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ABSTRACT 

Biological processes are organized in hierarchical interactions of molecules, cells, tissues, and 
organisms. Cells perform complex functions individually, which when misregulated can result in 
disease states affecting the entire organism. However, knowledge of the genetic and molecular 
basis for many cellular phenomena is incomplete, limiting the ability to reverse disease states and 
engineer biological function. Although recent technologies have enabled scalable functional 
genomics approaches such as pooled CRISPR screening, the cellular phenotypes that can be 
linked to gene function in a pooled screen have been restricted to measurement by sequencing, 
and are often a step removed from the biological process of interest. In contrast, microscopy 
provides a high-throughput and flexible means to measure a wide range of biologically-relevant 
phenotypes. Here, we apply an image-based pooled screening approach based on in situ 
sequencing to understand the contributions of protein-coding genes to a wide range of cellular 
processes. Specifically, we combine pooled CRISPR/Cas9 genomic perturbations of 5,072 
fitness-conferring genes with microscopy-based visualization of DNA, DNA damage response, 
actin, and microtubules across more than 31 million human cells. By leveraging the complex 
phenotypes resulting from each perturbation, we identify co-functional genes across diverse 
cellular activities, revealing novel gene functions and associations. Additionally, we demonstrate 
pooled CRISPR screening combined with live-cell imaging of more than 400,000 cell division 
events to further identify unexpected contributions to chromosome segregation. Altogether, this 
work demonstrates image-based pooled genetic screening as a scalable approach to measure 
and understand genetic contributions to complex phenotypes and cellular functions. 
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Chapter 1.  Introduction 

Portions of this chapter and the corresponding figures are adapted from the publication “Pooled 

genetic perturbation screens with image-based phenotypes” in Nature Protocols (1), with the 

following authors: David Feldman*, Luke Funk*, Anna Le, Rebecca J. Carlson, Michael D. Leiken, 

FuNien Tsai, Brian Soong, Avtar Singh, and Paul C. Blainey. (*equal contributions) 

1.1 Perturbation-based functional genomics 

Biological phenomena arise from hierarchical interactions of molecules, cells, groups of cells, and 

organisms. At subcellular length scales, interactions between molecules are governed by their 

structure, stoichiometry, and spatial organization. Molecular structures encoded by the genome, 

including proteins and functional RNAs, are inheritable and drive the evolution of cellular functions 

and emergent properties. Understanding the functions and interactions of such molecules can 

lead to exogenous control over biological processes and higher-order phenotypes, including 

therapeutic intervention in disease progression. Recently, the sequencing of full genomes has led 

to thorough enumeration of protein-coding and non-coding genetic components (2, 3), although 

their biological functions are unclear in many cases. Now, a major goal of biology is to characterize 

the role of each genetically-encoded functional molecule across cellular processes. 

 

One common experimental approach to functional characterization is to remove or disrupt a 

genetic element of interest, such as knocking out a protein-coding gene, and then evaluate the 

resulting phenotype at the molecular, cellular, or organismal level as compared to a matched, 

unperturbed control sample. A consistent genetic background between comparison samples 

enables clean evaluation of the exact contributions of the perturbed genetic element, which can 

be performed in a screen across many genetic perturbations. Historically, genetic screens were 

performed in model organisms, such as yeast, C. elegans, and D. melanogaster, using random 

mutagenesis or by leveraging convenient genetic properties of the organisms (4–6). Often the 

phenotypes of interest were identified visually on the organism level, and successfully linked 

molecular functions of genes to high-level phenotypes (7–10). Although human gene function is 

of particular interest due to the potential for insights into disease processes, such experimental 

perturbation studies are ethically and practically infeasible at the organism level. Additionally, 

mutagenesis experiments with mammalian-derived cell cultures were historically difficult due to 

the lack of a meiotic phase in culture, limiting the use of classical genetics approaches (11). 
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However, new tools for precise and scalable genetic perturbations have since been developed, 

enabling efficient genetic screening in human cells. 

 

An initial breakthrough in programmatic genetic perturbations came with synthetic utilization of 

RNA interference pathways to knockdown the expression of genes (12). This built on top of newly-

available genome sequences to enable scalable and designable gene perturbations, and was 

widely employed in large-scale genetic screens in human cells (13–16). However, RNAi reagents 

were plagued with off-target effects which ultimately limited their usability (17). More recently, 

CRISPR-based RNA-guided nuclease systems were identified in prokaryotes and further 

developed for application in other organisms (18, 19), exhibiting higher specificity and efficiency 

than RNAi. In the most common CRISPR application in human cells, the Cas9 endonuclease is 

expressed in combination with a single guide RNA (sgRNA) containing a 20 nucleotide sequence 

complementary to a target genetic locus. Cas9 efficiently and precisely makes a double-strand 

break at the targeted loci, which is then natively repaired via error-prone DNA repair pathways. 

This double-strand break repair often results in random genomic insertions or deletions (“indels”) 

that ideally disrupt the correct expression or function of the gene. The programmability and 

precision of such genetic perturbations, in combination with advances in sequence measurement 

technologies, has made large-scale genetic perturbation screens in human cells feasible and 

reliable as discussed in the following section. 

1.2 Scalable genetic screens via pooled perturbations 

In addition to having an efficient means of genetic perturbation, large-scale screens require an 

equally-scalable method for measuring the resulting phenotypes. This is commonly achieved by 

pooled screening, where many genetic perturbations are delivered in a single combined sample 

and phenotypes are measured across a pooled library of cells, each containing a separate 

perturbation. However, pooled screens fundamentally require a method to link individual 

genotypes (either the perturbation identity or the actual resulting genetic alteration) to 

corresponding phenotypes. The simplest approach to this problem is enrichment-based 

screening, where perturbations are stably preserved in the genotype of each cell and a selection 

step is applied, such as growth under conditions preferentially enriching a desired phenotype. The 

genetic disruptions resulting in the target phenotype are then identified by measuring the relative 

change in abundance of genotypes before and after enrichment as a proxy for cellular fitness in 

the applied conditions, typically using next-generation sequencing (NGS; Fig. 1.1). This approach 
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has been successfully applied both with RNAi and CRISPR reagents (13–15, 20–22). A practical 

advantage of pooled screening is that the full screen is handled as a single cell population, without 

the need for expensive laboratory automation often required in large-scale arrayed screens to 

maintain many individually-perturbed cell populations. Additionally, pooled screens are 

exceptionally well-controlled, as all control perturbations (e.g., CRISPR sgRNAs with no target 

site in the human genome) are always present within the same batch (e.g., cell culture flask) as 

screening perturbations and see identical environmental conditions. Control and screening 

perturbations also have their phenotypes measured simultaneously within the same sample, 

which further limits batch-correlated measurement noise. 

 

However, the requirement to link phenotypes of interest to a growth advantage has fundamentally 

limited the range of phenotypes accessible via pooled screening. Slightly more diverse 

phenotypes are possible via direct selection of cell populations based on fluorescent reporter 

systems using fluorescence-activated cell sorting (FACS). However, both cell fitness- and FACS-

based screens fundamentally project complex phenotypes into a single-dimensional 

measurement, and can only do so one phenotype at a time. Additionally, perturbation genotypes 

are not uniquely traceable to individual cells and the resulting enrichments reflect either 

population- or lineage-averaged phenotypes, depending on the experimental approach (20–24). 

More recently, pooled CRISPR screens have been developed that read out single-cell resolved 

perturbation phenotypes using molecular profiling methods, such as single-cell RNA sequencing 

or mass cytometry (25–30). These approaches simultaneously capture a genotype and 

phenotype for each cell, identifying the former via either a proxy barcode or the perturbation 

sequence itself. The acquired phenotypes also represent much more complex information than 

enrichment screens, with thousands of phenotype features measured per cell that can be 

leveraged to identify genes involved in multiple different biological pathways in a single screen. 

Rather than unidimensional, averaged per-perturbation enrichments, these screens yield a rich 

matrix of cells by phenotypic features in which each cell is labeled by perturbation genotype (Fig. 

1.1). However, the information accessible by such molecular profiling methods in pooled 

screening formats is limited to phenotypes observable via genomic sequencing or simple 

proteomic measurements. These measurements focus primarily on a single mode of biological 

function, the regulation of molecular abundance. These abundance measurements are often a 

step removed from the biological phenomena of interest, and at best provide poor proxy 

measurements for phenotypes such as intercellular interactions, cell morphology, spatial 

organization of proteins and organelles, and dynamic signaling events. Furthermore, the 



10 

application of molecular profiling methods in pooled screens has been limited in scale, primarily 

due to the corresponding cost. While the focus on sequencing-based phenotype measurements 

in pooled screens originates from technical considerations, it also reflects a current preoccupation 

with sequencing technologies in modern biology, which may not always be the best hammer for 

a given nail. As demonstrated by historical examples of laborious genetic screens in model 

organisms for high-level phenotypes beyond the scale of molecular abundance (7–10), there is 

potential for much to be learned from expanding the current range of phenotype measurements 

compatible with modern pooled screening in human cells. 

 

 

Figure 1.1. Pooled screening approaches. In pooled screening, a population of cells is 

subjected to a library of genetic perturbations, such as guide RNAs for CRISPR screens. 

Enrichment, single-cell profiling and optical-based assays are three approaches for phenotypic 

readout. Enrichment-based screens determine population-level changes in perturbation 

abundance by bulk NGS following an applied selection step. Single-cell profiling and optical 

screens do not require an enrichment step and instead rely on information-rich phenotypic 

measurements. Single-cell assays pair perturbation barcodes to a cell phenotype, such as 

transcriptome measurements, at single-cell resolution. Through in situ sequencing, optical pooled 

screens pair image-based phenotypes with perturbation barcodes, also at single-cell resolution. 

1.3 Using microscopy to measure phenotypes 

For several centuries, light microscopy has been an invaluable tool for observation in biology, and 

was regularly employed for phenotype measurement in classical genetic screens (7–10, 31). 

Microscopy offers a plethora of options for monitoring the phenotypic state of cells, many of which 
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provide information complementary to molecular measurements of RNA or protein abundances. 

Fixation of cells followed by fluorescent labeling with antibodies, RNA or DNA hybridization 

probes, or small-molecule affinity reagents allows measurement of spatial distributions in 

approximately five distinct channels, with many additional channels potentially available using 

sequential detection and/or hyperspectral imaging approaches (32–36). In living cells, the 

abundance and localization of protein and RNA molecules can be visualized by genetic fusion or 

binding to fluorescent reporters. Additionally, fluorescent reporters can relate a wide range of 

biochemical states in living cells, ranging from ion concentrations and membrane potentials to 

kinase activity (37–40). Time-lapse imaging can track cells longitudinally, enabling high-resolution 

measurements of dynamic phenotypes, such as progression through the cell cycle or the time to 

activate or relax a signaling response (41–45). Image-based assays can also employ mixtures of 

cell types that are optically distinguishable (e.g., by reporter or marker expression) to more 

accurately model a physiological environment or identify interactions between cells (46–48). While 

image phenotype measurements can often be quantified via straightforward metrics, such as 

mean fluorescence intensity or cross-correlation between channels, machine learning techniques 

have shown substantial enhancements in classifying cell behaviors by extracting meaningful 

features from pixel-level raw data or higher-level descriptors (49–53), as also discussed in section 

3.4.  

 

Due to their versatile nature, image-based cell assays have been used successfully for a wide 

variety of genetic screens with arrayed perturbations, including genome-wide RNA interference 

and targeted CRISPR-based screens characterizing genes involved in mitosis and cell cycle 

progression (16, 54), membrane trafficking (55), autophagy (56), viral and bacterial infection (57–

60), and cellular morphology (61). However, the complexity and cost of performing large-scale 

arrayed genetic screens have limited their feasibility for many applications and potential users as 

they require expensive or customized automation to deliver precise amounts of each perturbation, 

culture individual cell populations, and image phenotypic assays at scale. Maintaining arrayed 

cell populations is particularly challenging with assays that require longer periods between 

perturbation and phenotypic measurement (e.g., assays requiring cell differentiation after 

perturbation) as differential perturbation efficiency and fitness effects accumulated over time can 

increase well-to-well variability and biological noise, in addition to the burden of maintaining a 

large number of wells in culture over time. CRISPR-based perturbations especially suffer from 

this limitation as they typically require more time to modulate target gene activities than RNA 

interference—often several days. Additionally, new arrayed perturbation libraries are expensive 
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to synthesize and will therefore lag technical developments in fast-moving fields such as CRISPR 

perturbations. For these reasons, comprehensive arrayed CRISPR-based imaging screens have 

been largely impractical. A method to link phenotypes measured using microscopy to perturbation 

genotypes in the context of pooled screening would alleviate many of these limitations by 

leveraging the technical advantages of pooling genetic perturbations discussed previously. 

1.4 Combining microscopy phenotypes with pooled genetic 

perturbation screens 

Several recent technologies enable image-based pooled screens in bacterial and mammalian 

systems, linking perturbation identity to phenotype measurement by physically retrieving relevant 

cell subpopulations or by using in situ optical barcoding of genetic perturbations. Approaches that 

physically retrieve subpopulations of cells are in essence an extension of enrichment-based 

pooled screening. In one approach, advances in flow cytometry have enabled fast acquisition of 

cell images while simultaneously sorting cells based on measured image attributes (62). This 

enables FACS-like genetic screens of phenotypes more complex than fluorescence intensity of a 

reporter system, but the image resolution is limited and does not enable screening of dynamic, 

time-resolved phenotypes. Other approaches first image the full pooled cell library using standard 

microscopy, then physically retrieve cells with phenotypes of interest by either photoactivation of 

individual cells followed by FACS selection (63–66) or by using magnetic manipulation to select 

cells grown on microraft arrays (67). Similar to selection-based screens, subpopulation retrieval 

approaches measure bulk enrichment of perturbations in a few predefined phenotypic bins, 

limiting the characterization of cell-level heterogeneity. The need to a priori specify the 

phenotypes of interest also inherently limits the ability to identify unexpected cellular phenotypes. 

However, physical separation enables subsequent phenotypic characterization of cells from the 

screen, such as deep molecular profiling of relevant cell states and additional functional assays 

not compatible with the conditions of the screen. 

 

Optical barcoding methods for image-based pooled screens were initially developed using 

iterative fluorescence in situ hybridization (FISH; 68–71). This approach employs a separate DNA 

barcode within the perturbation delivery vector, which is optically read-out in situ within each 

individual fixed cell on the imaging plate using FISH-based methods. Optical barcoding thus 

enables matching of perturbation identity within a pooled experiment to phenotypic data acquired 

by methods such as immunofluorescence or live-cell imaging on a cell-by-cell basis, providing a 
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rich matrix of individual genotyped cells by phenotypic features analogous to pooled screens 

using molecular profiling approaches. However, despite exceptional detection sensitivity not 

limited by a reverse transcription step, FISH methods employ only limited barcode signal 

amplification and thus require relatively high optical magnification for detection, which limits 

screening throughput. Additionally, long barcodes with multiple hybridization sites are required to 

identify perturbations, necessitating bespoke library cloning methods and random pairing of 

perturbations and barcodes. 

 

In this thesis, genotype is linked to phenotype within pooled CRISPR screens at single-cell 

resolution by directly sequencing cellular perturbation identity using in situ sequencing-by-

synthesis (SBS; Fig. 1.2A). Perturbation identities are deduced from mRNA containing the 

CRISPR sgRNA sequence itself, enabled by the now-standard CROPseq lentiviral sgRNA vector 

(72), thus simplifying library design and cloning over FISH-based approaches. sgRNA sequences 

are read out in fixed cells via padlock-based in situ sequencing (73, 74), a process involving 

padlock probe hybridization and gap filling, rolling circle amplification (RCA), and in situ SBS (Fig. 

1.2B). Earlier optimizations to this protocol improved both the number and brightness of 

sequencing reads, enabling high-throughput optical pooled screening with perturbations 

successfully identified for a large fraction of cells when sequenced with low (10X) magnification 

(75). In previous work, >80% of identified sequencing reads exactly matched the designed set of 

library sequences over 12 cycles of SBS, allowing optical pooled screening with genetic libraries 

containing thousands of perturbations (75). 

1.5 Large-scale image-based screening for complex biological 

phenotypes 

Due to the flexibility and throughput of phenotype measurement using microscopy, optical pooled 

screens are an advantageous method for scalable screening of complex phenotypes. In many 

ways, this also represents a return to approaches analogous to those of classical genetic screens 

in model organisms, where the molecular basis of high-level visual phenotypes were successfully 

identified. This is in contrast to high-dimensional pooled screening approaches based on single-

cell sequencing measurements, which are fundamentally limited to measurements of molecular 

abundance that are a step removed from many relevant cellular functions. However, despite the 

significant technological progress in developing optical pooled screens, prior published work has 

only demonstrated image-based pooled screens in human cells at limited scale (3x103  
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Figure 1.2. Overview of optical pooled screening. (A) Experimental workflow. First, a pooled 

sgRNA library is designed, packaged into lentivirus and delivered into Cas9-expressing cells. A 

live-cell or fixed-cell imaging assay is performed to generate an optical phenotypic profile of 

individual cells. The sgRNA spacer sequences in each cell are then amplified in situ and read out 

by SBS, consisting of cycles of dye incorporation, imaging and cleavage. Finally, sgRNA-encoded 

perturbations are mapped to phenotypic scores at the single-cell level, with candidate genes 

identified through various statistical approaches. (B) Schematic of the in situ SBS process. The 
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sgRNA is expressed as a polyadenylated mRNA transcript from an integrated copy of the 

CROPseq vector. After fixation and permeabilization, an LNA-modified primer is used to reverse 

transcribe a cDNA copy of the sgRNA sequence. After glutaraldehyde and formaldehyde post-

fixation, the mRNA is digested and a padlock probe is hybridized to cDNA regions flanking the 

sgRNA sequence. The padlock probe is then extended and ligated to copy the sgRNA sequence 

into a single-stranded circularized DNA. This circularized DNA serves as a template for RCA with 

Phi29 polymerase, which produces tandem repeats of the sgRNA spacer sequence. These 

sequences are read out by successive cycles of SBS. 

 

 

 

perturbations at most) and still relatively simple phenotypes (e.g., nuclear translocation of a 

reporter protein; 75). Thus, the full potential of image-based pooled screening has yet to be 

realized. 

 

The work presented in Chapter 2 demonstrates advances in each of these areas, with efficient 

image-based pooled screening of more than 107 human cells across 20,445 individual 

perturbations targeting 5,072 genes. For each cell, phenotype images are collected using four 

stains visualizing distinct biological structures, yielding high-dimensional measurements of 

cellular morphology, molecular abundance, and spatial organization (~1,000 extracted image 

features in total) that we combine to gain a global understanding of perturbed cellular phenotypes 

present in the screen.  We also demonstrate the feasibility of image-based pooled screening for 

dynamic and complex live-cell phenotypes, collecting time-lapse movies of over 400,000 mitotic 

cell division events across 239 gene targets. 

 

In addition to the technical advances presented in this work, we also leverage the vast amount of 

matched perturbation genotype and phenotype data to provide new insights for the diverse 

functions of essential human genes. Identifying the roles of essential genes in specific biological 

processes is a long-standing challenge across organisms (4–6), primarily due to the necessary 

inviability that follows gene perturbation. Here, we precisely control the timing between gene 

knockout and sample fixation to acquire meaningful phenotype measurements prior to cell death, 

an alternative to the hypomorph approach used in other organisms (76). While many of the gene 

associations identified in our screen are not readily identifiable from visual inspection of the 

knockout cell images, quantitative validation of the dataset against prior functional databases 
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demonstrates that the relationships between the complex phenotypes represent meaningful 

biological functions. Furthermore, we find new genes involved in ribosome biogenesis, 

proteasome, and Integrator complex function that were concurrently identified by independent 

studies. We additionally identify and validate new roles for multiple mRNA processing factors and 

membrane transporters in the regulation of mitotic function. Together, the work presented in 

Chapter 2 demonstrates systematic characterization of the contributions of essential genes to 

complex phenotypes and cellular functions using large-scale optical pooled screening. 

 

Finally, in Chapter 3 we discuss the future of image-based pooled screening. Applying the 

presented approach to diverse biological models (such as in Appendix A) with various modes of 

genetic perturbation has a strong potential to build basic understanding of disease processes and 

identify novel therapeutic targets. In addition to opportunities for technical improvements in optical 

pooled screening, we discuss how the resulting datasets present new opportunities and 

challenges for biological discovery.  

Chapter 2.  The phenotypic landscape of essential 

human genes 

This chapter is adapted from The phenotypic landscape of essential human genes, a manuscript 

under review with the following authors: Luke Funk*, Kuan-Chung Su*, Jimmy Ly, David Feldman, 

Avtar Singh, Paul C. Blainey, and Iain M. Cheeseman (*equal contributions). An earlier version of 

this manuscript is available as a preprint on bioRxiv (77). 

2.1 Abstract 

Understanding the basis for cellular growth, proliferation, and function requires determining the 

contributions of essential genes to diverse cellular processes. Here, we combined pooled 

CRISPR/Cas9-based functional screening of 5,072 fitness-conferring genes in human cells with 

microscopy-based visualization of DNA, DNA damage response, actin, and microtubules. 

