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Online Mixed-Integer Optimization in
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Dimitris Bertsimas and Bartolomeo Stellato

March 24, 2021

Abstract

We propose a method to solve online mixed-integer optimization
(MIO) problems at very high speed using machine learning. By ex-
ploiting the repetitive nature of online optimization, we are able to
greatly speedup the solution time. Our approach encodes the optimal
solution into a small amount of information denoted as strategy using
the Voice of Optimization framework proposed in [BS21]. In this way
the core part of the optimization algorithm becomes a multiclass clas-
sification problem which can be solved very quickly. In this work, we
extend that framework to real-time and high-speed applications focus-
ing on parametric mixed-integer quadratic optimization (MIQO). We
propose an extremely fast online optimization algorithm consisting of
a feedforward neural network (NN) evaluation and a linear system so-
lution where the matrix has already been factorized. Therefore, this
online approach does not require any solver nor iterative algorithm.
We show the speed of the proposed method both in terms of total
computations required and measured execution time. We estimate
the number of floating point operations (flops) required to completely
recover the optimal solution as a function of the problem dimensions.
Compared to state-of-the-art MIO routines, the online running time of
our method is very predictable and can be lower than a single matrix
factorization time. We benchmark our method against the state-of-
the-art solver Gurobi obtaining from two to three orders of magnitude
speedups on examples from fuel cell energy management, sparse port-
folio optimization and motion planning with obstacle avoidance.
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1 Introduction

Mixed-integer optimization (MIO) has become a powerful tool for modeling
and solving real-world decision making problems; see [JLN+10]. While most
MIO problems areNP-hard and thus considered intractable, we are now able
to solve instances with complexity and dimensions that were unthinkable just
a decade ago. In [Bix10] the authors analyzed the impressive rate at which
the computational power of MIO grew in the last 25 years providing over a
trillion times speedups. This remarkable progress is due to both algorithmic
and hardware improvements. Despite these advances, MIO is still considered
harder to solve than convex optimization and, therefore, it is more rarely
applied to online settings.

Online optimization differs from general optimization by requiring on the
one hand computing times strictly within the application limits and on the
other hand limited computing resources. Fortunately, while online optimiza-
tion problems are not the same between each solve, only some parameters
vary and the structure remains unchanged. For this reason, online optimiza-
tion falls into the broader class of parametric optimization where we can
greatly exploit the repetitive structure of the problem instances. In particu-
lar, there is a significant amount of data that we can reuse from the previous
solutions.

In a recent work [BS21], the authors constructed a framework to predict
and interpret the optimal solution of parametric optimization problems using
machine learning. By encoding the optimal solution into a small amount of
information denoted as strategy, the authors convert the solution algorithm
into a multiclass classification problem. Using interpretable machine learning
predictors such as optimal classification trees (OCTs), Bertsimas and Stellato
were able to understand and interpret how the problem parameters affect the
optimal solutions. Therefore, they were able to give optimization a voice that
the practitioner can understand.

In this paper we extend the framework from [BS21] to online optimiza-
tion focusing on speed and real-time applications instead of interpretability.
This allows us to obtain an end-to-end approach to solve mixed-integer op-
timization problems online without the need of any solver nor linear system
factorization. The online solution is extremely fast and can be carried out
less than a millisecond reducing the online computation time by more than
two orders of magnitude compared to state-of-the-art algorithms.
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1.1 Contributions

In this work, by exploiting the structure of mixed-integer quadratic optimiza-
tion (MIQO) problems, we derive a very fast online solution algorithm where
the whole optimization is reduced to a neural network (NN) prediction and
a single linear system solution. Even though our approach shares the same
framework as [BS21], it is substantially different in the focus and the final
algorithm. The focus is primarily speed and online optimization applications
and not interpretability as in [BS21]. This is why, for our predictions, we
use non interpretable, but very fast, methods such as NNs. Furthermore, our
final algorithm does not involve any convex optimization problem solution as
in [BS21]. Instead, we just apply simple matrix-vector multiplications. Our
specific contributions include:

1. We focus on the class of MIQO instead of dealing with general mixed-
integer convex optimization (MICO) as in [BS21]. This allows us to
replace the final step to recover the solution with a simple linear sys-
tem solution based on the KKT optimality conditions of the reduced
problem. Therefore, the whole procedure does not require any solver
to run compared to [BS21].

2. To reduce the number of strategies in larger examples, we reassign the
samples to a lower number of selected strategies so that the average
suboptimality and infeasibility do not increase above certain tolerances.
We define this step as “strategy pruning” and formulate it as a large-
scale mixed-integer linear optimization (MILO). To provide solutions in
reasonable times, we develop an approximation algorithm that reassigns
the training samples according to the strategies appearing most often.

3. In several practical applications of MIQO, the KKT matrix of the re-
duced problem does not change with the parameters. In this work
we factorize it offline and cache the factorization for all the possible
solution strategies appearing in the data. By doing so, our online solu-
tion step becomes a sequence of simple forward-backward substitutions
that we can carry out very efficiently. Hence, with the offline factoriza-
tion, our overall online procedure does not even require a single matrix
factorization. Compared to [BS21], this further simplifies the online
solution step.
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4. After the algorithm simplifications, we derive the precise complexity of
the overall algorithm in terms of floating point operations (flops) which
does not depend on the problem parameter values. This makes the
execution time predictable and reliable compared to branch-and-bound
(B&B) algorithms which often get stuck in the tree search procedure.

5. We benchmark our method against state-of-the-art MIQO solver
Gurobi on sparse portfolio trading, fuel battery management and
motion planning examples. Thanks to the strategy pruning, we
obtain between few hundreds to less than 10,000 strategies for all the
examples. This allows to achieve high quality strategy predictions in
terms of suboptimality and infeasibility. In particular, the average
suboptimality is comparable to the one from Gurobi heuristics and
infeasibility is always within acceptable values for the applications
considered. Timing comparisons on these benchmarks, show up to
three orders of magnitude speedups compared to both Gurobi global
optimizer and Gurobi heuristics. The worst-case solution time of our
method is also up to three orders of magnitude smaller than the one
obtained with B&B schemes, enabling real-time implementations in
milliseconds.

1.2 Outline

The structure of the paper is as follows. In Section 2, we review recent work
on machine learning for optimization outlining the relationships and limi-
tations of other methods compared to approach presented in this work. In
addition, we outline the recent developments in high-speed online optimiza-
tion and the limited advances that appeared so far for MIO. In Section 3, we
introduce the Voice of Optimization framework from [BS21] for general MIO
describing the concept of solution strategy. In Section 4, we describe the
strategies selection problem as a multiclass classification problem and pro-
pose the NN architecture used in the prediction phase. We also introduce
a strategy pruning scheme to reduce the number of strategies. Section 5
describes the computation savings that we can obtain with problem with a
specific structure such as MIQO and the worst-case complexity in terms of
number of flops. In Section 6, we describe the overall algorithm with the
implementation details. Benchmarks comparing our method to the state-of-
the-art solver Gurobi examples with realistic data appear in Section 7.
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2 Related Work

2.1 Machine learning for optimization

Recently, the operations research community started to focus on systematic
ways to analyze and solve combinatorial optimization problems with the help
of machine learning. For an extensive review on the topic, we refer the reader
to [BLP18].

