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Abstract

Process integration is a promising method to improve sustainability and reduce waste
in chemical processes by recovering excess resources such as heat, water, or other
materials. However, calculating the maximum amount of resource that can be reused
is challenging because resource sinks can only take in resource if it is of high enough
quality. As a result, most current integration methods are either limited and heuristic
or use large superstructure formulations that must assess all possible matches between
the resource sources and sinks.

Therefore, this thesis presents new computational methods for maximizing re-
source recovery that use nonsmooth functions to compactly describe the resource
that is available at different qualities. This work can be divided into three main con-
tributions that improve process integration for systems with different resources and
assumptions:

1. A generalized approach to process integration that uses a system of two non-
smooth equations to describe optimal reuse for a wide variety of resources,
including multiple resources simultaneously,

2. An extension of this general approach to more complex mass and water systems
with multiple contaminants that can limit their reuse,

3. A nonsmooth optimization formulation that applies our integration approach
to design variable-temperature cogeneration systems that convert process waste
heat into electricity.

By utilizing nonsmooth equations, each of these contributions exhibits improved scal-
ing compared to other integration methods and have numbers of equations or con-
straints that remain the same regardless of the size and complexity of the system. In
addition, unlike other methods, our approaches have the flexibility to either determine
resource requirements or the process variables that achieve a given target.

This thesis describes the formulation and implementation of each of these non-
smooth approaches and applies them to a wide of range of example applications.
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These applications include carbon-constrained energy planning, hydrogen conserva-
tion networks, water recovery from petroleum refining with multiple contaminants,
and designing improved cogeneration systems for sulfuric acid and cement production
processes. The results from these examples show the flexibility and scalability of our
approaches and the breadth of improvements they can provide. Together, our con-
tributions increase the applicability of computationally efficient process integration
methods to improve the sustainability of a wide range of chemical processes.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

As demand for chemcial production and manufacturing grows, its environmental im-

pacts become more clear, and as resource scarcity, costs, and regulations increase,

there are significant incentives to reduce resource use in chemical processes. One

promising approach for reducing resource requirements and waste is process integra-

tion. Process integration identifies opportunities for reusing a resource throughout the

system. By capturing and recovering excess heat, water, or other materials, process

integration decreases both the amount that is wasted and the total required.

This approach to process design is important because it focuses on making a

system as efficient and sustainable as possible. Thus, it can be used both to assess

the full potential of new designs and to improve existing processes. Process integration

is a particularly important tool for improving existing processess because it does not

require any changes to be made to the process. Thus, it can be applied when new

processes are not yet available or have too high a cost and has the potential to improve

many well-established processes that were designed without a focus on sustainability.

Given these benefits, methods for performing process integration have been widely

proposed and utilized for a variety of resources. These computational methods calcu-

late the optimal resource reuse for a chemical process by assessing feasible connections

between resource sources and sinks in the system. As a result, they provide minimum

fresh and waste resource requirements to screen and design processes to improve their

sustainability.
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1.1 Types of Integration Problems

Process integration was first introduced for heat integration problems, which deter-

mine how best to use heat from process streams that decrease in temperature to

warm cold streams that require increases in temperature. In these problems, heat

reuse between streams is limited by their temperatures as heat can only be transfered

from high to low temperature streams. The idea of process integration was then

extended to recovering material from rich streams that need to decrease in the con-

centration of a component using lean streams that need to increase in concentration

in a mass exchange network. Here, instead of temperature, mass transfer is limited

by the material concentrations in the rich and lean streams. These mass integration

problems were also modified to consider the direct reuse of water flows in a system

based on the concentrations of contaminants present. Seminal works in these fields

include Hohman and Linnhoff et al. for heat integration [48, 61], El-Halwagi and

Manousiouthakis for mass integration [31], and Wang and Smith and Dhole et al. for

water allocation [91, 26].

More recently, integration methods have also been applied beyond these traditional

areas to new resources such as hydrogen [7], oxygen [99], carbon dioxide [82], electrical

power [67], and even time in inventory and scheduling problems [19]. Additionally,

to further decrease resource use, integration is being considered for increasingly large

systems, including resource sharing between plants co-located in eco-industrial parks

[14].

However, to have a significant impact on sustainability, this increasing application

and scope of process integration requires integration methods that are generalizable to

these new applications and scale well with the size of the system. As a result, the goal

of this thesis is to develop new flexible and scalable approaches for process integration

that can efficiently assess the potential for resource recovery across proposed designs.
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1.2 Traditional Approaches to Process Integration

Process integration problems are challenging because the resources they consider for

recovery can only be reused between certain process streams. Specifically, resource

can only be transferred from a high quality stream to a low quality one, for example,

from high to low temperature or high to low concentration. Therefore, determining

the maximum amount resource that can be resued requires

1. Enumerating all the possible matches of resource streams, and

2. Assessing which of these matches are feasible.

We also need to ensure that the method selected to complete these steps applies to

the resources type in the integration problem and can handle the complexity of and

assumptions about the system.

The most straightfoward approach to complete these two steps is to perform them

directly using a superstructure. These superstructure approaches, first introduced by

Grossmann and Sargent for heat integration [43], optimize over all possible network

configurations. These approaches are generalizable to a wide array of integration

problems and can in theory obtain globally optimal solutions. However, to guarantee

optimality, the superstructures must embed all possible configurations. For problems

like heat and mass integration in which stream mixing is not allowed, the superstruc-

ture is divided into states to allow for partial matches between streams [97].

In addition, whether or not the superstructure is complete, the model sizes scale

exponentially with the number of resource streams and the resulting optimization

formulations require solving nonconvex, nonlinear programs that typically include bi-

nary variables [44, 41, 57]. Thus, superstructure approaches are useful for determining

construction details for a particular system but are not computationally tractable for

screening or optimizing across large numbers of designs.

As a result, many process integration methods approach the problem in two se-

quential steps: first, determining the minimum attainable fresh and waste resource

flows for the process, and second, designing a network of stream connections for re-

source reuse that can approach these targets. This first step is called the targeting
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method, and the results from this part of the problem can be used to efficiently screen

or optimize process designs without needing to construct the full resource reuse net-

work. Therefore, in this thesis, we exclusively consider targeting methods to develop

scalable and efficient approaches to process integration.

