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We propose a robust method for constructing conditionally valid
prediction intervals based on models for conditional distributions
such as quantile and distribution regression. Our approach can
be applied to important prediction problems, including cross-
sectional prediction, k–step-ahead forecasts, synthetic controls
and counterfactual prediction, and individual treatment effects
prediction. Our method exploits the probability integral trans-
form and relies on permuting estimated ranks. Unlike regression
residuals, ranks are independent of the predictors, allowing us
to construct conditionally valid prediction intervals under het-
eroskedasticity. We establish approximate conditional validity un-
der consistent estimation and provide approximate unconditional
validity under model misspecification, under overfitting, and with
time series data. We also propose a simple “shape” adjustment of
our baseline method that yields optimal prediction intervals.

prediction intervals | conditional validity | model-free validity |
quantile regression | distribution regression

We develop a robust approach for constructing prediction
intervals based on models for conditional distributions.

The proposed method is generic and can be implemented using a
great variety of flexible and powerful methods, including conven-
tional quantile regression (QR) (1) and distribution regression
(DR) (e.g., refs. 2 and 3), as well as nonparametric and high-
dimensional machine learning methods such as quantile neural
networks (e.g., ref. 4) and quantile trees and random forests (e.g.,
refs. 5 and 6).

We observe data {(Yt ,Xt)}Tt=1, where Yt is a continuous out-
come of interest andXt is a p × 1 vector of predictors. Our task is
to predict YT+1 given knowledge of XT+1. This setting encom-
passes many classical cross-sectional and time series prediction
problems. Moreover, our approach can be applied to synthetic
control settings where the goal is to predict counterfactuals in
the absence of a policy intervention (e.g., refs. 7 and 8) and to
the problem of predicting individual treatment effects (e.g., refs.
9 and 10).

With independent and identically distributed (iid) (or ex-
changeable data), standard conformal prediction methods, which
are based on modeling the conditional mean, yield prediction
intervals Ĉ(1−α) that satisfy

P
(
YT+1 ∈ Ĉ(1−α) (XT+1)

)
≥ 1− α [1]

for a given miscoverage level α ∈ (0, 1). A prediction interval sat-
isfying this property is said to be unconditionally valid. Uncondi-
tionally valid prediction intervals guarantee accurate coverage on
average, treating (YT+1,XT+1) and {(Yt ,Xt)}Tt=1 as random.

However, in many applications, unconditional validity may
be unsatisfactory. Let us consider three examples; refs. 11 and
12 have further examples and discussions. First, from a fair-
ness perspective, data-driven recommendation systems should
guarantee equalized coverage across protected groups, in which
case the goal is to construct prediction intervals that are valid
conditional on a protected attribute such as race or gender
(11). Second, as in Predicting Stock Market Returns, consider the
problem of predicting stock returns given the realized volatility.

Since the distribution of returns is more dispersed when the
variance is higher, a natural prediction algorithm should yield
wider prediction intervals for higher values of volatility. That is,
the prediction interval should be valid conditional on the known
value of realized volatility rather than on average. Third, as in
Predicting Wages Using CPS Data, suppose our goal is to predict
wages based on an individual’s education and experience. An
unconditionally valid prediction interval exhibits coverage 90%
on average across all individuals but may contain the true wage
of high school dropouts with no work experience with probability
zero. A more useful prediction interval should exhibit correct
coverage conditional on an individual’s observed education and
experience and contain the true wage with 90% probability for
every single individual.

Motivated by this discussion, we develop a distributional con-
formal prediction (DCP) method for constructing prediction in-
tervals that are approximately valid conditional on the full vector
of predictors XT+1 while treating YT+1 and {(Yt ,Xt)}Tt=1 as
random:

P
(
YT+1 ∈ Ĉ(1−α) (XT+1) | XT+1

)
≥ 1− α+ oP (1). [2]

A prediction interval satisfying property Eq. 2 as T →∞ is
said to be approximately conditionally valid.*

While the requirement in Eq. 2 is natural in many applications,
there are also other notions of conditional validity. Instead of
conditioning on XT+1 (object conditional), one can also study
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the conditional coverage probability given the training sample
{(Yt ,Xt)}Tt=1 (training conditional) or given YT+1 (label condi-
tional) or combinations of them; ref. 15 has a detailed discussion.
By proposition 2 of ref. 15, inductive conformal predictions
(also known as split-sample conformal predictions) automatically
achieve training conditional validity as long as the training sample
is large enough. In classification problems (the support of YT+1

is a finite set), label conditional validity is often of great interest as
it is important to know the error rates for different categories and
provides useful information on false-positive and false-negative
rates (15). In ref. 15, label conditional validity is achieved by
forming the conformity score within each category. Both training
and label conditional validity can be achieved in a distribution-
free way (i.e., for a given procedure, the conditional validity holds
for any distribution of the data).

However, object conditional validity in the sense of Eq. 2 can-
not be achieved in a distribution-free way for nontrivial predic-
tions. By refs. 12, 13, and 15, any prediction set satisfying Eq. 2 for
every probability distribution of (Xt ,Yt) has infinite Lebesgue
measure with nontrivial probability. Therefore, we only aim to
achieve Eq. 2 for a limited class of probability distributions.
The construction of the proposed prediction set Ĉ(1−α) relies on
learning the conditional distribution Yt | Xt , and we only hope
for conditional validity in Eq. 2 in the class of distributions that
can be learned well. In particular, this class of distributions is
those satisfying our regularity conditions.

