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Reduced-order modeling of granular intrusions driven by
continuum approaches

by
Shashank Agarwal

Submitted to the Department of Mechanical Engineering
on March 21, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mechanical Engineering

Abstract

Granular intrusions such as ballistic impacts, vehicular and animal locomotion in
natural terrains, and stirring of materials in industrial processes are common. Gran-
ular media often exhibits coupled solid-like and fluid-like multiphase characteristics
in such systems that are commonly not shown by simple solids (like metals) and flu-
ids (like water). This makes modeling granular media challenging. While the field of
granular physics extensively uses grain-scale Discrete Elements Modeling (DEM) to
model such characteristics of granular systems, they are computationally expensive.
On the other hand, capabilities to model such systems in real-time are critical in
numerous applications such as path planning and efficient maneuvering of vehicles
in sandy terrains on earth and extra-terrestrial environments. Due to their shape-
and media-specific forms, existing reduced-order intrusion modeling methods have
limited capabilities.

This work focuses on developing efficient approaches to model motions of arbi-
trarily shaped objects into the granular volumes to various numerical details and
accuracy levels. Specifically, we focus on a mesoscale continuum approach and a
macroscale empirical approach. We establish the sufficiency of appropriately-chosen
constitutive laws and computational methods in modeling various complex granu-
lar flow scenarios with a continuum approach. We exploit the approach to develop
deep insights into the origin of granular resistive forces encountered during granular
intrusions. We further use these insights to extend an empirical modeling method
called Resistive Force Theory (RFTs) for real-time modeling of granular intrusions.
RFTs developed in this work are verified against a variety of experimental and simu-
lation results and allow modeling the motions of arbitrary three-dimensional objects
moving arbitrarily in granular media at low and high speeds in real-time.
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Chapter 1

Reduced-order modeling of granular
media: meaning, utility, history, and
status

1.1 What are granular materials and why are they
so complex?

Granular media are among the most common and yet most complex classes of ma-
terials around us. Sand in deserts, mining material in the industry, food grains, and
pharmaceutical pills all fall under the category of granular media. In fact, granular
media constitutes the second most handled material in the industry after water [1].
In general, they are defined as — ‘A conglomeration of discrete solid, macroscopic
particles characterized by a loss of energy whenever the particles interact. The most
common example would be friction when grains collide’ [1]. Their tendency to dis-
play multi-phase characters in fairly simple and daily life scenarios differentiates them
from other classes of materials such as simple solids (like metals and ceramics) and
liquids (like water and paints) [2, 3]. For instance, figure 1-1 shows a few real-life sce-
narios in which sand, a granular media, shows a solid, as well as a fluid-like behavior.
The cases correspond to the motions of vehicles in the deserts and a golfer hitting a
golf ball stuck in a sand trap. In all these cases, while the unmoved sand (supporting
the human and/or vehicle weight without continuously deforming) shows a solid-like
behavior, the flowing sand particles show a fluid-like material behavior. In order to
completely predict the flow of granular media in such cases, all the material states
and corresponding physics are needed to be understood. Once understood, all the
material states are needed to be appropriately characterized for accurate modeling
of granular flows in such systems.

While solid-like and fluid-like (and sometimes gas-like) behaviors are the most
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A B C

Figure 1-1: Examples of granular materials displaying it’s multi-phase nature in
diverse real-life scenarios (A) Motion of car in desert [4], (B) A golfer hitting a golf
ball from a sand trap [5], and (C) A bike wheel over sands [6]

visible aspects of such materials, the media is much more complex at the elementary
level. At the microscopic level, granular media consists of solid particles or grains
that interact to resist the flow when acted upon by an external motion or force
(or both). As expected, all grains are not identical solids with identical properties.
Grains vary in shape, size, density, stiffness, surface properties, strength, porosity,
particle shape, particle size, particle density and their distributions through out the
granular domain, to name a few [7]. The conglomerations of grains respond differ-
ently to different external loads based on cumulative grain properties. Similarly, the
nature and magnitude of external loads and individual grain properties such as grain
plasticity dictate the evolution of granular volume properties such as inter-grain and
intra-grain porosity, packing efficiency, etc. [7, 8]. For instance, fine non-cohesive
powders are known to develop cohesion at very high loads but remain cohesionless
at low loads, a concept used for manufacturing pills in the pharmaceutical industry
[9, 10, 11]. In addition, the presence of surrounding fluids (such as air and water)
and their interactions with the grains further complicate the modeling of granular
media in certain scenarios [12, 13, 14, 15]. Thus, even the simplest types of gran-
ular materials may require considering a large number of properties, making their
computational modeling a fairly complex task.

1.2 Simplifying granular response modeling

A variety of simplifications are often used for modeling granular media responses
in various situations. These simplifications rely on getting a deep physical insight
into granular flows and identifying dominating mechanics of material response. Once
known, these insights are used to introduce simplification in material representations
that facilitate the overall numerical modeling task.

Numerous simplifications can be made to simplify the modeling of granular vol-
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umes. For instance, granular volumes can be represented as discrete particles, with
each particle having individual grain properties, a continuum media with no particle
character, or a mixture of two. In each representation, further simplifications can be
made by controlling the physics included in their forms, for instance, grain proper-
ties in the particle approach and complexity of constitutive laws in the continuum
approach. Simplifications in representations and properties are often acceptable be-
cause the existence of a grain character does not necessitate its utility in modeling
every scenario related to granular flow [16, 17]. Some properties could play negligi-
ble roles in the dynamics of certain granular flows and thus could be ignored due to
their insignificant contributions to the final material response. For instance, while a
media could very well show rate-dependent effects, the property could be ignored if
the material flow is quasi-static. Similarly, while grains of a granular volume could
very well show plastic deformations at large stress values, the grain plasticity can
be ignored if the system stresses always remain negligible in comparison to the yield
stress of individual grains in a flow. To better understand the advantages and lim-
itations of modeling granular volumes, we discuss three approaches commonly used
for modeling granular volume in the order of decreasing complexities. The activity
will help us develop a systematic understanding of granular media modeling:

1.3 Micro-scale modeling: Discrete Element Method

At the fundamental level, granular media consists of grains. This property is kept in-
tact in the particle approach for modeling granular media. The grains are represented
at the individual particle level, with each particle having grain-specific characteristics
such as radius, stiffness, and other surface properties. The approach is commonly
called Discrete element method (DEM) [18, 19, 20, 21]. The method was first in-
troduced by Cundall and Stack [22]. The most basic DEM models for modeling
granular media consider each particle as a sphere, and the contact force between any
grain-pair is modeled as a spring-dashpot system with a tangential friction limit (see
figure 1-2). Upon application of external forces or displacements, the particles expe-
rience contact forces from neighboring particles. The contact forces and the external
forces are integrated via Newton’s laws of motion to calculate particle velocities and
positions over physical space in DEM. Hertzian and Hookean contact models are
among the most common particle contact models used in DEM modeling of granular
media [19, 20, 21]. These models use the following formulations for the calculation
of contact forces between the particles [23]:

In hookean contact model:
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Figure 1-2: Representation of particle contact model for granular media

𝐹 ℎ𝑘 = (𝑘𝑛𝛿𝑛𝑖𝑗 −𝑚eff𝛾𝑛𝑣𝑛)− (𝑘𝑡∆𝑠𝑡 +𝑚eff𝛾𝑡𝑣𝑡) (1.1)

In hertzian contact model:

𝐹 ℎ𝑧 =
√
𝛿

√︃
𝑅𝑖𝑅𝑗

𝑅𝑖 +𝑅𝑗

𝐹 ℎ𝑘 =
√
𝛿

√︃
𝑅𝑖𝑅𝑗

𝑅𝑖 +𝑅𝑗

[︀
𝑘𝑛𝛿𝑛𝑖𝑗 −𝑚eff𝛾𝑛𝑣𝑛)− (𝑘𝑡∆𝑠𝑡 +𝑚eff𝛾𝑡𝑣𝑡

)︀
(1.2)

Both the formulations follow couloumb friction limit as:

𝐹 𝑡 ≤ 𝜇𝐹 𝑛 (1.3)

where,
𝛿 = 𝑑− 𝑟 represents overlap distance of 2 particles,
𝑘𝑛 represents elastic constant for normal contact,
𝑘𝑡 represents elastic constant for tangential contact,
𝛾𝑛 represents viscoelastic damping constant for normal contact,
𝛾𝑛 represents viscoelastic damping constant for tangential contact,
𝑚eff =𝑀𝑖𝑀𝑗/(𝑀𝑖 +𝑀𝑗) represents effective mass of 2 particles of mass 𝑀𝑖 and 𝑀𝑗,
∆𝑠𝑡 tangential displacement vector between 2 particles which is truncated to satisfy
a frictional yield criterion,
𝑛𝑖𝑗 represents the unit vector along the line connecting the centers of the two parti-
cles,
𝑣𝑛 represents the normal component of the relative velocity of the two particles, and
𝑣𝑡 represents the tangential component of the relative velocity of the two particles.

Equation 1.1 and 1.2 represent the variation of contact forces between two parti-
cles from Hookean and Hertzian contact models. Forces in the normal direction are
proportional to different powers of overlapping distance 𝛿, and forces in the tangen-
tial direction are proportional to history-dependent tangential overlap ∆sij in the two
models. The formulation includes damping in the normal and tangential direction
in the form of 𝛾𝑛 and 𝛾𝑡 coefficients [23].
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1.3.1 Simplifications in micro-scale modeling

While particle level (micro-scale) modeling is one of the most elaborate modeling
methods for modeling granular material, most of the widely used DEM models carry
a variety of simplifications in them. Particle contact properties are often held con-
stant across the volume for simplicity and efficient computations. In systems with
known particle type, size, and interaction property distributions, multiple interac-
tion properties and particle types are used. With increasing system complexities, the
particle models are enriched with particle physics. For instance, in addition to the
cohesionless simple spring-dashpot model shown above, particles can have cohesion
which may increase and/or decrease as particles compress against each other. The
interaction can also have rolling friction between the particles. For all such systems,
more complex granular contact models are used [24, 19, 20, 21, 25]. We discuss a
few typical simplifications used in defining particles in DEM, below:
Particle shape: Though naturally occurring granular materials come in diverse
shapes, for ensuring simplicity and computational efficiency, they are often modeled
as perfect spheres ( i.e., every particle contact is modeled as sphere-sphere con-
tact as shown in figure 1-2). The effects of variable grain shapes are compensated
and incorporated in the choice of other material properties on statistical grounds
and experimental observations. In recent years, models systematically incorporat-
ing grain shapes variations (such as ellipsoid particle shape and anisotropic grain
properties [26, 27]) are also being proposed. In addition, for modeling arbitrarily
shaped particles, variations of DEM have been developed which model arbitrary
shapes with an agglomeration of grains or using polygonal definitions of individual
particles [28, 29, 30].
Size distribution: In addition to particle size, grains in granular volumes may vary
in their size. Estimating the size of every grain in the system is expensive and often
impossible. Hence, granular volumes are often assumed to have a given grain size
distribution (such as Gaussian and normal distributions) [31].
Individual particle and contact properties: Besides particle size and shape, as-
sumptions in other grain properties are also used. They include the presence/absence
of history dependence in contacts, rolling friction between the contacts, cohesion be-
tween the contacts, intra-particle porosity, and damage evolution in particles and
others[32].

So far, our discussion corresponds to granular systems with negligible effects of
other phases on grain interactions and flow dynamics. This is often a valid assump-
tion for granular volumes with low-density fluids (such as air) at low pressure and
flow rates, where the fluid drag on particles is negligible. In more complex sys-
tems, heavier/pressured/high-inertia fluids can exist between the particles and/or
can cause significant fluid drags and inter-particle interactions [13]. A variety of two-
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phase models are used for modeling such systems. In such approaches, while the solid
phase (grains) is modeled as discrete particles (DEM), the fluid phase is modeled us-
ing conventional Navier-Stokes equations with various computational fluid dynamics
(CFD) approaches such as finite volume method, FVM) (CFD-DEM [33, 34, 35, 18]),
and Lattice Boltzmann Method, LBM (called LBM-DEM [36, 37, 38]) etc. In all
these methods, additional particle–fluid interaction forces [39] are used to couple the
motion of the two phases together and model the overall coupled system. Similar
to the single-phase DEM, mixed methods often use simplifications for the numerical
tractability of the approach. Coupling between the two phases is often limited to
mass and momentum balance, and/or one-way drag forces (only the drag of fluid
on the solid phase is considered and not vice versa) between the phases [14, 10].
Figure 1-3 shows a demonstration of a CFD-DEM approach for modeling flow of
fluid-particle mixture during compaction of granular volumes in the presence of fluid
phase around them based on an implementation by Goniva and Kloss [18].

Figure 1-3: Demonstration of CFD-DEM technique in a compaction setting. Vari-
ations of various system variables in the solid and fluid phases (grains and air) are
plotted upon intrusion of a piston, represented by a group of closely rigidly packed
grains (shown in red) into a fluid-saturated granular bed. In these simulations,
the fluid phase is modeled using the finite volume method (FVM) implemented in
OpenFoam. Similarly, the granular phase in these simulations is modeled using the
discrete element method implemented in LIGGGHTS. The coupling is done using
CFD-DEM implementation by Christoph Goniva and Christoph Kloss [18], both at
DCS Computing GmbH, 2012 (named CFDEM)
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1.4 Meso-scale modeling: Continuum modeling

Consideration of the particle nature of granular materials for modeling granular flows
(DEM) has well served the granular research community over the decades. DEM
remains the most used method of modeling granular media in the industry over the
years[24]. But accuracy of DEM comes at the expense of its large computational
cost [40]. In recent years, there has been a growing interest in modeling increasingly
larger granular systems [41, 42, 43, 44, 45]. This has led to a push for computationally
faster alternatives to DEM, especially continuum descriptions of granular media[17].

In the continuum representation of granular media, it is assumed that though
at the fundamental level (micro-scale) the granular media consists of grains, at a
mesoscale, their flow and response can be modeled using a continuum displacement
field that follows momentum balance equations (which dictate the evolution of me-
dia displacements based on system stresses and external forces) at the fundamental
level. The stresses and displacements for material are related using materials consti-
tutive laws and other material states [46]. The approach implements the continuum
description of the granular media by assuming that the constitutive material laws
(elastic-plastic for constitutive modeling used in this work) are sufficient to represent
the majority of the material behaviors. In some cases, various particle effects could
be added to the systems through material constitutive relations. The physics asso-
ciated with particle re-arrangements, particle packing fraction, grain shape and size,
stiffness, distribution, force transfer between the particles, and other aspects, are
included using constitutive representations of these properties to ensure the physi-
cal accuracy of representations [47, 48, 49] in intended applications. For instance,
a local density variable is typically used for representing the changing packing frac-
tion of grains across the granular domains as a result of particle re-arrangement over
time and space [50, 51, 52]. Similarly, numerous local state variables are used for
capturing packing density-dependent strength of the media, phenomenon such as as
Reynold’s dilation[9], rate-dependent material response (𝜇(𝐼) rheology [53, 54]) etc.
As the continuum modeling ignores the particle representation of granular media,
its performance deteriorates in systems where the length scale of the simulations
starts approaching grain diameters (typically < 10 grain diameters). In this regard,
mixed-methods, coupling the continuum approach with the DEM approach, have
been introduced in recent years with various levels of success [55, 56].

Like DEM, the continuum modeling approach consists of two components —
material constitutive relations and methods for implementing those constitutive re-
lations over simulation domains. The choice of constitutive models depends on the
materials and phenomenon under consideration. Similarly, implementing the con-
tinuum representation of the granular media requires methods that are capable of
maintaining high numerical accuracy even under large deformations that are expected
in granular flows. We use the material point method (MPM)[57] for implementing
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various continumm material models in our research. More details on the constitutive
laws and the MPM approach are provided in Chapter 2.

In the presence of other phases of matter such as fluids, Two-phase models (TFM)
are used [58, 59]. TFM’s can be considered as continuum equivalents of the CFD-
DEM approach. In this approach, two phases (solid grains and liquid) are simul-
taneously modeled in the same physical space using two sets of constitutive laws.
The two phases cross-talk with each other at each time step, to maintain mass and
momentum balance on the domain. The drag forces on each phase due to the other,
are also calculated using coupling equations such as Darcy’s law[60, 13] at each time
step. We do not use this approach in our work. For more details the reader can
refer to Baumgarten and Kamrin [13]. Though TFM is computationally more effi-
cient than a more detailed method such as LBM-DEM CFD-DEM, they remain less
accurate in many scenarios.

1.4.1 Simplifications in mesoscale modeling

Similar to other methods, continuum modeling often assumes a variety of simpli-
fications in defining a granular volume. Such simplifications include (but are not
limited to) presence/absence of density variations in the media [17], the evolution of
media density as a result of shear and/or volumetric loading of the media (Reynolds
dilation/compaction, capping models) [61, 62, 11], rate-sensitivity of material prop-
erties (𝜇(𝐼) rheology [53, 54]), presence of other phases (such as air and liquid) in
the computational domain (Mixture theories) [13, 63] etc. The details incorporated
in a constitutive law decide its applicability in a specific condition. Similarly, the
capability of the implementation method to represent models of deformation and
information transfer across the granular domain restricts its applicability to system
under consideration. For example, conventional Finite Elements Methods(FEM) can
not model large strains in granular intrusions. This is due to large errors associ-
ated with severely deformed elements in FEM. Modifications such as adaptive mesh
refinement [64] are required to be made to make these methods conducive for the
purpose.

1.5 Macro-scale modeling: Reduced-order/Empirical
modeling

Real-life granular flow scenarios often require limited information from the system
based on the applications at hand. For instance, estimating the power requirements
for a conveyor transferring granular media (e.g. in the mining industry) requires
only the effective load of the media on the conveyer as a result of its weight and
the friction force it experiences due to sidewall friction on it. Similarly, deciding a
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silo (used for storing grains) opening for a fixed flow rate of the grains only requires
their dependence on silo angle, silo opening, and level of grains in it [65, 66, 67].
Similarly, characterizing the locomotion of vehicles in sandy deserts requires only
the estimation of forces on wheels from the sands and does not require complete
characterization of the granular flow itself. In all such cases, a limited amount of
information from the system is sufficient for the end goal [68, 69].

Rigorous numerical methods such as finite element methods (FEM) [70], discrete
element methods (DEM) [22], two-phase models (mixture theories)[58], and mixed
methods (LBM-DEM, SPH-DEM, etc) [36, 37, 38, 56], model granular systems to a
variety of details and accuracy. The detailing and accuracy of these methods come at
high computational costs associated with them. While some methods are faster than
others, none of them can estimate material response in real-time for applications
discussed in this section. The associated high computational costs of such meth-
ods make them non-optimal approaches for quick estimation of granular response.
Reduced-order or Empirical models provide great alternatives for these situations.

The origin of empirical methods dates to the early days of human civilization
when they started making rules of thumb[71] for approximating the response of sys-
tems to external stimulus in lack of their detailed understanding (though the phrase
‘Rule of thumb’ dates just a few centuries back [71]). With the arrival of classical
physics, the empirical methods improved. In modern days, empirical methods are de-
fined as ‘procedures for conducting an investigation that rely upon experimentation
and systematic observation rather than theoretical speculation’ [72]. The empirical
approach becomes even more effective with the use of scaling/dimensional analysis,
and the combination is extensively used in the fields of fluid mechanics and others.
The field of granular media also uses empirical approaches, especially in relation
to vehicular locomotion (discussed next). We discuss major forms of existing and
upcoming empirical methods in granular mechanics next.

1.5.1 Dimensional analysis

The dimensional (or scaling) analysis combined with empirical observations to esti-
mate the dependence of outputs on certain combinations of system inputs is the most
common type of empirical modeling. The basic philosophy of the method is that if a
system output depends on an exhaustive list of system state variables, independent
of how complex the dependence is, the final dependence must satisfy dimensional
constraints. Thus, just by knowing the dimensions of the system state variables,
many variable interdependencies can be obtained. Scaling analysis has long been
reliably used in the field of fluid mechanics, heat transfer, acoustics, terramechanics
[73] and many others for analysis, design, and development of complex systems [72].
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The concept of Reynolds number, Stokes number, Parcelet number, Mach number
all have their origin in this approach [74]. In this thesis work, we use scaling analysis
in multiple places to improve existing knowledge of granular materials and make new
discoveries. For the latest developments in scaling laws in granular media, the reader
could refer [75, 17, 76, 77].

1.5.2 Terramechanical methods

With the arrival of automobiles, the invention of the rubber tire to its current form,
and the beginning of the use of automobiles (automobiles and tanks) in warfare in
the early 20th century, researchers became more interested in optimizing the motion
of vehicles in deserts and other natural terrains. The famous book ‘The eyes of the
desert rats’ [78] talks about the adventures of Brigadier Ralph A. Bagnold in Libyan
deserts in the late 1930s and specifically, do’s and don’t for optimizing motions of
vehicles on sand from an empirical perspective. In the book, the Brigadier says —

“It should be taken at full speed on the high gear as far as possible, only putting
low gear when the speed slackens considerable and returning to high gear as soon as
the sufficing acceleration has been obtained. Stopping anywhere on hard and slightly
elevated ground should be avoided and getting into ruts of a preceding car is danger-
ous if the ground is sat all soft. A car will frequently go without difficulty in virgin
ground but will stick if the same ground has been ploughed up by other cars”

A breakthrough in the field of motion of objects in granular volumes, especially
near free-surface vehicular locomotion, came with the works of Bekker [79] in the
1960s. Bekker gave a semi-empirical formulation for modeling rigid cylindrical wheel
motion over non-cohesive sands. Since then, many [80, 81, 82, 83] have expanded
their work to expand on the capability of their theories in diverse scenarios and
materials like dry snow [84], clay [85] etc. The most notable contribution in this
regard came from Wong and Reece, which has become the de facto model of rigid
cylindrical wheels on soft terrain [80, 81]. Wong and Reece’s model is the most com-
monly used method in terramechanics for deriving wheel torque, thrust, and sinkage
by estimating the stress distributions along the wheel-terrain contact region. The
model is based on the Bekker pressure-sinkage relation, and the Janosi-Hanamoto
shear-displacement equation [82]. Both the equations and their schematic represen-
tation in regards to a cylindrical wheel are provided in eq 1.4 and eq 1.5 and figure
1-5. In brief, the method characterizes a rigid circular wheel moving (rolling and
slipping) on sand using a combination of fitting parameters derived using physical
insights and experimental observations into the motion of wheels in sands.
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Figure 1-4: Bevameter setup proposed by Bekker [79] and used for terramechanical
charaterization of granular media

Bekker pressure-sinkage relation:

𝑝 =

(︂
𝑘𝑐
𝑏
+ 𝑘𝜑

)︂
𝑧𝑛 (1.4)

Parameters 𝑘𝑐, 𝑘𝜑, 𝑛 are empirical constants that dependent on soil properties, while
𝑏 corresponds to the intruding plate/tire width. These parameters can be obtained
from field tests conducted with a device called a Bevameter (Figure 1-4 [86, 87]).

Janosi-Hanamoto shear-displacement equation [82]:

𝜏 = (𝑐+ 𝜎 tan𝜑)
(︁
1− 𝑒−

𝐽
𝐾

)︁
(1.5)

where 𝑐 and 𝜑 are the cohesion and the angle of internal shearing resistance of the
terrain, respectively. 𝐾 is the shear displacement modulus which may be considered
as a measure of the magnitude of the shear displacement required to develop the
maximum shear stress (see [84]). 𝐽 represents the shear displacement of the wheel
edge with respect to the adjacent soil.
The above equations represent the stress state along a cylindrical wheel surface as
shown in Figure 1-5. The model introduced by Wong and Reece derives the wheel
torque, thrust, and sinkage by estimating the stress distributions along the wheel-
terrain contact region using the above formulations. More details of the model can
be found in Chapter 3 of Agarwal [88].
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Figure 1-5: Normal (𝜎) and Tangential (𝜏) stress profiles along a wheel surface. 𝜃𝑓
and 𝜃𝑟 represent the angles subtented by wheel at fore and aft points of contact of
the wheel with the terrain (known as ‘soil entry’ and ‘soil exit’). 𝜃𝑚 is the angle at
which the maximum normal stress occurs.

1.5.3 Semi-empirical method: Resistive Force Theory (RFT)

While the terramechanics methods are among the most commonly and extensively
used methods in the field of granular locomotion, in recent years, a new approach
has gained a lot of attention. The approach is called Resistive Force Theory (RFT).

The Resistive Force Theory methodology was originally introduced by Gray and
Hancock [89] for modeling self-propelling undulatory biological systems in viscous
fluids. In this theory, a simple approximate formula for the resistive force on a
segment of a thin body was derived from the Stokes equations as a function of the
segment’s velocity components, orientation, and a few variables characterizing the
fluid-segment interaction. Importantly, the theory assumed decoupling of the forces
over the various segments of the body [90]. The success of fluid RFT motivated
many [91, 92, 93] to explore the existence of a similar theory in granular media. Li et
al. [93] proposed a plane strain version of RFT for granular media (2D-RFT). The
theory assumes superposition and de-coupling of forces over the surface elements of a
large body. The granular RFT has been found to be successful in modeling granular
intrusions at low speeds. At low-speed limits, the rate-independent nature of granular
media (characterized using a non-dimensional inertial number [53, 54, 94]) makes
the force relations velocity-magnitude independent. Similarly, the local-pressure-
dependent bulk strength, gravitational loading dependent pressure, and dimensional
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analysis in such limits lead to the following form of a generic RFT.

𝐹 𝑡𝑜𝑡𝑎𝑙 =

∫︁
𝑠𝑢𝑟𝑓

𝛼𝑥,𝑦,𝑧(�̂�,𝑣, 𝑔)|𝑧|𝑑𝑠 (1.6)

Where 𝐹 𝑡𝑜𝑡𝑎𝑙 represents the total integrated forces on the surface of the body which is
sub-divided into smaller sub-surfaces of area 𝑑𝑠 and |𝑧| mean depth from the free sur-
face. The vector-valued 𝛼𝑥,𝑦,𝑧 represents the force per unit area per unit depth (|𝑧|)
and is an function of the surface normal (�̂�), velocity direction (𝑣), gravity vector
(𝑔), and the granular material and material-intruder surface-interaction properties.
Thus, the local force (integrant) on sub-surfaces are extracted independently from
each other at varying depths(|𝑧|), orientations (�̂�), and velocity directions (𝑣) in a
granular system with given material properties and gravity. The vector-valued func-
tion 𝛼𝑥,𝑦,𝑧 is a priori obtained through experiments or simulations of plate drag and
depends on the granular media properties, the media-intruder surface interaction,
and the value of gravity. The net granular resistive forces on the body are calculated
by summing up all the sub-surface force using localization [91], de-coupling, and su-
perposition of force fields on intruder sub-surfaces. A comprehensive comparison of
various existing reduced-order methods for modeling granular intrusions, including
2D-RFT and a terramechanical model, can be referred from Agarwal et al. [95].
Chapter 3 of this thesis discusses RFT in more detail.

This thesis extensively focuses on expanding the capabilities of 2D-RFT and
develops various advanced versions of RFT, namely Dynamic RFT (DRFT) and 3D-
RFT that are discussed in more detail in Chapter 4 and Chapter 5. Chapter 3 goes
into finer details of 2D-RFT before introducing DRFT and 3D-RFT to the readers.

1.5.4 Machine learning and new approaches

The recent decade has witnessed exponential growth in the field of machine learn-
ing (ML). In the context of terramechanics, the ML approach is not too different
from empirical modeling. While the empirical modeling tries to create the rules of
thumbs with systematic experimentation for characterizing the response of systems
to external stimulus, machine learning attempts to do so on un-organized data. Both
approaches typically do not directly include system physics in their implementation,
but substantial improvements are seen with their incorporation. Though, in recent
years physics-inspired machine learning has also gained some attention for modeling
granular media (as well granular intrusions) [96, 97, 98, 99], it is yet to become a
mainstream modeling/prediction tool in the field.
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1.6 Conclusion
In this chapter, we briefly discussed the complexities of modeling granular media. We
discussed three types of modeling approaches that are commonly used for modeling
granular systems — namely, the DEM approach (micro-scale modeling) that models
granular systems at grain level, the continuum approach (meso-scale modeling) that
models granular systems as continua, and reduced-order approaches (macro-scale
modeling) that focus on getting limited system outputs without performing full-field
characterization of the systems. Each method has associated advantages and lim-
itations. We conclude that even though granular media are fairly complex at the
fundamental level, they can be modeled to various levels of complexity depending on
the application at hand. The extent of complexities and details in any method plays
to its advantage and limitations in accuracy and computation time. For instance,
particle-based approaches are among the most accurate, versatile, but computation-
ally expensive approaches for modeling granular volumes. In contrast, the empirical
approaches are the least expensive and limited in scope. But each one has its utility
in specific applications.

In this thesis, we primarily focus on developing faster methods for modeling low
and high-speed granular intrusions. The task is divided into two parts. First, we
attempt to understand the physics of granular intrusions with full-field numerical ap-
proaches. And second, we use that understanding to reduce the computation times
further. To understand the physics of granular intrusions, we focus on the continuum
modeling approach. The approach is expected to give us a physical insight into the
origins of granular resistive forces in computationally more efficient ways than DEM.
In addition to its advantage on computational efficiency over DEM, the continuum
approach is also expected to systematically single out the individual constitutive as-
pects of the media responsible for different types of force generations in the media
by providing a fine control on material properties included in the constitutive mod-
els, which could not be done in DEM (more details in chapter 2 section 2.6). We
use the insights obtained from continuum modeling to develop further reduced-order
models for granular intrusions. The latter half of the thesis focuses on the empirical
modeling technique RFT, which is a rapidly growing method with the potential to
paradigmatically shift the field of terramechanics and granular intrusion modeling
over time. We have developed numerous forms of granular RFT to extend the real-life
applications of RFTs. A brief overview of the contents of the thesis is provided below:

1. Chapter 1: Introduced the concepts of reduced-order modeling in granular
media and the approaches that can be used for modeling granular volumes to
varying levels of accuracy

28



2. Chapter 2: Discusses the efficacy of the continuum approach in modeling and
understanding a variety of granular flow and intrusion scenarios

3. Chapter 3: Provides an in-depth understanding of two-dimensional granular
resistive force theory (2D-RFT). The discussion serves as the base for under-
standing RFT extensions in chapters 4 and 5

4. Chapter 4: Introduces a high-speed version of resistive force theory called Dy-
namic resistive force theory or 2D-DRFT driven by insights obtained through
continuum modeling of granular intrusions

5. Chapter 5: Introduces a three-dimensional version of 2D-RFT called 3D-RFT

6. Chapter 6: Concludes the thesis with possible avenues of future research topics
based on this thesis work
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Chapter 2

Continuum approach for modeling
granular intrusions

Chapter 1 discussed the complexity of granular materials and their tendency to show
multi-phase behaviors where the media shifts among solid-like and fluid-like states
[2, 7]. Granular intrusions such as meteorite impacts and high speed locomotion in
deserts [41, 42, 43] (see figure 1-1) often create complex flow and force responses,
where the media exhibits such multiphase characteristics. The media deforms elas-
tically under stress like a solid, but begins to flow like a fluid once a friction-based
yield criterion is met. Large variations in the media stress, momentum, and volume
fraction in different regions often result in complicated system dynamics exhibiting
multiphase characteristics [2, 3]. The flow complexity also makes interpreting re-
sistive forces non-trivial if the intruder re-interacts with the deformed region [100],
as the media now has a new inhomogeneous state near the surface. The media’s
inhomogeneous flow and multiphase nature often restricts modeling to discrete par-
ticle methods that track the individual grains, unlike fluids that can be solved with
the Navier-Stokes equations. These behaviors of the media are dictated by many
material properties and local state variables such as pressure and granular packing
fraction[101]. The coupled space and time dependence of these state variables, as
well as the multi-phase behavior of the media, makes modeling overall granular flow
response computationally expensive.

