
Synthesizing Object Models from Natural Language
Specifications

by

Alex Gu
S.B., Computer Science and Engineering, Massachusetts Institute of

Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2022
Certified by. .

Armando Solar-Lezama
Professor

Thesis Supervisor
Certified by. .

Jacob Andreas
Assistant Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Synthesizing Object Models from Natural Language

Specifications

by

Alex Gu

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Program synthesis has traditionally excelled in tasks with precise specifications such
as input-output examples and formal constraints by using structured and algorith-
mic approaches based on enumerative search and type inference. However, traditional
synthesis techniques have no mechanism of incorporating real-world knowledge, which
is commonplace in software engineering. Motivated by this, we introduce a new syn-
thesis task known as specification reification: synthesizing concrete realizations of
vague, high-level application specifications. We focus on a specific instance of this:
generating object models from natural language application descriptions. Towards
this goal, we present three approaches for object model synthesis that leverage do-
main knowledge from the GPT-3 language model. In addition, we design a scoring
metric to evaluate the success of synthesized object models on seven sample tasks
such as classroom management and pet store applications. We demonstrate that
our language-model-based synthesizers generate object models that are comparable
in quality to human-generated ones.

Thesis Supervisor: Armando Solar-Lezama
Title: Professor

Thesis Supervisor: Jacob Andreas
Title: Assistant Professor

3

4

Acknowledgments

To my advisor, Armando Solar-Lezama: I am forever thankful for all the support

you’ve given me, both as a researcher and as a person. Thanks for helping me

enter a field I had no experience in, inviting me to go to SPLASH, always being

so approachable as a person, teaching me how to be a great research mentor, and

finding creative approaches to solve any problem I ever had. Throughout this past

year, you’ve been incredibly supportive of me not just in my research, but also in all

other aspects of my existence. I am fortunate and excited to have the opportunity to

continue having you as my advisor for the next few years of my life.

To my co-advisor, Jacob Andreas: you’ve been immensely supportive and helpful

all throughout my MEng. You’ve constantly provided encouragement and well as

research ideas that have inspired my excitement in working on my thesis project.

And of course, you’ve shown me how exciting the world of NLP can be.

Thanks to all the wonderful members in my lab for everything from research

ideas to the liveliest group meetings to chill weekend hangouts: Ivan Kuraj, Jack

Feser, Jimmy Koppel, Kavi Gupta, Kliment Serafimov, Leo Hernandez Cano, Matt

Bowers, Omar Costillo Reyes, Ramya Durvasula, Ria Das, Theo Olausson. You’ve

been amazing labmates, and I’ve had the time of my life here. Thanks to Daniela Velez

and Tamara Mitrovska for being enthusiastic, self-driven, and wonderful UROPs and

for trusting me as a first-time UROP mentor: I’ve enjoyed collaborating with both

of you on this project.

Thanks to all of the members of the OPTML lab for having me as a SuperUROP.

Special thanks to Kwangjun Ahn and Jingzhao Zhang for having so many discussions

with me on the acceleration of Polyak-Łojasiewicz, Horia Mania for giving me an

opportunity to explore and enjoy the deep world of multi-armed bandits, and Alp

Yurtsever for being an amazing mentor through my first conference paper. Thanks,

especially, to Suvrit Sra, not only for giving me invaluable research advice all through-

out my SuperUROP, but also for all the teaching insights you’ve shared throughout

my two semesters of TA’ing with you.

5

Thanks to all my collaborators and co-authors at the AI4LIFE lab: Satya Kr-

ishna, Tessa Han, Javin Pombra, Shahin Jabbari, Steven Wu. It’s been a great time

collaborating with all of you and seeing all the pieces of the project, from theory to

experiments to user studies, all come together. Special thanks to Hima Lakkaraju for

talking to me about everything from startups to graduate schools to life as a Harvard

professor.

Thanks to the team I worked with during my internship at IBM: Songtao Lu,

Parikshit Ram, and Lily Weng. Thanks for guiding me through a fulfilling project

and for continuing to work together to make our paper even stronger after each

conference paper rejection.

Thanks to all my other academic and research mentors, who have given me excel-

lent advice and made me a better researcher today: Costis Daskalakis, Dylan Foster,

Lizhong Zheng, Luca Daniel, Nada Amin, Ranjit Jhala, Steve Chong, Sumit Gulwani.

Thanks to all my friends for four enriching and wonderful years together. To Alan

Peng, Andrea Jaba, Andrew Gu, Anzo Teh, Ashley Lin, Eric Zhang, Jason Chen,

Jeffery Yu, Jenny Gao, Jiahai Feng, Karen Gao, Kate Xu, Kendall Yu, Kevin Qian,

Laura Cui, Spencer Compton, Sualeh Asif, Tiffany Trinh, Vincent Huang, Zoey Song,

Zoom Saowakon: I’ve enjoyed all the memories we’ve made together, and each of you

has made my life better in one way or another.

To my girlfriend, Grace: where would I be without you? Every day and every

night you think about me, care for my well-being, and wish the best for me, wherever

I am. You push me to be a better person in every dimension and never have second-

thoughts about being there for me. Thanks for being my girlfriend, and I’m so lucky

to have you in my life.

And lastly, to my family: ever since I was young, you’ve always told me to pursue

my own passions and dreams. You’ve always been there for me and always supported

me, no matter what I do or where I go. From the time I was born to today, you’ve

never stopped encouraging me, cheering me on, or doubted me. All of this would

be impossible without all the thought and care you put into me. Thank you Aaron,

Mom, Dad, and Grandma, for everything you’ve done for me.