Our empirical results demonstrate the importance of using
DCP instead of standard conformal prediction methods based
on modeling the conditional mean. When predicting daily stock
returns in Predicting Stock Market Returns, the coverage proba-
bility of the 90% mean-based conformal prediction interval can
drop to around 50% when the realized volatility is high. By
contrast, DCP provides a coverage probability close to 90% for
all values of realized volatility. This finding is important since
volatility tends to be high during periods of crisis when accurate
risk assessments are most needed. When predicting wages in
Predicting Wages Using CPS Data, we find that the DCP prediction
intervals contain the true wage with probability close to 90%
for most individuals, whereas standard mean-based conformal
prediction intervals either substantially under- or overcover.

To motivate DCP, note that a conditionally valid prediction
interval is given by[

Q
(α
2
, x

)
,Q

(
1− α

2
, x

)]
, [3]

where Q(τ , x ) is the τ quantile of Yt given Xt = x . To implement
the prediction interval Eq. 3, a plug-in approach would replace Q
with a consistent estimator Q̂ :[

Q̂
(α
2
, x

)
, Q̂

(
1− α

2
, x

)]
. [4]

This approach exhibits two well-known drawbacks. First, it will
often exhibit undercoverage in finite samples (e.g., ref. 16).
Second, it is neither conditionally nor unconditionally valid under
misspecification.

We build upon conformal prediction (17, 18) and use the con-
ditional ranking as a conformity score. This choice is particularly
useful when working with regression models for conditional dis-
tributions such as QR and DR.† Our method is conditionally valid
under correct specification, while the construction of the proce-
dure as a conformal prediction method guarantees the uncondi-
tional validity under misspecification. Let F (y , x ) = P(Yt ≤ y |
Xt = x ) denote the conditional cumulative distribution function
(CDF) of Yt given Xt = x . Throughout the paper, we assume

†This transformation is also very useful in other prediction problems (e.g., ref. 19).

that F (·,Xt) is a continuous function almost surely. Our method
is based on the probability integral transform, which states that
the conditional rank, Ut := F (Yt ,Xt), has the uniform distribu-
tion on (0, 1) and is independent of Xt .

To construct the prediction interval, we test the plausibil-
ity of each y ∈ R. By the probability integral transform, con-
ditional on XT+1, F (YT+1,XT+1) belongs to [α/2, 1− α/2]
with probability 1− α. Thus, collecting all values y ∈ R satis-
fying F (y ,XT+1) ∈ [α/2, 1− α/2] yields a conditionally valid
prediction interval in the sense of Eq. 2. We operationalize
this idea by proposing a conformal prediction procedure based
on the estimated ranks, Û (y)

t := F̂ (y)(Yt ,Xt). For each y ∈ R,
F̂ (y) is an estimator of F obtained based on the augmented
data, {(Yt ,Xt)}T+1

t=1 , where YT+1 = y . Data augmentation is a
key feature of conformal prediction. It implies the model-free
unconditional exact finite-sample validity with iid (or exchange-
able) data and thus, guards against model misspecification and
overfitting. Without data augmentation, the resulting prediction
intervals are not exactly valid, not even with correct specification
and iid data.

Our baseline method asymptotically coincides with the oracle
interval in Eq. 3. This oracle interval may not be the shortest pos-
sible prediction interval in general. Therefore, we also develop a
simple and easy to implement adjustment of our baseline method
for improving efficiency, which we refer to as optimal DCP.
In Predicting Wages Using CPS Data, we show empirically that
optimal DCP yields shorter prediction intervals than baseline
DCP when the conditional distribution is skewed.

We establish the following theoretical performance guarantees
for the baseline and optimal DCP.

1) Asymptotic conditional validity under consistent estima-
tion of the conditional CDF

2) Unconditional validity under model misspecification:
• Finite-sample validity with iid (or exchangeable) data
• Asymptotic validity with time series data

3) For optimal DCP:
• Under weak conditions: asymptotic conditional validity

and optimality (shortest length)
• Under strong conditions: asymptotic convergence to the

optimal prediction interval

Motivating Example
We illustrate the advantages of DCP relative to mean-based
conformal prediction (e.g., ref. 20) based on the following simple
analytical example:

Yt = Xt + Xtεt , Xt
iid∼ Uniform(0, 1), εt

iid∼ N (0, 1). [5]

Our motivating example draws on refs. 16 and 20–22 that illus-
trate the importance of accounting for heteroscedasticity. We
focus on the population conformal prediction (or oracle) prob-
lem under correct specification and abstract from finite-sample
issues.

Mean-based conformal prediction is based on the residuals
Rt = Yt − E(Yt | Xt) = Yt −Xt = Xtεt . The mean-based pre-
diction interval is

Creg
(1−α)(x ) =

[
x −Q|R|(1− α), x +Q|R|(1− α)

]
, [6]

where Q|R|(1− α) is the (1− α) quantile of the distribution of
|Rt |. An important property and drawback of Creg

(1−α) is that its
length, 2 ·Q|R|(1− α), is fixed and does not depend on XT+1 =

x (16, 20). This feature implies that Creg
(1−α) is not adaptive to

the heteroskedasticity in the location-scale model Eq. 5 and not
conditionally valid.

