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Abstract

Program synthesis has traditionally excelled in tasks with precise specifications such
as input-output examples and formal constraints by using structured and algorith-
mic approaches based on enumerative search and type inference. However, traditional
synthesis techniques have no mechanism of incorporating real-world knowledge, which
is commonplace in software engineering. Motivated by this, we introduce a new syn-
thesis task known as specification reification: synthesizing concrete realizations of
vague, high-level application specifications. We focus on a specific instance of this:
generating object models from natural language application descriptions. Towards
this goal, we present three approaches for object model synthesis that leverage do-
main knowledge from the GPT-3 language model. In addition, we design a scoring
metric to evaluate the success of synthesized object models on seven sample tasks
such as classroom management and pet store applications. We demonstrate that
our language-model-based synthesizers generate object models that are comparable
in quality to human-generated ones.
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Chapter 1

Introduction

The goal of program synthesis is to generate programs from various types of specifi-

cations such as input-output examples, abstract properties about inputs and outputs,

and formal logical specifications. Traditionally, program synthesis has been princi-

pally algorithmic, using methods like enumerative search, constraint-based sketching,

or type-driven synthesis to generate programs. While these algorithms have been

successful at synthesizing functions with well defined input/output behavior, creating

software requires much more than implementing functions from well defined specifica-

tions. In particular, an important part of software development is leveraging domain

knowledge to turn high-level application requirements into a detailed description of

all the components and interfaces that will make up the application.

In this paper, we introduce specification reification as a new challenge for pro-

gram synthesis. Specification reification refers to the previously mentioned process of

taking a high-level, potentially vague specification of a problem and reifying it into

a more concrete form. For example, consider a developer who is designing a class-

room management application in an object-oriented language. Traditional program

synthesis could help implement specific functions in this application—for example, a

function to search for students who have not submitted an assignment—but before

a developer gets to that point, they first need to design the application itself. This

involves deciding which objects they need, and for each object deciding on their fields

and methods, and for each method deciding what its specification should be. Specifi-
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cation reification is the process of deriving this design from the high-level description

of the application.

We consider a specific sub-problem of specification reification: the task of syn-

thesizing object models from natural language specifications. More concretely, we

present a system that takes as input a description of an application—e.g. “I want

a classroom management app that tracks students, the assignments they’ve submit-

ted, and the grades they’ve earned on those assignments"—and from this description

synthesizes an object model consisting of a set of objects and their fields. A sample

object model that one may wish to synthesize is shown in Figure 1.

student submission assignment teacher
- name - student - title - name
- email address - assignment - description - students
- teacher - grade - due date - submissions
- grade
- assignments
- submissions

Figure 1-1: A sample object model for a classroom management application

We emphasize two challenges of the task at hand:

1. First, it is challenging to automatically inferring objects and fields. In Figure

1, the teacher and submission objects are not given in the prompt; nor are the

name and submissions fields for the student table—both need to be inferred. A

successful system for this task should be able to infer related objects directly

from the prompt.

2. Second, many objects refer to other objects in their fields: for example, the

student object references the teacher object, the assignment object, and the

submission object as fields. This highlights that a system should understand

how various objects are related.

Towards this goal, our contributions are as follows:

1. We introduce and highlight a new task in program synthesis: specification reifi-

cation. We also introduce the object model synthesis task as an important

14



sub-problem of specification reification.

2. We introduce a new evaluation metric and benchmark for object model synthe-

sis. First, we gather a small dataset of hand-written object models for seven

prompts as gold-standard object models. Next, we propose a similarity metric

that quantifies the closeness between two object models. Finally, we define a

scoring function that measures how well a generated object model fits a partic-

ular prompt.

3. We present three approaches for tackling the object model synthesis problem.

The key innovation in all these algorithms is the use of GPT-3, a large language

model which has background knowledge about the world. The first is a zero-

shot approach, in which we directly ask GPT-3 what objects and fields a desired

application has. The second is a one-shot approach, where we give GPT-3 an

example of a successfully synthesized object model and ask it to generate an

object model for a different prompt. The final is a more structured hierarchi-

cal approach, starting from the objects in the initial prompt and recursively

prompting GPT-3 for related objects and fields. For most prompts, we observe

that all three proposed approaches generate object models at a level similar to

user-generated models and perform much better than randomly sampled models

of different prompts.