As discussed in section 1.3.1, though Discrete Element Methods (DEM) are reli-
able and established methods for modeling granular media [102, 103] and have played
a major role in the advancement of the field of granular media[104, 105], their pre-
cision comes at a computational cost. Once the simulation’s spatial scale becomes
large relative to the size of the particles in the system, the computational cost of
simulating many particles makes DEM prohibitively expensive. As an example, a
0.1 mm particle diameter granular system with a 0.5m per side cubic domain would
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require evaluating ∼ 9×1011 DOF per time step (at a packing fraction of 0.64 with 6
degrees of freedom, degree of freedom (DOF) per particle). While current large-scale
granular DEM studies remain in the range of ∼ 107 particles (∼ 108 DOF) [33, 34],
efforts are being made to extend this range. Most recently, some have reached the
∼ 109 DOF range with the use of supercomputers and GPUs [106]. On the other
hand, there has been a growing interest in modeling increasingly large granular sys-
tems in recent years, such as those relevant in ballistic impacts, wheeled locomotion,
and agricultural plowing [41, 42, 43, 44, 45]. This has led to a push for computation-
ally faster alternatives to DEM, such as using continuum descriptions of granular
media. We discuss this approach in more detail in this chapter and evaluate its effi-
cacy in modeling our systems of interest— granular intrusions.

2.1 Introduction

In this chapter, we focus on modeling diverse real-life scenarios of granular flows
with the continuum approach to test and establish its efficacy in modeling common
granular flow systems. The chapter highlights the capability of the approach in
modeling and explaining common granular intrusion cases using a very minimal set
of constitutive ingredients, a revelation which is of great value for the community, as
well as for reduced-order modeling as we will discuss later in this thesis. The study
also aims at understanding the flow dynamics in these cases which is also useful in
developing empirical insights into the cases considered in this study.

The phenomena we focus on herein have been independently studied in the lit-
erature, and the work demonstrates that they can be quantitatively modeled and
unified under a family of basic constitutive assumptions. With the aim of testing the
limits of simple constitutive models, we use two basic constitutive representations of
non-cohesive granular media in this work:

• A non-dilatant plasticity model (NDPM), and

• A dilatant plasticity model (DPM).

The DPM model permits dilatancy during dense flow, while the NDPM model as-
sumes dense flow is a constant-volume process (details later). Thus, the NDPM is
suitable for modeling steady-state granular behaviors, while the DPM is a more suit-
able model for transient flow processes. The latter is also a more elaborate model that
converges to the former model under certain limits. Both of these models have their
respective advantages depending on the scenarios they simulate. We do not include
micro-inertial 𝜇(𝐼) effects [107] (effects of grain-level inertia on material properties)
in these models; thus, both of these constitutive models are rate-insensitive. More
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details of each model are provided in a later section.
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(A) NDPM                                                                                   (B) DPM

Figure 2-1: Analog model representation of NDPM and DPM: (A) Non-dilatant plas-
ticity model (NDPM) and (B) DPM models representations in two dimentions. The
vertical direction represents the direction of shape preserving volumetric deforma-
tions. And the horizontal direction represents the volume preserving shear deforma-
tions. In both the models, the material offers no resistance to the tension i.e. 𝑃 = 0
below a critical density 𝜌𝑑. In compression (𝑃 > 0), both the models have an elastic
volumetric response with bulk modulus 𝐾 and an elastic-plastic shear response with
shear modulus 𝐺 and yield strength proportional to pressure (𝑃 ) times an internal
friction variable 𝜇𝑠. NDPM model shows a pure shear response upon plastic loading.
On the other hand, DPM model shows shear as well as volumetric (compaction or
dilation based on local density value) response upon plastic loading. More details
are provided in section 2.2.1 and 2.2.2.

We highlight here that we ignore numerous particle-based media properties such
as grain-plasticity and the presence of other phases in these models. This is a justi-
fiable choice because all the granular intrusions considered in this study (discussed
next) occur near the free surfaces of the granular beds. The resultant stresses in
these systems are expected to be low and unlikely to cause any plastic deformations
in the constituent grains. Similarly, the fluid phase (air) drags are expected to be
negligible. Had the pressures been higher, more advanced models such as the Ducker-
Prager Cap Model and Cam-Clay models, and two-phase models would have been
more appropriate choices [61, 62, 11].

To demonstrate the utility of each model, we consider granular flow and force re-
sponses in four fundamental intrusion cases which have been studied in the literature
(see Figure 2-2) :
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1. Depth-dependent force response in horizontal submerged-intruder motion,

2. Separation-dependent drag variation in parallel-plate vertical-intrusion,

3. Initial-density-dependent drag fluctuations in free surface plowing, and

4. Flow zone development during vertical plate intrusions in under-compacted
granular media.

We use NDPM in the first two cases (which focus on a steady response) and
DPM in the latter two cases (where transient effects are the focus). Our continuum
modeling approach captures the dynamics of such granular flows and gives a deeper
macroscopic insight into each of these cases. Thus, our study not only highlights the
efficacy of continuum modeling for predictive purposes but also highlights its utility
in developing macroscopic conceptual understanding of diverse granular intrusion
phenomena. Additionally, while DPM is a more elaborate representation of granular
media compared to NDPM, NDPM is easier to implement and is computationally
more efficient to solve. Thus, by using NDPM in the first two cases, we also aim to
highlight the advantages and sufficiency of simpler models in certain cases.

depth, |𝑧|

(A)

(C)

𝐿1 𝐿2

separation, 𝑠

(B)

(D)

Figure 2-2: Schamatics of four test cases considered in this study: (A) Horizontal
dragging of a submerged cylinder at different depths, (B) multiple-plate vertical
granular intrusion, (C) free-surface plowing in under- and over-compacted granular
media, and (D) vertical intrusion in under- and over-compacted granular media.
Cases (A) and (B) are modeled with the non-dilatant plasticity model (NDPM),
and cases (C) and (D) are modeled with the dilatant plasticity model (DPM) to
model transient effects.
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2.2 Material model and implementation

2.2.1 Non-dilatant plasticity model (NDPM)

This model is taken from Dunatunga and Kamrin [108, 109]. The model assumes
a rate-insensitive, Drucker-Prager yield criterion, incompressible plastic shear flow
(with no dilatancy), and cohesionless response in extension whereby the material be-
comes stress-free below a ‘critical density’. The constitutive flow equations represent-
ing the above behavior are shown below. These simultaneous constraints describe the
material’s separation behavior, shear yield condition, and tensorial co-directionality,
respectively:

(𝜌− 𝜌𝑑)𝑃 = 0 and 𝑃 ≥ 0 and 𝜌 ≤ 𝜌𝑑, (2.1)
�̇�(𝜏 − 𝜇𝑠𝑃 ) = 0 and �̇� ≥ 0 and 𝜏 ≤ 𝜇𝑠𝑃, (2.2)
𝐷𝑖𝑗/�̇� = 𝜎′

𝑖𝑗/2𝜏 if �̇� > 0 and 𝑃 > 0, (2.3)

for 𝑖, 𝑗 = 1, 2, 3.
where,
𝜌 is the local granular density,
𝜌𝑑 is the critical density of close-packed grains,
𝜇𝑠 is the internal friction coefficient,
𝑃 = −𝜎𝑖𝑖/3 is the local hydrostatic pressure,
�̇� =

√︀
2𝐷𝑖𝑗𝐷𝑖𝑗 is the equivalent shear rate.

𝜏 =
√︁
𝜎′
𝑖𝑗𝜎

′
𝑖𝑗/2 is the equivalent shear stress,

𝜎′
𝑖𝑗= 𝜎𝑖𝑗 + 𝑃𝛿𝑖𝑗 is the deviatoric part of Cauchy stress tensor,
𝐷𝑖𝑗 = (𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖)/2 is the flow rate tensor.

For simplicity, the equations above are expressed in rigid-plastic form, where the
flow rate is approximately all due to plastic flow. However, we also include a small
elastic component which ensures that below the yield criterion the grains have a
well-defined solid constituive behavior. The model evolves the flow by solving the
momentum balance equations, 𝜕𝑗𝜎𝑖𝑗 + 𝜌𝑔𝑖 = 𝜌�̇�𝑖. We also assume a constant friction
coefficient 𝜇𝑓 between the granular continuum and solid-body surfaces. The internal
friction value 𝜇𝑠 is often measured from the tangent of the angle of repose for the
granular media or from a direct shear test[110]. We refer to this model as the ‘Non-
Dilatant Plasticity Model’ (NDPM). We provide the input material properties used in
various cases in the relevant sections. We also provide a 2D schematic representation
of the model in figure 2-1A.
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2.2.2 Dilatant plasticity model (DPM)

While NDPM assumes a single critical granular density cutoff for the entire granular
volumes, this is often not the case in real granular systems. Granular media can
support stress in a range of densities, including close and loose packings[7]. The
second model we present addresses this limitation of the NDPM model and allows
for density evolution in the media [101]. This model takes inspiration from the
family of Critical State models [101, 49]. We use a simple rigid-particle version of
the Critical State model in which grains are not modeled to crush under hydrostatic
loads; rather, they only have a hydrostatic elastic response in this case. When
pressure is non-zero, the material is deemed to be in a ‘dense state,’ and the density
evolution occurs through shearing-based Reynolds dilation/contraction, representing
particle rearrangements at the granular level. In a dense state, the packing fraction
𝜑 is equal to an evolving state variable 𝜑𝑑. Every shearing action in dense media
drives the local value of 𝜑𝑑 towards a limiting steady-state critical packing fraction,
𝜑𝑐. Furthermore, when the packing fraction varies, the material’s friction coefficient
also changes; material with a low packing fraction has low consolidation and thus
has less strength than more consolidated media.

Thus, in terms of constitutive relations, the simultaneous constraints describing
the material’s separation behavior and shear yield condition (eq.2.1 and eq.2.2, re-
spectively) remain the same with the two exceptions that the close-packed density,
𝜌𝑑, and internal friction value, 𝜇𝑠, are non-constant local state variables (which vary
with time and space), as follows:

𝜌𝑑 = 𝜌𝑔𝜑𝑑, 𝜇𝑠 = 𝜇𝑐 + (𝜑𝑑 − 𝜑𝑐)𝜒 (2.4)

Here, 𝜌𝑔 represents the solid grain density, 𝜒 represents a dimensionless scaling con-
stant, and 𝜇𝑐 represents the critical-state internal friction value reached by material
at steady state (when 𝜑𝑑 = 𝜑𝑐). When pressure is positive (the packing is dense),
the evolution of 𝜑𝑑 is modeled as:

𝑑𝜑𝑑

𝑑𝑡
= −3𝛽𝜑𝑐�̇� (2.5)

where, 𝛽 = (1/3)(𝜑𝑑 − 𝜑𝑐)𝜒 is a local dilatancy variable. In the absence of confining
pressue, the material can leave the dense state (𝜑 < 𝜑𝑑), but reconsolidates at
the current value of 𝜑𝑑 unless the material opens up beyond a global lower limit,
𝜑min
𝑑 , which defines a minimum density possible for loaded media, below which no

connected material states exist. We set this value to 0.45 in all simulations. Thus,
the material can exist in a dense state only for 𝜑 ≥ 0.45 and the local state variable
𝜑𝑑 gets reset to 𝜑min

𝑑 (= 0.45) whenever 𝜑 drops below this value.
In addition to the material’s separation behavior and shear yield condition (eq.2.1
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and eq. 2.2), the material flow rule has a deviatoric dependence as before (eq.2.3) but
due to dilation now also has a corresponding volumetric component. The volumetric
strain rate is given by the dilatancy variable, 𝛽. The plastic flow rate tensor, thus,
has the form:

𝐷𝑖𝑗/�̇� = 𝜎′
𝑖𝑗/2𝜏 + 𝛽𝛿𝑖𝑗 if �̇� > 0 and 𝑃 > 0 (2.6)

Thus, the combination of eqs.2.1, 2.2, 2.4, 2.5, and 2.6 collectively represent the
Dilatant Plasticity Model (DPM). Note that DPM reduces to NDPM in the limit
of 𝜒 → 0. Regarding its uasge in cases 3 and 4, 𝜒 is calibrated for each material
qualiatively based on experimental observations.

2.3 Numerical implementation

2.3.1 Pseudocodes for implementing NDPM and DPM

Non-Dilatant Plasticity Model (NDPM)

This model implementation was adopted from Dunatunga and Kamrin [108]. Readers
can refer to [108] for implementation and derivation details.

Dilatant Plasticity Model (DPM)

Material Evolution: 𝜇𝑠 = 𝜇𝑐 + (𝜑𝑑 − 𝜑𝑐)𝜒 (2.7)
𝜕𝜑𝑑

𝜕𝑡
= −(𝜑𝑑 − 𝜑𝑐)𝜑𝑑𝜒�̇�

𝑝 (2.8)

Plastic flow rule: 𝐷𝑝 =
�̇�𝑝√
2

𝜎𝑜

||𝜎𝑜||
+ 𝛽�̇�𝑝1 (2.9)

𝛽 =
1

3
(𝜑𝑑 − 𝜑𝑐)𝜒 (2.10)

Known state properties: 𝜇𝑐, 𝜌𝑔,𝑚,∆𝑡, 𝜒, 𝜑𝑑, 𝜑𝑐

Input: 𝐿𝑛+1, 𝑣𝑛+1,𝜎𝑛 (𝑣 represents volume here)

Output: 𝜎𝑛+1

Step n:

𝜌𝑛+1 = 𝑚/𝑣𝑛+1
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Figure 2-3: A representation of DPM on shear stress, hydrostatic pressure graph

𝐷𝑛+1 = 1
2
(𝐿𝑛+1 + (𝐿𝑛+1)𝑇 )

𝑊 𝑛+1 = 1
2
(𝐿𝑛+1 − (𝐿𝑛+1)𝑇 )

𝐺𝑛 = −𝜎𝑛𝑊 𝑛+1 +𝑊 𝑛+1𝜎𝑛

𝜎𝑡𝑟 = 𝜎𝑛 +∆𝑡 [𝐶 : 𝐷𝑛+1 +𝐺𝑛]

𝑝𝑡𝑟 = −1
3
𝑡𝑟(𝜎𝑡𝑟)

𝜎𝑡𝑟
𝑜 = 𝜎𝑡𝑟 + 𝑝𝑡𝑟1 𝜏 𝑡𝑟 = 1√

2
||𝜎𝑡𝑟

𝑜 ||
𝜇𝑠 = 𝜇𝑐 +∆𝜑𝑑𝜒 ∆𝜑𝑑 = 𝜑𝑑 − 𝜑𝑐

𝛼 = 𝐾𝜒∆𝜑𝑑/𝐺 𝜌𝑐 = 𝜑𝑑𝜌𝑔

Figure 2-3 shows a representation of DPM on a shear stress vs. hydrostatic pres-
sure graph. A trial material stress state, assuming all the strain increment in a step
is elastic, 𝐷𝑝 = 0 and 𝐷𝑒 = 𝐷𝑛+1, can exist in any of the following four states at
any time. Note that we use the superscript ‘𝑡𝑟’ to show trial values of state variables
from here on. Similarly, we use the subscript ‘𝑜’ to show deviatoric part of state
variables. But the constitutive model allows the material stress state to exist only in
zone 3, zone 4, or along the yield curve shown as the violet line in figure 2-3. Thus
trial stresss in,
zone 1 =⇒ 𝑝𝑡𝑟 > 0, 𝛿𝛾 > 0 Elastic-plastic step
zone 2 =⇒ 𝑝𝑡𝑟 < 0, 𝛿𝛾 > 0 Elastic-plastic step
zone 3 =⇒ 𝑝𝑡𝑟 < 0, 𝛿𝛾 = 𝜏 𝑡𝑟/𝐺 Separated material
zone 4 =⇒ 𝑝𝑡𝑟 > 0, 𝛿𝛾 = 0 Completely elastic step
where 𝛿𝛾 represents the magnitude of plastic flow at the given step.

The numerical implementation ensures that material stress does not exist in zone
1 and 2. This is because these zones defy the material constitutive behavior (eq.
2.2). For evaluating the elastic and plastic components of the material states, we
assume an additive decomposition of strain rate tensor: 𝐷𝑛+1 = 𝐷𝑝+𝐷𝑒. Next, we
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use the following relationships to express (𝜏𝑛+1, 𝑝𝑛+1), in terms of 𝛾𝑝 :

𝜏 = (1/
√
2)||𝜎𝑜|| 𝛾𝑝 =

√
2||𝐷𝑝

𝑜 || 𝐷𝑝 = �̇�𝑝
√
2

𝜎𝑜

||𝜎𝑜|| + 𝛽�̇�𝑝1

𝜏𝑛+1 =
√︀

1/2||𝜎𝑛+1
𝑜 || =

√︀
1/2||𝜎𝑡𝑟

𝑜 − 2𝐺∆𝑡𝐷𝑝
𝑜||

=

√︃
1

2

(︂
𝜎𝑡𝑟

𝑜 : 𝜎𝑡𝑟
𝑜 + (2𝐺∆𝑡)2𝐷𝑝

𝑜 : 𝐷
𝑝
𝑜 − 2 * 2𝐺∆𝑡 𝛾𝑝√

2||𝜎𝑡𝑟
𝑜 ||

𝜎𝑡𝑟
𝑜 : 𝜎𝑡𝑟

𝑜

)︂
=

√︁
(𝜏 𝑡𝑟)2 + (𝐺∆𝑡𝛾𝑝)2 − 2𝐺∆𝑡𝛾𝑝𝜏 𝑡𝑟)

= 𝜏 𝑡𝑟 −𝐺∆𝑡𝛾𝑝

= 𝜏 𝑡𝑟 −𝐺𝛿𝛾

𝑝𝑛+1 = −1

3
𝑡𝑟(𝜎𝑛+1)

= −1

3
𝑡𝑟(𝜎𝑡𝑟 −∆𝑡(2𝐺𝐷𝑝

𝑜 +𝐾𝑡𝑟(𝐷𝑝)1))

= −1

3
𝑡𝑟(𝜎𝑡𝑟) + ∆𝑡𝐾𝑡𝑟(𝐷𝑝)

= 𝑝𝑡𝑟 + 3∆𝑡𝐾(𝛽�̇�𝑝)

= 𝑝𝑡𝑟 +∆𝑡𝐾((𝜑𝑑 − 𝜑𝑐)𝜒𝛾𝑝)

= 𝑝𝑡𝑟 + (𝐾∆𝜑𝑑𝜒)𝛿𝛾

Any elastic-plastic increment must lie along the yield curve, (𝜏𝑛+1 = 𝜇𝑝𝑛+1).
Substituting 𝜏𝑛+1 and 𝑝𝑛+1, we get:
𝜏 𝑡𝑟 −𝐺𝛿𝛾 = 𝜇𝑝𝑡𝑟 + 𝜇(𝐾∆𝜑𝑑𝜒)𝛿𝛾

𝛿𝛾 =
𝜏 𝑡𝑟 − 𝜇𝑝𝑡𝑟

𝐺
(︀
1 + 𝜇𝐾Δ𝜑𝑑𝜒

𝐺

)︀
=

𝜏 𝑡𝑟 − 𝜇𝑝𝑡𝑟

𝐺
(︀
1 + 𝜇𝛼

)︀
𝜏𝑛+1 = 𝜏 𝑡𝑟 −𝐺

𝜏 𝑡𝑟 − 𝜇𝑝𝑡𝑟

𝐺
(︀
1 + 𝜇𝛼

)︀
= 𝜇

(︁𝛼𝜏 𝑡𝑟 + 𝑝𝑡𝑟

1 + 𝜇𝛼

)︁
𝑝𝑛+1 =

𝛼𝜏 𝑡𝑟 + 𝑝𝑡𝑟

1 + 𝜇𝛼

�̇�𝑝 =
𝜏 𝑡𝑟 − 𝜏𝑛+1

𝐺∆𝑡
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For a stress free state (𝑝𝑛+1) the following conditions are also needed to be met:
𝛼𝜇+ 1 > 0 and 𝜏 𝑡𝑟𝛼 + 𝑝𝑡𝑟 < 0

NUMERICAL IMPLEMENTATION

if 𝜌𝑛+1 < 𝜌𝑐
𝜎𝑛+1 = 0

�̇�𝑝 = 𝜏 𝑡𝑟/𝐺∆𝑡

else if (𝜏 𝑡𝑟 ≤ 𝜇𝑝𝑡𝑟) elastic-step (Zone 4)

𝜎𝑛+1 = 𝜎𝑡𝑟

�̇�𝑝 = 0

else elastic-plastic step (includes 𝑝𝑡𝑟 < 0)

if
(︀
𝑝𝑡𝑟 ≤ 0 and 𝜏 𝑡𝑟𝛼 + 𝑝𝑡𝑟 ≤ 0 and 𝛼𝜇+ 1 ≥ 0

)︀
(Zone 3)

𝜎𝑛+1 = 0

�̇�𝑝 = 𝜏 𝑡𝑟/(𝐺∆𝑡)

else material has �̇�𝑝 > 0

𝑝𝑛+1 = (𝜏 𝑡𝑟𝛼 + 𝑝𝑡𝑟) / (𝛼𝜇+ 1)

𝜏𝑛+1 = 𝜇𝑝𝑛+1

𝜎𝑛+1 = 𝜎𝑡𝑟
𝑜 (𝜏𝑛+1/𝜏 𝑡𝑟)− 𝑝𝑛+11

�̇�𝑝 = (𝜏 𝑡𝑟 − 𝜏𝑛+1) /(𝐺∆𝑡)

𝜑𝑛+1
𝑑 = 𝜑𝑛

𝑑 − (𝜑𝑛
𝑑 − 𝜑𝑐)𝜑

𝑛
𝑑𝜒�̇�

𝑝∆𝑡

2.3.2 Material point method (MPM)

A variety of computational methods have been developed and utilized in recent years
for to aid in simulating continuum models for large deformation processes, such as
the Material Point Method (MPM)[108, 95, 111, 112], the Particle Finite Element
Method (PFEM)[113], and Smoothed Particle Hydrodynamics (SPH)[114]. In this
regard, a recent study on high-speed locomotion of wheels [16] in grains, a process
which involves complex trans-phase characteristics of the soil and non-trivial grain
motions, revealed that a continuum treatment implemented with MPM captures the
essential behaviors and agrees well with experimental data. Thus, we use a continuum
simulation approach based on the Material Point Method (MPM)[57], a derivative of
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the fluid-implicit-particle (FLIP) method for implementing a continuum description
of granular media.

Figure 2-4: Sample explicit time integration step in MPM: The Lagrangian tracers
representing material points (solid red circles) carry the state of material over time
and space. The background grid (green squares) assists in integrating the motion
on the simulation domain and is reset each step. More details can be found in
Dunatunga and Kamrin [108].

The MPM implementation uses a combination of Lagrangian material points/tracers,
which contain the state of the continuum, and a background computational mesh
that is used to solve the equations of motion. These tracers, representing a chunk of
material around their position, are ‘cast’ onto a background simulation grid where
equations of motion are solved. Thus, material point tracers act as quadrature points
for solving the weak form of the momentum balance equations on a static background
simulation grid. Since the state is saved on the material points, the mesh is reset at
the beginning of each computational step without any information loss, and thus the
method allows for large deformations in the media without the error associated with
large mesh deformations. A schematic representation of an explicit time-integration
MPM-step is shown in Figure 2-4. We use the MPM implementation described in
Dunatunga and Kamrin [108] to implement the different constitutive equations rep-
resenting granular volumes assuming 2D plane-strain motion.

We choose the spatial grid resolution (∆𝑥) in each system on a case-by-case basis,
such that all the geometric features are well represented, and all system outputs
converge. Also, to ensure numerical stability, we choose a time step (∆𝑡) that satisfies
the CFL condition based on minimum element size, maximum Young’s modulus, and
minimum medium density.
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2.4 Verification studies

2.4.1 Case 1: Drag and lift on submerged cylinder dragging

Drag and lift forces on submerged objects in granular media are relevant in processes
such as mixing, mining, soil-buried pipelines, and animal locomotion [115, 116, 117].
Over the past two decades, several studies[118, 119, 120, 121] have explored the
mechanisms and the variation of these forces by considering the horizontal dragging
of submerged, rigid cylinders (at different depths) as a test case. We specifically
consider the work of Guillard et al.[119], who found that the horizontal drag force on
horizontally moving cylinders increases with increasing depth while the vertical lift
force plateaus for depths greater than an O(1) factor of the cylindrical diameter. The
observations consider a depth range deep enough so that the cylinders are completely
immersed in the granular bed even at the minimum depth. At very low depths near
the free surface, the dragging motion of the cylinders results in an accumulation
of the media in front of the intruders. This accumulation can augment the depth-
dependence of drag forces and thus can change the force trends mentioned above.
Thus, we do not consider such a near-free-surface depth range in this study (as in
Ding et al.[121]) and focus on depths≥ 2.5𝐷.

The experimental drag and lift results in Guillard et al.[119] were obtained by
evaluating torques and vertical lifts on horizontal cylinders inside large granular beds
rotated about the vertical axis. After a half rotation or so about the vertical axis,
the authors observed a reduction in the force response as the cylinder begins re-
interacting with the disturbed material as it is rotated multiple times. Here, we use
the quasi-steady data obtained from the first half rotation of the cylinder, before it
interacts with the disturbed media. Presumably, density variations play a smaller
role in this portion, and hence we choose to compare the behavior observed with that
of the NDPM model.

A schematic representation of the cylinder drag case is provided in Figure 2-2A.
For the NDPM implementation, we use a grain density 𝜌𝑔 of 2520 kg/m3, and a
critical packing fraction 𝜑 of 0.60. We calibrate the internal friction value (𝜇𝑠) for
glass beads to 0.48 to accurately model the initial slope of depth vs. drag graph
from the experiments. This is in line with the expected range of 𝜇𝑠 for the glass
beads, which lies in the 0.39 − 0.55 range (corresponding to an angle of repose
range ∼ 22∘ − 29∘, depending on the surface roughness) [122]. The calibration
absorbs possible inconsistencies between 2D simulations with 3D experiments and
also incorporates the variations due to indirect measurements of experimental drag
and lift from rotating cylinder experiments[119].

The cylinder is modeled as an elastic body with a high elastic modulus, thereby
acting as an approximate rigid body. The media-cylinder interface friction coefficient
(𝜇𝑓 ) is set to 0.35. The cylinder diameter, 𝐷 is 4 mm, and the presumed out-of-plane
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Figure 2-5: Case 1: Experimental vs Simulations results for drag and lift on sub-
merged cylinders (using NDPM model): Comparision of experimental data [119] (in
blue) and the continuum simulations results (in red) for variation of (A) drag, and
(B) lift on submerged cylinder motion in granular media with depth, |𝑧|. The drag
and lift forces are non-dimensionalized with characteristic force 𝜋(𝐷/2)2𝜌𝑑𝑔𝑤 where
𝐷 is the cylinder diameter, 𝜌 is the effective medium density, 𝑔 is the gravity, and 𝐿
is out-of-plane cylinder width. Both experiments and continuum results use 𝐷 = 4
mm, 𝜌𝑑 = 1512 kg/m3, and 𝑔 = 9.8 m/s2. Similarly depth is non-dimensionalized
with cylinder diameter, 𝐷. Variation of macroscopic state variables (C) equivalent
plastic strain, (D) equivalent plastic strain rate, and (E) local hydrostatic pressure at
four different depths, |𝑧| = [10, 30, 50, 70] mm. The gray circle indicates the cylinder
position and the drag direction is from left to right. See Movie S1 (refer to Appendix
A.1) for visualizing material flow over time for cylinder drag cases considered in (C)
and (D).

length, 𝑤 is 1 m (as the simulations are 2D plane-strain). We use a 0.20 m × 0.16
m granular bed, and a 5× 10−4 m spatial resolution (∆𝑥) for simulating these cases.
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Figure 2-5A and B show the comparison of Guillard’s experimental data to our
continuum results. The linearly increasing nature of drag vs. depth graphs, along
with the plateauing of lift vs. depth graphs, are well captured. The visualizations of
plastic strains and strain rates (Figure 2-5C and D) qualitatively agree with those
reported in previous numerical and experimental studies [118, 119]. Notably, the
variation of the equivalent plastic strain shows a strong semblance with the work
of Wu et al.[120]. Additionally, we also plot the variation of the local hydrostatic
pressure at four different depths in figure 2-5E. The pressure distribution shows an
asymmetry about the intruder, consistent with the existence of both drag and lift
net forces, and as the intruder’s depth increases, the vertical asymmetry diminishes,
which is consistent with the plateauing of the lift force and continued growth of drag
force.

Similar to past DEM studies by Guillard et al.[119] and experimental studies by
Wu et al.[120], Figure 2-5C and D show high localization of the flow field for the
depths greater than the lift turnover depth. A further increase in depth after this
point results in a minimal-to-no change in the material flow profile. The drag and
lift force behaviors are also related to this flow localization behavior. While the drag
forces continue to increase linearly with depth, the lift forces become saturated near
the depth the flow localizes, indicating a possible correlation between the flow and
force. Figure 2-5E indicates a reducing asymmetry of the pressure variation around
the cylinder as depth increases, consistent with the notion that drag forces continue
to increase but lift forces plateau. A deeper analysis of this variation (i.e. the dis-
tribution and the relative magnitude of pressure) to understand the mechanics of
the force distributions on different faces of the intruders is reserved for future study.
Thus, the case of dragging submerged cylinders provides an example where NDPM
captures the observed intrusion behavior.

2.4.2 Case 2: Vertical drag in two-plate granular intrusions

Multi-body intrusions offer another commonly encountered scenario in various real-
life situations. Several researchers [123, 124, 125] have examined the dynamics of
granular intrusions involving multiple intruding bodies. The case we study specifi-
cally takes inspiration from the work of Swapnil et al.[125] who examined the varia-
tion of vertical drag forces on a pair of parallel rigid plates during vertical downward
intrusions as a function of the separation between them. They observed a peak in the
average vertical drag as the separation between the plates was increased. A similar
‘cooperative effect’ was observed by Merceron et al.[124] during the upward motion
of parallel intruders in the granular media. In their study, separations below a criti-
cal distance between the intruders were found to jam the media between the plates
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(intruders) and result in a peak in the average particle disturbance (measured as av-
erage avalanche length) near this critical separation between the intruders. We use
NDPM to investigate the findings of Swapnil et al.[125] and to capture and obtain
macroscopic insight into the phenomenon. We also conduct experiments to verify
claims that follow from theoretical analysis of the NDPM model.

A schematic representation of the case is given in Figure 2-2B. The case is studied
in two parts. In the first part, we use generic material properties (provided next)
to determine the behavior of the continuum model in the single-plate intrusion case.
And in the second part, a direct quantitative comparison of simulation results with
the experiments is made in the two-plate intrusion case (details later). We use a
set of generic NDPM fitting properties from the earlier case, i.e. a grain density, 𝜌𝑔
of 2520 kg/m3, a critical packing fraction 𝜑 of 0.6, but choose the internal internal
friction coefficient to be 𝜇𝑠 = 0.4, which is common for glass beads [122]. The plates
were modeled as stiff elastic bodies with vertical displacement of control points as-
signed; thus, the plates act as quasi-rigid objects with a common fixed downward
velocity. The intrusion velocity was set to 0.1 m/s in all simulations, and the media-
plate surface friction was set to 0.35. We use a 1.2 m × 0.6 m granular bed, and a
1.25× 10−3 m spatial resolution (∆𝑥) for simulating these cases.