To calculate external resource utilities without designing the resource reuse net-

work, targeting approaches use pinch analysis theory. Pinch analysis reduces the

complexity of the problem by combining the resource streams that are present at

each quality to create representative composite streams for the resource sources and

sinks. Then, targeting approaches use a variety of techniques to maximize resource

recovery between these composite streams. More detail on the principles and theory

of pinch analysis are given as background in Chapter 2.

The simplest class of targeting approaches are graphical pinch analysis and trans-

shipment (also referred to as cascade) formulations, first proposed by Linnhoff et al.

and Papoulias and Grossmann [61, 73]. Graphical approaches plot the combined

streams as composite curves on a resource quantity versus quality axis and visually

determine the maximum amount of overlap between the curves. While convenient

for small problems, graphical pinch analysis is inexact and cannot be used to quickly

assess the effects of changes to the system. Transshipment methods instead use linear

programs to automatically minimize resource use. However, they still require process

variables to be known a priori in order to construct the composite streams. As a

result, they cannot be used to simulate systems with known resource targets or for

simultaneous process integration and optimization.

Other approaches improve the flexibility of pinch analysis by using disjunctions to

express the combined resource availability at each quality [45, 68]. Disjunctions allow

these methods to solve for any process variables, but they are not compact enough

to address large systems or be embedded in process optimization problems. These

formulations solve MINLPs that scale quadratically and cubically, respectively, in the

number of constraints and binary variables as the number of resource sources and

sinks in the system increase.

Overall, traditional approaches to process integration present a tradeoff between

18



flexibility and scalability. In addition, all of these methods are specific to a certain

resource type, and solving a process integration problem requires searching for and

selecting the correct method for the integrated resource. And these methods are

generally not flexble to changes in assumptions if the problem becomes more complex.

1.3 Nonsmooth Approaches to Process Integration

A promising method for developing process integration methods that are both flex-

ible and scalable is to use explicity nonsmooth equations. Nonsmooth functions are

functions that are continuous but are not differentiable at every point in their domain

such as the abolute value function or minimum and maximum functions over a finite

set of points. Nonsmooth equations and expressions can be useful in simplifying a

wide variety of problems because they

1. Can compactly describe variations in functions, such as property relations,

across different regions using a single expression instead of requiring disjunctions

and binary variables, and

2. Can transform many optimization problems to equation-solving ones using min-

imum and maximum functions across finite sets, either by reformulating KKT

conditions or incorporating knowledge of the physcial system being described.

Targeting problems are excellent candidates for nonsmooth formulations because

the resource availability or requirements of the composite source and sink streams

vary nonsmoothly with their quality; the resource flows change suddenly over quality

regions as streams become present or disappear. Duran and Grossmann [29] devel-

oped the first nonsmooth approach for process integration called the “pinch location

method.” This approach constructs composite curves for heat integration problems by

using nonsmooth “max” expressions to automatically select which streams are present

at a given temperature. These expressions are used in inequalities to constrain the

temperatures of the hot composite curve to be higher than those of the cold com-

posite curve for feasible heat transfer. Because the pinch location method avoids the
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need to explicitly construct composite curves before solving the integration problem,

it can be used to solve for process variables such as unknown stream temperatures

and flow rates. In addition, the optimization problem scales linearly in the number

of constraints with the number of hot and cold streams in the system, and it does not

require a mixed-integer formulation.

To avoid the need for optimization and improve the scaling of the problem size

with the number of streams, Watson et al. [92] reformulated the inequalities in the

pinch location method to develop an equation-solving approach that describes the

conditions for optimal heat recovery. The resulting approach is a system of nonsmooth

equations that retains only two equations regardless of the size of the system. Watson

et al. were also able take advantage of new methods in nonsmooth equation solving

to solve for any process variable with the same convergence properties as smooth

approaches.

1.4 Thesis Goals and Outline

Given the advantages of these nonsmooth approaches for solving heat integration

problems, the primary goal of this thesis is to extend these benefits to other forms

of process integration. This work accomplishes this goal by contributing three novel

methods that can be used to optimize recovery and reuse for systems with different

resources or assumptions. Each of these methods adapts the nonsmooth heat inte-

gration approaches to more efficiently model and optimize these integrated processes.

These three contributions are:

1. A generalized operator for integrating any resource with a single limiting quality,

2. A multicomponent mass and water integration operator for addressing systems

with multiple contaminants that can limit transfer,

3. A nonsmooth optimization approach that uses heat integration to design variable-

temperature cogeneration systems.
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Each of these projects provide a tool to address a key type of integration problem. To-

gether, they increase the applicability of computationally efficient process integration

methods to a wide range of chemical processes.

The chapters of this thesis detail methods, case studies, and results for each con-

tribution as outlined below:

Chapter 2: Background Chapter 2 contains the necessary background for un-

derstanding the methods in the subsequent chapters. It details the structure and

assumptions of the integration problems we consider; explains pinch analysis theory

and the existing nonsmooth heat integration approaches in more depth; and gives an

overview of nonsmooth equation-solving and optimization methods.

Chapter 3: The General Integration Operator Chapter 3 presents a non-

smooth approach for solving general process integration problems. This approach

extends the equation-solving method of Watson et al. so that it can integrate a wide

variety of resources. In addition, our general integration formulation is uniquely able

to integrate multiple resources simultaneously and can automatically handle thresh-

old problems in which one of the external resource utilities is not present. The general

integration operator also retains the benefits of Watson et al.’s heat integration ap-

proach and requires only two equations per resource and can solve for any unknown

process variables.

This chapter details the formulation and use of our nonsmooth integration oper-

ator, including variable selection for different resource types. We follow with a series

of examples with the operator being applied to a wide range of integration problems:

carbon-constrained energy planning, a water threshold problem, a hydrogen conser-

vation network with unknown process variables, and a combined mass and water

integration problem with a process model.