Machine learning has so far helped optimization in two directions. The
first one investigates heuristics to improve solution algorithms. Iterative
routines deal with repeated decisions where the answers are based on expert
knowledge and manual tuning. A common example is branching heuristics
in B&B algorithms. In general, these rules are hand tuned and encoded
into the solvers. However, the hand tuning can be hard and is in general
suboptimal, especially with complex decisions such as B&B algorithm be-
havior. To overcome these limitations, in [KBS+16], the authors learn the
branching rules without the need of expert knowledge showing comparable
or even better performance than hand-tuned algorithms. Other promising
results using ExtraTrees to learn branching rules appeared in [ALW17]. We
refer the reader to [LZ17] for a review on the intersection of machine learning
and branching.

Another example appears in [BLZ18] where the authors investigate
whether it is faster to solve MIQOs directly or as second-order cone opti-
mization (SOCO) problems by linearizing the cost function. This problem
becomes a classification problem that offers an advantage based on previous
data compared to how the decision is heuristically made inside off-the-shelf
solvers.

The second direction poses combinatorial problems as control tasks that
we can analyze under the reinforcement learning framework [SB18]. This is
applicable to problems with multistage decisions such as network problems
or knapsack-like problems. [DKZ+17] learn the heuristic criteria for stage-
wise decisions in problems over graphs. In other words, they build a greedy
heuristic framework, where they learn the node selection policy using a spe-
cialized neural network able to process graphs of any size [DDS16]. For every
node, the authors feed a graph representation of the problem to the network
and they receive an action-value pair suggesting the next node to select in
the optimal path.

Even though these two directions introduce optimization to the benefits
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of machine learning and show promising results, they do not consider the
parametric nature of problems solved in real-world applications. We often
solve the same problem formulation with slightly varying parameters several
times generating a large amount of data describing how the parameters affect
the solution.

Recently, this idea was used to devise a sampling scheme to collect all
the optimal active sets appearing from the problem parameters in continuous
convex optimization [MRN19]. While this approach is promising, it evaluates
online all the combinations of the collected active sets without predicting
the optimal ones using machine learning. Another related work appeared
in [KKK19] where the authors warm-start online active set solvers using the
predicted active sets from a machine learning framework. However, they
do not provide probabilistic guarantees for that method and their sampling
scheme is tailored to their specific application of quadratic optimization (QO)
for model predictive control (MPC).

In our work, we propose a new method that exploits the amount of data
generated by parametric problems to solve MIO online at high speed. In
particular we study how efficient we can make the computations using a
combination of machine learning and optimization. To the authors knowl-
edge, this is the first time machine learning is used to both reduce and make
more consistent the solution time of MIO algorithms.

2.2 Online optimization

Applications of online optimization span a wide variety of fields including
scheduling [CaPM10], supply chain management [YG08], hybrid model pre-
dictive control [BM99], signal decoding [DCB00].

Embedded optimization. Over the last decade there has been a significant
attention from the community for tools for generating custom solvers for on-
line parametric programs. CVXGEN [MB12] is a code generation software
for parametric QO that produces a fast and reliable solver. However, its code
size grows dramatically with the problem dimensions and it is not applicable
to large problems. More recently, the OSQP solver [SBG+20] showed remark-
able performance with a light first-order method greatly exploiting the struc-
ture of parametric programs to save computation time. The OSQP authors
also proposed an optimized version for embedded applications in [BSM+17].
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Other solvers that can exploit the structure of parametric programs in online
settings include qpOASES [FKP+14] for QO and ECOS [DCB13] for SOCO.

Parametric MIQO. All previously mentioned approaches focus on continu-
ous convex problems with no integer variables such as QO. This is because of
two main reasons. On the one hand, mixed-integer optimization algorithms
are far more complicated to implement than convex optimization ones since
they feature a massive amount of heuristics and preprocessing. This is why,
there is still a huge gap in performance between open-source and commercial
solvers for MIO. On the other hand, for many online applications, the solution
time required to solve MIO problems is still not compatible with the amount
of time allowed. An example is hybrid MPC where depending on the system
dynamics, we have to solve MIO problems online in fractions of a second.
Explicit hybrid MPC tackles this issue by precomputing offline the entire
mapping between the parameter space to the optimal solution [BMDP02].
However, the memory required for storing such solutions grows exponentially
with the problem dimensions and this approach easily becomes intractable.

Suboptimal heuristics. Other approaches solve these problems only subop-
timally using heuristics to deal with insufficient time to compute the globally
optimal solution. Examples include the Feasibility Pump heuristic [FGL05]
that iteratively solves linear optimization (LO) subproblems and rounds their
solutions until it finds a feasible solution for the original MIO problem. An-
other heuristic works by integrating the alternating direction method of mul-
tipliers (ADMM) [DTB18] with rounding steps to obtain integer feasible
solutions for the original problem. The downside of these heuristics is that
they do not exploit the large amount of data that we gain by solving the
parametric problems over and over again in online settings.

Warm-starting. In order to speedup subsequent solves, several works focus
on warm-starting B&B algorithms [GHW15, RG06], which, in some cases,
can significantly reduce the solution time. However, there can be three pos-
sible reasons for which warm-starting can bring no significant benefits. First,
previous solutions can be infeasible for the current problem and, therefore,
not useful to create bounds to quickly prune branches in the B&B tree. Sec-
ond, many commercial solvers apply fast heuristics that can quickly obtain
good feasible solutions. In case these solutions are as good or better than
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the provided one, warm-starting does not bring any benefit; see, e.g., [GO20,
Start variable attribute]. Third, in B&B algorithms the vast majority of
time is usually spent to prove optimality and we are not able to significantly
reduce it with a warm-started solution [GHW15, Section 4]. Instead of pro-
viding only the previous optimal solution, we can pass the previous B&B tree
and adapt the nodes according to parameter changes [MT19]. This technique
can sometimes greatly reduce the number of QOs solved. However, it still
requires a B&B algorithm to complete, which might be too slow in fast real-
time settings. Compared to warm-starting approaches, our method does not
directly exploit the previous solution to accelerate the algorithm. However,
it uses history of several previous solution to learn how it changes with data.

Value function approximations. Parametric MIQO have also been studied
in terms of how the optimal cost changes with the parameters, i.e., the value
function. The authors of [HR14] propose an iterative scheme to dynami-
cally generate points to construct approximations of the value function with
applications to stochastic integer and bilevel integer optimization problems.
Constructing value functions to solve stochastic MIO has been studied also
in [TPS19, TPS13]. Depending on the structure and convexity of the value
function approximation, the resulting problem can have different approxima-
tion quality and tractability. In this work, however, instead of computing
a value function to reformulate the objective of our optimization problem,
we directly encode the optimal solution as the output of a machine learning
predictor. In this way, no matter how complex or nonconvex the predictor
is, we can obtain very short computation times.

Our approach. Despite all these efforts in solving MIO online, there is still
a significant gap between the solution time and the real-time constraints of
many applications. In this work, we propose an alternative approach that ex-
ploits data coming from previous problem solutions with high-performance
MIO solvers to reduce the online computation time making it possible to
apply MIO to online problems that were not approachable before. The ap-
proach proposed in this paper has already been applied to control problems
in robotics in [CCS+20] by exploiting the application-specific structure of the
constraints.
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3 The Voice of Optimization

In this section we introduce the idea of the optimal strategy following the
same framework first introduced in [BS21]. Given a parameter θ ∈ Rp, we
define a strategy s(θ) as the complete information needed to efficiently recover
the optimal solution of an optimization problem.

Consider the mixed-integer optimization problem

minimize f(θ, x)
subject to g(θ, x) ≤ 0,

xI ∈ Zd,
(1)

where x ∈ Rn is the decision variable and θ ∈ Rp defines the parameters
affecting the problem. We denote the cost as f : Rp×Rn → R and the con-
straints as g : Rp×Rn → Rm. The vector x?(θ) denotes the optimal solution
and f(θ, x?(θ)) the optimal cost function value given the parameter θ.