15
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Chapter 2

Related Work

2.1 Program synthesis

The field of program synthesis has had a long history, with a variety of approaches

summarized in the survey [12]. The first line of approaches to appear mostly focused

on inductive synthesis (matching a set of input-output examples) approaches such as

bottom-up search [1], top-down search [11], type-directed search [21], and constraint-

solving [24]. Later, however, richer forms of program specifications were used for

synthesis.

In recent years, with new developments in machine learning, there have been more

and more works exploring the potential of augmenting traditional synthesis techniques

with neural networks; [6] provides a complete survey. These include approaches to

learn abstractions and libraries from scratch [9, 27, 20], execution-guided approaches

that evaluate partial program states [19, 13, 8], and approaches guided by natural

language information [27, 29, 28, 18, 22].

2.2 Ontologies and Knowledge Graphs

There has also been a body of work that aims to build ontologies and knowledge

graphs of natural language concepts, such as Yago [25], WordNet [17], and DBpedia

[2]. While these knowledge graphs have been applied in traditional NLP tasks such as

17



question answering [4], they are unable to provide specific insights for our synthesis

task such as synthesizing fields for a certain object. As an example, when searching

for nearest neighbors related to student, WordNet comes up with synonyms such as

pupil, educatee, and scholar, while Yago provides a Wikipedia page for a student,

a definiton of a student in Spanish, and an image containing many students. In

addition, our synthesis task is very contextual: the fields of a student object would

be very different if we were designing an app for teachers to manage the classroom vs

a social app for students to make friends with one another. It is difficult to capture

this form of context via ontologies and knowledge graphs.

2.3 Large Language Models

Recent years has also seen the birth of new works leveraging large language models

(LLMs) like GPT-3 [5] to perform program synthesis. A few months ago, GitHub

released a powerful code autocompletion tool called GitHub Copilot which uses con-

text such as natural language comments and previous code in order to generate code.

Copilot is built off of OpenAI’s powerful machine learning model Codex [7], which

translates natural language to code in almost a dozen programming languages. Code-

BERT [10] learns representations of code and natural language for downstream tasks

like code search and code documentation generation. [14] use GPT-2 trained on a

corpus of well-documented and commented code to synthesize programs for data sci-

ence and machine learning. Building off of LLMs, [3] incorporate human feedback

to repair generated code.

There have been other works combining traditional program synthesis techniques

with large language models. [26] uses traditional inductive synthesis techniques with

GPT-3 to learn small intermediate functions that cannot be represented symbolically.

Jigsaw [15] uses LLMs to synthesize code but use program analysis techniques to do

post-processing. [23] take a component-based synthesis approach guided by LLMs

which, for example, help rank candidate programs.

18



Chapter 3

The System

3.1 Problem Definition and Notation

We begin by formalizing the object model generation task. The input to this task is a

natural language specification of an application, e.g. “I want a classroom management

app that tracks students, the assignments they’ve submitted, and the grades they’ve

earned on those assignments.” The goal is to generate a realistic object model of this

application, where each object consists of a name and a set of fields. Formally, an

object model consists of 𝑛 objects 𝑜1, 𝑜2, · · · , 𝑜𝑛. Each object 𝑜𝑖 consists of a pair

(name𝑖, 𝑓𝑖) consisting of an object name and a set of 𝑚𝑖 field names 𝑓𝑖 ≜ {𝑓 𝑗
𝑖 }

𝑚𝑖
𝑗=1.

For example, the student and submission objects from Figure 1 might be represented

as follows:

𝑜1 = (student, {name, email address, teacher, grade, assignments, submissions})

𝑜2 = (submission, {student, assignment, grade})

For all of our algorithms, our system uses the GPT-3 Q&A API with the text-davinci-

001 model and default parameters from the OpenAI web API1: a temperature of 0

(greedy decoding), frequency penalty of 0, and presence penalty of 0.

1https://beta.openai.com/playground
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Input: “I want a pet store app tracking customers. The pet store app should
also keep the store’s inventory of pets and allow customers to buy and sell
pets.

Q: What objects and fields does this application have?"

GPT-3 Output: “A: The application has the following objects: customer, pet,
and inventory. The customer object has the following fields: name, address,
and phone number. The pet object has the following fields: name, type, and
description. The inventory object has the following fields: type, quantity, and
price."