2 of 9 PNAS
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DCP is based on the ranks Ut =Φ(εt), where Φ(·) is the CDF
of N (0, 1). The DCP prediction interval is

Cdcp
(1−α)(x ) =

[
x − x ·Q|ε|(1− α), x + x ·Q|ε|(1− α)

]
, [7]

where Q|ε|(1− α) = Φ−1(1− α/2) is the (1− α) quantile of
|εt |. Unlike Creg

(1−α), the length of Cdcp
(1−α), 2x ·Q|ε|(1− α), de-

pends on XT+1 = x . Our construction automatically adapts to
the heteroskedasticity in model Eq. 5 and is conditionally valid.

Fig. 1 provides an illustration. Fig. 1A shows that the condi-
tional length of Creg

(0.9) is constant, whereas the length of Cdcp
(0.9)

varies as a function of x. Cdcp
(0.9) is shorter than Creg

(0.9) for low values

and wider for high values of x. Fig. 1B shows that Cdcp
(0.9) is valid for

all x, whereas Creg
(0.9) overcovers for low values and undercovers for

high values of x. Fig. 1 illustrates the advantage of our method.
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Fig. 1. Motivating example. (A) Conditional length 90% prediction interval.
(B) Conditional coverage 90% prediction interval.

For predictor values where the conditional variance is low, it
yields shorter prediction intervals while ensuring conditional
coverage for values where the conditional dispersion is large by
suitably enlarging the prediction interval.

Related Literature
We build on and contribute to the literature on conformal pre-
diction (e.g., refs. 13, 15–18, 20, 23, and 24) and the literature
on model-free prediction (19, 25), as well as the literature on
quantile prediction methods (e.g., ref. 26 has a review).

Within the conformal prediction literature, our paper is most
closely related to refs. 13, 16, and 20. Ref. 13 proposes condi-
tionally valid and asymptotically efficient conformal prediction
intervals based on estimators of the conditional density. We take
a different and complementary approach, allowing researchers to
leverage powerful regression methods for modeling conditional
distributions, including QR and DR approaches. Ref. 20 devel-
ops conformal prediction methods based on regression models
for conditional expectations. However, as discussed in Motivating
Example, this approach is not conditionally valid under het-
eroskedasticity. They also propose a locally weighted conformal
prediction approach, where the regression residuals are weighted
by the inverse of a measure of their variability. This approach
can alleviate some of the limitations of mean-based conformal
prediction but is motivated by and based on restrictive locations-
scale models. By contrast, our approach is generic and exploits
flexible and substantially more general models for the whole
conditional distribution.

Ref. 16 proposes a split conformal approach based on
QR models, which they call conformalized quantile regression
(CQR). Refs. 14 and 27 have related approaches, and ref. 28 has
a general approach to adaptive conformal prediction. CQR is
based on splitting the data into two subsets, T1 and T2. Based
on T1, they estimate two separate quantile functions Q̂(α/2, x )

and Q̂(1− α/2, x ) and construct the prediction intervals as[
Q̂(α/2, x )−QE (1− α), Q̂(1− α/2, x ) +QE (1− α)

]
,

where QE (1− α) is the (1− α)(1 + 1/|T2|) th empirical quan-
tile of

Et = max
{
Q̂(α/2,Xt)− Yt ,Yt − Q̂(1− α/2,Xt)

}
in T2. Constructing prediction intervals based on deviations from
quantile estimates is similar to working with deviations from
mean estimates, as the deviations are measured in absolute
levels. By contrast, exploiting the probability integral transform,
our approach is generic and relies on permuting ranks, which
naturally have the same scaling on (0, 1). Note, however, that
our paper was inspired by ref. 16, and we view our proposal as
a (fully quantile rank–based) refinement of ref. 16. The value
of this refinement is especially apparent in the second empirical
example. In addition, we also give quantile-based optimal predic-
tion intervals.

Our adjustment for constructing efficient prediction intervals
is related to and inspired by conformal prediction literature on
minimum-volume prediction sets based on density estimators
(e.g., refs. 13, 23, and 29–31) and nearest-neighbor estimators
(32). It is most closely related and can be viewed as an alternative
to conformal histogram regression (33). The main differences
between our approach and conformal histogram regression are
the following. First, our method is based on an optimization
problem formulated in terms of estimated quantile functions and
does not require estimating a conditional density or histogram.
Second, we do not work with nested sets but instead, use a
simple adjustment of our baseline conformity score. Finally, our
approach works for general outcome distributions and does not
rely on assuming unimodal distributions.

Chernozhukov et al.
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Conceptually, our paper is further related to the
transformation-based model-free prediction approach de-
veloped in refs. 19 and 25 in that we rely on transformations of
the original setup into one that is easier to work with (i.e., ranks
that are uniformly distributed) and study the properties of our
approach in a model-free setting. An important difference is the
implementation of the resulting procedure. The transformation-
based approach is based on the bootstrap, whereas our approach
is based on permuting ranks. Permuting ranks estimated based
on the augmented data guarantees the model-free finite-
sample validity of our method with exchangeable data. To our
knowledge, no exact finite-sample validity results have been
developed for the bootstrap-based approach.

DCP
Here, we introduce DCP. We present a full and a split-sample
version of our method.