Chapter 4: Multicomponent Mass and Water Integration Chapter 4 ex-

tends the general integration operator to systems in which multiple factors can limit

resource transfer. Specifically, we consider mass and water integration problems where

more than one material is present in the water or solvent streams. When multiple

components are present, they each independently can limit the feasibility of mass
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transfer and their transfer in mass exchange units is also interdependent. Therefore,

in these problems, all the materials must be considered simultaneously to avoid in-

feasible results, further increasing the size and complexity of the integration problem

and its existing solution methods.

Our multicomponent integration operator adapts the general integration opera-

tor to these new problem types by incorporating nonsmooth scaling techniques and

considering pinch conditions over all components simultaneously. The result is still a

nonsmooth system of two equations that can be used to determine any process vari-

able and that scales compactly in both the number of sources and sinks in the problem

as well as the number of components. Compared to the single-component operator,

the solution to the multicomponent operator is not necessarily an attainable water

or mass target. Nevertheless, it provides a rigorous lower bound to the minimum

fresh resource requirements, making it well-suited to solve large-scale screening and

optimization problems.

This chapter formally defines the multicomponent integration problem considered

and introduces previous work on the nonsmooth scaling relations. It then discusses

the formulation and implementation of our nonsmooth operator and analyzes the

tightness of the lower bound it provides. The chapter concludes with a series of case

studies of increasing complexity to demonstrate the flexibility and scalability of our

approach.

Chapter 5: Optimization of Variable-Temperature Cogeneration De-

signs Chapter 5 applies these integration approaches to design real systems by in-

corporating them into a nonsmooth optimization formulation. The application we

consider is process cogeneration, which is the recovery of process waste heat by using

it to drive a power cycle and produce electricity. While cogeneration is a promising

approach to valorizing industrial waste heat, current methods for designing cogener-

ation systems must assume a constant-temperature heat source. In real processes,

waste heat is likely to be released across a large temperature range, and designing

for a single temperature reduces the utilization of high quality heat and limits the

potential power output.
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We present an optimization approach to design cogeneration systems that recovers

the high-temperature heat from a process by including multiple power cycles with

different operating temperatures. With this approach, each cycle can be supplied

with waste heat from the process or heat rejected from higher-temperature power

cycles. Our optimization formulation uses nonsmooth heat integration approaches

as constraints in an outer optimization problem to efficiently account for all of the

possible methods for heat recovery without needing to design the full network of

stream matches.

We have also developed an original approach for estimating the cost of our com-

bined power cycles without having to design the full heat exchanger network. Since

targeting approaches do not determine the network for the integrated process, they

do not provide convenient information to estimate capital costs. We introduce non-

smooth expressions that automatically partition streams into multiple multistream

heat exchangers by temperature. Then we can employ methods for calculating the

multistream heat exchanger areas to account for how the equipment requirements

vary with phase or temperature. Thus, we are able to improve the accuracy of the

cost estimation without sacrificing efficiency to determine the full network design.

This chapter details our novel approaches for optimizing variable-temperature

cogeneration systems and estimating the costs of heat integration networks. We then

demonstrate the potential of these approaches and variable-temperature cogeneration

by using them to design combined sCO
2

Brayton and steam Rankine cycle systems

for two promising applications, sulfuric acid and cement production.
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Chapter 2

Background

This chapter contains background on both process integration and nonsmooth anal-

ysis. It includes a formal description of the targeting problem that we solve in later

chapters and details on the existing approaches for solving this problem. We focus

on providing an overview of pinch analysis and an understanding of how it its used in

current nonsmooth integration methods. This chapter concludes with a discussion of

the nonsmooth equation-solving and optimization formulations that we use to solve

our nonsmooth integration formulations.

2.1 The General Integration Problem

Each of the contributions in this thesis presents a solution approach or application

for a version of the general integration problem. The general integration problem

considers a set of resources, T , for integration. For each resource, there is a set of

sources and a set of sinks, where each source or sink has a quality that changes with

resource transfer and a constant state that determines the rate at which this quality

changes. The source and sink qualities determine whether resource transfer is feasible

between them based on enforced quality limits or driving force limitations. For each

resource, the integration problem also incorporates a fresh utility that can supply any

sink and a waste utility that can take in resource from any source. This system of

resource sources and sinks is connected by a process model, which is dependent on the
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resource utilities and process variables. The objective of the general resource-targeting

problem is then to determine the system specifications, either resource targets or

process variables, at which minimal feasible resource use and waste production occur.

Note that the general resource-targeting problem does not include applications that

select between multiple utilities with different costs and qualities. However, multiple

external utilities can be incorporated in the general integration problem by including

them in the set of sources.

Mathematically, the general integration problem can be represented by a system

of equations describing a process model and a set of embedded optimization problems

in parallel that minimize the fresh loads of each resource and are parametric in the

process variables. For each resource type n 2 T , we denote a vector of utilities,

yn = (RSR,n, rSK,n), where RSR,n is the fresh resource supply and rSK,n is the waste

resource flow. Then, for a process model, h, and a set of process variables, x, an

outline of the structure of the general integration problem is:

0 = h(x,y1, . . . ,y|T |),

{yn} =argmin
yn

RSR,n(x)

s.t. Resource balance holds,

Resource transfer is feasible,

9
>>>>>=

>>>>>;

8n 2 T.

Note that the minimum for each embedded optimization problem is guaranteed to be

unique because RSR,n is the objective function value and rSK,n is given explicitly in

terms of RSR,n by the resource balance. The resource balance also guarantees that

minimizing RSR,n is equivalent to minimizing rSK,n.

Within this problem structure, we also make assumptions about the nature of

the transfer of each resource. For each resource transferred from a set of sources

SRn to a set of sinks SKn, using the notation presented by Foo [40], we assume the

sources i 2 SRn have constant states Si,n that change in quality from Qin

i,n
to Qout

i,n

for a resource output Ri,n according to Ri,n = Si,n(Qin

i,n
�Qout

i,n
). Correspondingly, the

sinks j 2 SKn have constant states sj,n that change in quality from qin

j,n
to qout

j,n
for
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a resource input rj,n according to rj,n = sj,n(qout

j,n
� qin

j,n
). For resource transfer to be

feasible between a source i and sink j, the source qualities must be higher than those

of the sink by a minimum feasible quality difference �Qmin, i.e. Qout

i,n
� qin

j,n
+�Qmin

and Qin

i,n
� qout

j,n
+�Qmin.