Figure 3-1: Sample input and output for our zero-shot object model generation algo-
rithm

3.2 Zero-shot GPT Generation

Our first approach is a zero-shot approach, in which the system prompts GPT-3

with our input specification and directly asks what objects and fields the desired

application has (when evaluating this method, we manually parse the GPT-3 output

into its objects and fields). A sample of the input and output of our zero-shot approach

is shown in Figure 3-1.

3.3 One-shot GPT Generation

Our second approach is a one-shot approach, in which the system prompts GPT-3

with a complete object model for a classroom management app and asks it to generate

an object model for a new prompt. In Figure 3-2, we show the input and outputs

of GPT-3. The tables and fields are explicitly provided so that GPT-3’s few-shot

generation system learns a desired format. In practice, GPT outputs always conform

to this specification format, so we write a parser that automatically convert these

outputs into explicit object models.

20



3.4 Hierarchical GPT generation

The final approach we use is a hierarchical approach. At a high level, our algorithm

follows an iterative depth first search, keeping a stack of all the objects we’ve en-

countered so far. We begin by extracting all the noun phrases from the prompt using

a purely symbolic approach leveraging Stanford’s CoreNLP parser [16], which we

denote by extract_noun_phrases(prompt). We treat these noun phrases as a set of

initial objects. From these initial objects, we recursively get a set of fields for each

object, denoted by extract_object_fields(object). For each of these fields, which

we consider as new potential objects, we first check if we have encountered the field

before. If not, we then test to see if the field should additionally be treated as a new

object, and if so, add it to the stack. We do this via a terminal(new_object) check

to ensure that we are only adding objects to the stack. In pseudocode, our algorithm

is as follows:

3.4.1 Extracting Object Fields

Now, we explain extract_object_fields(object). Our key insight is that GPT-3

can generate these relevant objects and fields from its domain knowledge. Specifically,

given an object, this function asks GPT-3 what fields the object has via questions

in the form “Q: What attributes does a classroom management application have?".

Remarkably, it would answer “A classroom management app has a list of students,

a list of assignments, and a list of grades.". Next, the system parses this response

to understand that a classroom management application object has students, assign-

ments, and grades as fields. In order to avoid duplicate objects, we also ensure all

object names are in singular form when prompting, like student instead of students.

3.4.2 Checking for Terminal Objects

The terminal(object) function helps the system discriminate which fields should be

further treated as objects. While a student having a name is important, a name object

having a list of characters is irrelevant. We once again use GPT-3 by prompting it with

21



Q&A pairs like "Q: What does a grade have?" and "A: A grade has nothing because

it is an integer.". The full prompt is deferred to Appendix A.1. This prompting

mechanism helps GPT-3 learn that some objects have no fields, and the terminal

function returns true if GPT says the object has nothing.
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Input: Q: Design a schema for the following prompt: "I want a classroom
management app that tracks students, the assignments they’ve submitted, and
the grades they’ve earned on those assignments.

A: Table: assignment
Fields: title (string), description (string), due date (datetime)

Table: student
Fields: name (string), email address (string), phone number (string),
teacher (teacher), grade (int), assignments (List[assignment]), submissions
(List[submission])

Table: teacher
Fields: name (string), students (List[student]), submissions
(List[submission])

Table: submission
Fields: student (student), assignment (assignment), grade (int)

Q: Design a schema for the following prompt: "I want a pet store app tracking
customers. The pet store app should also keep the store’s inventory of pets
and allow customers to buy and sell pets."

GPT-3 Output:
A: Table: customer
Fields: name (string), email address (string), phone number (string), pet
(pet), quantity (int), price (float)

Table: pet
Fields: name (string), type (string), description (string), quantity (int), price
(float)

Table: inventory
Fields: pet (pet), quantity (int), price (float)

Figure 3-2: Sample input and output for our one-shot object model generation algo-
rithm
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Chapter 4

Evaluation

We also define an evaluation procedure to quantify the correctness of a generated

object model. This is tricky because for a single natural language description, there

are many object models fitting the given description. First, in Section 4.1, we describe

a data collection process to obtain gold standard models. Then, in Section 4.2, we

present our full evaluation and scoring metric using these models.

4.1 Data Collection

To obtain a set of gold-standard models, we set up an experimental testbed, asking

participants to design object models from seven prompts simulating the following

applications: pet store, restaurant, hotel, dating, library, company, and concert. The

full prompts are in Appendix A. To help participants understand the task, we gave

them an example of a full object model for a classroom application but emphasized

that there is no correct answer. We included the example to demonstrate that par-

ticipants should include objects and fields that weren’t explicitly mentioned in the

prompt.