Understanding single plate intrusions
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Figure 2-6: Case 2: Vertical intrusion of single plates (using NDPM model): (A)
Schematic of single-plate vertical granular intrusion and (B) Variation of equivalent
plastic strain in the granular volume. The simulations are plane-strain and glass
bead properties are used for simulating granular media (𝜌𝑔=2520 kg/m3, 𝜑 = 0.6,
𝜇𝑠 = 0.4). The plate length was 0.1 m in (B)

We begin by first analyzing the variations of vertical drag forces in single plate
intrusions. Figure 2-7A shows the drag forces on vertical plate intrusions under
NDPM for various plate widths at a constant intrusion velocity of 0.1 m/s. Note
that the same model and implementation was used previously [109] in the related case
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Force averaging window

𝜇 = 0.40

(A) (B)

(C)

𝐹𝑝𝑒𝑎𝑘

Increasing 𝐿

Figure 2-7: Case 2: Vertical intrusion of single plates (using NDPM model):
(A) Variation of drag forces with intrusion depth for plates of various widths, 𝐿
(0.05, 0.10, 0.15, 0.20, 0.25m) during single-plate vertical granular intrusion. The ar-
row shows the direction of increasing 𝐿. The simulations are plane-strain and glass
bead properties are used for simulating granular media (𝜌𝑔=2520 kg/m3, 𝜑 = 0.6,
𝜇𝑠 = 0.4). Each data series on the left graph was time-averaged over a 0.5 ms window
to remove high-frequency force fluctuations. The vertical black dotted line in (A)
shows the depths after which this averaging window includes sufficient data. Depen-
dence of (B) initial force peaks, and (C) average drag forces on plate widths in single
plate intrusions (blue squares). The corresponding quadratic and linear fits for (B)
and (C) are shown as red dotted lines in corresponding graphs. The force peaks are
shown with arrows in the left graph. Time window used for calculating the average
forces is the highlighted blue region (force averaging window) on the left graph.

of high-speed impacts of a circular intruder in granular media; the model quantita-
tively matched the flow and force data of Clark and Behringer [126]. Before analyzing
the simulation results, we perform a scaling analysis of the problem, assuming the
NDPM equations hold in order to predict the dependence of drag on various system
parameters. In this case, we expect the drag force, on a vertical intruder of width 𝐿
and out-of-plane width 𝑤 at a depth of 𝑧, to depend on various system parameters,
i.e. intruder dimensions (𝑤 and 𝐿), depth 𝑧(distance between the intruder bottom
and the free-surface), close-packed media density 𝜌𝑑, gravity 𝑔, the media’s internal
friction 𝜇𝑠, the media-intruder interface friction 𝜇𝑓 , and the velocity of intrusion 𝑣.
Using scaling analysis, with base units of length as 𝐿, time as

√︀
𝐿/𝑔, and mass as

𝜌𝑑𝐿
3, we obtain:
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𝐹𝐷 = 𝜌𝑑𝐿
3𝐿(

√︀
𝐿/𝑔)−2𝑓(𝜇𝑠, 𝜇𝑓 , 𝑧/𝐿, 𝑤/𝐿, 𝑣/

√︀
𝑔𝐿)

= 𝜌𝑑𝑔𝐿
3𝑓(𝜇𝑠, 𝜇𝑓 , 𝑧/𝐿, 𝑤/𝐿, 𝑣/

√︀
𝑔𝐿) (2.11)

Where, 𝑓 represents some unknown function. Recall that we are scaling based on
NDPM, so certain properties such as the particle diameter do not appear in the
above relation.

The dependence of 𝐹𝐷 on 𝑧 can be divided into two regimes. (1) At low depths
𝑧 ≪ 𝐿, the variable 𝑧/𝐿 is negligible and can be ignored. And (2), at larger depths,
the drag forces 𝐹𝐷 are known to show a linear dependence on depth (after an initial
jump in the vertical drag near free surfaces[127, 128, 129, 77]). In both of these
regimes, we set the dependence of 𝐹𝐷 on 𝑤 to be linear, assuming the plane-strain
nature of the intrusions. We also focus on intrusions that are sufficiently slow such
that 𝐹𝐷 is independent of velocity 𝑣 (low-velocity regimes) as seen in the work of
Swapnil et al.[125].

With the above assumptions, in the 𝑧 ≪ 𝐿 regime, we obtain:

𝐹𝐷 = 𝜌𝑑𝑔𝐿
3(𝑤/𝐿)𝑓(𝜇, 𝜇𝑓 )

→ 𝐹𝐷/𝑤 = 𝜌𝑑𝑔𝐿
2𝑓(𝜇, 𝜇𝑓 )

→ 𝐹 ∝ 𝐿2. (2.12)

And in the latter, moderate-depth regimes with 𝐹𝐷 ∝ 𝑧, we obtain:

𝐹𝐷 = 𝜌𝑑𝑔𝐿
3(𝑤/𝐿)(𝑧/𝐿)𝑓(𝜇, 𝜇𝑓 )

→ 𝐹𝐷/𝑤 = 𝜌𝑑𝑔𝑧𝐿𝑓(𝜇, 𝜇𝑓 )

→ 𝐹 ∝ 𝑧𝐿. (2.13)

Thus, from the scaling analysis, we expect the drag forces per unit out-of-plane width
𝐹 (= 𝐹𝐷/𝑤) (unit 𝑁/𝑚) to have a quadratic dependence on plate width, 𝐿, near the
free surface, and a linear dependence on plate width at larger depths. The scaling
analysis does not provide information on the exact form of variation of 𝐹𝐷 in 𝑧 in
the region connecting the two regimes. However, we do expect the variation to be
non-monotonic in 𝑧 since in the vanishing depth limit, the force scales as 𝐿2, and in
the deeper limit, it scales with 𝑧𝐿.

Using the simulation’s force output, in Figure 2-7B and C we plot the ob-
served relationships between 𝐹 and 𝐿 at, respectively, a smaller depth (where ini-
tial peaks occur) and in a deeper regime, where linear force variations are pre-
dicted. The forces in Figure 2-7C are averaged over a depth window (𝑧𝑖 − 𝑧𝑓 ), i.e.
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𝐹 𝑎𝑣𝑔 = (
∫︀ 𝑧𝑓
𝑧𝑖
𝐹 (𝑧)d𝑧)/(𝑧𝑓 − 𝑧𝑖). The expected trends from the dimensional analysis

are apparent. Besides our own simulation results, the linear dependence of drag force
on intruder area, once deep enough, is a well studied relation [127, 128, 129]. We
reiterate that our simulations are all in the quasistatic regime. Thus, the velocity
contributions are negligible in comparison to static force contributions in our study.
Thus, the initial peak in the force response is not related to inertial drag as seen in
faster intrusions[130, 128].

Physically, the initial force maxima (𝐹 𝑝𝑒𝑎𝑘) in the force vs. displacement graphs
of Fig. 2-7A correspond to the force requirements for initiating media flow in the
system. The 𝐹 𝑝𝑒𝑎𝑘 force contributions enable the beginning of flow by initiating the
shearing of the media, which exists at some finite strength due to finite pressure
under the plate. From slip-line theory for granular intrusions[131], the flow devel-
ops a wedge-shaped no-shear-zone below the intruder, which has an acute angle of
𝜋/2 − tan−1(𝜇) (where 𝜇 represents the material internal friction). Thus, the re-
quirement of shearing media of a finite strength along the wedge-shaped shear zone
is responsible for these force contributions. We can obtain an intuition for the initial
𝐿2 dependence of force by considering the conventional limit analysis for indentation
of materials with yield stress 𝑌 , common in manufacturing processes such as drawing
and blanking[132]. In such cases, indenter force per unit out-of-plane width, 𝐹 , varies
as 𝐹 ∝ 𝑌 × 𝐿 for 𝐿 the indenter plate length. In frictional media, the strength is
pressure-sensitive. With 𝑌 = 𝜇×𝑃 and supposing 𝑃 grows linearly along the edge of
the no-shear-zone wedge, the mean strength along the edge grows ∝ 𝐿. Substitution
of 𝑌 ∝ 𝐿 in the limit analysis formula then gives the observed quadratic dependence
of the drag force on 𝐿. We do not further investigate these forces but identify that
the existence of small regions of under-compacted granular media near free surfaces
is expected to suppress the growth of such forces in many cases (see figure 2-13D).
Our simulations indicate that the drag forces’ dependence of 𝐹 on 𝐿 enter linear
regimes at depths 𝑧 ∼ 𝑂(10−1)𝐿. These forces are unique from the ‘added mass’
effects[133] and other macro-inertial effects[127, 128] in granular impacts that are
common in high-speed intrusion (and vary ∝ 𝑣2) since our intrusion velocities are
small.

Two plate intrusions

The above scaling analysis gives an important insight into the case of multi-body
intrusions. In the purview of eq. 2.13, we expect that two plates intruding far from
each other and at moderate depth will experience the same net vertical drag as that
experienced by a single plate with an equivalent surface area — the linearity in 𝐿
(eq.2.13) indicates that this equality should hold for any ratio of areas between the
two plates. Thus, any combination of plate widths should experience the same forces
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Figure 2-8: Case 2: Vertical intrusion of two parallel plates (using NDPM model):
(A) Variation of vertical drag (normalized) with plate separation, 𝑠 (normalised to
plate width 𝐿) and (B) the correspondng flow fields of equivalent plastic strain for
equally sized plates (L = 0.10 m each) and (C) local hydrostatic pressure, for equally
sized (𝐿 = 0.10 m each) plates. The forces 𝐹𝐷 in (A) are averaged over a depth range
(𝑧𝑖 − 𝑧𝑓 ) of 0.04− 0.08 m for all the cases and an average depth, 𝑧 = 0.06 m, 𝑤 = 1
m, 𝑔 = 9.8𝑚/𝑠2, 𝜌𝑑 = 1512𝑘𝑔/𝑚3(= 𝜌𝑔 *𝜑) is used. The simulations are plane-strain
and glass bead properties are used for simulating granular media (𝜌𝑔=2520 kg/m3,
𝜑 = 0.6, 𝜇𝑠 = 0.4). See Movie S2 (refer to Appendix A.1) for visualizing material
flow over time for (B).
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Figure 2-9: Case 2: Vertical intrusion of two parallel plates (using NDPM model):
(A) Variation of vertical drag with plate separation, 𝑠 (normalised with average plate
width 𝐿𝑎𝑣𝑔 = (𝐿1+𝐿2)/2) and the flow fields visualization using (B) equivalent plastic
strain and (C) local hydrostatic pressure for unequally sized plates (𝐿1 = 0.05 m and
𝐿2 = 0.15 m, bottom) plates. The forces 𝐹𝐷 in (A) are averaged over a depth range
(𝑧𝑖 − 𝑧𝑓 )of 0.04− 0.08 m for all the cases and an average depth, 𝑧 = 0.06 m, 𝑤 = 1
m, 𝑔 = 9.8𝑚/𝑠2, 𝜌𝑑 = 1512𝑘𝑔/𝑚3(= 𝜌𝑔 *𝜑) is used. The simulations are plane-strain
and glass bead properties are used for simulating granular media (𝜌𝑔=2520 kg/m3,
𝜑 = 0.6, 𝜇𝑠 = 0.4). See Movie S2 (refer to Appendix A.1) for visualizing material
flow over time for (B)
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both when they are infinitely far apart and when they have no separation. This
analysis does not provide any information on the force variations when the plates
are close but are at a finite distance from each other. However, physical intuition
suggests that the presence of plates in the vicinity of each other will restrict the
material flow, which should increase the drag on each plate. Given that the plates
experience equal net forces at infinite and zero separation between them, we expect
there to be a value of separation at which the force response is maximal or minimal
(unless the force response is constant). The work of Swapnil et al.[125] explored this
variation and found there is a peak in the force response at a low value of separation
between the plates. Note that near the free surface (𝑧 ≪ 𝐿), we do expect drag
force at zero separation to be higher than at infinite separation due to the quadratic
dependence of the force on plate size in this regime — the ratio of forces for plate
lengths of 𝐿1 and 𝐿2 would be 𝐹0/𝐹∞ = (𝐿1+𝐿2)

2/(𝐿2
1+𝐿

2
2) which is always greater

than 1.
Figure 2-8A and 2-9A show the variation of force for different combinations of

plate widths and plate separations. Continuum modeling shows the existence of force
peaks for both equal plate cases (Figure 2-8A) and unequal plate cases (Figure 2-
9A). Our observations are in accord with similar experiments and DEM simulations
by Swapnil et al’s[125] for equal plates. As the continuum modeling successfully
captures the behavior, the detailed material states in these simulations can now be
used to identify the macro-mechanical origins of the phenomena. We visualize the
material flow by plotting snapshots of the plastic strain in a few of these cases. The
plastic strain fields before, at, and after the force peak in Figure 2-8B and 2-9B
suggest a macro-mechanical picture. We observe higher granular flow interaction
between the two plates as the separation between the plates is decreased. For a
single plate intruder, any neighboring flow restriction is expected to make it more
difficult to push material during the intrusion. Thus, decreasing plate separation
results in increasing drag on each plate. Once the plates are sufficiently close, a large
wedge-shaped rigid zone forms, spanning the plates, causing the two plates to act as
a single large plate. Thus, any further reduction in the separation does not result in
additional flow restriction. Instead, it leads to a reduction in the effective area of the
merged plate systems, and thereby the drag forces decrease upon a further decrease
in separation. It is interesting to note that the material flow profiles when the two
plates are together or far-separated are similar to the classical plasticity solution of
Prandtl [134] for yielding of metals upon indentation under a plate, characterized by
a single rigid wedge of media under the indenter and flow emanating from both edges
of the wedge. However, when the plates are separated but very close, the flow profile
looks similar to the indentation plasticity solution of Hill [135], characterized by two
smaller wedges under the plate and flow emanating only from the two outermost
edges. We also plot the variation of local hydrostatic pressure in the media for
the two cases in figures 2-8C and 2-9C. The ratio of local pressure magnitudes with
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equivalent hydrostatic pressure, 𝜌𝑑𝑔|𝑧|, is large (∼ 40) in accord with the observations
of Brezinski et al. [129].

To understand the behavior of the flow solutions, we re-derive the scaling relations
for combinations of plates of different lengths 𝐿1 and 𝐿2 (𝐿1 ≤ 𝐿2) assuming NDPM,
similar to the single plate case. Using base units of length as 𝐿𝑎𝑣𝑔 = 1/2(𝐿1 + 𝐿2),
time as

√︀
𝐿𝑎𝑣𝑔/𝑔, and mass as 𝜌𝑑𝐿3

𝑎𝑣𝑔, we obtain:

𝐹𝐷 = 𝜌𝑑𝑔𝐿
3
𝑎𝑣𝑔𝑓(𝜇𝑠, 𝜇𝑓 , 𝑧/𝐿𝑎𝑣𝑔, 𝑠/𝐿𝑎𝑣𝑔, 𝑤/𝐿𝑎𝑣𝑔, 𝐿1/𝐿2, 𝑣/

√︀
𝑔𝐿𝑎𝑣𝑔).

With similar assumptions as before in the moderate-depth regime (𝐹 ∝ 𝑧),

𝐹𝐷 = 𝜌𝑑𝑔𝑧𝐿𝑎𝑣𝑔𝑤𝑓(𝜇𝑠, 𝜇𝑓 , 𝑠/𝐿𝑎𝑣𝑔, 𝐿1/𝐿2).

Defining a non-dimensional force, 𝐹 = 𝐹𝐷/𝜌𝑑𝑔𝑧𝐿𝑎𝑣𝑔𝑤, we get

𝐹 = 𝑓(𝜇𝑠, 𝜇𝑓 , 𝑠/𝐿𝑎𝑣𝑔, 𝐿1/𝐿2) (2.14)

and for equal plates, 𝐿1 = 𝐿2, 𝐿𝑎𝑣𝑔 = 𝐿 and we obtain:

𝐹 = 𝑓(𝜇𝑠, 𝜇𝑓 , 𝑠/𝐿). (2.15)

Therefore, if the NDPM model suffices to describe the physics of two-plate intrusion,
we expect the above relation to describe a master curve that collapses data for plates
of various 𝐿 intruding into the same media.

Based on eq.2.14, for 𝐹 ∝ 𝑧, we obtain following relations for peak separation
(𝑠𝑝) and corresponding peak force (𝐹𝑝) values:

𝑠𝑝 = 𝐿𝑎𝑣𝑔 𝑓1(𝐿1/𝐿2, 𝜇𝑠, 𝜇𝑓 ), and (2.16)

𝐹𝑝 = 𝜌𝑑𝑔𝑧𝑤𝐿𝑎𝑣𝑔 𝑓2(𝐿1/𝐿2, 𝜇𝑠, 𝜇𝑓 ). (2.17)

For equal plates (𝐿1 = 𝐿2 = 𝐿 = 𝐿𝑎𝑣𝑔) we obtain

𝑠𝑝 = 𝐿𝑓1(𝜇𝑠, 𝜇𝑓 ), and (2.18)

𝐹𝑝 = 𝜌𝑑𝑔𝑧𝑤𝐿 𝑓2(𝜇𝑠, 𝜇𝑓 ). (2.19)

Note that 𝐹𝑝 has units of force per out-of-plane length. Also, note that under these
relations, the only material properties that influence the peak force and separation
are the friction coefficient(s) and density; the sole length scale comes from the plate
itself. This makes physical sense when the smallest in-plane feature (min(𝑤,𝐿, 𝑠)) is
sufficiently larger than grain diameter. However, the exact value of O(1) needs to be
calculated experimentally. Swapnil et al.[125] explored the dependence of force-peak
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separation 𝑠𝑝/𝑑 with intruder size, 𝐿/𝑑, when the intruder size is close to the grain
diameter, 𝑑 (𝐿/𝑑 range 1–6). Interestingly, their data agree with our proposed linear
dependence 𝑠𝑝 ∝ 𝐿 at intruder sizes as low as 3-4 grain diameters.

𝟏𝐦𝐦

Continuum

Experiments

Figure 2-10: Case 2: Experimental verification of peak force phenomenon in two-
plate intrusions:. The comparision of experimental data (dotted lines) and calibrated
continuum simulations (solid line) for two (equal) plate intrusion experiments. The
experiments use plates of width (𝐿) 15mm (blue data with ∙ marker), 20mm (orange
data with * marker), 26mm (yellow data with ■ marker), 29mm (violet data with
▲ marker), and the continumm model uses a plate of width 10mm (green data
with ⋆ marker). Quikrete Pool Filter Sand with grain density 𝜌𝑔 = 2520𝑘𝑔/𝑚3 was
used (inset shows microscopic view). The effective critical density 𝜌𝑐 and angle of
repose of the sand was found to be 1512𝑘𝑔/𝑚3 and 36𝑜 ± 1 resp. All of the paired
plates have a 1 : 5 horizontal aspect ratio. The continuum results correspond to
plane-strain two plate intrusions with drag forces 𝐹𝐷 averaged over a depth range
of 0.06 − 0.08 m for all the cases and an average depth, 𝑧 = 0.07 m, 𝑤 = 1 m,
𝑔 = 9.8𝑚/𝑠2, 𝜌𝑑 = 1512𝑘𝑔/𝑚3(= 𝜌𝑔 * 𝜑) is used for scaling the vertical axis. The
material properties are calibrated based on experimental data with 𝜌𝑔=2520 kg/m3,
𝜑 = 0.6, 𝜇𝑠 = 0.72 (=tan−1 𝜃𝑟𝑒𝑝𝑜𝑠𝑒). All these experiments were conducted by Andras
Karsai under the guidance of Prof Daniel Goldman at Crab Lab, Georgia Institute
of Technology.

We also verify these drag force variations and the peak separation scaling relation
with new vertical intrusion experiments and compare them to calibrated continuum
simulations (see figure 2-10 for the details). A DENSO VS087 robot arm intruded an
apparatus that held pairs of steel plates at various separations into a bed of loosely
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consolidated Quikrete Pool Filter Sand with grain density 𝜌𝑔 = 2520 kg/m3, and
effective close-packed density 𝜌𝑑 = 1512 kg/m3. The internal friction value of this
medium was 𝜇𝑠 = 0.72 based on the angle of repose measurements from experimental
tilting tests, with the media globally fluidized for 15 seconds to a loose initial packing
fraction of 𝜑 ≈ 0.58 for all trials. All intrusions were performed at 11 mm/s, where
speed dependence of the force response is negligible. Over 128 trials, the net resis-
tive forces on the pair of intruding plates were measured using an ATI Mini40 force
transducer. Andras Karsai from Prof Daniel Goldman’s group at the Department of
Physics at Georgia Institute of Technology conducted these experiments.

We observed a satisfactory match between the experiments and the simulations.
The fact that the experimental data for different values of 𝐿 collapse onto a single
dimensionless master curve supports the robustness of the scaling relation implied by
NDPM in eq 2.15. Additionally, we observe that although both 2-8(A) and Figure
2-10 show peaks in normalized force responses of the media at low separations, the
shapes of the graphs are not ’identical’. This variation is expected because eq 2.15
indicates that the graph between normalized drag (𝐹 ) and normalized separation
(𝑠/𝐿) depends on material friction properties (𝜇𝑠 and 𝜇𝑓 ) and the two cases use
different internal friction (𝜇𝑠) values.

We also briefly explore, in our simulations, the effect of changing plate width
ratios on the peak separation distance (𝑠𝑝), and the peak separation force (𝐹𝑝) in our
study (see figure 2-9A). We find that 𝐹𝑝 monotonically decreases from a maximum
value to 𝐹∞ as the plate ratio decreases from 1 to 0 (note that plate-ratio 𝐿1/𝐿2

is always ≤ 1 as 𝐿1 ≤ 𝐿2 by definition). The normalized peak separation distance
(𝑠𝑝/𝐿𝑎𝑣𝑔) increases with decreasing plate-ratios (𝐿1/𝐿2). The peak separation re-
lations are also expected to be a function of 𝜇𝑠 from scaling analysis (eq. 2.17).
Thus, an in-depth shape and material property dependence characterization of this
phenomenon are relegated to future study.

2.4.3 Case 3: Drag variations in the plowing of granular me-
dia

This case takes inspiration from the work of Gravish et al.[136] who studied drag
force fluctuations in the plowing of granular beds at different initial packing fractions.
A Discrete Element Method (DEM) based study of the case was also performed by
Kobayakawa et al.[137]. Both of these studies observed increasing drag force fluctu-
ations with an increasing initial packing fraction of the granular beds. Similar force
fluctuations were observed by Kashizadeh and Hambleton [138] on reduced-order
modeling of the plowing processes in sands and by Jin et al.[139] in the development
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of a new single-gravity (1-g) small scale testing methodology. As this phenomenon
directly relates to the changing density of the media, we use the more detailed DPM
model for this case.
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Figure 2-11: Case 3: Force fluctuations during plowing (using DPM model): Varia-
tion of drag forces at various initial packing fractions in Gravish et al’s [136] experi-
ments: (A) time variation of drag forces, and (B) average drag forces. The average
values of forces for three initial packing fractions in (A) are shown with corresponding
colored arrows in (B). Corresponding continuum simulations: (D) Time variation of
drag forces (force plots for consecutive 𝜑𝑖 are shifted vertically by 0, 40, 80, and 120
N respectively for improved visualization), and (E) averaged drag forces. The sim-
ulations are plane-strain and glass bead properties are used for simulating granular
media (𝜌𝑔=2520 kg/m3, 𝜑=0.6, 𝜇𝑐 = 0.4, 𝜒 = 5.0, 𝜑𝑚𝑖𝑛 = 0.45). See Movie S3 (refer
to Appendix A.1) for visualizing time evolution of material front during plowing of
under- and over-compacted media from experiments and simulations. Figure (A)
and (B) are modified from Gravish et al [136].

A schematic representation of this case is given in Figure 2-2C. Both of the re-
ported studies were performed in 3D, while our simulations are 2D plane-strain.
Characterizing the effects of this difference in our studies is difficult, so we do not
attempt an exact match. Nevertheless, we do expect the 2D simulations to capture

55



Gravish et al. experiments ∶ Top view

Continuum simulations: Side view

𝜙𝑖 < 𝜙𝑐

𝜙𝑖 > 𝜙𝑐

𝜙𝑖 < 𝜙𝑐

𝜙𝑖 > 𝜙𝑐

101

100

10−1

4x10−2

Eq. plastic
strain

(A)

(B)

0.630

0.595

0.560

Packing
fraction (𝜙)

Figure 2-12: Case 3: Force fluctuations during plowing (using DPM model): Vi-
sualisation of the free surface in under/over compacted granular media: top view
from Gravish et al’s [136] experiments (A), and side view in continuum simulations
(B,left). (B,right) Variation of material packing fraction from continuum modeling
simulations in initially under-compacted (𝜑𝑖 = 0.57) and over-compacted (𝜑𝑖 = 0.63)
media cases considered in (B, left). The simulations are plane-strain and glass bead
properties are used for simulating granular media (𝜌𝑔=2520 kg/m3, 𝜑=0.6, 𝜇𝑐 = 0.4,
𝜒 = 5.0, 𝜑𝑚𝑖𝑛 = 0.45). See Movie S3 (refer to Appendix A.1) for visualizing time
evolution of material front during plowing of under- and over-compacted media from
experiments and simulations. Figure (A) are modified from Gravish et al [136].
[Photo credits: (A) N. Gravish, P. B. Umbanhowar and D. I. Goldman, Georgia
Institute of Technology]

the phenomenon qualitatively and the drag forces to be similar in their magnitudes.
We once again use the glass bead material properties used in the previous case. We
use a grain density 𝜌𝑔 of 2520 kg/m3, a critical packing fraction 𝜑𝑐 of 0.60, a steady-
state critical internal friction 𝜇𝑐 of 0.4, and a scaling coefficient 𝜒 of 2.5. Similar to
previous cases, the plates are modeled as elastic bodies with high elastic modulus to
act as rigid bodies. The media/plate interface friction (𝜇𝑓 ) was set to 0.35. We use a
2.4 m × 0.4 m granular bed, and a 4× 10−3 m spatial resolution (∆𝑥) for simulating
these cases. The plowing plate dimensions are 0.03× 0.08 m2.
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Figure 2-11 and 2-12 shows the variation of horizontal drag forces from the Grav-
ish et al.[136] experiments alongside our continuum simulations. The continuum re-
sults are scaled proportionally to the out-of-plane width in Gravish et al.[136]. The
mean drag force and force fluctuations from continuum modeling are plotted in Fig-
ure 2-11C and D, showing smooth forces transition to larger, fluctuating forces as the
initial packing fraction rises above 𝜑𝑐. The same trends can be seen in experiments,
c.f. Figure 2-11A and B. A visual free surface comparison between experiments and
the simulations also shows the similarity of flows as 𝜑𝑖 varies, c.f. Figure 2-12A and
B. In the over-compacted case, the continuum results show a stepped pattern forming
on the surface, but it is not as persistent as the wavy patterns observed in the exper-
iments. This is due to the 2D nature of our simulations. The 2D nature restricts the
material from flowing in an out-of-plane direction, which causes the material to flow
over the existing waves and overrun the wavy patterns. Such patterns are otherwise
not overrun in 3D experiments and are more visible in over-compacted cases.

The observed shear patterns, free-surface profiles, and force fluctuations shown in
Figure 2-11A,B are in accord with the shear-softening (shear-strengthening) of over-
compacted (under-compacted) granular media that is built-in to the DPM model. In
a sample initially under-compacted (𝜑𝑖 < 𝜑𝑐), shear deformations cause compaction,
resulting in higher densities along the sheared regions than in bulk (see eq.2.5). This
density increase results in higher shear strength along the shear zone (see eq.2.4).
Thus, further loading in such systems induces shear to occur in the weaker material
adjacent to the shear band, which effectively spreads the shearing in such systems.
On the other hand, in the over-compacted case, shear deformations dilate the ma-
terial, resulting in lower density in the sheared region than in bulk, which results
in lower shear strength there. Hence, continued loading causes shear to accumulate
along the thin zone of initial failure causing the appearance of a strong shear band.
This process continues until the total force requirement for shearing along the exist-
ing band exceeds that for creating a new shear band in bulk (after which the same
process repeats itself). Thus, in over-compacted media, a visually separable shear
band formation pattern occurs (Figure 2-12B (left)). In initially over-compacted
cases (𝜑𝑖 > 𝜑𝑐), increasing the initial packing fraction of the media results in an
increased plate motion requirement between successive shear band formations (due
to increased strength of the media in bulk) and thus the force fluctuation magnitudes
increase (and their spatial frequency decreases) with increasing packing fraction (also
observed by Gravish et al.[136]). We also plot the variation of the packing fraction
in the media from continuum modeling in figure 2-12B (right). The figure provides a
visualization of changing packing fraction ahead of the plate in accordance with the
smooth versus banded mechanism explained above.
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Figure 2-13: Case 4: Material front development during vertical intrusion (using
DPM model): (A) Experimental data from Aguilar and Goldman [133]. The exper-
iments intruded a circular plate of 0.051 m diameter into poppy seeds (𝜌𝑔 = 1100
kg/m3) at various initial packing fractions (𝜑𝑖). (B) Schematic of Aguilar and Gold-
man’s cone growth model[133]. (C) Continuum modeling results: Force data from
2D plane-strain simulations. We intrude 0.04 m wide flat plates into a granular ma-
terial with 𝜌𝑔 = 1100 kg/m3, 𝜇𝑐 = 0.53, 𝜑𝑐 = 0.60, 𝜒 = 5.0, and 𝜌𝑚𝑖𝑛 = 0.45. (D)
Mechanism of solid zone development from continuum modeling.

2.4.4 Case 4: Shear deformation zone in plate intrusions

This last case takes inspiration from the work of Aguilar and Goldman [133] and
highlights the capability of the basic DPM model in capturing the development of
the flow profile during vertical intrusion of single plates. A schematic representation
of the case is given in Figure 2-2D. Aguilar and Goldman [133] postulated that
the formation of a rigid No Shear Zone (NSZ) ahead of a flat plate during vertical
intrusion is an incremental growth process. In three dimensions, this growth takes
the form of a rigid frustum shape which grows from a low height frustum with a
fixed base (matching the shape of the intruder) to a fully developed cone/pyramid at
the completion of the mechanism. For a circular base, the final shape is a cone. In
two dimensions, like our case, this would translate to successive isosceles trapezoids
(with larger parallel edges matching the intruder’s intruding edge), leading to a wedge
shape with the base as the intruder’s leading edge.

