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SUPERBRIDGE AND BRIDGE INDICES FOR KNOTS

COLIN ADAMS, NIKHIL AGARWAL, RACHEL ALLEN, TIRASAN
KHANDHAWIT, ALEX SIMONS, REBECCA WINARSKI, AND MARY

WOOTTERS

Abstract. We improve the upper bound on superbridge index
sb[K] in terms of bridge index b[K] from sb[K] ≤ 5b−3 to sb[K] ≤
3b[k]− 1.

1. Introduction

In a seminal paper [7], N. Kuiper introduced superbridge index for
knots, a variation of the better-known bridge index, first introduced by
Schubert in [10]. Let K be a particular embedding of a knot in 3-space,
which we will refer to as a conformation, and let [K] denote the set of
all conformations that are equivalent to it, generating the same knot
type. Letting ~v represent a unit vector giving a direction in 3-space to
which we will project the knot, we can define bridge index as follows.

Definition 1.1. The bridge index of a knot [K] is given by

b[K] = min
K∈[K]

min
~v∈S2

(# of local maxima of K in direction ~v)

.

Given this formulation of bridge index, it is simple to give Kuiper’s
variant:

Definition 1.2. The superbridge index of a knot is given by

sb[K] = min
K∈[K]

max
~v∈S2

(# of local maxima of K in direction ~v)

.

It is obvious from the definition that sb[K] ≥ b[K]. In fact, in [7],
Kuiper proved that sb[K] > b[K] for any nontrivial knot. Superbridge
index is related to several other invariants.
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2 ADAMS ET AL

Definition 1.3. The geometric degree of a knot conformation
K is the greatest number of times that a plane intersects the knot
conformation, denoted d(K). The geometric degree of a knot type
[K] is given by

d[K] = min
K∈[K]

d(K)

Note that d[K] is always even since if a plane is tangent to an em-
bedding of the knot K, we can move the plane slightly to obtain one
fewer intersections, and otherwise, intersections pair up according to
how they are connected by the knot to one side of the plane. Each such
pair creates at least one local maximum in the normal direction to the
plane. This also demonstrates the following useful result.

Lemma 1.4. d[K] ≤ 2sb[K].

One of the reasons that superbridge index is interesting is its relation-
ship with one of the most natural invariants for knots.

Definition 1.5. The stick index of a knot type, denoted s[K], is the
least number of sticks glued end-to-end to obtain a conformation of
that knot type.

In [4], Jin noted the following.

Lemma 1.6. sb[K] ≤ s[K]/2.

Proof. Choose a stick conformation that realizes the stick number.
Then for any choice of a direction vector ~v ∈ S2, the maxima can
only occur at vertices or along entire edges. Since for every maximum,
there must be a corresponding minimum, the superbridge number of
this conformation is at most s[K]/2. Therefore the superbridge index,
which is the minimum over all conformations, is also bounded above
by s[K]/2. �

Information about superbridge index has been very useful in determin-
ing stick index as in [4, 5, 6].

In [7], Kuiper determined the geometric degree of all torus knots, de-
noted Tp,q with p < q, and then used Lemma 1.4 together with upper
bounds to determine superbridge index for all torus knots as well:

Theorem 1.7. For p < q, d(Tp,q) = min{4p, 2q} and sb(Tp,q) =
min{2p, q}.
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In the same paper, Kuiper also proved that sb[K] ≤ 2β[K], where β[K]
is the braid index of [K]. In [1], it was proved that sb[K] ≤ 5b[K]− 3.
Here, we obtain the following improvement of that upper bound.

Theorem 1.8. sb[K] ≤ 3b[K]− 1.

Thus, we now know bridge index sandwiches superbridge index via
b[K] + 1 ≤ sb[K] ≤ 3b[K]− 1.

Theorem 1.8 implies the superbridge index of any 2-bridge knot is either
3, 4 or 5. In [8], Milnor proves that every nontrivial knot has geometric
degree at least 6. Hence Lemma 1.4 yields:

Corollary 1.9. Any two-bridge knot has geometric degree 6, 8 or 10.

In [3], the authors use quadrisecants to show that there are only finitely
many 3-superbridge knots, all of them in the list 31, 41, 52, 61, 62, 63, 72,
73, 74, 84, 87, and 89. In this list, 31 and 41 are known to be 3-superbridge
knots, and therefore knots of geometric degree 6. Jeon and Jin conjec-
ture that 31 and 41 are the only 3-superbridge knots.

Corollary 1.10. Every 2-bridge knot other than 31, 41, 52, 61, 62, 63, 72,
73, 74, 84, 87, and 89 has superbridge index 4 or 5.

