(2−γ,ν) now we can set ϕ̃ = v + χϕ ∈ C∞
γ−min(2−γ,ν)(X \ C) and we can keep

repeating this process with ϕ̃ in place of ϕ and γ −min(2− γ, ν) in place of γ until are in
the case where γ < 0, then we are done by Proposition 4.17.

�

5. Metric geometry of the singular Calabi-Yau

The goal of this section is to prove Theorem 1.2. Let us first begin with some definitions
and the general setup.

Definition 5.1. We say that a complex analytic space X0 is a singular Calabi-Yau variety
with compactly supported, crepant singularities, if

• X0 is normal singularities, Gorenstein and log-terminal,
• there is a compact set K so that X0\K is smooth,
• there exists a resolution π : X → X0 such that X also has trivial canonical bundle
and π∗Ω extends as a non-vanishing global holomorphic (n, 0)-form on X. (By
abuse of notation, we will also denote this holomorphic (n, 0)-form by Ω)

Let X0 be a singular Calabi-Yau variety with compactly supported, crepant singularities.
Suppose that the resolution (X,J,Ω) is Kähler and it has a Kähler metric ω such that
(X,J, ω,Ω) is asymptotic to a Calabi-Yau cone (C, JC , ωC ,ΩC) at rate ν.

Definition 5.2. A line bundle L on X0 is ample if for some k > 0, there exist sections
s0, . . . , sN ∈ H0(X0, L

k) such that [s0, . . . , sN ] gives an embedding of X0 into a finite
dimensional projective space CPN , and denote this embedding map by ι, then we have
1
k [ι

⋆ωFS] = c1(L).

Remark 9. Certainly if X0 is quasi-projective, then it has an ample line bundle in the above
sense. In general, having an ample line bundle in the above sense does not imply X0 is
quasi-projective, however in almost all examples we’re interested in, X0 is a quasi-projective
variety.

Let us now fix L an ample line bundle on X0. If set [α0] = π∗c1(L), then suppose
(X,J, ω,Ω) and [α0] satisfy the hypothesis of Theorem 1.2. Then from the previous sections,
we have on X, a sequence of Calabi-Yau metrics ωϕt = ω̂t+ i∂∂̄ϕt with [ωϕt ] = (1− t)[α0]+
t[α1], which satisfy the equation

(ω̂t + i∂∂̄ϕt)
n = eftω̂nt (= in

2
Ω ∧ Ω̄)
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and ft = log in
2
Ω∧Ω̄
ω̂n
0

∈ C∞
−γ−2(X), and ϕt ∈ C∞

−γ(X).

If we fix a point p ∈ π−1(Xreg
0 ), then by Gromov compactness, after passing to a sub-

sequence, the pointed spaces (X,ωϕti
, p) for ti → 0 pointed Gromov-Hausdorff converge

to a limiting pointed metric space (X∞, d∞, p∞) as i → ∞. By the definition of pointed
Gromov-Hausdorff convergence, the convergence can be interpreted in the following sense:
If we set Z = (X∞, d∞, p∞) ⊔⊔ti

(X,ωϕti
, p), then there exist a metric dZ on Z such that

(1) dZ |Xi= dgϕti

(2) dZ( p︸︷︷︸
∈Xi

, p∞) → 0

(3) Bgϕti
(p, r) ⊂ Xi → Bg∞(p∞, r) ⊂ X∞ in the Hausdorff sense with respect to dZ .

The asymptotically conical property of ωϕt implies that the tangent cone at ∞ is indepen-
dent of t, and by Bishop-Gromov, we have a uniform lower bound on volume of geodesic
balls, Volωϕt

B(p, r) > cr2n where c is the volume ratio of the asymptotic cone C. Hence the
regularity theory of Cheeger, Colding and also Tian [6, 7, 8, 9, 10] applies, and the limiting
space admits the following structure

(1) All tangent cones of X are metric cones.
(2) X = R∪S, where R consists of all the points where all tangent cones are isometric

to R2n.
(3) R is an open dense set in X∞ with a smooth metric g∞ and complex structure

J∞ which makes it Ricci-flat Kähler manifold and (X∞, d∞) = (R, dg∞). More-
over, the convergence of (X,J, ωϕt , p) → (X∞, J∞, g∞, p) is smooth on R in the
sense that for every K ⊂⊂ R, there exist smooth maps ηi : K → X such that
(η⋆i gti , η

⋆
i J) converges to (g∞, J∞) smoothly on K. (In fact, we can arrange ηi such

that dZ(ηi(z), z) → 0 uniformly in K)
(4) S is a closed subset of X∞ with real Hausdorff codimension greater or equal to 4.

5.1. Properties of the Gromov-Hausdorff limit. In this section, we prove several
preliminary propositions about the relationship between X∞ and the Kähler current con-
structed from Theorem 1.1. In particular, we show the following:

(1) ωϕ0 is in fact well-defined and smooth on π−1(Xreg
0 )

(2) There exist a locally isometric embedding of ι∞ : (π−1(Xreg
0 ), ωϕ0) → (R, g∞).

(3) X∞ is isometric to the metric completion (π−1(Xreg
0 ), ωϕ0)

(4) ι∞ is a bijective local isometry between Xreg
0 and R.

One of the key ingredients is the local diameter bound Lemma 4.14, which we apply with

V = π−1(Xsing
0 ).

Proposition 5.1. The family of metrics ωϕt has a uniform lower bound

(5.1) ωϕt >
1

C
ω̂0

Proof. By the standard Schwartz lemma calculation, we have

∆ωϕt
log Trωϕt

π⋆ωFS > −4Trωϕt
π⋆ωFS

and for any other Kähler metric ω̂, one also has

∆ωϕt
log Trωϕt

ω̂ > −CTrωϕt
ω̂

with C depending only on the upper bound for the holomorphic bisectional curvature of
ω̂. Recall from the construction of ω̂0 in Propositions 3.1 and 3.2 that ω̂0 can be taken
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to be equal to 1
kπ

⋆ωFS on a compact set K containing π−1(Xsing
0 ), and is a genuine non-

degenerate, asymptotically conical Kähler metric outside of K, so we can apply the first
inequality inside K and the second outside K to get a uniform estimate

(5.2) ∆ωϕt
log Trωϕt

ω̂0 > −CTrωϕt
ω̂0.

Since ωωϕt
= ω̂t + i∂∂̄ϕt, taking trace gives

n = Trωϕt
ω̂t +∆ϕtϕt,

and we also know that for t reasonably small ω̂t > cω̂0 holds for some small constant c
uniformly in t as t→ 0, which means we have

n > cTrϕtω̂0 +∆ϕtϕt.

Combining this with (5.2), we have

∆ωϕt

(
log Trωϕt

ω̂0 −Aϕt
)
> (

Ac

2
− C)Trωϕt

ω̂0 −An

since log Trωϕt
ω̂0 −Aϕt converges to the constant log n at spacial infinity, if the maximum

is attained at infinity, then we automatically have a uniform bound that we wanted. So we
can assume the maximum is achieved in the interior, and applying the maximum principle
to the equation above, and we obtain

Trωϕt
ω̂0 6 CeA(ϕt−(ϕt)min)

which gives a uniform upper bound for Trωϕt
ω̂0. �

Corollary 5.2. On X \ π−1(Xsing
0 ), we have

C−1ω̂0 6 ωϕt 6 Cef0 ω̂0

where ef0 = in
2
Ω∧Ω̄
ω̂n
0

is bounded uniformly away from π−1(Xsing
0 ). In particular, this implies

that ωϕ0 is smooth on π−1(Xreg
0 ), and on X0 it is a Kähler current since it dominates ω̂0.