Analysis of >31 million individual cells revealed measurable phenotypes for >90% of genes. Using 

multi-dimensional clustering based on hundreds of quantitative phenotypic parameters, we 

identified co-functional genes across diverse cellular activities, revealing novel gene functions 

and associations. Pooled live-cell screening of ~450,000 cell division events for 239 genes further 
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identified functional contributions to chromosome segregation. Our work establishes a resource 

detailing the effects of disrupting core cellular processes that defines the functional landscape of 

essential human genes. 

2.2 Introduction 

For a human cell to grow, proliferate, and function, it must carry out a variety of essential cellular 

processes, including transcription, mRNA splicing, translation, vesicle trafficking, proteolysis, 

DNA replication, and cell division. CRISPR/Cas9-based pooled genetic screens have 

revolutionized the ability to test the functional requirements for cell growth and proliferation by 

enabling the potent disruption of thousands of individual genetic elements in single experiments 

(21). However, most current screening approaches, including those based on fluorescence-

activated cell sorting (FACS) of cell populations (78, 79), produce a single scalar measurement 

of barcode enrichment or depletion that summarizes the contributions of each perturbation to 

cellular phenotypes at the population level. In cellular fitness screens using these approaches, it 

is thus rarely possible to distinguish essential genes that function in distinct cellular processes. 

To improve the differentiation of complex phenotypes, recent studies have combined pooled 

functional genetic screens with multi-dimensional measurements at limited scales, including 

single-cell profiling of transcriptional cell states (25). Defining the specific contributions of 

essential genes to core cellular processes requires quantitative analysis of complex cellular 

phenotypes, many of which can be directly visualized using microscopy. Leveraging the power of 

microscopy, recent work utilized targeted photoactivation of fluorescence in cells exhibiting 

specific optical phenotypes to enable visual CRISPR screens (63, 64, 66). However, these 

approaches similarly produce a single enrichment score for each gene, one predefined phenotype 

at a time. The ability to interrogate and systematically compare a large and diverse array of cell 

biological phenotypes simultaneously across thousands of genomic perturbations represents an 

important unmet goal for functional studies. Here we use optical pooled screening (1, 75) to 

combine large-scale Cas9-based targeting of essential genes with microscopy and image-based 

profiling of single-cell resolved cell biological phenotypes at a large scale (Fig. 2.1A). 
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2.3 A large-scale, image-based pooled CRISPR screen of 

essential genes 

To determine the functional contributions of essential genes in cultured human cells, we first 

identified a set of fitness-conferring genes based on combined evidence from multiple Cas9- and 

transposon-based genetic screens (80–88; Fig. 2.S1A-B; Section 2.13). This approach defined a 

collection of 5,072 genes that contribute to optimal cellular fitness, although we note that not every 

gene will be required for fitness in a given cell line. To create a library of CRISPR sgRNAs 

targeting this gene collection, we selected four sgRNA sequences per target gene from existing 

sgRNA libraries (88–90), prioritizing guides with evidence of high on-target efficiency and low off-

target activity (Section 2.13.1). In addition, we selected 250 “non-targeting” sgRNAs that lack 

targets in the human genome as negative controls. Together, this constituted a library of 20,445 

total sgRNAs. 

 

We delivered the sgRNA library to HeLa cells containing an integrated, doxycycline-inducible 

Cas9 construct (91) using the CROPseq-puro-v2 lentiviral vector that contains an optimized 

sgRNA scaffold (75, 91, 92; Section 2.13.1, 3, 5). Based on trial image-based screens (Fig. 

2.S1C) and an analysis of sgRNA depletion from the cell library at 3 and 5 days post-Cas9 

induction (Fig. 2.S1D), we defined a time point at 78 hours post-Cas9 induction to maximize 

phenotype observability. This approach balances the time required for Cas9 activity and protein 

depletion with negative fitness effects that deplete knockout cells from the population. After fixing 

the cell population at 78 hours post-Cas9 induction, we amplified the sgRNA sequences in situ 

as described previously (Fig. 2.1A; 1, 75). Following amplification, we stained and imaged cells 

for DNA (DAPI), DNA damage response (γH2AX; anti-phospho-Ser139 H2AX antibody), 

microtubules (anti-α-tubulin antibody), and filamentous actin (phalloidin; Fig. 2.1C). These stains 

were chosen to visualize diverse cell biological behaviors, including nuclear morphology, cell size, 

DNA damage response, cytoskeletal structures, cell cycle stage, and mitotic chromosome 

alignment. 

 

Following the completion of phenotype imaging, we performed in situ sequencing-by-synthesis to 

identify the sgRNA present in each individual cell (Fig. 2.1A, C; Fig. 2.S1E; 1, 75), allowing us to 

directly assess the phenotypic consequences of disrupting each target gene. We extracted 1,084 

phenotypic parameters from each individual cell image, including measurements of the intensity 

and subcellular distribution of each stain, colocalization of stains, and cellular and nuclear size  
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Figure 2.1. Large-scale image-based pooled CRISPR screen identifies essential genes with 

roles in genome integrity. (A) Experimental workflow for the fixed-cell, image-based pooled 

CRISPR screen (also see section 2.13.5). (B) Histogram showing the number of cells analyzed 

for each gene target with an acquired phenotype image and single sgRNA sequence mapped in 

situ. (C) Example image from the pooled screen showing the phenotype stain channels (DNA, 

γH2AX, tubulin, and F-actin) together with a matched field-of-view of fluorescent in situ 

sequencing (Laplacian-of-Gaussian filtered) and cell segmentation. Scale bar, 25 µm. (D) 

Volcano plot for mean nuclear γH2AX intensity across gene targets in the screen. Selected 

images from the screen show γH2AX staining for example cells to highlight specific targets whose 

knockout results in increased (green) or decreased (magenta) DNA damage relative to random 

samples of cells expressing targeting sgRNAs (orange; FDR<0.05). The median robust z-score 

was measured across cells with the same sgRNA, and aggregated to the gene level by taking the 

median of sgRNAs targeting the same gene (see section 2.13.8). The median robust z-score is 

plotted on a symmetric log scale (linear between -1 and 1), with effect size thresholds set as the 

2.5 and 97.5 percentiles of non-targeting sgRNA scores. Raw P-values were computed by 

comparing gene targets to bootstrapped null distributions of cells expressing targeting sgRNAs 

(see section 2.13.8), with false discovery rate (FDR) estimated using the Benjamini-Hochberg 

procedure. Scale bar, 10 µm. (E) Volcano plot as in (D) for integrated nuclear DAPI intensity, 

along with example images of DAPI staining for gene knockouts that result in increased or 

decreased DNA content. Raw P-values were computed by comparing gene targets to 

bootstrapped null distributions of cells expressing non-targeting sgRNAs (see section 2.13.8), 

followed by FDR estimation as in (D). Scale bar, 10 µm. (F) Scatter plot comparing the relationship 

between DNA damage and DNA content. A subset of gene knockouts result in particularly 

increased DNA content due to cell division failure; labeled genes are colored by functional 

category. Example images show tubulin (green) and DNA (magenta) to highlight polyploid and 

multinucleate cells. Scale bar, 10 µm. (G) Western blot (top) and quantification (bottom) 

confirming the presence of increased DNA damage based on cellular γH2AX levels for genes 

identified in the image-based pooled screen and PCNA as a positive control. Each sample 

represents a distinct cell line with inducible Cas9 expression and a stably-expressed sgRNA 

targeting either the indicated gene or a negative control single copy locus. Blue data points 

indicate independent replicates. For each sample, γH2AX intensity was referenced to its GAPDH 

loading control and then normalized by negative control γH2AX relative intensity. 
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and shape (Section 2.13.7-8). Interphase and mitotic cells showed distinct baseline phenotypes 

in our dataset, thus we classified cells as mitotic or interphase with a support vector classifier 

using a subset of extracted phenotype parameters and conducted downstream analyses 

separately (Section 2.13.8; Fig. 2.S1F). Together, this approach yielded microscopy images, 

extracted phenotypic measurements, and matched sgRNA identities for 31,884,270 individual 

cells with a median of 6,119 cells per gene target across each set of four sgRNAs (Fig. 2.1B). 

Image montages and phenotypic parameters of interphase and mitotic cells are available for 

exploration through the companion interactive web portal (https://vesuvius.wi.mit.edu/). 

2.4 Interphase nuclear phenotypes reveal established and novel 

regulators of genomic integrity  

Maintaining genomic integrity is critical to ensuring proper cellular function, as DNA mutations 

and chromosome imbalances result in genome instability, misregulated gene expression, cell 

inviability, and oncogenic cell states. Cells utilize a range of DNA damage-sensors, DNA repair 

mechanisms, and cell cycle checkpoints to recognize and correct genomic aberrations and protect 

the genome against spontaneous DNA damage, DNA replication-induced errors, and 

chromosome segregation defects (93). To identify genes that are required for genome integrity, 

we analyzed nuclear phenotypic parameters in interphase cells from our screen that monitor DNA 

damage (mean γH2AX nuclear intensity) and total DNA content (integrated DAPI nuclear 

intensity; Fig. 2.1D-E). We defined summary phenotype scores for each gene target as the 

median robust z-score of cells relative to the local intermixed population expressing non-targeting 

control sgRNAs (Section 2.13.8). Gene targets that displayed decreased γH2AX intensity in 

interphase cells relative to random samples of cells expressing targeting sgRNAs included H2AX 

itself and ATR, which is involved in directing the γH2AX phosphorylation event (Fig. 2.1D, 93). 

Reciprocally, of the 5,072 genes targeted in the screen, we observed 1,258 genes whose 

disruption resulted in significantly increased γH2AX intensity (Section 2.13.8). The top scoring 

hits included many factors with known roles in DNA replication (e.g., RRM1, PCNA, DNA 

Polymerase subunits, Primase subunit 1, DNA Ligase 1, RPA1/2/3, ORC and MCM2-7 subunits), 

DNA repair (e.g., RAD51, REV3L, ATAD5, DONSON, DTL, DDB1; ), and telomere protection 

(TERF1/2, RTEL1; Fig. 2.1D; 93, 94). For most genes, increases in mean γH2AX intensity 

corresponded to increases in the number of γH2AX foci, although a minority of genes (RRM1/2, 

RPA1, CHEK1, and POLA1) demonstrated diffuse staining consistent with widespread DNA 

damage (Fig. 2.S2A-C). In addition to the established players in DNA replication and repair, we 

https://vesuvius.wi.mit.edu/
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noted that a substantial portion of the genes that demonstrated increased γH2AX intensity are 

targeted by sgRNAs with multiple genomic target loci and therefore likely exhibit strong Cas9-

associated DNA damage. This was particularly pronounced for sgRNAs whose target sites are 

spread across multiple chromosomes (Fig. 2.S2D). 

 

Many gene targets that caused increased DNA damage also resulted in increased DNA content 

(Fig. 2.1E-F), including the knockouts of DNA replication and repair factors listed above with the 

exception of DNA Ligase 1, RAD51, REV3L, and TERF1/2. Gene knockouts with increased 

γH2AX and DNA content were also enriched for spliceosome components (Fig. 2.S3A-B), 

consistent with reports that disrupting mRNA splicing results in a DNA damage response (95). 

We observed an overall correlation between DNA damage and total DNA content (r = 0.62), 

although some knockouts displayed strong increases in DNA content but less severe DNA 

damage (Fig. 2.1F). This includes proteasome 20S core particle subunits and gene targets whose 

disruption prevents cytokinesis (AURKB, BIRC5, CDCA8, PRC1, KIF23, ECT2; 96, 97) or that 

allow cells to progress through cell division without segregating their chromosomes (ESPL1, 

TTK/Mps1, MAD2L1; 98). Targeting each of these cytokinesis and chromosome segregation 

genes results in more cells with increased DNA content and nuclear area due to tetraploidy or 

multinucleation (Fig. 2.1F; Fig. 2.S3C-E). 

 

To validate our approach for identifying essential genes involved in genomic integrity, we further 

investigated selected gene targets that displayed increased DNA damage, including the E3 

ubiquitin ligase subunits LRR1 and TRAIP, the mitochondrial iron-sulfur cluster biogenesis gene 

ISCU. In each case, we generated individual cell lines with inducible Cas9 expression and a single 

sgRNA targeting the corresponding genes (91). Based on Western blotting, we noted a 

substantial increase in γH2AX levels compared to a control sgRNA with a single genomic target 

site following ISCU, LRR1, and TRAIP depletion, up to similar γH2AX levels as a PCNA positive 

control knockout (Fig. 2.1G). The effect of ISCU knockout is consistent with the requirement for 

iron-sulfur clusters in the enzymatic activity of proteins involved in DNA metabolism (99), and 

LRR1 and TRAIP have recently been reported to play roles in replisome disassembly (100). As 

an additional validation of our approach, we compared our results to previous screens for gene 

knockouts that result in sensitization or resistance to treatment with genotoxic agents (101). Of 

the 583 previously-identified DNA damage-related genes also present in our screen, we find that 

190 (32.6%) also demonstrate either increased or decreased γH2AX staining despite the absence 

of directly induced DNA damage in our approach. We also found 870 genes with changes in 
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γH2AX staining that were not identified in the previous genotoxicity response screens. These 

genes are enriched for spliceosome, proteasome, RNA polymerase, and protein export factors 

that would be depleted in the untreated negative control population of the genotoxicity enrichment 

screens (Fig. 2.S3F), highlighting the complementarity of these approaches and the sensitivity of 

our screen to identify specific phenotypes even for genes that confer strong baseline fitness 

effects. 

 

Together, this analysis validates our image-based screening strategy to identify diverse players 

in genome integrity and highlights the importance of multiple genes in DNA replication and repair. 

2.5 Identification of essential genes controlling cytoskeletal 

function 

To direct cellular proliferation, structure, organization, and mechanical force production, cells rely 

on complex and dynamic cytoskeletal networks involving actin and microtubule polymers (102, 

103). Our screen measured interphase cytoplasmic features for both filamentous-actin (F-actin) 

and microtubules, enabling the broad identification of essential genes involved in cytoskeletal 

processes and cellular organization. An analysis of interphase mean F-actin intensity revealed 

460 gene knockouts with decreased intensity relative to non-targeting controls and 899 genes 

with increased intensity (Fig. 2.2A; Fig. 2.S4A). Among these genes, we identified established 

factors required for regulating actin assembly and dynamics. For example, knockout of the actin 

depolymerization and severing factor cofilin (CFL1) or the F-actin capping protein CAPZB, which 

acts to block actin elongation, resulted in substantially increased actin polymer levels. In contrast, 

depletion of RHOA or ARHGEF7, which regulate the formation of actin fibers, resulted in strongly 

decreased actin levels. Although the Arp2/3 complex plays an established role in nucleating actin 

assembly (102), we found that its loss resulted in increased cellular actin intensity. However, this 

was coupled with a substantial decrease in interphase cell area (Fig. 2.S4B). This suggests that 

disrupting selected components of the actin cytoskeleton also perturbs cellular adhesion, resulting 

in reduced cell-substrate contacts and an increase in mean cytoplasmic actin intensity due to 

altered cell shape. Indeed, we observed a similar phenotype for 251 genes that include the 

adhesion components RAC1, TLN1, CRKL, ILK, and Integrin subunits (ITGAV, ITGB1, and ITG5; 

Fig. 2.S4B-C). The remaining 648 genes with increased actin intensity do not show decreased 

cellular area and are likely to be independent of changes to cell adhesion. The gene target whose 

loss resulted in the largest increase of mean F-actin intensity in both interphase and mitotic cells 
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was the E3 ubiquitin ligase KCTD10, along with its partners CUL3 and RBX1 (Fig. 2.2A; Fig. 

2.S4D). Recent work implicated KCTD10 in restricting actin assembly during cell migration or 

developmentally-programmed cell fusion (104, 105), but our analysis suggests a general role for 

this E3 ubiquitin ligase in regulating actin assembly. 

 

We also identified multiple factors regulating interphase tubulin levels. Mean tubulin intensity was 

significantly decreased for 492 gene targets when compared to non-targeting controls, including 

genes encoding tubulin proteins (TUBA1B/C, TUBB, TUBB4B), tubulin-specific chaperones 

(TBCC/D/E), and factors required for tubulin folding and complex assembly (CCT 

chaperonins/TRiC complex and prefoldin subunits; Fig. 2.2B). Reciprocally, we observed an 

increased mean tubulin intensity for 639 knockouts. However, as noted above, cytoplasmic 

proteins such as actin and tubulin can display increased mean stain intensity under conditions 

where cell area is reduced due to altered substrate adhesion (Fig. 2.S4B-C, F). Thus, we 

compared actin and tubulin intensity to identify gene targets that selectively affect one stain (Fig. 

2.2C). We observed substantially increased tubulin fluorescence without strong increases in actin 

intensity for Casein kinase I delta (CSNK1D), which has been suggested to regulate microtubule-

associated proteins (106), and subunits of the CCR4-NOT complex (CNOT1/4/10/11), which 

functions in post-transcriptional mRNA regulation (107). Overall, 191 genes exhibited increased 

tubulin intensity without increased actin intensity or decreased cell area. In summary, this analysis 

of interphase cytoplasmic actin and tubulin intensity identifies the contributions of diverse 

molecular players for roles in controlling cytoskeletal assembly and dynamics. 

2.6 Analysis of morphological phenotypes reveals a tight 

correspondence between cellular and nuclear size 

In addition to measuring stain intensity for each marker, we also measured multiple morphological 

parameters including nuclear and cellular area. We noted substantial differences in median 

interphase cell area across the different gene targets, ranging in segmented area from 319 µm2 

to 583 µm2 (Fig. 2.2D; Fig. 2.S5A). Consistent with a required role for protein production in cell 

growth, targeting ribosome and ribosome biogenesis genes resulted in substantially reduced cell 

area (Fig. 2.S5B). In contrast, gene targets with roles in DNA replication and repair, mRNA 

splicing, and proteasome function displayed increased cell areas (Fig. 2.S5B), suggesting 

continued cell growth in the absence of further division. Using individual inducible knockout cell 

lines, we were able to confirm these substantial changes in cell size for DTL and DONSON gene  
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Figure 2.2. Identification of essential genes regulating cytoskeletal structures and cellular 

organization. (A) Volcano plot for mean cellular F-actin (phalloidin) intensity across gene targets 

in the screen. Selected images from the screen show phalloidin staining for example cells to 

highlight specific targets that result in increased (green) or decreased (magenta) cellular actin 

levels relative to non-targeting control sgRNAs (orange; FDR<0.05). The median robust z-score 

was measured across cells with the same sgRNA, and aggregated to the gene level by taking the 

median of sgRNAs targeting the same gene (see section 2.13.8). Raw P-values were computed 

by comparing gene targets to bootstrapped null distributions of cells expressing non-targeting 

sgRNAs (see section 2.13.8), with false discovery rate (FDR) estimated using the Benjamini-
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Hochberg procedure. (B) Volcano plot as in (A) for mean cellular tubulin intensity, along with 

example images of tubulin staining for gene knockouts that result in increased or decreased 

tubulin levels. (C) Scatter plot comparing the relationship between actin and tubulin stain intensity 

highlights gene targets that selectively affect one cytoskeletal element. A subset of knockouts 

impact both actin and tubulin mean intensity measurements by disrupting cellular adhesion and 

decreasing the segmented cell area (see also Fig. S4B, C, F). Labeled genes are colored by 

functional category. (D) Scatter plot showing the comparison between cellular and nuclear area 

across gene targets. These morphological features are highly correlated across scales and 

conditions (r = 0.96). The median of area measurements was computed across cells with the 

same sgRNA and aggregated to the gene level by taking the median of sgRNAs targeting the 

same gene. Orthogonal regression was performed to identify gene targets that result in an altered 

nuclear:cytoplasmic area ratio (dotted line). Labeled genes are also highlighted in the distribution 

of regression residuals (inset). Example images display DNA (magenta) and tubulin (green) 

staining for gene targets that result in increased or decreased cell and nuclear size. Scale bars, 

10 µm. 

 

 

 

knockouts (Fig. 2.S5C-D). Nuclear size similarly varied widely across gene targets, including 

increased nuclear area for five genes previously identified in a prior photoactivation-based 

CRISPRi imaging screen (AURKB, CDCA8, FBXO5, TICRR, and RAD51; 64). 

 

Strikingly, we observed a strong correlation between cell area and nuclear area across all tested 

gene targets (r = 0.96; Fig. 2.2D). Prior work has suggested that cells actively regulate the size 

ratio between their nucleus and cytoplasm (108). Our analysis demonstrates that, across a wide 

range of cell sizes and functional perturbations, this relationship is closely maintained. Although 

we observed a clear relationship between nuclear size and cell size, we identified a limited number 

of gene targets whose depletion disrupted this coordinated scaling (Fig. 2.2D). A subset of gene 

targets displayed abnormally large nuclei for their given cell size, including RNA splicing factors 

(e.g., SMU1 and UBL5), the nuclear pore complex member NUP205, and DNA replication factors 

(e.g, PCNA, DDB1, RRM1). We also identified gene knockouts that displayed decreased relative 

nuclear size, including lamin B1 (LMNB1), the nucleocytoplasmic transport protein CSE1L, and 

the nuclear pore components NUP160 and AHCTF1, consistent with roles in controlling nuclear 

integrity and function. Together, this analysis demonstrates that cell biological parameters from a 
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large-scale screen can be used to provide insights into the control of cellular morphology and 

organization. 