Full DCP. Let y denote a test value for YT+1. We test the plausi-
bility of each value y ∈ R, collect all plausible values, and report
them as the prediction set. In practice, we consider a grid of
test values Ytrial.‡ Define the augmented data Z (y) = {Z (y)

t }T+1
t=1 ,

where

Z
(y)
t =

{
(Yt ,Xt) if 1≤ t ≤ T

(y ,Xt) if t = T + 1
. [8]

Based on the augmented dataset Z (y), we estimate the condi-
tional CDF using a suitable method such as QR and DR, which
are discussed in more detail in SI Appendix. Let F̂ (y) denote the
estimator for F based on the augmented sample. If the original
estimate is not monotonic, we rearrange it (e.g., refs. 35 and 36)
so that F̂ (y)(·, x ) is always monotonic. To simplify the exposition,
we keep these rearrangements implicit.

We compute the ranks {Û (y)
t }T+1

t=1 , where

Û
(y)
t =

{
F̂ (y)(Yt ,Xt) if 1≤ t ≤ T

F̂ (y)(y ,Xt) if t = T + 1
, [9]

and obtain P values as

p̂(y) =
1

T + 1

T+1∑
t=1

1
{
V̂

(y)
t ≥ V̂

(y)
T+1

}
, [10]

where V̂
(y)
t := ψ(Û

(y)
t ) and ψ(·) is a deterministic function. For

our baseline method, we use ψ(x ) = |x − 1/2|. In Extension:
Optimal DCP, we show how to choose ψ optimally to ensure
efficiency. Prediction intervals are computed as Ĉ full

(1−α)(XT+1) =

{y ∈ Ytrial : p̂(y)> α}.§ We summarize our approach in
Algorithm 1.
Algorithm 1: (Full DCP).

Input: Data {(Yt ,Xt)}Tt=1, miscoverage level α ∈ (0, 1), a
point XT+1, test values Ytrial

Process: For y ∈ Ytrial,

1) define the augmented data Z (y) as in Eq. 9
2) compute p̂(y) as in Eq. 10

‡For example, we can choose Ytrial to be a fine grid between − max1≤t≤T |Yt| and
max1≤t≤T |Yt|. This choice has a theoretical justification since under exchangeabil-

ity, P
(
|YT+1| > max1≤t≤T |Yt|

)
≤ 1/(1 + T) (34) (a discussion is in the conformal

Inference R-package; https://github.com/ryantibs/conformal).
§Instead of Ĉ full

(1−α)(XT+1), we typically report the closed interval C̃ full
(1−α)(XT+1) =[

min
(
Ĉ full
(1−α)(XT+1)

)
, max

(
Ĉ full
(1−α)(XT+1)

)]
.

Output: Return (1− α) prediction set Ĉ full
(1−α)(XT+1) =

{y ∈ Ytrial : p̂(y)> α}

Split DCP. An important drawback of full DCP (Algorithm 1) is
its computational burden due to the grid search. Since F̂ (y) is
obtained based on the augmented data, one has to choose Ytrial
and reestimate the entire conditional distribution for all y ∈ Ytrial.
Therefore, we propose a split conformal procedure that exploits
sample splitting, avoids grid search, and only requires estimating
F once. Sample splitting is a popular approach for improving the
computational performance of conformal prediction methods
(e.g., refs. 16 and 20).
Algorithm 2: (Split DCP).

Input: Data {(Yt ,Xt)}Tt=1, miscoverage level α ∈ (0, 1), point
XT+1

Process:

1) Split {1, . . . ,T} into T1 := {1, . . . ,T0} and T2 := {T0 +
1, . . . ,T}

2) Obtain F̂ based on {Zt}t∈T1

3) Compute {V̂t}t∈T2 = {ψ(Ût)}t∈T2 , where Ût =

F̂ (Yt ,Xt)

4) Compute Q̂T2 , the (1− α)(1 + 1/|T2|) empirical quantile
of {V̂t}t∈T2

Output: Return (1− α) prediction set Ĉ split
(1−α)(XT+1) ={

y : ψ
(
F̂ (y ,XT+1)

)
≤ Q̂T2

}
(Since F̂ (·,XT+1) is monotonic, Ĉ split

(1−α)(XT+1) is an interval)
In Algorithm 2, we split {1, . . . ,T} into {1, . . . ,T0} and {T0 +

1, . . . ,T}. With iid data, one can also consider random splits.
Split DCP lends itself naturally to simple in-sample valid-

ity checks with both cross-sectional and time series data as
illustrated in Empirical Applications.

Theoretical Performance Guarantees
In this section, we establish the theoretical properties of our
procedure. We focus on full-sample DCP (Algorithm 1). For
the split-sample approach (Algorithm 2), we provide a modified
version (SI Appendix, Algorithm S1) in SI Appendix and present
its theoretical properties in Extension: Optimal DCP.

When the data are iid (or exchangeable), our method achieves
finite-sample unconditional validity in a model-free manner, as
a consequence of general results on conformal inference and
permutation inference more generally (e.g., refs. 17 and 37).

Theorem 1 (Finite-sample unconditional validity). Suppose
that the data are iid or exchangeable and that the estimator of the
conditional distribution is invariant to permutations of the data.
Then,

P
(
YT+1 ∈ Ĉ full

(1−α) (XT+1)
)
≥ 1− α.

The proof of Theorem 1 is standard and omitted. Theorem 1
highlights the strengths and drawbacks of conformal prediction
methods. Most commonly used estimators of the conditional
CDF such as QR and DR are invariant to permutations of the
data. As a result, Theorem 1 provides a model-free unconditional
performance guarantee in finite samples, allowing for arbitrary
misspecification of the model of the conditional CDF. On the
other hand, it has a major theoretical drawback. Even with iid
data, it provides no guarantee at all on conditional validity.