Proof. The lower bound on ωϕt is the content of the previous lemma, and from that and

the fact that ωnϕt
= in

2
Ω ∧ Ω̄ = ef0 ω̂n0 , the corollary follows immediately. �

Corollary 5.3. The maps πi : (X,ωϕti
, p) → (X0, ω̂0, p) are has bounded derivative, hence

it is uniformly lipschitz and we can pass to a continuous surjective map from the Gromov-
Hausdorff limit π∞ : (X∞, dX∞ , p∞) → X0. Furthermore, for any q ∈ Xreg

0 , the preimage
π−1
∞ (q) consists of a single point.

Proof. The fact that the maps have bounded derivative follows from the estimate (5.1), and
from this it follows from an Arzela-Ascoli type argument that after passing to a subsequence,
the projection maps πi limit to a continuous surjective map π∞ : X∞ → X0. The map π∞
can be characterized in the following way: if we fix hi : (X,ωϕti

) → X∞ an εi-isometry for

εi → 0, then for any sequence of points qi ∈ X with π(qi) → q ∈ X0, and hi(qi) → q∞ ∈ X∞,
we have π∞(q) = q∞.

To see that the preimage of π−1(q) for q ∈ Xreg
0 consists of a single point, suppose for

contradiction that it consisted of two points q1, q2 ∈ X∞ with dX∞(q1, q2) = d > 0 and
π∞(q1) = π∞(q2) = q ∈ Xreg

0 , then from the construction of π∞, there exist a sequences
of points qi1, q

i
2 ∈ X such that πi(q

i
1) → q and πi(q

i
2) → q and hi(q

i
1) = q1 and hi(q

i
2) = q2.

Then from the fact that πi(q
i
1) → q and πi(q

i
2) → q and q ∈ Xreg

0 , we know that qi1 → π−1(q)
and qi2 → π−1(q) in X since π is a resolution of singularities of X0, and gti → g∞ smoothly
in a neighborhood of q, it follows that dgti (q

i
1, q

i
2) → 0 as i→ ∞. But we also have

dX∞(hi(q
i
1), hi(q

i
2))− εi 6 dgti (q

i
1, q

i
2)
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since hi is an εi-isometry. This is a contradiction, because dX∞(hi(q
i
1), hi(q

i
2))− εi → d > 0

by our assumption. �

Proposition 5.4. There is an embedding i∞ : (Xreg
0 , ωϕ0 , p) →֒ (R, g∞, p), which is a

locally isometric embedding, and π∞ ◦ ι∞ = id.

Proof. We can simply take ι∞ = π−1
∞ |Xreg

0
, which is well-defined by the previous proposition.

It’s clear that the image of ι∞ is contained in the regular set R ⊂ X∞ and that it is
continuous, so it suffices to show that this map is a local isometry. To see this, we note that
if q ∈ Xreg

0 , then there exist an ε > 0 such that Bgti (q, ε) ⊂ Xreg
0 for all i ≫ 1. It follows

from the diameter estimate (c.f. Lemma 4.14) that the points hi(π
−1(q)) are uniformly

bounded in X∞, hence after passing to a subsequence, it converge to some point q∞ ∈ X∞,
it’s clear that q∞ = ι∞(q) since πi(q) = q. Since the points π−1(q) ∈ Xi have a uniform

harmonic radius lower bound, hence (Bgti (π
−1(q), ε), gϕti

)
C∞

−−→ (Bg∞(q∞, ε), g∞) and by the

smooth convergence of gϕt → gϕ0 , we also have (Bgti (π
−1(q), ε), gϕti

)
C∞

−−→ (Bgϕ0
(q, ε), ωϕ0),

it is then clear from the construction of π∞ that it maps (Bg∞(q∞, ε), g∞) isometrically onto
(Bgϕ0

(q, ε), ωϕ0). �

The following Proposition follows from the same arguments as in [48]. We include a proof
here for the convenience of the reader.

Proposition 5.5. The subset E = R \ ι∞(Xreg
0 ) ⊂ R is an analytic subset, hence of real

codimension bigger than or equal to 2, and moreover (Xreg
0 , g∞) = X∞.

Proof. It suffices to show that the holomorphic maps π : (X,ωϕt , p) → X0 ⊂ (CPN , ωFS, p)

limits to a holomorphic map π∞|R: (R, J∞, g∞) → X0 ⊂ CPN . Assuming for now that

this is the case, then R \ ι∞(Xreg
0 ) = π∞|−1

R (Xsing
0 ). Since Xsing

0 ⊂ X0 is an analytic

set, if π∞|R is holomorphic, then π∞|−1
R (Xsing

0 ) = E ⊂ R is an analytic subset, and since
analytic subsets have real codimension 2, it follows that X∞ \Xreg

0 ⊂ X∞ has Hausdorff

codimension at least 2, and by [8, Theorem 3.7], we have (Xreg
0 , g∞) = X∞.

Now we show that π∞|R is holomorphic. Consider the holomorphic maps π : (X,ωϕt , p) →
X0 ⊂ (CPN , ωFS, p), since (X,ωϕt , p) Gromov-Hausdorff converge to X∞, by Cheeger-
Colding theory [7], for any K ⊂⊂ R containing p, there exist maps ιti : K → (X,ωϕti

)
such that ι⋆tigti → g∞ and ι⋆tiJ → J∞ in the smooth topology, and we also get a sequence

of holomorphic maps πi = π ◦ ιti : (K, ι⋆tigti , ι⋆tiJ) → X0 ⊂ CPN . Furthermore, if we regard
these maps as harmonic maps, then we have

|dπi|2ωϕt,ωFS
= Trωϕt

π⋆i ωFS 6 C

hence by the regularity theory of harmonic maps ([49]), we have uniform C∞ estimates
on the maps ‖πli‖Ck,α(K) 6 CK , for some constant CK independent of i, which allows us
to extract a limit of the maps πi : K → CPN to a map π∞ : K → CPN and since the
convergence of the maps are smooth, and the convergence of the metrics ι⋆tigti → g∞ and
the complex structures ι⋆tiJ → J∞ are all smooth, it follows that the holomorphicity of the
maps πi passes to the limit, and hence the map π∞ is holomorphic. �

Proposition 5.6. In fact we have R = ι∞(Xreg
0 ).

Proof. The proof is the same as in [48, Lemma 2.2]. �

5.2. Identification of X0 with the geometry of singular Calabi-Yau. In this section,

we identify the geometry of the singular Calabi-Yau current X∞ = (Xreg
0 , g∞) with the

variety X0 itself. This result is the analogue of the result in [51], where the similar thing
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was shown in the compact case, our proof follows the approach in [51], adapted to the non-
compact case. The idea is based on ideas developed in [23] together with a new gradient
estimate for the potential ϕt with respect to the Calabi-Yau metrics ωϕt .

5.2.1. A gradient bound for ϕ0. The goal of this section is to prove the following estimate

Proposition 5.7. The following bound hold

sup
π−1(Xreg

0 )

|∇ωϕ0
ϕ0|6 C

Proposition 5.8. If we set let vt = ϕt − tϕ̇t, then we have a uniform estimate

sup
X

|vt|6 C

Proof. Recall from the construction of ω̂t (Proposition 3.2) that

ω̂t = ωt + i∂∂̄ut

= (1− t)ω0 + tω1 + i∂∂̄ut

where ω0 = π⋆ωX0 and ωX0 is a Kähler metric on X0. So we have

∆ϕtϕt = n− Trϕtω̂t

= n− (1− t)Trϕtω0 − tTrϕtω1 −∆ϕtut.