2.2 Pinch Analysis

The solution to the general integration problem can be described by using pinch

analysis theory. This theory is used as the basis for targeting approaches because it

uses composite curves to avoid needing to design the resource exchange nework. In

this section, we provide an overview of pinch analysis to help improve understanding

of the nonsmooth integraion methods presented later in this work. For a more in-

depth introduction to pinch analysis theory, we recommend Smith [80].

Source and sink composite curves are constructed by combining all of the sources

or sinks, respectively, that are present at each quality. The state of the combined

stream at a given quality is the sum of the states of all the streams that are present.

Therefore, the total resource availability of the composite curve above or below each

quality will be consistent with the individual sources and sinks. Because we assume

the stream states are constant, the cumulative state of the composite curves will

be constant within intervals partitioned by the inlet and outlet stream qualities.

Therefore, with this assumption, the resource transferred by the combined streams

is a piecewise affine function of the quality with nonsmooth points at the inlet and

outlet qualities.

Once the sources and sinks are combined into composite curves, the aggregate

data can be used assess the optimal resource transfer. Within a quality interval,

resource can be transferred from the source to the sink composite curve. Any excess

resource available from the sources can be cascaded down to be used in a lower quality

interval. Any additional resource required to supply the sinks must come from higher

quality intervals. Therefore, the fresh resource utility is cascaded through each quality

inteveral until it is used up, and for feasibility, it must be large enough so that the
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sinks are supplied in all intervals.

Pinch analysis theory shows that this fresh resource supply will be minimized

when there is a pinch point in the system. This pinch point occurs when there is

a quality interval that does not receive any resource from higher quality intervals.

When a pinch point is present, the external fresh utility is not cascaded all the way

through the quality intervals. It is only used to supply resource sinks above the pinch

quality, and the external waste utility only receives excess resource from the sinks

below it. If there is not a pinch point in the system, fresh utility is cascaded all the

way down to the waste stream and both utilities can be reduced. When a pinch point

is present, decreasing the utilities will cause an infeasible system where some resource

is transferred from low to high quality intervals.

Note that, if there is a nonzero minimum feasible quality difference required for

resource transfer to occur, such as a minimum temperature difference for heat transfer

or concentration for mass transfer, then the qualities for the sinks must be shifted

up by this minimum quality difference when constructing the composite curves and

enthalpy intervals to ensure a feasible difference at the pinch point.

Here we present the transshipment formulation of Papoulias and Grossmann [73]

as an example of how to fully express this pinch analysis approach. In addition to

being one of the first numerical approaches to resource-targeting, the transshipment

formulation is still commonly used. This approach first defines a set of Kn quality

intervals for each resource, partitioned by the sorted inlet and outlet qualities of the

sources and sinks so that interval k spans higher quality values than k+1. Thus, each

interval with width �Qk,n, is predefined and independent of the current source or sink

being considered. Given these quality intervals, we identify the sets SRk,n ⇢ SRn

and SKk,n ⇢ SKn, which are the sources and sinks, respectively, that have changes

in quality that span interval k. The transfer constraints for each resource calculate

the hypothetical resource flows Fk,n that are available for transfer from interval k to

the lower quality interval k+1 using resource balances. (Note these flows are distinct

from the individual source outputs Ri,n because they are net quantities that consider

all of the sources and sinks in k.) Feasibility is enforced by constraining the flows Fk,n
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to be nonnegative. Thus, the general integration problem, which we wish to solve for

a selection of unknowns from x and yn, can be written as:

0 = h(x,y1, . . . ,y|T |),

{yn} = argmin
yn,F1,n,...,F|Kn|�1,n

RSR,n(x),

s.t. 0 = RSR,n � F1,n +�Q1,n

⇣ X

i2SR1,n

Si,n �
X

j2SK1,n

sj,n
⌘
,

0 = Fk�1,n � Fk,n +�Qk,n

⇣ X

i2SRk,n

Si,n �
X

j2SKk,n

sj,n
⌘
,

8k 2 {2, . . . , |Kn|� 1},

0 = F|Kn|�1,n � rSK,n +�Q|Kn|,n

⇣ X

i2SR|Kn|,n

Si,n �
X

j2SK|Kn|,n

sj,n
⌘
,

0  Fk,n, 8k 2 {1, . . . , |Kn|� 1},

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

8n 2 T.

For this formulation, the fresh resource flows RSR,n are minimized when a flow Fk,n,

k 2 Kn is zero 8n 2 T , which indicates that a pinch point is present.

Although the above formulation is a complete representation of the general in-

tegration problem as embedded linear programs, when qualities are unknown, it is

a nontrivial process to determine the quality intervals, k, and the mapping of the

sources and sinks to these intervals to find SRk,n and SKk,n as functions of the qual-

ities. Therefore, the qualities in the problem cannot be unknowns in x and must be

known a priori.

An alternative approach to understanding and applying pinch analysis theory is

graphical pinch analysis. This approach visualizes the comosite curves on resource

quantity versus quality axes. Then, visually, the pinch point occurs when the compos-

ite curves touch. Because the curves touch at this point, there is no excess resource

that can be cascaded down to the waste stream. The pinched system can also be

thought of as the system in which the composite curves overlap as much as feasible

possible, and thus the most resource is transfered between the sources and sinks.

Figure 2-1 shows an example of composite curves plotted for a heat integration prob-
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lem. While graphical pinch analysis can be intuitive and easy to implement for small

problems, like transshipment approaches, the qualities must be known a priori. As

a result, these traditional pinch analysis approaches cannot be applied to problems

where these qualities may be decision variables, such as designing systems with given

resource constraints or optimizing the design of an integrated system.