Figure 2-13 and 2-14 shows the variation of intrusion forces and successive ve-
locity profiles in under-compacted granular intrusion experiments compared to our
continuum simulations. We model the granular media, poppy seeds, with the DPM
to incorporate the effect of density transitions. We use material properties for poppy
seeds with a grain density 𝜌𝑔=1100 kg/m3, a critical packing fraction 𝜑𝑐=0.60, a
steady-state critical internal friction 𝜇𝑐=0.53, and a scaling coefficient 𝜒=5.0. The
media/plate interface friction (𝜇𝑓 ) was set to 0.35. We use a 0.5 m × 0.2 m gran-
ular bed, and a 5 × 10−4 m spatial resolution (∆𝑥) for simulating these cases. The
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Figure 2-14: Case 4: Material front development during vertical intrusion (using
DPM model): (A) PIV analysis of constant speed plate intrusions. New set of
experiments were conducted by intruding 𝐿 = 40 mm wide rectangular flat plates
at a constant low speed, 𝑣 = 150mm/s, in loosely packed poppy seeds. Time is
non-dimensionalized (𝑡 = 𝑡/𝑡𝑜) by 𝑡𝑜 ≡ 𝐿/𝑣. The velocity is normalized by intrusion
speed, 𝑣, and strain rates by �̇�𝑜 ≡ 1/𝑡0. We plot these results in the intruder’s
frame of reference. (B) MPM simulation results: Vertical velocity and equivalent
plastic strain rate fields during vertical intrusion in initially under-compacted media
(𝜑𝑖 = 0.55) for material properties discussed in Figure 2-13C . We also show the
evolution of packing fraction (𝜑) from continuum modeling in Figure 2-13C. See
Movie S4 (refer to Appendix A.1) for visualizing material flow at various 𝜑𝑖
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intruding plate dimensions are 0.04 m × 0.02 m.
The force trends from simulation qualitatively match the trends from Aguilar’s

experiments (compare Figure 2-13A to 2-13C), keeping in mind that Aguilar uses a
3D circular plate while our simulations are in 2D plane-strain. In a set of separate
experiments using a rectangular plate intruder and PIV (Figure 2-14A) we observed
the flow zone development appears similar to continuum results (Figure 2-14B).
These trends also agree with general observations from a 3D DEM study done by
Feng et al.[140]. The Aguilar and Goldman [133] study presents a model whereby
the rigid cone emerges from a growing rigid frustum of constant base angle that
gets progressively longer until converging to the final cone shape (Figure 2-13B).
However, in our simulations, the zone actually starts as a ‘short’ wedge coincident
with the plate bottom, having a large apex angle (expected by a slip-line theory to
be approximately 𝜋/2− tan−1 𝜇𝑖 for 𝜇𝑖 the friction at the initial density) due to the
low initial packing fraction of the media. The rigid front then grows by ‘fanning
out’ from the diagonal edges (see Figure 2-13D), as the edges represent the zone
experiencing maximum shear-compaction and hence the most strengthening. This
growth can be observed as well from density variations, shown in Figure 2-14C. The
growing density of the region results in an increasing but variable internal friction
value in the zone below the intruder and results in the development of a progressively
sharpening, quasi-rigid trapezoid-like shape under the plate. As the intruder moves
deeper, the process converges to a final wedge shape (with a sharper angle equal
to ‘(𝜋/2 − tan−1 𝜇𝑐)/2’). Thus the DPM model provides an apt description of the
observed behavior in under compacted granular intrusion.

2.5 Approach limitations and their implications

While the continuum modeling and the numerical implementation we use in this
study are able to represent the considered cases to a sufficient degree, both the model
and the method have their limitations. Clearly, as emphasized in the introduction,
the phenomena incorporated in a constitutive model limit the behavior the model
can capture, and the constitutive relations we use here intentionally exclude certain
effects for the benefit of simplicity. Similarly, MPM has known accuracy limitations
given by choice of the grid resolution, material point density, shape functions, and
the means of representing contact between domains. For instance, MPM inherently
captures a volume average material response everywhere. If during the flow, an
element has a low number of interior material points, the accuracy of the integration
is also diminished. But these issues can be overcome with an appropriate choice of
shape functions and refined discretization. Specifically for these issues, use of more
advanced methods such as the hybrid DEM-MPM approach (such as Yue et al. [55]
and Chen et al. [141]) or dynamic particle enrichment (such as Zhu et al.[142])

60



could be used at the expanse of computation time. The use of smoother and wider
shape functions could also help decrease numerical fluctuations often observed in
MPM[143].

2.6 Conclusion
In this work, we demonstrated the efficacy of continuum modeling in four cases us-
ing two continuum descriptions of granular media, of forced granular intrusion —
(1) depth-dependent force response in horizontal submerged intruder motion; (2)
separation-dependent drag variation in parallel plate vertical in-trusion; (3) initial
density-dependent drag fluctuations in free-surface plowing; and (4) flow zone devel-
opment in vertical plate intrusions in under compacted granular media (see Figure
2-2). The study shows that relatively simple, friction-based plasticity models capture
a large variety of granular intrusion phenomena.

Moreover, the models provide a useful macroscopic understanding of granular
intrusion processes, which are often primary interests in engineering applications,
and remove the additional complexity of trying to determine large-scale physics from
grain-scale observations. The simplicity of these continuum models also streamlines
this understanding, both by exclusion – i.e. if such a model works, it implies that
mechanisms or effects lying outside the model’s formulation are not crucial to the
outcome – and by admitting simple scaling analyses as we have utilized throughout.
Such simplifications will certainly limit the accuracy of these models in a variety of
cases, but an incremental approach of adding physical augmentations (such as micro-
inertial effects, particle size effects, or evolving fabric variables) provides a systematic
approach for exploring the underlying physics in diverse cases. For instance, we do
not use 𝜇(𝐼) rheology in either of the models in this study; the fact that our mod-
eling still captures the observed behaviors indicates micro-inertial effects are not a
key mechanism in the observed behaviors.

In the future, the work could be extended to three dimensions to compare the com-
putational advantage of using such methods extensively. Furthermore, the continuum
treatment could help reconcile granular behavior with similar behaviors observed in
other, more standard continua. For example, Minetti et al.[144] reported that dur-
ing swimming in the water, slight separation between fingers increases propulsive
thrust, similar to our observation for slightly separated granular intruders [144, 145].
Comparing and analyzing continuum forms could provide insights into the rationale
behind such similarities, as was done in other flow resistance studies[146].
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We use the results of this work in multiple ways. In this study, we notice that
despite it’s simplicity, the continuum approach models a large variety of granular
intrusions. Additionally, the approach provides fine control on phenomenologies in-
cluded in its form. This feature is extremely useful in systematically developing
further-reduced models. We use the NDPM model from this study for developing a
generalized, rate-dependent, Dynamic Resistive Force Theory for the rapid intrusion
of intruders (more details in Chapter 4). We also use a three-dimensional implemen-
tation of the NDPM model to develop a 3D version of RFT (more details in Chapter
5).

62



Chapter 3

Reduced-order modeling of granular
intrusions with RFT

3.1 Introduction

The remaining half of this thesis discusses two versions of Resistive Force Theory
(RFT) developed in this thesis work. This chapter provides an in-depth discussion
of 2D-RFT for providing readers with a comprehensive understanding of this ap-
proach which is crucial for understanding enhanced versions of RFT.

The RFT methodology, which was originally introduced by Gray and Hancock
[89] for modeling self-propelling undulatory biological systems in viscous fluids, has
gained a lot of attention in the field of granular physics in recent decades. On
the lines of fluid RFT, granular RFT assumes that the net forces on any arbitrar-
ily shaped body moving through granular media at low speeds can be obtained by
summing up forces on individual sub-surfaces and that these sub-surface forces can
be independently obtained using an empirical formula that depends on sub-surface
size, velocity, the sub-surface state in the media, and a few variables characterizing
the media-surface interactions, without full-scale numerical modeling of the granular
system. Thus, the theory assumes superposition and decoupling of forces over the
sub-surfaces of a large body [91, 92, 93]. Figure 3-1 and eq 3.1 shows a plane strain
version of RFT for granular media (2D-RFT) proposed by Li et al. [93].

[𝑓𝑥, 𝑓𝑧] =

∫︁
𝑆𝑢𝑟𝑓

((𝛼𝑥(𝛽, 𝛾), 𝛼𝑧(𝛽, 𝛾))𝐻(−𝑧)|𝑧|d𝑠

=
𝑁∑︁
𝑖=1

[𝛼𝑥(𝛽𝑖, 𝛾𝑖), 𝛼𝑧(𝛽𝑖, 𝛾𝑖)]𝐻(−𝑧𝑖)|𝑧𝑖|d𝑠𝑖 (3.1)
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where sub-script 𝑖 represents 𝑖𝑡ℎ sub-surface of the body. 𝐻(𝑧) is the Heaviside
function representing force go to zero when a sub-surface lies above free surface
(𝑧𝑖 > 0). 𝛼𝑥 and 𝛼𝑧 represent force per unit area per unit depth in the above
equation. 𝑑𝑠 represents the area of a sub-surface and |𝑧| represents the depth below
the free-surface.
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Figure 3-1: (A) Characterization of a sub-surface with two characteristic angles
in 2D RFT. 𝛽 represents the plate tilt angle and 𝛾 represents the plate velocity
direction. (B) Generic form of force per unit area per unit depth (𝛼generic

𝑥,𝑧 ) in 2D
RFT (proposed by Li et al.[93])

In the above form, RFT takes an empirical approach by determining 𝛼𝑥 and
𝛼𝑧 functions through repeated slow experimental intrusions of a small flat plate
submerged a unit depth in the tested media at various orientations and velocity
directions. These orientations are characterised with angle 𝛽 and the velocity direc-
tions are charaterised with angle 𝛾 (figure 3-1(A)). The repeated experiments create
a force diagram from force measurements for these angled surface elements (figure
3-1(B)). These small elements are assumed to obey linear superposition and can
be applied to any desired intrusion surface. Thus, this simple closed-form equation
makes granular RFT a useful tool for estimating the forces on both submerged and
intruding bodies in granular media. Functions 𝛼𝑥 and 𝛼𝑧 represent force/area/depth
on any sub-surface in 𝑥 and 𝑧-directions respectively. While the original dependence
of 𝛼𝑥,𝑧 was obtained in the form of experimental data, Li et al [93] also observed
that variations of 𝛼𝑥,𝑧 over {𝛽, 𝛾} space are approxiately identical for most of the
non-cohesive materials, differing only by a scalar multiplicative grain-structure in-
teraction parameter, 𝜉. Thus, for any material-surface combination, functions 𝛼𝑥,𝑧

could be split into 𝛼𝑔𝑒𝑛
𝑥,𝑧 and 𝜉 as:
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𝛼𝑥,𝑧 = 𝜉 * 𝛼𝑔𝑒𝑛
𝑥,𝑧 (3.2)

𝛼𝑔𝑒𝑛
𝑧 =

1∑︁
𝑚=−1

1∑︁
𝑛=0

[𝐴𝑚,𝑛𝑐𝑜𝑠2𝜋(
𝑚𝛽

𝜋
+
𝑛𝛾

2𝜋
) +𝐵𝑚,𝑛𝑠𝑖𝑛2𝜋(

𝑚𝛽

𝜋
+
𝑛𝛾

2𝜋
)] (3.3)

𝛼𝑔𝑒𝑛
𝑥 =

1∑︁
𝑚=−1

1∑︁
𝑛=0

[𝐶𝑚,𝑛𝑐𝑜𝑠2𝜋(
𝑚𝛽

𝜋
+
𝑛𝛾

2𝜋
) +𝐷𝑚,𝑛𝑠𝑖𝑛2𝜋(

𝑚𝛽

𝜋
+
𝑛𝛾

2𝜋
)] (3.4)

where all the coefficients (𝐴𝑖,𝑗, 𝐵𝑖,𝑗, and𝐶𝑖,𝑗) except the following are zero:

Table 3.1: Generic values of fitting parameters in analytic form of RFT

Parameter 𝐴0,0 𝐴1,0 𝐵1,1 𝐵0,1 𝐵−1,1 𝐶1,1 𝐶0,1 𝐶−1,1 𝐷1,0

Values 0.206 0.169 0.212 0.358 0.055 -0.124 0.253 0.007 0.088

The 2D granular RFT has found many successess in modeling granular intrusions
at low speeds. As we will discuss in chapter 5, the theory can be more generally ex-
pressed as:

𝐹 total =

∫︁
surf

𝛼mat
𝑥,𝑦,𝑧(�̂�, �̂�, 𝑔)|𝑧|𝑑𝑠 (3.5)

Where, Ftotal represents the total integrated forces on a large surface which is
divided into smaller plane sub-surfaces of area 𝑑𝑠 and mean depth |𝑧| from the free
surface. The 𝛼mat

𝑥,𝑦,𝑧 functions represent the force per unit area per unit depth and are
functions of the surface normal �̂�, velocity direction �̂�, gravity 𝑔, and the properties
of the material and material-surface interaction. The heavyside function 𝐻 from eq
3.1 is dropped in eq 5.2 in the interest of simplicity and obviousness. The local force
(integrant) on sub-surfaces are extracted independently from each other at varying
depths(|𝑧|) and orientations (�̂�). The calculation of the net intruding force on the
body using a linear sum of forces on surface elements is a result of the localization [91]
and decoupling of force fields on intruder sub-surfaces. A comprehensive comparison
of various existing reduced-order methods for modeling granular intrusions, including
2D-RFT and a terramechanical model, can be referred from Agarwal et al. [95].

3.2 RFT implementation

The following sections briefly discusses the step-by-step procedure for implementing
RFT for modeling motion of an arbitrary body. Figure 3-2 shows a few examples of
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granular intrusions modeled with 2D-RFT:

1. Body surfaces are discretized into smaller sub-elements that as a whole, ap-
proximate the total geometry.

2. For each sub-surface, if 𝑣 · �̂� ≥ 0 and 𝑧 < 0 (surface is a leading edge and lies
below free surface), steps 3-6 are repeated to find sub-surface forces. Else the
sub-surface forces are set to zero.

3. For each sub-surface, the orientation angle (𝛽), velocity angle (𝛾), effective
depth from the free surface (|𝑧|), and area (𝑑𝑠) are calculated.

4. The values of 𝛼gen
𝑥,𝑧 are calculated using 𝛽 and 𝛾 from eq 3.3-3.4 for each sub-

surface.

5. Media specific 𝛼𝑥,𝑧 are calculated using eq 3.2.

6. 𝛼𝑥,𝑧 are multiplied with |𝑧|, and 𝑑𝑠 to calculate forces on each sub-surface.

7. The net resistive force on the body is calculated by adding forces on all the
sub-surfaces using RFT assumptions of additivity of granular resistive forces
eq 3.1.

8. A momentum balance in the 𝑥 and 𝑧 coordinates then models the body’s motion
in the horizontal and vertical direction.

Granular Media 

Red:   Velocities
Blue:  Forces

Granular Media 

Red:   Velocities
Blue:  Forces

𝑥

𝑧
𝑔

𝑥

𝑧
𝑔

Figure 3-2: Examples of an elliptical (left) and a grousered wheel (right) under
forced-rotation (fixed rotation and horizontal-translation speed) modeled using RFT
implementation discussed in secttion 3.2. Blue arrows show the scaled forces and red
arrows show scaled local velocities.

66



3.3 Open source app for granular intrusion modeling
with RFT

An open-source, Matlab-based implementation of granular 2D-RFT developed as a
part of this thesis can be downloaded from the following link 1. The app allows for
modeling motion of arbitrary shapes imported as images in the app using RFT cal-
culations discussed in section 3.2. Figure 3-3 shows a snapshot of the app interface.
The app allows for constrained as well as free locomotion scenarios. In addition to
conventional RFT, the app also allows adding a macro inertia term 𝜌𝑣2, with the
desired scaling value, at each sub-surface (see section 4.6.1 for more details). Readers
can find more details at the provided link.

Figure 3-3: Interface of Matlab based RFT app for modeling arbitrary intrusions
of arbitrary shaped bodies using RFT. The app allows for inputing arbitrary shapes
as image files and uses implementation discussed in secttion 3.2

1https://www.mathworks.com/matlabcentral/fileexchange/75389-reduced-order-granular-
intrusion-modeling-using-rft?s_tid=prof_contriblnk
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Chapter 4

Extending resistive force theory to
high-speed regimes: Dynamic
Resistive Force Theory

Granular intrusions, such as dynamic impact or wheel locomotion, are complex mul-
tiphase phenomena where the grains exhibit solid-like and fluid-like characteristics
together with an ejected gas-like phase. Such phenomena are even more pronounced
at high speeds. Despite decades of modeling efforts, a unified description of the
physics in such intrusions is as yet unknown. Work in this chapter makes use of a
continuum model (NDPM), which uses simple notions of frictional flow and tension-
free separation to describe complex granular intrusions near free surfaces to capture
media flow dynamics in a variety of high-speed granular intrusion experiments, in-
cluding wheel locomotion, plate intrusions, and running legged robots. The model
reveals that three effects (a static contribution and two dynamic ones) primarily give
rise to intrusion forces in such scenarios. Identification of these effects enables the
development of the further reduced-order technique, Dynamic Resistive Force Theory
(DRFT), for rapid modeling of granular locomotion of arbitrarily shaped intruders.
The continuum-motivated strategy we propose in this chapter for identifying phys-
ical mechanisms and corresponding reduced-order relations has potential use for a
variety of other materials.

4.1 Introduction

A common granular intrusion involves a rigid or flexible solid penetrating into the
media and using the resistive force to propel itself into a state of locomotion (see
Figure 4-1). If a body slowly intrudes into granular beds, granular stress arises inde-
pendent of the intrusion rate, and the resistive force on the intruding body remains
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in the quasistatic limit [53, 54, 94]. However, various intrusion scenarios can arise
which deform the media rapidly enough that the net force response, and hence the
locomotive behavior, is affected. Examples of such intrusions include ballistics, me-
teor impacts, rapid locomotion, and many industrial processes [147, 148, 149, 2, 150].

Rigid wheel locomotion is a great example of a system that combines these effects,
exhibiting multiphase granular behavior, complex grain-surface interactions, and re-
interaction with deformed media. Rigid wheels like those found in planetary rovers
continuously shear and sometimes violently deform the local media [80] to locomote
in loosely consolidated terrain. These intrusions, particularly in high-velocity cases,
cause the substrate material to behavior to deviate significantly from its quasistatic
response, driven by potentially non-trivial surface interactions with the wheel. Thus,
we first focus on rigid wheel locomotion as a diagnostic scenario of complex intrusion,
which includes a wide array of non-trivial effects.

A B

C D

Figure 4-1: Examples of high speed locomotion on granular surfaces: (A)
Wheel of the Curiosity Mars rover (Diameter ∼ 50 cm) [151] (B) running human
[152], (C) RHex C-legged robot (C-leg limb length ∼ 18 cm) [153], and (D) a racing
dirt bike (Diameter ∼ 50 cm)[154]. [Photo credits: (A) MAHLI imager Curiosity,
NASA; (B) A. Singh, www.pexels.com; (C) G. C. Haynes, A. M. Johnson, and D.
E. Koditschek, University of Pennsylvania; (D) Daniel, www.pexels.com] .

We use the continuum framework for NDPM model introduced in Chapter 2
section 2.2.2 based on a frictional-plastic yield condition and free separation for
modeling granular media in these systems with the Material Point Method (MPM)
(more details in section 2.3). Our intrusion analysis begins with a focus on circular
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wheels with grousers — grousers are finite-sized radial protrusions along the wheel
circumference, which facilitate traction (See figure 4-2A, 4-6A, Table 4.1 for more
details). Grousered wheels are commonly used in granular locomotion applications in
soft terrain [155, 95, 156, 157, 80]. We model and experiment with the motion of these
wheels on poppy seeds, the granular media in this work (more details in Table 4.2).
Alongside scenarios of slow and rapid wheeled locomotion, two additional families of
test cases, submerged lateral plate intrusion, and “four-flap runners” are simulated
and compared to known results in the literature to verify the model’s ability to
capture dynamics of complex granular intrusions. Interestingly, the NDPM model
captures the non-trivial rate-dependent phenomena exhibited in complex intrusions
even though its constitutive equations are rate-independent. In addition to developing
a high-speed RFT, this work shows how a single continuum interpretation of the
media (NDPM) can represent multiple intrusion scenarios by implicitly reconciling
various inertial effects.

Table 4.1: Grousered wheel dimensions †

1. Inner Diameter, 𝐷 188 mm 2. Wheel width, 𝑊 140 mm
3. Grouser height, ℎ𝑔 12 mm 4. Grouser width, 𝑤𝑔 6 mm
5. Gravity, 𝑔 9.8 kg/m2 6. Number of grousers, 𝑁 20
7. Effective horiz. inertia 23.0 kg 8. Effective vert. inertia 6.3 kg

† A constant forward force of 4 N was also applied on the grousered wheel MPM
simulations to calibrate them with the friction-compensating mechanism used
in the experiments.

Table 4.2: Granular media (Poppy seeds, PS) properties

1. Density, 𝜌𝑔𝑟𝑎𝑖𝑛 1100 kg/m3

2. Critical packing fraction, 𝜑𝑐 0.58
3. Internal friction, 𝜇 (2D,MPM)* 0.56
4. Wheel-PS surface friction (2D,MPM) 0.35
5. RFT scaling coefficient, 𝜉 0.35

* The internal friction (𝜇) for the PS was obtained by calibrating the sinkage of
the grousered wheel between MPM simulations and experiments, at low angular
velocity (10 RPM) where the system is known to display in quasi-static character.

In addition to capturing full-field characteristics of wheel locomotion, we obtain
a global-level physical understanding of intrusion dynamics by analyzing plasticity
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solutions, which guides the development of a reduced-order model for intrusion that
we call the Dynamic Resistive Force Theory (DRFT). We show that DRFT accurately
models all the considered granular intrusion cases. By combining existing literature,
continuum modeling, and experimental verification, we identify the relevant physics
that go into DRFT and its interpretation as corrections to an existing quasistatic
RFT model [93, 92, 95] for slow intrusion. Key effects that generate rate-dependent
behaviors are identified, and, once incorporated, DRFT allows rapid calculation of
the expected resistive forces in the media.

4.2 Wheel locomotion experiments

A Motion capture 

camera(s)

Linear Bearing Carriage
and Pulley System

3D Printed wheel

𝐏𝐨𝐩𝐩𝐲 𝐬𝐞𝐞𝐝 𝐁𝐞𝐝

Gear motor

B

𝟏𝟎𝐜𝐦

𝒕𝒂𝒗𝒈 | 𝒍

𝒕𝒂𝒗𝒈 | 𝒔

𝒕𝒂𝒗𝒈 | 𝒍

𝒕𝒂𝒗𝒈 | 𝒔

Figure 4-2: Setup for rigid-wheel experiments (Andras Karsai, GeorgiaT-
ech): (A) CAD model (left), and a snapshot (right) of the experimental setup at
Crab Lab GeorgiaTech used in this study. (B) Sample experimental time series data
for translation velocity (left) and sinkage (right) at low 𝜔 (20 RPM, solid lines) and
high 𝜔 (50 RPM, dotted lines) respectively. 𝑡𝑎𝑣𝑔|𝑠 and 𝑡𝑎𝑣𝑔|𝑙 show the time windows
used for avergaing low and high 𝜔 data, respectively.

Figure 4-2A shows a CAD model and a snapshot of the laboratory setup used for
performing wheeled locomotion experiments in this study, and Figure 4-2B indicates
our data collection methodology. To perform systematic experiments of free-wheel
locomotion, a simple, automated ‘terramechanics testbed’ was built. A powerful
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gear motor (capable of providing up to 70 RPM at 14.1 Nm ) was mounted in a
carriage (Figure 4-2A and B), which moves freely along vertical and horizontal linear
bearings. The effective vertical loading of the wheels was controlled through a com-
bination of weights and pulleys. The system ran trials in a fluidizing bed of poppy
seeds (a dry non-cohesive granular media) across a bed length of 1 m, allowing for
controlled resets of terrain by blowing air up from the bottom. The poppy seeds
acted as the representative material for the class of non-cohesive granular materials
in our study. We specifically chose them due to the ease of running wheel locomo-
tion experiments within them and previous experience using RFT. This fluidization
redistributed the grains evenly into a homogeneous medium after each experiment,
giving nearly identical terrain for each test [158]. Along with the terrain fluidization,
the testbed also had the capability to reset itself: after each run, a linear actuator
and a winch work together to drag the wheel carriage back to its starting position.
Various system dimensions/specifications are listed in Table 4.1 and 4.2.

For experimental visualization of the granular flow around the wheels (Figure
4-5A), we also perform PIV analysis of the wheel locomotion at different 𝜔 values.
The wheel was placed adjacent to the transparent side wall of the poppy seed con-
tainer and performed the locomotion trials. Images of the flow field were captured
with an AOS high-speed camera mounted on a tripod at a resolution of 1280x1024
and a framerate of 500 FPS. We expect minor variations in the flow fields due to the
friction experienced by the material flowing next to the sidewall. The open-source
PIVLab package was used in MATLAB for the analysis. Readers can refer to Movie
S3 in the Supplemental Information at the end of this chapter for more details. The
experimental part of both the above activities was also done by Andras Karsai from
the department of Physics at Georgia Institute of Technology.

Figure 4-4A and B shows the trends of steady-state translation velocity and sink-
age (resp.) with increasing angular velocity for a grousered wheel’s free locomotion.
Experiments indicate the emergence of a rate-dependent effect in wheel locomotion;
an increase in slipping, accompanied by an increase in the sinkage of the wheels,
breaks the linear trend in velocity vs. 𝜔 seen in the quasistatic domain of 𝜔 < 30
RPM (corresponding to 𝜔/𝜔𝑜 < 0.46 in Fig 4-4A).

4.3 Continuum modeling of high-speed granular in-
trusions

We use the NDPM continuum model (introduced in Chapter 2 section 2.2.2) for
modeling poppy seeds (PS), the granular media used in this study. We use the Ma-
terial Point Method (MPM) (more details in section 2.3) for implementation. The
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Figure 4-3: A sample high-speed rigid-wheel continuum simulations using MPM. The
field being plotted is the equivalent plastic strain-rate.

material properties are provided in Table 4.2. Figure 4-3 shows a sample of wheel
locomotion simulation performed with continuum modeling.

A

Experiments

Continuum solution

B

Figure 4-4: Comparison of wheel locomotion experiments and continuum
simulations: Variation of (A) translation velocity, and (B) sinkage from exper-
iments (blue), and continuum modeling solutions (black). The results are non-
dimensionalized using a characteristic system velocity (𝑔ℓ)0.5 (= 1440 mm/s) for
translation velocity; a characteristic system length ℓ (= 212 mm) for sinkage; and a
characteristic angular velocity, 𝜔𝑜 (= (𝑔/ℓ)0.5 = 65 RPM) for angular velocity, where
𝑔 represents the gravity and ℓ represents the wheel’s outer diameter.

The trends of steady-state translation velocity and sinkage with varying 𝜔 ob-
tained using continuum modeling are plotted in Figure 4-4A and B. Continuum
modeling successfully captures the experimental trends for wheel locomotion; in par-
ticular, the model captures the plateau in the normalized 𝑣 − 𝜔 curve at the correct
rotation speed and correctly predicts increased sinkage with rotation rate.
To check the robustness of the results, we also applied small changes to the initial
state of the experimental and simulated systems — including minor variations in ini-
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tial wheel depth, initial wheel velocity, and ramp-rate of the wheel — and observed
that the steady-state results in both systems were insensitive to these variations.
[88].
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Figure 4-5: Comparison of wheel locomotion experiments and continuum
simulations: (A) Granular flow field velocities obtained from continuum modeling
and experiments (PIV) for slow (30 RPM, top) and fast (60 RPM, bottom) wheel
locomotion. Data are averaged over an effective rotation of 0.1 rad (for PIV), with
the orange regions representing the mean position of the wheel. See Movie S4, S5,
and S6 for more details. (B) Plots showing variation of grain velocity from continuum
simulations and PIV experiments along the radial direction directly below the center
of the wheel; note some wall friction from the plexiglass plate exists in the experiment
but not in the continuum solution. Key structural features of the flow under the wheel
agree between the experiments and model in (A) and (B)

To further validate the model predictions, we have conducted experiments to
visualize subsurface flow fields as discussed in section 4.2 and compared them to the
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model. Velocity fields in grains for 30 and 60 RPM cases from continuum modeling
and experimental PIV analysis are plotted in Figure 4-5A and B. There is some wall
drag from the plexiglass plate that likely causes the granular flows in the experiment
to be overall slower than the model, however, the key structural features of the flow
under the wheel agree between the experiments and model. Importantly, both show
a zone of material ahead of the wheel being pushed forward and a wide zone under
and behind the wheel being pushed to the rear. The rear flow zone also grows with
increasing 𝜔 due to higher flow entrainment and material movement at higher 𝜔.

4.4 Towards reduced-order models: High-speed RFTs

A major benefit in identifying an accurate continuum model for a system is the
possibility of using it to extract global-scale simplifications of the system’s dynamics
that can be used to develop further-reduced models. For example, in previous work
on slow quasistatic intrusion, Askari et al. [146] found a connection between frictional
yielding and a reduced-order intrusion force model called granular Resistive Force
Theory (RFT) [93]. The success of the present continuum model for slow and rapid
locomotion in wheels (and the other intrusion scenarios in this study) motivates us to
ask whether an RFT-like reduced-order model for complex and rapid intrusions exists
and if it might be derivable based on phenomena observed within the continuum
model. We begin by first defining the quasistatic form of RFT and evaluating its
predictions for wheeled locomotion dynamics. From Chapter 3, 2D-RFT intrusion
force formula can be re-written as:

F =

∫︁
𝑆

𝛼(𝛽, 𝛾)𝐻(−𝑧)|𝑧| dA. (4.1)

where, RFT presumes the force-per-area vector (or traction) t, on each surface ele-
ment can be written as t = 𝛼(𝛽, 𝛾)𝐻(−𝑧)|𝑧|, dependent on the element’s orientation
angle (𝛽), velocity angle (𝛾), and vertical depth from the free surface (|𝑧|), with 𝐻
being the Heaviside function. We often use the phrase ‘quasistatic RFT’ to refer to
the original version of 2D-RFT proposed by Li et al.[93] from here on, in this chapter.
We do this to avoid any potential confusion between ‘Dynamic RFT’ proposed by us
and quasistatic 2D-RFT of theirs.

Figure 4-6A and B show the results of applying quasistatic RFT (solid blue line
in Figure 4-6A and B) in modeling grousered wheel locomotion using the established
RFT functions 𝛼𝑥 and 𝛼𝑧 [93]. Figure 4-6B shows that while RFT captures the speed
vs 𝜔 trends at low 𝜔, at higher 𝜔 it does not predict the wheel locomotion kinematics.
RFT predicts a linear relation between the angular and translation velocities, which
matches the experiments’ dynamics at low-speeds, but diverges as 𝜔 increases. The
fact that quasistatic RFT predicts the steady speed of a round wheel to always be
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Figure 4-6: Experiments vs RFT: (A) Snapshot of a quasistatic RFT simulation,
used for studying grousered wheel locomotion. Direction and magnitude (normalized)
of the velocity and resistive stress are indicated by red and blue arrows, respectively,
along surface elements of the wheel boundary.(B) Translational velocity (Top) and
sinkage behaviors (Bottom) of the wheel; experimental mean and 1𝜎 standard de-
viation (light blue data) and RFT results with local 𝜆𝜌𝑣2 modification (solid lines).
The results in (B) are non-dimensionalized as explained in figure 4-4. The direction
of increasing 𝜆 is indicated (𝜆=0, 1, 25, 50, 100). Red solid lines with 𝜆 = 0 (in B)
correspond to quasistatic RFT results.

a constant multiple of the wheel spin can be shown as a consequence of the rate-
independence of the RFT traction relation in equation 4.1 (see Appendix B.2 at the
end of this chapter for more details).

4.5 Exploiting the continuum treatment for physical
insight

An important step in developing a general reduced-order model for high-speed gran-
ular intrusion scenarios is to identify the key underlying physics. In granular intru-
sions, rate effects could arise due to a variety of physical causes. Increased vibrations
in the media could fluidize the material at high speeds and reduce its strength [159].
Increasing velocities could decrease the friction on the wheel/media interface (per
a dynamic friction drop), which in turn could decrease the traction on the wheels.
Rapid flows may also have significant micro-inertia, which makes the rheology rate-
dependent by causing the stress ratio 𝜇 ≡ 𝜏/𝑃 to depend on shear-rate through the
“inertial number” 𝐼, where 𝐼 = �̇�

√︀
𝑑2𝜌𝑠/𝑃 , where �̇� is the shear-rate, 𝑑 the mean
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grain diameter, 𝜌𝑠 the solid particle density, and 𝑃 the local pressure [53, 54]. More-
over, conventional macro-inertia (i.e. the 𝜌�̇�𝑖 term in the momentum balance) adds
inertial body forces that could alter the flow of the media and its resistance against
the intruder.