Optimal strategy. We now define the optimal strategy as the set of tight
constraints together with the value of integer variables at the optimal solu-
tion. We denote the tight constraints T (θ) as constraints that are equalities
at optimality,

T (θ) = {i ∈ {1, . . . ,m} | gi(θ, x?(θ)) = 0}. (2)

Hence, given the T (θ) all the other constraints are redundant for the original
problem.

If we assume linear independence constraint qualification (LICQ), the
number of tight constraints is at most n because the tight constraints gra-
dients at the solution ∇gi(θ, x?(θ)) ∈ Rn, i ∈ T (θ) are linearly indepen-
dent [NW06, Section 12.2]. When LICQ does not hold, the number of
tight constraints can be more than the number of decision variables, i.e.,
|T (θ)| > n. However, in practice the number of tight constraints is signifi-
cantly lower than the number of constraints m, even for degenerate problems.
This means that for many applications where the number of constraints is
larger than the number of variables, by knowing T (θ), we can neglect a large
number of redundant constraints at the optimal solution.

When some of the components of x are integer, we cannot easily compute
the optimal solution by knowing only T (θ). This is because the solution
retrieval would involve a MIO problem to identify the integer components of
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x. However, after fixing the integer components to their optimal values x?I(θ),
the tight constraints allow us to efficiently compute the optimal solution.
Hence the strategy identifying the optimal solution is a tuple containing the
index of tight constraints at optimality and the optimal value of the integer
variables, i.e., s(θ) = (T (θ), x?I(θ)).

Solution method. Given the optimal strategy, solving (1) corresponds to
solving the following optimization problem

minimize f(θ, x)
subject to gi(θ, x) ≤ 0, ∀i ∈ T (θ)

xI = x?I(θ),
(3)

Solving (3) is much easier than (1) because it is continuous, convex and has
a smaller number of constraints. Note that, we cannot in general enforce
gi(θ, x) = 0 for the tight constraints because it would make (3) nonconvex.
However, we can enforce equalities when gi are linear in x [BV04]. Since
it is a very fast and direct step, we will denote it as solution decoding. In
Section 5 we describe the details of how to exploit the structure of (3) and
compute the optimal solution online at very high speeds.

4 Machine Learning

In this section, we describe how we learn the mapping from the parameters
θ to the optimal strategies s(θ). In this way, we can replace the hardest part
of the optimization routine by a prediction step in a multiclass classification
problem where each strategy is a class label.

4.1 Multiclass Classifier

Our classification problem features data points (θi, si), i = 1, . . . , N where
θi ∈ Rp are the parameters and si ∈ S the corresponding labels identifying
the optimal strategies. Set S is the set of strategies of cardinality |S| = M .
Our goal is to predict ŝi so that it is as close as possible to the true si given
sample θi.

We solve the classification task using NNs. NNs have recently become the
most popular machine learning method radically changing the way we classify
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in fields such as computer vision [KSH12], speech recognition [HDY+12],
autonomous driving [BDTD+16], and reinforcement learning [SSS+17].

In this work we choose feedforward neural networks because they offer
a good balance between simplicity and accuracy without the need of more
advanced architectures such as convolutional or recurrent NNs [LBH15].

Architecture. We deploy a similar architecture as in [BS21] consisting of L
layers defining a composition of functions of the form

ŝ = hL(hL−1(. . . h1(θ))),

where each layer consists of

yl = hl(yl−1) = σl(Wlyl−1 + bl), i = 1, . . . , L, (4)

where yl ∈ Rnl . We define the input layer as l = 1 and the output layer as
l = L so that y0 = θ and yL = ŝ.

Each layer performs an affine transformation with parameters
Wl ∈ Rnl×nl−1 and bl ∈ Rnl . In addition, it includes an activation
function σ : Rnl → Rnl to model nonlinearities. Inner layers feature
a rectified linear unit (ReLU) defined as

σl(x) = max(x, 0), l = 1, . . . , L− 1,

where the max operator is intended elementwise. The ReLU operator has
become popular because it promotes sparsity to the model outputting 0 for
the negative components of x and because it does not experience vanishing
gradient issues typical in sigmoid functions [GBC16].

The output layer features a softmax activation function σL(x) ∈ RM to
provide a normalized ranking between the strategies and quantify how likely
they are to be the correct one. Softmax activation functions are very com-
mon in multiclass classification because of their smoothness and the prob-
abilistic interpretation of their output as the relative importance between
classes [GBC16, Section 6.2.2.3]. We can write the output layer as

(σL(x))j =
exj∑M
j=1 e

xj
,

where 0 ≤ σL(x) ≤ 1 because of the nonnegativity of the exponential functon
and the normalization factor.
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Learning. In order to define a proper cost function and train the network
we rewrite the labels as a one-hot encoding, i.e., sohi ∈ RM where M is
the total number of classes and all the elements of sohi are 0 except the one
corresponding to the class which is 1. Then we define a smooth cost function,
i.e., the cross-entropy loss for which gradient descent-like algorithms work
well

LNN =
N∑
i=1

−(sohi )T log(ŝi),

where log is intended elementwise. This loss L can also be interpreted as
the distance between the predicted probability density of the labels and to
the true one. The training step consists of applying the classic stochastic
gradient descent with the derivatives of the cost function obtained using the
back-propagation rule.

Online predictions. After we complete the model training, we aim at pre-
dicting the optimal strategy given θ. In general, the NN prediction works
well when the neural network is able to capture the structure of the solu-
tion for the values of θ encounceted in practice. However, the model can
never be perfect and there can be situations where the prediction is not cor-
rect, thereby providing suboptimal or infeasible solutions. To overcome these
possible limitations, instead of considering only the best class predicted by
the NN, we pick the k most-likely classes. Afterwards, we can evaluate in
parallel their feasibility and objective value and pick the feasible one with
the best objective.

4.2 Strategies Exploration

It is difficult to estimate the amount of data required to accurately learn
the classifier for problem (1). In particular, given N independent samples
ΘN = {θ1, . . . , θN} drawn from an unknown discrete distribution, we find M
different strategies S(ΘN) = {s1, . . . , sM}. How likely is it to encounter new
strategies in the next sample θN+1?

Following the approach in [BS21], we use the same algorithm to iteratively
sample and estimate the probability of finding unseen strategies

P(s(θN+1) /∈ S(ΘN)).
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First, we define the Good-Turing estimator [Goo53] as

G = N1/N, (5)

where N1 is the number of distinct strategies appeared exactly once and
N the total number of samples. Then, using the estimator, we bound the
probability of finding unseen strategies by applying the following result

Theorem 4.1 (Missing strategies bound [BS21]). The probability of encoun-
tering a parameter θN+1 corresponding to an unseen strategy s(θN+1) satisfies
with confidence at least 1− β

P(s(θN+1) /∈ S(ΘN)) ≤ G+ c
√

(1/N) ln(3/β), (6)

where G corresponds to the Good-Turing estimator (5) and c = (2
√

2 +
√

3).

In the offline phase, given a desired probability guarantee ε > 0 and
confidence interval β > 0, we sample strategies and update G until the right
hand side bound falls below ε, as outline ind Algorithm 1 [BS21].