2.7 Phenotypic clustering of interphase cellular parameters 

defines co-functional genes 

We next sought to take advantage of the full range of identifiable phenotypes in the rich image 

data from our screen to reveal additional gene activities required for cellular function. To define 

the phenotypic landscape of essential genes, we selected and aggregated 472 non-redundant 

parameters extracted from each interphase cell image to create a summary phenotypic profile for 

each gene target (Section 2.13.8). We then visualized these high-dimensional profiles using the 

PHATE algorithm (109) and performed clustering to identify genes with similar interphase 

phenotypes (Section 2.13.8; Fig. 2.3A; Fig. 2.S6A-C). Based on a comparison of knockout 

phenotypes to non-targeting guides, 4,665 of the 5,072 gene targets in our screen display a 

measurable interphase phenotype (Fig. 2.S6A-B). Of the remaining 407 gene knockouts, only 55 

genes displayed strong fitness effects at 5 days post-Cas9 induction based on sgRNA depletion 

from our library (Fig. 2.S6B). Thus, the 352 genes without a measurable phenotype or fitness 

effect are likely not required for cellular fitness in HeLa cells at the tested time point following 

Cas9 induction. 

 

To evaluate our PHATE-based clustering strategy, we compared our results with databases of 

protein-protein interactions, co-essential gene pairs, and curated protein complexes (110–112). 

We found that the relative similarity of gene phenotype profiles from our screen was increased 

among gene pairs identified as functionally-related in each external database (Fig. 2.3B; Section 

2.13.8). Based on a minimal set of CORUM complexes, our clustering results accurately recall 

19% of gene pairs from annotated protein complexes while maintaining a precision of 43% (Fig. 

2.S7; Section 2.13.8). This increases to a recall of 58% and precision of 81% when restricting this 

analysis to genes within the top 10% of summarized phenotype strength. Overall, 64 of 222 

clusters were enriched for at least one CORUM protein complex, and 55 clusters were enriched 

for at least one KEGG pathway. Of the 166 tested KEGG pathways, 58 were enriched in at least 

one identified cluster, while the remaining functional categories not enriched in any cluster 

included many metabolic, biosynthetic, cellular signaling, and cell death pathways (apoptosis, 

ferroptosis, necroptosis), which correspond to processes not explicitly evaluated in our approach. 
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Consistent with our unbiased evaluation of the PHATE clustering analysis, we noted clear 

functional relationships between the genes within a given cluster, allowing us to identify major 

clusters primarily composed of gene targets with roles in transcription, RNA processing, 

translation, protein degradation, DNA replication and damage response, cell cycle control, or 

other core cellular processes (Fig. 2.3A, C-F; Fig. 2.S8; https://vesuvius.wi.mit.edu/). Strikingly, 

the clustering behaviors also allowed us to distinguish high-resolution functional sub-categories 

within each cellular process. For example, despite a shared role in translation, we identified 

separable clusters containing established 40S ribosome subunits (cluster 66), 60S ribosome 

subunits (cluster 23), tRNA ligases and eIF2 translation initiation subunits (cluster 14), distinct 

clusters for factors involved in 40S ribosome biogenesis (cluster 136) and 60S ribosome 

biogenesis (cluster 15), and several others which included nucleolar proteins, RNA helicases, and 

additional factors involved in translation initiation or ribosome biogenesis (clusters 21, 112, 203, 

and 216; Fig. 2.3C, D). Knockouts for the genes within each of these clusters resulted in reduced 

nuclear and cellular areas, but displayed differences in other cellular phenotypic parameters, such 

as actin and tubulin staining intensities, enabling distinction among these functional sub-

categories (Fig. 2.3D).  

 

Similarly, we identified multiple clusters containing 26S proteasome subunits with phenotypic 

differences that allowed segregation of 20S core particle subunits (167) from the 19S regulatory 

particle ATPase (106) and non-ATPase components (213), as well as a cluster containing 

components of the COP9 Signalosome (200), which controls ubiquitin-dependent processes (Fig. 

2.S8A). Finally, we observed multiple distinct clusters for the core transcriptional machinery, 

including TFIID subunits (192), RNA Polymerase II subunits (199), two clusters comprised of 

Mediator complex subunits, General Transcription Factors (GTFs), and mRNA export factors (8 

and 60), and separate clusters containing RNA Polymerase I (155) and RNA Polymerase III (45) 

components (Fig. 2.3E-F). Interestingly, although our cellular imaging did not include membrane-

targeted markers for cellular organelles, such as the Golgi or Endoplasmic Reticulum, we 

identified multiple distinct clusters comprised of vesicle trafficking components. For example, we 

identified a cluster (201) containing the coatamer subunits (COPA/B1/B2/G1/Z1, ARCN1), SNAP 

proteins (NAPA and GOSR2), and cholesterol biosynthesis proteins HMGCS1 and HMGCR, a 

second cluster (54) containing signal recognition particle (SRP19/54), ESCRT proteins (UBAP1, 

CHMP6, and VPS28), clathrin, and additional vesicle trafficking proteins, as well as a cluster (140) 

containing the exocyst complex (EXOC1/4/5/7) and glycosylation machinery (Fig. 2.S9A). This 

suggests that specific cell morphological changes resulting indirectly from perturbing vesicle 

https://vesuvius.wi.mit.edu/
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trafficking and organelle function can be detected by our extracted image parameters, beyond 

what is easily distinguishable by visual inspection. 

 

In summary, the phenotypic clustering using quantitative parameters extracted from cell images 

provides a fine-grained picture of the distinct functional contributions of specific protein sub-

complexes to core cellular processes. 

2.8 Phenotypic clustering provides novel insights into gene 

functions and pathway relationships  

The coherent phenotypic clustering of known co-functional gene targets provides potential 

predictions of cellular function for additional co-clustering genes. For example, our interphase 

phenotypic clustering revealed similarities between knockouts of the key signaling proteins KRAS 

and BRAF with multiple mitochondrial components, such as mitochondrial ribosome subunits and 

proteins involved in mitochondrial respiration (NADH dehydrogenase and Cytochrome, cluster 

149; Fig. 2.S9C), consistent with roles for KRAS and BRAF signaling in maintaining normal 

metabolic homeostasis (113–115). In independent experiments, we additionally identified overall 

disruption of mitochondrial content in KRAS and BRAF knockout cells, similar to knockouts of co-

clustering mitochondrial factors (Fig. 2.S9D). Similarly, although several clusters containing 

transcriptional regulators exhibited related phenotypes, we identified a cluster (121) with a distinct 

phenotypic profile that contains both of the master regulator Myc and Max transcription factors, 

along with multiple other transcriptional regulators (FOXN1, ILF3, SP2, ZBTB11, nuclear 

respiratory factor 2 genes GABPA and GABPB1), chromatin remodeling factors (ZMYND8, 

H3K36 methyltransferase SETD2), and E3 ubiquitin ligase components (KEAP1, DDA1; Fig. 

2.S9E). This clustering suggests that these factors may either be specifically required for Myc 

expression (as is the case for ZMYND8, see ref. 116) or work with Myc to promote downstream 

expression at its target promoters. By analyzing Myc mRNA expression and protein levels in 

individual gene knockouts from this cluster, we confirmed a role for SETD2 in regulating Myc 

expression (Fig. 2.S9F-G). 

 

Our interphase clustering analysis further implicated poorly characterized gene targets in specific 

cellular activities. For example, we nominated C1orf131 as a putative nucleolar component 

involved in ribosome biogenesis based on its membership in cluster 21 (Fig. 2.3D), a prediction 

that was recently confirmed by others (117). Similarly, AKIRIN2 clustered with the 20S core  
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Figure 2.3. Clustering of multi-dimensional interphase phenotypes reveals co-functional 

essential genes. (A) Two-dimensional representation of the interphase phenotype landscape of 

gene targets in the primary screen visualized using PHATE (39) with hundreds of summary 

phenotype parameters, and then clustered to form groups of genes with similar phenotypes (see 
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section 2.13.8). Each dot represents a single gene target, colored corresponding to the indicated 

functional category of grouped clusters. (B) Distributions of the Pearson correlation between 

image-based interphase phenotype profiles from the primary screen for all gene pairs (gray) or 

gene pairs annotated as co-functional in the labeled external databases (orange), indicating 

increased phenotype similarity between known co-functional genes across the full dataset. (C) 

Individual clusters of genes related to translation from (A) identify fine-grained sub-categories of 

gene function in ribosome biogenesis, translation initiation, and individual ribosome subunits. 

Functional descriptions of labeled cluster numbers summarize the roles of the contained gene 

targets. (D) Heat map of interphase knockout phenotypes corresponding to the translation 

clusters in (C) for a manually-selected subset of phenotype parameters (see section 2.13.8). This 

highlights the phenotypic similarity of gene targets within functionally-coherent clusters, but clear 

distinctions between separate clusters despite broadly related roles in translation. All genes from 

each cluster are listed. Parameters are presented as z-scores from the distribution of non-

targeting sgRNAs, visualized on a symmetric log scale (linear between -1 and 1). (E) Individual 

clusters of genes related to transcription from (A) indicate separate clusters for components of 

each type of RNA polymerase, TFIID, and related complexes. (F) Heat map as in (D) 

corresponding to the clusters in (E) highlighting the phenotypic similarities and differences that 

define each cluster of genes with transcriptional functions. (G) Heat map as in (D) of interphase 

clusters 37 and 217, demonstrating the phenotypic similarity between C7orf26 knockouts with 

those of the Integrator complex. Hierarchical clustering (top) within these clusters using the 

Pearson correlation of PCA-projected phenotype profiles (see section 2.13.8) indicates 

particularly strong similarities between C7orf26 (red) and INTS10, and predicts that the 

uncharacterized gene C7orf26 is co-functional with established Integrator subunits. (H) 

Fluorescent image of human cells expressing GFP-C7orf26 demonstrates nuclear localization. 

Scale bar, 10 µm. (I) Mass spectrometry from an immunoprecipitation of GFP-C7orf26 in human 

cells relative to controls indicates that C7orf26 associates with subunits of the Integrator complex. 

 

 

 

particle proteasome subunits (cluster 167, Fig. 2.S8A), and was recently described as a required 

proteasome nuclear import factor (118). In addition, HNRNPD was present in cluster 197 together 

with METTL3 and METTL14 (Fig. 2.S9B), which form the core heterodimer that writes m6A mRNA 

modifications, consistent with the emerging role of m6A modifications in promoting HNRNPD 

associations with mRNA (119). 
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We also identified the uncharacterized gene C7orf26 in cluster 37 as displaying phenotypes 

closely related to those observed in knockouts of known subunits of the Integrator complex, an 

RNA endonuclease involved in RNA processing (120) present in clusters 37 and 217 (Fig. 2.3G). 

C7orf26 and Integrator complex knockouts resulted in reduced interphase tubulin intensity without 

corresponding changes in actin intensity. To evaluate this co-clustering relationship, we 

generated a cell line stably expressing GFP-C7orf26. This GFP-C7orf26 fusion localized to the 

nucleus (Fig. 2.3H), consistent with Integrator complex localization (121). Using affinity 

purifications coupled to mass spectrometry, GFP-C7orf26 pull-downs specifically isolated multiple 

Integrator complex subunits, with particularly robust levels of INTS13, INTS10, and INTS14 (Fig. 

2.3I; also see ref. 122). This is consistent with the strong phenotype similarity in our screen 

between C7orf26 and INTS10 knockouts (Fig. 2.3G). INTS10, INTS13, and INTS14 were recently 

shown to comprise a functional subunit of the Integrator complex that associates the cleavage 

module with target RNA (123). Our data thus suggests C7orf26 may interact with this sub-

complex, consistent with concurrent studies (124, 125). Thus, the phenotypic clustering of this 

dataset identifies established interacting partners and provides predictive insights to identify novel 

associations and co-functional players across key cell biological processes with the potential for 

many additional discoveries. 

2.9 Analysis of mitotic phenotypes identifies requirements for 

proper cell division 

We next analyzed the phenotypes observed in mitotic cells for each gene target. In total, 2.6% of 

the cells visualized in our microscopy-based screen were present in the mitotic phase of the cell 

cycle (median of 157 mitotic cells per gene target). In the presence of mitotic errors, cells activate 

the spindle assembly checkpoint and arrest in mitosis (98). Therefore, an increased fraction of 

obtained cell images that are identified as mitotic for a given gene (i.e., mitotic index) can reflect 

a mitotic disruption (Fig. 2.4A). We measured an increased mitotic index for gene knockouts 

targeting established components of the kinetochore and mitotic spindle. In contrast, we observed 

a reduced mitotic index for components of the spindle assembly checkpoint, including MAD2L1, 

BUB1B, and TTK (Mps1). 

 

Similar to our analysis of interphase cells, we next selected 876 non-redundant measurements 

from the extracted image parameters of mitotic knockout cells, including the overlap of tubulin 
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and DNA staining as a measure of mitotic chromosome alignment, and clustered gene targets 

with similar phenotype profiles (Fig. 2.4B-C; Fig. 2.S6D-F; Section 2.13.8). In addition, we 

conducted a manual visual analysis for each gene, with two individuals blindly and independently 

scoring image montages for the presence of mitotic defects. Overall, we found a strong 

correspondence between the automated and manual scoring (Fig. 2.S10A-B). From our 

computational analysis, we identified multiple mitotic clusters with functionally-related genes (Fig. 

2.4B-C), despite decreased cell counts and increased baseline morphological heterogeneity as 

compared to interphase cells. For example, we observed close clustering of CKAP5 and the entire 

Augmin complex (mitotic cluster M214), tubulin subunits with tubulin folding factors and the CCT 

chaperonin (M205), DNA replication factors (M34), factors required for chromosome alignment 

including kinetochore components (M11), and spindle and centrosome components (M109). In 

addition, we identified clusters for gene targets with established roles in mRNA splicing (M6 and 

M33), proteasome function (M88), and ribosome function (M0, M17, and M21) indicating that 

mitotic phenotype parameters are able to distinguish these functional categories. We found that 

this high-dimensional computational analysis provided a complementary but distinct 

measurement of mitotic phenotypes as compared to mitotic index (Fig. 2.4A). Visual analysis of 

cell image montages further allowed us to distinguish phenotypic clusters and individual gene 

targets for their specific roles during mitosis (Fig. 2.4C). For example, we detected reduced 

microtubule density following depletion of the tubulin chaperone TBCC, chromosome mis-

alignment following knockout of kinetochore components and additional factors (e.g., CENPC, 

SKA1, and the spliceosome gene SMU1), monopolar spindles associated with the targeting of 

KIF11 or PLK4, and short mitotic spindles in knockouts of CKAP5 or Augmin subunits (e.g., 

HAUS6; Fig. 2.4C). 

 

To evaluate our analysis of mitotic phenotypes, we additionally compared our findings to those 

from MitoCheck (16), a prior genome-wide siRNA-based arrayed microscopy screen for mitotic 

phenotypes in HeLa cells. Of the 293 identified genes from MitoCheck that were also present in 

our screen, we found that 79 demonstrated an aberrant mitotic index or measureable image-

based mitotic phenotype, while 70 additional genes scored significantly in at least one interphase 

phenotype category consistent with downstream consequences of mitotic defects. Conversely, 

we identified 799 genes with mitotic phenotypes in our screen that were not identified in 

MitoCheck, which are enriched for proteasome, cell cycle, and DNA replication genes among 

other relevant pathways (Fig. 2.S10C). The mitotic phenotypes uniquely observed in our study 

also include many canonical mitotic regulators such as kinetochore components (e.g, CENPC, 
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NDC80, SPC24/25, SKA1/2/3), Augmin complex subunits (HAUS1/2/5-8), and factors involved in 

centrosome function (CEP85, PLK4, STIL, SASS6, NEDD1, TUBGCP2/3/4/6). Our approach thus 

represents a significant improvement over prior systematic approaches to identifying mitotic 

regulators, enabled by Cas9-based gene perturbation and pooled phenotype acquisition. 

 

In addition to established mitotic players, predicted roles in mitosis also emerged for poorly 

characterized genes based on co-clustering with well-defined mitotic functions. In particular, we 

found that ZNF335 clustered with spindle proteins (including TACC3 and TPX2), gamma-tubulin 

complex proteins (TUBGCP2/3/6), and proteasome non-ATPase (PSMD) subunits (cluster M109; 

Fig. 2.4C). Examination of mitotic cells from the screen targeting ZNF335 and co-clustered gene 

targets suggested the presence of spindle defects (Fig. 2.4C). We confirmed this phenotype by 

generating an inducible knockout cell line for ZNF335, which displayed a substantially increased 

proportion of cells with monopolar spindles (Fig. 2.4D) and a reduction in centriole numbers (Fig. 

2.4E). GFP-ZNF335 localizes to the nucleus in interphase cells (Fig. 2.S10D), but did not display 

localization to the spindle or centrioles and did not associate with established mitotic factors in 

immunoprecipitation experiments (not shown). RNA-sequencing analysis of gene expression in 

ZNF335 knockouts also did not show changes in established spindle factors, but revealed a 

significant decrease in the expression of the non-ATPase 1 proteasome subunit (PSMD1) and a 

subunit of the gamma-tubulin ring complex (TUBGCP6; Fig. 2.4F), which both displayed similar 

monopolar spindle phenotypes in our screen (Fig. 2.4C).  Together, this suggests a likely role for 

ZNF335 in centrosome and spindle function through regulating the expression of specific 

proteasome or centrosome factors, and provides a potential explanation for why ZNF335 

mutations are observed in human microcephaly (126), as is the case for many centrosome 

components (127). In addition, we identified dozens of genes with measurable mitotic 

phenotypes, but less clear phenotypic clustering, that have not been implicated previously as 

having roles in cell division. We investigate these genes further in a targeted secondary screen 

below. In summary, this analysis demonstrates the utility of pooled large-scale image-based 

screening to identify complex interphase and mitotic phenotypes.  

2.10 A pooled live-cell imaging-based screen for mitotic defects 

Based on the large number of genes with unexpected mitotic phenotypes and the power of 

microscopy-based approaches to directly visualize these phenotypes in detail (16, 128), we 

performed a secondary pooled live-cell screen to analyze these factors further. First, we defined  
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Figure 2.4. Mitotic phenotypes uncover essential genes required for cell division. (A) 

Scatter plot showing mitotic index (proportion of mitotic cells) of the imaged cell population for 

each gene target compared to a summary score of image-based mitotic phenotype strength 

computed by PHATE (39) high-dimensional analysis. The summary phenotype score is the mean 

PHATE potential distance to non-targeting control sgRNAs for each gene, normalized between 0 

and 1. This highlights the complementary but distinct information provided by computational 

analysis of image-based mitotic phenotypes. Labeled gene targets are colored by functional 

category and highlight factors with increased cell division defects. (B) Two-dimensional 

representation of the mitotic phenotype landscape of gene targets in the primary screen visualized 

using PHATE with hundreds of summary phenotype parameters, and then clustered to form 

groups of genes with similar phenotypes (see section 2.13.8). Each dot represents a single gene 

target, colored corresponding to the indicated cluster. Functional descriptions of clusters 

summarize the roles of the contained gene targets. (C) Heat map of mitotic knockout phenotypes 

corresponding to the clusters in (B) for a manually-selected subset of phenotype parameters (see 

section 2.13.8). Also shown are example images of mitotic cells from gene targets in the identified 

clusters, visualizing DNA (magenta) and microtubules (green). Scale bar, 10 µm. This highlights 

the phenotypic similarity of gene targets within clusters and the ability to separate distinct mitotic 

functions. Furthermore, this analysis implicated the role of ZNF335 in mitotic spindle bipolarity. 

All gene targets from selected clusters are listed. Parameters are presented as z-scores from the 

distribution of non-targeting sgRNAs, visualized on a symmetric log scale (linear between -1 and 

1). (D) Left, immunofluorescence images showing individual cell lines stably expressing a single 

control sgRNA or a sgRNA targeting ZNF335. Right, bar plot of the corresponding fraction of 

mitotic cells with monopolar spindles; each data point represents one experiment with >100 cells. 

This demonstrates the reproducible strong effect of knocking out ZNF335 on spindle assembly. 

Images are deconvolved maximum intensity projections of fixed cells stained for microtubules 

(anti-alpha-tubulin) and DNA (Hoechst). (E) Example images (left) of DNA (Hoechst, magenta) 

and Centrin (grayscale) stains from monopolar ZNF335 knockout cells along with quantification 

of reduced centriole numbers (right) compared to monopolar control cells generated by STLC 

treatment (n>88 cells per condition). Insets show magnified regions. Scale bars, 10 µm. (F) 

Volcano plot of differential gene expression following ZNF335 knockout. Yellow data points 

represent genes co-clustering with ZNF335 in the image-based screen in mitotic cluster 109 (C). 

Of the genes in this cluster, PSMD1 and TUBGCP6 are significantly decreased in ZNF335 KO 

cells. 296 genes are downregulated (magenta) and 177 genes are upregulated (green) in ZNF335 

KO cells (FDR < 0.01, log2 effect size > 0.5). 