As shown in Figure 4-1, the participant was shown a prompt at random and

instructed to create an object model corresponding to the prompt. The users were

given freedom over the number of objects they created and the number of fields they

used for each object. For each field, they were asked to specify its name and its type.

25



Figure 4-1: The user interface for participants to design object models for our data
collection effort.

For types, we restricted participants to primitives, other objects they created, and

lists of either. In total, we received 35 object models. However, we deemed 2 to be

of extremely poor quality, leaving us with 33 gold-standard models.

4.2 Similarity Metric Components

Now, we propose an evaluation metric to determine the similarity between two object

models. Intuitively, our metric works as follows: consider two object models 𝑂 =

{𝑜1, · · · , 𝑜𝑛} and 𝑂′ = {𝑜′1, · · · , 𝑜′𝑛′}. For each object in 𝑂, say 𝑜𝑖, we find the most

similar object in 𝑂′, measured using an object similarity metric. We then average the

similarities to get the overall object model similarity. To compute how similar two

objects 𝑜𝑖 and 𝑜′𝑗 are, we employ a similar process: for each field 𝑓𝑚
𝑖 , we find the field

in 𝑜′𝑗 that is most similar to it via a field similarity metric, averaging the similarities

to get the overall object similarity. Below, we make this concrete and precise.

4.2.1 Field similarity:

To begin, we define the similarity between any two fields. When comparing two

fields, it’s important to consider the objects they were part of: many objects might

have a “name" field that refer to very different things. Therefore, we concatenate the

object name and field name, eg “pet name" or “customer name" when computing the
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similarity. Concretely, the similarity between fields 𝑓𝑎
𝑖 and 𝑓 𝑏

𝑗 is defined as

field_sim(𝑓𝑎
𝑖 , 𝑓

𝑏
𝑗 ) = phrase_sim(concat(𝑛𝑎𝑚𝑒𝑖, 𝑓

𝑎
𝑖 ), concat(𝑛𝑎𝑚𝑒𝑗, 𝑓

𝑏
𝑗 )). (4.1)

Here, phrase_sim is calculated by calling spacy’s built in .similarity() method on

two phrases, which is a word2vec-like similarity measure in [0, 1], 1 indicating perfect

similarity.

4.2.2 Object similarity:

Next, we define a metric to evaluate object similarity. For two objects 𝑜𝑖, 𝑜𝑗 to be

similar, their object names and set of fields should both be similar. Overall, we define

the object similarity as a combination 𝑓 of the two, where we use 𝑓(𝑥, 𝑦) = 𝑥𝑦:

o_sim(𝑜𝑖, 𝑜𝑗) = 𝑓(o_name_sim(𝑜𝑖, 𝑜𝑗), o_field_sim(𝑜𝑖, 𝑜𝑗)). (4.2)

First, we define the object name similarity similar to the field similarity, as

o_name_sim(𝑜𝑖, 𝑜𝑗) = phrase_sim(𝑛𝑎𝑚𝑒𝑖, 𝑛𝑎𝑚𝑒𝑗). (4.3)

Next, we define the object field similarity. Intuitively, if two objects 𝑜𝑖 and 𝑜𝑗 have

identical sets of fields, there is a one-to-one mapping between each field in 𝑜𝑖 and each

field in 𝑜𝑗. If they aren’t identical but similar, each field 𝑓𝑎
𝑖 should still have fields

that are roughly similar to fields in 𝑜𝑗. For example, 𝑜𝑖 might have a “name" field, but

𝑜𝑗 might have “first name" and “last name" as fields. In this case, there would still be

an approximate mapping between fields. We use this idea to define our metric: for

each field 𝑓𝑎
𝑖 in object 𝑜𝑖, we compute the maximum field similarity between 𝑓𝑎

𝑖 and

a field 𝑓 𝑏
𝑗 in object 𝑜𝑗. We then average them to define

o_field_sim’(𝑜𝑖, 𝑜𝑗) =
1

𝑚𝑖

𝑚𝑖∑︁
𝑎=1

max
𝑏∈[𝑚𝑗 ]

field_sim(𝑓𝑎
𝑖 , 𝑓

𝑏
𝑖 ). (4.4)
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Observe that if the fields in object 𝑖 are a strict subset of the fields in object 𝑗, then

obj_field_sim’(𝑜𝑖, 𝑜𝑗) = 1, since each field in object 𝑖 has a perfect match in object