Algorithm 1 Strategies exploration [BS21]

1: given ε, β,Θ = ∅,S = ∅, u =∞
2: for k = 1, . . . , do
3: Sample θk and compute s(θk) . Sample parameter and strategy.
4: Θ← Θ ∪ {θk} . Update set of samples.
5: if s(θk) /∈ S then
6: S ← S ∪ {s(θk)} . Update strategy set if new strategy found

7: if G+ c
√

(1/k) ln(3/β) ≤ ε then . Break if bound less than ε
8: break
9: return k,Θ,S

4.3 Strategy Pruning

For some problems, the number of strategies M can quickly grow, thereby
making the multiclass classification task very difficult. Fortunately, different
strategies are often redundant because they correspond to multiple global
optima and we can select only the relevant strategies to apply.
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Mixed-integer linear optimization modelling. For every sample i and
strategy j, we can compute the solution to the reduced problem (3) ob-
taining an objective value Fij. If the reduced problem is infeasible, we set
Fij = ∞. To simplify the notation, we refer to f ?i = f(θi, x

?(θi)) as the
optimal objective value for sample θi. We model the sample i to strategy
j assignments with variables xij ∈ {0, 1}. Variables pj ∈ {0, 1} describe
whether strategy j is picked for discarded. The objective is to minimize the
number of strategies selected such that the relative cost degradation for each
sample i is less than a tolerance ε. The pruning problem can be formulated
as the following MILO,

minimize
∑M

j=1 pj

subject to
∑M

j=1 Fijzij ≤ f ?i + ε |f ?i | , i = 1, . . . , N∑M
j=1 zij = 1, i = 1, . . . , N,

zij ≤ pj, i = 1, . . . , N, j = 1, . . . ,M,
p ∈ {0, 1}M , z ∈ {0, 1}N×M ,

(7)

where |·| is the absolute value. Unfortunately, it is very costly to con-
struct problem (7) because it involves computing Fij for every combination
of samples and strategies. For example, if we have 100,000 samples and 2,000
strategies, we need to solve 200,000,000 reduced problems which can be very
challenging, even in the specialized cases from Section 5. In addition, despite
recent advances of MILO solvers, (7) with millions of binary variables are
often intractable. Therefore, we implement a simpler pruning technique.

Frequency-based heuristic. In most cases, the majority of the samples is
assigned to a few strategies and the rest of the strategies appear very rarely.
Therefore, if we select the most frequent strategies, we cover the majority
of the samples. In this way, we have to reassign only a small portion of
the samples to the selected strategies without having to compute Fij for
every sample-strategy combination. The whole procedure is outlined in Al-
gorithm 3. Given α ∈ (0, 1), the function SelectFrequentStrategies in
Algorithm 2 selects the most frequent strategies Sα appearing in at least 1−α
fraction of samples. Then, the algorithm selects the discarded samples Θd

that were not assigned to any strategy in Sα. These samples are then reas-
signed by comparing their cost fij with every selected strategy in Sα. If there
is at least a sample for which the best reassigned strategy cost ri is above
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Algorithm 2 (SelectFrequentStrategies) Select most frequent strate-
gies that are assigned to at least 1− α fraction of samples.

input α, {s(θi)}Ni=1,S
output Sα
t← 0, Sα ← ∅
for s ∈ S do

qs ← |{s(θi) = s, i = 1, . . . , N}| . Compute strategy occurrences.

v ← ReverseArgsort(q) . Sort strategies by decr. occurrences.
for ` ∈ v do . Iterate for every strategy `

t← t+ q` . Update number of samples.
Sα ← Sα ∪ {`}
if t > d(1− α)Ne then break

the tolerance, i.e., ri > f ?i + ε |f ?i |, then α is reduced to α/2 to account for
more strategies and fewer discarded samples and the iterations are repeated.
Otherwise, we found a strategy pruning and sample assignment satisfying
tolerance ε and the algorithm terminates. If we reach the maximum number
of iterations, it means that there is no feasible assignment given the specified
tolerance and the last value of fraction of discarded samples α. Compared to
solving problem (7), this method relies on the samples-strategy computation
of just a small portion of discarded samples. In addition, there is no need
to solve any large-scale MILO, which makes it much more scalable to large
settings. The downside of this heuristic approach is that the best strategy
assignment uses the most frequent strategies, which might not always be the
optimal one. However, for small problems where the MILO is solvable, the
heuristic solution always gives similar number of pruned strategies as MILO
while always satisfying, by construction, the cost function degradation con-
straint.

5 High-Speed Online Optimization

Thanks to the learned predictor, our method offers great computational
savings compared to solving each problem instance from scratch. In ad-
dition, when the problem offers a specific structure, we can gain even further
speedups and replace the whole optimizer with a linear system solution.
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Algorithm 3 Prune strategies while keeping feasibility and low suboptimal-
ity

input {(θi, s(θi))}N1 ,S
output S
α← 0.05
for it = 1, . . . ,maxit do
Sα ← SelectFrequentStrategies(α, {s(θi)}Ni=1,S)
Θd ← {θi | s(θi) /∈ Sα} . Select discarded samples
for θi ∈ Θd do

for sj ∈ Sα do
Fij ← Solve (3) . Compute sample-strategy pairs

ri ← minj(Fij) . Reassign sample i to best strategy
if ri ≤ f ?i + ε |f ?i | then . Suboptimality condition satisfied

break
α← α/2

return S

Two major challenges in optimization. By using our previous solutions,
the learned predictor maps new parameters θ to the optimal strategy replac-
ing two of the arguably hardest tasks in numerical optimization algorithms:

Tight constraints. Identifying the tight constraints at the optimal solution
is in general a hard task because of the combinatorial complexity to
search over all the possible combinations of constraints. For this reason,
the worst-case complexity of active-set methods (also called simplex
methods for LO) is exponential in the number of constraints [BT97].

Integer variables. It is well known that finding the optimal solution of
mixed-integer programs is NP-hard [BW05]. Hence, solving prob-
lem (1) online might require a prohibitive computation time because of
the combinatorial complexity of computing the optimal values of the
integer variables.

We solve both these issues by evaluating our predictor that outputs the opti-
mal strategy s(θ), i.e., the tight constraints at optimality T (θ) and the value
of the integer variables x?I(θ). After evaluating the predictor, computing the
optimal solution consists of solving (3) which we can achieve much more
efficiently than solving (1), especially in case of special structure.
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Special structure. When g is a linear function in x we can directly con-
sider the tight constraints as equalities in (3) without losing convexity. In
these cases (3) becomes a convex equality constrained problem that can be
solved via Newton’s method [BV04, Section 10.2]. We can further simplify
the online solution in special cases such as MIQO (and also MILO) of the
form

minimize (1/2)xTPx+ qTx+ r
subject to Ax ≤ b

xI ∈ Zd,
(8)

with cost P ∈ Sn+, q ∈ Rn, r ∈ R and constraints A ∈ Rm×n and b ∈ Rm. We
omitted the dependency of the problem data on θ for ease of notation. Given
the optimal strategy s(θ) = (T (θ), x?I(θ)), computing the optimal solution
to (8) corresponds to solving the following reduced problem from (3)

minimize (1/2)xTPx+ qTx+ r
subject to AT (θ)x = bT (θ)

xI = x?I(θ).
(9)

Since it is an equality constrained QO, we can compute the optimal so-
lution by solving the linear system defined by its KKT conditions [BV04,
Section 10.1.1]  P ATT (θ) ITI

AT (θ) 0
II

[x
ν

]
=

 −qbT (θ)
x?I(θ)

 . (10)

Matrix I is the identity matrix. Vectors or matrices with a subscript index
set identify only the rows corresponding to the indices in that set. ν are the
dual variables of the reduced continuous problem. The dimensions of the
KKT matrix are q × q where

q = n+ |T (θ)|+ d. (11)

We can apply the same method to MILO by setting P = 0. In case no integer
variables are present (d = 0), the strategy identifies only the tight constraints
and the dimension of the linear system (10) reduces to n+ |T (θ)|.