37 

a list of 228 genes with unexpected mitotic phenotypes, and additionally selected 11 positive 

control genes with established roles in diverse mitotic processes. We generated a lentiviral library 

of Cas9 guides targeting these genes, with 2 sgRNAs per gene and 50 non-targeting sgRNAs 

(526 total sgRNAs; Section 2.13.1). The sgRNA library was transduced into a HeLa cell line 

containing doxycycline-inducible Cas9 and a constitutively-expressed H2B-mCherry fusion to 

visualize chromatin (Fig. 2.5A). We conducted time-lapse imaging of the pooled cell population 

for 24 hours with time points at 10 minute intervals, starting after either 48 or 72 hours of Cas9 

expression in separate time courses. Following the acquisition of the time-lapse images, we 

immediately fixed the cell population and amplified the sgRNA sequences in situ to identify the 

gene targeted in each cell, as described for the fixed-cell screen (Fig. 2.5A; Section 2.13.6). After 

tracking cell lineages through each time course and using a support vector classifier to identify 

mitotic cells, we obtained time-lapse movies for 451,434 total cell division events, with a median 

of 1,381 division events per gene target (Fig. 2.S11A-C; Section 2.13.10). This enabled us to 

generate time-lapse montages of tracked cells for each gene target, with each cell temporally 

aligned to mitotic entry (Fig. 2.5B-C; Fig. 2.S11D; https://vesuvius.wi.mit.edu/). 

 

Using this automated live-cell analysis of cell division, we calculated the mean duration of division 

events for each gene target, as well as the fraction of cells that enter mitosis during the time 

course (Fig. 2.5B). As expected based on the presence of mitotic defects in the primary screen, 

197 of 239 tested gene knockouts, including 10 of 11 positive controls, displayed altered mitotic 

duration or entry relative to non-targeting controls in at least one time course (Fig. 2.5B; Fig. 

2.S12). The spindle assembly checkpoint component BUB1B demonstrated decreased mitotic 

duration, highlighting the ability to identify either mitotic delay or acceleration. ANLN, the positive 

control not exhibiting a strong effect, is required for cytokinesis and thus its loss may not 

significantly affect the measured phenotypes. We were also able to distinguish gene targets with 

established or predicted roles in DNA replication or repair (e.g., DTL, LRR1, TICRR, MMS22L; 

93, 100, 129–131), based on their increased mitotic duration but reduced fraction of cells entering 

mitosis (Fig. 2.5B), indicative of defective mitotic entry. We next visually inspected each time-

lapse montage for the presence of mitotic phenotypes, including lagging chromosomes or delayed 

chromosome alignment (Fig. 2.5C; Fig. 2.S11D). From these observed phenotypes, we selected 

28 genes of interest with chromosome alignment defects to conduct targeted downstream 

analyses. In each case, we generated individual cell lines with a single sgRNA targeting the 

corresponding gene and conducted both fixed- and live-cell microscopy to identify phenotypes for 

each individual gene knockout at higher spatial and temporal resolution (Fig. 2.5D; Fig. 2.S13A; 

https://vesuvius.wi.mit.edu/
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Fig. 2.S14E). All of the 28 selected gene targets displayed clear defects in chromosome alignment 

or segregation. Of these genes, a subset displayed defects in bipolar spindle assembly, including 

short spindles (TCP1). We were also able to distinguish gene targets with roles in DNA replication 

or DNA damage (e.g., LRR1, TRAIP, ISCU, TICRR, MMS22L), which resulted in multipolar 

spindles or misaligned chromosomes (Fig. 2.S13A). Unexpectedly, amongst the gene targets 

whose knockouts resulted in misaligned chromosomes, we identified two membrane-bound 

transporters - the plasma membrane-localized aquaporin AQP7 and the sodium/potassium-

transporting ATPase ATP1A1 (Fig. 2.5D). Notably, AQP7 is the only aquaporin that is broadly 

essential for cellular viability in the DepMap database (82). Individual AQP7 and ATP1A1 

knockout cell lines both displayed a reproducible delay in chromosome alignment and an 

extended mitotic duration (Fig. 2.5E-F), but we did not observe defects in bipolar spindle assembly 

(Fig. 2.5D) or kinetochore assembly (Fig. 2.S13B-C). As both membrane transporters are involved 

in maintaining a proper intracellular osmotic environment, we tested the effect of treating cells 

with 300 Da polyethylene glycol (PEG 300), which is known to create hyperosmotic stress (132). 

PEG300 treatment of control cells resulted in a qualitatively similar mitotic phenotype, including 

chromosome misalignment and a mitotic delay (Fig. 2.5E-F). By titrating PEG300 concentration, 

we also observed an additive mitotic defect from combining hyperosmotic stress with ATP1A1 

and AQP7 knockouts (Fig. 2.5E-F). Taking into consideration the combined evidence, we propose 

that AQP7 and ATP1A1 are required to create an internal osmotic cellular environment that 

promotes proper chromosome segregation, revealing an unanticipated role for osmolarity and its 

regulation in mitotic fidelity. Thus, our pooled live-cell screen confirms the observed mitotic 

defects from the primary screen and reveals roles for diverse gene targets in mitotic progression 

and fidelity. 

2.11 LIN52, CLP1, and RNPC3 are required for the correct 

expression of kinetochore assembly factors 

To define the basis for the observed mitotic phenotypes, we next tested the function of the 

kinetochore, the key player in mediating interactions between centromere DNA and microtubule 

polymers during cell division (133). In particular, we evaluated the localization of the inner 

kinetochore centromere-specific histone CENP-A and the outer kinetochore microtubule-binding 

protein Ndc80 for the 28 individual inducible knockout cell lines described above. Of these genes, 

25 displayed only modest or no changes in the kinetochore recruitment of Ndc80 (Fig. 2.S13B), 

suggesting that kinetochore assembly is largely intact. In contrast, for the CLP1, RNPC3, and  
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Figure 2.5. A pooled live-cell screen identifies gene targets required for mitotic 

progression. (A) Schematic of the experimental workflow for the live-cell, image-based pooled 

CRISPR screen using a cell line expressing an H2B-mCherry fusion (also see section 2.13.6). 

(B) Left, scatter plot comparing the fraction of cells that enter mitosis within the 24 hour time 

course and the mitotic duration of observed cell division events. This live-cell analysis identifies 

genes with defects in mitotic entry or progression. Plotted values represent the mean of sgRNAs 

targeting the same gene. Labeled genes are colored by functional category, including positive 

control mitotic factors in green. Right, example images of H2B-mCherry fluorescence from the 

live-cell screen at the indicated time points after mitotic entry for knockouts of established cell 

division components. Targeting the spindle assembly checkpoint gene BUB1B results in an 

acceleration of mitosis, whereas knockouts of AURKA, a key mitotic kinase, result in a mitotic 

arrest. (C) Example time course montages from the live-cell screen as in (B) demonstrating mitotic 

delay and mitotic defects for selected target genes. (D) Immunofluorescence images showing 

individual cell lines stably expressing a single sgRNA targeting each gene of interest to enable 

visualization of phenotypes at higher resolution across a single population (see also Fig. S13A, 

S14E). Images are deconvolved maximum intensity projections of fixed cells stained for 

microtubules (anti-alpha-tubulin) and DNA (Hoechst). Scale bars, 10 µm. (E) Example images 

and (F) mitotic duration quantification from time-lapse imaging of control, AQP7, and ATP1A1 

inducible knockout cells incubated with varying PEG300 concentrations to induce hyperosmotic 

stress. Hyperosmotic stress alone induces chromosome alignment delays in control cells similar 

to AQP7 and ATP1A1 knockouts, while an additive effect on mitotic delay is observed when 

incubating knockout cells with PEG300.  n>50 cells per datapoint. 

 

 

 

LIN52 inducible knockouts, we observed a substantial reduction in Ndc80 localization and total 

Ndc80 protein levels (Fig. 2.6A; Fig. 2.S13D). Similarly, we found that 27 of the tested knockouts 

did not strongly alter the kinetochore localization of  CENP-A, with the exception of the LIN52 

inducible knockout which also demonstrated decreased total CENP-A protein levels (Fig. 2.6B; 

Fig. 2.S13C-D). Based on these changes in kinetochore assembly, we chose to focus on LIN52, 

CLP1, and RNCP3 to evaluate their contributions to mitosis. 

 

LIN52 is a component of the DREAM complex, comprised of E2F family transcription factors, 

LIN9/37/52/54, MYBL1/2, RBL1/2, RBBP4, and TFDP1/2, which acts together with FOXM1 as a 
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transcriptional regulator for cell cycle genes (134, 135). GFP-LIN52 localizes to the nucleus (Fig. 

2.S14A), and in immunoprecipitation-mass spectrometry experiments we found that LIN52 

associates with LIN9/37/54, RBBP4, and RBBP7, but not other established DREAM complex 

proteins (Fig. 2.S14B). Correspondingly, in our fixed-cell screen LIN52 displayed similar 

interphase phenotypes to LIN9/37/54, RBBP4 and RBBP7 (cluster 46; Fig. 2.6C), but not with the 

other DREAM-related genes present in the screen (MYBL2, TFDP1, E2F1, E2F3, E2F6, FOXM1), 

highlighting the predictive power of the clustering analysis. Consistent with the phenotypic co-

clustering and physical interactions, we observed chromosome misalignment, a mitotic delay, and 

substantial changes to kinetochore assembly in knockouts of LIN52, LIN9, and LIN54 (Fig. 

2.S14C-D). Based on RNA-seq analysis of LIN52 knockout cells arrested in mitosis, we found a 

pervasive decrease in the expression of diverse cell division genes (Fig. 2.6D). This includes 

substantial downregulation of multiple subunits of the Ndc80 complex as well as CENP-A and its 

associated deposition machinery, providing an explanation for the broad defects in kinetochore 

assembly. Thus, although LIN52 knockout cells are able to progress through the cell cycle and 

enter mitosis (Fig. 2.5B), the downregulation of these mitotic players provides an explanation for 

the observed aberrant chromosome alignment and mis-segregation. In contrast, we did not detect 

altered kinetochore protein levels or chromosome misalignment for FOXM1 knockouts and only 

observed a modest change in CENP-A and Ndc80 localization in MYBL2 knockouts (Fig. 2.6A-B; 

Fig. 2.S13D; Fig. 2.S14E), suggesting a potent role for the LIN52 sub-complex in the expression 

of cell division components. 

 

CLP1 is a component of the pre-mRNA cleavage complex II (136). In our interphase phenotypic 

clustering analysis, CLP1 is closely associated with the direct interacting partner PCF11 (136) 

and another gene involved in transcription termination, ZC3H4 (Fig. 2.6E; 137, 138). This 

suggests the observed CLP1 phenotype is related to its role in mRNA 3’ end formation. We 

performed RNA-sequencing analysis of CLP1 knockout cells, which revealed wide-spread defects 

in transcription termination (Fig. 2.S14F) as well as a global decrease in mRNA expression (Fig. 

2.6F). Amongst the genes that evaded downregulation, PCF11 displayed significantly increased 

relative gene expression, consistent with autoregulation of the pre-mRNA cleavage complex 

(139). Reciprocally, we observed particularly strong downregulation of selected cell division 

components, including the Ndc80 complex subunits Spc24 and Spc25. The downregulation of 

these proteins may explain the selective loss of the Ndc80 complex (Fig. 2.6A-B), and the 

chromosome mis-alignment defects in CLP1 knockouts (Fig. 2.5C-D). 
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Finally, we analyzed RNCP3. In our fixed-cell screen, RNPC3 displayed an interphase phenotype 

closely related with multiple components of the minor spliceosome machinery (Fig. 2.6G), 

consistent with prior work (140). Based on RNA-seq analysis of RNPC3 knockouts arrested in 

mitosis, we found pervasive issues in the splicing of minor introns across diverse genes, coupled 

with substantial down-regulation of these minor intron-containing mRNAs (Fig. 2.6I). Amongst 

these genes, we identified the Ndc80 complex subunit SPC24 as being specifically mis-spliced 

and downregulated (Fig. 2.6H-I; Fig. 2.S14G; see also 141). Strikingly, we were able to rescue 

the chromosome alignment defects in RNPC3 knockout cells through the exogenous expression 

of a spliced SPC24 cDNA (Fig. 2.6J). Thus, the role of RNPC3 in the minor spliceosome and the 

selective requirement for minor intron splicing in the production of the SPC24 mRNA explains the 

observed outer kinetochore assembly defects and chromosome mis-segregation phenotype in 

RNPC3 knockouts (Fig. 2.5C-D; Fig. 2.6A). 

 

Together, this work provides a molecular explanation for the cell division phenotypes of LIN52, 

CLP1, and RNPC3 knockouts observed in our large-scale optical pooled screens, with defects in 

the production of critical players in chromosome segregation and kinetochore assembly. These 

analyses also highlight the ability of our image-based phenotypic clustering to identify functional 

relationships and define roles for diverse factors in complex phenotypes. 

2.12 Pooled image-based screens define the phenotypic 

landscape of cellular functions 

Our pooled microscopy-based analysis of tens of millions of individual knockout cells for 

thousands of essential and fitness-conferring human genes defines their functional contributions 

to diverse biological processes. By obtaining quantitative information for diverse image-based 

parameters that are directly comparable across a large cell population, this approach identifies 

co-functional gene targets with fine-grained resolution to distinguish roles in specific cellular 

processes and protein complexes. Studies analyzing proteome-wide protein interactions, single-

cell transcriptional responses to thousands of genetic perturbations,  and coordinated gene 

expression across biological contexts have also defined large-scale molecular networks (111, 

124, 142). The precision and breadth of the clustering behaviors reported here highlight the ability 

of quantitative image-based phenotypic profiling to provide a similar scale of functional 

information, with complementary but distinct insights. Although we focused primarily on aggregate 

behaviors of predefined image features across the population of imaged cells for each gene  
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Figure 2.6. Lin52, Clp1 and RNPC3 functions to promote proper kinetochore assembly and 

chromosome segregation. (A) Bar plot showing total protein level (blue) and kinetochore-

localized intensity (red) of the outer kinetochore microtubule-binding protein NDC80 relative to a 

control sgRNA in the indicated inducible knockout cell lines. NDC80 total protein levels and 

kinetochore-localized intensity are substantially decreased for CLP1, RNPC3, and LIN52 

knockouts. N=2 biological replicates for total protein levels, which were normalized to GAPDH. 

N=2-10 biological replicates for kinetochore measurements, each replicate represents the median 

kinetochore signal from >10 cells. Both measurements were further normalized relative to controls 

from the same experiment. *P<0.05, **P<0.01 by two-tailed independent T-test relative to 

corresponding control samples. ND, no data. (B) Bar plot as in (A) showing total protein level 

(blue) and kinetochore-localized intensity for the inner kinetochore centromere-specific histone 

CENP-A relative to a control sgRNA in the indicated inducible knockout cell lines. CENP-A total 

protein levels and kinetochore-localized intensity are strongly decreased for LIN52 knockouts. 

Experiment design as in (A). *P<0.05, **P<0.01 by two-tailed independent T-test relative to 

corresponding control samples. (C) Phenotype heat map and hierarchical clustering for a subset 

of primary screen interphase cluster 46 genes. This highlights the similarities between LIN52 and 

its previously defined interacting partners (red). Hierarchical clustering (top) was performed using 

the Pearson correlation of PCA-projected phenotype profiles (see section 2.13.8). Parameters 

are presented as z-scores from the distribution of non-targeting sgRNAs, visualized on a 

symmetric log scale (linear between -1 and 1). (D) Volcano plot of LIN52 knockout differential 

expression demonstrates the requirement of LIN52 for the expression of both inner and outer 

kinetochore components. Genes involved in cell division processes are indicated in purple. 

Significance threshold FDR < 0.01, log2 effect size > 0.5 for up- (green) and down-regulated genes 

(magenta). Inset, GO term analysis of LIN52 downregulated genes shows a significant enrichment 

of mitotic genes (inset). (E) Heat map of primary screen interphase cluster 204 phenotypes as in 

(C), demonstrating an association of knockout phenotypes for the pre-mRNA cleavage complex 

II factors CLP1 and PCF11. ZC3H4, an additional gene involved in transcriptional termination, 

also shows a similar knockout phenotype. (F) Volcano plot of differential expression as in (D) 

following CLP1 knockout, identifying a global decrease in mRNA abundance in these cells, 

identified by normalizing to library spike-in control RNA (brown). Expression of outer kinetochore 

genes SPC24 and SPC25 is particularly sensitive to loss of CLP1. The interacting 3’ end 

processing gene PCF11 is upregulated in CLP1 knockout cells, consistent with autoregulation of 

this complex (70). (G) Heat map of a subset of primary screen interphase cluster 39 phenotypes 

as in (C), demonstrating tight clustering of minor spliceosome components including RNPC3. (H) 
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Volcano plot of differential gene expression as in (D) after RNPC3 knockout. SPC24 is the only 

outer kinetochore component significantly downregulated in RNPC3 knockout cells. (I) 

Cumulative distributions of mRNA fold change from RNPC3 knockout cells for transcripts 

containing at least 1 minor intron (orange) are significantly downregulated compared to transcripts 

with no minor introns (purple). Statistical significance between cumulative distributions was 

assessed using the Mann-Whitney U test. Inset, minor introns are retained in RNPC3 knockout 

cells (green), including the minor introns in SPC24 (dotted lines), possibly explaining the 

decreased SPC24 transcript levels and kinetochore assembly defects in these cells. (J) Left, bar 

plot showing fraction of mitotic RNPC3 knockout cells displaying chromosome alignment defects 

when expressing a fluorescent Tag only (NeonGreen) or GFP-SPC24. Data points indicate 

independent replicates of >100 cells. * = P<0.01 by T-test relative to the tag alone control. Right, 

representative images of DNA (H2B-mCherry) and transgene localization for live RNPC3 

knockout cells expressing Tag only or GFP-SPC24. Scale bar, 10 µm. 

 

 

 

target, future studies leveraging the distribution of single-cell phenotypes or applying 

convolutional neural networks to directly learn phenotype representations will enable additional 

resolution and insights for understanding gene functions. In addition to providing an expansive 

and powerful resource for the analysis of phenotypes resulting from the disruption of essential 

genes in our companion interactive web portal (https://vesuvius.wi.mit.edu/), this work provides 

multiple predictions for the contributions of incompletely characterized genes to fundamental 

cellular functions. We anticipate that this type of scalable and information-rich cell biological 

genomic screening will enable future studies that will yield additional key insights across 

numerous cellular phenotypes and conditions. 

2.13 Methods 

2.13.1   Library design and cloning 

The primary screen library of fitness-conferring genes was defined based on evidence from 

multiple published sources. First, we used data from the Broad Institute DepMap project (81, 82, 

85) to identify genes that are broadly fitness-conferring in a variety of cell lines. Specifically, we 

selected genes with a genetic dependency probability of >0.35 in at least 10% of the >600 tested 

cell lines (Fig. 2.S1A, B), resulting in 3,991 selected genes. We subsequently chose 1,081 

https://vesuvius.wi.mit.edu/
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additional genes that had evidence of essentiality in at least 2 other published screens (80, 83, 

84, 86–88). CRISPR sgRNA sequences were selected from published libraries (88–90), with 

simultaneous optimization of sgRNA performance (e.g., on- and off-target efficiency) and 

minimization of 5’ sequence length required to demultiplex all sgRNAs during in situ sequencing. 

In total, we selected 20,445 sgRNA sequences, including 4 sgRNAs each for all but one gene 

target (3 sgRNAs targeting RGPD5) and 250 non-targeting control sgRNAs, with a minimum 

Levenshtein distance of 2 between the leading 11-nucleotide 5’ sequence for all possible pairs of 

sgRNAs. We note that, for some groups of genes with high sequence homology, it is not possible 

to design distinct targeting sgRNAs for each gene. For groups of genes where the full lists of 

possible sgRNAs collected from previously published libraries were identical, a single set of 4 

sgRNAs was chosen to target these genes collectively. Two sgRNAs per gene were selected for 

the 239 genes in the live cell screen based on performance in the fixed-cell screen, in addition to 

50 non-targeting guides selected using the 5’ sequence optimization described above. Targeting 

and non-targeting sgRNA libraries were designed as separate subpools of synthesized oligo 

arrays (Agilent) and independently cloned into CROPseq-puro-v2 (Addgene #127458) as 

described previously (1). 

 

For expression of fusion proteins, H2B (pKC96) was amplified from a template retroviral construct 

(143) and SPC24 (pKG422) from pJAG261 (gift from Jagesh Shah), while C7orf26 

(NP_076972.2; pKC509) and LIN52 (Q52LA3.1; pKC518) were human codon-optimized and 

synthesized (Twist Biosciences). Gene fragments were ligated into an mCherry, GFP, or EGFP 

pBABE-based vector (Addgene #44432). ZNF335 (pKC530) was amplified from Synthetic 

construct Homo sapiens clone IMAGE:100066405 andligated into a EGFP lentiviral vector. 

sgRNA constructs for individual inducible knockout cell lines were generated by primer annealing 

and ligation into sgOPTI (144). A control sgRNA with a single target site within the non-essential 

LBR gene was used for comparison of all follow-up experiments (HS1, 145). 

2.13.2   Tissue culture 

HeLa and HEK293 cells were cultured in DMEM with sodium pyruvate and GlutaMAX (Life 

Technologies 10569044) or 2 mM L-glutamine supplemented with 10% heat-inactivated fetal 

bovine serum (Sigma F4135) and 100 U/mL penicillin-streptomycin (Thermo Fisher Scientific 

15140122). 
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2.13.3   Virus production, transduction and selection 

Prior to lentiviral production of screening sgRNA libraries, the corresponding targeting and non-

targeting plasmid pools were mixed (final non-targeting sgRNA pool fraction of 5% for the primary 

fixed-cell screen, 9.5% for the secondary live-cell screen). Lentiviral production and transduction 

were performed as described previously for libraries (1, 75) or single targets (87).  