6

Contents

1 Introduction 13

2 Related Work 17

2.1 Program synthesis . 17

2.2 Ontologies and Knowledge Graphs 17

2.3 Large Language Models . 18

3 The System 19

3.1 Problem Definition and Notation . 19

3.2 Zero-shot GPT Generation . 20

3.3 One-shot GPT Generation . 20

3.4 Hierarchical GPT generation . 21

3.4.1 Extracting Object Fields . 21

3.4.2 Checking for Terminal Objects 21

4 Evaluation 25

4.1 Data Collection . 25

4.2 Similarity Metric Components . 26

4.2.1 Field similarity: . 26

4.2.2 Object similarity: . 27

4.3 Object Model Similarity: . 28

4.4 Object Model Score: . 28

7

5 Results and Discussion 31

5.1 Quantitative Results . 31

5.2 Qualitative Results . 31

6 Conclusion and Future Work 35

A Prompts 37

A.1 1-shot GPT Prompt . 38

B Meta-Metric 39

C Samples of generated schemas 43

C.1 Object models for a concert management application 44

C.2 Object models for a library application 45

C.3 Object models for a hotel application 46

C.4 Object models for a restaurant application 47

C.5 Object models for a pet store application 48

C.6 Object models for a company management application 49

8

List of Figures

1-1 A sample object model for a classroom management application . . . 14

3-1 Sample input and output for our zero-shot object model generation

algorithm . 20

3-2 Sample input and output for our one-shot object model generation

algorithm . 23

4-1 The user interface for participants to design object models for our data

collection effort. 26

5-1 Hierarchical, 1-shot, and 0-shot object models for a pet store application 33

C-1 Hierarchical, 1-shot, and 0-shot object models for a concert manage-

ment application . 44

C-2 Hierarchical, 1-shot, and 0-shot object models for a library application 45

C-3 Hierarchical, 1-shot, and 0-shot object models for a hotel application 46

C-4 Hierarchical, 1-shot, and 0-shot object models for a restaurant application 47

C-5 Hierarchical, 1-shot, and 0-shot object models for a pet store application 48

C-6 Hierarchical, 1-shot, and 0-shot object models for a company manage-

ment application . 49

9

10

List of Tables

5.1 Scores for each of the three object model generation algorithms . . . 32

B.1 The meta-metric score (0–1, with 1 being the best) for different possible

similarity metrics . 41

11

12

Chapter 1

Introduction

The goal of program synthesis is to generate programs from various types of specifi-

cations such as input-output examples, abstract properties about inputs and outputs,

and formal logical specifications. Traditionally, program synthesis has been princi-

pally algorithmic, using methods like enumerative search, constraint-based sketching,

or type-driven synthesis to generate programs. While these algorithms have been

successful at synthesizing functions with well defined input/output behavior, creating

software requires much more than implementing functions from well defined specifica-

tions. In particular, an important part of software development is leveraging domain

knowledge to turn high-level application requirements into a detailed description of

all the components and interfaces that will make up the application.

In this paper, we introduce specification reification as a new challenge for pro-

gram synthesis. Specification reification refers to the previously mentioned process of

taking a high-level, potentially vague specification of a problem and reifying it into

a more concrete form. For example, consider a developer who is designing a class-

room management application in an object-oriented language. Traditional program

synthesis could help implement specific functions in this application—for example, a

function to search for students who have not submitted an assignment—but before

a developer gets to that point, they first need to design the application itself. This

involves deciding which objects they need, and for each object deciding on their fields

and methods, and for each method deciding what its specification should be. Specifi-

13

cation reification is the process of deriving this design from the high-level description

of the application.

We consider a specific sub-problem of specification reification: the task of syn-

thesizing object models from natural language specifications. More concretely, we

present a system that takes as input a description of an application—e.g. “I want

a classroom management app that tracks students, the assignments they’ve submit-

ted, and the grades they’ve earned on those assignments"—and from this description

synthesizes an object model consisting of a set of objects and their fields. A sample

object model that one may wish to synthesize is shown in Figure 1.

student submission assignment teacher
- name - student - title - name
- email address - assignment - description - students
- teacher - grade - due date - submissions
- grade
- assignments
- submissions

Figure 1-1: A sample object model for a classroom management application

We emphasize two challenges of the task at hand:

1. First, it is challenging to automatically inferring objects and fields. In Figure

1, the teacher and submission objects are not given in the prompt; nor are the

name and submissions fields for the student table—both need to be inferred. A

successful system for this task should be able to infer related objects directly

from the prompt.

2. Second, many objects refer to other objects in their fields: for example, the

student object references the teacher object, the assignment object, and the

submission object as fields. This highlights that a system should understand

how various objects are related.

Towards this goal, our contributions are as follows:

1. We introduce and highlight a new task in program synthesis: specification reifi-

cation. We also introduce the object model synthesis task as an important

14

sub-problem of specification reification.

2. We introduce a new evaluation metric and benchmark for object model synthe-

sis. First, we gather a small dataset of hand-written object models for seven

prompts as gold-standard object models. Next, we propose a similarity metric

that quantifies the closeness between two object models. Finally, we define a

scoring function that measures how well a generated object model fits a partic-

ular prompt.

3. We present three approaches for tackling the object model synthesis problem.

The key innovation in all these algorithms is the use of GPT-3, a large language

model which has background knowledge about the world. The first is a zero-

shot approach, in which we directly ask GPT-3 what objects and fields a desired

application has. The second is a one-shot approach, where we give GPT-3 an

example of a successfully synthesized object model and ask it to generate an

object model for a different prompt. The final is a more structured hierarchi-

cal approach, starting from the objects in the initial prompt and recursively

prompting GPT-3 for related objects and fields. For most prompts, we observe

that all three proposed approaches generate object models at a level similar to

user-generated models and perform much better than randomly sampled models

of different prompts.

15

16

Chapter 2

Related Work

2.1 Program synthesis

The field of program synthesis has had a long history, with a variety of approaches

summarized in the survey [12]. The first line of approaches to appear mostly focused

on inductive synthesis (matching a set of input-output examples) approaches such as

bottom-up search [1], top-down search [11], type-directed search [21], and constraint-

solving [24]. Later, however, richer forms of program specifications were used for

synthesis.