5.1 The Efficient Solution Computation

In case of MIQO, solving the linear system (10) corresponds to computing
the solution to (8). Let us analyze the components involved in the online
computations to further optimize the solution time.
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Linear system solution. The linear system (10) is sparse and symmetric
and we can solve it with both direct methods and indirect methods. Re-
garding direct methods, we compute a sparse permuted LDLT factoriza-
tion [Dav06] of the KKT matrix where L is a square lower triangular matrix
and D a diagonal matrix both with dimensions q × q. The factorization
step requires O(q3) number of flops which can be expensive for large sys-
tems. After the factorization, the solution consists only in forward-backward
solves which can be evaluated very efficiently and in parallel with complexity
O(q2). Alternatively, when the system is very large, we can use an indi-
rect method such as MINRES [PS82] to iteratively approximate the solution
by using simple matrix-vector multiplications at each step with complexity
O(q2). Note that indirect methods while more amenable for large problems,
can suffer from bad scaling of the matrix data, requiring many steps before
convergence.

Matrix caching. In several cases, θ does not affect the matrices P and
A in (8). In other words, θ enters only in the linear part of the cost and
the right hand side of the constraints and does not affect the KKT matrix
in (10). This means that, since we know all the strategies that appeared
in the training phase, we can factor each of the KKT matrices and store
the factors L and D offline. Therefore, whenever we predict the strategy
related to a new parameter θ, we can just perform forward-backward solves
to obtain the optimal solution without having to perform a new factorization.
This step requires O(q2) flops – an order of magnitude less than factorizing
the matrix.

Parallel strategy evaluation. In Section 4.1 we explained how we trans-
form the strategy selection into a multiclass classification problem. Since we
have the ability to compare the quality of different strategies in terms of op-
timality and feasibility, online we choose the k most likely strategies from the
predictor output and we compare their performance. Since the comparison
is completely independent between the candidate strategies, we can perform
it in parallel saving additional computation time.
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5.2 Online Complexity

We now measure the online complexity of the proposed approach in terms of
flops. The first step consists in evaluating the neural network with L layers.
As shown in (4), each layer consists in a matrix-vector multiplication and
additions Wlyl−1 + bl which has order O(nlnl−1) operations [BV04, Section
C.1.2]. The ReLU step in the layer does not involve any flop since it is a sim-
ple truncation of the non positive components of the layer input. Summing
these operations over all the layers, the complexity of evaluating the network
becomes

O(n1np + n2n1 + · · ·+ nMnL−1) = O(nMnL−1),

where p is the dimension of the parameter θ and we assume that the number
of strategies M is larger than the dimension of any layer. Note that the
final softmax layer, while being very useful in the training phase and in
its interpretation as likelihood for each class, is unnecessary in the online
evaluation since we just need to rank the best strategies.

After the neural network evaluation, we can decode the optimal solution
by solving the KKT linear system (10) of dimension defined in (11). Since
we already factorized it, the online computations are just simple forward-
backward substitutions as discussed in Section 5.1. Therefore, the flops re-
quired to solve the linear system are

O((n+ |T (θ)|+ d)2).

This dimension is in general much smaller than the number of constraints
m and mostly depends only on the problem variables. In addition the KKT
matrix (10) is sparse and if the factorization matrices are sparse as well, we
could further reduce the flops required.

The overall complexity of the complete MIQO online solution taking into
account both NN prediction and solution decoding becomes

O(nMnL−1 + (n+ |T (θ)|+ d)2), (12)

which does not depend on the cube of any of the problem dimensions. This
means that with dense matrices, our method is asymptotically cheaper than
factorizing a single linear system since that operation would scale with the
cube of its input data. For sparse matrices, we can make similar consid-
erations based on the number of nonzero elements instead of the dimen-
sions [Dav06].
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Despite these high-speed considerations on the number of operations re-
quired, it is very important to remark the reliability of the computation time
required by our approach. The execution time of B&B algorithms greatly
depends on how the solution search tree is analyzed and pruned. This can
vary significantly when problem parameters change making the whole online
optimization procedure unreliable in real-time applications. On the contrary,
our method offers a fixed number of operations which we evaluate every time
we encounter a new parameter.

6 Machine Learning Optimizer

Our implementation extends the software tool machine learning optimizer
(MLOPT) from [BS21] which is implemented in Python and integrated with
CVXPY [DB16] to model the optimization problemsMLOPT is available at

https://github.com/bstellato/mlopt.

To speedup the repetitive canonicalizations of parametric MIQO we use
the disciplined parametric program (DPP) language introduced in CVXPY
1.1 [AAB+19]. In this way, independently from how the parameters affect the
data, constructing a new problem instance given a new θi consists of a sparse
matrix-vector multiplication [AAB+19, Section 4.2, matrix C]. MLOPT re-
lies on the Gurobi Optimizer [GO20] to solve the problems in the training
phase with high accuracy and identify the tight constraints.

After MLOPT collects the strategies, we apply Algorithm 3 to select
the most frequent ones and reassign the samples accordingly. This process
is performed in parallel over multiple cores to minimize the independent
evaluations. Then, MLOPT passes the data to PyTorch [PGC+17] using
Pytorch-Lightning [Fal19] library to define the architecture and train the
NN to classify the strategies. We split the training data into 80 % train-
ing and 20 % validation. We tune the neural network parameters (inter-
val): depth ([3, 15]), width ([4, 128]), learning rate ([10−5, 10−1]), batch size
([32, 256]), and number of epochs ([5, 30]) using the Optuna hyperparameter
framework [ASY+19] to exploit high parallelization and early pruning.

In addition to the MLOPT framework in [BS21], we include a specialized
solution method for MIQO based on the techniques described in Section 5
where we factorize and cache the factorization of the KKT matrices (10)
for each strategy of the problem to speedup the online computations. Note
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Figure 1: Algorithm implementation

that the memory requirements of this step are not limiting since the stored
matrices are in general very sparse and involve a reduced version of the
original optimization problem.

As outlined in Section 5, when we classify online using the NN, we pick
the best k strategies and evaluate them in parallel, in terms of objective
function value and infeasibility, to choose the best one. This step requires
a minimal overhead since the matrices are all factorized and we can execute
the evaluations in parallel.

We also parallelize the training phase where we collect data and solve
the problems over multiple CPUs. The NN training takes place on a GPU
which greatly reduces the training time. An overview of the online and offline
algorithms appears in Figure 1.

7 Computational Benchmarks

In this section, we benchmark our learning scheme on multiple parametric
examples from continuous and mixed-integer problems. We compare the pre-
dictive performance and the computational time required by our method to
solve the problem compared to using GUROBI Optimizer [GO20]. We run
Gurobi with warm-starting enabled in order to reuse the solution obtained
from the previous parameter value θi. We execute it in two variants: default
settings and “heuristic” mode with time limit of 1 second (TimeLimit=1) and
focus on feasibility (MIPFocus=1). We report the execution time of all the
compared methods in seconds. In these example, the MLOPT NN prediction
takes always less than 0.5 ms. Therefore, almost all the reported MLOPT

21



time consists of strategies evaluation. We run the experiments on the Prince-
ton Institute for Computational Science and Engineering (PICSciE) facility
exploiting 16 parallel Intel Broadwell e5-2680v4 cores for the data collection
involving the problems solution and a NVIDIA P100 GPUs for the neural
network training. We execute both MLOPT and GUROBI only on CPUs
in the online phase. For each problem, we sample 100,000 parameters θi to
collect the strategies. We choose this number because the NN training works
better with a large number of data points. Note that, thanks to the multi-
ple cores and the code parallelizations, we were able to train the algorithm
between a few hours and less than a day, even for problems that take up to
hundreds of seconds to solve with Gurobi. We run MLOPT with the default
parameters described in Section 6.