 

Retrovirus was generated by transfecting VSVG packaging plasmid and pBABE-based vectors 

containing H2B-mCherry, EGFP-C7orf26, EGFP-Lin52, GFP-SPC24 fusions or mNeonGreen into 

HEK293-GP cells with Effectene (Qiagen) for transduction as described previously 

(146). Transduced cells were enriched by FACS (GFP-SPC24) or selected with 375 μg/ml 

hygromycin (Invitrogen).  

2.13.4   Fluorescence microscopy 

All screening datasets were acquired using a Nikon Ti-2 inverted epifluorescence microscope with 

automated stage control, hardware autofocus, and an Iris 9 sCMOS camera (Teledyne 

Photometrics). All hardware was controlled using NIS-Elements AR, and a CELESTA light engine 

(Lumencor) was used for fluorescence illumination. In situ sequencing cycles were acquired using 

a 10X 0.45 NA CFI Plan Apo Lambda objective (Nikon MRD00105) and 2x2 pixel binning with the 

following laser lines, filters, and exposure times for each channel: DAPI (408 nm laser excitation 

with 0.8% power, custom Chroma dual-band 408/473 dichroic and emission filter set, 50 ms 

exposure), Miseq G (545 nm laser with 30% power and Semrock FF01-543/3 excitation filter, 

Chroma T555LPXR dichroic filter, Chroma ET575/30 emission filter, 200 ms exposure), Miseq T 

(545 nm laser excitation with 30% power, Chroma T565LPXR dichroic filter, Semrock FF01-

615/24 emission filter, 200 ms exposure), Miseq A (635 nm laser excitation with 30% power, 

Chroma ZET635RDC dichroic filter, Semrock FF01-680/42 emission filter, 200 ms), Miseq C (635 

nm laser excitation with 30% power, Chroma ZET635RDC dichroic filter, Semrock FF01-732/68 

emission filter, 200 ms exposure). Fixed-cell primary screen phenotype images were acquired 

using a 20X 0.75 NA CFI Plan Apo Lambda objective (Nikon MRD00205) using DAPI (as before), 

FITC (473 nm laser excitation, custom Chroma 408/473 filter set), Alexa Fluor 594 (same settings 

as MiSeq T), and Alexa Fluor 750 (750 nm laser excitation, Semrock FF765-Di01 dichroic filter, 

custom ET820/110 Chroma emission filter) fluorescence channels. For the live-cell secondary 

screen, timelapse phenotype images were acquired using the 20X objective lens, an mCherry 
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fluorescence channel (same settings as MiSeq T), and a microscope enclosure with temperature 

and CO2 control along with passive humidification (Okolab H201). 

 

Immunofluorescence images of single knockout cell lines were taken on the Deltavision Ultra 

(Cytiva) system using a 60x/1.42NA objective and deconvolution. For kinetochore component 

quantification, z-sections at 0.2 μm intervals were taken using a 100X/1.45NA objective. For time 

lapse imaging of individual inducible knockouts and EGFP fusion cell lines, we used a Nikon 

Eclipse microscope equipped with an ORCA-Fusion BT sCMOS camera (Hamamatsu) using a 

Plan Fluor 20X/0.5 NA (live cells) or 40x/1.3NA (EGFP) objective lens. 

2.13.5   Fixed-cell optical pooled CRISPR screen 

For the fixed cell screen, HeLa-TetR-Cas9 (A7) cells were transduced with the 20,445 sgRNA 

library in CROPseq-puro-v2 and selected with 2 μg/mL puromycin (Thermo Fisher Scientific 

A1113803) for 4 days. Cas9 expression was induced with 2 μg/mL doxycycline for 78 hours, and 

the cell library was seeded into eight 6-well glass-bottom plates (Cellvis P06-1.5H-N) at a density 

of 300,000 cells per well (~30,000 cells/cm2) 48 hours prior to fixation. Cells were fixed with 4% 

paraformaldehyde in PBS for 30 minutes, followed by in situ amplification as described previously 

(1, 75). After rolling circle amplification, cells were stained with rabbit anti-gamma H2A.X 

(phospho S139) antibody (Abcam ab81299, 1:2000 dilution in PBS with 3% BSA) for 1 hour at 

room temperature. Cells were washed twice with PBS-T (PBS with 0.05% Tween-20), then 

stained with mouse anti-alpha-tubulin-FITC antibody (Sigma F2168, 1:500 dilution), goat anti-

rabbit antibody disulfide-linked to Alexa Fluor 594 (Invitrogen 31212, Thermo Fisher Scientific 

A10270, custom conjugation; 1:500 dilution), and Alexa Fluor Plus 750 Phalloidin (Thermo Fisher 

Scientific A30105, 1:1000 dilution) in PBS with 3% BSA for 45 minutes at room temperature. After 

washing with PBS-T three times, well plates were replaced with 200 ng/mL DAPI in 2X SSC and 

imaged for cellular phenotypes using the microscope configuration described above with 4 z-

slices at 1.5 μm intervals. Following phenotype imaging, Alexa Fluor 594 was cleaved from 

disulfide-linked antibodies by incubating cells in 50 mM TCEP in 2X SSC for 1 hour at room 

temperature, followed by three washes with PBS-T. Finally, 11 cycles of in situ sequencing-by-

synthesis were performed as described previously (1, 75). In parallel with the optical pooled 

screen, cells expressing the same sgRNA library were induced with 1 μg/mL doxycycline, and 

then doxycycline media was refreshed every day for 2 more days. Cells were harvested on days 

0 (pre-induction), 3, and 5 post-Cas9 induction and genomic DNA was extracted using PureLink 

(Invitrogen). sgRNA sequences were then PCR amplified using Q5 hotstart (NEB) with primers 
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oDF344 (ACACGACGCTCTTCCGATCTtcttgtggaaaggacgaaac) and oDF112 

(CTGGAGTTCAGACGTGTGCTCTTCCGATCaagcaccgactcggtgccac) before addition of index 

barcodes and sequencing on an Illumina HiSeq using sequencing primer oKC651 

(ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcttgtggaaaggacgaaacaccg). 

2.13.6   Live-cell optical pooled CRISPR screen 

HeLa-TetR-Cas9 cells expressing an H2B-mCherry fusion protein (cKC556) were transduced 

with the live-cell screening library of 526 sgRNA sequences. Cells were selected with 2 μg/mL 

puromycin (Thermo Fisher Scientific A1113803) for 3 days. Cas9 expression was induced with 2 

μg/mL doxycycline for 48 (day 3 time course) or 72 hours (day 4 time course) prior to the beginning 

of live-cell imaging, and cells were seeded into 6-well glass-bottom plates (Cellvis P06-1.5H-N) 

at a density of 300,000 or 350,000 cells per well (~35,000 cells/cm2) 24 hours prior to imaging. 

Each time course was performed in three batches on separate days. Immediately before imaging, 

cells were washed once with PBS, and then replaced with imaging media consisting of phenol 

red-free DMEM with L-glutamine and HEPES (Thermo Fisher Scientific 21063029) supplemented 

with 10% heat-inactivated fetal bovine serum (Sigma F4135) and 100 U/mL penicillin-

streptomycin (Thermo Fisher Scientific 15140122). Live-cell imaging was performed using the 

microscope configuration described above and 2 z-slices spaced at either 4 or 5 μm intervals. 

Cells were imaged for 24 hours at 10 minute time intervals, immediately fixed with 4% 

paraformaldehyde in PBS for 30 minutes, then processed through in situ amplification and 

sequencing-by-synthesis following the same protocol as the fixed-cell screen. 

2.13.7   Screening image analysis 

In situ sequencing spots were identified and barcode sequences extracted using our previously 

described workflow (1, 75, 147). In addition, phenotype images were acquired at a higher 

magnification than in situ sequencing images, and thus the datasets were computationally aligned 

to match cell identities. This alignment was completed by computing the Delaunay triangulation 

of nuclei centroids for each phenotype and sequencing image tile, and then comparing 

triangulations between images from the two datasets to find matching tiles and cell identities. 

Overall, approximately 60% of all segmented cells were included in the final dataset (Fig. 2.S1E), 

with remaining cells unused due to no in situ sequencing spots matching a designed sgRNA 

sequence, sequencing reads mapping to multiple gene targets, or an inability to match cell 

identities between the sequencing and phenotype images. 
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Phenotype images from both screens were first maximum intensity projected to compress z-slices 

into a single plane, and then a retrospective flat-field correction was applied to reduce effects from 

uneven illumination (148). Nuclei were semantically segmented by applying a local intensity 

threshold to the DAPI channel and then performing morphological operations to remove aberrant 

holes and particles. Individual nucleus instances were then segmented using the watershed 

algorithm. In the fixed-cell phenotype data, semantic segmentation of cytoplasmic foreground was 

achieved by thresholding a Gaussian-filtered copy of the phalloidin (actin) channel (sigma of 3 

pixels), followed by morphological operations. Cell instances were identified by applying the 

watershed algorithm with nuclear segmentations as seeds. Phenotype parameters were extracted 

from nuclear and cellular segmentations for each channel by implementing image features from 

CellProfiler (149), scikit-image (150), and mahotas (151) as Python functions operating on scikit-

image RegionProperties objects. Image segmentation, phenotype feature extraction, and in situ 

sequencing analysis were performed in parallel on a per-image tile basis using the Snakemake 

workflow manager (152). 

2.13.8   Fixed-cell screen phenotype analysis 

After aligning the phenotype and sequencing datasets, a subset of features were transformed to 

approximate normal distributions. All features for each cell were then normalized using the median 

and median absolute deviation of the population of cells carrying non-targeting sgRNAs within the 

same well (robust z-score). This internal control procedure was used to reduce batch effects 

between wells and plates that may be caused by intensity differences or cell density effects. 

Mitotic and interphase cells were identified using a support vector classifier (scikit-learn (153) 

svm.SVC implementation, default parameters) trained with 2,514 annotated cells on a subset of 

182 features that demonstrated the highest average difference between annotated mitotic and 

interphase cells (Fig. 2.S1F). Cell-level measurements were then re-normalized from the raw data 

as before, but within interphase and mitotic cells separately. 

 

Summary phenotype measurements were computed for each gene target by taking the median 

of z-scored parameters for all cells targeted by a single sgRNA sequence, then aggregating to 

the gene level by taking the median across sgRNAs targeting the same gene. Raw p-values for 

a subset of summary parameters were computed by comparing gene scores to null distributions 

of corresponding bootstrapped summary scores from cells expressing non-targeting sgRNAs. 

Separate null distributions were defined for each gene target by first performing 100,000 cell 
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sampling repetitions to produce a distribution of bootstrapped non-targeting sgRNA scores for 

each cell sample size of the targeting sgRNAs. These guide-level null distributions were then 

correspondingly sampled 100,000 times for each group of sgRNAs targeting the same gene and 

aggregated to produce gene-level null distributions with matched cell and guide sample sizes. 

The Benjamini-Hochberg procedure was applied to obtain the reported FDR q-values. An FDR 

threshold of 0.05 was used for defining significance for all parameters. This process was modified 

for the mean nuclear 𝛾H2AX intensity measurements, as the non-targeting cells do not provide 

an adequate null population for this phenotype given the lack of Cas9-induced DNA breaks. In 

this case, bootstrapped null distributions were generated by sampling from all cells expressing 

any targeting sgRNA. This approach, combined with an effect size threshold at the 2.5 and 97.5 

percentiles of the non-targeting sgRNA scores, resulted in a conservative identification of mean 

nuclear 𝛾H2AX intensity phenotypes beyond baseline DNA damage resulting from Cas9 nuclease 

activity. 

 

For the high-dimensional analysis, pairs of features with a Pearson correlation greater than 0.9 

were iteratively excluded, and additional features with low variance or only a few unique discrete 

values across the dataset were removed. This resulted in a set of 472 features for the interphase 

dataset and 884 features for the mitotic dataset, selected independently from the full list of 1,084 

extracted features. Further feature redundancies were reduced by applying principal component 

analysis (PCA) and retaining the components that explain 95% of the variance in the datasets 

(103 components for the interphase data, 530 components for the mitotic data). The PHATE 

manifold learning and visualization algorithm (109) was then used to produce two-dimensional 

representations of the phenotypic landscape of gene targets (default parameters except 

n_pca=None). To cluster knockout phenotypes, the PHATE diffusion operator affinity graph was 

supplied as input to the Leiden algorithm, which optimizes cluster modularity (154). The Leiden 

resolution parameter was chosen by analyzing the robustness of clustering solutions to the 

subsampling of gene-level data with varying resolution (resolution = 10 for interphase dataset, 

resolution = 9 for mitotic dataset; Fig. 2.S6C, F). For visualization of differences between 

phenotype profiles and corresponding clusters in the presented heatmaps (Fig. 2.3D, F, G, Fig. 

2.4C, etc.), we first selected clusters to highlight based on the presence of known functional 

groups of genes, then iteratively selected a minimal set of phenotype parameters that together 

discriminated the various clusters. Features with clear explanation were prioritized to enable 

interpretability, resulting in 16 interphase and 16 mitotic phenotype features. Where hierarchical 

clustering results are presented, this was performed using average linkage (UPGMA) of the 
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Pearson correlation between PCA-projected phenotype profiles. In parallel with the computational 

phenotype analysis, two individuals independently scored mitotic phenotypes from the primary 

screen by visually inspecting montages of mitotic cells from each gene target and assigning a 

phenotype severity score from 1 to 9 (Fig. 2.S10A, B). During this process, the scoring individuals 

were blinded to the gene identities associated with each montage of cells. 

2.13.9   Comparisons to external data 

To compare our interphase phenotype profile similarities to existing datasets of co-functional 

genes (Fig. 2.3B), we used the CORUM 3.0 core set of protein complexes (110), BioPlex 3.0 

HEK293T interactions (111), and the co-essential gene pairs defined in Wainberg, et al. (112). 

For CORUM, all possible pairs of genes within the same complex were considered as co-

functional. In each dataset, all annotated co-functional gene pairs were included for the correlation 

analysis in Fig. 2.3B if both genes were targeted in our fixed-cell screening library. For the 

precision-recall analysis (Fig. 2.S7), a subset of minimal CORUM complexes were selected that 

contained limited overlap with other complexes (defined as containing at least 3 genes from the 

screening library with at least 2/3 of the full complex represented, and removing the largest 

complexes that share more than 10% of gene-pairs with smaller CORUM complexes), resulting 

in 9,781 gene pairs included across 292 annotated complexes. Precision and recall were defined 

as indicated in Fig S7A. When restricting precision-recall to varying overall phenotype strengths, 

the indicated quantiles were used as thresholds on the interphase PHATE mean potential 

distance to non-targeting sgRNAs (as presented in Fig. 2.S6A-B), only evaluating pairs of genes 

where both members met the given threshold. For the tested similarity metrics in Fig. 2.S7B, 

Pearson correlation coefficients were calculated between the PCA-projected phenotype profiles, 

the PHATE diffusion operator affinity graph was used as described above, and the UMAP fuzzy 

simplicial set affinity graph was computed using the PCA-projected phenotype profiles. To 

generate precision and recall curves, the following parameters were swept for the corresponding 

clustering method to vary the resolution of clustering results: the Leiden algorithm resolution 

parameter, the DBSCAN epsilon parameter (with min_samples=1 using sklearn.cluster.dbscan), 

and the maximum number of clusters for hierarchical clustering (criterion=“maxclust” with 

scipy.cluster.hierarchy.fcluster). In all analyses of KEGG pathway enrichment, pathways 

categorized as “Organismal Systems,” “Human Diseases,” or “Drug Development” were excluded. 

For cluster enrichment of CORUM complexes, complexes were included that contained at least 

3 genes from the screening library with at least 2/3 of the full complex represented. 
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To compare to prior DNA damage response screens (101), all genes identified as either 

sensitizing and resistance-conferring to genotoxic agents were compared to all genes in the fixed-

cell screen exhibiting significant increases or decreases in γH2AX staining (Fig. 2.S3F). From 

MitoCheck, all genes identified in at least one of the four main phenotype categories (“mitotic 

arrest/delay,” “binuclear,” “polylobed,” and “grape”) were considered as exhibiting mitotic 

phenotypes. These genes were compared to those in our fixed-cell screen demonstrating strong 

image-based mitotic phenotype profiles (using the mean PHATE potential distance to non-

targeting sgRNAs, selecting gene targets above the 95th percentile of non-targeting sgRNAs; Fig. 

2.S6D-E) or significantly altered mitotic index (P<0.05 by permutation test with 10,000 

permutations of sgRNA-gene assignments; Fig. 2.S10C). 

2.13.10   Live-cell screen phenotype analysis 

Following nuclear segmentation of the time lapse data, cells were tracked across frames using 

the TrackMate implementation of the linear assignment problem approach to particle tracking 

(155, 156). The cost of linking nuclei in consecutive frames was set as the squared distance 

between centroids, with maximum linking distance set to 60 pixels (~18 μm). Track gaps up to 2 

frames were allowed, in addition to track merges and splits. Tracked cell lineages that did not last 

for the full 24 hour time-course were excluded from analysis. 

 

The sgRNA assigned to each tracked cell lineage in the phenotype data was determined by 

matching cell identities between the in situ sequencing images and the final time point of the time 

course. Similar to the fixed-cell screen, individual cell feature measurements were normalized 

using the median and median absolute deviation of the non-targeting control cell population from 

the same well and time point to reduce batch effects and correct for temporal intensity variations. 

Interphase, mitotic, and apoptotic cells were classified using a support vector machine (scikit-

learn svm.SVC, linear kernel) with 2,514 annotated cells using 81 features selected from the full 

set of 116 extracted features by iteratively removing pairs with Pearson correlation >0.9 (Fig. 

2.S11A). However, due to the difficulty of separating mitotic and apoptotic cells based on H2B-

mCherry fluorescence alone, these categories were later combined into a single, broad “mitotic” 

bin. Cell division events were defined as a contiguous sequence of at least 2 frames of mitotic-

classified cells immediately followed by a split in the track into 2 daughter cells (Fig. 2.S11B). Also 

included as cell division events were continuous sequences of mitotic cells that start in the first 

frame or reach the end of the acquired time course, if the observed mitotic duration was at least 
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as long as the average mitotic duration of non-targeting control cells in the same well. Mitotic 

duration was measured as the time difference between the first and last frame of the cell division 

event. The fraction of cells entering mitosis was calculated as the fraction of tracked lineages 

containing at least one cell division event as defined above. Both measurements were aggregated 

to the gene level by taking the average of sgRNAs targeting the same gene. Since many genes 

exhibited a stronger phenotype at either the Day 3 or Day 4 time point, likely due to differences 

in protein depletion timing, the strongest phenotype was selected for plotting in Fig. 2.5B by 

selecting the time course with the highest absolute difference in mitotic duration compared to the 

mean of non-targeting sgRNAs. 

2.13.11   GFP immunoprecipitation and Mass-spectrometry 

IP-MS experiments were performed as described previously (157). EGFP-C7orf26 and EGFP-

LIN52 cells were mitotically enriched with 10μM STLC overnight, harvested and washed in PBS 

and resuspended 1:1 in 1X Lysis Buffer (50 mM HEPES, 1 mM EGTA, 1 mM MgCl2, 100 mM KCl, 

10% glycerol, pH 7.4) then frozen in liquid nitrogen. Cells were thawed after addition of an equal 

volume of 1.5X lysis buffer supplemented with 0.075% Nonidet P-40, 1X Complete EDTA-free 

protease inhibitor cocktail (Roche), 1 mM phenylmethylsulfonyl fluoride, 20 mM beta-

glycerophosphate, 1 mM sodium fluoride, and 0.4 mM sodium orthovanadate. Cells were then 

lysed by sonication and cleared by centrifugation. The supernatant was mixed with Protein A 

beads (Biorad) coupled to rabbit anti-GFP antibodies (Cheeseman lab) and rotated at 4°C for 1 

hour. Beads were washed five times in wash buffer (50 mM HEPES, 1 mM EGTA, 1 mM MgCl2, 

300 mM KCl, 10% glycerol, 0.05% NP-40, 1 mM dithiothreitol, 10 µg/mL 

leupeptin/pepstatin/chymostatin, pH 7.4). After a final rinse in wash buffer without detergent, 

bound protein was eluted with 100 mM glycine pH 2.6. Eluted proteins were precipitated by 

addition of 1/5th volume trichloroacetic acid at 4°C overnight. Precipitated proteins were reduced 

with TCEP, alkylated with iodoacetamide, and digested with mass-spectrometry grade trypsin 

(Promega) using S-Trap (Protifi) according to the manufacturer’s instructions. Peptides were 

separated by liquid chromatography and analyzed on an Orbitrap Elite mass spectrometer 

(Exploris 480, Thermo Fisher) with FAIMS Pro Interface (Thermo Fisher). Data were analyzed 

using Proteome Discoverer Software (Thermo Fisher).  
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2.13.12   Western Blotting 

Cells expressing individual sgRNAs were induced in 1 μg/mL doxycycline for 2 to 5 days before 

lysis in Laemmli buffer and incubation at 95°C for 5 min. For mitotic samples, cells were harvested 

by mitotic shake off and, when necessary, after an overnight 10 μM STLC incubation.  Samples 

were separated by SDS-PAGE and semi-dry transferred to nitrocellulose. Membranes were 

blocked for 30 min in blocking buffer (5% BSA for H2A.X; for all others, milk in TBS with 0.1% 

Tween-20) before incubation with primary antibodies: anti-phospho-H2A.X (Ser139, Millipore 

clone JBW301; 1:1000), anti c-Myc (Abcam, ab32072; 1:1000), anti-CENP-A (Clone 3-19, 

Invitrogen; 1:2000), or anti-“Bonsai”/NDC80 (158; 0.5 µg/mL). This was followed by HRP-

conjugated secondary antibody (Kindle Biosciences) incubation at 1:1000 dilution. To detect 

GAPDH as a loading control, HRP-conjugated antibody (Abcam, ab185059) was applied at 

1:20,000 dilution. Membranes were imaged with a KwikQuant Imager (Kindle Biosciences) and 

quantified using Image Studio software (LI-COR).  