In recent years, with new developments in machine learning, there have been more

and more works exploring the potential of augmenting traditional synthesis techniques

with neural networks; [6] provides a complete survey. These include approaches to

learn abstractions and libraries from scratch [9, 27, 20], execution-guided approaches

that evaluate partial program states [19, 13, 8], and approaches guided by natural

language information [27, 29, 28, 18, 22].

2.2 Ontologies and Knowledge Graphs

There has also been a body of work that aims to build ontologies and knowledge

graphs of natural language concepts, such as Yago [25], WordNet [17], and DBpedia

[2]. While these knowledge graphs have been applied in traditional NLP tasks such as

17

question answering [4], they are unable to provide specific insights for our synthesis

task such as synthesizing fields for a certain object. As an example, when searching

for nearest neighbors related to student, WordNet comes up with synonyms such as

pupil, educatee, and scholar, while Yago provides a Wikipedia page for a student,

a definiton of a student in Spanish, and an image containing many students. In

addition, our synthesis task is very contextual: the fields of a student object would

be very different if we were designing an app for teachers to manage the classroom vs

a social app for students to make friends with one another. It is difficult to capture

this form of context via ontologies and knowledge graphs.

2.3 Large Language Models

Recent years has also seen the birth of new works leveraging large language models

(LLMs) like GPT-3 [5] to perform program synthesis. A few months ago, GitHub

released a powerful code autocompletion tool called GitHub Copilot which uses con-

text such as natural language comments and previous code in order to generate code.

Copilot is built off of OpenAI’s powerful machine learning model Codex [7], which

translates natural language to code in almost a dozen programming languages. Code-

BERT [10] learns representations of code and natural language for downstream tasks

like code search and code documentation generation. [14] use GPT-2 trained on a

corpus of well-documented and commented code to synthesize programs for data sci-

ence and machine learning. Building off of LLMs, [3] incorporate human feedback

to repair generated code.

There have been other works combining traditional program synthesis techniques

with large language models. [26] uses traditional inductive synthesis techniques with

GPT-3 to learn small intermediate functions that cannot be represented symbolically.

Jigsaw [15] uses LLMs to synthesize code but use program analysis techniques to do

post-processing. [23] take a component-based synthesis approach guided by LLMs

which, for example, help rank candidate programs.

18

Chapter 3

The System

3.1 Problem Definition and Notation

We begin by formalizing the object model generation task. The input to this task is a

natural language specification of an application, e.g. “I want a classroom management

app that tracks students, the assignments they’ve submitted, and the grades they’ve

earned on those assignments.” The goal is to generate a realistic object model of this

application, where each object consists of a name and a set of fields. Formally, an

object model consists of 𝑛 objects 𝑜1, 𝑜2, · · · , 𝑜𝑛. Each object 𝑜𝑖 consists of a pair

(name𝑖, 𝑓𝑖) consisting of an object name and a set of 𝑚𝑖 field names 𝑓𝑖 ≜ {𝑓 𝑗
𝑖 }

𝑚𝑖
𝑗=1.

For example, the student and submission objects from Figure 1 might be represented

as follows:

𝑜1 = (student, {name, email address, teacher, grade, assignments, submissions})

𝑜2 = (submission, {student, assignment, grade})

For all of our algorithms, our system uses the GPT-3 Q&A API with the text-davinci-

001 model and default parameters from the OpenAI web API1: a temperature of 0

(greedy decoding), frequency penalty of 0, and presence penalty of 0.

1https://beta.openai.com/playground

19

Input: “I want a pet store app tracking customers. The pet store app should
also keep the store’s inventory of pets and allow customers to buy and sell
pets.

Q: What objects and fields does this application have?"

GPT-3 Output: “A: The application has the following objects: customer, pet,
and inventory. The customer object has the following fields: name, address,
and phone number. The pet object has the following fields: name, type, and
description. The inventory object has the following fields: type, quantity, and
price."

Figure 3-1: Sample input and output for our zero-shot object model generation algo-
rithm

3.2 Zero-shot GPT Generation

Our first approach is a zero-shot approach, in which the system prompts GPT-3

with our input specification and directly asks what objects and fields the desired

application has (when evaluating this method, we manually parse the GPT-3 output

into its objects and fields). A sample of the input and output of our zero-shot approach

is shown in Figure 3-1.

3.3 One-shot GPT Generation

Our second approach is a one-shot approach, in which the system prompts GPT-3

with a complete object model for a classroom management app and asks it to generate

an object model for a new prompt. In Figure 3-2, we show the input and outputs

of GPT-3. The tables and fields are explicitly provided so that GPT-3’s few-shot

generation system learns a desired format. In practice, GPT outputs always conform

to this specification format, so we write a parser that automatically convert these

outputs into explicit object models.

20

3.4 Hierarchical GPT generation

The final approach we use is a hierarchical approach. At a high level, our algorithm

follows an iterative depth first search, keeping a stack of all the objects we’ve en-

countered so far. We begin by extracting all the noun phrases from the prompt using

a purely symbolic approach leveraging Stanford’s CoreNLP parser [16], which we

denote by extract_noun_phrases(prompt). We treat these noun phrases as a set of

initial objects. From these initial objects, we recursively get a set of fields for each

object, denoted by extract_object_fields(object). For each of these fields, which

we consider as new potential objects, we first check if we have encountered the field

before. If not, we then test to see if the field should additionally be treated as a new

object, and if so, add it to the stack. We do this via a terminal(new_object) check

to ensure that we are only adding objects to the stack. In pseudocode, our algorithm

is as follows:

3.4.1 Extracting Object Fields

Now, we explain extract_object_fields(object). Our key insight is that GPT-3

can generate these relevant objects and fields from its domain knowledge. Specifically,

given an object, this function asks GPT-3 what fields the object has via questions

in the form “Q: What attributes does a classroom management application have?".