Predicting the dominating rate effect(s) is difficult using experiments
alone. In this regard, our continuum modeling approach greatly aids in
eliminating non-significant candidates from the possible rate effects above.
The key is to recall that our model implements a rate-insensitive frictional surface
interaction with no dynamic friction drop on the wheel-sand interface, and a rate-
insensitive constitutive model with no dependence on the inertial number nor any
accounting of material thermalization or fluidization. The model does, however,
include macro-inertia in the momentum balance equations. The fact that the con-
tinuum model is successful in capturing the wheel dynamics along with many other
granular intrusion scenarios (discussed later), indicates that the observed rate effects
can be reconciled solely from macro-inertia (𝜌�̇�𝑖). At the same time, the global conse-
quences of local macro-inertial forces may be subtle and depend upon the particular
system and its dynamics.

Based on this insight, along with analysis of the continuum solutions to wheel
locomotion and other granular intrusion scenarios from the literature, we now propose
and test a more general RFT that encompasses the domain of slow to rapid intrusions
in granular media, which we refer to as ‘Dynamic RFT’ (DRFT).

4.6 Dynamic RFT (DRFT)

DRFT modifies the quasistatic RFT in two ways to account for macro-inertial effects.
First, we add a momentum flux contribution, which we term the dynamic inertial
correction. This term is required for the transfer of momentum to the granular mate-
rial surrounding the intruder. This term is also in accord with many previous studies
on high-speed granular intrusions [128, 160, 161, 162, 163, 133, 130, 164], and takes
the form of an additional rate-dependent force going as velocity-squared. The second
modification, which we will show is critical for more complex intrusions, describes
the way in which increased bulk inertia can change the free-surface geometry. A
change to the free-surface geometry then feeds back on the resistive forces through
the depth-dependence of RFT. We denote this modification as the dynamic structural
correction. Taken together, DRFT imposes the following formula for the traction on
a surface element:

t = 𝛼(𝛽, 𝛾)𝐻(−𝑧)|𝑧| − �̂�𝜆𝜌𝑣2𝑛 (4.2)

where |𝑧| indicates the effective depth of the surface element. That is, 𝑧 = 𝑧 + 𝛿ℎ
where 𝛿ℎ represents the height decrease of the free surface in the zone affecting the
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traction at (𝑥, 𝑧). Recall �̂� represents the outward normal to the surface element
(and −�̂� the inward), and we define 𝑣𝑛 as the normal component of the surface veloc-
ity. To use DRFT, one must determine the appropriate 𝛿ℎ for each surface element
of the intruder as a function of the intruder motion as well as an appropriate 𝜆, an
𝑂(1) scalar fitting constant. Similar to RFT, DRFT asserts a localized formula for
the calculation of stresses on intruder sub-surfaces, and thus allows for near real-time
modeling of intruder motion.

Implementing DRFT
The procedure for modeling intrusions with DRFT begins by discretizing the intrud-
ing geometry into subsurfaces of size ∆ℓ, and defining the system properties such as
intruder weight, gravity, the effective media density 𝜌, and RFT scaling coefficient 𝜉
from calibration. One can then identify the leading edges of the intruder, and use
an external measurement to determine 𝜆 and the effective free surface variation 𝛿ℎ.
Scaled continuum simulations, DEM, or experiments (PIV) can be used to measure
𝜆 and the behavior of 𝛿ℎ; we provide an example of a methodology to infer 𝛿ℎ using
scaling analysis at the end of this chapter (Appendix B.1). Equation 4.2 can then
be used to calculate the granular resistive force on the leading edges. With intru-
sion force fully defined by DRFT, one can iteratively apply a momentum balance in
different directions on the intruder geometry to model the intruder motion. Thus,
except a macro-inertial additive part and change in free surface heights, the remain-
ing aspects of RFT implementation remain the same as described in section 3.2 of
the chapter 3

4.6.1 Understanding the dynamic inertial correction

We take a moment to discuss the two dynamic corrections included in DRFT, begin-
ning with the dynamic inertial correction. Analysis of the momentum balance equa-
tions under certain simplifying circumstances (see Appendix B.1 of the Supplemen-
tary Information at the end of this chapter) allows one to deduce that the transition
from a quasistatic flow to a faster flow comes with a resistive force increase that goes
as 𝜌𝐴𝑣2𝑛, similar to dynamic pressure in a fluid, where 𝐴 is the intruder area. Physi-
cally, this term represents the reaction force that comes from transferring momentum
to the granular media. A number of previous studies [128, 160, 161, 162, 163, 133, 130]
have modeled the rate-dependence of intrusion force similarly, by adding a term pro-
portional to normal speed squared to a depth-dependent ‘static’ term. Examination
of experimental data in [161, 165], agrees with a rate-dependent force addition of the
form 𝜆𝜌𝐴𝑣2𝑛 in simple vertical and horizontal intrusions (see Figure S2 and S3, and
Movie S1 and S2 of the Supplementary Information at the end of this chapter), where
𝜆 is a 𝑂(1) scalar fitting constant that accounts for certain approximations in the
analysis (see Supplementary Information Appendix B.1 at the end of this chapter).
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It is natural to ask whether the addition of a velocity-squared term to the qua-
sistatic RFT relation is enough alone to explain the rate-dependence observed in
general intrusion scenarios, including wheeled locomotion. We suppose the surface
traction is modeled to obey the relation in equation 4.3 below, and use this relation
to re-evaluate the grousered wheeled locomotion problem:

t = 𝛼(𝛽, 𝛾)𝐻(−𝑧)|𝑧| − �̂�𝜆𝜌𝑣2𝑛 (4.3)

Figure 4-6B shows the results for various values of 𝜆. The case of 𝜆 = 0 represents
the previously discussed quasistatic RFT in these graphs. The introduction of the
inertial force term (𝜆 > 0) adds a new force contribution having net force components
upward and opposite to the horizontal direction of wheel translation. This upward
force results in a decrease of wheel sinkage, opposite to the experimental observation.
The magnitude of these extra forces is very small; the pre-factor 𝜆 was varied from
1 to 100 in an attempt to match the experiments, but this has little effect on the
outcome, and the trends for both velocity and sinkage cannot be matched (Figure
4-6B). It is clear the dynamic inertial correction alone is not sufficient to describe
this set of tests.

4.6.2 Understanding the dynamic structural correction

To understand the rationale behind the dynamic structural correction in DRFT,
we start by considering the spatial variation of plastic strain-rate magnitudes from
continuum modeling simulations for low and high 𝜔 cases shown in Figure 4-7D. The
plots make it possible to visualize how different portions of the wheel derive their
resistive forces from different zones of the granular media. While the strain-rate
profiles change as angular velocities increase, the basic patterns of shearing remain
similar. The sheared material reaches the free surface of the granular volume in two
zones. Approximately half of the flow originating from the leading edge of the wheel
reaches the free surface on the trailing rear face of the wheel. The remaining flow-
lines extend to the free surface on the leading front face of the wheel. Importantly,
the height of the free-surface on the rear side of the wheel decreases with increasing
𝜔; qualitatively, as 𝜔 grows, the wheel expels material on the rear side. The reduction
in rear free surface height suggests a reduction in the pressure head and consequent
weakening of the material in the rear shear zone. This is a key observation that
motivates the form of the dynamic structural correction.

Figure 4-7C shows the free surface height reduction, 𝛿ℎ, as measured from the
continuum model simulations by identifying the lowest point making rear contact
with the wheel for which hydrostatic-pressure → 0. Indeed, the faster the wheel
spins, the deeper this point descends. Given the paucity of parameters in the contin-
uum model, dimensional analysis is useful; for a given substrate material, it suggests
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Figure 4-7: Dynamic RFT: Variation of (A) wheel translation velocity and (B)
sinkage from experiments compared to quasistatic RFT, DRFT, and DRFT without
any dynamic structural correction (i.e. having only the ∼ 𝜌𝑣2 correction). (C)
Presumed zones of influence and effective free-surface variation for constructing the
dynamic structural correction; 𝛿ℎ represents the gap between effective front and back
free surface positions. MPM data (red circles) and empirical fit (blue dotted line)
for 𝛿ℎ. (D) Variation of equivalent plastic strain-rate magnitude obtained using
MPM continuum modeling for slow (30 RPM) and high speed (90 RPM) wheel
locomotion. See Movie S7 in the Supplementary Information at the end of this
chapter for visualising the variation over time. The results in (A) and (B) are non-
dimensionalized as explained in Figure 4-4.

the form 𝛿ℎ = 𝑟 ·𝜓(𝑟𝜔2/𝑔) for some function 𝜓. Surprisingly, we find that 𝜓 is well-
approximated by the identity function. The fit of 𝛿ℎ = 𝑟 (𝑟𝜔2/𝑔) and the continuum
modeling results in Figure 4-7C show good agreement. Combined with the under-
standing developed in the previous section, the form of the effective free surface is
approximated using a simple partition as shown in Figure 4-7C, with the rear zone of
the wheel set to have a constant free-surface height reduction ℎ𝑏𝑎𝑐𝑘 differing from the
initial free-surface height (undisturbed medium height) by a term 𝛿ℎ = 𝑟 (𝑟𝜔2/𝑔).
To select the dividing angle delineating the front- and rear-affected zones of flow, we
choose to equally divide the contact zone for driven wheels. Our choice is driven by
the simplicity of this division, also observing a similar division of contact zones for
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representing traction on wheels by Hambleton et al. [166]. This new model changes
the effective free-surface heights only for the surface elements closer to the rear part
of the intruding wheel surface.

By including this effective free-surface height formulation, we now arrive at
DRFT, equation 4.2. We implement this DRFT model using the same implicit RFT
code framework similar to that discussed earlier in section 3.2. The only diffrerence
being a slight modification in calculation of RFT force to calculation of forces in
accordance with eq 4.2 using 𝜆 = 1 and 𝜌 ≈ 𝜌𝑐 = 638 kg/m3. The effective heights of
wheel grousers were also taken to be one-third of their true physical length (based on
experimental PIV data) to account for the shadowing effect [156]. Convergence stud-
ies of the force response determined the discretization fineness of the wheel shape.
Each inner-circumferential subsurface lug was divided into 14 elements, and each of
the lug surfaces (1 normal and two side-wise) was divided into eight elements. Thus,
the wheel had 570 surface elements in total. For the Dynamic RFT implementation,
only the effective heights experienced by surface elements on the rear side of the
wheel were modified. This height modification was based on the formulation shown
in figure 4-7(C). The rear region was taken as the region of the rear half of the con-
tact area between sand and wheel (see figure 4-7(D)). The division was based on the
angle subtended by the contact region at the wheel center.

The trends of translation velocity and sinkage with respect to 𝜔 now show good
agreement between experiment and DRFT (Figure 4-7 A and B). We also include,
for comparison, what the solution is when only the dynamic inertial correction is
used. While DRFT combines both dynamic corrections, it is clear that the dynamic
structural correction dominates the dynamic inertial correction in the case of wheeled
locomotion. While we have presumed for simplicity that the division between the
two contact zones takes place halfway through the wheel-sand interface, it can be
seen in Figure 4-5A and 4-7D that the division may actually be closer to the front of
the wheel. This could explain our slight overprediction of speed for high 𝜔 (Figure
4-7A). A second set of grousered wheels tests involving a smaller wheel are included
in the Supplementary Material at the end of this chapter (see Figure S1 and Section
S3) and DRFT works equally well without the need to refit the function for 𝜓 used
for 𝛿ℎ.

The agreement with DRFT suggests that the low-to-high slip transition in wheeled
locomotion (where slip= 1− 𝑣/𝑟𝜔 for 𝑣 is the translational velocity, 𝑟 is the nominal
radius, and 𝜔 is the angular velocity of the wheel) occurs largely because faster spin-
ning wheels remove material from behind the wheel, which reduces the pressure in
the rear zone, thereby weakening the base of material that would otherwise provide
a scaffold off of which the wheel pushes. Updating RFT by accounting for this effect
has appropriately captured the dynamics of the complex wheel locomotion scenario
in a reduced-order modeling framework.
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4.7 Additional verification studies

The wheel tests provide a complex intrusion scenario and have a dynamic structural
correction that is much larger than the inertial correction. To check the robustness
of our continuum modeling approach as well as Eq 4.2 for DRFT, we now examine
the converse situation with two additional sets of simulations — submerged plate
intruders and locomoting runners. We choose these cases based on data from contin-
uum solutions, validations against the literature, and the arguments of the previous
section, and expect the dynamic structural correction to be small and the dynamic
inertial correction to dominate. Visually, these cases represent two separate classes of
intruders. While the dragged plates represent forced motion, the runners represent
a class of self-propelling locomotors that may appear similar to the prior studied
wheels. Yet, force responses in both cases are dominated by the dynamic inertial
correction (more details in the following sections) and do not mimic the behavior
of the grousered wheel. Thus, these distinct cases test the breadth of the modeling
capability of DRFT.

Submerged horizontal intrusion: Thin plates submerged in granular media at
various fixed depths (20-40 mm) are dragged horizontally at different speeds using
continuum modeling. The continuum model runs in plane strain, where the plate
has a length of 0.016 m and the effective medium density is 900 kg/m2. The chosen
density is similar to that of ground coal or marble. The filled circles in Figure 4-8A
show the observed drag force variations with the drag speed. Experimental studies by
Schiebel et al. [165] found the variation of drag forces in such a scenario to follow the
trend 𝐾|𝑧|+ 𝜆𝜌𝐴𝑣2 (see Figure S1 of Supplementary Information at the end of this
chapter ), where 𝐾 and 𝜆 are constants, |𝑧| is the depth of the plate below the free
surface, 𝜌 is the effective granular density, 𝐴 is plate area, and 𝑣 is horizontal plate
velocity. Our continuum modeling also obtains the same trend (Figure 4-8A). In the
slowest cases (𝑣 ∼ 0), we obtain a linear force versus depth relation, 𝐹drag = 𝐾|𝑧|
for 𝐾 = 580 N/m. As speed increases, we find that continuum predictions match
the data well at three different depths, for 𝜆 = 1.1. Incidentally, the same value of 𝜆
also matches the rate dependence observed in the Schiebel et al. [165] experiments
for horizontally driven intruders at the free surface.

A comprehensive understanding of the resultant form of the drag force trends
can be obtained by observing continuum modeling results in the context of DRFT.
Figure 4-8B shows the deformation profiles around the plate at two selected speeds
(which differ by about an order of magnitude). The profiles in Figure 4-8B of high
and low-speed intrusion suggest that the intruder tractions arise from pressing the
granular material in front of the plate upward and to the right, toward a common free
surface height, ℎfront. The rear flow zone, which changes in slow versus high-speed
intrusion, is either in the separated phase or newly consolidated as it falls and fills
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Figure 4-8: Modeling slow-to-rapid plate intrusion: (A) Continuum MPM
data (colored circles) and 𝐾|𝑧|+ 𝜆𝜌𝐴𝑣2 fits (dotted lines) for horizontal intrusions
at various depths (|𝑧|) ([20,30,40] mm), where 𝐾 = 580 N/m and 𝜆 = 1.1. Variation
of equivalent plastic strain rate for (B, top) low Velocity (0.04 m/s) and (B, bottom)
high velocity (0.64 m/s) intrusion cases (at 30 mm depth). See Movie S2 in the
Supplementary Information at the end of this chapter for the video. Simulations are
plane-strain.

in the gap behind the moving plate. Likewise, the rear media makes a negligible
contribution to the resistive plate force; no part of the rear face of the plate is a
‘leading edge’ satisfying �̂� · 𝑣 > 0, so forces approximately vanish there. This is
in contrast to the grousered wheel case, where, due to rotation, a significant por-
tion of the back half of the wheel is a leading-edge that can interact non-trivially
with media behind the wheel. We thus expect a negligible dynamic structural cor-
rection for horizontal plate drag, due to the lack of leading-edge on the rear face
of the plate and an approximately speed-independent ℎfront. Indeed, the obtained
force relation 𝐹drag = 𝐾|𝑧|+ 𝜆𝜌𝐴𝑣2, which we obtained from experiments as well as
continuum modeling, displays only the dynamic inertial correction of DRFT as ex-
pected. These results concur with our hypothesis and confirm the DRFT prediction
for submerged sideways intrusion. For similar reasons as just discussed, we expect
symmetric vertical intrusion of plates to also invoke a negligible structural correction;
see Supplementary Information (Figure S3) at the end of this chapter for details and
confirmation against DRFT. Note that in our plate drag studies, we have restricted
our intrusion depths to within an 𝑂(1) factor of the plate width. This depth range
indicates the approximate limits of RFT, as beyond such depths, the assumptions
of RFT (such as a linear dependence of granular resistance with depth) begin to
degrade [119].
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Four-flap runner: While the dragged plates are forced to move at set speeds, we
also study a self-propelling locomotor, a four-flap runner, whose locomotion speed is
determined via the interactions of the locomotor’s self actuated limbs (flap motion)
and the substrate dynamics (geometric details are in Table 4.3 ). The low number of
flaps, along with the large flap length to inner radius ratio minimizes the interaction
between neighboring flap intrusions of the runner’s resultant granular flow.

Table 4.3: Four-flap wheel dimensions
1. Inner Diameter, 𝐷 50 mm
2. Wheel width, 𝑊 1 m
3. Flap length, ℎ𝑓𝑙𝑎𝑝 70 mm
4. Flap width, 𝑤𝑓𝑙𝑎𝑝 14 mm
5. Gravity, 𝑔 9.8 kg/m2

6. Mass of wheel, 𝑚 10.5 kg

The runner takes inspiration from the experiments of Li et al. [93] and Zhang
et al. [167] with running C-legged robots (similar to Fig 4-1C). Li et al. [93] drove
their robots with dimensionless spin ratios (𝜔/𝜔𝑜) ranging over 0−1.25

(︀
(𝜔𝑚𝑎𝑥, 𝜔𝑜) =

(240, 190) RPM
)︀

and observed a decreasing slip with increasing angular velocity in
their experiments. Similarly, Zhang et al. [167] tested locomotion over a larger 𝜔/𝜔𝑜

range of 0−3.8
(︀
(𝜔𝑚𝑎𝑥, 𝜔𝑜) = (720, 190) RPM

)︀
and observed that in the higher range

of spins, the sinkage in their experiments breaks away from trends observed by Li
et al[93], i.e. robots elevating above their resting depth. Their running robots dis-
play qualitatively opposite behaviors to grousered wheels: as spin increases, runners
sink less and move faster whereas wheels sink more and travel slower. We explore if
the fundamental physics of such qualitatively reversed behavior is already embedded
in our continuum modeling and consequent DRFT framework. Our current contin-
uum modeling capabilities being limited to plane-strain (2D) problems, we cannot
implement a full C-legged robot running in 3D. We take the four-flap runner as a
representative of the family of runners, which show a decrease in effective-slip and
sinkage with increasing angular rotation rates, and explore our 2D continuum model’s
capability in modeling such behaviors.

In the continuum modeling, the dimensionless mass ratio of the runner, given
by 𝑚/𝜌𝑐ℓ

2𝑊 for 𝑊 the out-of-plane width, is set to be in the same range (≈6) as
the corresponding twenty-grousered wheels shown previously to keep the comparison
between runners and grousered wheels relevant. For similar reasons, we keep the
runner diameter similar to that of grousered wheel (190 mm vs 212 mm). The
angular velocity of the runner is varied over a range of 10 RPM to 300 RPM which
corresponds to a dimensionless spin ratio range varying from 𝜔/𝜔𝑜 = 0−4.5 (𝜔𝑜 = 65
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RPM). The continuum results (see Figure 4-9B and C) show qualitative agreement
with the findings of Li et al. [93] and Zhang et al. [167] — with increasing spin
rate, a decrease in effective slip and an elevation of the wheel above the rest depth is
observed. Incidentally, the turnover in elevation for our runners was found at a spin
ratio ∼ 1.4, similar to that obtained by Zhang et al. [167].

𝜔/𝜔𝑜 ~ 0.44 𝜔/𝜔𝑜 ~ 1.1

𝜔/𝜔𝑜 ~ 2.2 𝜔/𝜔𝑜 ~ 4.4
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Figure 4-9: Running on granular media: (A) Variation of equivalent plastic
strain at increasing angular velocities 𝜔 for four-flap runner locomotion (𝜔𝑜 = 65
RPM). See Movie S8 in the Supplementary Information at the end of this chapter.
Continuum solutions from MPM (black dotted line with ‘o’ markers) and DRFT
solutions (solid lines) for translational velocity (B) and sinkage (C) versus angular
velocity, 𝜔, in four-flap runner locomotion. DRFT solutions for 𝜆 = 0, 2, 4 pictured.
The results in (B) and (C) are non-dimensionalized as explained in figure 4-4 with
ℓ = 190 mm (runner’s outer-diameter).

We now use the continuum model as a baseline reference to evaluate the DRFT
performance for runners. Figure 4-9A shows the variation of the equivalent plastic
strain for four different angular velocities in the continuum model. As expected,
due to the relatively large separation between intruding legs, there is no visible self-
interaction of the granular material between intrusions, and the free surface height
directly behind intruding legs remains unchanged, which suggests a minimal role
of the dynamic structural correction. This observation guides us to model these
scenarios using DRFT with typical, 𝑂(1), 𝜆 values (𝜆 = 0, 2, 4) and no dynamic
structural correction. Figure 4-9B and C show the resulting steady-state sinkage
and translation velocity at various angular velocities from DRFT calculations (solid
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lines). It seems that DRFT captures the kinematic trends of the reference solution,
approaching quantitative accuracy for 𝜆 ∼ 4. With this result, it is encouraging to
note that DRFT has captured the dependence on 𝜔 in both runners and grousered
wheels, which behave in opposite ways as 𝜔 increases.

Our four-flap runner study also explains the observations of the above-mentioned
C-legged robot studies. We believe the quasistatic RFT modeling in Li et al. [93]
was sufficient because the dynamic inertial correction was still small in their tested
range (in our study, the dynamic inertial correction becomes noticeable only above
a 𝜔-ratio of ∼ 1.2). Zhang et al. [167] go to higher spins, revealing the non-
trivial elevation and slip trends due to the rate that we see in continuum and DRFT
solutions.

4.8 Conclusion

The success of NDPM based continuum approach in modeling granular intrusion up
to high speeds in this work has led to two surprising conclusions for us—

First, a continuum model based only on a constant friction coefficient and tension-
free separation is able to model complex granular intrusions well in a variety of sce-
narios. Note that though we use this model for modeling two intrusions scenarios
in Chapter 2— (1) submerged cylinder intrusions and (2) two plates (multi-body)
intrusions, both these cases corresponded to quasi-static intrusions. Thus the sce-
narios explored in this chapter indicate a different aspect (velocity sensitivity) of the
model than what was explored in chapter 2. Second, we find that just two macro-
inertial corrections to RFT allow successful modeling of granular intrusions across
speed regimes can be easily incorporated in 2D-RFT form to develop a dynamic RFT.

These results were obtained progressively. By analyzing the simple continuum model’s
solutions, an understanding of the key physics involved in such complex intrusion sce-
narios was identified, which in turn motivated the ingredients of the dynamic resistive
force theory (DRFT). DRFT allows for robust, near real-time modeling of granular
intrusion in a large variety of cases, including self-propulsion. Our study of rigid in-
trusion into granular media indicates that the force response upon intrusion consists
of two primary rate-dependent modifications: (1) a dynamic inertial correction and
(2) a dynamic structural correction. The dynamic inertial correction accounts for
the momentum transfer to the surrounding material, whereas the dynamic structural
correction describes how a rapidly moving intruder can change the pressure head by
modifying the free surface. Both effects are related to the macro-inertia of the media.
For the scenarios considered here, micro-inertial effects (per a 𝜇(𝐼) rheology) are not
significant even if the motion appears ‘fast’ — previous work on rapid projectile pen-
etration [109] indicates that the high pressures that develop around rapid intruders
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keep 𝐼 relatively small. Hence, the observed rate-dependent dynamics arise under
rate-independent rheology, as we have used, since macro-inertia (stemming from 𝜌�̇�𝑖
in the momentum PDE) alone brings about the observed rate effects. In terms of
limitations, it is known that quasistatic RFT loses accuracy when intruders are too
deep, as the linear force versus depth dependence eventually plateaus in the lift di-
rection [119] for slow intruders. We expect the same constraints on depth to apply
to DRFT as well.

Dynamic RFT has enough generality to explain two opposing scenarios: weak-
ening of the media during grousered wheel locomotion, as well as strengthening of
the media during rapid running. We have shown that DRFT accurately predicts the
system behaviors in the limiting cases, i.e. when one of the two dynamic effects is
dominant. Further studies will be required to fully test the model for mixed cases
where both dynamic corrections are significant. We have assumed additivity, in line
with previous notions of a ‘static’ component and an inertial component of the intru-
sion force [94, 161, 128, 165]. However, it is possible a more complicated functional
combination may arise.

Although this study mainly focused on dry non-cohesive granular media, the for-
mulation of DRFT in granular flows suggests the existence of other similar reduced-
order models in other materials. A combination of experiments and continuum mod-
eling proved vital in this study for verifying the underlying physics. The proposed
continuum framework can easily be modified to cater to a large variety of mate-
rials once their constitutive equations are known. Future work may explore faster
methods of predicting flows, along with various complex intruders, to systematically
determine the form of the dynamic structural correction. Further studies could also
explore the existence of similar reduced-order models for related classes of materi-
als like non-critical state granular media, cohesive sands/muds, and fluid-saturated
sands.

In the next chapter, we take inspiration from the outcomes of this study and
explore the next logical step in expanding the limits of RFT. i.e. exploring the
existence and the form of RFT in three dimensions.
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Chapter 5

Extending resistive force theory to
three dimensions: 3D-RFT

5.1 Introduction

As we discussed in earlier chapters, real-time modeling of granular intrusions is crit-
ical for various real-life applications such as path planning and efficient maneuvering
in extra-terrestrial and off-terrain rover locomotions. Additionally, such capabili-
ties enable developing a heuristic understanding and quick insight into a variety
of phenomenons like circum-mutation [168] and robotics [169]. While the full-field
numerical modeling approaches are computationally expensive, low and high-speed
RFTs discussed in chapters 3 and 4 have limited use in real-life three-dimensional
scenarios. Thus, this chapter explores the existence of an RFT in three-dimensions
and proposes a three-dimensional version of RFT, 3D-RFT. We verify the 3D-RFT
against a variety of granular intrusions scenarios, consisting of the arbitrary motion
of many symmetric and unsymmetric shapes, and find an excellent match between
the reference results and 3D-RFT predictions.

5.2 Form of a generic RFT

As discussed in earlier chapters, the success of fluid-RFT motivated many [91, 92, 93]
to explore the existence of a similar theory in granular media. Li et al [93] proposed
a plane strain (or 2-dimensional) version of RFT for granular media (2D-RFT) which
we have used as the base for RFT related research in this thesis. In 2D-RFT, at low-
speeds, the rate-independent nature of granular media (characterized by a low value
of the non-dimensional inertial number 𝐼 [53, 54, 94]) and low macro-inertia (𝜌𝑣2)
makes the dependence of intrusion force independent of the velocity magnitude. See
section 4.5 of Chapter 4 for more details on these topics in regards to quasi-static
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RFT. Assuming local-pressure-dependent bulk strength and gravitational loading
pressure results in Li’s form for 2D RFT

𝐹 total =

∫︁
surf

(︀
(𝛼mat

𝑥 (𝛽, 𝛾), 𝛼mat
𝑧 (𝛽, 𝛾)

)︀
|𝑧| 𝑑𝑠 . (5.1)

Here, 𝐹 total represents the total force on a large surface, which is divided into smaller
plane sub-surfaces of area 𝑑𝑠 and depth |𝑧| from the free surface. The tilt angle 𝛽
and angle of attack 𝛾 characterize the orientation and motion of each surface element
of the intruding body (see Fig 5-1).

ෝ𝒗

𝑓𝑥

𝑓𝑧
|z|

Free surface

g
𝛾

𝛽

ෝ𝒏

Figure 5-1: 2D RFT sub-surface characterization: Any moving sub-surface is rep-
resented using a set of two characteristic angles — plate tilt angle (𝛽, green) which
represents the plate orientation (or normal direction, �̂�), and velocity angle (𝛾, or-
ange) which represents the velocity direction (�̂�).

The vector-valued function of angles 𝛼mat = (𝛼mat
𝑥 , 𝛼mat

𝑧 ) represents the force per
unit area per unit depth; this function must be obtained a priori through experiments
or simulations of plate drag and depends on the material properties of the granular
media, the intruder surface interaction, and the value of gravity. Of note, Eq 5.1
assumes no cross-correlation between the forces on different sub-surfaces; only details
local to a surface element determine the force on that element [91]. A comprehensive
comparison of various existing reduced-order methods for modeling granular intru-
sions, including 2D-RFT and a terramechanical model, can be referred from Agarwal
et al. [95].

Our primary aim is to extend RFT to a 3D theory by ultimately adding one
new plate angle, 𝜓 the angle of twist, and a third component of the force. Doing so
involves consideration of a wide number of issues, outlined in Sec 5.4. To aid in the
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endeavor, it helps to note that 2D RFT could be re-expressed as

𝐹 total =

∫︁
surf

𝛼mat(�̂�, �̂�, 𝑔)|𝑧| 𝑑𝑠 . (5.2)

Here, the 𝛼mat function is expressed in terms of three vectors, the outward surface
normal �̂�, velocity direction �̂�, and gravity 𝑔. This more generic way of expressing
2D-RFT will motivate the form chosen for 3D-RFT.

In recent years, it has been shown that plasticity-based PDE models can also
obtain the forms of 2D granular RFT [146]. More recently [108, 109, 17, 95, 16], the
performance of the continuum approach in modeling a variety of granular intrusions
has been demonstrated for wheeled locomotion, impact and penetration, and multi-
body intrusion. Thus, while experimental observations primarily drove the original
RFT discoveries, the availability of faster computational methods, the success of 2D
RFTs, and a need for better real-time 3D granular intrusion methods have driven
the exploration of 3D-RFT. Our work combines the capabilities of the continuum
approach with a few symmetry requirements and DEM data to accurately and effi-
ciently model the physics of 3-dimensional granular intrusion to develop a 3D-RFT
form. We briefly discuss the details of the continuum approach next.