𝑗. However, o_field_sim’(𝑜𝑗, 𝑜𝑖) will be smaller, since not every field in object 𝑗 has

a match in object 𝑖. Therefore, to make our metric symmetric, we define the overall

field similarity as

o_field_sim(𝑜𝑖, 𝑜𝑗) =
1

2
(o_field_sim’(𝑜𝑖, 𝑜𝑗) + o_field_sim’(𝑜𝑗, 𝑜𝑖)). (4.5)

4.3 Object Model Similarity:

Finally, we define a similarity function to evaluate how similar two full object-oriented

models are. Consider two object models 𝑂 = {𝑜𝑖}𝑛𝑖=1 and 𝑂′ = {𝑜′𝑖}𝑛
′

𝑖=1. Similar to

our object similarity metric, we average the similarities from each object 𝑜𝑖 ∈ 𝑂 to

its most similar object in 𝑂′. We define

om_sim’(𝑂,𝑂′) =
1

𝑛

𝑛∑︁
𝑖=1

max
𝑗∈[𝑛′]

o_sim(𝑜𝑖, 𝑜𝑗), (4.6)

om_sim(𝑂,𝑂′) =
1

2
(om_sim’(𝑂,𝑂′) + om_sim’(𝑂′, 𝑂)) . (4.7)

4.4 Object Model Score:

Finally, in order to evaluate an object model for a given prompt, we define a scoring

metric taking object models to [0, 1]. Consider an object model 𝑂 for a prompt 𝑃 for

which we wish to evaluate. Let 𝑂1, · · · , 𝑂𝑘 be the gold-standard object models for

𝑃 . Intuitively, an object should have a high score if it is similar to any of the gold-

standard models and have a low score otherwise. Therefore, we define the score of an

object model on a given prompt to be its similarity to the most similar gold-standard

model. Precisely,

score𝑃 (𝑂) = max
𝑖∈[𝑘]

om_sim(𝑂,𝑂𝑖). (4.8)
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A more detailed motivation and evaluation of this metric is provided in Appendix B.

As we will show in 5.1, the score function defined above effectively discriminates be-

tween human-generated object models, assigning high scores to human gold-standard

models for the same domain, and low scores to object model pair from different do-

mains.
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Chapter 5

Results and Discussion

5.1 Quantitative Results

We present the scores of each of the generated object models for all seven prompts in

Table 5.1 when compared against our gold-standard benchmark. The hier, 1-shot, and

0-shot columns represent the algorithms in Section 3. The similar column of a prompt

𝑃 measures the average score of gold-standard object models for that prompt when

compared against the other gold-standard models. When calculating the score for an

object 𝑂𝑖, we remove 𝑂𝑖 from the set of gold-standard models to obtain a leave-one-

out score because otherwise all the scores would be 1. The different column measures

the average score of gold-standard object models in prompt 𝑃 when compared against

gold-standard models for the other prompts 𝑃 ′ ̸= 𝑃 . This measures the similarity

between models of a given prompt to gold-standard object models of other prompts.

As we expect, these scores are much lower, as object models of different prompts

should be different.

5.2 Qualitative Results

In Figure 5-1, we show the three object models for the prompt "I want a pet store

app tracking customers. The pet store app should also keep the store’s inventory of

pets and allow customers to buy and sell pets." We include our full list of generated
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prompt hier 1-shot 0-shot similar different
company 0.78 0.80 0.84 0.67 0.23
pet store 0.81 0.79 0.69 0.83 0.27
restaurant 0.86 0.89 0.77 0.81 0.31

hotel 0.81 0.88 0.90 0.92 0.21
dating 0.72 0.83 0.74 0.88 0.16
library 0.77 0.79 0.75 0.52 0.25
concert 0.75 0.80 0.68 0.76 0.26
average 0.78 0.83 0.77 0.77 0.24

Table 5.1: Scores for each of the three object model generation algorithms

schemas for other prompts in Appendix C. Each of the methods has its own merits

and flaws. First, we notice that all three methods are able to generate relevant

information that isn’t explicitly provided in the prompt (such as a customer’s name).