Recall that by the construction of ω̂t, Proposition 3.1, we have

log
(ω̂t + i∂∂̄ϕt)

n

ω̂nt
= ft ∈ C∞

−γ−2.

for some 0 < γ < 2n− 2. Differentiating the equation, we have

(5.3) ∆ϕtϕ̇t = ḟt − Trϕt

∂

∂t
ω̂t +Trω̂t

∂

∂t
ω̂t ∈ C∞

−γ−2(X)

so we have ϕ̇ ∈ C∞
−γ(X) for t > 0.

If we differentiate the equation (ω̂t + i∂∂̄ϕt)
n = in

2
Ω ∧ Ω̄ with respect to t, we obtain

another expression for ∆ϕtϕ̇t

(5.4) ∆ϕtϕ̇t = −∆ϕtu̇t +Trϕt(ω0 − ω1)

The equations (5.3) and (5.4) imply that vt satisfy the two equations

(5.5) ∆ϕtvt = n− Trϕtω0 −∆ϕt(ut − tu̇t)

and

(5.6) ∆ϕtvt = n− Trϕtω̂t − t(ḟt − Trϕt

∂

∂t
ω̂t +Trω̂t

∂

∂t
ω̂t)

From the first equation and Proposition 5.1, we see that |∆ϕtϕ̇t|6 C uniformly in t. From
the second equation we see that |∆ϕtvt|6 Cr−γ−2 away from a compact set K, so we have

a uniform bound |∆ϕtvt|Lp6 C for p > 2n
γ+2 . Since vt ∈ C∞

−γ , we can do integrate by parts
to get

−
∫

X
|vt|p−2vti∂∂̄vt ∧ ωn−1

ϕt
= lim

R→∞
(p− 1)

∫

BR

|vt|p−2i∂vt ∧ ∂̄vt ∧ ωn−1
ϕt

− lim
R→∞

(∫

∂BR

|vt|p−2vti∂̄vt ∧ ωn−1
ϕt

)

=
4(p − 1)

p2

∫

X
i∂|vt|

p
2∧∂̄|vt|

p
2∧ωn−1

ϕt
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the boundary term goes away when p > 2n−2
γ since |∇kvt|= O(r−γ−k). Hence we get

∫

X
|∂|vt|

p
2 |2ωnϕt

= − np2

4(p − 1)

∫

X
|vt|p−2vt(∆ϕtvt)ω

n
ϕt

combined with the Sobolev inequality, one gets
(∫

X
|vt|p

n
n−1 in

2
Ω ∧ Ω̄

)n−1
n

6 C
np2

p− 1

∫

X
|vt|p−1|∆ϕtvt|in

2
Ω ∧ Ω̄

applying Holder, we get

‖vt‖Lp n
n−1

6 C
np2

p− 1
‖∆ϕtvt‖L np

n+p+1

hence for p > 2n
γ , we have

(5.7) ‖vt‖Lp6 Cp

where Cp depends on ‖∆ϕtvt‖L np
n+p

. and also for p > 2n−2
γ

‖vt‖pp n
n−1

6 C
np2

p− 1
‖vt‖p−1

Lp ‖∆ϕtvt‖Lp

we can then apply Moser iteration to this to get the estimate

‖vt‖L∞6 Bp‖vt‖Lp6 BpCp

where Cp is the constant from (5.7) and Bp depends only on the Lp norm of ‖∆ϕtvt‖Lp . �

Corollary 5.9. For any compact set K ⊂⊂ π−1(Xreg
0 ), we have an estimate

|vt|Ck,α(K)6 C(K, k, α)

uniformly in t as t→ 0.

Proof. This follows from the equation (5.5) and the fact that ωϕt and the right hand side
of the equation is uniformly bounded in C∞

loc(π
−1(Xreg

0 )). �

Proposition 5.10. We also have the following local uniform gradient estimate for vt.

sup
K

|∇tvt|6 CK

for any K ⊂⊂ X.

Proof. By the Bochner formula, we have

∆ϕt|∇vt|2gϕt
= |∇∇vt|2gϕt

+|∂∂̄vt|2gϕt
−2Re(∇vt · ∇Trϕtω0)− 2Re(∇vt · ∇∆ϕt(ut − tu̇t))

> −2|∇vt|2gϕt
−|∇Trωϕt

ω0|2gϕt
−|∇∆ϕt(ut − tu̇t)|2gϕt

we also have from (5.2),

∆ωϕt
Trωϕt

ω0 > −C + c0|∇Trωϕt
ω0|2

If we set Ht = |∇vt|2gϕt
+ATrωϕt

ω0, then Ht > 0 and satisfies

∆ϕtHt > −Ht − C

We can apply Moser iteration to this, since ωϕt has uniform Ricci bounds and volume lower
bound, this then gives the estimate

(5.8) ‖Ht‖L∞(Bg∞,R(p))6 C‖Ht‖L2(Bg∞,2R(p))

for R sufficiently large. Note that for R sufficiently large ωϕt converge uniformly in C∞

to g∞ on the region Bg∞,2R(p) \ Bg∞,R(p), hence we can also choose cutoff functions with
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uniformly controlled gradients and standard Moser iteration gives the inequality. Now it
suffices to show that ‖Ht‖L2(Bg∞,2R) is bounded.

∫

B2R

|Ht|2 6 ‖Ht‖L∞(B2R)

∫

B2R

|Ht|

6 C‖Ht‖L2(B4R)‖Ht‖L1(B2R)

6 C(‖Ht‖L2(B2R)+‖Ht‖L2(B4R\B2R))‖Ht‖L1(B2R)

ifR is sufficiently large, thenB4R\B2R doesn’t contain any of π−1(Xsing
0 ), hence ‖Ht‖L2(B4R\B2R)

is uniformly bounded in t on B4R \B2R by the Corollary above. So we have

‖Ht‖2L2(B2R)6 C(‖Ht‖L2(B2R)+C)‖Ht‖L1(B2R)

hence either ‖Ht‖L2(B2R) is bounded by 1 and we are done, or we get the bound

(5.9) ‖Ht‖L2(B2R)6 C‖Ht‖L1(B2R)

so it suffices to prove an L1 bound for Ht on compact sets.
Choose cutoff function η such that η = 1 on B2R for all t, then

∫

B2R

Ht 6

∫

X
η2Ht

6

∫

X
η2|∇vt|2ωnϕt

+ C

6 −
∫

X
η2vt(∆ϕtvt) + 2

∫

X
η|∇η||ṽt||∇ṽt|+C

and so we have ∫

B2R

Ht 6 C

∫

X
(η2 + |∇η|2)v2t 6 C

which gives us the L1 bound, combined with (5.9) and (5.8), we get

‖Ht‖L∞(BR)6 C

as desired. �

Proposition 5.11. For any x ∈ ι∞(Xreg
0 ), we have a bound

|ϕ̇t(x)|6 C

for some constant C potentially depending on the point x.