2.13.13   Arrayed imaging experiments with inducible knockout cell lines 

Inducible knockout cell lines for immunofluorescence were seeded on poly-L-lysine (Sigma-

Aldrich) coated coverslips and fixed in PHEM with 4% formaldehyde for 10 min at 37°C 

(microtubule staining) or ice cold methanol. Coverslips were washed with PBS, permeabilized 

with 0.2% Triton X-100 in PBS, and blocked in Abdil buffer (20 mM Tris-HCl, 150 mM NaCl, 0.1% 

Triton X-100, 3% bovine serum albumin, 0.1% NaN3, pH 7.5). Anti-alpha-tubulin (DM1A, Sigma; 

1:3000 dilution), anti-Centrin (159,1µg/mL), anti-CENP-A (Clone 3-19, Invitrogen; 1:1000 dilution) 

and anti- “Bonsai”/NDC80 (158; 1 µg/mL) antibodies in Abdil buffer were used for primary staining. 

Cy2- and Cy5-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories) were 

diluted 1:500 with 1 µg/mL Hoechst-33342 (Sigma-Aldrich) in Abdil for subsequent staining. Slides 

were mounted with ProLong Gold Antifade (Invitrogen) prior to imaging using the microscope 

configuration described above. 

 

For quantifications of Ndc80 and CENP-A kinetochore stain intensity, sections of cells were 

maximum intensity projected and cropped in Fiji (160). Integrated fluorescence intensity of mitotic 

kinetochores was measured with a custom pipeline in CellProfiler (149). The median intensity of 

a 5-pixel wide region surrounding each kinetochore was used to background subtract each 

measurement. 
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For live analysis of individual knockout and RNPC3 rescue cell lines, cells were induced with 1 

μg/mL doxycycline for 3 days, refreshing doxycycline media each day. On day 3 or 4 post-Cas9 

induction, cells were moved to CO2-independent media (Gibco) supplemented with 10% FBS, 

100 U/mL penicillin and streptomycin, and 2 mM L-glutamine before imaging using the 

microscope configuration described above in 12-well polymer-bottomed plates (Cellvis). For the 

hyperosmotic stress experiments, polyethylene Glycol (PEG) 300 (TCI) was applied to the media 

at the indicated concentrations (w/v%) and incubated for 6 h prior to imaging. For mitochondrial 

imaging in Fig. 2.S9D, MitoTracker Orange CMTMRos (Molecular Probes) was applied at 25 nM 

for 30 min before imaging. For MitoTracker image analysis, nuclei were segmented using the 

CellPose segmentation algorithm (161) with a Hoechst stain, then a cytoplasmic ring was defined 

by morphologically dilating the nuclei by 10 pixels. 

2.13.14   RNA-sequencing and analysis of inducible knockout cell lines 

Inducible knockout cells were seeded in 1 μg/mL doxycycline, and doxycycline media was 

refreshed each day for 3 days before harvest of a mitotically-enriched cell population by shake-

off on day 5. Control and ZNF335 knockout cells were additionally treated with 10μM STLC for 

12 h prior to harvest. Cells were washed in PBS before snap-freezing pellets of 500,000 cells in 

liquid nitrogen. RNA was purified using TRIzol reagent (Life Technologies) according to 

manufacturer’s instructions. 2ug of purified total RNA was mixed with 0.7 pg and 1.3 pg 

polyadenylated Nano luciferase and Firefly luciferase spike-in mRNA, respectively. KAPA mRNA 

HyperPrep kit with poly(A) selection was used to prepare libraries. Libraries were sequenced with 

the Illumina NovaSeq 6000 platform, 100x100 bp paired-end reads.  

 

Reads were trimmed to remove any poly(A) sequences using Cutadapt (v3.7) (162) with the 

parameters “--minimumlength 1 -a A{25}”. Reads were mapped to the human genome (Gencode 

v25) using STAR v2.7.1a (163) with the parameters “--runMode alignReads --

outFilterMultimapNmax 1 --outFilterType BySJout --outSAMattributes All --outSAMtype BAM 

SortedByCoordinate”. Aligned reads were quantified using htseq-count (0.11.0) (164). A read 

cutoff of at least 20 reads for each gene sample was applied before further analysis. Differential 

expression analysis was performed using DESeq2 (165). Differentially-expressed genes are 

defined as log2 effect size > 0.5 and FDR < 0.01. For the Clp1 RNA-seq data, the relative 

abundance of spike-in mRNAs was used as the sizeFactor for DESeq2 instead of median 

normalization due to 3’ end processing defects resulting in global mRNA downregulation. The 

Minor Intron Database v1.2 (166) was used to reference minor intron containing genes. 
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ShinyGO v0.75 (167) was used to identify enriched GO terms from the GO Biological Process 

database. Enrichment analysis was performed within the downregulated genes from LIN52 

knockout cells; genes that surpassed the 20 read cutoff and did not show differential expression 

were used as the background set.   

 

Clp1 and RNPC3 meta plots were generated using the deepTools v3.5 package (168). The 

aligned reads were converted to RPKM-normalized coverage using bamCoverage with the 

parameters “--outFileFormat bigwig --normalizeUsing RPKM --binSize 1”. For analysis of 

transcription termination, 500bp upstream of the transcription termination site from longest 

isoform per gene was used for the annotation file for meta plots and the following parameters 

were used for computeMatrix “--binSize 1 --regionBodyLength 300 --downstream 1000” to 

generate a matrix of coverages. For analysis of minor introns, the following parameters were used 

for computeMatrix “--binSize 1 --regionBodyLength 100 --upstream 100 --downstream 100”  with 

the minor intron annotation file from Minor Intron Database v1.2 (166). Normalized coverage per 

bin was obtained using plotProfile with the parameter “--averageType mean” and the average 

coverage of two biological replicates was plotted. For minor intron analysis, the RPKM-normalized 

coverage in all bins was further normalized to the summed flanking exon coverage to correct for 

the decreased mRNA abundance of minor intron containing genes in RNPC3 knockouts. 

2.13.15   Reverse transcription and qPCR 

Total RNA was purified as described for RNA-sequencing. 1 μg of total RNA was used in a cDNA 

synthesis reaction with the Maxima First Strand cDNA synthesis kit (Thermo Scientific) according 

to the manufacturer’s protocol. The cDNA was subjected to qPCR using the PowerUP SYBR 

Green Master Mix (Thermo Fisher) according to the manufacturer's protocol or end point PCR 

using 2x Q5 polymerase mix (NEB). For qPCR, a standard curve was used for quantitative 

assessment of mRNA levels and normalized to GAPDH mRNA. Myc primers: 

5’CCTTCTCTCCGTCCTCGGAT3’ and 5’CTTCTTGTTCCTCCTCAGAGTCG3’; SPC24 primers: 

5’GGCTCAACTTTACCACCAAGTTAG3’ and 5’CACCAGACTCCAGAGGTAGTCG3; GAPDH 

primers: 5’TCGGAGTCAACGGATTTGGT3’ and 5’TTCCCGTTCTCAGCCTTGAC3’. 
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2.14 Supplemental figures 

 

Figure 2.S1. Optimization of image-based pooled screening for essential gene function. (A) 

Histogram of median dependency probability across cell lines in the DepMap dataset, indicating 

the threshold chosen (0.35) for defining individual essential cell lines for each gene in (B). (B) 

Number of genes identified as essential for at least the specified fraction of tested cell lines in 

DepMap. Genes that were essential in at least 10% of tested cell lines were selected for the 

screen, in addition to those selected from additional sources (Section 2.13.1). (C) Scatter plot 

showing the results from trial screens of 400 gene targets. This compares the fraction of mitotic 
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cells with visually-identified phenotypic defects for established cell division factors at 3 and 4 days 

post-Cas9 induction. Overall, mitotic phenotypes were more commonly observed at the earlier 

time point. (D) Scatter plot showing mean change in abundance within the 20,445 sgRNA primary 

screen library at 3 and 5 days post-Cas9 induction, both time points relative to pre-induction (day 

0). N=2 screen replicates were performed, averaged across sgRNAs targeting the same gene. 

Orange indicates non-targeting control sgRNAs. Many gene targets begin to drop out of the 

population at day 5 due to fitness defects. Based on this data and from (C), 78 hours post-Cas9 

induction was chosen as the fixation time point for our image-based screen to maximize 

observable phenotypes. (E) Boxplot demonstrating in situ sequencing quality in our fixed-cell 

image-based pooled screen. Sequencing quality was consistent across the eight imaging plates, 

with the majority of imaging tiles exceeding 50% of cells with sequencing reads that uniquely 

match a single sgRNA sequence from the library. N = 1,665 or 1,998 imaging tiles in each plate 

column. (F) Confusion matrix demonstrating performance of the support vector classifier in 

distinguishing interphase and mitotic cells, 5-fold cross-validation with N=2,514 manually 

annotated cell images. 
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Figure 2.S2. γH2AX localization and Cas9-induced DNA damage. (A) Example cell images 

demonstrating punctate (DONSON, LRR1, SMU1, etc.) and diffuse (e.g., RRM1/2, RPA1, 

CHEK1) γH2AX staining patterns. Scale bar, 10 µm. (B) Bivariate histograms of γH2AX foci 

counts and mean nuclear γH2AX intensity, displaying single-cell distributions for cells expressing 

non-targeting sgRNAs (top left) and selected gene targets (corresponding to A) showing 

increased γH2AX foci, nuclear γH2AX mean intensity, or both. Histogram bins containing less 

than 1 in 104 total cells for a given gene target are not displayed. (C) Scatter plot comparing gene-

level summaries of γH2AX foci counts to nuclear γH2AX mean stain intensity. A minority of genes 

demonstrate separate increases in either diffuse γH2AX staining or γH2AX foci counts. Genes 



61 

with at least 2 sgRNAs targeting multiple sites within one chromosome (green circles) or across 

multiple chromosomes (green crosses) demonstrate similar overall trends as genes targeted by 

single target site sgRNAs (gray circles). (D) Cumulative distribution plots of mean nuclear γH2AX 

intensity (DNA damage phenotype) sgRNA scores, with sgRNAs grouped by number and location 

of target sites. Non-targeting control sgRNAs and sgRNAs targeting a single genomic locus (blue) 

include the vast majority of sgRNAs in the library and displayed minimal DNA damage on average 

in the screen. In contrast, sgRNAs with increasing numbers of target sites (orange, green) tend 

to display stronger DNA damage phenotypes, in particular when the target sites are spread across 

multiple chromosomes (dotted lines). Genomic target sites are defined as the total number of 

cutting frequency determination (CFD) bin 1 matches (see 19). *P<10-9 by 1-sided Mann-Whitney 

U test.  
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Figure 2.S3. Analysis of interphase nuclear phenotypes. (A) Bar graph indicating over-

representation of KEGG pathways among gene targets exhibiting decreased or increased nuclear 

γH2AX mean intensity. *FDR<0.05 (B) Bar graph of over-representation analysis results as in (A) 
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among gene targets with decreased or increased nuclear DNA (DAPI) integrated intensity. 

*FDR<0.05 (C) Scatter plot showing summary gene scores (see Section 2.13.8) for mean nuclear 

γH2AX intensity compared to nuclear area, showing a subset of gene knockouts with increases 

in both γH2AX and nuclear area. Summary γH2AX scores are plotted on a symmetric log scale 

(linear between -1 and 1) and labeled genes are colored by functional category. (D) Scatter plot 

showing summary gene scores for integrated nuclear DNA (DAPI) intensity compared to nuclear 

area as in (C). DNA content is relatively constant across gene targets exhibiting a range of nuclear 

areas, although a subset demonstrates increased nuclear area and DNA. Summary DAPI scores 

are plotted on a symmetric log scale (linear between -1 and 1) and labeled genes are colored by 

functional category. (E) Bivariate histograms of integrated nuclear DNA intensity and mean 

nuclear γH2AX intensity, displaying single-cell distributions for all cells expressing non-targeting 

sgRNAs (top left) and selected gene targets. Knockouts of genes that regulate chromosome 

segregation or cytokinesis result in more cells with increased DNA content, but only modest 

increases in γH2AX intensity. Histogram bins containing less than 1 in 104 of the total cells for a 

given gene target are not displayed. (F) Comparison of γH2AX phenotype genes identified in our 

screen with the DNA damage-associated genes identified in Olivieri, et al. (101). Bottom, bar 

graph of KEGG pathway over-representation in the indicated gene sets against the background 

of all genes present in both datasets. 
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Figure 2.S4. Analysis of interphase cytoskeletal phenotypes. (A) Bar graph indicating over-

representation of KEGG pathways among gene targets with decreased or increased mean cellular 

actin (phalloidin) intensity in interphase cells. *FDR<0.05 (B) Scatter plot indicating summary 

gene scores (see Section 2.13.8) for mean cellular actin intensity compared to cell area. A subset 

of gene knockouts display increased actin staining together with decreased cell area due to 

disrupted cellular adhesion. Labeled genes are colored by functional category. (C) Bivariate 
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histograms of mean cellular actin intensity and cellular area, displaying single-cell distributions for 

all cells expressing non-targeting sgRNAs (left) and selected gene targets. Knockouts of genes 

that regulate cellular adhesion (e.g., ITGAV) show a distribution of cells shifted toward lower 

cellular area and correspondingly increased mean actin intensity. Histogram bins containing less 

than 1 in 104 total cells for a given gene target are not displayed. (D) Scatter plot comparing mean 

cellular actin intensity summary scores between interphase and mitotic cell populations, indicating 

factors that robustly affect actin structures throughout the cell cycle. (E) Bar graph of KEGG 

pathway over-representation analysis results as in (A) for gene targets demonstrating decreased 

or increased mean cellular tubulin intensity. (F) Scatter plot showing summary gene scores for 

mean cellular tubulin intensity compared to cell area as in (B). Similar to actin, a subset of gene 

knockouts display increased tubulin staining in combination with decreased cell area.   



66 

 

Figure 2.S5. Analysis and validation of cell area changes. (A) Volcano plot for interphase cell 

area across gene targets in the screen, showing a wide range of decreased (magenta) and 

increased (green) cell areas (FDR<0.05). Raw P-values were computed by comparing gene 

targets to a bootstrapped null distribution of cells expressing non-targeting sgRNAs (Section 

2.13.8), with false discovery rate (FDR) estimated using the Benjamini-Hochberg procedure. (B) 

Bar graph of over-representation analysis for gene targets that result in decreased or increased 

cell area. *FDR<0.05. (C) Example images and (D) cumulative distributions of inducible knockout 

cells validating increased cell area for DTL and DONSON knockouts. *P<10 -10 by Mann-Whitney 

U test relative to control sgRNA, N>3,700 cells per gene target. Scale bar, 10 µm. 
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Figure 2.S6. PHATE analysis of multi-dimensional phenotypes. (A) Two-dimensional 

representation of the interphase phenotype landscape of gene targets in the primary screen using 
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PHATE (35; Section 2.13.8). Data points are colored by the mean potential distance to non-

targeting control sgRNAs computed by PHATE for the interphase phenotype profiles, normalized 

between 0 and 1. Gene targets with increasing phenotype strength intuitively radiate outward from 

a dense region containing non-targeting sgRNAs. (B) Bivariate histogram showing the joint 

distribution of image-based interphase phenotype strength from (A) together with the strength of 

knockout fitness effect in the screening cell line (mean change in sgRNA abundance within the 

library after 5 days of Cas9 induction, N=2 screen replicates averaged across sgRNAs targeting 

the same gene, data from Fig. 2.S1D). >90% of gene targets exhibit a measurable interphase 

phenotype in the image-based screen (potential distance greater than the 95th percentile of non-

targeting sgRNAs). Of the remaining 407 genes, only 55 demonstrate a meaningful fitness effect 

in the tested cell line (log2 fold change abundance less than the 5th percentile of non-targeting 

sgRNAs). Labeled genes are those that display a fitness effect and no interphase phenotype, but 

do show a measurable mitotic phenotype in (E). (C) Boxplot illustrating selection of the Leiden 

clustering (64) resolution parameter for interphase phenotypes. For 20 repetitions at each 

resolution, 90% of gene targets were sampled without replacement and clustered using PHATE 

and Leiden algorithms in series. Each sampled cluster solution was then compared to the full 

dataset clusters using adjusted mutual information (top) and adjusted Rand index (bottom). The 

dotted line indicates the chosen resolution, selected based on the plateau in robustness of 

clustering solutions. (D) Two dimensional representation of the mitotic phenotype landscape of 

gene targets as in (A), colored by the mean potential distance to non-targeting control sgRNAs 

computed by PHATE for the mitotic phenotype profiles. (E) Bivariate histogram showing the joint 

distribution of image-based mitotic phenotype strength from (D) together with the strength of 

knockout fitness effect in the screening cell line as in (B). The threshold for measurable mitotic 

phenotypes is the 95th percentile of potential distance among non-targeting control sgRNAs. 

Labeled genes indicate those that display a fitness effect and mitotic phenotype, but do not exhibit 

an interphase phenotype in (B). (F) Boxplot illustrating selection of the Leiden clustering resolution 

parameter for mitotic phenotypes using the same procedure as (C). A resolution parameter of 9 

was chosen in part due to the increased presence of single-gene clusters with resolution ≥10 

(bottom).  
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Figure 2.S7. Precision-recall analysis of interphase phenotype clustering with CORUM 

complex gene pairs. (A) Precision-recall curves for clustering gene pairs from a subset of 292 

minimal CORUM complexes using the Leiden clustering algorithm with the PHATE diffusion 

affinity graph (Section 2.13.8), restricted to varying overall interphase phenotype strength. Error 

bars indicate the standard deviation of 10 runs with different random seeds. When evaluating 

gene pairs within the top 10% of phenotype strength, this approach achieves gene pair recall of 

59% and precision of 81%. (B) Precision-recall curves as in (A) for alternative clustering 

approaches (Section 2.13.8). At higher recall (>0.2 when evaluating across the full dataset), 
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Leiden clustering with the PHATE diffusion affinity graph achieves the highest precision. At 

lower recall, hierarchical clustering of phenotype profile correlations demonstrates the highest 

precision. Error bars for PHATE and UMAP similarity metrics indicate standard deviation of 10 

runs with different random seeds. 
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Figure 2.S8. Interphase phenotypes enable detailed clustering of specific functional 

categories. Two-dimensional PHATE representations of interphase phenotype clusters and 

corresponding heat maps of a manually-selected subset of specific parameters for a broad 

range of functional categories, as in Fig. 2.3. Distinct and coherent phenotypes are observable 

for genes involved in processes such as (A) protein degradation (including the recently-

characterized gene AKIRIN2); (B) RNA processing; (C) DNA replication and DNA damage; (D) 

cell cycle function; (E) actin cytoskeleton and cellular adhesion; and (F) nuclear pore function 

and protein folding. Numbers indicate individual interphase cluster identities. All genes from 

selected clusters are listed below each heatmap. Parameters are presented as z-scores from 

the distribution of non-targeting sgRNAs, visualized on a symmetric log scale (linear between -1 

and 1). 
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Figure 2.S9. Interphase cluster analysis reveals novel functional associations for 

established factors. Two-dimensional PHATE representations of interphase phenotype clusters 

and corresponding heat maps of a manually-selected subset of specific parameters, as in Fig. 

2.3. (A) Gene targets involved in vesicle trafficking and related processes exhibit distinct image-

based phenotypes, despite the absence of membrane-targeted phenotype stains in the screen. 

(B) Phenotype clustering suggests a co-functional role of HNRNPD with m6A modifications, as 

well as (C) a relationship between mitochondrial function and KRAS/BRAF signaling. (D) Example 

images and cumulative distributions of MitoTracker staining for control and knockout cells for 

KRAS, BRAF, and two co-clustering mitochondrial factors. Each knockout demonstrates 

disrupted mitochondrial content as compared to control cells, supporting the phenotypic 

association of KRAS and BRAF with mitochondrial factors in the primary screen. *P<1010 by 

Mann-Whitney U test relative to control sgRNA, N>1,400 cells per gene target. Scale bar, 10 μm. 