Our next theoretical results provide a remedy. We impose the
following weak regularity conditions.

Assumption 1. Suppose that there exists a nonrandom function
F ∗(·, ·) such that the following conditions hold as T →∞. Define
Vt := ψ(F ∗(Yt ,Xt)) for 1≤ t ≤ T + 1.

4 of 9 PNAS
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1) There exists a strictly increasing continuous function
φ : [0,∞)→ [0,∞) such that φ(0) = 0 and (T +

1)−1 ∑T+1
t=1 φ(|V̂t − Vt |) = oP (1) and V̂T+1 = VT+1 +

oP (1), where V̂t := V̂
(YT+1)
t = ψ(F̂ (YT+1)(Yt ,Xt)) for

1≤ t ≤ T + 1.
2) supv∈R

|G̃(v)−G(v)|= oP (1), where G̃(v) = (T +

1)−1 ∑T+1
t=1 1{Vt < v} and G(·) is the distribution function

of VT+1.
3) supx1 �=x2

|G(x1)−G(x2)|/|x1 − x2| is bounded.

Assumption 1 allows for some flexibility with respect to the
model estimator. Here, we only require F ∗ to be a nonrandom
function, which may or may not be F. The interpretation is
straightforward when F ∗ = F since this simply means that the
estimator F̂ is consistent for F. We discuss the case of F ∗ �= F
after Theorem 2 below. Note that we can replace the consistency
requirement in Assumption 1 with a stronger uniform consistency
requirement, supx ,y |F̂ (y , x )− F ∗(y , x )|= oP (1).

We also notice that the quantities V̂t and Vt are defined
under the true YT+1. This means that F̂ (y) uses y = YT+1. In
other words, the estimator F̂ based on the sample {(Xt ,Yt)}T+1

t=1

would be consistent for some F ∗ if YT+1 were observed.¶ Since
the goal of Assumption 1 is to guarantee the coverage probability
for YT+1, the conditions in Assumption 1 only need to hold for
y = YT+1.

Notice that F̂ is consistent for F ∗ under a very weak norm,
and no rate condition is required. When ψ(x ) = |x − 1/2|,
a simple example of φ(·) in Assumption 1 is φ(x ) = x q for
some q > 0; in other words, a sufficient condition is (T +

1)−1 ∑T+1
t=1 |F̂ (Yt ,Xt)− F ∗(Yt ,Xt)|q = oP (1), which can be

verified for many existing estimators with q = 2.
The following lemma gives the basic consistency result.
Lemma 1. Let Assumption 1 hold. Then, Ĝ(V̂T+1) =

G(VT+1) + oP (1), where Ĝ(v) = (T + 1)−1 ∑T+1
t=1 1{V̂t < v}.

By Assumption 1, G(·) is uniformly continuous and thus, con-
tinuous. Since G(·) is the distribution function of VT+1, we
have that G(VT+1) has the uniform distribution on (0, 1) [i.e.,
P(G(VT+1)≤ α) = α ]. This implies the unconditional asymp-
totic validity.

Theorem 2 (Asymptotic unconditional validity). Let Assump-
tion 1 hold. Then,

P
(
YT+1 ∈ Ĉ full

(1−α) (XT+1)
)
= 1− α+ o(1).

Theorem 2 establishes the asymptotic unconditional validity of
the procedure. Since Theorem 1 already establishes the uncon-
ditional validity in finite samples for iid or exchangeable data
without assuming any consistency of F̂ , the main purpose of
Theorem 2 is to address the case of nonexchangeable data (e.g.,
time series data with ergodicity), especially when the model is
misspecified (i.e., if F ∗ �= F ) .

To illustrate model misspecification, consider the popular
linear QR model, which assumes Q(τ , x ) = x�β(τ), and thus,
F (y , x ) = F (y , x ;β) =

∫ 1

0
1{x�β(τ)≤ y}dτ . This model is

typically estimated by β̂(τ) = arg minβ

∑T+1
t=1 ρτ (Yt − X�

t β)
with ρτ (a) = a(τ − 1{a < 0}). Under misspecification
[Q(τ , x ) �= x�β(τ) ], β̂(τ) is still estimating β∗(τ) =

arg minβ

∑T+1
t=1 Eρτ (Yt − X�

t β), and F ∗ is defined using
β∗(·) [e.g., F ∗(y , x ) =

∫ 1

0
1{x�β∗(τ)≤ y}dτ ]. For parametric

models, F ∗ is usually the probability limit of F̂ . In general,

¶This is not really much different from assuming that F̂ based on the sample
{(Xt , Yt)}T

t=1 is consistent for some F∗ .

we can consider a model F and minimize the empirical
risk F̂ = arg ming∈F

∑T+1
t=1 L(Yt ,Xt , g) for some loss

function L. Even if the model is misspecified (F /∈ F) , it
is still possible to show that F̂ is close (in some norm) to
F ∗ = arg ming∈F

∑T+1
t=1 E [L(Yt ,Xt , g)]. In SI Appendix, we

provide a more detailed discussion of this and some theoretical
results verifying the consistency requirement in Assumption 1 for
the time series case; ref. 24 has a general discussion of conformal
prediction in time series settings.

The cost of allowing for misspecification is that one cannot
guarantee conditional validity when F ∗ �= F . On the other hand,
Lemma 1 implies that the prediction intervals are conditionally
valid when F ∗ = F .