Proof. Fix x ∈ ι∞(Xreg
0 ), then fix a ball Bg∞,ε(x) ⊂ ι∞(Xreg

0 ) on which the metrics gϕt

converge smoothly to g∞, also fix a set K ⊂⊂ X containing all of π−1
∞ (Xsing

0 ) and also
Bg∞,ε(x). Then by the Green’s formula representation formula, we have

ϕ̇t(x) = −
∫

X
∆ϕtϕ̇t(y)Gt(x, y)ω

n
ϕt
(y)

= −
∫

Bg∞,ε(x)
∆ϕtϕ̇t(y)Gt(x, y)ω

n
ϕt
(y)−

∫

K\Bg∞,ε(x)
∆ϕtϕ̇t(y)Gt(x, y)ω

n
ϕt
(y)

−
∫

X\K
∆ϕtϕ̇t(y)Gt(x, y)ω

n
ϕt
(y)

where Gt(x, y) is the positive decaying Green’s function on (X,ωϕt). By the estimates for
Green’s function [44, p.190], [36, 37], the Green’s functions Gt(x, y) satisfy the uniform
estimates

C−1dt(x, y)
2−2n

6 Gt(x, y) 6 Cdt(x, y)
2−2n
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where dt is the distance function induced by gϕt . And since ∆ϕtϕ̇t = −∆ϕtu̇t+Trϕt(ω0−ω1),
this implies |∆ϕt ϕ̇t|6 |∆ϕt u̇t|+Trϕt(ω0 + ω1) 6 C +Trϕtω1 and we have

|ϕ̇t(x)| 6
∫

Bg∞,ε(x)
|∆ϕtϕ̇t|(y)dt(x, y)2−2nωnϕt

(y) +

∫

K\Bg∞,ε(x)
|∆ϕtϕ̇t|(y)dt(x, y)2−2nωnϕt

(y)

+

∫

X\K
|∆ϕtϕ̇t|(y)dt(x, y)2−2nωnϕt

(y)

(5.10)

and we analyze the three terms in the above formula seperately. For the first term, we note
that ∆ϕtϕ̇t is uniformly bounded on Bg∞,ε(x), so

∫

Bg∞,ε(x)
|∆ϕtϕ̇t|(y)dϕt(x, y)

2−2nωnϕt
(y) 6 C

∫

Bg∞,ε(x)
dt(x, y)

2−2n 6 C

For the second term, observe that on K \Bg∞,ε(x), dt(x, y)
2−2n is bounded by Cε2−2n, so

∫

K\Bg∞,ε(x)
|∆ϕt ϕ̇t|(y)dϕt(x, y)

2−2nωnϕt
(y) 6 C

(
1 +

∫

K\Bg∞,ε(x)
Trϕtω1

)

hence it suffices to bound the integral of Trϕtω1, to do this, we integrate by parts
∫

K
ω1 ∧ ωn−1

ϕt
=

∫

K
ω1 ∧ (ω̂t + i∂∂̄ϕt)

n−1 =

∫

K
ω1 ∧ ω̂n−1

t

+

∫

∂K
∂ϕt ∧ ω1 ∧

(
n−2∑

l=0

(
n− 1

l

)
ω̂lt ∧ (i∂∂̄ϕt)

n−2−l

)

6 C

because ϕt and its derivatives are all bounded on the boundary of K.
The last term in (5.10) is bounded because |∆ϕtϕ̇t|6 Cdt(x, y)

−2−β on X \K, so we have
∫

X\K
|∆ϕtϕ̇t|(y)dϕt(x, y)

2−2nωnϕt
(y) 6 C

∫

X\K
dt(x, y)

−2n−β 6 C

and we get our result. �

proof of Proposition 5.7. Note that we already know |∇g∞ϕ0| is bounded and decaying at

infinity, so it suffices to prove that it’s bounded near π−1
∞ (Xsing

0 ). Fix a compact set K

containing π−1
∞ (Xsing

0 ), then by Proposition 5.10, |∇vt|6 C, but on Xreg
0 , vt converges to

ϕ0 smoothly on compact sets, hence we get our result. �

The main goal of this gradient bound is to show the following.

Proposition 5.12. For any holomorphic section s ∈ H0(X0, L
k) satisfies

sup
K

|s|hk∞6 C

and

sup
K

|∇s|hk∞,kωϕ0
6 C

Proof. Locally we can write h∞ = e−ϕ0 ĥ0 where −i∂∂̄ log ĥ0 = ω̂0, since ω̂0 = π⋆ωFS on
K, we have simply h∞ = e−ϕ0hFS , and by the C0 bound for ϕ0, it follows that |s|hk∞6

C|s|hkFS
6 C. To see the bound for the gradient, we note

|∇hk∞
s|2hk∞,kωϕ0

= |∇hkFS
s+ k(∂ϕ0)s|hk∞,kωϕ0

6 |∇hkFS
s|hkFS,kωϕ0

+k|∇ϕ0|kωϕ0
|s|hk∞
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and by the gradient estimate (5.7) |∇ϕ0|kωϕ0
6 C, so the second term is bounded, and by

the estimate (5.1), we have |∇hkFS
s|hkFS ,kωϕ0

6 C|∇hkFS
s|hkFS ,kωFS

6 C and we get the bound

that we wanted. �

We will need the boundedness of |s|hk∞ and |∇s|hk∞,kωϕ0
to make the Moser iteration

argument work with cutoff functions in the next section.

5.2.2. L2 estimates on X0. The argument of this section follows in the same way as in [51],
with minor modifications.

We first quote a proposition stating the existence of good cutoff functions on X∞ from
[23].

Lemma 5.13. [23, Proposition 3.5] There exist cutoff functions ρε on X∞ satisfying the
following

(1) 0 6 ρε 6 1
(2) supp(ρε) ⊂⊂ R = Xreg

0
(3) For any compact set K ⊂⊂ R, there exist εK > 0 such that for all ε < εK , we have

ρε = 1 on K.
(4)

∫
X |∇ρε|2→ 0 as ε→ 0.

We recall the following version of Hormander’s L2 estimates for the ∂̄ equation.

Theorem 5.14. [20, Cor 5.3] Let (M,ω) be a Kähler manifold. Assume M is weakly
pseudoconvex. Let (L, h) be a Hermitian line bundle with curvature with (possibly) singular
Hermitian metric h, and suppose

−i∂∂̄ log h+ Ric(ω) > γ(x)ω

then for any β ∈ ∧0,1 ⊗L, with ∂̄β = 0, there exist a section s ∈ L satisfying ∂̄s = β with
∫

M
|s|2hωn 6

∫

M

1

γ
|β|2h,ωωn,

provided the integral on the RHS is finite.

Now we will prove a version of the above theorem on X equipped with a singular metric
ωϕ0 that we constructed. First we fix a Hermitian metric h0 on L such that −i∂∂̄ log h0 =
ω̂0, which is possibly by the ∂∂̄-Lemma.

Theorem 5.15. Let h∞ = e−ϕ0h0, so −i∂∂̄ log h∞ = ωϕ0, and K ⊂⊂ X a compact

subset with pseudoconvex boundary. Then for any β ∈ ∧0,1 ⊗Lk, with compact support and
supp(β) ⊂ Xreg

0 ∩K and ∂̄β = 0, there exist a section u ∈ H0(Lk) satisfying ∂̄u = β with
∫

K
|u|2hk∞ω

n
ϕ0

6

∫

K
|β|2hk∞,kωϕ0

ωnϕ0

Proof. By Assumption 1, we know that ω̂0 + i∂∂̄ψε > εω, which implies ω̂0 + ti∂∂̄ψε >

(1− t)ω̂0 + tεω. By the discussion in the previous sections, we can solve

ωnϕt
=
(
(1− t)ω̂0 + tεω + i∂∂̄ϕ̃t

)n
= in

2
Ω ∧ Ω̄

with ϕ̃t is bounded on any compact set K ⊂⊂ X, uniformly as t → 0 and ϕ̃t → ϕ0 in
L∞
loc(X) and in C∞

loc(X
reg
0 ). We pick a metric h0 on L such that −i∂∂̄ log h0 = ω̂0, then if

we set h̃t = e−tψε−ϕ̃th0, it satisfies

−i∂∂̄ log h̃kt = k(ω̂0 + ti∂∂̄ψε + i∂∂̄ϕ̃t) > kωϕt

By the previous lemma, we can always solve ∂̄ut = β, satisfying the estimate∫

K
|ut|2h̃kt ω

n
ϕt

6

∫

K
|β|2

h̃kt ,kωϕt
ωnϕt

=

∫

K
e−tkψε−kϕ̃t|β|2

hk0 ,kωϕt
ωnϕt
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Since β is compactly supported on Xreg
0 , ωϕt → ωϕ0 on the support of β, and e−tkψε → 1

in L1
loc, so we have

lim
t→0

∫

K
|β|2

h̃kt ,kωϕt
ωnϕt

=

∫

K
e−kϕ0 |β|2

hk0 ,kωϕ0
ωnϕ0

and since e−tkψε−kϕ̃t is bounded from below on any compact set K, it follows that
∫