Second, in the hierarchical table, we can see that each field is either a primitive (such

as name, address, phone number) or is the name of another object. However, in the

0-shot and 1-shot table, there are tables that are never referenced, like inventory in

the 1-shot case and purchase in the 0-shot case. Third, we note that in contrast to

the other methods, the 1-shot method often generates a more exhaustive list of fields.
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Hierarchical (Score: 0.81)
customer store pet pet store app purchase
- name - name - name - customer - customer
- email address - address - description - pet - pet
- phone number - pet - price - purchase - price
- pet - purchase - purchase - store
- purchase

1-shot (Score: 0.79)
customer pet inventory
- name - name - pet
- email address - type - quantity
- phone number - description - price
- pet - age
- purchased - gender
- sold - purchased

- sold

0-shot (Score: 0.69)
customer pet inventory purchase
- first name - name - type - customer
- last name - type - age - pet
- email - age - gender - inventory
- phone - gender

Figure 5-1: Hierarchical, 1-shot, and 0-shot object models for a pet store application
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Chapter 6

Conclusion and Future Work

In this work, we introduced a new class of important program synthesis problems

known as specification reification, focused on incorporating domain knowledge into

traditional program synthesis. First, we presented one specific instance of this task,

object model synthesis, and designed a metric to evaluate performance on this task.

Then, we demonstrated three different algorithms to solve this task, showing that

we are able to synthesize, to some extent, object models satisfying the specification.

These object models include fields and tables not explicitly mentioned in the original

prompt. Evaluating these algorithms on our metric is a first step towards showing

that our generated object models are similar to human gold-standard models.

We believe that specification reification is an important problem and welcome re-

searchers to introduce other synthesis problems fitting this framework. We identify

many attractive directions for future investigation: first, there is significant room for

the discovery novel approaches that improve upon the three we present. Second, we

encourage a more rigorous data collection effort and investigation of our evaluation

procedure: the quantity of object models we collected is likely too small to fully cover

the set of possible gold-standard models. Third, GPT often gives misleading or incor-

rect information, so one way of correcting this is to explore how human interactivity

can be incorporated to correct and augment the synthesized object model. Finally,

since software engineers often spend time designing what methods to implement, it

would be interesting to extend the object model to include these method names,
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types, and descriptions, e.g., turning in assignments for a classroom application.
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Appendix A

Prompts

We used the following seven prompts throughout:

• I want a company management app where I can track my employees, their

schedules, and their compensation.

• I want a pet store app tracking customers. The pet store app should also keep

the store’s inventory of pets and allow customers to buy and sell pets.

• I want a restaurant management app tracking customers, their reservations,

their orders, and menu items.

• I want a hotel app tracking guests, their reservations. The hotel app should

also track which guests occupy which rooms.

• I want a dating app where students can indicate other students they are inter-

ested in, and the dating app will match them.

• I want a library app to track books. The customers can borrow books and

return books from the library.

• I want a concert management app that lists concerts, their dates, and their

locations. The customers can also buy tickets to concerts.
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A.1 1-shot GPT Prompt

Below, we include the full prompt we provide to GPT-3 in the 1-shot setting:

I want a classroom management app that tracks students, the assignments they’ve

submitted, and the grades they’ve earned on those assignments.

Q: What does a classroom management app have?

A: A classroom management app has a list of students, a list of assignments, and

a list of grades.

Q: What does an assignment have?

A: An assignment has a title, a description, a due date, and a list of grades.

Q: What does a student have?

A: A student has a name, an email address, a phone number, a list of assignments,

and a list of grades.

Q: What does a grade have?

A: A grade has nothing because it is an integer.

Q: What does a title have?

A: A title has nothing because it is a string.

Q: What does a description have?

A: A description has nothing because it is a string.

Q: What does a due date have?

A: A due date has nothing because it is a string.

Q: What does a name have?

A: A name has nothing because it is a string.

Q: What does a email address have?

A: An email address has nothing because it is a string.

Q: What does a phone number have?

A: A phone number has nothing because it is a string.
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Appendix B

Meta-Metric

In Section 4.2, we defined a framework to capture the similarity between two object

models. Since such a metric has not been established before, it is important to ensure

that the metric faithfully captures the similarity between two object models. There-

fore, we define a meta-metric to capture the faithfulness of a metric. The methodology

in this section can be applied to future work in other instances of specification reifi-

cation.