2. Upper Bound on Superbridge Index

In this section, given a knot type [K], we give a construction of a
conformation that will be used to prove our main theorem: sb[K] ≤
3b[K]− 1.

Let ~v ∈ R3 be a unit vector with ~v = v1î + v2ĵ + v3k̂ and let η(t) =
(cos t, sin t, cos2 t).

Kuiper was able to prove that the superbridge index of a knot, sb[K], is
bounded above by twice the braid index of that knot β[K] by taking a
braid conformation of the knot that follows the curve η(t). Each string
contributes either one or two local maxima given any direction defined
by ~v. We are adapting Kuiper’s argument, but using a conformation
of a knot that realizes bridge index (instead of braid index), and then
placing it on the same curve η(t) to show that sb[K] ≤ 3b[K]−1, where
b[K] is the bridge index of a knot K.

Since we rely heavily on Kuiper’s argument, we will summarize the
argument here [7]:
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Kuiper first notes that the curve η(t) has at most two maxima in any
direction. That is, it has superbridge number equal to 2. He then takes
a circular r-braid knot and parametrizes it for a small ε > 0 by

λε(t) = (cos(rt) ∗ (1 + ελ1(t)), sin(rt) ∗ (1 + ελ1(t)), cos
2(rt) + ελ2(t)),

in t modulo 2π, where λ21 + λ22 ≤ 1. He approximates λ1(t) and λ2(t)
by finite linear expressions in cos nj(t) and sin nj(t) for nj ∈ N, j ∈ Z
so that we have finite polynomials in cos(t) and sin(t). This creates a
conformation of a knot isotopic to the original r-braid knot that lives
inside a torus within the ε-neighborhood of η(t). Recalling cos2(t)+
sin2(t) = 1, making the following substitutions:

cos(t) =
2w

1 + w2
, sin(t) =

1− w2

1 + w2
,

and then taking the derivative and setting the dot product with a unit
vector equal to zero, Kuiper obtains an equation of the form

A4r(w)(1 + w2)N−2r + εB2N(w) = 0,

where A4r and B2N are polynomials in w with degree 4r and 2N . We
note that when ε = 0, there are N−2r roots of i and N−2r of −i, and
thus there are at most 4r real roots when ε = 0. Continuity ensures
that for small ε > 0, the number of real roots will not increase, and thus
for some conformation of the r-braid knot there are at most 2r local
maxima (since every maximum must have a corresponding minimum).
This leads to the conclusion that sb[K] ≤ 2β[K].

For our purposes, we will need the following.

Lemma 2.1. Given any nonzero vector direction ~v = v1î+ v2ĵ + v3k̂,
over the interval t ∈ (0, π/2), the curve η(t) = (cos t, sin t, cos2 t) has
at most two critical points when projected to the real line defined by ~v.

Proof. Take the derivative η′ = (− sin t, cos t,−2 sin t cos t). Critical
points occur when η′ · ~v = 0, which is to say

−v1 sin t+ v2 cos t− 2v3 sin t cos t = 0.

Note that when v3 = 0, we are projecting to vectors in the xy-plane.
Since η projects to a circle in the plane, there are exactly two critical
points on opposite sides of the circle for any such vector ~v, and at most
one critical point for 0 < t < π/2.

When v3 6= 0, we obtain:
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v1
2v3

sin t+
−v2
2v3

cos t+ sin t cos t = 0

.

Let a = v1
2v3

and b = −v2
2v3

. Then we have a sin t+ b cos t+ sin t cos t = 0.

When 0 < t < π/2, we can let x = sin t and
√

1− x2 = cos t where
0 < x < 1.

Restating the problem now, we would like to show that the function
g1(x) = ax + (b + x)

√
1− x2 has at most two zeros for 0 < x < 1

for all possible choices of real numbers a and b. We consider various
possibilities for a and b.

Case 1. a = 0. Then x = −b is the only zero, which may or may not
be in the interval (0,1), depending on the value of b.

Case 2. b = 0. Then a = −
√

1− x2 and x =
√

1− a2 is the only
potential zero in (0, 1), and appearing as a zero depending on the value
of a.

We now assume both a and b are nonzero. Taking g1(x) = 0, moving
the ax to the other side of the equation and squaring yields

a2x2 = b2 + 2bx+ (1− b2)x2 − 2bx3 − x4.
Thus every zero of g1 is also a zero of

f = b2 + 2bx+ (1− a2 − b2)x2 − 2bx3 − x4.
Therefore there are at most four zeros of g1 over all values of x. Define
g2 = −ax+ (b+x)

√
1− x2. Then f = g1 · g2,so any zeros of g2 are also

zeros of f . Also, since a 6= 0, the zeros of g2 are distinct from the zeros
of g1.