Remarkably, it would answer “A classroom management app has a list of students,

a list of assignments, and a list of grades.". Next, the system parses this response

to understand that a classroom management application object has students, assign-

ments, and grades as fields. In order to avoid duplicate objects, we also ensure all

object names are in singular form when prompting, like student instead of students.

3.4.2 Checking for Terminal Objects

The terminal(object) function helps the system discriminate which fields should be

further treated as objects. While a student having a name is important, a name object

having a list of characters is irrelevant. We once again use GPT-3 by prompting it with

21

Q&A pairs like "Q: What does a grade have?" and "A: A grade has nothing because

it is an integer.". The full prompt is deferred to Appendix A.1. This prompting

mechanism helps GPT-3 learn that some objects have no fields, and the terminal

function returns true if GPT says the object has nothing.

22

Input: Q: Design a schema for the following prompt: "I want a classroom
management app that tracks students, the assignments they’ve submitted, and
the grades they’ve earned on those assignments.

A: Table: assignment
Fields: title (string), description (string), due date (datetime)

Table: student
Fields: name (string), email address (string), phone number (string),
teacher (teacher), grade (int), assignments (List[assignment]), submissions
(List[submission])

Table: teacher
Fields: name (string), students (List[student]), submissions
(List[submission])

Table: submission
Fields: student (student), assignment (assignment), grade (int)

Q: Design a schema for the following prompt: "I want a pet store app tracking
customers. The pet store app should also keep the store’s inventory of pets
and allow customers to buy and sell pets."

GPT-3 Output:
A: Table: customer
Fields: name (string), email address (string), phone number (string), pet
(pet), quantity (int), price (float)

Table: pet
Fields: name (string), type (string), description (string), quantity (int), price
(float)

Table: inventory
Fields: pet (pet), quantity (int), price (float)

Figure 3-2: Sample input and output for our one-shot object model generation algo-
rithm

23

24

Chapter 4

Evaluation

We also define an evaluation procedure to quantify the correctness of a generated

object model. This is tricky because for a single natural language description, there

are many object models fitting the given description. First, in Section 4.1, we describe

a data collection process to obtain gold standard models. Then, in Section 4.2, we

present our full evaluation and scoring metric using these models.

4.1 Data Collection

To obtain a set of gold-standard models, we set up an experimental testbed, asking

participants to design object models from seven prompts simulating the following

applications: pet store, restaurant, hotel, dating, library, company, and concert. The

full prompts are in Appendix A. To help participants understand the task, we gave

them an example of a full object model for a classroom application but emphasized

that there is no correct answer. We included the example to demonstrate that par-

ticipants should include objects and fields that weren’t explicitly mentioned in the

prompt.

As shown in Figure 4-1, the participant was shown a prompt at random and

instructed to create an object model corresponding to the prompt. The users were

given freedom over the number of objects they created and the number of fields they

used for each object. For each field, they were asked to specify its name and its type.

25

Figure 4-1: The user interface for participants to design object models for our data
collection effort.

For types, we restricted participants to primitives, other objects they created, and

lists of either. In total, we received 35 object models. However, we deemed 2 to be

of extremely poor quality, leaving us with 33 gold-standard models.

4.2 Similarity Metric Components

Now, we propose an evaluation metric to determine the similarity between two object

models. Intuitively, our metric works as follows: consider two object models 𝑂 =

{𝑜1, · · · , 𝑜𝑛} and 𝑂′ = {𝑜′1, · · · , 𝑜′𝑛′}. For each object in 𝑂, say 𝑜𝑖, we find the most

similar object in 𝑂′, measured using an object similarity metric. We then average the

similarities to get the overall object model similarity. To compute how similar two

objects 𝑜𝑖 and 𝑜′𝑗 are, we employ a similar process: for each field 𝑓𝑚
𝑖 , we find the field

in 𝑜′𝑗 that is most similar to it via a field similarity metric, averaging the similarities

to get the overall object similarity. Below, we make this concrete and precise.

4.2.1 Field similarity:

To begin, we define the similarity between any two fields. When comparing two

fields, it’s important to consider the objects they were part of: many objects might

have a “name" field that refer to very different things. Therefore, we concatenate the

object name and field name, eg “pet name" or “customer name" when computing the

26

similarity. Concretely, the similarity between fields 𝑓𝑎
𝑖 and 𝑓 𝑏

𝑗 is defined as

field_sim(𝑓𝑎
𝑖 , 𝑓

𝑏
𝑗) = phrase_sim(concat(𝑛𝑎𝑚𝑒𝑖, 𝑓

𝑎
𝑖), concat(𝑛𝑎𝑚𝑒𝑗, 𝑓

𝑏
𝑗)). (4.1)

Here, phrase_sim is calculated by calling spacy’s built in .similarity() method on

two phrases, which is a word2vec-like similarity measure in [0, 1], 1 indicating perfect

similarity.