5.3 Theoretical motivator: Continuum modeling

We use the NDPM based continuum modeling discussed in chapter 2 as the primary
theoretical motivator as well as the main reference data generation tool in this work.
For implementing the model, we use the 3D numerical implementation of MPM
developed by Baumgarten and Kamrin [13] for this study which has been successfully
used for modeling complex problems in the past [13, 63]. The constitutive flow
equations representing the material’s separation behavior, shear yield condition, and
tensorial co-directionality, respectively, are shown below:

(𝜌− 𝜌𝑐)𝑃 = 0 and 𝑃 ≥ 0 and 𝜌 ≤ 𝜌𝑐,

�̇�(𝜏 − 𝜇int𝑃 ) = 0 and �̇� ≥ 0 and 𝜏 ≤ 𝜇int𝑃,

𝐷𝑖𝑗/�̇� = 𝜎′
𝑖𝑗/2𝜏 if �̇� > 0 and 𝑃 > 0

where, 𝑖, 𝑗 = 1, 2, 3. In these equations, 𝜎 represents the Cauchy stress tensor and 𝜎′
𝑖𝑗

(= 𝜎𝑖𝑗 + 𝑃𝛿𝑖𝑗) represents the deviatoric part of 𝜎 where 𝑃 (= −𝜎𝑖𝑖/3) represents the
hydrostatic pressure. 𝜏(=

√︁
𝜎′
𝑖𝑗𝜎

′
𝑖𝑗/2) represents the equivalent shear stress on the

system. 𝜇int and 𝜌𝑐 represent the bulk friction coefficient and critical close-packed
density of the granular volume. 𝐷𝑖𝑗(= (𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖)/2) represents the (plastic) flow
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rate tensor, and �̇�(=
√︀

2𝐷𝑖𝑗𝐷𝑖𝑗) represents the equivalent shear rate. We assume
surface friction coefficient 𝜇surf describes the interaction of the granular continuum
with intruder surfaces. We also highlight that in this chapter, we use 𝜇int as
a substitute for 𝜇𝑠, and 𝜇surf as a substitute for 𝜇𝑓 unlike Chapter 2. This
change is meant only for a better understanding of the readers with no
academic/theoretical reason(s).

We verify the accuracy of this implementation against various 3D in-plain out-of-
plane motions to reliably use the data generated by this approach in determining a
3D-RFT. We test this in two scenarios:

In the first test case, we check if the 3D-continuum simulations can regenerate
the experimental variation of force/depth/area on flat plates in submerged granular
beds from Li et al.[93]. This experimental data was also used by Li et al.[93] in
the generation of 2D-RFT form. We use an effective materials density of 𝜌𝑐 = 1450
kg/m3 (loose glass beads, 𝜌𝑔 = 2500 kg/m3, 𝜑𝑐 = 0.58) inline with Li et al.[93]
experiments and an approximate internal friction value for glass beads as 𝜇s = 0.4.
The media-plate surface friction was taken as 𝜇surf = 0.4. The relative values of the
forces from continuum results remarkably match the experimental observations. The
absolute values from continuum results, however, are higher than experiments by a
constant multiplicative factor of ∼ 1.1. A smaller value of 𝜇s for glass beads could
have provided a closer match to the experiments as the graphs are not expected
to change their shape with changing internal friction values [93]. But we do not
attempt the exact calibration as the purpose of the test was to verify the accuracy
of the continuum formulation and implementation. These results establish sufficient
efficacy of the continuum model for plate motions in which the velocity, plate normal,
and gravity or co-planar.

In the second test case, we assess the quantitative accuracy of the continuum
approach in modeling in-plane as well as out-of-plane forces. We consider a study
Maladen et al.[170] which measured the normal and tangential forces on submerged
plates moving horizontally in granular media as a function of plate twist (see Fig
5-3 (top) for angles definition). The material properties are provided in the figure
caption. The continuum results match observations from Maladen et al.[170] well.
The combination of the above two studies establishes the overall accuracy of the
continuum model and its implementation for both in-plane and out-of-plane inputs
and outputs in plate intrusion problems.

5.4 3D-RFT premises

We begin by systematically summarizing the physical assumptions and constraints
we use to arrive at a generic 3D-RFT (the next section will provide further details
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Figure 5-2: Experiment vs Simulations — Qualitative match for in-plane plate mo-
tion: (A)Schematic of plate orientation angle 𝛽 and 𝛾 for in-plane motion study
conducted using 3D simulation setup shown in figure 5-6. (B)Force/area/depth (𝛼)
from Li et al.[93] experiments (top) and continuum simulations(bottom). The plate
configurations are also overlayed on graphs for clarity. The plates had no twist
(𝜓 = 0) in regards to 3D-RFT definitions in these tests. Both the experiments and
the simulations use glass beads with grain density (𝜌𝑔) of 2500 kg/m3 and a packign
farction (𝜑𝑐) of 0.58. We use internal friction value, 𝜇s = 0.4 and surface friction,
𝜇surf = 0.4 for continuum simulations as reported by Li et al.[93]. The colorbar limits
are slightly different between the experiments and the simulations because we do not
attempt exact property calibration (𝜇s and 𝜇surf) for this test case although we keep
them in same the practically expected range.

on how these premises are used). These premises act as the guiding principles for
establishing the form of 3D-RFT and are also useful for understanding the limits of
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Figure 5-3: Experiments vs Continuum modeling: Twisted plates : (A) Schematic
of plate orientations, and (B) variations of normal (red) and tangential (blue) forces
from Maladen et al [170] experiments (∙ marker), their analytical fits to their results
(dotted lines), and continuum simulations (■ marker with solid line). The forces
are normalized by the plate center-depth (|𝑧|) and plate area. Experiments (loosely
packed 3 mm glass particles) as well as simulation use glass beads (𝜌𝑔 = 2500 kg/m3

and 𝜌𝑐 = 0.6) as the granular media. Continuum simulations use 𝜇s = 0.4 and
𝜇surf = 0.27 in accordance with reported experimental data. The original Maladen
et al. [170] results used a twist angle (𝛽𝑑 = 𝜋/2−𝜓) as the 𝑥-axis in their plots. We
have modified the plots to have 𝜓 = 𝜋/2−𝛽𝑑 on 𝑥-axis for simplifying the discussion.

3D-RFT.

1. Premise-1: Localization and de-coupling of forces This hypothesis as-
sumes that the force on any sub-surface of an intruding body is independent
of the motion experienced by any other sub-surface of the body. This is the
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primary order-reduction hypothesis inherent to all RFT’s, e.g. it is used in Eq
5.1.

2. Premise-2: Leading-edge hypothesis This hypothesis assumes that only the
leading edges of a body (surfaces moving ‘into’ and not ’away from’ a granular
volume) experience resistive forces. Mathematically, such surfaces have a pos-
itive dot product (·) between their own surface normals and velocity directions
(𝑣 · �̂� ≥ 0). The hypothesis applies only to non-cohesive media. Section C.5
in the Supporting Information provides evidence in support of this hypothesis
in three dimensions.

3. Premise-3: Neglect of shadowed subsurfaces The ‘no-shadowing’ hypoth-
esis assumes that forces vanish on parts of the surface that satisfy the leading-
edge condition but lie in the immediate wake behind another part of the in-
truder [156]. Such surfaces are more pronounced in intruders with complex
shapes or fine geometric features. A careful implementation (accounting for
this effect) helps with this issue.

4. Premise-4: Validity of the continuum model We hypothesize that the
medium is well-represented by the continuum model shown in Eq 2.3, which is
used to guide the theory for 3D-RFT. This is akin to other advances in RFT
stemming from this same basic continuum model [146, 16]. Consequently, the
resistive force on a plate depends on the same limited set of material parameters
that govern the continuum model: 𝜌𝑐 (the critical density), 𝜇int (the internal
friction), and 𝜇surf (the media-surface friction).

5. Premise-5: Force dependence on material internal friction We assume
that normal forces on a plane surface only depend on the media’s internal
friction (𝜇int). We use extensive data analysis to explore the dependence of re-
sistive forces on 𝜇int. We observe that the normal forces maintain their relative
values (with regards to �̂�, �̂�, �̂�, and 𝜇surf) at a given 𝜇int for a large range of
internal friction (𝜇int = 0.3 − 0.9) (see Fig C-1). Between different 𝜇int, the
normal forces appear to only vary by a multiplicative factor 𝜉𝑛 as discussed in
Sec 5.5.

6. Premise-6: Force dependence on media-intruder surface friction We
assume that normal forces on a plane surface weakly depend on 𝜇surf and tan-
gential forces strongly depend on 𝜇surf. We use a similar analysis as done in
the previous hypothesis to explore the dependence of surface tractions on 𝜇surf.
We observe that the ratios between the magnitudes of tangential and normal
stresses primarily depend on 𝜇surf. We also observe that plate-tangential resis-
tive forces generated at a higher 𝜇surf could be used to generate the tangential
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force for a lower 𝜇surf; the dependences at the lower surface friction can be ob-
tained by limiting the magnitude of the tangential force based on the Coulomb
friction limit at the lower 𝜇surf. Detailed material response graphs in this regard
can be found in Sec C.3 of Supporting Information.

7. Premise-7: Isotropy of the drag force relation Any function providing
the intrusion force on an intruder must obey a symmetry relationship whereby
if the entire problem is rotated by some amount — that is the free-surface,
gravity, intruder orientation/position, and intruder velocity are all rotated the
same amount — then the resistive force must also rotate by this common global
rotation. As we will show, this constraint, which implies the drag force relations
are isotropic functions of their inputs, imposes a rather strong restriction on
the three-dimensional form that 3D-RFT can take.

8. Premise-8: Consistency with lower-dimensional RFT We desire a 3D-
RFT model that collapses back to the previously defined 2D-RFT description
in the appropriate limits. Thus, in-line with the angle-based characterisation
of 2D-RFT by Li et al.[93] (Fig 5-1), we desire to ultimately express 3D-RFT
in terms of similar characteristic angles 𝛽 and 𝛾 and a new twist angle 𝜓
representing the angle between the planes of plate normal and velocity direction
with the vertical.

In addition to the above premises, we will utilize a few operational constraints.
We limit ourselves to quasi-static intruder motion, which assumes the absence of
any inertial effects in the granular volumes. This was also assumed in the original
2D-RFT formulation and lets the force on a sub-surface be deemed independent
of the surface’s speed. More recently, an inertia-sensitive 2D-RFT has also been
proposed and validated [16]. We use a combination of granular inertial number (𝐼)
and Froude Number (𝐹𝑟), to determine the quasi-static conditions in a granular
intrusion system. Low values of 𝐼 and 𝐹𝑟 indicate insignificant micro-inertial and
macro-inertial effects, in gravity-loaded granular intrusion systems. In general, 3D-
RFT formulation can be applied to systems with 𝐼 < 0.1 and 𝐹𝑟 < 0.4. See Appendix
C.1 for details. We also require that intruders are only submerged to a shallow depth.
This comes from limits on the linearity of granular material’s resistance with depth
|𝑧| in a gravity-loaded system and limits us to considering depths only up to a 𝑂(1)
factor of the size of the object being intruded [17, 119]. Lastly, the RFT form assumes
a scale-separation by treating granular media with a local continuum model. The
assumption holds when the intruding object’s length scales are large compared to
grain diameter. RFT is expected to have a limited performance in regions of sharp
corners on intruders where the media begins to show its granular nature and direct
grain-size effects may be important.
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In addition to the above premises, we will utilize a few operational constraints.
We limit ourselves to quasi-static intruder motion, which assumes the absence of
any inertial effects in the system. This was also assumed in the original 2D-RFT
formulation and lets the force on a sub-surface be deemed independent of the sur-
face’s speed. More recently, an inertia-sensitive 2D-RFT has also been proposed and
validated [16]. We also require that intruders are only submerged to a shallow depth.
This comes from limits on the linearity of granular material’s resistance with depth
|𝑧| in a gravity-loaded system and limits us to considering depths only up to a 𝑂(1)
factor of the size of the object being intruded [17, 119]. Lastly, the RFT form as-
sumes a scale-separation by treating granular media with a local continuum model.
The assumption holds when the intruding object’s length scales are large compared
to grain diameter. RFT is expected to have a limited performance in regions of sharp
corners on intruders where the media begins to show its granular nature, and direct
grain-size effects may be important.

5.5 Proposed form of 3D-RFT

In light of Premise 1, we propose a 3D-RFT taking the same form as Eq 5.2 —
the force per area grows proprotional to depth |𝑧| and depends on some vector-
valued function of the input vectors {�̂�, �̂�, 𝑔}, which are now three-dimensional. In
particular, referring to Premise 4, we write

𝛼mat(�̂�, �̂�, 𝑔) = 𝛼(�̂�, �̂�, 𝑔; 𝜌𝑐, 𝜇s, 𝜇surf) . (5.3)

Further, we assume the force per area per depth can be decomposed into normal and
tangential parts with the following property dependences, which align with Premises
5 and 6:

𝛼 = 𝛼𝑛(�̂�, �̂�, 𝑔; 𝜌𝑐, 𝜇s) +𝛼𝑡(�̂�, �̂�, 𝑔; 𝜌𝑐, 𝜇s, 𝜇surf) , (5.4)

where 𝛼𝑛 and 𝛼𝑡 represent normal and tangential contributions to 𝛼. We propose
the following simplifying functional forms

𝛼𝑛 = 𝜌𝑐𝑔𝑓(𝜇s) |𝛼gen
𝑛 (�̂�, �̂�, �̂�)| (−�̂�) (5.5)

𝛼𝑡 = 𝜌𝑐𝑔𝑓(𝜇s)min
(︂
𝜇surf |𝛼gen

𝑛 (�̂�, �̂�, �̂�)|
|𝛼gen

𝑡 (�̂�, �̂�, �̂�)|
, 1

)︂
𝛼gen

𝑡 (�̂�, �̂�, �̂�) . (5.6)

The prefactor 𝜌𝑐𝑔𝑓(𝜇s), which we collectively refer to as 𝜉𝑛, is a media dependent
scaling coefficient reflecting the overall intrusive strength of the system. The presence
of the multiplicative 𝜌𝑐𝑔 factor is required on dimensional grounds [146]. Additionally,
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we find that 𝑓 follows a cubic dependence on 𝜇s (see Fig C-2 in Appendix C for more
details). This dependence is in-line with the observations of many researchers in
the past in simpler vertical intrusions of flat plates in granular volumes (a sub-case
of 3D-RFT)[77]. Section C.2 provides the detailed material response graphs in this
regard.

The generic RFT functions shown with superscript ‘gen’ are labeled as such
because we model them to be approximately universal across all systems. The min
function in the formula for 𝛼𝑡 acts as a cut-off that ensures the ratio of tangential
and normal forces on a plate does not exceed the media-surface friction coefficient
𝜇surf, as per Premise 6.

The largest meaningful value of 𝜇surf is 𝜇surf = 𝜇s, which is the fully-rough limit
wherein the min function is always 1. In this case, we have 𝛼 = 𝜉𝑛𝛼

gen where

𝛼gen ≡ 𝛼gen
𝑛 +𝛼gen

𝑡 . (5.7)

The 3D-RFT model we are proposing is closed upon choosing the scalar-valued func-
tion 𝑓 and the vector valued function 𝛼gen. Upon selection of these two functions,
Eqs 5.5 and 5.6 can be used to determine 𝛼, and hence 𝛼mat, for any choice of 𝜇s

and 𝜇surf.

5.6 Further simplifications

5.6.1 Symmetry constraints

We use symmetry constraints inherent to the drag problem (Premise 7) to the con-
strain the functional form of 𝛼gen. Our strategy is to constrain the function space to
satisfy symmetry constraints ‘by design’ rather than leaving it to chance based on
the choice of fit functions. Moreover, by enforcing the symmetry constraints directly,
we reduce the space of admissible functions, thereby reducing the amount of fitting
that must be done.

Consider a small plate intruder characterized with �̂�, �̂�, 𝑑𝑠, |𝑧|, and 𝑔. For large
𝜇surf, the force on the plate according to RFT is 𝑑𝑓 = 𝜉𝑛𝛼

gen(�̂�, �̂�, 𝑔)|𝑧|𝑑𝑠. If the
entire system is rotated — including the intruder, the granular bed, and gravity —
the resistive force on the intruder must rotate by the same amount. This is because
rotating the entire system should be consistent with a fixed system and a rotation
of the observer. Figure 5-5A visualizes this action. Thus, for any rotation 𝑅, we
expect that 𝑅𝑑𝑓 = 𝜉𝑛𝛼

gen(𝑅�̂�,𝑅�̂�,𝑅�̂�)|𝑧|𝑑𝑠, and thus

𝛼gen(𝑅�̂�,𝑅�̂�,𝑅�̂�) = 𝑅𝛼gen(�̂�, �̂�, �̂�) . (5.8)
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This ‘global rotation constraint’ implies the 𝛼gen is an isotropic functions of its inputs.
Thus, in accord with Isotropic Representation Theory (IRT)[171] the generic function
must have the following specific form:

𝛼gen(�̂�, �̂�, �̂�) = 𝑓1�̂�+ 𝑓2�̂� + 𝑓3�̂� , (5.9)

where 𝑓1, 𝑓2, and 𝑓3 are three mutually-independent arbitrary scalar-valued functions
of coordinate-invariant dot-products between the three directions vectors, that is
𝑓𝑖 = 𝑓𝑖(�̂� · �̂�, �̂� · �̂�, �̂� · �̂�). Equation 5.9 has reduced the problem of fitting 𝛼gen

from determining a vector-valued function of six independent variables (three vectors
with unital constraints) to determining a vector-valued function of three independent
variables (three dot products). Note that the form given in Eqs 5.5-5.6 continues to
satisfy Eq 5.16 and the IRT requirement Eq 5.9. A detailed proof in this regard is
provided in section C.4.

We next introduce the methodology for parametrizing subsurfaces in terms of
three angles to arrive at our ultimate description of 𝛼gen.

5.6.2 Sub-surface characterization

Use of a local coordinate frame

The proposed form of 3D-RFT (Eqs 5.5-5.9) defines the stress-per-depth on a sub-
surface, 𝛼, only using �̂�, �̂�, and �̂� directions (beside material properties). Thus,
to simplify 3D-RFT outputs, we define a local cylindrical coordinate frame at each
sub-surface based on its local velocity (�̂�) and gravity direction (�̂�). We choose the
direction opposite to the gravity (upward in general) as the positive z-direction and
use the horizontal component of �̂� as the positive �̂� direction. The remaining �̂�
direction is chosen as the cross product between �̂� and �̂�. The free-surface is taken
as the reference (𝑧 = 0) for the z-direction.

local 𝑧 − direction : �̂� = −�̂�

local 𝑟 − direction : �̂� =
𝑣 − (𝑣 · �̂�)�̂�
|𝑣 − (𝑣 · �̂�)�̂�|

local 𝜃 − direction : �̂� = �̂� × �̂� (5.10)

When |𝑣− (𝑣 · �̂�)�̂�| is zero (a sub-surface moves up or down), �̂� is set to the direction
of horizontal component of the surface-normal i.e. �̂� = (�̂�− (�̂� · �̂�)�̂�)/|�̂�− (�̂� · �̂�)�̂�|.
Next, in line with Premise 8, we cast the plate orientation and motion in terms of
angles 𝛽, 𝛾, and 𝜓. We also highlight that though the 3D-RFT form obtained in eq
5.9 could have been a valid candidate for 3D-RFT form, the use of {�̂�, �̂�, �̂�} instead
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of {�̂�, �̂�, �̂�} as the co-ordinate basis has numerous advantages. First, the choice
enables expressing system states in terms of charateristic angles {𝛽, 𝛾, 𝜓} which in
turn helps us meet our desire to maintain a consistency of 3D-RFT with 2D-RFT
form (premises-8). Secondly, unlike {�̂�, �̂�, �̂�}, {�̂�, �̂�, �̂�} represent an orthogonal co-
ordinate frame. Use of this choice improves the physical interpretation of the generic
values of 𝛼gen for being mutually orthogonal and thus help making design decisions
based on 3D-RFT easier, if so required.

Sub-surface orientations

We use the sub-surface’s normal direction �̂� to characterize its orientation in the
local coordinate frame. We use two angles, the angle of twist (𝜓 or 𝜓) and the angle
of tilt (𝛽) for this characterization. See figure 5-4B for a visual representation of 𝜓
and 𝛽.
Surface twist angle (𝜓): We define 𝜓 as the azimuthal angle between the 𝑟-axis
and the projection of the surface normal onto the 𝑟𝜃-plane, denoted by �̂�𝑟𝜃.

𝛽 = − cos−1(�̂� · �̂�) if �̂� · �̂� ≥ 0 & �̂� · �̂� ≥ 0

+𝜋 − cos−1(�̂� · �̂�) if �̂� · �̂� ≥ 0 & �̂� · �̂� < 0

cos−1(�̂� · �̂�) if �̂� · �̂� < 0 & �̂� · �̂� ≥ 0

−𝜋 + cos−1(�̂� · �̂�) if �̂� · �̂� < 0 & �̂� · �̂� < 0 (5.11)

Surface tilt angle (𝛽): We define 𝛽 as the polar angle between the 𝑟-axis and
the 𝑟𝜃-plane. To be clear, 𝛽 measures the angle between the 𝑟𝜃-plane and one of
the �̂� and −�̂�, whichever lies in [−𝜋/2, 𝜋/2] range. This choice is not problematic
because at any time, only one of −�̂� and �̂� surfaces experiences resistive forces.
The side experiencing the forces can be identified using the leading edge condition
(�̂� · �̂� ≥ 0) of Premise 2.

𝜓 = tan−1
(︀
(�̂�𝑟𝜃 · �̂�)/(�̂�𝑟𝜃 · �̂�)

)︀
(5.12)

where, �̂�𝑟𝜃 =
�̂�− (�̂� · �̂�)�̂�
|�̂�− (�̂� · �̂�)�̂�|

If |�̂�− (�̂� · �̂�)�̂�| = 0, set 𝜓 = 0 .
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Figure 5-4: 3D-RFT sub-surface characterization: (A) Any moving sub-surface is
represented using a set of 5 system variables: surface normal ( �̂�), area magnitude
(𝑑𝑠), depth (|𝑧|), velocity direction (�̂�), and (�̂�). For further simplification of the
representation, �̂� and �̂� are expressed using (B) three characteristic angles — plate
tilt angle (𝛽, green), plate twist angle (𝜓, yellow), and velocity angle (𝛾, orange), in
the local coordinate frame {�̂�, �̂�, �̂�}. The functional forms of these angles and local
coordinate frame are given in eq 5.10 and 5.18- 5.20.

Velocity direction

The local coordinate frame definitions (Eq 5.10) keep the velocity vector completely
within the 𝑟𝑧-plane. Thus, once {�̂�, �̂�, �̂�} are determined, only one angle is needed
to represent the velocity direction. We call this angle 𝛾 (see Fig 5-4B). We define 𝛾
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as the angle between the velocity direction vector and the local positive 𝑟-axis.

𝛾 = cos−1(�̂� · �̂�) if �̂� · �̂� ≤ 0

− cos−1(�̂� · �̂�) if �̂� · �̂� ≥ 0 (5.13)

In case both �̂� and �̂� align to �̂� (𝛾 = ±𝜋/2 and 𝜓 = 0), set �̂� in global 𝑥-direction.

Based on the above definitions, the variations of each of the system characteristic
angles (𝛽, 𝛾, 𝜓) is restricted to [−𝜋/2, 𝜋/2] for any leading-edge surface. We use these
limits in the generation of reference 3D-RFT data. Mathematical formulas for the
angles in terms of vector components in a fixed cartesian frame are provided in the
Material and Methods section.

We express the final form of 𝛼gen in the local coordinate frame {�̂�, �̂�, �̂�} by
expressing {�̂�, �̂�, �̂�} as:

�̂� = −�̂�, �̂� = cos 𝛾 �̂� − sin 𝛾 �̂�

�̂� = sin 𝛽 cos𝜓 �̂� + sin 𝛽 sin𝜓 �̂� − cos 𝛽 �̂� (5.14)

Substitution of definitions in Eq 5.9 gives the expressions for the 𝑟, 𝜃, and 𝑧 compo-
nents of 𝛼gen as follows:

𝛼gen = 𝛼gen
𝑟 �̂� + 𝛼gen

𝜃 �̂� + 𝛼gen
𝑧 �̂� (5.15)

𝛼gen
𝑟 (𝛽, 𝛾, 𝜓) = 𝑓1 sin 𝛽 cos𝜓 + 𝑓2 cos 𝛾

𝛼gen
𝜃 (𝛽, 𝛾, 𝜓) = 𝑓1 sin 𝛽 sin𝜓

𝛼gen
𝑧 (𝛽, 𝛾, 𝜓) = −𝑓1 cos 𝛽 − 𝑓2 sin 𝛾 − 𝑓3 (5.16)

where, 𝑓1 = 𝑓1(𝑥1, 𝑥2, 𝑥3), 𝑓2 = 𝑓2(𝑥1, 𝑥2, 𝑥3), and 𝑓3 = 𝑓3(𝑥1, 𝑥2, 𝑥3) are three func-
tions of {𝑥1, 𝑥2, 𝑥3} defined as:

𝑥1 = �̂� · �̂� = sin 𝛾, 𝑥2 = �̂� · �̂� = cos 𝛽,

𝑥3 = �̂� · �̂� = cos𝜓 cos 𝛾 sin 𝛽 + sin 𝛾 cos 𝛽 . (5.17)

The 3D-RFT model is closed upon fitting the three functions 𝑓𝑖(𝑥1, 𝑥2, 𝑥3). Note
that by building the functional relationships for 𝛼gen

𝑟 , 𝛼gen
𝜃 , and 𝛼gen

𝑧 from IRT (Eq
5.16), the model automatically satisfies many easy-to-observe local constraints re-
gardless of the choice of the 𝑓𝑖’s. These constraints include (i) ‘plate twist symmetry’
(figure 5-5B), which requires that the sub-surface forces in the 𝑟- and 𝑧-direction
should be even functions of plate twist (𝜓), and that force in the 𝜃-direction should
be an odd function of 𝜓; (ii) ‘plate tilt symmetry’ (figure 5-5C) which requires that
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Figure 5-5: 3D-RFT symmetry constraints : (A) Global rotational constraint requir-
ing the drag force to be an isotropic function of the plate normal, motion direction,
and gravity direction. Some consequences of this constraint are plate twist symme-
try, plate tilt symmetry, and vertical motion symmtry. (B) A special case of plate
twist symmetry: 𝐹𝜃(𝛽, 𝛾, 𝜓 = 0) = 0. (C) A special case of plate tilt symmetry:
𝐹𝜃(𝛽 = 0, 𝛾, 𝜓) = 0, and (D) Vertical motion symmetry : (𝛽, 𝛾 = ±𝜋/2, 𝜓 = 0) →
(𝛽, 𝛾 = ±𝜋/2, 𝜓 = 𝛿) causes (𝐹𝑟, 𝐹𝜃 = 0, 𝐹𝑧) → (𝐹𝑟 cos 𝛿, 𝐹𝑟 sin 𝛿, 𝐹𝑧). Violet, red,
and blue arrows show force, velocity, and surface-normal direction, respectively.

when the plate faces upwards or downwards (𝛽 = 0), the sub-surface force in the 𝜃-
direction should vanish, the force magnitude should depend only on 𝛾, and the twist
angle 𝜓 should have no influence on the force; and (iii) ‘vertical motion symmetry’
(figure 5-5D), which requires that as 𝛾 → ±𝜋/2 (approaching an upward or down-
ward motion) any azimuthal rotation (changing 𝜓 at constant 𝛽) of a sub-surface
should rotate the resultant force on the sub-surface by the same angle. We use third
degree polynomials fit 𝑓1, 𝑓2, and 𝑓3 (see table C.3 and table C.4 in Appendix C).

5.7 Reference data and the form of 3D-RFT
We use a large number of combinations (∼ 3000) of material properties (𝜌𝑐, 𝜇s, 𝜇surf)
and 3D-RFT reference variables (𝛽, 𝛾, 𝜓) to generate continuum modeling-based ref-
erence data for evaluating the 3D-RFT form. In regards to the material properties
we use five material internal friction values (𝜇s = [0.3, 0.4, 0.5, 0.7, 0.9]) with two
values of surface friction (𝜇surf) in each case. For 𝜇s = 0.4 we use 3 instead of 2 𝜇surf

103



101

100

10−1

10−2

E
q

. 
p

la
st

ic
 s

tr
ai

n

|z|

0.90 m

0
.6

0
 m

0.100

0.050

0.025

0.000

V
el

o
ci

ty
 m

ag
 [

m
/s

]

Front 

View

Top View

Plate

Intruder

ො𝑥

Ƹ𝑧
ො𝑦

0.12

0.08

0.04

0.00

D
is

p
la

ce
m

en
t 

m
ag

 [
m

]

(A)

(C)

(B)

(D)

ො𝑥

Ƹ𝑧
ො𝑦

Figure 5-6: Reference data collection for 3D-RFT : (A) We use a thin plate
(0.105m×0.105m×0.015m) intrusion setup as shown in the schematic for reference
data collection for 3D-RFT. We use material point method (MPM) based continuum
modeling for data collection. We run 13 combinations of plate tilt angle (𝛽 = −𝜋/2 :
𝜋/6 : 𝜋/2 rad), 13 combinations of velocity direction angle (𝛾 = −𝜋/2 : 𝜋/6 : 𝜋/2
rad), and 7 combinations of plate twist angle (𝜓 = 0 : 𝜋/6 : 𝜋/2. (B) material flow,
(C)displacement magnitude, and (D)equivalent plastic strain magnitude variation
from one of the test setups. Material properties are provided in Appendix-I

values. For each of the 11 combinations of 𝜇s and 𝜇surf, we conduct plate intrusions
at 7 combinations of plate tilt angle (𝛽 = −𝜋/2 : 𝜋/6 : 𝜋/2 rad), 7 combinations
of velocity direction angle (𝛾 = −𝜋/2 : 𝜋/6 : 𝜋/2 rad), and 4 combinations of plate
twist angle (𝜓 = 0 : 𝜋/6 : 𝜋/2). For the {𝜇s = 0.40, 𝜇surf = 0.15}, we use 13 com-
binations of 𝛽 (𝜋/2 : 𝜋/6 : 𝜋/2 rad), 13 combinations of 𝛾 (−𝜋/2 : 𝜋/6 : 𝜋/2 rad),
and 4 combinations of 𝜓 (0 : 𝜋/6 : 𝜋/2). Additionally, we conduct plate intrusion
simulations at {𝜇s = 0.2, 𝜇surf = 0.2} and {𝜇s = 0.1, 𝜇surf = 0.1} at 𝜓 = 0 to evaluate
𝜉𝑛 at 𝜇s = 0.1 and 0.2. We do not explore 𝜓 in [−𝜋/2 : 0] range for the reference
data as 𝛼𝑟, 𝛼𝑧, and 𝛼𝜃 are known to be even, even, and odd (resp.) in 𝜓 from ‘plate
twist symmetry’. The polynomial fits for 𝑓1, 𝑓2, and𝑓3 are provided in the Appendix
C (Table C.3 and Table C.4).

The polynomial fits for 𝑓1, 𝑓2, and𝑓3 are provided in the Appendix C (Table C.3
and table C.4). Figure 5-6 show the simulation setup used for the data collection.
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While both the 𝛽 and the 𝛾 angles are varied over the interval [−𝜋/2, 𝜋/2], 𝜓 was
varied only in [0, 𝜋/2] taking advantage of ‘plate twist symmetry’ discussed earlier.

𝜓

↓

0

𝜋/6

𝜋/3

𝜋/2

−α𝑟
gen

-0.4 0.0 0.4

α𝜃
gen

-0.3 0.0 0.3

α𝑧
gen

-1.0 0.0 1.0

Figure 5-7: Sample 3D-RFT fittings : Reference normalized forces (𝐹/𝐴|𝑧|𝜉𝑛)
and functional fittings (right) for plate intrusions at various plate twists (𝜓 =
[0, 𝜋/6, 𝜋/3, 𝜋/2] rad), plate inclinations (𝛽 = −𝜋/2 : 𝜋/6 : 𝜋/2 rad), and veloc-
ity directions (𝛾 = −𝜋/2 : 𝜋/6 : 𝜋/2 rad) for a material with 𝜇s = 0.4, 𝜌𝑐 = 3000
kg/m3, and 𝜇surf = 0.15. The reference data is normalized with 𝜉𝑛 = 0.92 × 106

N/m3.