Figure 2-1: Composite curves for suboptimal (left) and optimal (right) integrated
heat transfer systems. The hot and cold composite curves are shown in red and blue,
respectively. When the system is not fully integrated, there is an enthalpy separation
between the composite curves that shows the heat that is cascaded from the hot
utility down to the cold. When a pinch point is present where there is no enthalpy
separation, there is no heat from the hot utility transferred across it and supplied to
the sink.

2.3 Nonsmooth Integration Approaches

Because of the limitations of other targeting methods, the work in this thesis de-

velops nonsmooth approaches to solve integration problems. These approaches use

nonsmooth functions to describe the naturally nonsmooth behavior of the composite

curves, which avoids the need to explicitly construct quality intervals. In this section,

we describe the previous nonsmooth integration methods that we draw on in our

work.

These nonsmooth integration approaches solve a specific instance of the general

integration problem for heat transfer. For heat integration, the resource quantities

are the enthalpy transferred, Q, the streams states are their heat capacity flow rates
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F , and the qualities that limit heat transfer are the temperatures T . In this case, the

general integration problem becomes

y 2 argmin
y=[QHQC]

QH (2.1)

s.t. Energy balance holds,

Heat transfer is feasible,

where QH and QC are the enthalpy requirements of the heating and cooling external

utilities, respectively.

To solve this problem, Duran and Grossmann [29] developed the “pinch location

method,” which avoids the explicit construction of temperature intervals by using

explicitly nonsmooth expressions to automatically select which streams should be in-

cluded above potential pinch temperatures. These expressions are used in inequalities

to constrain the total enthalpy of the hot streams to be greater than that of the cold

streams at each temperature so that heat is cascaded only from high to low tem-

peratures. One inequality is introduced for each potential pinch temperature in the

system. Because the temperature-heat relationship is assumed to be affine for each

stream, it is only feasible for pinch points to occurs at the finite set of inlet stream

temperatures. Thus, the number constraints in the formulations scale linearly with

the number of hot and cold streams in the process.

The resulting formulation is:

y 2 argmin
y=[QH,QC]

QH (2.2)

s.t 0 =
X

i2H

Fi(T
in

i
� T out

i
)�

X

j2C

fj(t
out

j
� tin

j
) +QH �QC

0  EBP p

C
� EBP p

H
+QC, 8p 2 P,

where P = H [ C is the index set of pinch point candidates and EBP p

H
and EBP p

C
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are the hot and cold stream balances below the pinch candidate p defined by

EBP p

H
:=

X

i2H

[max{0, T p � T out

i
}�max{0, T p � T in

i
}], 8p 2 P, (2.3)

EBP p

C
:=

X

j2C

[max{0, (T p ��Tmin)� tin
j
}�max{0, (T p ��Tmin)� tout

j
}], 8p 2 P.

(2.4)

�Tmin is the minimum feasible temperature difference for heat transfer, and the tem-

peratures of the pinch point candidates, T p are given by

T p =

8
<

:
T in

i
8p = i 2 H,

tin
j
+�Tmin, 8p = j 2 C.

Note that Duran and Grossmann’s original formulation uses the enthalpy balances

above candidate pinch temperatures. Here, we present the alternative enthalpy bal-

ances below the pinch candidates from Watson et al. [92] to stay consistent with the

other methods used in this work.

Duran and Grossmann solve this nonsmooth optimization problem using a smooth-

ing approximation, which requires a user-specified parameter that must be tuned to

avoid inaccuracies and ill-conditioning. Alternatively, Vikse et al. [88] show success

solving this problem directly using nonsmooth optimization approaches.

To avoid approximations and improve the scaling of the problem size with the

number of streams, Watson et al. [92] reformulated the inequalities in the pinch

location method to develop an equation-solving approach that describes the conditions

for optimal heat recovery. The resulting approach is a system of two nonsmooth

equations that enforce the existence of a pinch point at one of the potential pinch

temperatures. For feasibility, at each of the potential pinch points, the enthalpy

balance will be nonnegative, which is enforced by Duran and Grossman’s constraints.

In addition, for optimality, the constraint at the pinch temperature must be equal

to zero so that the enthalpy balance is minimized at this point. These conditions

therefore can be re-expressed using a single nonsmooth “min” function. An overall
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energy balance is included to ensure the external utilities cover the additional heating

and cooling requirements. The resulting system of equations is

0 =
X

i2H

Fi(T
in

i
� T out

i
)�

X

j2C

fj(t
out

j
� tin

j
) +QH �QC, (2.5)

0 = min
p2P

{EBP p

C
� EBP p

H
+ EXT p

C
� EXT p

H
}+QC. (2.6)

Watson et al. also add non-physical curve extensions to the enthalpy balances so that

their derivatives are defined for all temperatures. These extensions are defined by

EXT p

H
:=

X

i2H

Fi[max{0, T p � Tmax}�max{0, Tmin � T p}], 8p 2 P,

EXT p

C
:=

X

j2C

fj[max{0, (T p ��Tmin)� tmax}�max{0, tmin � (T p ��Tmin)}],

8p 2 P,

where Tmax and Tmin are the maximum and minimum temperatures, respectively,

across the hot streams, and tmax and tmin and the maximum and minimum tempera-

tures across the cold streams.

Watson et al. also introduce a third equation that can be used to estimate the

area of the ideal multistream heat exchanger required to achieve the heat integration

target calculated by Equations (2.5) and (2.6). This approach assumes that the

overall exchanger area is the sum of the contributions from each enthalpy interval in

the composite curves. At each nonsmooth point on the composite curves, Watson et

al. implicitly solve for the unknown temperature on the other curve to fully define

the enthalpy interval. Because the composite curves are affine within each enthalpy

interval, the area contributions from each interval can be calculated by using the

same approach as for a classic two-steam heat exchanger. Concretely, let K be the

index set for the points at which the composite curves are nondifferentiable, as well

as their endpoints. Then for k 2 K, the enthalpy values at the nonsmooth points in

33



the composite curves are calculated using

0 = Qk �
X

i2H

Fi(max{0, T k � T out

i
}�max{0, T k � T in

i
}), (2.7)

0 = Qk �
X

j2C

fj(max{0, tk � tout

j
}�max{0, tk � tin

j
}), (2.8)

where Equation (2.7) finds the corresponding enthalpies for the hot stream temper-

atures, T k 2 {T in/out

i
: i 2 H} and (2.8) finds the enthalpies for the cold stream

temperatures tk 2 {tin/out

j
: j 2 C}.