Theorem 3 (Asymptotic conditional validity). Let Assumption
1 hold with F ∗ = F . Then,

P
(
YT+1 ∈ Ĉ full

(1−α) (XT+1) | XT+1

)
= 1− α+ oP (1).

Theorems 2 and 3 establish the asymptotic validity of our pro-
cedure under weak and easy to verify conditions. They formalize
the key intuition that conditional validity hinges on the quality of
the estimator F̂ of the conditional CDF.#

Extension: Optimal DCP
In Theoretical Performance Guarantees, we have seen that a
generic conformity score ψ(y , x ) = |F (y , x )− 1/2| leads to con-
ditional validity if the conditional distribution F can be estimated
consistently. We now characterize an optimal choice of confor-
mity score that results in the shortest prediction interval. Detailed
implementation algorithms, technical assumptions, and proofs
are provided in SI Appendix.

Let Z and X denote the support of Zt = (Yt ,Xt) and Xt ,
respectively. The optimal prediction interval is

Copt
(1−α)(x ) = [r1(x ,α), r2(x ,α)], [11]

where the functions r1(·, ·), r2(·, ·) satisfy that for any x ∈ X ,

r2(x ,α)− r1(x ,α) = min
F(z2,x)−F(z1,x)≥1−α

z2 − z1. [12]

The question is whether it is possible to design a conformity
score that achieves the above optimal prediction interval. To
answer this question formally, we consider a generic conformity
score ψ(y , x ), which might contain components that need to be
estimated.

Permuting a large number of values of {ψ(Yt ,Xt)} in con-
formal predictions leads to taking the sample (1− α) quantile
of ψ(Yt ,Xt) as the output. For example, following Algorithm 2,
one would output the (1− α)(1 + 1/|T2|) empirical quantile of
{ψ(Yt ,Xt)}. Assuming a law of large numbers, this empirical
quantile would be close to the population (1− α) quantile of
ψ(Yt ,Xt), leading to the asymptotic conformal prediction inter-
val for YT+1:

Cconf
(1−α)(XT+1) = {y : ψ(y ,XT+1)≤Qψ(1− α)}, [13]

where Qψ(1− α) is the (1− α) quantile of ψ(Yt ,Xt). The
following result shows how to construct the optimal conformity
score ψ.

Lemma 2. Let ψ∗(y , x ) = |F (y , x )− b(x ,α)− (1− α)/2|,
where b(·, ·) is a function satisfying that for any x ∈ X ,

b(x ,α) ∈ arg min
z∈[0,α]

Q(z + 1− α, x )−Q(z , x ). [14]

#In Theorem 3, we assume F∗ = F. Since the first version of this paper was posted, ref.
38 has provided more general results where F∗ ≈ F.
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Let Cconf
(1−α)(XT+1) be defined as in Eq. 13 with the above confor-

mity score ψ∗. Assume that F (·, x ) is a continuous function for any
x ∈ X . Then, Qψ(1− α) = (1− α)/2 and

μ
(
Copt
(1−α)(XT+1)

)
= μ

(
Cconf
(1−α)(XT+1)

)
almost surely ,

where μ(·) denotes the Lebesgue measure. If the optimization prob-
lem in Eq. 11 has a unique solution for any x ∈ X , then

Copt
(1−α)(XT+1) = Cconf

(1−α)(XT+1) almost surely .

Lemma 2 motivates conformity scores of the form ψ∗(y , x ) =
|F (y , x )− [b(x ,α) + (1− α)/2]|, where b(·, ·) solves Eq. 14.
Compared with the choice of ψ(y , x ) = |F (y , x )− 1/2| men-
tioned in Theoretical Performance Guarantees, we can view ψ∗ as
having a “shape” adjustment b(x ,α)− α/2. Since F (Yt ,Xt) is
independent of Xt , the optimal conformity score measures the
distance between two independent components: F (Yt ,Xt) and
1/2 + (b(Xt ,α)− α/2). Hence, by Lemma 2, in order to take
into account the shape of the conditional distribution F (·, x ), it
suffices to consider the scalar quantity 1/2 + (b(x ,α)− α/2).

In some special cases, the shape adjustment can be shown to
be zero [i.e., b(x ,α) = α/2 ]. One typical example is when F (·, x )
is a symmetric unimodal distribution with a well-defined con-
ditional density.‖ Therefore, the choice of ψ(y , x ) = |F (y , x )−
1/2| mentioned in Theoretical Performance Guarantees is optimal
in these cases. However, Lemma 2 provides a construction that
achieves optimality more generally. By the definition of ψ∗ and
Qψ(1− α) = (1− α)/2, the prediction interval is

Cconf
(1−α)(x ) = [Q(b(x ,α), x ),Q(b(x ,α) + 1− α, x )]. [15]

We illustrate this in Fig. 2 with α= 0.1. Eq. 15 implies that
b(x ,α) is the quantile index of the lower bound of the interval.
For the symmetric distribution in Fig. 2, Top, we see b(x ,α) =
0.05, which is α/2. For the asymmetric distribution in Fig. 2,
Bottom, we see that b(x ,α) = 0.007, which is far away from
α/2 = 0.05.

The first result in Lemma 2 is general and allows for the lack
of uniqueness of the optimal prediction interval. For example, if
F is the uniform distribution on a certain interval, then all condi-
tionally valid prediction intervals have the same length. Clearly,
in this case, achieving the optimal length is the only goal one can
hope for. When we can uniquely define the optimal prediction
interval, Lemma 2 implies that the conformal procedure can
recover the uniquely defined optimal interval, not just achieving
the optimal length.