Consider two different prompts 𝑃 and 𝑄. An important desideratum for an evalu-

ation metric is that the similarity between object models for the same prompt should

be closer than object models for different prompts. To that extent, let 𝑂𝑃
1 , · · · , 𝑂𝑃

𝑘 be

gold-standard object models for prompt 𝑃 and 𝑂𝑄
1 , · · · , 𝑂

𝑄
𝑙 be gold-standard object

models for prompt 𝑄. For a given similarity metric, we define

𝜇𝑃𝑄 =
1

2𝑘

∑︁
𝑖∈[𝑘]

𝜇𝑄(𝑂
𝑃
𝑖 ) +

1

2𝑙

∑︁
𝑖∈[𝑙]

score𝑃 (𝑂𝑄
𝑖 ),

𝜇𝑃𝑃 =
1

𝑘

∑︁
𝑖∈[𝑘]

score𝑃 (𝑂𝑃
𝑖 ), 𝜇𝑄𝑄 =

1

𝑙

∑︁
𝑖∈[𝑙]

score𝑄(𝑂𝑄
𝑖 )

In a similar spirit to contrastive learning, we want 𝜇𝑃𝑃 and 𝜇𝑄𝑄 to be close to 1,

while we want 𝜇𝑃𝑄 to be close to 0. This motivates the meta-metric |
𝜇𝑃𝑃+𝜇𝑄𝑄

2
−𝜇𝑃𝑄|

1+|𝜇𝑃𝑃−𝜇𝑄𝑄|

which takes values in [0, 1]. In the best case scenario where 𝜇𝑃𝑃 = 𝜇𝑄𝑄 = 1 and

𝜇𝑃𝑄 = 0, the metric has a value of 1. In the worst case scenario where 𝜇𝑃𝑃 = 𝜇𝑄𝑄 =
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𝜇𝑃𝑄, signifying that the metric cannot differentiate between object models of different

prompts, the metric has a value of 0.

Recall that in Eq. 4.2, the function 𝑓(·, ·) calculates the similarity between two

objects as a combination of the object names and object fields. We considered two

ways to combine: 𝑓(𝑥, 𝑦) = 𝑥𝑦, capturing the fact that object names and object

fields should be similar, and 𝑓(𝑥, 𝑦) = 𝜆𝑥+(1−𝜆)𝑦, representing a relative weighting

between the two aspects. Apart from 𝑓 , we also considered replacing the max in Eq.

4.4 with an average.

In Table B.1, we show the different values of the meta-metric for various combina-

tions of 𝜆, 𝑓 , and aggregation strategy. In the 𝑓 column, “ws" represents the weighted

sum combination 𝑓(𝑥, 𝑦) = 𝜆𝑥+(1−𝜆)𝑦, while “prod" represents the product 𝑓(𝑥, 𝑦) =

𝑥𝑦. In the “agg" column, max represents using score𝑃 (𝑂) = max𝑖∈[𝑘] om_sim(𝑂,𝑂𝑖),

while avg represents using score𝑃 (𝑂) = 1
𝑘

∑︀
𝑖∈[𝑘] om_sim(𝑂,𝑂𝑖). We found that using

𝑓(𝑥, 𝑦) = 𝑥𝑦 and max aggregation worked best.
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𝜆 𝑓 agg score
0 ws max 0.25

0.1 ws max 0.27
0.2 ws max 0.29
0.3 ws max 0.31
0.4 ws max 0.34
0.5 ws max 0.36
0.6 ws max 0.38
0.7 ws max 0.39
0.8 ws max 0.41
0.9 ws max 0.43
1 ws max 0.45
0 ws avg 0.24

0.1 ws avg 0.26
0.2 ws avg 0.28
0.3 ws avg 0.30
0.4 ws avg 0.31
0.5 ws avg 0.33
0.6 ws avg 0.35
0.7 ws avg 0.36
0.8 ws avg 0.38
0.9 ws avg 0.40
1 ws avg 0.41

N/A prod max 0.46
N/A prod avg 0.41

Table B.1: The meta-metric score (0–1, with 1 being the best) for different possible
similarity metrics
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Appendix C

Samples of generated schemas

In this section, we provide a full list of GPT generated schemas.
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C.1 Object models for a concert management appli-

cation

Prompt: I want a concert management app that lists concerts, their dates, and their

locations. The customers can also buy tickets to concerts.