Figure 5-7 shows an example of 3D-RFT fittings aginst reference data. Odd
columns in the figure show the data obtained using continuum simulations as a
function of 𝛽 and 𝛾 at four 𝜓 values. The material properties were 𝜇s = 0.4, 𝜌𝑐 = 3000
kg/m3, and 𝜇surf = 0.15. Corresponding 3D-RFT fittings are plotted on the even
columns. We find the values of scaling coefficient 𝜉𝑛 to be 0.92× 106 N/m3 for this
material. While the eq 5.16 represents the most generic form of 3D-RFT derived
using systems constraints, the choice of 𝑓1,2,3{𝑥1, 𝑥2, 𝑥3} decides the complexity and
accuracy of 3D-RFT form. All the results presented in this work use 3rd degree
polynomial fits in {𝑥1, 𝑥2, 𝑥3} (Table C.3) for 𝑓1, 𝑓2, and𝑓3. Higher order polynomials
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which better fit the reference data could be obtained using higher degree polynomial
fits. We provide one such form in Appendix C (Table C.4). The performance of
3D-RFT does not changes significantly between 3rd and 4th degree polynomial fits.
The latter form fits the trends of |𝛼𝑡|/|𝛼𝑛| better but has inconsequencial effects on
3D-RFT predictions for the test cases used in this study.

The 3D-RFT model we propose is summarized by Eqs 5.2-5.7, with 𝑓 fit as
shown in Fig C-2, and with 𝛼gen expressed using Eqs 5.14-5.16 in terms of directions
{�̂�, �̂�, �̂�} and angles {𝛽, 𝛾, 𝜓} as fit functions shown in Fig 5-6. To numerically
implement the model, we discretize the intruder surface into small plate elements
and determine {𝛽, 𝛾, 𝜓} and {�̂�, �̂�} for each element. The model then provides the
force on each element that is on the leading edge of the intruder. A step-by-step
implementation strategy for 3D-RFT is given in section 5.8.

5.8 Step-by-step 3D-RFT implementation

We use an explicit iterative scheme to implement 3D-RFT in this study. The strat-
egy primarily consists three parts — (1) discretizing the intruder surface into small
sub-surfaces, (2) finding the sub-surface forces using sub-surface orientation angles
(𝛽 and 𝜓), velocity angle (𝛾), area (𝑑𝑠), and depth from the free surface (|𝑧|), and (3)
summing over all sub-surfaces to find the net resistive force and moment response.
A step-by-step implementation of the strategy is provided below:

Step 1: Discretize the intruder surface into smal plane sub-surface elements. We
use the open-source software, ‘Blender’ (version 2.91) for modeling and discretizing
various intruder geometries in our study (using .wrl format).

Step 2: Calculate the velocity direction vector �̂�, surface normal �̂�, and depth
from the free surface |𝑧| for each sub-surface. And repeat step 3-11 for each sub-
surface.

Step 3: Check if �̂� · �̂� ≥ 0 (sub-surface is a ‘leading edge’) and 𝑧 < 0 (sub-surface
is submerged in the media). If both the conditions are met, follow step 4-11. If they
are not, set the sub-surface resistive force to zero and consider the next sub-surface.

Step 4: Find local coordinate frame {�̂�, �̂�, �̂�} using eq 5.10.

Step 5: Find RFT characteristic angles (𝛽, 𝛾, 𝜓) using 𝑣, �̂�, and local coordinate
frame {�̂�, �̂�, �̂�} as follows:

106



Find the surface characteristic angle 𝛽 as :

𝛽 = − cos−1(�̂� · �̂�) if �̂� · �̂� ≥ 0 & �̂� · �̂� ≥ 0

+𝜋 − cos−1(�̂� · �̂�) if �̂� · �̂� ≥ 0 & �̂� · �̂� < 0

cos−1(�̂� · �̂�) if �̂� · �̂� < 0 & �̂� · �̂� ≥ 0

−𝜋 + cos−1(�̂� · �̂�) if �̂� · �̂� < 0 & �̂� · �̂� < 0 (5.18)

Remember that this 𝛽 corresponds to only ‘leading edges’ as non ‘leading-edge’ sub-
surface never reach this step.

Find the velocity characteristic angle 𝛾 as :

𝛾 = cos−1(�̂� · �̂�) if �̂� · �̂� ≤ 0

− cos−1(�̂� · �̂�) if �̂� · �̂� ≥ 0 (5.19)

Find the surface characteristic angle 𝜓 as :

𝜓 = tan−1
(︀
(�̂�𝑟𝜃 · �̂�)/(�̂�𝑟𝜃 · �̂�)

)︀
(5.20)

where, �̂�𝑟𝜃 =
�̂�− (�̂� · �̂�)�̂�
|�̂�− (�̂� · �̂�)�̂�|

If |�̂� − (�̂� · �̂�)�̂�| = 0, set 𝜓 = 0 . In case both �̂� and �̂� align to �̂� (𝛾 = ±𝜋/2 and
𝜓 = 0), set �̂� in global 𝑥-direction.

Step 6: Calculate {𝑥1, 𝑥2, 𝑥3} using Eq 5.17 and calculate 𝑓1, 𝑓2, 𝑓3 using table
C.3 (or table C.4 ).

Step 7: Calculate the values of {𝛼gen
𝑟 , 𝛼gen

𝜃 , 𝛼gen
𝑧 } using Eq 5.16 and table C.3.

Step 8: Estimate the media specific scaling factor 𝜉𝑛 using expected functional
form of 𝜉𝑛 from section C.2 and Fig C-2 of the Supporting Information if the media
effective density (𝜌𝑐), gravity magnitude (𝑔), and media internal friction coefficient
(𝜇int) are known. Alternatively, obtain 𝜉𝑛 from vertical plate intrusion experiments
(intrusion of a thin flat plate of area 𝑑𝑠 at 𝛽 = 0, 𝜓 = 0, and 𝛾 = 𝜋/2) using the
following formula:

𝜉𝑛 =
𝐹vertical

𝛼gen
𝑧

(︀
𝛽 = 0, 𝛾 = 𝜋/2, 𝜓 = 0

)︀
× 𝑑𝑠× |𝑧|

(5.21)
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where, |𝑧| corresponds to the average depth of the plate from the free surface at
which the force is measured.

Step 9: Calculate the system specific 𝛼𝑛 and 𝛼𝑡 in the local coordinate frame
using Eq 5.5-5.6 and add them up (Eq 5.4) to get 𝛼.

Step 10: Calculate {𝛼𝑥, 𝛼𝑦, 𝛼𝑧} using Eq 5.15 by substituting triad {�̂�, �̂�, �̂�} from
Eq 5.10.

Step 11: Calculate the net resistive force on the sub-surface by multiplying the
triad {𝛼𝑥, 𝛼𝑦, 𝛼𝑧} with sub-surface depth (|𝑧𝑖|), and area (𝑑𝑠𝑖)

Step 12: Sum up the forces on all the sub-surfaces to find the net force and moment
on the intruder using locality and additivity of granular resistive forces.
Once the net resistive force on the intruder is known, one can use momentum balance
equations to further model the intruder motion. Convergence studies are also done
to determine the discretization.

5.9 Verification studies: Using continuum modeling

We first verify the accuracy of the proposed form of 3D-RFT by comparing its pre-
dictions for ten arbitrary intruding objects to full continuum model solutions of the
same intrusions. We use the material properties 𝜇int = 0.4, 𝜌𝑐 = 3000 kg/m3, and
𝜇surf = 0.4 for these cases. The intruder shapes include (1)a 5 cm radius sphere, (2)
an ellipsoid with [7.5, 4.5, 4.5] cm semi-axes (x,y,z), (3) a 7.5 cm edge cube rotated
by 𝜋/4 radian along the 𝑧-axis passing through its center from the initial alignment
to the cartesian coordinate frame, (4) a 7.5 cm cube sequencially rotated by 𝜋/3
and 𝜋/4 radians along the 𝑦-axis and the 𝑧-axis passing through its center from the
initial alignment to the cartesian coordinate frame, (5) a 7.5 cm cube sequentially
rotated by 𝜋/6 and 𝜋/3 radians along 𝑦-axis and 𝑧-axis passing through its center
respectively from its initial alignment to cartesian coordinate frame, (6) an iscosceles
right angle prism with 7.5 cm equal sides and 10.5 cm width, (7) a quarter ellipsoid
with [7.5, 4.5, 4.5] cm semi-axes (𝑥 > 0 and 𝑦 > 0), (7) a iscosceles right angle prism
with equal sides of 10.5 cm and 7.5 cm width, (9) an half-ellipsoid with [7.5, 4.5, 4.5]
cm semi-axes (𝑦 > 0), and (10) a monkey shape from the open-source 3D computer
graphics software ‘Blender’ at a scale factor of 0.075 and facing 𝜋/4 rad from the
positive 𝑥-direction in 𝑥𝑦-plane. A representation of the objects and their dimensions
are provided in Fig 5-8 and its caption. The object length scales are kept to be 7 cm
in all the cases, and the objects are submerged to an initial depth of 27 cm (vertical
distance between the free surface and the geometric center of the shape). The ob-
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Figure 5-8: 3D-RFT Verification studies 1-10 : Variation of different force compo-
nents (𝐹𝑥: yellow, 𝐹𝑦: orange, and 𝐹𝑧: blue) during motions of various rigid objects
(intruders) obtained from continuum modeling (‘o’ markers) and 3D-RFT (dashed
lines) at various velocity directions (�̂�𝜃). All the studies were conducted at a ve-
locity magnitude of 0.1 m/s. 𝜃 represents the angle between �̂�𝜃 and the positive
x-axis in clockwise direction. All the velocities completely lie in 𝑥 − 𝑧 plane. A
pictorial representation of each intruder is provided in the corresponding sub-figure.
The continuum modeling simulations use a effective material density ( 𝜌𝑐 = 𝜑𝑐 × 𝜌𝑔)
of 3000 kg/m3, an internal friction (𝜇s) of 0.4, and surface friction (𝜇surf) of 0.4. All
the objects were submerged to an initial center-depth of 27 cm.

jects are moved at a speed of 0.1 m/s in different directions in the 𝑥𝑧-plane. These
directions are characterized using 𝜃, which represents the angle between a velocity
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direction (�̂�𝜃) and the positive 𝑥-axis in a clockwise direction (same as 𝛾 definition
for a plate element). Negative 𝜃 represents upward motion, positive 𝜃 represents
downward motion, and 𝜃 = 0 represents horizontal motion along 𝑥-axis. The vari-
ations of net-force (𝐹𝑥, 𝐹𝑦, and 𝐹𝑧) with 𝜃 are plotted in figure 5-8. We expect no
micro-inertial effects in these test cases as we use a rate-independent constitutive law
for modeling reference solutions. We find the 𝐹𝑟 ≈ 0.12 (𝐿 ≈ 0.07m, 𝑣 = 0.1m/s).
Thus, 3D-RFT is a valid approach for modeling these cases. 3D-RFT agrees with the
continuum solutions well in modeling all the intrusion test scenarios considered in Fig
5-8. The matches are better in some cases than others. Objects with sharp corners
generally show weaker fits to those with smoother shapes. This could be because
sharp corners are difficult to represent with our material point method. Similarly,
symmetric objects show better fits than asymmetric objects.

5.10 Verification studies: Using detailed DEM mod-
eling

We further verify the performance of 3D-RFT with two DEM studies. In these
studies, we measure net moment, net force, as well as resistive force distribution on
bodies intruding into granular volumes with simultaneous rotation and translation
velocities. We use a 50/50 split of 3 mm and 3.4 mm diameter (𝑑) grains with a
grain density of 2470 kg/m3 and the granular volumes had an effective bulk density
of ∼ 1410 kg/m3 (𝜑 = 0.57) in both the DEM studies. We determine the internal
coefficient of friction 𝜇s as 0.21 using a simple shear simulation setup. Section C.6
of Appendix C provides more details of the simple shear test setup and detailed
material properties. We use a scaling coefficient (𝜉𝑛) value of 0.136 × 106 N/m3 for
equivalent 3D-RFT studies based on the relations between 𝜉𝑛/𝜌𝑐𝑔 and 𝜇s in figure
C-2. See Table C.1 and section C.2 for more details.

Cylinder Drill
In this test, we model simultaneous rotation and translation (drilling) of a solid
cylindrical (diameter= 0.05 m, length=0.14 m) intruder along 𝑧-axis in a granular
volume. The setup consists of approximately 6×105 particles in a (100𝑑×100𝑑×70𝑑)
sized granular bed. The setup dimensions and setup schematic are provided in figure
5-9. We find 𝐼 ≈ 0.01 and 𝐹𝑟 ≈ 0.14 (𝐿 ≈ 0.05m, 𝜔 = 4𝜋 rad/s, 𝑣intruder = 0.1m/s)
for this case. Thus, 3D-RFT is a valid approach for modeling this system. The figure
also shows the variations of forces and moments on the intruder over time from DEM
studies and 3D-RFT modeling. In addition, the figure shows the variation of stress
over the intruder shape from DEM and 3D-RFT. All reported components (net force
and moments, as well as stress distributions) show a strong match between the two
approaches.
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Figure 5-9: DEM based 3D-RFT verification: Cylinder drill : (A) A snapshot of the
cylinder drill setup where a 5cm diameter and 14cm length cylinder was simulta-
neously rotated (𝜔 = 4𝜋rad/s, clockwise) and translated (𝑣 = 0.1m/s, downwards)
along 𝑧-axis. The grains are colored with velocity magnitudes. The simulation do-
main consisted ∼ 6 × 105 particle (50/50 split of 3 mm and 3.4 mm diameter (𝑑)
grains) spread over 100𝑑 × 100𝑑 × 70𝑑 physical space. (B) Variation of net force
(𝐹 , left) and moment (𝑀 , right) components (𝑥: yellow, 𝑦: orange, and 𝑧: blue)
from DEM (solid lines) and 3D-RFT (dotted lines) . (C) Variation of various force
commponets from DEM (Top) and 3D-RFT (Bottom) at a 10cm depth below the
free surface (𝑡 = 1𝑠). The DEM material properties are provided in table C.2 of the
section C.6.

Bunny Drill
In this test, we model the drilling motion of a Stanford Bunny [172] shaped rigid
intruder in a granular volume. The shape is an excellent example of a complex
asymmetric 3D object, unlike the previous geometrically-simple solid cylinder shape,
for testing the performance of 3D-RFT in modeling complex intruders. The granular
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Figure 5-10: DEM based 3D-RFT verification: Bunny drill : (A) A snapshot of the
Stanford-Bunny drill setup where a 10cm high stanford-bunny was simultaneously
rotated (𝜔 = 4𝜋rad/s, clockwise) and translated (𝑣 = 0.1m/s, downwards) along
𝑧-axis. The grains are colored with velocity magnitudes. The simulation domain
consisted ∼ 2.1× 106 particle (50/50 split of 3 mm and 3.4 mm diameter (𝑑) grains)
spread over 150𝑑 × 150𝑑 × 88𝑑 physical space. (B) Variation of net force (𝐹 , left)
and moment (𝑀 , right) components (𝑥: yellow, 𝑦: orange, and 𝑧: blue) from DEM
(solid lines) and 3D-RFT (dotted lines). (C) Variation of various force commponets
from DEM (Top) and 3D-RFT (Bottom) at a 6cm bunny-center-depth below the
free surface. The DEM material properties are provided in table C.2 of the section
C.6..

bed consists of approximately 2.1× 106 particles spread over a (150𝑑× 150𝑑× 88𝑑)
sized domain. The bunny shape was slightly modified from the standard shape — the
shape was proportionally scaled in such a way that the bunny height measures 0.1 m,
and the bunny base was flattened to make the base a plane surface without an inward
extrusion. We find 𝐼 ≈ 0.007 and 𝐹𝑟 ≈ 0.10 (𝐿 ≈ 0.10m, 𝜔 = 4𝜋 rad/s, 𝑣intruder =
0.1m/s) for this case. Thus, 3D-RFT is a valid approach for modeling this system.
Figure 5-10 shows the simulation setup where the grains are colored with velocity
magnitudes. Figure 5-10 also shows the variation of stresses over the intruder shape
from DEM and 3D-RFT. All the reported components (net force and moments, as
well as stress distributions) show a strong match between the two approaches.
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5.11 Conclusion
3D-RFT is an important step towards developing a generic real-time modeling tech-
nique capable of modeling granular intrusion of arbitrarily shaped objects over a
large range of low and high-speed scenarios in diverse materials and environments.
Until this work, RFT has shown great potential to model the motion of arbitrary
objects in the plane strain conditions at high and low speeds. We have proposed
an extension of RFT to three dimensions in a fashion consistent with a continuum
description of the material and symmetry constraints. The accuracy of the proposed
3D-RFT was demonstrated against a variety of full-field intrusion simulations, both
continuum and DEM. The most immediate opportunity to expand 3D-RFT would be
to combine 3D-RFT with Dynamic RFT [16] to build a high-speed three-dimensional
RFT (3D-DRFT). Effects of multibody intrusions [125, 17], density variations [136],
inertial and non-inertial velocity effects [128, 164, 16], cohesion [173], and inclines
[174] on the resistive forces experienced by bodies intruding into granular volumes
are among other aspects for further exploration toward the ultimate goal of a generic
and fast granular intrusion modeling technique for potential use in modeling terrady-
namical motions[175], modeling granular impact system [41, 176], efficient locomotor
designing [177] and many other similar applications. This work also presents a sys-
tematic approach towards developing reduced-order models in other similar systems
with a combination of mathematical analysis and experiments/simulation-based data
collection.
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Chapter 6

Conclusion, impact, and future
directions

6.1 Conclusion

In this thesis, we have worked on developing reduced-order modeling methods for
modeling a variety of granular intrusion systems that are commonly seen in real-life
situations. Such methods are of great interest in applications requiring limited in-
formation from granular intrusion systems. One of the biggest applications of such
methods lies in the field of terramechanics for optimizing the locomotion of vehicles
on off-road loose soil terrain on earth and beyond. To achieve this goal, we first
explored the origins of granular resistive forces on rigid bodies intruding into the
granular volumes as a function of the body, media, and their interaction properties.
Once we understand these origins, we attempted to enhance pre-existing reduced-
order approaches to model a large variety of granular intrusions.

To understand the origins of granular resistive forces, we used continuum mod-
eling as our primary analysis tool. The continuum description of the granular vol-
umes provided numerous advantages over the commonly used particle modeling ap-
proach(DEM) for developing reduced-order models. First, the continuum approach
provided a computationally cheaper alternative to DEM, which was useful for gen-
erating a large amount of reference data and thereby developing an empirical under-
standing of such systems. Second, the method provided a meso-scale characterization
of the systems instead of a micro-scale characterization that DEM provides. This
meso-scale characterization was more useful than micro-scale characterization for de-
veloping macro-scale reduced-order methods. And last, though granular constitutive
models were limited by the amount of physics included in their functional forms, the
shortcoming worked to our advantage in understanding systems physics. Fine control
over the ingredients of the constitutive laws provided us with a systematic approach
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for correlating the constitutive law ingredients with the physical phenomena at hand.
And thus, separating the origins of forces became easier.

Drawing from the cases we study in this thesis, we concluded that when applied
with appropriate implementation methods, continuum modeling can model a large
variety of granular intrusion problems with fairly simple and basic constitutive mod-
els. We published these results in the form of journal publications for the granular
community, which can greatly benefit from a larger adoption of the continuum mod-
eling approach for modeling granular media. We also hope that the Matlab-based
applications developed in this thesis help new researchers get started with this ap-
proach. No doubt, there are limitations to what continuum modeling can model
due to its continuum representation of discrete grains and its dependence on the
sufficiency of physics included in constitutive models to capture the phenomenon at
hand. Thus, an in-depth analysis of the systems, before modeling them with this
approach, is indeed quintessential for its use in an application. Advanced methods
such as hybrid DEM-continuum models, two-phase models, etc., should be used if
the system dynamics demands it.

We build upon the insights we gain from continuum approaches and modify an
existing empirical approach, 2D-RFT, for modeling various granular intrusions in
nearly real-time. We develop two enhanced versions of RFT, namely 2D-Dynamic
RFT, which enables the use of 2D-RFT in high-speed intrusions, and 3D-RFT, which
extends 2D-RFT to three dimensions, a crucial step in improving the adoption of
RFT to in real-life applications. With multiple verifications against results from
literature, experiments, and continuum and DEM simulations, we verify the accuracy
of these forms and find an excellent match between the predictions and reference
results.

6.2 Impact

This thesis work has led to follwing journal publications which the readers can refer
for more details:

[1] Agarwal, Shashank, Carmine Senatore, Tingnan Zhang, Mark Kingsbury, Karl
Iagnemma, Daniel I. Goldman, and Ken Kamrin. "Modeling of the interaction of
rigid wheels with dry granular media." Journal of Terramechanics 85 (2019): 1-14.

[2] Schiebel, Perrin E., Henry C. Astley, Jennifer M. Rieser, Shashank Agarwal,
Christian Hubicki, Alex M. Hubbard, Kelimar Diaz, Joseph R. Mendelson III, Ken
Kamrin, and Daniel I. Goldman. "Mitigating memory effects during undulatory lo-
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comotion on hysteretic materials." Elife 9 (2020): e51412.

[3] Agarwal, Shashank, Andras Karsai, Daniel I. Goldman, and Ken Kamrin.
"Efficacy of simple continuum models for diverse granular intrusions." Soft Matter
17, no. 30 (2021): 7196-7209.

[4] Agarwal, Shashank, Andras Karsai, Daniel I. Goldman, and Ken Kamrin.
"Surprising simplicity in the modeling of dynamic granular intrusion." Science Ad-
vances 7, no. 17 (2021): eabe0631.

[5] Agarwal, Shashank, Daniel I. Goldman, and Ken Kamrin. "Towards real-
time modeling of arbitrary three-dimensional granular intrusion " (In preparation,
Chapter 5)

6.3 Future directions

Though our work has advanced RFT, numerous avenues remain to be explored for
reaching the ultimate goal of developing an all-terrain, all-speed, generic RFT. We
discuss a few essential avenues in this regard next:

1. 3D Dynamic RFT: As discussed in chapter 5’s conclusion, this is the im-
mediate step in RFT extension. DRFT and 3D-RFT, proposed in this work,
could be combined to develop a three dimensional dynamic resistive force the-
ory (3D-DRFT) for three-dimensional high-speed intrusions.

2. Dynamic inertial correction in DRFT: DRFT leaves the 𝑂(1) dynamic
inertial correction prefactor to be determined on a case-to-case basis using pre-
existing data, rather than providing an exact functional form for it. Many
studies in the past have explored such prefactors during vertical intrusions
with a variety of intruder shapes, but none have given a generic form of 𝑂(1)
prefactor. A characterization of this inertial prefactor for various shapes and
directions would be of great value to the community besides improving DRFT
form.

3. Shadowing effects and multibody intrusions: Section 2.4.2 of Chapter 2
briefly touches upon the effects of multibody intrusions on resistive forces expe-
rienced by intruders. We observe that the presence of other bodies in a granular
volume generally restricts the media flow, increasing the resistive forces on in-
truders. But the length scales and magnitudes of these increments remain to
be characterized. Additionally, the shadowing effect, a reduction in forces ex-
perienced by a surface due to the presence of another co-moving surface ahead

117



of it, also remains weakly explored. A detailed investigating of these topics
could greatly improve RFT. Besides, both the topics have their independent
applications in decreasing/increasing tractions on granular intruders/anchors.

4. RFTs for density sensitive materials: Section 2.4.3 of Chapter 2 briefly
touches upon the effects of density variations on granular resistive forces. The
current RFTs assume a constant media state in granular volume which may
not be true in many natural terrains. In this regard, a detailed study on
characterizing the role of variable media density on resistive forces over time
and space would be very interesting and useful for RFT. These effects could
also add system-dependent length scales (as seen in Section 2.4.3) to RFT,
which is missing in its current forms.

5. RFTs for cohesive materials: Cohesion remains the least explored but
another major limitation of RFT. The current forms of RFTs are limited to
non-cohesive granular volumes, but the naturally occurring terrains such as
mud and snow often show cohesion. The terramechanical models in this regard
outperform RFTs and work for other classes of materials such as snow and
mud. Exploring the existence of RFTs in cohesive granular volumes would also
be very useful.

6. RFTs for inclines: Similar to cohesion-less and constant density assumptions,
RFTs also assume granular intrusions to occur near flat granular surfaces where
the material slopes are insignificant. Characterizing the effects of incline angles
on RFTs and changes required to enable it to model motion on inclines (possibly
by changes in effective depths) would also be another vital addition to RFTs.

7. RFTs for flexible intruders: With increasing advancements in the field of
soft robotics, it would be exciting to see the performance of RFT in modeling
flexible intruders in granular volumes and what strategies could be adopted to
incorporate intruder elasticity in RFT implementations.

Final thoughts
RFT presents a beautiful example of the simplicities hiding behind the complexities
of diverse natural systems. We hope our extensive work on developing better versions
of RFTs and the existence of numerous opportunities to expand them will motivate
future researchers to work on expanding its capabilities. We also hope that the
methods and techniques developed in this thesis will be useful for future researchers
in carrying out their research and systematically developing reduced-order models in
granular and other media.
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Appendix A

Additional resources on continuum
modeling of granular intruions in
Chapter 2

A.1 Movies for visualizing intrusion studies

In addition to the figures shown in this chapter, readers can refer to movies showing
the variation of various system variables across granular intrusion domains from the
link below. A representative image of each movie is provided below.
https://pubs.rsc.org/en/content/articlelanding/2021/SM/d1sm00130b.

Movie S1: Variation of equivalent plastic strain and equivalent plastic strain
rates over time for cylinders at depths |z| of [10,30,50,70] mm left to right. Cylinder
had a diameter of 4 mm and other material properties are provided in section 2.4.1
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Movie S2: Variation of equivalent plastic strain over time during two-plate
granular intrusions for equal plates (𝐿 = 0.1 m, top) and unequal plates (𝐿1 = 0.05
m and 𝐿2 = 0.15 m, bottom) at multiple plate separations. The separation values
are mentioned in the movie. Other material properties are provided in section 2.4.2

Movie S3: Material flow encountered during plowing of granular media in
experiments (left) and simulations (right) in under-compacted (top) and over-
compacted (botom) media. The flows clearly show continuous and descret formation
of shear flow zones in under- and over-compacted media. More details of simulations
and experiments are provided in section 2.4.3
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Movie S4: Variations of vertical components of velocities, equivalent plastic
strain rate, packing fraction in granular volume, and net upward force on intruder
at various initial packing fractions (𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙) in a material with 𝜓𝑐 = 0.60 over time.
Other material properties are identical across four simulations and are provided in
section 2.4.4
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A.2 Open source app for continuum modeling
We also developed an open-source, Matlab-based implementation of NDPM with
continuum modeling as a part of this work. The implementation models various
arbitrary granular intrusions and granular flows imported as images in the Matlab-
based interactive app. Figure A-1 shows a snapshot of the app interface. The app
allows for constrained as well as free intrusion scenarios. A link to download the
application is provided below. Readers can find more details at the provided link.

https://www.mathworks.com/matlabcentral/fileexchange/75928-granular-intrusion-continuum-
modeling-matlab-2018a?s_tid=srchtitle

Figure A-1: Interface of Matlab based Continuum modeling application for mod-
eling arbitrary intrusions of arbitrary shaped bodies. The app also allows modeling
granular in variety of granular flow situations. The app-interface allows for inputing
system details in form of image files and uses implementation discussed in Dunatunga
and Kamrin [108]
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Appendix B

Supplementary Information on
DRFT

B.1 Verification of DRFT in a dynamic inertial cor-
rection dominated scenario

To further verify the robustness of DRFT, we simulate a smaller version of the
grousered wheel with continuum modeling as well as DRFT. Doing so also demon-
strates the use of scaling analysis in characterizing the free surface profiles for any
given class of intruders, using grousered wheels as the test case. The new wheel is
similar in shape and composition to the one used in the original study (details in
Table 4.1) but is halved in its spatial dimensions. The granular media is kept the
same. The shape and other dimensionless variables {𝜌𝑤ℎ𝑒𝑒𝑙/𝜌𝑐, 𝜇𝑠, ℎ𝑔/𝐷,𝑁} are kept
the same between the two wheels, and hence we assume that the free surface function
𝜓 takes the same form as the reference case for the larger wheel, 𝜓 = 𝑟𝜔2/𝑔. With
this, we can perform DRFT to predict the dynamics of the small wheel.

We plot the results from the earlier larger wheel case (in blue) as well as the new
scaled-down wheel case results (in black) in Figure S1. We use continuum modeling
for verifying the accuracy of the results. The new wheel data from DRFT (black
dashed lines with ’×’ markers) matches the reference continuum solution with good
accuracy, verifying the robustness of DRFT.
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Figure B-1: DRFT performance check for wheels of different dimensions:
Variation of (A) Translation velocity, and (B) Sinkage from experiments (blue data
with * markers), continuum modeling (thin dashed line with filled ∙ markers) and
DRFT modeling (thick dashed line with × markers) with respect to angular velocity,
𝜔. Two differently sized wheels are used. The blue color represents the data corre-
sponding to the wheel used in the original study, and the black color corresponds
to the data from the new smaller wheel. (C) and (D) show the spatial variation of
equivalent plastic strain rate in smaller and larger wheel cases at 90 and 60 RPM
resp.

B.2 Theoretical derivation of expected linearity be-
tween angular and translation velocity from qua-
sistatic RFT

In the following analysis, we present a general proof of linearity between the steady-
state translation and the angular velocities for round bodies undergoing free loco-
motion based on quasistatic RFT. For a rigid body (with fixed mass and shape),
if there exists a quasistatic RFT solution with steady-state (𝑉𝑐𝑚, 𝜔𝑐𝑚), then there
exists another steady-state solution (𝜆𝑉𝑐𝑚, 𝜆𝜔𝑐𝑚) for any value of 𝜆, having the same
sinkage, |𝑧|.