Lemma 2 also confirms the insight of ref. 13; the optimal
confidence set for XT+1 = x should take the form {y : f (y , x )≥
c(x )} for some c(x )> 0, where f (y , x ) = ∂F (y , x )/∂y . Assume
that F (·, x ) is a unimodal distribution and f (·, x ) is a continuous
function for any x ∈ X . Then, this confidence set is an inter-
val. This means that {y : f (y , x )≥ c(x )}= [c1(x ), c2(x )] and
f (c1(x ), x ) = f (c2(x ), x ) = c(x ). We notice that c1(x ), c2(x )
are related to our results in that c1(x ) =Q(b(x ,α), x ) and
c2(x ) =Q(b(x ,α) + 1− α, x ). To see this, simply observe that
the first-order condition of the optimization problem in Eq. 14 is
1/f (Q(z + 1− α, x ), x )− 1/f (Q(z , x )) = 0, which implies that

f (Q(b(x ,α) + 1− α, x )) = f (Q(b(x ,α), x )).

To make the procedure operational, we provide the
conformal prediction interval Ĉconf

(1−α)(XT+1) defined in

|| In this case, Q(1/2 + δ, x) − Q(1/2, x) = Q(1/2, x) − Q(1/2 − δ, x), and the condi-
tional density is increasing on (−∞, Q(1/2, x)) and decreasing on (Q(1/2, x), ∞).
One can show b(x, α) = α/2 by taking the first-order derivative for the optimization
problem in Eq. 14 and setting it to zero.

N(0, 1)

QY(0.05) QY(0.95)

χ2(5)

QY(0.007) QY(0.907)

Fig. 2. Optimal prediction intervals. (Top) Symmetric distribution.
(Bottom) Asymmetric distribution.

SI Appendix, Algorithm S1. We can provide the following
guarantee.

Theorem 4. Let SI Appendix, Assumption S1 hold. Then,

P
(
YT+1 ∈ Ĉconf

(1−α)(XT+1) | XT+1

)
= 1− α+ oP (1)

and

μ
(
Ĉconf
(1−α)(XT+1)

)
≤ μ

(
Copt
(1−α)(XT+1)

)
+ oP (1).

The main requirements in SI Appendix, Assumption S1 are
consistency of F̂ and that the density f bounded below on its
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support. This is quite mild in the sense that it does not imply that
the optimal prediction interval in Eq. 11 is uniquely defined. For
example, it allows f to be a uniform distribution. Therefore, as
discussed above, the conformal prediction interval would have
approximately the shortest length but might not converge to
Copt
(1−α)(XT+1) in Eq. 11.
The following theorem provides a stronger result about

Ĉconf
(1−α)(XT+1) based on stronger assumptions.
Theorem 5. Let SI Appendix, Assumption S2 hold. Consider

the conformal prediction interval Ĉconf
(1−α)(XT+1) defined in

SI Appendix, Algorithm S1. Then,

μ
(
Ĉconf
(1−α)(XT+1)	Copt

(1−α)(XT+1)
)
= oP (1),

where 	 denotes the symmetric difference of sets [i.e., A	B =

(A\B)
⋃
(B\A) ], Copt

(1−α)(XT+1) is defined in Eq. 11.
The key component of SI Appendix, Assumption S2 is consis-

tent estimation of b. Theorem 5 shows that Ĉconf
(1−α)(XT+1) is

close to Copt
(1−α)(XT+1) in the sense that the symmetric difference

between these two sets has vanishing Lebesgue measure.

Empirical Applications
We illustrate the performance of DCP in two empirical appli-
cations and provide a comparison with alternative approaches.
These examples, especially the second, illustrate the value of
our proposal. We consider eight different conformal prediction
methods.

1) DCP-QR: DCP with QR (Algorithm 2)
2) DCP-QR∗: Optimal DCP with QR (SI Appendix,

Algorithm S1)
3) DCP-DR: DCP with DR (Algorithm 2)
4) CQR: CQR with QR (16)
5) CQR-m: CQR variant (14, 27) with QR
6) CQR-r: CQR variant (14) with QR
7) CP-OLS: Mean-based split conformal prediction (CP) with

Ordinary Least Squares (OLS)
8) CP-loc: Locally weighted conformal prediction (20) with

OLS
All computations were carried out in R (39). Code and data

for replicating the empirical results are deposited in GitHub
(https://github.com/kwuthrich/Replication_DCP).

Predicting Stock Market Returns. Here, we consider the problem
of predicting stock market returns, which are known to exhibit
substantial heteroskedasticity (a recent review is in chapter 13
in ref. 40 and references therein). We use data on daily returns
of the market portfolio (Center for Research in Security Prices
value-weighted portfolio) from 1 July 1926 to 30 June 2021.**

We use lagged realized volatility Xt to predict the present return
Yt .†† Daily returns are not iid and exhibit time series dependence.
In SI Appendix, we show that the key conditions underlying our
theoretical results hold when the data are β-mixing. Several
stochastic volatility models for asset returns, including the pop-
ular generalized autoregressive conditional heteroskedasticity
models, can be shown to be β-mixing (e.g., refs. 42–44).