4.2.2 Object similarity:

Next, we define a metric to evaluate object similarity. For two objects 𝑜𝑖, 𝑜𝑗 to be

similar, their object names and set of fields should both be similar. Overall, we define

the object similarity as a combination 𝑓 of the two, where we use 𝑓(𝑥, 𝑦) = 𝑥𝑦:

o_sim(𝑜𝑖, 𝑜𝑗) = 𝑓(o_name_sim(𝑜𝑖, 𝑜𝑗), o_field_sim(𝑜𝑖, 𝑜𝑗)). (4.2)

First, we define the object name similarity similar to the field similarity, as

o_name_sim(𝑜𝑖, 𝑜𝑗) = phrase_sim(𝑛𝑎𝑚𝑒𝑖, 𝑛𝑎𝑚𝑒𝑗). (4.3)

Next, we define the object field similarity. Intuitively, if two objects 𝑜𝑖 and 𝑜𝑗 have

identical sets of fields, there is a one-to-one mapping between each field in 𝑜𝑖 and each

field in 𝑜𝑗. If they aren’t identical but similar, each field 𝑓𝑎
𝑖 should still have fields

that are roughly similar to fields in 𝑜𝑗. For example, 𝑜𝑖 might have a “name" field, but

𝑜𝑗 might have “first name" and “last name" as fields. In this case, there would still be

an approximate mapping between fields. We use this idea to define our metric: for

each field 𝑓𝑎
𝑖 in object 𝑜𝑖, we compute the maximum field similarity between 𝑓𝑎

𝑖 and

a field 𝑓 𝑏
𝑗 in object 𝑜𝑗. We then average them to define

o_field_sim’(𝑜𝑖, 𝑜𝑗) =
1

𝑚𝑖

𝑚𝑖∑︁
𝑎=1

max
𝑏∈[𝑚𝑗]

field_sim(𝑓𝑎
𝑖 , 𝑓

𝑏
𝑖). (4.4)

27

Observe that if the fields in object 𝑖 are a strict subset of the fields in object 𝑗, then

obj_field_sim’(𝑜𝑖, 𝑜𝑗) = 1, since each field in object 𝑖 has a perfect match in object

𝑗. However, o_field_sim’(𝑜𝑗, 𝑜𝑖) will be smaller, since not every field in object 𝑗 has

a match in object 𝑖. Therefore, to make our metric symmetric, we define the overall

field similarity as

o_field_sim(𝑜𝑖, 𝑜𝑗) =
1

2
(o_field_sim’(𝑜𝑖, 𝑜𝑗) + o_field_sim’(𝑜𝑗, 𝑜𝑖)). (4.5)

4.3 Object Model Similarity:

Finally, we define a similarity function to evaluate how similar two full object-oriented

models are. Consider two object models 𝑂 = {𝑜𝑖}𝑛𝑖=1 and 𝑂′ = {𝑜′𝑖}𝑛
′

𝑖=1. Similar to

our object similarity metric, we average the similarities from each object 𝑜𝑖 ∈ 𝑂 to

its most similar object in 𝑂′. We define

om_sim’(𝑂,𝑂′) =
1

𝑛

𝑛∑︁
𝑖=1

max
𝑗∈[𝑛′]

o_sim(𝑜𝑖, 𝑜𝑗), (4.6)

om_sim(𝑂,𝑂′) =
1

2
(om_sim’(𝑂,𝑂′) + om_sim’(𝑂′, 𝑂)) . (4.7)

4.4 Object Model Score:

Finally, in order to evaluate an object model for a given prompt, we define a scoring

metric taking object models to [0, 1]. Consider an object model 𝑂 for a prompt 𝑃 for

which we wish to evaluate. Let 𝑂1, · · · , 𝑂𝑘 be the gold-standard object models for

𝑃 . Intuitively, an object should have a high score if it is similar to any of the gold-

standard models and have a low score otherwise. Therefore, we define the score of an

object model on a given prompt to be its similarity to the most similar gold-standard

model. Precisely,

score𝑃 (𝑂) = max
𝑖∈[𝑘]

om_sim(𝑂,𝑂𝑖). (4.8)

28

A more detailed motivation and evaluation of this metric is provided in Appendix B.

As we will show in 5.1, the score function defined above effectively discriminates be-

tween human-generated object models, assigning high scores to human gold-standard

models for the same domain, and low scores to object model pair from different do-

mains.

29

30

Chapter 5

Results and Discussion

5.1 Quantitative Results

We present the scores of each of the generated object models for all seven prompts in

Table 5.1 when compared against our gold-standard benchmark. The hier, 1-shot, and

0-shot columns represent the algorithms in Section 3. The similar column of a prompt

𝑃 measures the average score of gold-standard object models for that prompt when

compared against the other gold-standard models. When calculating the score for an

object 𝑂𝑖, we remove 𝑂𝑖 from the set of gold-standard models to obtain a leave-one-

out score because otherwise all the scores would be 1. The different column measures

the average score of gold-standard object models in prompt 𝑃 when compared against

gold-standard models for the other prompts 𝑃 ′ ̸= 𝑃 . This measures the similarity

between models of a given prompt to gold-standard object models of other prompts.

As we expect, these scores are much lower, as object models of different prompts

should be different.

5.2 Qualitative Results

In Figure 5-1, we show the three object models for the prompt "I want a pet store

app tracking customers. The pet store app should also keep the store’s inventory of

pets and allow customers to buy and sell pets." We include our full list of generated

31

prompt hier 1-shot 0-shot similar different
company 0.78 0.80 0.84 0.67 0.23
pet store 0.81 0.79 0.69 0.83 0.27
restaurant 0.86 0.89 0.77 0.81 0.31

hotel 0.81 0.88 0.90 0.92 0.21
dating 0.72 0.83 0.74 0.88 0.16
library 0.77 0.79 0.75 0.52 0.25
concert 0.75 0.80 0.68 0.76 0.26
average 0.78 0.83 0.77 0.77 0.24

Table 5.1: Scores for each of the three object model generation algorithms

schemas for other prompts in Appendix C. Each of the methods has its own merits

and flaws. First, we notice that all three methods are able to generate relevant

information that isn’t explicitly provided in the prompt (such as a customer’s name).

Second, in the hierarchical table, we can see that each field is either a primitive (such

as name, address, phone number) or is the name of another object. However, in the

0-shot and 1-shot table, there are tables that are never referenced, like inventory in

the 1-shot case and purchase in the 0-shot case. Third, we note that in contrast to

the other methods, the 1-shot method often generates a more exhaustive list of fields.