K
|ut|2hk0 i

n2
Ω ∧ Ω̄ 6 C

∫

K
e−tkψε−kϕ̃t |ut|2hk0 i

n2
Ω ∧ Ω̄ = C

∫

K
|ut|2h̃kt ω

n
ϕt

6 C

hence there exist a weakly convergent subsequence ut ⇀ u in L2(K,hk0) and the equation
∂̄ut = β carries through the limit in the weak convergence, so we have ∂̄u = β. Since the
sections ut − u are holomorphic and weakly converge to 0, it follows that the convergence
is smooth it happens strongly, hence we have

∫

K
e−kϕ0 |u|2

hk0
in

2
Ω ∧ Ω̄ 6

∫

K
e−kϕ0 |β|2

hk0 ,ωϕ0
in

2
Ω ∧ Ω̄

�

Proposition 5.16. The following Sobolev inequality hold for f ∈ L∞ ∩H1(Xreg
0 , ω∞)

(∫

Xreg
0

|f |2 n
n−1ωn∞

)n−1
n

6 C

∫

Xreg
0

|∇f |2g∞ωn∞

Proof. Without loss of generality, we can assume f > 0. If f is supported in Xreg
0 , this

follows from [19]. For f ∈ L∞, we can define fε = fρε, fε is supported in Xreg
0 , then we

clearly have ‖fε‖L2→ ‖f‖L2 , and we also have
∫

X
|∇fε|2=

∫

X
ρ2ε|∇f |2+

∫

X
f2|∇ρε|2+2

∫

X
fρε〈∇f,∇ρε〉

the second and third term goes to 0 as ε → 0 because
∫
X |∇ρε|2→ 0, and this gives what

we wanted. �

Lemma 5.17. Suppose u > 0 is a bounded function on Xreg
0 that satisfy

∆ω∞u > −Au
then for R > 1 sufficiently large (so that Xsing

0 ⊂ BR(p)), we have the estimate

‖u‖L∞(BR(p))6 C(A+ CR−2)
n
2 ‖u‖L2(B2R(p))

Proof. Using the Sobolev inequality above and the cutoff function, we can doMoser iteration
on (Xreg

0 , g∞)

A

∫

X
η2ρ2εu

p+1ωn∞ >

∫

X
η2ρ2εu

p(−∆u)ωn∞

=
4p

(p+ 1)2

∫

X
η2ρ2ε|∇u

p+1
2 |2ωn∞ + 2

∫

X
ρ2εη(∇η · ∇u)upωn∞

+
4

(p+ 1)

∫

X
η2ρε(∇ρε · ∇u

p+1
2 )u

p+1
2 ωn∞

>
4p

(p+ 1)2

∫

X
η2ρ2ε|∇u

p+1
2 |2ωn∞ + 2

∫

X
ρ2εη(∇η · ∇u)upωn∞

− 4

(p+ 1)

(∫

X
η2ρ2ε|∇u

p+1
2 |2ωn∞

) 1
2
(∫

X
η2|∇ρε|2up+1ωn∞

) 1
2
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when u is bounded, we can take a limit as ε goes to 0 and the last term will disappear, so
we have

A

∫

X
η2up+1ωn∞ >

4p

(p+ 1)2

∫

X
η2|∇u p+1

2 |2ωn∞ +
4

p+ 1

∫

X
η(∇η · ∇u p+1

2 )u
p+1
2 ωn∞

>
3p

(p+ 1)2

∫

X
η2|∇u p+1

2 |2ωn∞ − 16

p

∫

X
|∇η|2up+1ωn∞

which implies

∫

X
|∇ηu p+1

2 |2ωn∞ 6
(p+ 1)2

p

∫

X
(Aη2 +

17

p
|∇η|2)up+1ωn∞

then by the Sobolev inquality from Proposition 5.16, we have for any p > 0,

(∫

X
|ηu|(p+1) n

n−1ωn∞

)n−1
n

6
C(p+ 1)2

p

∫

X
(Aη2 +

17

p
|∇η|2)up+1ωn∞

by carefully choosing cutoff functions 0 6 ηk 6 1 such that supp(ηk) ⊂ B(1+2−k)R, ηk = 1

on B(1+2−k−1)R and |∇ηk|6 CR−12k, and set pk = 2( n
n−1 )

k, then for k = 0, 1, 2, . . . we have

‖u‖pk
Lpk+1 (B

(1+2−k−1)R
)
6 C(Apk +CR−24k)‖u‖pkLpk (B

(1+2−k)R
)

iterating gives

sup
BR

u 6 C
n
2
sobC(2A+ CR−2)

n
2 ‖u‖L2(B2R)

�

We now prove L2 estimates for holomorphic sections of Lk.

Proposition 5.18. If s is a holomorphic section of (Lk, hk∞), then the following estimates

hold on (Xreg
0 , kg∞) for R large enough so that BR(p) contains all of Xsing

0 ,

sup
BR(p)

|s|hk∞6 C‖s‖L2
hk∞,kg∞

(B2R(p))

sup
BR(p)

|∇s|hk∞,kg∞6 C‖s‖L2
hk∞,kg∞

(B2R(p))

Proof. For a holomorphic section s, we have ∇j̄s = 0, so gij̄∇j̄∇is = −ns. It follows then
from standard calculations that

∆|s|> −n|s|
and

∆|∇s|> −(n+ 2)|∇s|
so now we can apply Lemma 5.17 with u = |s| and u = |∇s| to get

‖s‖L∞(BR)6 C‖s‖L2(B2R)

and

(5.11) ‖∇s‖L∞(BR)6 C‖∇s‖L2(B2R)
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and it suffices to show that ‖∇s‖L2(B2R)6 C‖s‖L2(B3R). We use integration by parts
∫

X
η2ρ2ε|∇s|2 =

∫

X
η2ρ2εhg

ij̄
∞∇is∇j̄ s̄ω

n
∞

= −
∫

X
η2ρ2εhg

ij̄
∞∇j̄∇iss̄ω

n
∞ − 2

∫

X
∇j̄(η

2ρ2ε)hg
ij̄
∞∇iss̄ω

n
∞

6 n

∫

X
η2ρ2ε|s|2+2

∫

X
ηρε(ρε|∇η|+η|∇ρε|)|s||∇s|

6 C

∫

X
(η2 + |∇η|2)ρ2ε|s|2+ε

∫

X
η2ρ2ε|∇s|2+C

∫

X
η2|∇ρε|2|s|2

taking ε to 0 gives ∫

X
η2|∇s|26 C

∫

X
(η2 + |∇η|2)|s|2

by choosing 0 6 η 6 1 so that supp(η) ⊂ B4R and η = 1 on B2R, this gives ‖∇s‖L2(B2R)6

‖s‖L2(B4R) Combined with estimate (5.11), this gives the desired estimates. �

Corollary 5.19. For any holomorphic sections s0, s1 ∈ H0(Lk|K) on K, the function
|si|hk∞ extends as a lipshitz function on K and this function vanishes precisely on the set

π−1
∞ ({si = 0}). Also, s0s1 extends as a locally Lipshitz function defined on the set {|s1|hk∞> 0}.