We evaluate the performance of the different methods by
splitting the data into a training and a test sample. To account for
the dependence in the data, we present results averaged over five
consecutive prediction exercises. In the first exercise, we apply
split conformal prediction with an equal split (|T1|= |T2|) to the

**The data are constructed from the Fama/French Three Factors data (41) available from
Kenneth R. French’s data library (accessed 17 August 2021).

††We compute realized volatility as the square root of the sum of squared returns over
the last 22 d.
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Fig. 3. Conditional coverage 90% prediction intervals by realized volatility.

first 50% of observations and use the next 10% for testing. In the
second exercise, we drop the first 10% of the observations, apply
split conformal prediction to the next 50% of observations, and
use the next 10% for testing and so on.

Fig. 3 plots the empirical coverage probabilities for 20 bins
obtained by dividing up the support ofXt based on equally spaced
quantiles. DCP-QR and DCP-QR∗ yield prediction intervals with
coverage levels that are almost constant across all bins and
close to the nominal level. They outperform DCP-DR, which
undercovers in high-volatility regimes. The conditional coverage
properties of DCP-QR and DCP-QR∗ are very similar to CQR,
CQR-m, CQR-r, and CP-loc. This suggest that location-scale
models, which are nested by QR, provide a good approximation
of the conditional distribution. CP-OLS exhibits overcoverage
under low-volatility regimes and substantial undercoverage un-
der high-volatility regimes. This finding has important practical
implications since the volatility tends to be high during periods
of crisis, which is precisely when accurate risk assessments are
most needed.

Fig. 4 shows the conditional length of the prediction intervals.
DCP-QR, DCP-QR∗, CQR, CQR-m, CQR-r, and CP-loc yield
prediction intervals of similar length. The DCP-DR prediction
intervals are somewhat shorter than those of the QR-based meth-
ods at the upper tail. Finally, CP-OLS yields prediction intervals
that are almost constant across all values of realized volatility;
they are longer than the DCP intervals at the lower tail and
shorter at the upper tail.‡‡

Predicting Wages Using CPS Data. We consider the problem of
predicting wages using individual characteristics. We use the
2012 Current Population Survey (CPS) data provided in the R
package hdm (45), which contain information on N = 29,217
observations. Here, we use the index i instead of t. To illustrate
the impact of skewness on the performance of the different
prediction methods, we use the hourly wage as our dependent
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Fig. 4. Conditional length 90% prediction intervals by realized volatility.

‡‡The CP-OLS prediction intervals are not exactly constant because we are reporting
results averaged over five experiments.
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Table 1. Coverage 90% prediction intervals

DCP-QR DCP-QR∗ DCP-DR CQR CQR-m CQR-r CP-OLS CP-loc

Unconditional coverage 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

SD of predicted conditional
coverage (×100) 1.80 1.71 3.08 2.21 2.36 2.30 11.13 4.11

variable Yi .### Predictors Xi include indicators for gender,
marital status, educational attainment, region, experience, expe-
rience squared, and all two-way interactions such that dim(Xi) =
100 after removing constant variables.

Following refs. 14 and 16, we evaluate the performance of
the different methods by randomly holding out 20% of the data
for testing, Itest, and applying split conformal prediction with an
equal split to the remaining 80% of the data. We repeat the whole
experiment 20 times.

Table 1 shows that all conformal prediction methods exhibit
excellent unconditional coverage properties, confirming the the-
oretical finite-sample guarantees. To assess and compare the
conditional coverage properties, for each method, we compute
conditional coverage probabilities as the predictions from logis-
tic regressions of {Yi ∈ Ĉ split

(1−α)(Xi)}i∈Itest on {Xi}i∈Itest , where

Ĉ split
(1−α) is the split conformal prediction interval obtained by the

corresponding method. The less dispersed the predicted cover-
age probabilities are around the nominal level 1− α= 0.9, the
better the overall conditional coverage properties of a method.
Table 1 plots the SD of the predicted coverage probabilities.¶¶

DCP-QR∗ yields the lowest dispersion of all methods. The
predicted coverage probabilities based on DCP-QR are less

###
We obtain the hourly wage by exponentiating the log hourly wage provided in the

dataset.
¶¶Using

√
1/|Itest|

∑
i∈Itest

(Ĉoveragei − 0.9)2, where Ĉoveragei is the predicted cover-

age probability, instead of the SD yields very similar results.

Table 2. Average length 90% prediction intervals

DCP-QR DCP-QR∗ DCP-DR CQR CQR-m CQR-r CP-OLS CP-loc

34.22 29.61 33.69 34.52 34.84 34.63 33.84 32.66

dispersed than those obtained from CQR, CQR-m, and CQR-r.
CP-loc yields a higher dispersion than the methods based on QR
and DR, which demonstrates the value added of using flexible
models of the conditional distribution. Overall, DCP performs
much better than CP-OLS, for which the predicted coverage
probabilities exhibit a very high dispersion. SI Appendix, Fig. S1
plots histograms of the predicted coverage probabilities.

Table 2 shows the average length of the prediction intervals.
DCP-QR∗ produces the shortest prediction intervals among of
all methods. This demonstrates the practical advantage of the
shape adjustment when the conditional distribution is skewed.
The results also suggest a trade-off between conditional coverage
accuracy and average length. For example, CP-OLS and CP-loc,
which both exhibit poor conditional coverage properties, yield
shorter prediction intervals than DCP-QR.

Data Availability. Data and computer codes to replicate all the re-
sults in this paper have been deposited in GitHub (https://github.com/
kwuthrich/Replication_DCP). All data are referenced in the main text.
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