In addition, for all the examples, the Good-Turing estimator condition
from Section 4.2 was always satisfied for ε = 0.001. We use 10, 000 samples
in the test set of the algorithm.

Infeasibility and suboptimality. We follow the same criteria for calculating
the relative suboptimality and infeasibility as in [BS21]. We repeat them here
for completeness. After the learning phase, we compare the predicted solution
x̂?i to the optimal one x?i obtained by solving the instances from scratch.
Given a parameter θi, we say that the predicted solution is infeasible if the
constraints are violated more than εinf = 10−4 according to the infeasibility
metric

p(x̂?i ) = ‖(g(θi, x̂
?
i ))+‖∞/r(θi, x̂?i ),

where r(θ, x) normalizes the violation depending on the size of the summands
of g. In case of MIQO, g(θ, x) = A(θ)x− b(θ) and r(θ, x) = ‖b(θ)‖∞. If the
predicted solution x̂?i is feasible, we define its suboptimality as

d(x̂?i ) = (f(θi, x̂
?
i )− f(θi, x

?
i ))/|f(θi, x

?
i )|,

where f is the objective of our MIQO problem in (8). Note that d(x̂?i ) ≥ 0
by construction. For each example, we report the average infeasibility and
suboptimality over the samples.

Accuracy. In multiclass classification, accuracy corresponds to the fraction
of times the predicted class is correct. However, in this setting, we can have
multiple strategies (classes) leading to high quality solutions. Therefore,
we adapt the concept of accuracy to take into account the quality of the
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solutions, instead of the specific strategy used during training. In other
words, we consider a predicted solution to be accurate if it is feasible and if
the suboptimality is less than the tolerance εsub = 10−4. We, then, define the
accuracy as

(1/N)|{x̂?i | p(x̂?i ) ≤ εinf and d(x̂?i ) ≤ εsub}|.

7.1 Fuel Cell Energy Management

Fuel cells are a green highly efficient energy source that need to be controlled
to stay within admissible operating ranges. Too large switching between ON
and OFF states can reduce both the lifespan of the energy cell and increase
energy losses. This is why fuel cells are often paired with energy storage
devices such as capacitors which help reducing the switching frequency during
fast transients.

In this example, we would like to control the energy balance between a su-
per capacitor and a fuel cell in order to match the demanded power [FDM15].
The goal is to minimize the energy losses while maintaining the device within
acceptable operating limits to prevent lifespan degradation.

We can model the capacitor dynamics as

Et+1 = Et + τ(Pt − P load
t ), (13)

where τ > 0 is the sampling time and Et ∈ [Emin, Emax] is the energy stored.
Pt ∈ [0, Pmax] is the power provided by the fuel cell and P load is the desired
load power.

At each time t we model the on-off state of the fuel cell with the binary
variable zt ∈ {0, 1}. When the battery is off (zt = 0) we do not consume any
energy, thus we have 0 ≤ Pt ≤ Pmaxzt. When the engine is on (zt = 1) it
consumes αP 2

t + βPt + γ units of fuel, with α, β, γ > 0. We define the stage
power cost as

f(P, z) = αP 2 + βP + γz.

We now model the total sum of the switchings over a time window in
order to constrain its value. In order to do so we introduce binary variable
dt ∈ {0, 1} determining whether the cell switches at time t either from ON
to OFF or viceversa. Additionally we introduce the auxiliary variable wt ∈
[−1, 1] accounting for the amount of change brought by dt in the battery
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state zt,

wt =


1, dt = 1 ∧ zt = 1,

−1, dt = 1 ∧ zt = 0,

0, otherwise.

(14)

We can model these logical relationships as the following linear inequal-
ity [FDM15],

G(wt, zt, dt) ≤ h, with G =


1 0 −1
−1 0 −1
1 2 2
−1 −2 2

 , h = (0, 0, 3, 1). (15)

Hence we can write the number of switchings st+1 appeared up to time t+ 1
over the past time window of length T as

st+1 = st + dt − dt−T , (16)

and impose the constraints st ≤ nsw. The complete fuel cell problem becomes

minimize
T−1∑
t=0

f(Pt, zt)

subject to Et+1 = Et + τ(Pt − P load
t ),

Emin ≤ Et ≤ Emax,
0 ≤ Pt ≤ ztP

max,
zt+1 = zt + wt,
st+1 = st + dt − dt−T ,
st ≤ nsw,
G(wt, zt, dt) ≤ h,
E0 = Einit, z0 = zinit, s0 = sinit
zt ∈ {0, 1}, dt ∈ {0, 1}, w ∈ [−1, 1].

(17)

The problem parameters are θ = (Einit, zinit, sinit, d
past, P load) where dpast =

(d−T , . . . , d−1) and P load = (P load
0 , . . . , P load

T−1). In order to properly control
the dynamical system, we must solve (17) within each sampling time τ .

Problem setup. We chose parameters from [FDM15] with values
α = 6.7× 10−4, β = 0.2, γ = 80 W, and sampling time τ = 1 second We
define energy and power constraints with Emin = 5.2 kJ, Emax = 10.2 kJ and
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Table 1: Fuel cell energy management problem dimensions and maximum times.

T nvar nconstr

M
(unpruned) M

tmax

MLOPT [s]
tmax

Gurobi [s]

tmax

Gurobi
heuristic [s]

10 88 207 622 467 0.0096 0.0089 0.0097
20 178 417 1375 1298 0.0096 0.7646 0.7932
30 268 627 5143 4522 0.0107 1.5771 1.3414
40 358 837 8604 1362 0.0125 5.4698 1.6544
50 448 1047 13590 3955 0.0130 44.9350 1.8701
60 538 1257 22691 4734 0.0098 114.8149 1.6339

Pmax = 1.2 kW. The initial values are Einit = 7.7 kJ, zinit = 0 and sinit = 0.
We randomly generated the load profile P load.

We obtain the offline samples by simulating a closed-loop trajectory of
10, 000 time steps and storing the parameters for each component of θ along
the trajectory i.e., Einit, zinit, sinit, d

past, and P load. We, then, sample from a
uniform distribution over a hypershpere of radius 0.5 centered at each trajec-
tory point. Afterwards, we enforce the feasibility of the problem parameters
according to the constraints in (17).

Results. Table 1 reports the problem dimensions and the maximum com-
putation time needed with each technique. The strategy pruning is able to,
sometimes, significantly M . For example, for T = 40 we are able to re-
duce the number of unique strategies M from 8604 to 1362. Figure 2 shows
the performance of MLOPT for varying values of the top-k strategies and
in terms of computation time, suboptimality, infeasibility and accuracy. As
expected, as k increases the performance improves. For time horizons of
T = 50 or T = 60, Gurobi takes on average longer than the allowed sam-
pling time, τ = 1 sec. As noted by the authors of [FDM15], in order to get
good performance with this system, horizons in at least of T = 60 need to
be considered and the respective solutions are not computable in less than
τ = 1 sec with state-of-the-art algorithms. From Table 1, the maximum
time of Gurobi is above the allowed sampling time for horizons ≥ 20 and
Gurobi heuristic for horizon ≥ 40. Therefore, these solution methods are not
applicable for real-time optimization of this dynamical system.
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Figure 2: MLOPT average performance indicators for fuel cell battery manage-
ment example. The dashed line indicates the sampling time.
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Figure 3: Comparison between Gurobi and MLOPT performance for the fuel cell
battery management example. Average computation time and suboptimality. The
dashed line indicates the sampling time. Missing points on the suboptimality plot
correspond to machine precision 10−15.
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7.2 Portfolio Trading

Consider the portfolio investment problem [Mar52, BBD+17]. This problem
has been extensively analyzed in robust optimization [BP08] and stochastic
control settings [HDG07]. The decision variables are the normalized portfolio
weights wt ∈ Rn+1 at time t corresponding to each of the assets in the port-
folio and a riskless asset at the (n+ 1)-th position denoting a cash account.
We define the trade as the difference of consecutive weights wt−wt−1 where
wt−1 is the given vector of current asset investments acting as a problem
parameter. The goal is to maximize the risk-adjusted returns as follows

maximize r̂Tt wt − γ`riskt (wt)− `holdt (wt)− `tradet (wt − wt−1)
subject to 1Twt = 1,

card(wt) ≤ c.