Proof. This follows immediately from Kato’s inequality

|∇|s|hk∞ |g∞6 |∇s|hk∞,kg∞6 C

∣∣∣∣∇
s0
s1

∣∣∣∣
g∞

6
|s1|hk∞ |∇s0|hk∞,kg∞+|s0|hk∞ |∇s1|hk∞,kg∞

|s1|2hk∞
6

C

|s1|2hk∞
and the fact that K = (K ∩Xreg

0 , g∞). �

In this section we prove that the map π∞ : X∞ → X0 is injective, hence it is an
isomorphism.

Proposition 5.20. For any p, q ∈ X∞ with p 6= q there exist an k = k(p, q) > 0 and
sp, sq ∈ H0(Lk) such that

|sp(p)|hk∞ , |sq(q)|hk∞>
2

5
and

|sp(q)|hk∞ , |sq(p)|hk∞6
1

3

Proof. This follows from the same argument as Proposition 3.9 in [51].
�

Proposition 5.21. The map π∞ : X∞ → X0 is an homeomorphism.

Proof. It’s clear that the map is surjective and restricts to a homeomorphism on Xreg
0 ⊂

X∞, it suffices to show that is seperates points near Xsing
0 . Given p, q ∈ K, suppose for a

contradiction that π∞(p) = π∞(q), then for any k > 0, and any two sections s0, s1 ∈ H0(K∩
Xreg

0 , Lk), by the normality of X0, we know that these two sections extend over the singular

set to two sections of s′0, s
′
1 ∈ H0(π∞(K), Lk), hence we must have s0(p)

s1(p)
= s0(q)

s1(q)
. But if

dX∞(p, q) > 0, then by the previous lemma, there exist k > 0 and we can construct sections
sp, sq ∈ H0(K ∩ Xreg

0 , Lk) such that |sp|hk∞(p), |sq|hk∞(q) > 2
5 > 1

3 > |sp|hk∞(q), |sq|hk∞(p)

which contradicts
sp(p)
sq(p)

=
sp(q)
sq(q)

.
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Observe that the singular set S ⊂ X∞ is closed and of finite diameter, from which we
can see that π∞ : X∞ → X0 is a proper map, hence closed, and this implies π−1

∞ is also
continuous. Thus π∞ is a homeomorphism. �

proof of Theorem 1.2. This is just a combination of Proposition 5.1, Proposition 5.5 and
Proposition 5.21. �

6. Examples and Applications

In this section we apply Theorems 1.1 and Theorem 1.2 to study certain explicit examples
of crepant resolutions.

6.1. Small Resolutions of Brieskorn-Pham cones. Consider the quasi-homogeneous
affine varieties

Yp,q = {xy + zp − wq = 0} ⊂ C4,

where we assume that p 6 q. These singularities, which are compound du Val of type
cAp are Gorenstein and log-terminal and by the main result of [12], Yp,q admits a conical
Calabi-Yau metric if and only if q < 2p. Let r denote the radial function of the Calabi-Yau
cone metric. The Euler vector field r ∂∂r associated with the cone structure is given by the
real part of the holomorphic vector Reeb field ξ acting on the coordinates (x, y, z, w) with
weights

3

2(p + q)
(pq, pq, 2q, 2p);

in particular, the Yp,q are quasi-regular Calabi-Yau cones. A result of Katz [33] says that
the Yp,q admits a small (and hence crepant) resolution µ : Y → Yp,p if and only if p = q. In
fact, Yp,p admits p inequivalent small resolutions

Y 1 Y 2 · · · Y p−1 Y p

Yp,p

µ1 µ2 µp−1 µp

with each pair Y i, Y j related by a flop; the p(p−1)
2 flops are in correspondence with the

reflections in the Weyl group of the Ap−1 Dynkin diagram [42]. When p = 2, this recovers
the Atiyah flop [1]. The exceptional locus of each contraction µj is a chain of p− 1 rational

curves with normal bundle (−1,−1) intersecting transversally. Explicitly, let ζ = e
2π

√
−1

p ,
and write

zp − wp =

p−1∏

j=0

(z − ζjw).

Fix 1 6 ℓ 6 p− 1 and consider the rational map νℓ : Yp,p → P1 defined by

(6.1) νℓ(x, y, z, w) = ([x :

ℓ∏

j=0

(z − ζjw)]) ∈ P1.

Then a small resolution µ : Y → Yp,p (say Y 1 for concreteness) is obtained by taking the
closure of the graph of

ν1 × · · · × νp−1 : Yp,p → P1
(1) × · · · × P1

(p−1).

There are also corresponding partial resolutions Y by projecting out some collection of the
νj. Fix 1 6 i 6 p, and let Y be any partial resolution whose contraction π̄ : Y → Yp,p
factors through νi. Clearly these resolutions are obtained by repeatedly blowing-up along
the lines x = z − ζjw = 0. There is a divisor Ei defined by −Ei = ν−1

i (p) for a generic
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point p ∈ P1, and these divisors satisfy OY (−Ei)|Exc(νi) = OP1(1), and OY (Ei) is trivial on

any other component of Exc(π̄). Furthermore, if Y is obtained from νi1 × · · · × νik then⊗k
j=1OY (−Eij)⊗ℓj is ample for any ℓj ∈ Z>0. These statements follows straightforwardly

from the corresponding statements for the blow-ups of the ambient C4.
Let us fix a small resolution µ : Y → Yp,p. By Hartog’s theorem the holomorphic Reeb

vector field extends over Exc(µ) and generates a holomorphic retraction onto Exc(µ). Thus
we have

H1,1(Y,R) =

p−1⊕

i=1

H1,1(P1
(i),R) =

p−1⊕

i=1

R · [Ei]

By the above discussion, the classes
∑p−1

i=1 (−ti)[Ei] are Kähler on Y , provided ti > 0 for
all i, and semi-positive for ti > 0. Each of these cohomology classes is 2-almost compactly
supported. Fix a class [α0] =

∑p−1
i=1 (−ti)[Ei] where ti > 0, and at least one tj = 0 and

let [ω] ∈ H1,1(Y,R) be any Kähler class. Let [ωt] = (1 − t)[α0] + t[ω] be a linear family of
Kähler classes. Then by [28] (see also [15]) there is an asymptotically conical Calabi-Yau
metric ωt,CY in [ωt] for all t > 0.

Since the cone at infinity is quasi-regular we can apply Lemma 3.3 to conclude that there
is a Kähler current in [α0] which is smooth on the complement of

V :=

{
P1
j ⊂ Y :

∫

P1
(j)

α0 = 0

}

Let Y be the partial resolution obtained by contracting V , and let π̂ : Y → Y be the
contraction map. If [α0] ∈ H1,1(Y,Q) then, by the preceding discussion, after rescaling we
can assume that [α0] = π∗c1(L) for some ample line bundle L → Y . Applying Theorem 1.1
and Theorem 1.2 we obtain

Proposition 6.1. In the above situation we have

(1) Y reg admits a smooth Ricci-flat metric ω̄, asymptotic to the Calabi-Yau metric on

Yp,p at infinity, and with (Y reg, ω̄) homeomorphic to Y .

(2) As t→ 0 (Y, ωt,CY ) converges in the Gromov-Hausdorff sense to (Y reg, ω̄).
(3) In particular, if we take [α0] = 0, the flops of the Yp,p are continuous in the Gromov-

Hausdorff sense.