32

Hierarchical (Score: 0.81)
customer store pet pet store app purchase
- name - name - name - customer - customer
- email address - address - description - pet - pet
- phone number - pet - price - purchase - price
- pet - purchase - purchase - store
- purchase

1-shot (Score: 0.79)
customer pet inventory
- name - name - pet
- email address - type - quantity
- phone number - description - price
- pet - age
- purchased - gender
- sold - purchased

- sold

0-shot (Score: 0.69)
customer pet inventory purchase
- first name - name - type - customer
- last name - type - age - pet
- email - age - gender - inventory
- phone - gender

Figure 5-1: Hierarchical, 1-shot, and 0-shot object models for a pet store application

33

34

Chapter 6

Conclusion and Future Work

In this work, we introduced a new class of important program synthesis problems

known as specification reification, focused on incorporating domain knowledge into

traditional program synthesis. First, we presented one specific instance of this task,

object model synthesis, and designed a metric to evaluate performance on this task.

Then, we demonstrated three different algorithms to solve this task, showing that

we are able to synthesize, to some extent, object models satisfying the specification.

These object models include fields and tables not explicitly mentioned in the original

prompt. Evaluating these algorithms on our metric is a first step towards showing

that our generated object models are similar to human gold-standard models.

We believe that specification reification is an important problem and welcome re-

searchers to introduce other synthesis problems fitting this framework. We identify

many attractive directions for future investigation: first, there is significant room for

the discovery novel approaches that improve upon the three we present. Second, we

encourage a more rigorous data collection effort and investigation of our evaluation

procedure: the quantity of object models we collected is likely too small to fully cover

the set of possible gold-standard models. Third, GPT often gives misleading or incor-

rect information, so one way of correcting this is to explore how human interactivity

can be incorporated to correct and augment the synthesized object model. Finally,

since software engineers often spend time designing what methods to implement, it

would be interesting to extend the object model to include these method names,

35

types, and descriptions, e.g., turning in assignments for a classroom application.

36

Appendix A

Prompts

We used the following seven prompts throughout:

• I want a company management app where I can track my employees, their

schedules, and their compensation.

• I want a pet store app tracking customers. The pet store app should also keep

the store’s inventory of pets and allow customers to buy and sell pets.

• I want a restaurant management app tracking customers, their reservations,

their orders, and menu items.

• I want a hotel app tracking guests, their reservations. The hotel app should

also track which guests occupy which rooms.

• I want a dating app where students can indicate other students they are inter-

ested in, and the dating app will match them.

• I want a library app to track books. The customers can borrow books and

return books from the library.

• I want a concert management app that lists concerts, their dates, and their

locations. The customers can also buy tickets to concerts.

37

A.1 1-shot GPT Prompt

Below, we include the full prompt we provide to GPT-3 in the 1-shot setting:

I want a classroom management app that tracks students, the assignments they’ve

submitted, and the grades they’ve earned on those assignments.

Q: What does a classroom management app have?

A: A classroom management app has a list of students, a list of assignments, and

a list of grades.

Q: What does an assignment have?

A: An assignment has a title, a description, a due date, and a list of grades.

Q: What does a student have?

A: A student has a name, an email address, a phone number, a list of assignments,

and a list of grades.

Q: What does a grade have?

A: A grade has nothing because it is an integer.

Q: What does a title have?

A: A title has nothing because it is a string.

Q: What does a description have?

A: A description has nothing because it is a string.

Q: What does a due date have?

A: A due date has nothing because it is a string.

Q: What does a name have?

A: A name has nothing because it is a string.

Q: What does a email address have?

A: An email address has nothing because it is a string.

Q: What does a phone number have?

A: A phone number has nothing because it is a string.

38

Appendix B

Meta-Metric

In Section 4.2, we defined a framework to capture the similarity between two object

models. Since such a metric has not been established before, it is important to ensure

that the metric faithfully captures the similarity between two object models. There-

fore, we define a meta-metric to capture the faithfulness of a metric. The methodology

in this section can be applied to future work in other instances of specification reifi-

cation.

Consider two different prompts 𝑃 and 𝑄. An important desideratum for an evalu-

ation metric is that the similarity between object models for the same prompt should

be closer than object models for different prompts. To that extent, let 𝑂𝑃
1 , · · · , 𝑂𝑃

𝑘 be

gold-standard object models for prompt 𝑃 and 𝑂𝑄
1 , · · · , 𝑂

𝑄
𝑙 be gold-standard object

models for prompt 𝑄. For a given similarity metric, we define

𝜇𝑃𝑄 =
1

2𝑘

∑︁
𝑖∈[𝑘]

𝜇𝑄(𝑂
𝑃
𝑖) +

1

2𝑙

∑︁
𝑖∈[𝑙]

score𝑃 (𝑂𝑄
𝑖),

𝜇𝑃𝑃 =
1

𝑘

∑︁
𝑖∈[𝑘]

score𝑃 (𝑂𝑃
𝑖), 𝜇𝑄𝑄 =

1

𝑙

∑︁
𝑖∈[𝑙]

score𝑄(𝑂𝑄
𝑖)

In a similar spirit to contrastive learning, we want 𝜇𝑃𝑃 and 𝜇𝑄𝑄 to be close to 1,

while we want 𝜇𝑃𝑄 to be close to 0. This motivates the meta-metric |
𝜇𝑃𝑃+𝜇𝑄𝑄

2
−𝜇𝑃𝑄|

1+|𝜇𝑃𝑃−𝜇𝑄𝑄|

which takes values in [0, 1]. In the best case scenario where 𝜇𝑃𝑃 = 𝜇𝑄𝑄 = 1 and

𝜇𝑃𝑄 = 0, the metric has a value of 1. In the worst case scenario where 𝜇𝑃𝑃 = 𝜇𝑄𝑄 =

39

𝜇𝑃𝑄, signifying that the metric cannot differentiate between object models of different

prompts, the metric has a value of 0.