(18)

Four terms compose the stage rewards. First, we describe returns r̂Tt wt as a
function of the estimated stock returns r̂t ∈ [0, 1]n+1 at time t. Second, we
define the risk cost as

`riskt (x) = xT Σ̂tx,

where Σ̂t ∈ S
(n+1)×(n+1)
+ is the estimate of the covariance of the returns at

time t. Third, we define the holding cost as

`holdt (x) = sTt (x)−,

where (st)i ≥ 0 is the borrowing fee for shorting asset i at time t. The fourth
term describes a penalty on the trades defined as

`tradet (x) = λ‖xt − xt−1‖1,

Parameter λ > 0 denotes the relative cost importance of penalizing the
trades. The first constraint enforces the portfolio weights normalization while
the second constraints the maximum number of nonzero asset investments,
i.e., the cardinality, to be less than c ∈ Z>0. For the complete model deriva-
tion without cardinality constraints see [BBD+17, Section 5.2].

Risk model. We use a common risk model described as a k-factor model
Σt = FtΣ

F
t F

T
t + Dt where Ft ∈ R(n+1)×k is the factor loading matrix and

ΣF
t ∈ Sk×k+ is an estimate of the factor returns F T rt covariance [BBD+17].
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Each entry (Ft)ij is the loading of asset i to factor j. Dt ∈ S
(n+1)×(n+1)
+

is a nonnegative diagonal matrix accounting for the additional variance in
the asset returns usually called idiosyncratic risk. We compute the factor
model estimates Σ̂t with 15 factors by using a similar method as in [BBD+17,
Section 7.3] where we take into account data from the two years time window
before time t.

Return forecasts. In practice return forecasts are always proprietary and
come from sophisticated prediction techniques based on a wide variety of data
available to the trading companies. In this example, we simply add zero-mean
noise to the realized returns to obtain the estimates and then rescale them to
have a realistic mean square error of our prediction. While these estimates are
not real because they use the actual returns, they provide realistic values for
the purpose of our computations. We assume to know the risk-free interest
rates exactly with (r̂t)n+1 = (rt)n+1. The return estimates for the non-cash
assets are (r̂t)1:n = α((rt)1:n + εt) where εt ∼ N (0, σεI) and α > 0 is the
scaling to minimize the mean-squared error E((r̂t)1:n − (rt)1:n)2 [BBD+17,
Section 7.3]. This method gives us return forecasts in the order of ±0.3%
with an information ratio

√
α ≈ 0.15 typical of a proprietary return forecast

prediction.

Parameters. The problem parameters are θ = (wt−1, rt, Dt,Σ
F
t , Ft) which,

respectively, correspond to the previous assets allocation, vector of returns
and the risk model matrices. Note that the risk model is updated at the
beginning of every month. Since the parameters not only affect the data
in problem vectors, but also in the matrices, we cannot exploit the offline
factorization caching for linear system (10).

Problem setup. We simulate the trading system using the S&P100 val-
ues [Qua19] from 2008 to 2013 with risk cost γ = 100, borrow cost st = 0.0001
and trade cost λ = 0.01. These values are similar as the benchmark values
in [BBD+17]. We use different sparsity levels c from 1 to 40. Afterwards we
collect data by sampling around the trajectory points from a hypersphere
with radius 0.001 times the magnitude of the parameter. For example, for a
vector of returns of magnitude r̄t we sample around rt with a radius 0.001r̄t.
Even though this problem does not have to be solved in real-time, in order
to optimize the trading performance, we must perform multiple expensive
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Table 2: Portfolio problem dimensions and maximum times.

c nvar nconstr

M
(unpruned) M

tmax

MLOPT [s]
tmax

Gurobi [s]

tmax

Gurobi
heuristic [s]

10 552 902 4371 4371 0.0119 55.8038 2.3654
20 552 902 2887 2887 0.0137 2529.3926 2.0246
30 552 902 3371 3371 0.0137 2313.7819 2.3227
40 552 902 3736 3736 0.0134 226.2401 1.6632
50 552 902 4130 4130 0.0113 19.6680 1.4715

backtesting simulations.

Results. Table 2 shows the problem dimensions and the maximum compu-
tation time needed with each technique. Here, the strategy pruning is not
able to reduce M . This happens because, for most of the sample-strategy
reassignments, the resulting problem becomes infeasible or suboptimal. Fig-
ure 4 displays the performance of MLOPT for varying values of the top-k
strategies and in terms of computation time, suboptimality, infeasibility and
accuracy. For smaller c, although the total number of integer variable com-
binations is lower, the problem is harder to solve for every technique. In this
example, the performance does not significantly increase above k = 20. We
suspect that further accuracy improvements should happen with k > 100. In
addition, suboptimality is very low for c = 30 and c = 40. The performance
comparison between the different methods appears in Figure 5. MLOPT
shows up to three orders of magnitude speedups over Gurobi and Gurobi
heuristic despite moderate suboptimality and infeasibility values, mostly for
c = 10 and c = 20. With these computation time speedups, backtesting
time can be significantly reduced and multiple parameter simulations can be
executed to tune the problem parameters while evaluating the performance
on historical data. This is crucial to obtain high quality portfolio trades.

7.3 Motion Planning

We consider the problem of motion planning in the presence of obstacles.
This problem has a wide variety of applications including autonomous ve-
hicles, space robots, and unmanned aerial vehicless (UAVs) [LaV06]. These
problems must usually be solved online within a few milliseconds to provide
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Figure 4: MLOPT average performance indicators for portfolio example.
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Figure 5: Comparison between Gurobi and MLOPT performance for the portfolio
example. Average computation time and suboptimality.
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inputs that are frequent enough to control the system dynamics. Unfortu-
nately, the presence of obstacles makes the problem nonconvex and, therefore,
very challenging to solve online. In the literature, several approaches have
been proposed to model the motion planning problem with MIO [SDFH01].
However, solution times in the order of a few milliseconds are still out of
reach of state-of-the-art MIO solvers.

We consider the problem in d dimensions, in practice d = 2 for planar
systems or d = 3 for aerial systems. The state of the system is xt = (pt, vt)
where pt ∈ Rd is the position at time t and vt ∈ Rd the velocity. The
input ut ∈ Rd are the forces produced by the system in every direction. For
example, for an UAV, ut corresponds to the thruster forces. The discrete-time
linear system dynamics are described as

(pt+1, vt+1) = A(pt, vt) +But, t = 0, . . . , T,

where A ∈ R2d×2d and B ∈ R2d×d and τ > 0 is the sampling time. The
initial state of the system is (pinit, vinit). We define upper and lower bounds
on the state and inputs as

p ≤ pt ≤ p, v ≤ vt ≤ v, t = 0, . . . , T,

u ≤ ut ≤ u, t = 0, . . . , T − 1.