However, g2(−1) = a and g2(1) = −a. Thus, g2 has at least one zero
and therefore g1 has at most three zeros over all values of x. We now
continue to consider cases.

Case 3. a > 0 and b > 0. Then clearly for 0 < x < 1, all terms in g1
are positive and there are no zeros.

Case 4. a < 0 and b < 0. Then g1(−1) > 0 and g1(0) < 0, so g1 has a
zero in the x-interval (−1, 0). Therefore it can have at most two zeros
remaining for the interval (0,1).

Case 5. a < 0 and b > 0. Let h1 = |a|x and h2 = (b+x)
√

1− x2. Then

a zero of g1 satisfies h1 = h2. But h′2 = 1−2x2−bx√
1−x2 which yields critical
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points at −b±
√
b2+8

4
. So there is only one maximum for positive x, and

h′′2 < 0. Further h2(0) = b > 0 . So the ray of slope |a| defined by h1
can only cross the graph of h2 once for x > 0, and we have at most one
zero of g1 in the x-interval (0,1).

Case 6. a > 0 and b < 0. Let Let j1 = −ax and j2 = (b + x)
√

1− x2.
Then a zero of g1 satisfies j1 = j2. But j′2 = 1−2x2−bx√

1−x2 , and again critical

points occur at b±
√
b2+8
4

. Since b < 0, only one critical point occurs for
x > 0, which is a maximum and j2(0) = b < 0. Also j2(1) = 0, so the
ray given by j1 = −ax can cross the graph of h2 at most once, and g1
has at most one zero for 0 < x < 1. �

In order to prove Theorem 1.8, we utilize n-plats. An n-plat is con-
structed from an open braid with 2n strings, by pairing off the adjacent
endpoints, left to right on the top and then also on the bottom and
then gluing simple arcs with one local maximum/minimum to each pair
of endpoints. Every n-bridge knot has a representation as an n-plat
obtained by taking an n-bridge presentation and stretching all of the
local maxima up to the same level and stretching down all of the lo-
cal minima to the same level, increasing the number of crossings as
necessary.

Lemma 2.2. Given an n-plat representation of a knot or link, we can
always free one strand, while preserving the fact we have an n-plat.

Proof. In the braid portion of the n-plat representation, the leftmost
string s, which starts at the top in the first position, ends at the bottom
in some position i. We can add crossings at the bottom of the braid
in order to move the string back to the left so that it also ends in the
first position, still preserving the fact we have an n-plat representation
of the same link. For any other string that it crosses, it must do so
an even number of times. Then pull s taut, so it appears as a vertical
strand. Although this may create many additional crossings, we still
have an n-plat representation. If some of the resulting strands to the
left of the taut string are nested, as in Figure 1 (a), we can fold them
back so that the only regions to the left of s that remain are un-nested
bigons.

Starting with the topmost such, we can lift the string making the bigon
up over the top of the plat and down the other side, as in Figure 1(b),
removing the bigon while preserving the n-plat. Repeating with all
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(a)

(b)

Figure 1. Freeing the leftmost strand in an n-plat.

bigons, we now have an n-plat presentation with a free strand on the
left. �

The Construction. Given any knot K with bridge index n, we begin
with an n-plat projection P in the xy-plane such that P realizes the
bridge index of K, all local maxima occur at y = 1, all local minima
occur at y = 0, and the strands travel from maxima to minima without
inflection points with respect to the y-direction. By Lemma 2.2, we
free the leftmost strand. We call this strand loose. Next we isotope
our conformation such that it all lies within a small δ > 0 of the
xy-plane, and such that the entire conformation other than the loose
strand is confined to a δ neighborhood of the sub-arc of the curve
f(t) = (cos(t), sin(t)) defined by .1 < t < π/2 − .1 The loose strand
goes around the far side of the circle. See Figure 2.