Proof. The only point which is not an immediate consequence of Theorems 1.1 and 1.2 is the
third point. However, by the uniqueness part of Theorem 1.1, the limiting limiting Calabi-
Yau metric ω̄ on Yp,p is isometric to the conical Calabi-Yau metric from [12]. Alternatively,
this can be seen as follows. Let ωc denote the Calabi-Yau metric on Yp,p. Clearly tω1,CY is a

Calabi-Yau metric in t[ω] asymptotic to tωc. Let ξ̂ denote the extension of the holomorphic

Reeb vector field on Y , and, for λ ∈ C let ϕλ : Y → Y denote the λ-flow of ξ̂. Then
(
ϕ 1√

t

)∗
tω1,CY

is Calabi-Yau, asymptotic to ωc, and lies in the cohomology class t[ω] and hence is equal to
ωt,CY by the uniqueness results of [15]. From this description, and the convergence result
of Theorem 1.1 it follows that ωt,CY converges to µ∗iωc on compact sets of Y \Exc(µi). �

It’s not hard to check that if a partial resolution Y is obtained by blowing up 0 < k < p−1
lines x = z− ζjw = 0, then Y has an isolated singularity biholomorphic to a neighborhood
of the singular point in Yp−k,p−k. More precisely, suppose for simplicity that Y is obtained
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by blowing-up the lines x = z − ζjw = 0 for 0 6 j 6 k < p − 1. Then Y has an isolated
singularity biholomorphic to

Ỹp−k,p−k := {xy =

p−1∏

j=k

(z − ζjw)} ⊂ C4

which is deformation equivalent to Yp−k,p−k and admits a conical Calabi-Yau metric by
argument of [12]. The link of this singularity is topologically (p − k − 1)#(S2 × S3) and
it comes equipped with a Sasaki-Einstein metric. It was shown in [12] that the volume of
these Sasaki-Einstein metrics is given by

2(2(p − k))3

27(p − k)4
=

16

27(p − k)

Thus Y yields a cobordism between (p− k − 1)#(S2 × S3) and #(p− 1)(S2 × S3). It is
natural to expect that that the metric ω̄ on Y , close to the singular point, is close to the
conical Calabi-Yau metric on Ỹp−k,p−k. At the very least, we expect

Conjecture 2. Let (Y , d) denote the metric space obtained as the completion of (Y reg, ω̄).

Then the tangent cone to (Y , d) at the singular point is isometric to Ỹp−k,p−k equipped with
its conical Calabi-Yau metric.

Let y ∈ Y denote the singular point, and consider the function

R>0 ∋ r 7→ v(r) :=
Volω̄(Bω̄(y, r))

r6

Since (Y , ω) is Calabi-Yau, v(r) is monotone decreasing by the Bishop-Gromov comparison
theorem. Furthermore, assuming Conjecture 2, since ω̄ is asymptotic to the conical Calabi-
Yau metric on Yp,p we have

16

27(p − k)
= lim

r→0
v(r) > lim

r→+∞
v(r) =

16

27p
.

Note that the equality case of Bishop-Gromov already shows that if k = 0, then the metric
is conical.

While deducing k > 0 in this way is not particularly interesting, this discussion holds
for any asymptotically conical Calabi-Yau variety with or without singularities (indeed, a
smooth, asymptotically conical Calabi-Yau variety is naturally a cobordism between the
standard Sasaki-Einstein structure on the sphere and the link of the cone at infinity).
Suppose (Y , ω̄) is a asymptotically conical Calabi-Yau variety with asymptotic cone C∞,
and with a singular point y. Assume that a neighborhood of y is biholomorphic to a
neighborhood of an isolated singular point in some quasi-homogeneous affine variety C0

admitting a conical Calabi-Yau metric. Assuming that ω̄ is close to the Calabi-Yau metric
on C0 near the singularity at y, the volume ratio of geodesic balls centered at y will decrease
(by Bishop-Gromov) from the volume ratio of the cone v(C0) to the volume of ratio of the
cone at infinity, v(C∞). Since these volume ratios are algebraic invariants of the singularities
C0, C∞, this situation is obstructed in general; for example one cannot take C0 = Yp,p and
C∞ = Yp−k,p−k.

It is tempting to speculate that the volume function on Sasaki-Einstein structures could
give rise to a sort of Morse function on the space of Sasaki-Einstein manifolds. For two
Sasaki-Einstein manifolds S0, S∞ with corresponding cones C0, C∞ a Calabi-Yau space
(Y , ω̄) with an isolated singularity C0 and cone C∞ at infinity could be regarded as a kind
of flow line of the Morse function between S0 and S∞. We will give further examples of
this discussion below.
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6.2. Examples from Fano manifolds. Let us next indicate how to construct examples
starting from Fano manifolds with a different singular structure than the previous examples.
Suppose X is a Fano manifold of dimension n. Let X̃ = BlpX be the blow up of X at

a point and let Ẽ ⊂ X̃ be the exceptional divisor. Assume in addition that that X̃ is
Fano and −KX̃ is base-point free. Assume that X̃ has a Kähler-Einstein metric, or more

generally that the affine cone over X̃, Spec
⊕

m>0H
0(X̃,−K⊗m

X̃
), admits a conical Calabi-

Yau metric. This holds, for example, whenever X̃ is toric, by [26]. It is not difficult to
generate examples satisfying these assumptions. For example

• Let X = Pn, with p a torus invariant point. Then X̃ = BlpP
n is Fano and −KX̃ is

base point free. These manifolds do not admit Kähler-Einstein metrics, as can be
seen from Matsushima’s obstruction. However, they are toric, and so the theorem
of Futaki-Ono-Wang implies the existence of a Calabi-Yau cone metric on the affine
cone C := Spec

⊕
m>0H

0(X̃,−K⊗m
X̃

). Note that the conical Calabi-Yau structure

on C need not be quasi-regular, as happens for example when n = 2 [27, 26, 40].
• Let X be a del Pezzo surface with K2

X > 3, and p chosen sufficiently generic so that

X̃ = BlpX is Fano. The global generation of −KX̃ follows from Reider’s Theorem
[46]. Furthermore, a theorems of Tian-Yau [55] and Tian [52] say that X admits
a Kähler-Einstein metric if K2

X < 8. If, however, K2
X = 8, 9 then X does not

admit a Kähler-Einstein metric by Matsushima’s obstruction [43]. On the other

hand, in these latter examples, if p is chosen so that X̃ is toric, then the affine cone
Spec

⊕
m>0H

0(X̃,−K⊗m
X̃

) admits a conical Calabi-Yau metric thanks to results

of Futaki-Ono-Wang [26] (See also [12]). In these examples the Calabi-Yau cone
structure is not quasi-regular [40, 26].

Let Y = KX̃ be the total space of the canonical bundle, and let p : Y → X̃ be

the projection. The pull-back p∗ identifies H1,1(Y,R) = H1,1(X̃,R), and Y admits an
asymptotically conical Calabi-Yau metric in any Kähler class in H1,1(Y,R) [15]. Suppose
[α] ∈ H1,1(X,R) is a Kähler class, so that p∗[π∗α] ∈ H1,1(Y,R) is a nef class on Y ad-
mitting a semi-positive representative. By regarding the exceptional divisor of the blow-up
π : X̃ → X as a subvariety of the zero section in Y , we get a natural codimension 2 sub-
variety, E ⊂ Y (explicitly E = p−1(Ẽ) ∩ { zero section }). Our goal is to show that if
[ωt] = (1 − t)[p∗π∗α] + t[ω] ∈ H1,1(Y,R) and ωt,CY are conical Calabi-Yau metrics in [ωt]
then, as t → 0, (Y, ωt,CY ) Gromov-Hausdorff converges to a variety Z with an isolated,
Gorenstein, log-terminal singularity which is obtained from Y by contracting E to a point.
As a first step, we need to verify that Assumption 1 holds, since the failure of the cone at
infinity to be quasi-regular means that Lemma 3.3 does not apply in general.