Recall that in Eq. 4.2, the function 𝑓(·, ·) calculates the similarity between two

objects as a combination of the object names and object fields. We considered two

ways to combine: 𝑓(𝑥, 𝑦) = 𝑥𝑦, capturing the fact that object names and object

fields should be similar, and 𝑓(𝑥, 𝑦) = 𝜆𝑥+(1−𝜆)𝑦, representing a relative weighting

between the two aspects. Apart from 𝑓 , we also considered replacing the max in Eq.

4.4 with an average.

In Table B.1, we show the different values of the meta-metric for various combina-

tions of 𝜆, 𝑓 , and aggregation strategy. In the 𝑓 column, “ws" represents the weighted

sum combination 𝑓(𝑥, 𝑦) = 𝜆𝑥+(1−𝜆)𝑦, while “prod" represents the product 𝑓(𝑥, 𝑦) =

𝑥𝑦. In the “agg" column, max represents using score𝑃 (𝑂) = max𝑖∈[𝑘] om_sim(𝑂,𝑂𝑖),

while avg represents using score𝑃 (𝑂) = 1
𝑘

∑︀
𝑖∈[𝑘] om_sim(𝑂,𝑂𝑖). We found that using

𝑓(𝑥, 𝑦) = 𝑥𝑦 and max aggregation worked best.

40

𝜆 𝑓 agg score
0 ws max 0.25

0.1 ws max 0.27
0.2 ws max 0.29
0.3 ws max 0.31
0.4 ws max 0.34
0.5 ws max 0.36
0.6 ws max 0.38
0.7 ws max 0.39
0.8 ws max 0.41
0.9 ws max 0.43
1 ws max 0.45
0 ws avg 0.24

0.1 ws avg 0.26
0.2 ws avg 0.28
0.3 ws avg 0.30
0.4 ws avg 0.31
0.5 ws avg 0.33
0.6 ws avg 0.35
0.7 ws avg 0.36
0.8 ws avg 0.38
0.9 ws avg 0.40
1 ws avg 0.41

N/A prod max 0.46
N/A prod avg 0.41

Table B.1: The meta-metric score (0–1, with 1 being the best) for different possible
similarity metrics

41

42

Appendix C

Samples of generated schemas

In this section, we provide a full list of GPT generated schemas.

43

C.1 Object models for a concert management appli-

cation

Prompt: I want a concert management app that lists concerts, their dates, and their

locations. The customers can also buy tickets to concerts.

Hierarchical (Score: 0.75)
customer concert management app ticket concert
- name - concert - number - name

- email address - customer - customer - date
- phone number - ticket - date - location

- concert - location - ticket

1-shot (Score: 0.80)
concert customer ticket
- name - name - customer
- date - email address - concert

- location - phone number - price
- price - address - quantity

- city
- state

- country

0-shot (Score: 0.68)
concert date location
- name - date - name
- date - time - address

- location - location - city
- tickets - state

- zip

Figure C-1: Hierarchical, 1-shot, and 0-shot object models for a concert management
application

44

C.2 Object models for a library application

Prompt: I want a library app to track books. The customers can borrow books and

return books from the library.

Hierarchical (Score: 0.77)
library app library customer book
- customer - customer - name - title

- book - book - email address - description
- books borrowed - books borrowed - phone number - due date

- books borrowed - books borrowed
- books returned

1-shot (Score: 0.79)
customer book library
- name - title - name

- email address - author - customers
- phone number - pages - books

- books - due date

0-shot (Score: 0.75)
customer book book loan
- name - title - customer

- address - author - book
- phone number - ISBN - due date

Figure C-2: Hierarchical, 1-shot, and 0-shot object models for a library application

45

C.3 Object models for a hotel application

Prompt: I want a hotel app tracking guests, their reservations. The hotel app should

also track which guests occupy which rooms.

Hierarchical (Score: 0.81)
reservation hotel app guest room date

- guest - guest - name - number - year
- room - reservation - email address - description - month
- date - room - phone number - guest - day
- date - reservation - reservation

- room

1-shot (Score: 0.88)
guest reservation room

- name - guest - number
- email address - room number - description
- phone number - check-in date - guests
- room number - check-out date
- check-in date - status
- check-out date

0-shot (Score: 0.90)
guest reservation room

- name - date - number
- email - time - name

- phone number - room

Figure C-3: Hierarchical, 1-shot, and 0-shot object models for a hotel application

46

C.4 Object models for a restaurant application

Prompt: I want a restaurant management app tracking customers, their reservations,

their orders, and menu items.

Hierarchical (Score: 0.86)
reservation customer restaurant management app

- date - name - customer
- time - phone number - reservation

- table number - reservation - order
- customer - order - menu item

- customer

order menu item
- date - name
- time - description

- table number - price
- menu item - order

- customer

1-shot (Score: 0.89)
customer reservation order menu item
- name - customer - customer - name

- email address - reservation date - order date - description
- phone number - reservation time - order time - price

- reservation date - table number - menu item
- reservation time - quantity
- table number - price
- order date
- order time
- menu item
- quantity

0-shot (Score: 0.77)
customer reservation menu

- first name - date - name
- last name - time - description

- email - number of people - price
- phone number - menu items - quantity

- address - notes
- city
- state

- zip code

Figure C-4: Hierarchical, 1-shot, and 0-shot object models for a restaurant application

47

C.5 Object models for a pet store application

Prompt: I want a pet store app tracking customers. The pet store app should also

keep the store’s inventory of pets and allow customers to buy and sell pets.