We model every obstacle i as a rectangle in Rd with upper bounds oi ∈ Rd

and lower bounds oi ∈ Rd for i = 1, . . . , nobs. At every time t and for every
obstacle i, we model the obstacle avoidance decisions with binary variables

δ
i

t ∈ {0, 1}d for the obstacle upper bounds and δit ∈ {0, 1}d for the lower
bounds. We can write obstacle avoidance as the following big-M conditions

oi −Mδ
i

t ≤ pt ≤ oi +Mδit, t = 0, . . . , T, i = 1, . . . , nobs.

In addition, we must impose that we cannot be at the same time on different
sides of an obstacle,

1T δit + 1T δ
i

t ≤ 2d− 1, t = 0, . . . , T, i = 1, . . . , nobs,

where 1 is the vector of ones of dimension d. Our goal is to minimize the dis-
tance with respect to a desired position (pt ≈ pdes) while expending minimal
control effort (ut ≈ 0). We can write the cost as

‖pT − pdes‖22 +
T−1∑
t=0

‖pt − pdes‖22 + γ‖ut‖22,
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where γ > 0 balances the trade-off between performance and control effort.
The motion planning problem can be written as

minimize ‖pT − pdes‖22 +
T−1∑
t=0

‖pt − pdes‖22 + γ‖ut‖22

subject to (pt+1, vt+1) = A(pt, vt) +But, t = 0, . . . , T − 1
p0 = pinit, v0 = vinit

oi −Mδ
i

t ≤ pt ≤ oi +Mδit, t = 0, . . . , T, i = 1, . . . , nobs

1T δit + 1T δ
i

t ≤ 2d− 1 t = 0, . . . , T

δ
i

t ∈ {0, 1}d, δit ∈ {0, 1}d, i = 1, . . . , nobs

pt ∈ [p, p], vt ∈ [v, v], t = 0, . . . , T,
ut ∈ [u, u], t = 0, . . . , T − 1.

(19)

Parameters. We consider the problem of computing the optimal trajectory
from any point in the plane to the desired position pdes. In this example the
rest of the problem data does not change. Therefore, the problem parameters
are the initial state θ = pinit. Problem (19) must be solved within each
sampling time τ to provide fast enough inputs to the dynamical system.

Problem setup. We consider a discrete-time double-integrator dynamical
system in two dimensions as in [SDFH01]. The optimizer must provide so-
lutions within the sampling time τ = 0.1 sec in order to operate the system
properly. The time horizon is T = 60 which corresponds to 6 sec. The cost
tradeoff parameter is γ = 0.01. The initial state is given by pinit = θ and
vinit = 0. The desired position is pdes = (−10.5,−10) and the desired velocity
vdes = 0. Figure 6 shows an example trajectory for θ = (9, 13). To generate
training samples θi, we sample uniformly between p and p.

Results. Table 3 shows the problem dimensions along with the maximum
computation time taken by each technique. Here, the strategy pruning is not
able to significantly reduce M . This happens because, in this case, the sam-
ples already provide an already small, although representative, selection of
unique strategies to use. Figure 4 shows the average performance of MLOPT
for varying top-k strategies selected. Even if the accuracy is always low, most
of the times less than 10%, the suboptimality and infeasibility are acceptable
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Figure 6: Trajectory planning example with 10 obstacles and sampling time 0.1
sec. Circles indicate the optimal path computed with Gurobi in 18.18 sec and the
squares indicate the optimal path computed with MLOPT with k = 100 in 0.06
sec. The filled dot is the starting position while the start is the desired position.
The boundaries of the feasible positions are the dotted line while obstaces are
displayed as rectangles.

for this application. As shown in Figure 6, there can be some constraints
violations due to marginal violations of the obstacle boundaries. We show
the direct comparison of Gurobi, Gurobi heuristic and MLOPT in Figure 8.
The time improvements of MLOPT allow its real-time implementation, in
contrast to state-of-the-art options. Remarkably, except in the smallest case
of nobs = 2, Gurobi heuristic is not able to return a solution within the max-
imum time we allowed, i.e., 1 sec. Note that this limit is already 10 times
higher than the sampling time τ = 0.1 sec.
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Figure 7: MLOPT average performance indicators for motion planning example.
The dashed line indicates the sampling time.
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Figure 8: Comparison between Gurobi and MLOPT performance for the motion
planning example. Average computation time and suboptimality. The dashed line
indicates the sampling time.Missing points indicate problems for which Gurobi
heuristic is not able to return a feasible solution within the maximum time 1 sec.
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Table 3: Motion planning problem dimensions and maximum times.

nobs nvar nconstr

M
(unpruned) M

tmax

MLOPT [s]
tmax

Gurobi [s]

tmax

Gurobi
heuristic [s]

2 1135 3773 1357 1351 0.0263 3.5311 1.0085
4 1615 10133 1114 1112 0.0752 12.7931 1.0360
6 2095 20333 921 917 0.0504 248.4688 1.0309
8 2575 34373 818 818 0.2213 395.5433 1.0361
10 3055 52253 658 657 0.0614 809.3376 1.0465

7.4 Remarks

The numerical examples show several benefits of our approach. First, the
strategy pruning technique allows us to work with a total number of strate-
gies between 100 and 10,000. These numbers allow high quality predictions
in terms of suboptimality and infeasibility with NNs combined with top-
k strategies selection. Second, despite low accuracy when comparing the
predicted strategy to the exact optimal one, the average suboptimality is
comparable or better than the one of Gurobi heuristic. In addition, infeasi-
bility is always within acceptable levels for the proposed application. This
means that, even in case of multiple global minimizers, our method is able
to consistently predict optimal or close-to-optimal solutions. Third, for the
problems considered, time measurements show up to three orders of magni-
tude speedups of MLOPT compared to Gurobi and Gurobi heuristics, both
in terms of average and worst-case solution time. Since for the fuel cell energy
management and the motion planning examples, optimal solutions must be
computed within hard real-time requirements, only fast optimization meth-
ods can be implemented in practice and Gurobi-based approaches are too
slow. On the contrary, MLOPT proves to be a much faster approach for
computing online solutions.

8 Conclusions

We proposed a machine learning method for solving online MIO at very high
speed. By using the Voice of Optimization framework [BS21] we exploited
the repetitive nature of online optimization problems to greatly reduce the
solution time. Our method casts the core part of the optimization algo-
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rithm as a multiclass classification problem that we solve using a NN. In
this work we considered the class of MIQO which, while covering the vast
majority of real-world optimization problems, allows us to further reduce
the computation time exploiting its structure. For MIQO, we only have to
solve a linear system to obtain the optimal solution after the NN predic-
tion. In other words, our approach does not require any solver nor iterative
routine to solve parametric MIQOs. Our method is not only extremely fast
but also reliable. Compared to branch-and-bound methods our approach
has a very predictable online solution time for which we can exactly bound
the flops complexity. This is of crucial importance for real-time applications.
We benchmarked our approach against the state-of-the-art solver Gurobi on
different real-world examples showing 100 to 1000 fold speedups in online
execution time.

There are several future research directions to improve the MLOPT
framework. First, specialized neural networks architectures might provide
more accurate strategy classifiers for certain classes of optimization problems.
Second, the MLOPT training phase requires computing the optimal solution
of problems with several different parameter combinations. Therefore, the
current approach does not apply to problems that take hours to solve with
Gurobi. Using suboptimal solutions in the training phase would allow us
significantly reduce the training time and apply MLOPT to such problems.
Third, strategy reduction techniques combined with structure exploiting
classifiers would enable applications to large-scale optimization problems
with only discrete variables. Finally, including the knowledge about the
previous solution would improve the performance of MLOPT, similarly to
how warm-starting techniques help reducing computations in MIO solvers.
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