Lemma 6.2. The cohomology class p∗[π∗α] contains a Kähler current which is smooth
outside of E.

Proof. It is a standard fact that we can choose a hermitian metric hẼ on OX̃(Ẽ) such that

(6.2) π∗α+ ε
√
−1∂∂ log hẼ > ωX̃

for some ε > 0 and ωX̃ a Kähler form on X̃ . Let sẼ denote the defining section of Ẽ ⊂ X̃.

After scaling we may assume that |sẼ|2hẼ< 1. The current T̃ := π∗α + ε
√
−1∂∂ log|sẼ |2hẼ

is a Kähler current on X̃ which is singular along Ẽ ⊂ X̃. Let hX̃ be a negatively curved
metric on KX̃ , and let s denote a coordinate on the fibers of KX̃ . We claim that

(6.3) T = p∗π∗α+
√
−1∂∂(|s|2h+ε log(p∗|sẼ|2hẼ+|s|2hX̃ ))

is a Kähler current. This can be verified by a straightforward calculation, which we leave
to the reader.
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�

The next step is to show that there is a space Z, and a map Φ : Y → Z which is
an isomorphism outside E and contracts E to a point, which is an isolated, Gorenstein
log-terminal singularity in Z. Let us begin with a local description of this map and the
resulting singularity. Note that the normal bundle of E ⊂ Y is given by

NE/Y = OPn−1(−1)⊕OPn−1(−(n− 1))

which follows from KX̃ = π∗KX + (n− 1)Ẽ. There is a contraction map

ν : OPn−1(−1)⊕OPn−1(−(n− 1)) → C

contracting the zero section of NE/Y to a point. Explicitly, this map is given by [41, Page
314]

NE/Y = Spec
⊕

m>0

Symm (OPn−1(1)⊕OPn−1((n − 1)))

→ Spec
⊕

m>0

H0
(
Pn−1,Symm (OPn−1(1) ⊕OPn−1((n− 1)))

)
= C0

Since

H0
(
Pn−1,Symm (OPn−1(1)⊕OPn−1((n − 1)))

)
= H0(P(NE/Y ),OP(NE/Y )(m))

we see that C0 is the affine cone over P(NE/Y ) obtained by blowing down the zero section
of OP(NE/Y )(−1). We claim that P(NE/Y ) is Fano. In general, the canonical bundle of a

projective bundle π : P(V ) → X, where V has rank r is given by

KP(V ) = OP(V )(−r − 1)⊗ π∗(detV ∗)⊗ π∗KX .

Applying this formula in the current scenario yields

KP(NE/Y ) = OP(NE/Y )(−3).

Since NE/Y is a direct sum of negative line bundles, OP(NE/Y )(3) is ample. It follows from

this that C0 has an isolated Gorenstein, log-terminal singularity and KC0 ∼ OC0 is trivial.
Finally, since NE/Y → Pn−1 is a direct sum of line bundles, P(NE/Y ) is toric. Therefore
the result of Futaki-Ono-Wang [26] (see also [12]) says that C0 admits a conical Calabi-Yau
metric for some choice of Reeb vector field.

Next we will globalize this construction using the input of an ample line bundle L on
X. First note that a section f ∈ H0(X̃,−K⊗m

X̃
) naturally induces a holomorphic function

f ∈ H0(Y,OY ) vanishing to order m on X̃ = { zero section } ⊂ Y . Let f1 . . . , fM be

generators of the coordinate ring
⊕

m>0H
0(X̃,−K⊗m

X̃
). Since −KX̃ is ample and globally

generated, the holomorphic functions f1 . . . , fM separate points and tangent vectors on
Y \X̃, and generate the normal bundle to X̃ in Y . Let L be a very ample line bundle on
X, and let {s0, . . . , sN} be a basis of H0(X,L). Fix coordinates (z1, . . . , zn) on X centered
at p. Up to making a linear change of coordinates we can assume that s0(p) 6= 0, and near
p we have

si(z)

s0(z)
= zi +O(z2) 1 6 i 6 n,

sj(z)

s0(p)
= O(z2) n 6 j 6 N

By inspection the sections {p∗π∗si}06i6N separate points and tangents in X̃\Ẽ and gen-

erate the normal bundle to Ẽ in X̃. Now consider the map Φ : Y → PN × PM defined
by

(6.4) Φ(z) := ([p∗π∗s0(z) : · · · : p∗π∗sN (z)], [1 : f1(z) : · · · : fM(z)]) ∈ PN × PM
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By the preceeding discussion this map is an isomorphism on Y \E, and Φ(E) = [1 : 0 :
· · · : 0] × [1 : 0 : · · · : 0]. Since the differential dΦ is an isomorphism on NE/Y , the germ
of Φ agrees with the contraction ν on NE/Y . Note also that Φ|X̃ = π (composed with
the imbedding X into projective space by sections of L). Let Z = Φ(Y ). From the local
description above Z has an isolated Gorenstein, log-terminal singularity, and KZ = OZ .
The map Φ : Y → Z is therefore a small, and hence crepant, resolution of Z. It follows
from the construction that we can describe Z has the relative spectrum

Z = Spec (KX ⊗mp) → X

where mp is the ideal sheaf of p ∈ X. In order to apply Theorems 1.1 and 1.2 it suffices to
show

Lemma 6.3. In the above setting, there is an ample line bundle L′ on Z such that
p∗c1(π

∗L) = Φ∗c1(L
′).

Proof. Since Z is normal and Φ is projective with connected fibers we have Φ∗OY = OZ ,
and f1, . . . , fM extend over the singular point to global sections of OZ . Furthermore, there
is a natural projection

p̂ : Z → X

obtained by projecting from Z onto the PN factor in (6.4) and we have π ◦p = Φ◦p = p̂◦Φ.
Thus

[p∗π∗s0 : · · · : p∗π∗sN ] = [p̂∗s0 : · · · : p̂∗sN ].
Combining this observation with the Segre embedding PN×PM →֒ P(N+1)(M+1)−1 it follows
that L′ := p̂∗L is ample on Z. Since

p∗c1(π
∗L) = Φ∗c1(p̂

∗L)

the lemma follows. �

We can now conclude

Corollary 6.4. With notation as above, consider the family of Kähler classes [ωt] = (1 −
t)p∗c1(π

∗L) + t[ω] ∈ H1,1(Y,R) for t > 0. Let ωt,CY be the asymptotically conical Kähler
metrics in [ωt]. Then there is a incomplete, asymptotically conical Calabi-Yau metric ω on

Zreg such that (Zreg, ω̄) = (Z, d) and

(Y, ωt,CY ) →GH (Z, d).

Proof. Combine Lemmas 6.2 6.3 with Theorems 1.1 and 1.2. �

It is again natural to conjecture

Conjecture 3. Let (Z, d) be the metric space structure on Z induced from Y by Theo-
rem 1.2. Then the tangent cone to (Z, d) at the singular point z ∈ Z is isometric to the
blow down of the zero section in OP(V )(−1) where

V := OPn−1(−1)⊕OPn−1(−(n− 1))

equipped with its conical Calabi-Yau metric.

Assuming this conjecture, the space Z can be viewed as a kind of cobordism between
Sasaki-Einstein manifolds, and the speculative discussion from Section 6.1 can be applied
in the same way.
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