Hierarchical (Score: 0.81)
customer store pet pet store app purchase
- name - name - name - customer - customer

- email address - address - description - pet - pet
- phone number - pet - price - purchase - price

- pet - purchase - purchase - store
- purchase

1-shot (Score: 0.79)
customer pet inventory
- name - name - pet

- email address - type - quantity
- phone number - description - price

- pet - age
- purchased - gender

- sold - purchased
- sold

0-shot (Score: 0.69)
customer pet inventory purchase

- first name - name - type - customer
- last name - type - age - pet

- email - age - gender - inventory
- phone - gender

Figure C-5: Hierarchical, 1-shot, and 0-shot object models for a pet store application

48

C.6 Object models for a company management ap-

plication

Prompt: I want a company management app where I can track my employees, their

schedules, and their compensation.

Hierarchical (Score: 0.78)
schedule employee company management app
- title - name - employee

- description - email address - schedule
- start date - phone number - compensation
- end date - schedule

- compensation

1-shot (Score: 0.80)
employee schedule pay
- name - day - day

- position - time - position
- schedule - position - hours

- pay

0-shot (Score: 0.84)
employee schedule compensation
- name - date - type

- contact info - time - amount
- schedule - location - date

- compensation

Figure C-6: Hierarchical, 1-shot, and 0-shot object models for a company management
application

49

50

Bibliography

[1] Rajeev Alur, Pavol Černỳ, and Arjun Radhakrishna. Synthesis through uni-
fication. In International Conference on Computer Aided Verification, pages
163–179. Springer, 2015.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The
semantic web, pages 722–735. Springer, 2007.

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc
Le, et al. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732, 2021.

[4] Tomasz Boiński, Julian Szymański, Bartłomiej Dudek, Paweł Zalewski, Szymon
Dompke, and Maria Czarnecka. Nlp questions answering using dbpedia and yago.
Vietnam Journal of Computer Science, 7(04):339–354, 2020.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[6] Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando
Solar-Lezama, Yisong Yue, et al. Neurosymbolic Programming. Now Publishers,
2021.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[8] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program
synthesis. In International Conference on Learning Representations, 2018.

[9] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary,
Lucas Morales, Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum.
Dreamcoder: Growing generalizable, interpretable knowledge with wake-sleep
bayesian program learning. arXiv preprint arXiv:2006.08381, 2020.

51

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155,
2020.

[11] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data struc-
ture transformations from input-output examples. ACM SIGPLAN Notices,
50(6):229–239, 2015.

[12] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis.
Foundations and Trends® in Programming Languages, 4(1-2):1–119, 2017.

[13] Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. Synthesize,
execute and debug: Learning to repair for neural program synthesis. Advances
in Neural Information Processing Systems, 33:17685–17695, 2020.

[14] Geert Heyman, Rafael Huysegems, Pascal Justen, and Tom Van Cutsem. Natu-
ral language-guided programming. In Proceedings of the 2021 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, pages 39–55, 2021.

[15] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. Jigsaw: Large language
models meet program synthesis. arXiv preprint arXiv:2112.02969, 2021.

[16] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. The stanford corenlp natural language processing
toolkit. In Proceedings of 52nd annual meeting of the association for computa-
tional linguistics: system demonstrations, pages 55–60, 2014.

[17] George A Miller. Wordnet: a lexical database for english. Communications of
the ACM, 38(11):39–41, 1995.

[18] Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-Lezama.
Learning to infer program sketches. In International Conference on Machine
Learning, pages 4861–4870. PMLR, 2019.

[19] Maxwell Nye, Yewen Pu, Matthew Bowers, Jacob Andreas, Joshua B Tenen-
baum, and Armando Solar-Lezama. Representing partial programs with blended
abstract semantics. arXiv preprint arXiv:2012.12964, 2020.

[20] Maxwell Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M Lake.
Learning compositional rules via neural program synthesis. Advances in Neural
Information Processing Systems, 33:10832–10842, 2020.

[21] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program
synthesis. ACM SIGPLAN Notices, 50(6):619–630, 2015.

52

[22] Illia Polosukhin and Alexander Skidanov. Neural program search: Solving data
processing tasks from description and examples. 2018.

[23] Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun
Radhakrishna, Gustavo Soares, and Ashish Tiwari. Multi-modal program infer-
ence: a marriage of pre-trainedlanguage models and component-based synthesis.
arXiv preprint arXiv:2109.02445, 2021.

[24] Rohit Singh and Armando Solar-Lezama. Swapper: A framework for automatic
generation of formula simplifiers based on conditional rewrite rules. In 2016
Formal Methods in Computer-Aided Design (FMCAD), pages 185–192. IEEE,
2016.

[25] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web, pages 697–706, 2007.

[26] Gust Verbruggen, Vu Le, and Sumit Gulwani. Semantic programming by ex-
ample with pre-trained models. Proceedings of the ACM on Programming Lan-
guages, 5(OOPSLA):1–25, 2021.

[27] Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and Jacob Andreas. Lever-
aging language to learn program abstractions and search heuristics. In Interna-
tional Conference on Machine Learning, pages 11193–11204. PMLR, 2021.

[28] Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Benchmarking multimodal
regex synthesis with complex structures. arXiv preprint arXiv:2005.00663, 2020.

[29] Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Optimal neural program
synthesis from multimodal specifications. arXiv preprint arXiv:2010.01678, 2020.

53

	Introduction
	Related Work
	Program synthesis
	Ontologies and Knowledge Graphs
	Large Language Models

	The System
	Problem Definition and Notation
	Zero-shot GPT Generation
	One-shot GPT Generation
	Hierarchical GPT generation
	Extracting Object Fields
	Checking for Terminal Objects

	Evaluation
	Data Collection
	Similarity Metric Components
	Field similarity:
	Object similarity:

	Object Model Similarity:
	Object Model Score:

	Results and Discussion
	Quantitative Results
	Qualitative Results

	Conclusion and Future Work
	Prompts
	1-shot GPT Prompt

	Meta-Metric
	Samples of generated schemas
	Object models for a concert management application
	Object models for a library application
	Object models for a hotel application
	Object models for a restaurant application
	Object models for a pet store application
	Object models for a company management application