(E) Transcriptional regulators show interrelated phenotypes, with an apparent distinct phenotype 

for cluster 121 containing MYC and MAX, suggesting the presence of additional MYC-associated 

factors. *P<0.05 by two-tailed independent T-test relative to corresponding controls. (F) Western 

blot and quantification (G) of MYC mRNA and protein expression following knockout of several 

genes from cluster 121 in (E). SETD2 demonstrates substantially decreased mRNA and protein 

expression of MYC, confirming the functional association identified via interphase phenotype 

clustering. 
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Figure 2.S10. Fixed-cell mitotic phenotype analysis. (A and B, top) Two-dimensional PHATE 

representations of mitotic phenotypes, colored by manual phenotype severity scores 

independently assigned by two individuals using anonymized gene labels. (A and B, bottom) Box 

plots demonstrating strong agreement between manual phenotype scores and computational 

phenotype strength (mean potential distance to non-targeting sgRNAs from mitotic PHATE 

analysis, normalized between 0 and 1). (C) Comparison of mitotic phenotype genes identified in 

our fixed-cell screen to mitotic phenotypes found by MitoCheck (16). Mitotic phenotypes in the 

fixed-cell screen were defined as overall phenotype strength greater than the 95th percentile of 



76 

non-targeting sgRNAs (as in Fig. 2.S6E) or significantly altered mitotic index (sgRNA permutation 

test, P<0.05). Bottom, bar graphs indicating KEGG pathway enrichment for all pathways enriched 

in any of the indicated gene sets. For the gene sets corresponding to the Venn diagram, the 

background for enrichment analysis was all genes present in both screens. For the set of mitotic 

hit genes identified in MitoCheck that were not present in our screen (far right), the background 

for enrichment was all genes screened in MitoCheck not present in our screen. *FDR<0.05. (D) 

Example image indicating nuclear localization of GFP-tagged ZNF335. Scale bar, 10 µm. 
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Figure 2.S11. Optical pooled screening for live-cell mitotic phenotypes. (A) Confusion matrix 

demonstrating performance of the support vector classifier in distinguishing interphase, mitotic, 

and apoptotic cells from the live-cell screen. 5-fold cross-validation with N=2,514 manually 

annotated cell images. Due to the relative difficulty of differentiating mitotic and apoptotic cells 

from H2B-mCherry fluorescence alone, the mitotic and apoptotic classes were combined after 

inference (cross-validation precision and recall after combining classes indicated by brackets). 

(B) Criteria for identifying a cell division event in the live-cell screen analysis. Cell lineages that 
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were not tracked across the entire time course were excluded. (C) Histograms of the total cell 

lineages acquired (top) and cell divisions observed (bottom) across both day 3 and day 4 time 

courses for each gene target. (D) Example images of H2B-mCherry fluorescence from the live-

cell screen at the indicated time points after mitotic entry for selected gene targets. Each displayed 

knockout demonstrates increased mitotic duration and chromosome alignment defects relative to 

the non-targeting control sgRNA. Control images are reproduced from Fig. 2.5B. Scale bar, 10 

µm.  
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Figure 2.S12. Mitotic duration distributions from the live-cell screen. Cumulative distributions 

of mitotic duration for individual sgRNAs (blue, orange) compared to all mitotic events of non-

targeting cells (gray) across both day 3 (left) and day 4 (right) post-Cas9 induction time course 

experiments. (A) Positive control genes included in the screen and (B) selected genes identified 

from analyzing the screen data. 
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Figure 2.S13. Targeted analysis of mitotic phenotypes. (A) Immunofluorescence images of 

individual cell lines stably expressing a single sgRNA targeting each gene of interest to confirm 

live-cell pooled screen phenotypes and enable visualization at higher resolution across a single 

population. Images are deconvolved maximum intensity projections of fixed cells stained for 

microtubules (anti-alpha-tubulin) and DNA (Hoechst). Scale bar, 10 µm. (B) Bar plot showing 

kinetochore-localized intensity of the outer kinetochore microtubule-binding protein NDC80 in 

inducible knockout cell lines for all 29 genes pursued from the live-cell screen, along with CENP-

A and HJURP controls. Each data point represents the median kinetochore signal of one 

experiment for >10 cells per gene target. Values are normalized relative to negative control cells 

from the same experiment. *P<0.01 by two-tailed independent T-test relative to negative control 

cells. (C) Bar plot of kinetochore-localized intensity for the inner kinetochore centromere-specific 

histone CENP-A in inducible knockout cell lines; experiment design as in (B). *P<0.01 by two-

tailed independent T-test relative to control cells. (D) Western blot of CENP-A and NDC80 total 

protein levels for a subset of inducible gene knockouts. 
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Figure 2.S14. Additional evidence for the roles of LIN52 and RNPC3 in kinetochore 

assembly. (A) Fluorescence images of human cells expressing GFP-LIN52, indicating LIN52 

nuclear localization in interphase cells and non-specific localization in mitotic cells. (B) Mass 

spectrometry analysis of an GFP-LIN52 immunoprecipitation from mitotically-enriched cells 

relative to controls, indicating that LIN52 associates with a subset of expected factors, but not the 

entire DREAM complex. (C) Images from time-lapse fluorescence imaging of individual knockout 

cell lines expressing H2B-mCherry, demonstrating similar mitotic phenotypes for LIN52, LIN9, 

and LIN54 knockouts. (D) Bar plot showing kinetochore-localized intensity for the inner 
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kinetochore centromere-specific histone CENP-A in inducible knockout cell lines of LIN52-

associated genes. LIN52, LIN9, and LIN54 each demonstrate a significant decrease in CENP-A 

kinetochore localization. *P<0.01 by two-tailed independent T-test relative to control sgRNA. (E) 

Immunofluorescence images of microtubules (anti-alpha-tubulin) and DNA (Hoechst) in inducible 

knockout cell lines identify chromosome alignment defects for the DREAM complex component 

MYBL2, but not FOXM1. (F) Metagene analysis of transcription termination in CLP1 knockouts. 

The increased density of reads downstream of annotated transcription termination sites suggests 

a defect in 3’ end mRNA processing. (G) RT-PCR validation of SPC24 minor intron retention, 

showing an intron 4-containing SPC24 amplicon after RNPC3 KO that is not present in control 

samples. Scale bars, 10 µm. 

Chapter 3.  Future directions for image-based pooled 

screens 

While the work presented in this thesis demonstrates the power of the current approach to image-

based pooled screens, there are many opportunities for further technical and conceptual 

advancements. Here, we discuss current throughput limitations, potential to expand applications 

to diverse biological models and screening modalities, and challenges and opportunities 

associated with the resulting datasets. 

3.1 Addressing current limitations of optical pooled screening 

The primary factor limiting the scale of an optical pooled screen is the time and labor required to 

process and image samples during the iterative cycles of in situ SBS. Although the protocol is 

relatively straightforward, it is repetitive and laborious. Additionally, at each cycle of sequencing 

the imaging plate must be carefully aligned to the same microscope stage position as previous 

cycles. To reduce sample handling time and limit the risks of microscope misalignment, 

automation of the sequencing steps would be highly advantageous for improving the throughput 

of optical pooled screens. This may be achieved by integrating automated fluidics control into a 

standard well plate configuration, or developing a purpose-built flow cell system. Alternatively, 

pre-existing integrated sequencing systems could be adapted for the purpose of in situ SBS. The 

in situ SBS process used in optical pooled screens is identical to the SBS process performed 

within standard NGS instruments and use much of the same hardware and reagents, thus 
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presenting an opportunity to repurpose retired NGS instruments. In particular, others have 

developed well-documented open-source software for controlling each of the components within 

Illumina HiSeq 2500 instruments (169), which we have had preliminary success implementing on 

a retired instrument. Beyond automating the in situ SBS protocol, further throughput 

improvements may be achieved by increasing the speed of imaging iterative sequencing cycles. 

Simple optimizations such as implementing fast external filter wheels and externally-triggered 

hardware synchronization could likely improve imaging speed over our current systems by an 

order of magnitude. An alternative approach could involve optimizing two-color SBS chemistries 

for in situ sequencing in combination with simultaneous acquisition using a dual camera 

microscope configuration, although accurate base calling of in situ sequencing reads will likely 

prove more difficult with two-color sequencing schemes. 

 

In addition to sequencing throughput limitations, barcode mRNA detection sensitivity and 

background staining of sequencing dyes are important challenges for optical pooled screening 

that need to be addressed. Although prior work estimates that only 5% of expressed barcode 

mRNA are captured by the presented protocol in HeLa cells (170), this has not been quantitatively 

measured and likely will vary significantly across cell models. Further optimizations to the in situ 

sequencing protocol should involve direct measurements of the fraction of expressed target 

mRNAs that are successfully captured and amplified with the padlock probes, likely enabled by 

FISH-based measurements. The detection sensitivity of in situ sequencing is likely limited by the 

reverse transcription and padlock probe gap-filling steps, which may be improved by optimizing 

each reaction and the fixation conditions before and after reverse transcription. These enzymatic 

reaction bottlenecks could potentially be eliminated from the protocol by implementing direct (no 

RT) barcode mRNA detection and/or gapless padlock probe libraries to match a given 

perturbation library (73, 171, 172). Optimizing in situ barcode detection efficiency is especially 

important as the protocol is applied to new biological models, which will likely exhibit variable 

barcode expression levels. 

 

The reagents used for in situ SBS in optical pooled screens are derived from those used for 

sequencing in standard NGS instruments. While these reagents are undoubtedly highly optimized 

for their intended use of sequencing purified DNA libraries, the components may not be optimal 

for targeted SBS in the complex environment of fixed cells. The sequencing dyes currently used 

for optical pooled screens exhibit strong non-specific affinity for the fixed cell matrix, and 

accumulation of this binding over many cycles of SBS can result in decreased in situ read calling 
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accuracy, low screening efficiency, and unusable data. Thus, as new commercial solutions for 

NGS and spatial genomics come onto the market, it would be advantageous to carefully test each 

set of sequencing reagents in the context of in situ sequencing. Additionally, the buffers used for 

washing steps between cycles of sequencing dye incorporation are optimized for removing non-

specifically bound dyes from a relatively simple flow cell surface, which is much different than the 

intracellular environment present in our application. Wash buffers or pre-incorporation blocking 

steps could be further developed for the specific purpose of reducing non-specific staining in fixed 

cell cultures. 

 

In summary, multiple areas of throughput and efficiency improvements remain open for further 

development of optical pooled screening into a robust and scalable platform. This will become 

increasingly important as the sizes of perturbation libraries grow, and will also enable repeated 

library screening under multiple experimental conditions. Increasing the robustness of the protocol 

will also further enable expanding applications into a wide variety of new biological models and 

screening modalities as discussed in the following sections. 

3.2 Expanding biological models 

3.2.1 In vitro models 

Although all of the published studies using optical pooled screening have thus far been performed 

in cancer cell lines, there is immense potential for expanding image-based pooled screening 

applications in more diverse biological models. Additional in vitro cell models that are likely 

candidates for image-based screening are hTERT-immortalized cell lines, specialized cell types 

derived from differentiating induced pluripotent stem cells (iPSCs) or direct reprogramming, 

primary cells isolated from model organism or human donors, or co-cultures of multiple cell types. 

Image-based pooled screens in these model systems have the potential to identify genes involved 

in cell type-specific functional phenotypes or disease processes. As many cellular pathologies 

can likely be directly measured using microscopy, there is a strong potential for discovering novel 

therapeutic targets with optical pooled screening. Although the advantages of using diverse cell 

models are clear, this will likely come with decreases in screening efficiency which may 

necessitate additional optimization. In particular, expression levels of barcode mRNA are likely to 

vary significantly across cell models. This may be alleviated by testing multiple promoters for 

barcode expression and optionally including other perturbation vector elements (e.g., to limit 
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methylation-induced gene silencing in models that require differentiation; see ref. 173). 

Differentiation protocols and primary cell cultures may also result in debris within the imaging 

plates that could cause increases in non-specific background staining of sequencing reagents. 

Cell culture protocols should be carefully optimized, and modifications to the in situ SBS protocol 

can be considered as discussed in section 3.1. Complex cell morphologies, such as neurons and 

other polarized cell types, may cause difficulty in accurate cell segmentation, an important step 

for assigning in situ sequencing reads to individual cells. Thus, cell segmentation algorithms 

developed for specific cell model applications may need to be developed, or a generalist algorithm 

such as CellPose may be adequate (161).  

 

For post-mitotic cells, antibiotic selection of transduced cells is inefficient and the transduced cells 

do not expand to increase library coverage. Screening with post-mitotic cells will consequently be 

inefficient and require larger transduction scales to achieve a given final cell library size. However, 

replacing antibiotic resistance markers in the perturbation delivery vector with a fluorescent 

protein may help identify transduced cells in the final population. For differentiation-based assays, 

it is likely advantageous to transduce and expand cells prior to differentiation. However, the scale 

of screens possible with in vitro differentiated cell types will depend on the differentiation 

efficiency. The most fruitful screening applications in iPSC-derived cell lines will likely involve 

differentiation via overexpression of lineage-committing transcription factors (174–176), where 

differentiation is exceptionally efficient and fast, which likely also limits issues of methylation-

induced gene silencing. Despite the challenges associated with increasing complexity of in vitro 

cell model systems, we have already demonstrated the feasibility of optical pooled screens in 

embryonic hippocampal neurons derived from rat models, as discussed in Appendix A. 

3.2.2 In vivo models 

An inherent property of microscopy datasets is the acquisition of spatial information concerning 

intracellular components and the cells themselves. The spatial relationships between cells is of 

particular interest for potential applications of image-based pooled screening to in vivo biological 

models. While in vivo pooled CRISPR screens have been performed with enrichment and scRNA-

seq based phenotype measurements (177–180), these approaches do not measure tissue 

organization or intercellular interactions, which likely contribute to most in vivo phenotype 

measurements. One recent study used protein-based barcodes to perform pooled CRISPR 

screens with spatially-resolved transcriptomic and histopathologic phenotype measurements 

(181), although restricted to the small scale of 35 gene targets. As in situ sequencing protocols 
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have been previously used in tissue samples for other purposes (73, 182), there is potential for 

its use in in vivo pooled CRISPR screens. This will bring new technological challenges, including 

likely increased non-specific accumulation of sequencing dyes.  The approaches suggested in 

section 3.1 may help to partially reduce this issue, and incorporating tissue clearing protocols may 

also provide improvements. Optimizations to the in situ amplification reactions may also be 

necessary, or non-optical identification of perturbation barcodes could be employed. Several 

sequencing-based approaches to measure spatial expression of mRNAs have been developed 

(183, 184), which could be adapted for identification of perturbation barcode mRNA and matched 

with microscopy-based phenotype measurements from alternating tissue slices. Besides 

technological challenges, the scalability of in vivo pooled CRISPR screens is limited by the total 

number of cells that can be targeted in vivo by perturbation vectors or perturbed ex vivo and then 

delivered to a model organism. Thus, applications of in vivo pooled screens should be carefully 

considered and may be inherently limited to small library sizes. 

3.3 Screening modalities 

While CRISPR knock-outs are a simple and efficient way to introduce genetic perturbations, this 

approach may not be suitable for all biological models or questions. Optical pooled screening can 

be trivially extended to other Cas9-based genomic perturbations, including direct disruption of 

non-coding genetic elements and down- or up-regulation of gene expression using CRISPRi or 

CRISPRa. This is achieved by using a cell model expressing the corresponding enzyme and 

delivering a sgRNA library targeting the appropriate genomic loci, and may be particularly 

important in disease-relevant cell models with active p53 responses (185–187). Screens 

evaluating phenotypic effects of overexpressing open reading frames (ORFs) of wild-type or 

variant alleles are also possible by associating a unique barcode to each individual ORF (188). 

Optimization of differentiation protocols is a particular area of potential application for optical 

pooled screens, as overexpression of single or combined transcription factors could be tested in 

a pooled format, with the resulting cell states evaluated morphologically or with functional cell type 

assays (189). More complex perturbations that enable specific genomic alterations via base or 

PRIME editing (190–192) are also likely amenable for incorporation into image-based pooled 

screening workflows. When using either base and PRIME editing, the actual editing outcome of 

a given perturbation is highly important for its effect on the measured phenotype, as opposed to 

the reliance on random results of DNA damage repair processes with Cas9-based knockout 

screening. Directly measuring these editing outcomes in individual cells may be possible with in 
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situ sequencing, especially in pooled screens tiling perturbations across one or a few genomic 

loci, by including additional padlock probes to amplify the targeted sequence. 

 

As image-based pooled screens identify perturbations within each individual cell, measuring 

effects of combinatorial perturbations introduces almost no additional protocol complexity. 

Combinatorial perturbation screening is attractive for identifying interacting or redundant factors 

controlling a given phenotype. This is particularly important in disease-associated processes that 

likely act through the function of multiple genes, in contrast to the primary focus of current target-

finding functional genomics on single perturbations. This may be achieved by sequential 

infections of perturbation libraries to be screened against each other (75) or defined pairs of 

sgRNAs synthesized in a single construct for use with Cas9 or other CRISPR enzymes such as 

Cas12a (193–197). Alternatively, high MOI infections can be employed to carry out “compressed” 

interaction screens, where the relative infrequency of genetic interactions is leveraged to identify 

consistent effects of combined perturbations across random independent collisions (198). This 

could reduce the total number of cells needed for screening a large number of gene pairs, 

although there are corresponding constraints on the sparsity and order of functional gene 

interactions that may not be met with the focused libraries that are often required with 

combinatorial screens. For combinatorial perturbations in optical pooled screens, the limited 

sensitivity of perturbation identification mentioned in section 3.1 becomes especially important 

when correct perturbation assignment to each cell depends on successful identification of multiple 

barcodes. 

 

Beyond screening perturbations of genetic elements, the technology developed for optical pooled 

screening has potential for enabling high throughput image-based experiments for other 

applications. For example, several CRISPR technologies have been developed for efficient 

endogenous tagging of proteins with fluorescent proteins or other fusions (199–201). Already, 

others have combined this approach with in situ sequencing to visualize changes in localization 

for a pool of hundreds of endogenously tagged proteins in response to drug treatments (202). 

Such experiments have the potential to efficiently screen therapeutic drug candidates and identify 

mechanisms of action. Image-based pooled screens could also be employed for functional 

screening of designed protein structures. This could be useful for high-throughput optimization of 

fluorescent reporter systems like kinase activity reporters (37), or for developing de novo protein 

functions for therapeutic or other purposes (203, 204). 



90 

3.4 Leveraging complex phenotype measurements 

Acquiring an image-based pooled screen dataset with even a few phenotype stains can yield 

hundreds of measurements for each of the individual cells, as the localization and intensity of 

fluorophores can be numerically summarized in many non-redundant image features. There are 

many open questions in the field of how to handle such large datasets and extract meaningful 

insights, and further expanding phenotype imaging channels with the approaches mentioned in 

section 1.3 will exacerbate these issues. In Chapter 2, we demonstrated that a vast amount of 

meaningful information is accessible with a relatively simple approach using pre-defined 

phenotypic features and aggregating information to the level of gene targets. However, this is not 

necessarily the optimum approach to understanding the full information available in the acquired 

complex phenotypes.  

3.4.1 Using single-cell level information 

A primary question that must be addressed when first approaching an image-based screening 

dataset is the value of the single-cell level information. While the importance of single-cell 

information has been much-discussed for genomics measurements of the complex cell 

communities found in vivo, this information has been arguably underutilized in the context of 

pooled perturbation screens with single-cell RNA-sequencing phenotypes (25, 72, 124). Part of 

this likely is due to the observed cell-level variation arising from multiple sources that are difficult 

to distinguish, in particular perturbation efficiency in addition to meaningful biological 

heterogeneity. Thus, aggregation of single-cell phenotypes, especially using statistical 

approaches robust to outliers, may be necessary to reduce sources of noise inherent to single-

cell measurements. For image-based pooled screens, the large scale of the acquired phenotype 

measurement matrices (e.g., ~103 phenotype features by 3x107 cells in Chapter 2) also limits the 

feasibility of analyzing the full datasets at the single-cell level.  

 

However, there are several intermediate approaches to analyzing single-cell resolved datasets 

that may balance the corresponding advantages and challenges. First, individual cells can be 

classified into phenotypic categories, and perturbations compared by the fraction of cells present 

in each phenotype class. This has the advantage of directly identifying changes in cell state 

occupancy, although information will be lost by reducing continuous phenotypes into discrete bins. 

Practically, this could be achieved by training a supervised machine learning model to place cells 

into pre-defined phenotypic categories, or by using an unsupervised clustering approach to 
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automatically identify groups of phenotypically similar cells directly from the acquired data. A 

supervised classifier has the particular advantage of enabling model training on a smaller subset 

of cell measurements at reduced computational cost, with the resulting algorithm then applied to 

the full dataset in parallelized chunks. Meanwhile, most clustering algorithms are not implemented 

for distributed computation and require the full dataset to be held in memory simultaneously. 

 

Alternatively, aggregation of single-cell measurements could be performed in a way that accounts 

for distributional changes rather than alterations in simple summary statistics of central 

tendencies. For example, in the original optical pooled screen of a transcription factor 

translocation phenotype, one-dimensional translocation distributions for each gene target were 

compared to the distribution of negative control cells by integrating the difference in the cumulative 

distributions of cells (75). This is known as the Wasserstein or Earth Mover’s distance, which is 

well-developed for low-dimensional distributions in the field of optimal transport theory. However, 

applying this concept for high-dimensional phenotypes at-scale is more difficult, and could require 

computationally expensive distance measurements between all possible pairs of perturbations to 

identify similarities or differences between gene targets. Graph-based methods for applying 

optimal transport concepts to high-dimensional data are currently under development (205, 206), 

but applying them to the dataset in Chapter 2 has proven infeasible thus far due to the 

computational cost at the given scale of data. 