We next proceed with a similar construction to [1] by attaching two
strands to each non-loose maximum such that the ith maximum is con-
nected to the ith minimum with a point of singularity at the attach-
ments. Furthermore, we can do this in such a way that the extra
strands we have added wind around the z-axis with a height of zero
in the z-direction and do not cross any other added strands or any
part of the projection in the xy-plane and every added strand stays
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within a small ε-neighborhood of the unit circle in the xy-plane de-
fined by f(t) = (cos(t), sin(t)), as in the left side of Figure 3. We now

have a (2n − 1)-braid conformation of a singular knot K̂ because the
leftmost maximum of the original n-plat contributed one loose strand,
and the other n− 1 maxima each contribute two added strands. If we
call the interior of the 2n − 2 added strands collectively L, then we
note that K̂\L is isotopic to our original knot K. As noted in [1], the
singular points of attachment do not affect Kuiper’s parameterization
using functions λ1(t) and λ2(t) to find a conformation isotopic to K̂.
Since our conformation is currently within an ε-neighborhood of the
unit circle on the x− y plane and within a small δ of the x− y plane
in the z-direction, we can change the z coordinates to be within an
ε-neighborhood of the function cos2(t), as shown on the right in Figure
3. Thus for ε > 0, we have

K̂ε(t) = (cos((2n− 1)t)(1 + ελ1(t)), sin((2n− 1)t)(1 + ελ1(t)),

cos2((2n− 1)t) + ελ2(t))

where λ21 + λ22 ≤ 1. We note that K̂ε(t) defines a (2n − 1)-braid that
sits within an ε-wide tubular neighborhood of η(t). Furthermore, the
section of the curve containing the crossings associated with the knot
K lie in a region around t = π/4. This means most of the curve η(t) is
followed only by the original single loose strand and the added strands
L.

Figure 2. Istotoping an n-plat to within an ε-
neighborhood of the unit circle
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Figure 3. Adding the loose strands and placing on the
curve η(t).

Proof of Theorem 1.8. We will use K̂ε to obtain a bound on the su-
perbridge number of our original knot [K] by examining sb(K̂ε(t)) and
discounting the added strands (because the knot ends at the extrema

where we added the extra strands). Let ~v = v1î+ v2ĵ+ v3k̂ be a vector

that defines the direction to which we project and let Jε = K̂ε \L. Let
E be the collection of 2n− 2 points on Jε where the additional strands
are attached, and call points on Jε that are not in E interior points.

We know that η has at most two critical points in the direction of
~v in the arc defined by 0 < t < π/2. When there are two critical
points on the arc, since they are adjacent on the curve, at most one is
a maximum.

We can choose ε small enough that the variation in each strand due to
the functions λ1 and λ2 is not greater than the curvature of the larger
curve η. Thus, each string of the braid will have a critical point that
is very close to the corresponding critical point on η.

For direction vectors that yield one maximum for η and that maximum
is not in the interval 0 < t < π/2, there are no maxima at the interior
points of Jε excluding the loose strand. However, if there is a minimum
in the interval 0 < t < π/2, then all of the points in E can be maxima
for Jε. In addition the loose strand has another maximum. So in this
case, the total number of maxima can be at most (2n−2)+1 = 2n−1.

For direction vectors that yield two maxima for η, both of which are
not in the arc of η given by 0 < t < π/2, we know that each of the
2n−2 added strands and the one original loose strand contribute 2 local
maxima. However, we can ignore the maxima contributed by all the
2n−2 added strands, and instead view the 2n−2 points in E as the only
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other potential maxima. This leaves us with at most 2n− 2 + 2 = 2n
total maxima since the original loose strand contributes two maxima.

For a direction vector that has a maximum in the arc on η correspond-
ing to the interval 0 < t < π/2, Lemma 2.1 limits us to at most two
critical points. When there are two critical points, at most one can be
a maximum. If all the critical points on the individual strings occur
in the region containing the n-plat, each of the 2n − 1 strands of the
n-plat contributes one maximum. Each strand also contains a mini-
mum, which means that the corresponding n− 1 singular points in E
where we glued on the additional strands will appear as maxima of the
original knot. The loose strand will also have a potential maximum on
it, so we have a total of (2n−1)+(n−1)+1 = 3n−1 possible maxima.

If there is only one maximum and no minimum on the arc corresponding
to 0 < t < π/2, we have at most (2n− 2) + 1 maxima, the last coming
from the loose strand.

When critical points occur in the interval corresponding to 0 < t < π/2
but do not necessarily correspond to critical points on Jε, we must
be careful about the transition of critical points around the singular
points in E. As we change our direction vector ~v, we know that the
region around each singular point will resemble Figure 4. Each string
of the singular braid can contribute at most one local maximum in
this region. As we vary the projection vector and see the two maxima
corresponding to a pair of strands in Jε that share that singular point
moving to the singular point, we stop counting each at the instant the
maximum coincides with the singularity. The first to pass through
the singularity does not cause a change in the count of maxima for Jε
since it is replaced by the maximum at the singularity. The second
maximum, when reaching the singularity disappears as a maximum
for Jε. Thus, the total number of maxima does not go up when we
transition maxima out of the interior of the strands of Jε.

�
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