Proof: As per quasistatic RFT, the resistive force per area on any subsurface
element of the body can be given as, t = t(𝛽, 𝛾, 𝑧), where 𝛽 represents the orientation
of the subsurface, 𝛾 represents the local velocity direction of the subsurface, and |𝑧| is
subsurface depth. Thus, every subsurface experiences a resistive force as a function
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of its position, orientation, and velocity direction. At a steady-state, the sum of these
forces in the horizontal direction equals zero, and in the vertical direction, the sum
balances the weight of the locomoting body. Any change in the velocity magnitude is
not expected to change these forces since the resistive forces have no dependence on
the magnitude of the velocity, only the direction. A multiplicative increase/decrease
in the translational and angular velocity of the wheel by the same constant factor
(𝜆) will not affect the velocity direction at any subsurface of the body for a given
orientation. i.e. 𝛾𝑛𝑒𝑤 = 𝛾𝑜𝑙𝑑 for any subsurface at a given orientation. Thus, at a
given sinkage and orientation, the forces on any subsurface do not change for any
value of 𝜆, leading to no variation in the net force on the locomoting body. Thus,
because the forces at any orientation in state (𝑉𝑐𝑚, 𝜔𝑐𝑚) result in a steady-state,
forces at any orientation in state (𝜆𝑉𝑐𝑚, 𝜆𝜔𝑐𝑚) will also result in a steady-state.
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Figure B-2: DRFT in horizontal intrusion of plates at different oblique
angles: (A) Schematic of intrusion scenarios. Experiments (from [165]) use a 30× 30
mm2 thin rigid plate moving with speed 𝑣 partially-submerged to different depths
in a dry granular media of effective bulk density, 𝜌 = 1450kg/m3 (𝜌𝑔 = 2500 kg/m3;
𝜑=0.58). The plate is rotated to an angle 𝜃 with respect to the velocity direction in
the 𝑥𝑦 (horizontal) plane. (B)-(C) Comparisons of experimental measurements of the
normal drag component compared to results of the “static-plus-𝜌𝑣2” drag model, 𝑡𝑛 =
𝑡static(𝜃)𝐻(−𝑧)|𝑧| + 𝜆𝜌𝑣2𝑛, where 𝑡𝑛 and 𝑣𝑛 are the normal components of the force-
per-area and velocity, respectively. We use 𝜆 = 1.1 in all the fittings in this figure and
extract 𝑡static(𝜃) from the lowest-speed experimental data. (B) Experimental data
(colored circles) and model results (dashed lines) for normal drag force on plates
at a constant angle 𝜃 = 90𝑜 for three depths ([6, 8, 12] mm, measured from free-
surface to plate bottom). Black arrows show the direction of increasing depths. (C)
Experimental data (filled circle) and model results (dashed lines) for normal drag
force on plates with velocities [50, 250, 500, 750] mm/s (shown by different colors) at
various 𝜃 and two depths ([8, 12] mm). Black arrows show the direction of increasing
velocities at each depth.
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Figure B-3: DRFT in downward intrusion: (A) Schematic and normalised force
variation for vertical intrusion based on Umbanhowar and Goldman [161] sphere in-
trusion data at critical state packing fraction (at a fixed depth). Umbanhowar and
Goldman generated this data by measuring the acceleration of spheres impacting the
granular beds at fixed depths being impacted at various different initial velocities.
Triangles (pink) represent experimental data, and solid line (black) represents the
𝜆𝜌𝑣2 fit to the data. We find 𝜆 = 1.4 to be an appropriate value. (B) Data (red cir-
cles) and (C) visualization of equivalent 2D plane-strain continuum simulations for
vertical plate intrusions at low-speed (left) and high-speed (right). The continuum
data in (B) can be qualitatively compared to experiments in (A) but not quantita-
tively because the two utilize different intruder shapes and out-of-plane conditions.
For (B) 0.16 m plates were intruded in a granular volume of density 2500 kg/m3 and
internal friction 𝜇 = 0.62; 𝜆 = 2.8 was used for DRFT fittings (blue dotted lines).
The MPM plots in (C) visualize the material flow field around the intruding body.
These results indicate the dominance of the dynamic inertial correction in the drag
forces. The reason is that similar to horizontal plate intrusions, which in the plane-
strain approximation often have only one bulk flow region (creating a Coulomb-wedge
structure [94]), the vertical plate intrusions also create two non-interacting bulk flow
regions to either side. The free surface regions where flow trajectories emanating
terminate remain at the same height on both sides, in both the low and high-speed
intrusions. Thus, the resistive force response encounters minimal contribution from
dynamic structural correction; the dynamic inertial correction dominates.

This analysis holds only when the long-time motion of the locomotor is truly
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steady — for example, a non-round wheel has a (wobbly) limit cycle as its long-time
behavior but not a steady state. In the latter case, the analysis still approximately
holds if the velocity variations of the wheel do not result in accelerations comparable
to 𝑔. Accelerations of the order of 𝑔 add a new timescale to the problem, completely
changing the problem’s dynamics. Similarly, linearity in the locomoting body can
break down if the characteristic time scale associated with a flexible body is compa-
rable to the characteristic time scale

√︀
𝐿/𝑔. The above hypothesis is also bound to

fail if any contributions used in modeling the system are dependent on the velocity
magnitude.

B.3 Momentum balance approach for granular in-
trusion

The essential reason that a velocity-squared additive pressure contribution seems a
sensible way to account for macro-inertia can be understood through analysis of the
momentum balance equations. In a reference frame moving with an intruder, balance
of momentum at steady state is expressed as

0 = 𝜌𝑔𝑖 +
3∑︁

𝑗=1

𝜕

𝜕𝑥𝑗

(︀
𝜎𝑖𝑗(x)− 𝜌𝑣𝑖(x)𝑣𝑗(x)

)︀
. (S1)

Consider a reference case in the quasistatic limit, having slow intruder velocity, 𝑉 𝑅
𝑖 ,

in the lab frame. Let 𝜎𝑅
𝑖𝑗(x) and 𝑣𝑅𝑖 (x) represent the corresponding quasistatic stress

and flow solutions in the intruder frame. Thus,

0 = 𝜌𝑔𝑖 +
3∑︁

𝑗=1

𝜕

𝜕𝑥𝑗
𝜎𝑅
𝑖𝑗(x). (S2)

Let us suppose the velocity of the intruder is scaled up to a non-negligible value
𝑉𝑖 = 𝐶 𝑉 𝑅

𝑖 , causing the resultant flow field to exit the quasistatic limit. Consider the
candidate intruder-frame flow field 𝑣𝑖(x) = 𝐶𝑣𝑅𝑖 (x) and stress field 𝜎𝑖𝑗(x) = 𝜎𝑅

𝑖𝑗(x)+
𝜌(𝑣𝑖(x)𝑣𝑗(x)−𝑉𝑖𝑉𝑗). The proposed flow field assumes similarity of flow between slow
and high-speed cases, and the stress field properly reduces to the quasistatic solution
when 𝐶 is small. If we suppose the far-field flow vanishes in the lab frame, these
candidate fields comprise a valid solution in that they necessarily satisfy equation S1,
by design, while preserving the far-field stress condition from 𝜎𝑅

𝑖𝑗 . Also, kinematic
constraints such as incompressibility are guaranteed to transfer from the quasistatic
solution to the high-speed solution. In the intruder frame, the velocity field vanishes
at the leading intruder-grain interface, so evaluating the stress at a point x𝐼 on the
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intruder interface gives 𝜎𝑖𝑗(x𝐼) = 𝜎𝑅
𝑖𝑗(x

𝐼) − 𝜌𝑉𝑖𝑉𝑗. It can thus be seen that, under
the assumptions made herein, the presence of macro-inertia adds an extra pressure
at the intruder-grain interface that goes as density times intruder-velocity squared.

We emphasize the approximate nature of this analysis. First, even if {𝜎𝑅
𝑖𝑗 , 𝑣

𝑅
𝑖 }

exactly satisfies the frictional-plastic constitutive relation, the proposed solution
{𝜎𝑖𝑗, 𝑣𝑖} may not. In the main text, we add an additional order-one factor of 𝜆
ahead of the 𝜌𝑣2 term to account for deviations caused by this potential mismatch.
Also, importantly, this analysis has assumed the fast flow is a scaled version of the
slow flow, which can be an overreaching approximation, particularly in cases where
dynamic structural corrections modify the granular geometry.

B.4 Movies for better understanding high-speed lo-
comotions

In addition to the figures shown in this chapter, readers can refer to movies showing
high and low-speed locomotion in a variety of cases using experiments and continuum
simulations from the following link.
https://www.science.org/doi/10.1126/sciadv.abe0631.

Movie S1: Variation of equivalent plastic strain in 2D plane-strain continuum sim-
ulations for horizontal plate intrusion at both low (0.04 m/s, left) and high speeds
(0.64 m/s, right). The videos show that the material flow profile (a Coulomb-wedge
structure) ahead of the intruding plates, where most of the drag originates, does not
change between low and high-speed intrusions. As a result, the free surface height,
the material flow geometry, and the shape around the intruders remain similar re-
gardless of intrusion rate. Thus, the resistive force response encounters minimal
contribution from the dynamic structural correction, and the speed dependence is
dominated by the dynamic inertial correction.
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Movie S2: Variation of equivalent plastic strain in 2D plane-strain continuum sim-
ulations for vertical plate intrusion at low-speed (left) and high-speed (right). The
videos show that similar to horizontal intrusions, two independent Coulomb-wedge
type structures are formed during the vertical intrusion of plates. The free surface
height, the material flow geometry, and the shape around the intruders remain simi-
lar regardless of intrusion rate. Thus, the resistive force response encounters minimal
contribution from the dynamic structural correction, but has a significant dynamic
inertial correction.

Movie S3: Sample experimental runs of free wheel locomotion: Lateral motion of
the wheel is restricted with a double rail and bearing system. The granular material
is reset to a loose packing state at the beginning of each trial by air fluidization of
the granular bed. The details of the setup, along with the Grousered wheel and the
granular media used in the experiments, are provided in section 4.2, Table 4.1, and
Table 4.2. Photo Credit: Andras Karsai, Crab Lab, Georgia Institute of Technology.
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Movie S4: Visualization of material flow using continuum modeling at 30 RPM and 60
RPM wheel locomotion: The color bars indicate the variation of velocity magnitude
in the granular media domain. The material flow clearly indicates an increase in the
size of the flow zone with increasing rotation rates.

Movie S5: A PIV visualization of 30 RPM (left) and 60 RPM (right) wheel loco-
motion experiment. The movies show similar flows to continuum modeling movie.
Additionally, an increasing flow zone size with increasing rotation rate (30 to 60
RPM), similar to those observed in the continuum modeling (Movie S4), are ob-
served in experiments. Photo Credit: Andras Karsai, Crab Lab, Georgia Institute
of Technology.
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Movie S7: Visualization of material flow during wheel locomotion at [10,30,60,90]
RPM. We plot equivalent plastic strain rate from continuum modeling, a scalar
measure of the size of plastic strain. For a better visualization, all the wheels start
at the same rotation rate of 30 RPM in the beginning of the simulations and switch
to [10,30,60,90] RPM after a fixed finite horizontal motion, which is synchronized to
be the beginning of the video.
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Movie S8: Visualization of material flow during 4-flap runner locomotion at
[20,50,100,200] RPM. We plot equivalent plastic strain from the continuum model,
a scalar measure of the size of plastic strain. As expected, the flowing regions are
separated by flap intrusions and thus do not interact enough to cause an effective free
surface change for the material trajectories. Thus, only a dynamic inertial update
was used in the DRFT modeling of this case.
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Appendix C

Supporting Information on 3D-RFT

C.1 Evaluation of quasi-static conditions in a sys-
tem for deciding the applicability of 3D-RFT in
it

We use following definitions of inertial number (𝐼) and Froude number (𝐹𝑟) for
evaluating applicability of 3D-RFT in modeling granular resistive forces in a system.

𝐼 = �̇�/
√︁
𝑃/𝜌𝑔𝑑2) 𝐹𝑟 = 𝑣/

√︀
𝑔𝐿

where �̇� represents the shear rate, 𝑃 represents hydro-static pressure, 𝜌𝑔 represents
the material grain density, 𝑑 represents the material grain diameter, 𝑣 represents
the characteristic velocity, 𝐿 represents the characteristic length, and 𝑔 represents
acceleration due to gravity in a granular system. If a system has both the angular
and translational velocities, 𝑣 is taken as 𝑣 = max(𝑣intruder, 𝐿𝜔/2𝜋), where 𝑣intruder

and 𝜔 represent the intruder translation and rotation speeds, respectively.
We approximate �̇� = 𝑣/𝐿 and 𝑃 = 𝜌𝑐𝑔𝐿. Where 𝜌𝑐 represents the critical material
density in the medium. We get following approximations for 𝐼 and 𝐹𝑟 using these
definitions:

𝐼 = (𝑣/𝐿)/
√︁

(𝜌𝑐𝑔𝐿)/𝜌𝑔𝑑2 =

√︃
𝑣2𝜌𝑔𝑑2

𝜌𝑐𝑔𝐿3
≈

√︃
𝑣2𝑑2

𝑔𝐿3

𝐹𝑟 = 𝑣/
√︀
𝑔𝐿 𝑣 = max(𝑣intruder, 𝐿𝜔/2𝜋)

We recommend an upper limit of 0.1 on 𝐼 and an upper limit of 0.4 on 𝐹𝑟. While
the former condition avoids the collision (micro-inertial) character of granular flows
[178], the latter avoids intrusions with significant macro-inertial effects in granular
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volumes that cannot be captured by proposed 3D-RFT. The later suggestion is based
on the work of Agarwal et al. [16], who observed in-significant macro-inertial effects
in granular locomotions at 𝜔/𝜔0 < 0.4 where the ratio 𝜔/𝜔0 represents the Froude
number (𝐹𝑟) as 𝜔/𝜔0 = (2𝜋𝑣/𝐿)/(2𝜋

√︀
𝐿/𝑔) = 𝑣/

√
𝑔𝐿. This limit is also inline with

the work of Sunday et al. [179] who observed depth-dependent quasi-static forces to
dominate over inertial forces, during granular intrusions at 𝐹𝑟 < 1.5.

C.2 Internal friction (𝜇int) dependence of 3D-RFT

We explore the dependence of 3D-RFT forces on material internal friction by con-
ducting plate intrusions simulations for five different values of (𝜇int) at two values
of surface friction (𝜇surf) each (except 𝜇int = 0.4 for which we explore 3 values of
(𝜇surf)). To better understand the trends in variations of 𝛼, we only consider nor-
mal component of 𝛼 i.e. 𝛼𝑛. Figure C-1 shows scaled values of 𝛼𝑛 scaled by the
scaling coefficient 𝜉𝑛. These plots also conclude that 𝜉𝑛 primarily depends on 𝜇int

(in addition to its linear dependence of 𝜌𝑐 and 𝑔, 𝜉𝑛 = 𝜌𝑐𝑔𝑓(𝜇int)). Thus, figure
C-2 shows the variation of 𝜉𝑛/𝜌𝑐𝑔 with 𝜇int. This figure uses two additional values
of 𝜇int— 0.1 and 0.2. We conducted additional simulations at limited 𝜇surf and 𝜓 for
these 𝜇int’s for better understandings the 𝜉𝑛 vs 𝜇int trends, as discussed in Materials
and Methods section. We find superlinear dependence of 𝜉𝑛 on 𝜇int which was also
observed by researchers [77] in the past. Figure C-2 can be used for interpreting the
value of 𝜉𝑛 from 𝜌𝑐, , and 𝜇int (or angle of repose, 𝜃 = tan−1(𝜇int)) of a non-cohesive
granular media. Exact values of 𝜉𝑛 and 𝜇int corresponding to figure C-2 are given in
table C.1.

Table C.1: Variation of 𝜉𝑛 with 𝜇int at 𝜌𝑐 = 3000 kg/m3

𝜇int 𝜃repose[
𝑜] 𝜉𝑛[×106N/m3]

0.0 0𝑜 0.0
0.1 5.7𝑜 0.13
0.2 11.3𝑜 0.28
0.3 16.7𝑜 0.51
0.4 21.8𝑜 0.92
0.5 26.5𝑜 1.58
0.7 35.0𝑜 5.32
0.9 42.0𝑜 12.32
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Figure C-1: Variation of 𝛼𝑛 with 𝜇int: Variation of normal component of
stress/depth (scaled by 𝜉𝑛) for various combinations of 𝜇int and 𝜇surf. The varia-
tions of normalized 𝜉𝑛 with 𝜇int are plotted in figure C-2. Corresponding values of
𝜇int, 𝜇surf, and 𝜉𝑛 are written at the top of each column. The granular material had
an effective density of (𝜌𝑐) 3000 kg/m3 in the cases.

Figure C-2: Variation of 𝜉𝑛 with material properties : Variation of normalized scal-
ing coefficient 𝜉𝑛 (normalized with density 𝜌𝑐 and gravity 𝑔) with material internal
coefficient of friction (𝜇int) on (A)linear and (B) logarithmic scale. The cubic fitting
(red dotted lines) is 𝜉𝑓𝑖𝑡𝑛 = 𝜌𝑐𝑔(894𝜇

3
int − 386𝜇2

int + 89𝜇int). Corresponding values are
given in table C.1.

C.3 Surface friction (𝜇surf) dependence of 3D-RFT

Similar to 𝜇int, we explore the dependence of 3D-RFT forces on material-body sur-
face friction (𝜇surf) by conducting plate intrusions at different combinations of (𝜇int)
and (𝜇surf). To better understand the trends, we consider the ratio of normal and
tangential component of 𝛼 i.e. |𝛼𝑡|/|𝛼𝑛|. Figure C-3 shows scaled values of 𝛼𝑛

scaled by the scaling coefficient 𝜉𝑛 discussed in the previous section and shown in
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figure C-2. The plots conclude the ratio |𝛼𝑡|/|𝛼𝑛| largely remains independent of 𝜇int

as the graphs remain largely identical for same values of 𝜇surf at different values of
𝜇int. We also conclude that the graphs at low values of 𝜇surf are derivable for higher
values of 𝜇surf by cutting off the values from high 𝜇surf at the 𝜇surf at which new
graph is required. Eq 5.6 incorporates this concept into the final form of 3D-RFT.
The proposed generic 3D-RFT graphs in this study correspond to 𝜇surf = 0.9.
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Figure C-3: Variation of |𝛼𝑡|/|𝛼𝑛| with material properties : Variation of ratio
of magnitude of 𝛼 in tangential and normal directions. The ratio never exceeds the
individual 𝜇surf values in each case due to Coulomb friction condition. Corresponding
values of 𝜇int, 𝜇surf, and 𝜉𝑛 are written at the top of each column. The granular
material had an effective density of (𝜌𝑐) 3000 kg/m3 in the cases.

C.4 Proof that Coulomb friction cut-off step does
not affects the satisfaction of rotational sym-
metry by 3D-RFT form

.

To prove that eq 5.5-5.6 also follow IRT, we subtitute the form of 𝛼 from eq 5.4-5.6
in eq 5.9:
𝛼(�̂�, �̂�, 𝑔; 𝜌𝑐, 𝜇int, 𝜇surf) = 𝛼(𝑅�̂�,𝑅�̂�,𝑅𝑔; 𝜌𝑐, 𝜇int, 𝜇surf)
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where, 𝑅 is a unit rotation matrix( |𝑅| = 1, 𝑅𝑅𝑇 = 1) as follows:

𝛼(𝑅�̂�,𝑅�̂�,𝑅𝑔; 𝜌𝑐, 𝜇int, 𝜇surf)

= 𝜌𝑐𝑔𝑓(𝜇int)|𝛼gen
𝑛 (𝑅�̂�,𝑅�̂�,𝑅�̂�)|(�̂�)

+ 𝜌𝑐𝑔𝑓(𝜇int)min
(︂
𝜇surf |𝛼gen

𝑛 (𝑅�̂�,𝑅�̂�,𝑅�̂�)|
|𝛼gen

𝑡 (𝑅�̂�,𝑅�̂�,𝑅�̂�)|
, 1

)︂
𝛼gen

𝑡 (𝑅�̂�,𝑅�̂�,𝑅�̂�)

The scalar value of 𝛼𝑟, 𝛼𝜃, 𝛼𝑧 only depend on the ‘dot products ’ of �̂�, 𝑣, and 𝑔 which
does not changes upon unit rotation of all the vectors by same rotation 𝑅. Thus, the
rotation 𝑅 only rotates the local cordinate frame {𝑟,𝜃, 𝑧} to {𝑅𝑟,𝑅𝜃,𝑅𝑧} without
changing 𝛼𝑟, 𝛼𝜃, 𝛼𝑧 values. And

𝛼gen
𝑡 (𝑅�̂�,𝑅�̂�,𝑅�̂�) = 𝑅𝛼gen

𝑡 (�̂�, �̂�, �̂�), and
𝛼gen

𝑛 (𝑅�̂�,𝑅�̂�,𝑅�̂�) = 𝑅𝛼gen
𝑛 (�̂�, �̂�, �̂�)

Substituting the values,

𝛼(𝑅�̂�,𝑅�̂�,𝑅𝑔; 𝜌𝑐, 𝜇int, 𝜇surf)

= 𝜌𝑐𝑔𝑓(𝜇int)|𝑅||𝛼gen
𝑛 (�̂�, �̂�, �̂�)|(𝑅�̂�)

+ 𝜌𝑐𝑔𝑓(𝜇int)min
(︂
𝜇surf |𝑅||𝛼gen

𝑛 (�̂�, �̂�, �̂�)|
|𝑅||𝛼gen

𝑡 (�̂�, �̂�, �̂�)|
, 1

)︂
𝑅𝛼gen

𝑡 (�̂�, �̂�, �̂�)

= 𝑅𝛼(�̂�, �̂�, 𝑔; 𝜌𝑐, 𝜇int, 𝜇surf) (C.1)

Thus, 3D-RFT form 5.5-5.6 continue to satisfy IRT requirements and thus satisfy all
the constraints implied on it from Global rotational constraint.

C.5 Verification of leading edge hypothesis in 3D-
RFT

We verify the applicability of the ‘leading-edge hypothesis’ (mentioned in Premise-
2 ) during three-dimensional plate motion. To verify the hypothesis, we plot the
variations of forces on the front and the back surface–nodes of the plate geometry
used for generating the reference 3D-RFT graphs. Figure C-5 shows the variations
of force magnitudes on the two surfaces the plates used for modeling intrusions. We
plot these results for six plate and velocity configurations. The sides are color-coded
in blue and red. In the first two cases, the front-face (in red) acts as the leading
edge. In the next two cases, the back-face (in blue) acts as the leading edge. In all
such cases, we measure leading edges forces, as non-leading edge forces are negligible
in comparison to leading-edge forces. In the last two cases, both the faces experience
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Table C.2: DEM material properties
Grain diameter (𝑑) 50/50 split: 3 mm / 3.4 mm
Grain density (𝜌𝑔) 2470 kg/m3

Packing effciency (𝜑) ∼ 0.59
Contact model Hookean contact model
Elastic modulus, 𝐸 7× 106 N/m2

Poisson’s ratio, 𝜈 0.45
Coefficient of restitution, 𝑒 0.88
Grain-grain friction, 𝜇𝑔−𝑔 0.05
Grain-surface friction, 𝜇𝑔−𝑠 0.4
Characteristic velocity 2

equal force magnitudes with (equal tangential forces but equal and opposite normal
forces). The last two cases correspond to the slicing motion of the surfaces. We take
average force magnitudes for making RFT plots in such cases. We observed similar
behavior in other plate and velocity configurations.

C.6 DEM simulations
In this section, we discuss the details of DEM systems used for verifications studies.
We use DEM based LIGGGHTS package for modeling grains. We use a 50/50 split of
3.0 mm and 3.4 mm diameter (𝑑) grains in all the DEM simulations. More material
properties are given in table C.2. We use a simple shear simulation setup to determine
the internal friction of the bulk of the granular volume. The setup consisted of a
100𝑑× 50𝑑× 90𝑑 granular bed in plane-strain condition and was sheared with rigid
plates on the top and the bottom as shown in figure C-4. For uniform shearing at
constant pressure, a uniformly distributed constant force (F𝑡𝑜𝑝) was applied on the
top plate whose motion was restricted to 𝑧-direction. An identical bottom plate was
moved in positive 𝑥-direction to create the quasi-static simple shear condition.

C.7 Radius of curvature corrections to Bunny drill
As discussed in Premise-6, the RFT form assumes a scale separation by treating
granular media as a continua. This assumption limits the performance of 3D-RFT
when objects have sharp corners. While characterizing these effects would be a work
for the future, we attempt to incorporate these effects at the most basic level in bunny
drill simulations. This is important in the Bunny drill case because many features
of the bunny shape have competing length scales to grain size in this DEM-based
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Figure C-4: Simple shear DEM setup: (A)2D schematic and (B)3D snapshot of
the DEM simulation setup used for finding the internal friction coefficient of DEM
particles used for verification studies. (C) Variation of the ratio of shear stess (𝜏 =
F𝑠ℎ𝑒𝑎𝑟/𝐴) and pressure (𝑃 = 𝐹𝑡𝑜𝑝/𝐴) as a function of time from DEM (solid blue
line) and fitted estimate (red dotted line). Material properties are provided in table
C.2

Figure C-5: Leading edge hypothesis verification:: Variation of the magnitude of
forces on the two sides of thin plates during granular intrusions. The sides are color-
coded in blue and red. The yellow arrows show front-face normals, and the violet
arrow shows the velocity direction. We plot six combinations of plate configurations
and velocity directions. In the first two cases, the front-face (in red) acts as the
leading edge. In the next two cases, the back-face (in blue) acts as the leading edge.
And in the last two cases, both the faces experience equal force magnitudes with
(equal tangential forces but equal and opposite normal forces). The last two cases
correspond to the slicing motion of the surfaces. We take average force magnitudes
for making RFT plots in such cases.

study. The grain size could not be reduced further in this study due to limitations
on computational resources. Thus, we use a simple Radius of curvature (𝑅𝑐) based
identification of low-𝑅𝑐 regions of this intruder. We assume that any surface with a
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Figure C-6: Variation of radius of curvature (𝑅𝑐) on Bunny shape: The colormap
on the right shows the variations. 𝑅𝑐 cut-off for active surfaces was set at 0.0048 m.

vertex with a radius of curvature lesser than 2 times the average grain radius will not
experience any resistive force from the granular volumes. 𝑅𝑐 was calculated using
the discrete principle curvature formula from Hao Li’s lecture notes [180]. Figure C-
6 shows the radius of curvature estimation across the bunny shape used in this study.
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Table C.3: 𝑓1, 𝑓2, 𝑓3 3rd degree polynomial definitions
𝑓𝑖 =

∑︀
𝑘 𝑐

𝑘
𝑖 𝑇𝑘 = 𝑐1𝑖 + 𝑐2𝑖𝑥1 + .......+ 𝑐19𝑖 𝑥1𝑥

2
3 + 𝑐20𝑖 𝑥1𝑥2𝑥3(︀

𝑥1 = sin 𝛾, 𝑥2 = cos 𝛽, and 𝑥3 = cos𝜓 cos 𝛾 sin(𝛽) + sin 𝛾 cos 𝛽
)︀

𝑘 𝑇𝑘 𝑐𝑘1 𝑐𝑘2 𝑐𝑘3
1 1 0.00212 −0.06796 −0.02634

2 𝑥1 −0.02320 −0.10941 −0.03436

3 𝑥2 −0.20890 0.04725 0.45256

4 𝑥3 −0.43083 −0.06914 0.00835

5 𝑥21 −0.00259 −0.05835 0.02553

6 𝑥22 0.48872 −0.65880 −1.31290

7 𝑥23 −0.00415 −0.11985 −0.05532

8 𝑥1𝑥2 0.07204 −0.25739 0.06790

9 𝑥2𝑥3 −0.02750 −0.26834 −0.16404

10 𝑥3𝑥1 −0.08772 0.02692 0.02287

11 𝑥31 0.01992 −0.00736 0.02927

12 𝑥32 −0.45961 0.63758 0.95406

13 𝑥33 0.40799 0.08997 −0.00131

14 𝑥1𝑥
2
2 −0.10107 0.21069 −0.11028

15 𝑥2𝑥
2
1 −0.06576 0.04748 0.01487

16 𝑥2𝑥
2
3 0.05664 0.20406 −0.02730

17 𝑥3𝑥
2
2 −0.09269 0.18519 0.10911

18 𝑥3𝑥
2
1 0.01892 0.04934 −0.04097

19 𝑥1𝑥
2
3 0.01033 0.13527 0.07881

20 𝑥1𝑥2𝑥3 0.15120 −0.33207 −0.27519
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Table C.4: 𝑓1, 𝑓2, and 𝑓3 function definitions with 4th degree polynomials
𝑓𝑖 =

∑︀
𝑘 𝑐

𝑘
𝑖 𝑇𝑘 = 𝑐1𝑖 + 𝑐2𝑖𝑥1 + .......+ 𝑐19𝑖 𝑥1𝑥

2
3 + 𝑐35𝑖 𝑥1𝑥2𝑥

2
3(︀

𝑥1 = sin 𝛾, 𝑥2 = cos 𝛽, and 𝑥3 = cos𝜓 cos 𝛾 sin(𝛽) + sin 𝛾 cos 𝛽
)︀

𝑘 .5 𝑇𝑘 𝑐𝑘1 𝑐𝑘2 𝑐𝑘3
1 1 0.00412 −0.06300 0.00892

2 𝑥1 −0.02136 −0.00336 −0.03143

3 𝑥2 −0.21785 −1.32520 −0.54392

4 𝑥3 −0.54991 0.00048 0.01939

5 𝑥21 −0.03285 −0.11116 −0.11861

6 𝑥22 0.87718 5.36790 2.03150

7 𝑥23 −0.00286 0.07983 −0.13326

8 𝑥1𝑥2 −0.38369 0.08966 0.47638

9 𝑥2𝑥3 0.48733 −0.11872 −0.35913

10 𝑥3𝑥1 −0.16974 0.09029 0.13672

11 𝑥31 0.01923 −0.10024 0.01495

12 𝑥32 −1.82110 −7.53640 −2.44120

13 𝑥33 0.71170 −0.03393 −0.01711

14 𝑥1𝑥
2
2 1.03580 −0.48634 −1.14260

15 𝑥2𝑥
2
1 −0.06899 0.07279 0.20511

16 𝑥2𝑥
2
3 0.01924 0.15943 0.01142

17 𝑥3𝑥
2
2 −1.58070 −0.45871 0.52431

18 𝑥3𝑥
2
1 0.07461 0.10419 −0.03870

19 𝑥1𝑥
2
3 0.04814 −0.09860 0.10985

20 𝑥1𝑥2𝑥3 0.05565 −0.21270 −0.06686

21 𝑥41 0.02884 −0.02951 0.11721

22 𝑥44 1.10100 3.35300 0.90658

23 𝑥43 0.03094 −0.45255 0.03809

24 𝑥31𝑥2 0.24807 0.07722 −0.25744

25 𝑥31𝑥3 0.05269 −0.07405 −0.26752

26 𝑥32𝑥1 −0.72304 0.32683 0.67218

27 𝑥32𝑥3 1.15170 0.39561 −0.31197

28 𝑥33𝑥1 0.20145 −0.13273 −0.11735

29 𝑥33𝑥2 −0.09466 0.15479 0.06806

30 𝑥21𝑥
2
2 0.12995 0.08606 −0.12606

31 𝑥21𝑥
2
3 −0.06983 0.19846 0.18106

32 𝑥22𝑥
2
3 0.09628 0.29711 −0.02546

33 𝑥21𝑥2𝑥3 −0.57151 −0.07567 0.54032

34 𝑥1𝑥
2
2𝑥3 −0.24520 −0.05941 −0.06226

35 𝑥1𝑥2𝑥
3
3 0.03159 0.14051 −0.33556
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𝝁𝐢𝐧𝐭 = 𝟎. 𝟒

𝜉𝑛 = 0.92𝑒6 N/m3

𝜇surf = 0.15 𝜇surf = 0.25 𝜇surf = 0.40

𝝁𝐢𝐧𝐭 = 𝟎. 𝟑

𝜉𝑛 = 0.51𝑒6 N/m3

𝜇surf = 0.15 𝜇surf = 0.30

𝝁𝐢𝐧𝐭 = 𝟎. 𝟓

𝜉𝑛 = 1.58𝑒6 N/m3

𝜇surf = 0.25 𝜇surf = 0.50

𝝁𝐢𝐧𝐭 = 𝟎. 𝟕

𝜉𝑛 = 5.32𝑒6 N/m3

𝜇surf = 0.35 𝜇surf = 0.70

𝝁𝐢𝐧𝐭 = 𝟎. 𝟗

𝜉𝑛 = 12.32𝑒6 N/m3

𝜇surf = 0.45 𝜇surf = 0.90
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Figure C-7: 3D-RFT Raw data: Normalized 𝛼𝑟,𝜃,𝑧 value for 3D-RFT reference data
used for generation of 3D-RFT form. Corresponding values of 𝜇int, 𝜇surf, and 𝜉𝑛 are
written at the top of each column.
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