Once the enthalpies Qk are defined, Equation (2.7) or (2.8) is solved for the remain-

ing unknown hot or cold stream temperature, respectively. The enthalpy-temperature

triplets (Qk, T k, tk) for each nonsmooth point are sorted by their enthalpy values, and

the resulting enthalpy intervals are used to calculate the heat exchanger area:

0 = UA�
X

k2K,k 6=|K|

�Qk

�T k

LM

, (2.9)

where �Qk = Qk+1 �Qk and

�T k

LM
(�T k,�T k+1) =

8
<

:

1

2
(�T k +�T k+1), if �T k = �T k+1,

�T
k+1��T

k

ln(�Tk+1)�ln(�Tk)
, otherwise,

with �T k = T k+1 � T k. If the sorting operation is performed using an explicitly

nonsmooth method such as Bubble Sort, Watson et al.’s approach can be used not

only to solve for the heat exchanger area, but also to solve for other variables in the

system for a specified area value.

Compared to other approaches, the nonsmooth integration operator only requires

an equation system instead of an optimization formulation and the number of equa-

tions remains the same regardless of the number of hot and cold streams in the system.

These features make it an efficient choice for constraining heat transfer when opti-

mizing an integrated system. Therefore, we adapt this approach to solve the general

integration problems in this work.
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2.4 Overview of Nonsmooth Analysis

This next section outlines the nonsmooth equation-solving and optimization methods

that we use to handle nonsmooth functions in our work.

2.4.1 Equation Solving

Nonsmooth analysis is a well-developed field, and many algorithms for nonsmooth

equation-solving have been defined with desirable theoretical properties that are even

competitive with their smooth counterparts. Such algorithms include Newton-type

methods such as semismooth or linear-programming (LP) Newton.

The semismooth Newton method is analogous to the smooth Newton method;

however, the evaluation of a generalized derivative element, F(xk), is required at

each iteration instead of the Jacobian matrix. Therefore, the kth iteration is given by

solving the linear equation

F(xk)(xk+1 � xk) = �f(xk),

where f is semismooth and F(xk) is square and nonsingular.

The LP-Newton method relaxes the singularity requirement by iteratively solving

the LP

min
�2R,x2X

� s.t. kf(xk) + F(xk)(x� xk)k1  �kf(xk)k21,

kx� xkk1  �kf(xk)k1,

where X is a polyhedral set [36]. For global convergence, a simple backtracking line

search is performed after each LP iteration [37]. If f is piecewise differentiable [77],

the generalized derivatives are elements of the Bouligand (B-) subdifferential (the

set of limiting Jacobians), and certain regularity conditions are met, both of these

methods exhibit local Q-quadratic convergence.

Despite both the desirable performance of these algorithms and the ability of
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nonsmooth equations to describe many physical systems naturally and compactly,

nonsmooth equation solving has generally been avoided due to the difficulty in cal-

culating generalized derivative elements. Elements of the B-subdifferential cannot

be found directly using automatic differentiation (AD) since they do not obey sharp

calculus rules, nor can they be found from directional derivatives in the coordinate

directions or component-wise limiting gradients [12].

However, Khan and Barton have recently defined the LD-derivative, which follows

a sharp chain rule, and can therefore be calculated using the nested computations of

AD [54]. Additionally, the LD-derivative can be used to compute the L-derivative

elements of the B-subdifferential for piecewise differentiable functions. Combined,

these properties allow for the automatic calculation of useful generalized derivative

elements for nonsmooth equation solving in complex settings and make explicitly

nonsmooth approaches to process simulation viable.

In this work, we solve nonsmooth equation systems using either the semismooth or

LP Newton method as specified. We implemented these methods in MATLAB® 2019B.

Both methods are supplied with generalized derivative elements calculated with vec-

tor forward AD for LD-derivatives as detailed by Khan and Barton and Barton et al.

and implemented using operator overloading [54, 12]. Using this approach, each func-

tion evaluation will produce a LD-derivative in addition to the function value. These

directional derivatives are transformed to generalized L-derivatives and provided as

the Jacobian information to the equation-solving methods. For more information

on performing operator overloading for automatic differentiation in MATLAB, we

suggest referring to Neidinger [69].

2.4.2 Optimization

Current mathematical programming methods for handling general nonsmooth objec-

tives and constraints are limited and not included in most optimization software.

Nonsmooth optimization problems are particularly challenging because all elements

of the Clarke generalized Jacobian @Cf(x), which is the convex hull of the set of limit-

ing Jacobians, must be considered to ensure that the KKT conditions are met. For a
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constrained problem, the generalized KKT sufficient conditions are: for a convex ob-

jective f : Rn ! R and convex constraints gi(x)  0, gi : Rn ! R, i = 1, . . . ,m,

x⇤ is a global optimum of the problem if there exist multipliers �i � 0, i = 1, . . . ,m

such that �igi(x)⇤ = 0 and 0 2 @Cf(x⇤)+
P

m

i=1
�i@Cgi(x⇤). These conditions make it

difficult to determine a descent direction and provide no implementable subgradient-

based stopping criteria.

While there are specialized algorithms available for solving nonsmooth optimiza-

tion problems with specific forms, most generalizable nonsmooth optimization algo-

rithms fall into two categories: subgradient methods or bundle methods [11], [51].

Subgradient approaches are local solvers that adapt smooth gradient-based methods

by replacing derivatives with a single element of the subdifferential or other gener-

alized derivative for nonconvex functions. Both these and other nonsmooth opti-

mization solvers typically handle constraints using barrier functions. These methods

are easy to implement by adapting smooth local solvers and can take advantage of

the flexibility and robustness of these established codes. Nevertheless, subgradient

algorithms do not guarantee a descent direction at each iteration, which can result

in a poor convergence rate. In addition, it is traditionally challenging to calculate

a generalized derivative element at each step. However, Watson et al. [93] had suc-

cess adopting a new type generalized derivative for subgradient descent. This LD-

derivative can be calculated using automatic differentiation [54] making it easy to

supply subgradient elements to a smooth solver.