 

Finally, the single-cell level data may be used to identify and correct for confounding variables 

prior to aggregation of perturbation-level phenotype profiles for downstream analysis and 

interpretation. This approach was well demonstrated by the MIMOSCA approach developed for 

scRNA-sequencing based perturbation screens, where a linear model of perturbation effects on 

gene expression phenotypes was trained while simultaneously accounting for several known 

technical and biological covariates (25). Removing such confounding variables helps isolate 

phenotypic changes unique to the perturbation, but must be applied carefully to maintain 

identification of perturbation effects that result purely in cell state proportion changes. 

3.4.2 Learning phenotype representations directly from images 

While profiling of predefined image features results in easily interpretable measurements and has 

proven to be powerful for identifying biological phenotypes in many cases (e.g., as presented in 

Chapter 2), this approach is limited by human expectations of phenotype effects and provides no 

guarantee of optimality. Meanwhile, advances in machine learning theory along with the 
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associated computational hardware provide new opportunities for how to understand large 

datasets. In particular, models based on convolutional neural networks (CNNs) have emerged as 

advantageous for image classification and representation learning, as CNNs explicitly use the 

spatial structure of images and in many ways operate analogously to real-world imaging systems. 

Furthermore, machine learning models, such as those constructed with CNNs, perform best when 

they are trained on large and diverse datasets such as those acquired using image-based pooled 

screening, leading to a clear opportunity for successful application. Specifically, CNN-based 

models could learn phenotype representations directly from the acquired images combined with 

knowledge of the perturbation identities, instead of the current approach of hand-designed 

phenotype image features defined a priori. 

 

When developing a machine learning model, the primary design decision is the choice of objective 

that the model parameters should be optimized for. In representation learning, the optimized 

objective can be separated from the actual features that are used for downstream analysis, such 

as an intermediate result from within the model. A common supervised learning approach for 

learning representations of images is to combine several convolutional layers operating on the 

raw data, followed by “fully-connected” layers that transform the convolutional, spatially-aware 

features into a vector of probabilities that the given sample belongs to each user-defined category. 

The model parameters are then optimized such that the model performs well at predicting the 

image label, which in theory also causes image properties relevant to separating the individual 

classes to be summarized into the intermediate convolutional features. These intermediate 

features can then be used for downstream tasks, including analysis to understand intraclass 

variation and relationships between the classes. This approach has been applied to 

understanding phenotypes in image-based screens (52), where the class label predicted for each 

cell during training is the chemical or genetic perturbation identity. However, this is prone to model 

overfitting, as it assumes all perturbation phenotypes are separable from each other, a condition 

which often does not hold. 

 

An important alternative method for direct feature learning from images are models that employ 

autoencoders. At their base level, autoencoders optimize the ability to encode an image into a 

low-dimensional “latent” representation, and then decode this representation back into the original 

image. The model parameters are thus trained to minimize the difference between the original 

image and the image decoded from the latent representation. The latent representations can then 

be used for further analysis, which are more faithful representations of the images themselves 
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and less prone to overfitting than those learned using simple perturbation labels in supervised 

learning contexts. However, autoencoder-derived features will contain much information that is 

irrelevant to the differences between perturbation phenotypes, including baseline cell structure 

and cell orientation in the image. In a previous application where representations of subcellular 

protein localizations were learned from microscopy images, the condition-specific information 

within such representations was accentuated by including an additional task in the model training 

regimen that tries to predict the cell’s condition (in this case, which protein is visualized) from the 

latent features (53, 199). Alternatively, others have demonstrated with natural images the 

advantages of learning relevant feature embeddings using multiple versions of the same image, 

each independently subjected to condition-irrelevant image transformations or distortions prior to 

model input. The parameters are then optimized such that features are consistent when extracted 

from the paired examples (207). 

 

A related CNN-based approach we have pursued is to explicitly disentangle the perturbation-

irrelevant information in images from the image features that are unique to a given gene target. 

This in theory can be achieved using two parallel encoder paths, one of which is trained 

adversarially such that the encoded features explicitly cannot be used to predict the perturbation 

identity and thus mostly contain information unrelated to the specific perturbation. The latent 

features from the parallel paths are then combined through a common decoder network that is 

optimized to reproduce the original image. In theory, the latent representation produced by the 

second encoder network only contains information relevant to a given perturbation and would 

provide an information-rich input for downstream analysis. Overall, this approach could overcome 

the challenges of optimizing a model to predict perturbation identity by instead doing the inverse: 

removing from the learned representations information that cannot be used to predict the 

perturbation identity. However, the practical implementation of this approach is still under 

development. 

 

As outlined, there are many opportunities to use CNNs or other machine learning approaches to 

learn phenotype representations directly from raw images, used in place of or in combination to 

human-designed phenotype measurements. While the extracted features from CNNs will likely 

be processed downstream identically to predefined features, the hope is that they will exhibit 

higher information density and be able to capture more complex image features, as they are 

optimized for specific, although often abstract, objectives without the limitations of human intuition. 

These approaches will be especially useful for screens collecting phenotypes across many 
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imaging channels, where there are often only weak biological priors of how to measure and 

compare the phenotypes. In screen designs where a specific biological phenotype is known, 

phenotype extraction from images should focus on measuring the desired phenomena, which 

may or may not require machine learning or CNN optimization. Furthermore, computational costs 

for training and applying such models may be prohibitive. This can be partially ameliorated by 

starting with a network pre-trained on other image datasets (e.g., natural images from ImageNet) 

and then training a shallow network on top of these features to adapt them to a specific 

application. Additionally, the conventional approach is to train such models on the majority of a 

dataset (70-80%), monitor model optimization using a validation subset (10-20%), and reserve 

for downstream processing only the remaining samples (often 10%). This may be problematic 

when screening throughput is limited, or when other factors (e.g., perturbation efficiency) result in 

only a small fraction of cells exhibiting the phenotype of interest. Finally, it is yet to be seen how 

transferable model parameters and designs are between different image-based screening 

applications, potentially resulting in time consuming end-to-end model design and optimization 

for each new application. Despite these caveats, image-based pooled screens are ideal datasets 

for representation learning approaches due to their scale and relative consistency across 

perturbation conditions. 

3.4.3 Understanding biological functions from perturbation phenotypes 

Genetic screening in model systems has long been an essential method for understanding 

biological functions (4–6, 11). However, the ability to identify and characterize the functions of 

genes from perturbation phenotypes is complicated by several organizing principles in biology, 

particularly hierarchy, pleiotropy, and redundancy. The hierarchical nature of biology is present 

even within individual cells, with proteins and other molecules associating into complexes, 

complexes and macromolecules organizing into organelles, and biological pathways functioning 

across multiple scales. In a genetic perturbation experiment, a measured phenotype may arise 

from functional disruption at any point in a pathway. It is often challenging or impossible to identify 

the exact level at which a gene is acting directly from the phenotypic data collected in a screen, 

particularly for one-dimensional measurements such as overall cell fitness. However, with 

complex phenotypic measurements across multiple dimensions, such as enabled with optical 

pooled screening, subtle differences between similar phenotypes can be identified that may 

provide more specific functional information. This view influences how the collected data should 

be processed, as discrete grouping of phenotypes without consideration of their relationships will 

obscure this information. We demonstrate an initial such approach in Chapter 2, employing an 
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algorithm for low-dimensional visualization that maintains global relationships, and clustering at 

different scales to understand the hierarchy of gene functions. This could be further developed in 

the future by implementing algorithms that explicitly learn hierarchical relationships from 

perturbation phenotype measurements. Additionally, the flexibility of optical pooled screens could 

be leveraged to directly measure related phenotypes at multiple scales, such as expression levels 

and spatial organization of both transcripts and proteins, combined with higher-level cellular 

phenotypes of interest. For alternative high-dimensional pooled screens, such as those using 

single-cell RNA-sequencing, phenotypes are necessarily measured at the molecular scale of 

transcript abundance, without the intrinsic ability to connect these measurements to other scales 

such as high-level cellular behaviors. 

 

Pleiotropy, where a single gene is involved in multiple distinct biological functions, introduces 

similar complications to the simple picture of genotype-phenotype associations. In a genetic 

screen, this manifests as an observed phenotype measurement from a single perturbation 

actually resulting from the additive effects of multiple disrupted functions. Similar to the case of 

hierarchy, these effects typically cannot be de-convoluted with one-dimensional measurements, 

but may be possible with more complex phenotypes where a perturbation may exhibit a 

phenotype that is quantitatively represented by a combination of others. A recent study inferring 

gene pleiotropy from many independent pooled fitness screens demonstrates this approach 

(125), which likely could be adapted to learn pleiotropic function within a single image-based 

pooled screen with high-dimensional phenotype measurements. 

 

Finally, the pervasive redundancy of biological systems presents inherent limitations to genetic 

screens, as the disruption of a single gene may be buffered by other cellular mechanisms. Unlike 

the inference limitations associated with hierarchical and pleiotropic biological organization, 

redundancy cannot be overcome by merely acquiring and analyzing more data of the same type. 

Instead, identifying redundant gene functions in high throughput requires new experimental 

approaches. Performing identical screens across many different biological systems has shown 

some progress in identifying redundant elements (112), but is limited by existing biological 

variation and thus is likely unable to uncover redundant regulation of the most essential biological 

processes. A more direct approach to high-throughput screening for redundant factors is to 

perform combinatorial perturbation screens. As discussed in section 3.3, this is highly amenable 

to optical pooled screening, and should be implemented in future work. 
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Pooled perturbation screening has developed into a primary approach for discovering the 

functions of biological molecules, and the continuing development of experimental and 

computational frameworks for these studies points to their ongoing use well into the future. 

However, orthogonal methods, including large-scale protein-protein interaction and gene co-

expression studies, will remain as effective approaches and will likely enable complementary 

discoveries of biological functions. Overall, this work demonstrates one perturbation screening 

approach, image-based pooled screening, as particularly advantageous for identifying the 

molecular basis for complex phenotypes and cellular functions at scale. 

Appendix A. Optical pooled screening in primary 

neurons 

This work was completed in collaboration with Marek Nagiec and Jeff Cottrell, formerly of the 

Stanley Center for Psychiatric Research at the Broad Institute. 

A.1 Motivation 

While human cancer cell lines provide convenient in vitro models for fundamental biological 

phenomena such as those explored in Chapter 2, they are limited in their ability to recapitulate 

cell type-specific phenotypes and disease processes. For example, screening for factors involved 

in specialized neurological functions requires culture models optimized for this specific purpose. 

One such model involves dissecting embryonic hippocampal neurons from rats, which can then 

be cultured in vitro for extended periods of time. This approach is advantageous as it uses 

neurons resulting from normal development pathways, rather than iPSC-derived models that are 

generated through artificial differentiation processes that may not fully reach biologically-relevant 

endpoint cell states. Thus, in vitro primary neuron models can be used to recapitulate basic 

neurological functions and disease states much closer to their native context.  However, primary 

cell models present significant challenges for genetic perturbation screens. Primary neurons are 

post-mitotic, which presents technical challenges in acquiring a sufficient number of virally-

transduced cells and also severely limits the ability to screen for enrichment-based phenotypes. 

While the image-based pooled screening method discussed throughout this thesis enables an 

effective phenotyping approach beyond mitosis-dependent enrichment, the challenges of 

screening in the more complex cell model and without antibiotic selection still remain. Here, we 
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perform technical optimizations and a small-scale trial screen to enable optical pooled screening 

in primary rat embryonic hippocampal neurons. 

A.2 Technical optimizations 

In order to make image-based pooled screening efficient in primary neurons, we optimized our 

approach to maximize the fraction of transduced cells with successful Cas9-mediated gene 

disruption and also the fraction of transduced cells with identifiable in situ sequencing spots. To 

optimize these two metrics, we tested several CROPseq-derived lentiviral sgRNA delivery vectors 

with alternative RNA polymerase II (Pol II) promoters and sgRNA scaffold sequences. Ideally, 

using a Pol II promoter with strong expression in a specific cell type will enable higher expression 

of barcode mRNA for efficient in situ SBS. We compared our standard EF1a CROPseq promoter 

to the human Synapsin promoter, which provides strong expression in many neuronal cell types 

(208). Meanwhile, an optimized sgRNA scaffold sequence developed previously (92), as also 

used in Chapter 2, will likely increase the fraction of transduced cells with successful knockouts. 

We also replaced the CROPseq antibiotic selection marker with an ORF encoding the 

mNeonGreen fluorescent protein to enable identification of transduced cells. The multiplicity of 

infection (MOI) of the lentivirus infection provides an additional parameter to adjust the total 

number of transduced cells. However, this comes with limitations as very high MOI will result in 

multiple sgRNA integrations within individual cells, which are potentially detrimental to identifying 

phenotypic effects from each individual gene perturbation.  

 

We first evaluated knockout efficiency of the different CROPseq variants using 5 control sgRNAs 

targeting 3 genes in an arrayed infection experiment (Fig. A.1A). The fraction of cells with 

successful knockout was identified by immunofluorescence staining for the targeted protein with 

validated antibodies. Despite sgRNA and gene target level variability, we found that using the 

optimized sgRNA scaffold (CROPseq-v2) overall resulted in a larger fraction of cells with 

disrupted protein expression. The highest overall knockout efficiency was observed when the 

optimized sgRNA scaffold was combined with the EF1a promoter. To evaluate in situ sequencing 

efficiency, we performed a small-scale pooled lentiviral infection with 38 sgRNAs in each of the 

three tested CROPseq vectors (Fig. A.1B). Here we find that the optimized scaffold combined 

with either promoter resulted in a lower fraction of cells with at least 1 identified in situ sequencing 

spot, especially when combined with the Synapsin promoter. Overall, the results presented here 

suggest a trade-off between gene perturbation efficiency and barcode mRNA expression when 
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using the CROPseq vector design. Furthermore, the optimized sgRNA scaffold used in 

CROPseq-v2 was partially designed to increase RNA polymerase III (Pol III) expression of the 

sgRNA, while the Synapsin promoter likely increases the Pol II expression of the barcode mRNA 

in this cell type. Together these effects may result in interference between the two RNA 

polymerases due to the proximity of the promoters and overlap between the barcode mRNA 

transcript and one copy of the integrated sgRNA expression cassettes. Although the decrease in 

in situ sequencing efficiency will be problematic for large-scale screens, we chose to proceed with 

the CROPseq-v2-EF1a-mNeon vector as it maintains high knockout efficiency, which is absolutely 

required for measuring phenotypic effects of gene perturbations.  
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Figure A.1. Optimizing optical pooled screens in primary neurons. (A) Cas9-mediated 

knockout efficiency with three CROPseq-derived vectors, tested across 5 sgRNAs in arrayed 

infection experiments.  Knockout efficiency was measured in transduced (mNeon positive) cells 

by immunofluorescence with antibodies staining for the corresponding proteins. (B) Detection 

efficiency of in situ sequencing spots with the same vectors as in (A). Sequencing spots within 

mNeon positive cells were identified from one cycle of in situ sequencing. 
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A.3 Trial screen 

Following the optimization of our sgRNA delivery vector in section A.2, we performed a small-

scale image-based pooled CRISPR screen using CROPseq-v2-EF1a-mNeon to validate the full 

screening approach in primary neurons. For the phenotype measurements, we chose to use a 

straightforward immunofluorescence antibody stain for a Calcineurin phosphorylation event 

(Ppp3ca phospho-S469), which is being developed by our collaborators as a general marker of 

neuronal activity associated with synaptic plasticity. This phosphorylation event can be 

conveniently induced in vitro by stimulating N-methyl-d-aspartate (NMDA) receptors. We chose a 

set of 7 genes which are expected to be involved in regulating this signaling event (Ppp3ca, Grin1, 

Fmr1, Kcnq2, Nrgn, Pten, and Scn2a), and designed 4 sgRNAs targeting each of these genes in 

addition to 10 non-targeting negative control sgRNAs for a total of 38 sgRNAs. After lentiviral 

infection and 14 days in vitro (DIV), separate wells were treated with tetrodotoxin (TTX; 

suppresses activity), TTX followed by NMDA (activating), or Bicuculline (activating). The cultures 

were then fixed and processed for in situ sequencing as in Chapter 2, and 10 cycles of in situ 

SBS were acquired (Fig. A.2A). Transduced cells were identified using the mNeon marker, with 

high-expressing mNeon cells demonstrating increasing in situ sequencing read counts (Fig. 

A.2B). Overall, more than 80% of transduced cells had an in situ sequencing read successfully 

mapped to the designed library (Fig. A.2C). However, the MOI of the infection appeared to be 

higher than anticipated, and only 50-60% of mNeon positive cells had in situ sequencing reads 

uniquely mapping to a single sgRNA sequence (Fig. A.2D-F). 

 

Following in situ identification of the sgRNAs expressed in each transduced cell, this information 

was combined with phenotype measurements of neuronal activation via Calcineurin pS469 

staining. Overall, phosphorylation increased strongly between unstimulated or TTX-suppressed 

conditions and Bicuculline or NMDA activating stimulations within cells expressing non-targeting 

sgRNAs (Fig. A.3A). However, for the cells with targeting sgRNAs, only very minor differences in 

phosphorylation levels were observed, and in only two genes (Ppp3ca, Grin1), when comparing 

to the non-targeting sgRNAs (Fig. A.3B). These two genes were expected to have  
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Fig. A.2. Quality control of a trial screen in primary neurons. (A) Example images from 10 

cycles of in situ SBS in primary neuron cultures (sequencing channels are Laplacian-of-Gaussian 
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filtered). Scale bar, 20 µm. (B) Increased mNeon expression corresponded to increases in in situ 

sequencing reads and was used to identify transduced cells. (C) Across the datasets, more than 

80% of transduced cells contained at least one in situ sequencing reads that matched a designed 

sgRNA sequence. (D-F) Plate heatmaps demonstrating throughput of the screen in terms of total 

plated cells (D), fraction of transduced (mNeon+) cells (E), and the fraction of transduced cells 

with sequencing reads uniquely mapping to designed sequences (F). 

 

 

the strongest effect sizes, as Ppp3ca encodes for the Calcineurin protein targeted by the antibody, 

and Grin1 is a subunit of the NMDA receptors that transduce the signaling event into the neurons. 

The remaining gene targets are slightly less directly involved in the Ppp3ca pS469 signaling 

event, but the complete absence of effect is surprising. This, combined with the weak effects 

observed in Ppp3ca and Grin1 gene targets even with high cell representation (>3,000 cells 

represented in each distribution shown in Fig. A.3B), points to likely inefficiencies in Cas9 gene 

targeting in this trial screen. At this current stage, the weak effects for positive control genes 

makes larger screens infeasible despite the relative success of applying in situ SBS in primary 

neuron cultures. In the future, perturbation efficiency in this system should be optimized by further 

iterations of the sgRNA or Cas9 delivery vector. In these experiments, Cas9 expression was 

delivered using an adeno-associated virus (AAV) vector. Additional approaches should be 

considered including procuring neurons from engineered Cas9-expressing rat models or directly 

delivering Cas9 ribonucleoprotein (RNP) via electroporation (209). Additionally, the overall 

throughput of primary cell screens is limited in the low MOI regime as transduced cells cannot be 

easily enriched, resulting in many of the imaged cells being uninformative. A FACS-based 

selection may be feasible in some cell types (although likely not neurons), while high MOI 

experiments may be possible by employing compressed experiment approaches similar to those 

discussed in Section 3.3 for combinatorial interaction screening. 

A.4 Methods 

Hippocampal neurons were dissected from rat (Rattus norvegicus) E18 embryos, and plated on 

glass-bottom imaging plates (Cellvis P24-1.5H-N) coated with poly-D-lysine. After 2 or 5 DIV, the 

cultures were infected with AAV8-Cas9 (210) and sgRNA libraries in the CROPseq-derived 

vectors described in section A.2. At 16-21 DIV, the cultures were optionally treated with 0.5 µM 

TTX for 30 minutes, 0.5 µM TTX for 30 minutes followed by 20 µM NMDA stimulation for 10  
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Figure A.3. Phenotype measurements from the primary neuron trial screen. (A) Cumulative 

distribution plots of all cells expressing non-targeting sgRNAs and example images showing 

increases in Calcineurin (Ppp3ca) pS469 phosphorylation after stimulation by Bicuculline or 

NMDA. (B) Cumulative distributions for all cells expressing sgRNAs targeting the indicated gene 

and example images following Bicuculline or NMDA stimulation. Mean intensity was normalized 

using the median and median absolute deviation of the non-targeting cell population from within 

the same well to generate robust z-scores. Scale bars, 20 µm. 

 

 

minutes, or 20 µM Bicuculline stimulation for 5 minutes. Cells were then immediately fixed with 

4% paraformaldehyde for 15 minutes. In situ sequencing and corresponding image analysis was 

performed as described in Chapter 2. The sgRNAs used for the primary neurons experiments 

were designed against the Rattus norvegicus target genes using either CRISPick 

(https://portals.broadinstitute.org/gppx/crispick/public) or E-CRISP (211).  
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