Hierarchical (Score: 0.75)
customer concert management app ticket concert
- name - concert - number - name

- email address - customer - customer - date
- phone number - ticket - date - location

- concert - location - ticket

1-shot (Score: 0.80)
concert customer ticket
- name - name - customer
- date - email address - concert

- location - phone number - price
- price - address - quantity

- city
- state

- country

0-shot (Score: 0.68)
concert date location
- name - date - name
- date - time - address

- location - location - city
- tickets - state

- zip

Figure C-1: Hierarchical, 1-shot, and 0-shot object models for a concert management
application
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C.2 Object models for a library application

Prompt: I want a library app to track books. The customers can borrow books and

return books from the library.

Hierarchical (Score: 0.77)
library app library customer book
- customer - customer - name - title

- book - book - email address - description
- books borrowed - books borrowed - phone number - due date

- books borrowed - books borrowed
- books returned

1-shot (Score: 0.79)
customer book library
- name - title - name

- email address - author - customers
- phone number - pages - books

- books - due date

0-shot (Score: 0.75)
customer book book loan
- name - title - customer

- address - author - book
- phone number - ISBN - due date

Figure C-2: Hierarchical, 1-shot, and 0-shot object models for a library application
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C.3 Object models for a hotel application

Prompt: I want a hotel app tracking guests, their reservations. The hotel app should

also track which guests occupy which rooms.

Hierarchical (Score: 0.81)
reservation hotel app guest room date

- guest - guest - name - number - year
- room - reservation - email address - description - month
- date - room - phone number - guest - day
- date - reservation - reservation

- room

1-shot (Score: 0.88)
guest reservation room

- name - guest - number
- email address - room number - description
- phone number - check-in date - guests
- room number - check-out date
- check-in date - status
- check-out date

0-shot (Score: 0.90)
guest reservation room

- name - date - number
- email - time - name

- phone number - room

Figure C-3: Hierarchical, 1-shot, and 0-shot object models for a hotel application
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C.4 Object models for a restaurant application

Prompt: I want a restaurant management app tracking customers, their reservations,

their orders, and menu items.

Hierarchical (Score: 0.86)
reservation customer restaurant management app

- date - name - customer
- time - phone number - reservation

- table number - reservation - order
- customer - order - menu item

- customer

order menu item
- date - name
- time - description

- table number - price
- menu item - order

- customer

1-shot (Score: 0.89)
customer reservation order menu item
- name - customer - customer - name

- email address - reservation date - order date - description
- phone number - reservation time - order time - price

- reservation date - table number - menu item
- reservation time - quantity
- table number - price
- order date
- order time
- menu item
- quantity

0-shot (Score: 0.77)
customer reservation menu

- first name - date - name
- last name - time - description

- email - number of people - price
- phone number - menu items - quantity

- address - notes
- city
- state

- zip code

Figure C-4: Hierarchical, 1-shot, and 0-shot object models for a restaurant application
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C.5 Object models for a pet store application

Prompt: I want a pet store app tracking customers. The pet store app should also

keep the store’s inventory of pets and allow customers to buy and sell pets.

Hierarchical (Score: 0.81)
customer store pet pet store app purchase
- name - name - name - customer - customer

- email address - address - description - pet - pet
- phone number - pet - price - purchase - price

- pet - purchase - purchase - store
- purchase

1-shot (Score: 0.79)
customer pet inventory
- name - name - pet

- email address - type - quantity
- phone number - description - price

- pet - age
- purchased - gender

- sold - purchased
- sold

0-shot (Score: 0.69)
customer pet inventory purchase

- first name - name - type - customer
- last name - type - age - pet

- email - age - gender - inventory
- phone - gender

Figure C-5: Hierarchical, 1-shot, and 0-shot object models for a pet store application
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C.6 Object models for a company management ap-

plication

Prompt: I want a company management app where I can track my employees, their

schedules, and their compensation.

Hierarchical (Score: 0.78)
schedule employee company management app
- title - name - employee

- description - email address - schedule
- start date - phone number - compensation
- end date - schedule

- compensation

1-shot (Score: 0.80)
employee schedule pay
- name - day - day

- position - time - position
- schedule - position - hours

- pay

0-shot (Score: 0.84)
employee schedule compensation
- name - date - type

- contact info - time - amount
- schedule - location - date

- compensation

Figure C-6: Hierarchical, 1-shot, and 0-shot object models for a company management
application

49



50



Bibliography
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