Bundle methods use a “bundle” of subgradients from previous iterations to ap-

proximate the whole subdifferential instead of using one arbitrary subgradient and to

provide more information about the local behavior of the function. The subgradients

are used in a quadratic programming subproblem to find the next search direction.

Bundle methods have been shown to have global convergence for a limited number of

stored subgradients and are more efficient than simpler subgradient approaches. How-

ever, the size of the subproblems can increase quickly with the number of variables,

making them ill-suited to large-scale nonsmooth problems [10]. For nonconvex prob-

lems, additional relaxations are also required in the subproblem, which can decrease
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the rate of convergence.

While the subgradient and bundle methods are the most common approaches to

nonsmooth optimization, we also note that recent work in gradient sampling methods,

which randomly sample subgradients around the current iterations, suggests that they

have the potential to outperform bundle methods [11].

For this work, we chose to use the method presented by Watson et al., which

was developed to optimize a system similarly constrained by the nonsmooth equality

constraints in Formulation (5.2). For this problem type, Watson et al. were unable

to achieve convergence with a bundle method. However, they had success with a

subgradient-type method that uses the LD-derivative to calculate generalized deriva-

tive elements at nonsmooth points. LD-derivatives are a form of generalized direc-

tional derivatives which follow a sharp chain rule, and can therefore be calculated

using the nested computations of automatic differentiation [54]. They also follow

an implicit function theorem that can be used to find derivatives from the implicit

functions in this work [54, 12], which are part of the steam property model and the

multistream heat exchanger area calculations.

Watson et al. solve nonconvex, nonsmooth optimization problems by using LD-

derivatives to provide generalized Jacobian information to the smooth solver IPOPT,

which uses a primal dual interior point method. The built-in IPOPT methods are

used to estimate the Hamiltonians from these generalized derivative elements. Watson

et al. note that this approach is not guaranteed to converge to a local minimum if the

minimum is at a nonsmooth point. Nevertheless, in practice, they were able to still

reach minima at nonsmooth points with slightly relaxed tolerances.

We also implemented this optimization approach in MATLAB® 2019B and gen-

erated LD-derivatives using operator overloading. These directional derivatives are

transformed to generalized L-derivatives and provided as the gradient and Jacobian

information to the IPOPT-MATLAB interface.
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Chapter 3

General Integration Operator

This chapter presents a nonsmooth approach for solving general process integration

problems that extends the integration approach from Watson et al. [92]. Watson

et al.’s nonsmooth approach, which is detailed in the Background chapter, is simple,

compact, and able to solve for any process variables. However, it is only applied to

heat integration problems, specifically for multistream heat exchangers. Therefore,

in this work, we generalize the variables in Watson et al.’s formulation to extend its

benefits to integrating any pinch-constrained resource.

Our method scales well with problem size, requires only equation-solving ap-

proaches, and can solve for process variables while simultaneously considering the

integration of multiple resources. We also present a simple modification that iden-

tifies and solves threshold problems automatically. To our knowledge, this is the

only approach to the targeting problem that has all of these properties, and the only

solution presented explicitly for the general problem.

In the sections below, we detail the formulation of our nonsmooth integration

operator, including variable selection for different resource types and modifications

for the threshold problem. We follow with a series of examples with the operator being

applied to a wide range of integration problems: carbon-constrained energy planning,

a water threshold problem, a hydrogen conservation network with unknown process

variables, and a combined mass and water integration problem with a process model.

We conclude with a discussion of the features and limitations of our approach and
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possible avenues for future work.

The work presented in this chapter has been published in Nielsen and Barton [72].

3.1 Problem Structure and Assumptions

The method presented in this chapter solves the “general integration problem” de-

tailed in the Background chapter. The general integration problem describes the

simultaneous minimization of the fresh supplies of an arbitrary number of resources.

Each resource type n 2 T , has utilities, yn = (RSR,n, rSK,n), where RSR,n is the

fresh resource supply and rSK,n is the waste resource flow, which are minimized by

transferring resource from a set of sources SRn to a set of sinks SKn. We assume the

sources i 2 SRn have constant states Si,n that change in quality from Qin

i,n
to Qout

i,n

for a resource output Ri,n according to Ri,n = Si,n(Qin

i,n
�Qout

i,n
). Correspondingly, the

sinks j 2 SKn have constant states sj,n that change in quality from qin

j,n
to qout

j,n
for

a resource input rj,n according to rj,n = sj,n(qout

j,n
� qin

j,n
). For resource transfer to be

feasible between a source i and sink j, the source qualities must be higher than those

of the sink by a minimum feasible quality difference �Qmin. The general integration

problem can also include a process model h(x,y1, . . . ,y|T |) that is a function of the

set of process variables x and the utilities yn.

There is a significant body of work proposing different integration types, each of

which can be described by the general integration problem. The resources, states,

and qualities for a representative sample of integration types are summarized in Table

3.1. Note that the same terminology is often used to refer to integration formulations

with different selections of resources, and formulations that are fundamentally the

same are referred to in different ways. For example, water integration approaches can

be of either the “fixed-load” or “fixed-flow rate” type. The former problem considers

process units with constant water flow rates and is treated the same as a mass inte-

gration problem with the contaminant mass as the integrated resource; whereas, the

latter directly integrates the water flows [39]. Similarly, carbon integration can either

integrate power production with different emission quantities, or flows between CO
2
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Table 3.1: Resources, qualities, and states for a sample of integration formulations
(adapted from Foo [40]).

Integration Types Resource
Quantity

Quality State

Heat[61] heat transfer
rate

temperature heat capacity flow rate

Mass[31]
Fixed-load water[91]

contaminant
mass load flow
rate

concentration
in reference
stream

scaled solvent mass flow
rate

RCN[52]
Fixed-flow water
[33]
Hydrogen [7]
Oxygen [99]
Carbon [67]

mass flow rate cumulative
difference in
property loads
(e.g.
contaminant
mass flow rate)

reciprocal of a linear
mixing property, sorted
by increasing property
value (e.g. contaminant
concentration)

Carbon-
constrained
energy[82]

electrical power cumulative
difference in
emission
masses

reciprocal emission
factor, sorted by
increasing emissions

Inventory[19] time cumulative
volume

usage or production rate

sources and sinks [82, 67]. In addition, both of the latter water and carbon formula-

tions are types of resource conservation networks (RCNs), in which the resource is a

material flow that can be reused directly without considering heat or mass transfer

[40].

3.2 Generalized Nonsmooth Operator Formulation

In this section, we introduce a new approach to solving the general resource-targeting

problem that uses explicitly nonsmooth equations to improve scaling compared to cur-

rent approaches and retain the ability to solve for unknown process variables includ-

ing qualities. Our method also has the flexibility to automatically identify threshold

problems. As an alternative to the nonsmooth LPs of the transshipment formulation

and the MINLPs or nonsmooth NLPs of the pinch location method formulations,

our nonsmooth approach uses systems of equations to express the solutions of the
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embedded minimization problems. Each of these nonsmooth systems, or nonsmooth

integration operators, consists of two equations per integrated resource: an overall

resource balance, which ensures that resource transfer is feasible based on availability,

and a resource balance below potential resource transfer pinch points, which enforces

optimal transfer given quality limits or driving force limitations. The nonsmooth

integration operators for each resource are coupled with the process model, and the

resulting system can be solved efficiently using the nonsmooth equation-solving meth-

ods described in the Background.

As in Watson et al.’s heat integration approach, the pinch point balance uses a

simple nonsmooth expression to enforce both the feasibility of resource transfer due

to quality constraints and minimal resource use. For resource transfer to be feasible,

at each pinch candidate quality, the total resource quantity produced by the lower

quality sources must be less than or equal to the capacity of the sinks (including

the waste resource flow) that can accommodate resource at these qualities. This

feasibility requirement is given explicitly by the inequality constraints in the pinch lo-

cation formulation from Duran and Grossmann and is expressed in the transshipment

formulation by the directionally-constrained resource flows from high to low quality.

In addition, according to pinch analysis theory, for resource transfer to be optimal,

there must exist at least one quality pinch point for the resource, below which the

source production and sink capacities are equal. Otherwise, fresh resource must be

used to fulfill the sink demands below each quality level and is cascaded down to

the waste resource sink. Therefore, both the feasibility and optimality criteria can

be easily expressed using an explicitly nonsmooth equation by setting the minimum

resource balance over the problem qualities to zero.

Because the general integration operator assumes constant state sources and sinks,

this property can be equivalently enforced with a pinch point balance that considers

a finite set of potential pinch points. Again drawing on pinch analysis, for constant

state sources and sinks, the potential pinch point candidates are the inlet source and

sink qualities that define distinct quality intervals for the problem. Additionally,

enforcing feasibility at each of these points ensures feasibility at all qualities between
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them. Therefore, the pinch point balance in our nonsmooth integration operator

considers potential pinch points in this set.

Then, neglecting the index n for clarity, the resulting nonsmooth integration op-

erator for a single given resource is:

0 =
X

i2SR

Si(Q
in

i
�Qout

i
)�

X

j2SK

sj(q
out

j
� qin

j
) +RSR � rSK , (3.1)

0 = min
p2P

{RBP p

SK
�RBP p

SR
}+ rSK , (3.2)

where P is the finite index set of pinch point candidates and

RBP p

SR
:=

X

i2SR

Si[max{0, Qp �Qout

i
}�max{0, Qp �Qin

i
}

�max{0, Qmin �Qp}+max{0, Qp �Qmax}], 8p 2 P,

RBP p

SK
:=

X

j2SK

sj[max{0, (Qp ��Qmin)� qin
j
}

�max{0, (Qp ��Qmin)� qout

j
}+max{0, (Qp ��Qmin)� qmax}

�max{0, qmin � (Qp ��Qmin)}], 8p 2 P,

where �Qmin is the minimum feasible quality difference between a source and sink

at which resource transfer can occur and the source qualities at the potential pinch

points are

Qp =

8
<

:
Qin

i
, 8p = i 2 SR,

qin

j
+�Qmin, 8p = j 2 SK.

The expressions RBP p

SR
and RBP p

SK
are the cumulative source and sink resource

quantities that can be exchanged at qualities lower than Qp. The nonsmooth max

terms capture the position of the inlet and outlet qualities of each source or sink

in relation to the potential pinch point quality, and therefore whether the source or

sink should be, either partially or wholly, included in the resource balance. Thus,

these expressions allow us to avoid the explicit ordering and construction of quality

43



intervals as required in the transshipment formulation. Qmin,max and qmin,max are

the minimum and maximum qualities across the sources or the sinks, respectively,

and the max terms containing these variables create nonphysical extensions to the

cumulative resource quantities, which avoid additional singular regions or infinite

solutions by ensuring the difference between the source and sink resource balances

is always defined. Note that, so the pinch point balance correctly selects resources

transferred below the pinch quality, we define the inlet and outlet qualities such that

Qin � Qout and qout � qin.

For the case of heat integration, Watson et al. provide a detailed justification for

why this system of equations enforces the existence of a pinch point [92]. This analysis

can be applied analogously to the case of a general resource whose transfer obeys the

linear relations Ri,n = Si,n(Qin

i,n
�Qout

i,n
) and rj,n = sj,n(qout

j,n
� qin

j,n
) where the qualities

have values that increase with increasing purity as described in the section below.

Therefore, for any pinch-constrained resource transfer with this property, Equations

(3.1) and (3.2) will enforce a pinch point and thus describe optimal resource transfer.

Graphically, the source and sink balances define quality versus quantity composite

curves, and Equations (3.1) and (3.2) ensure that the source composite curve is always

at higher qualities than the sink composite curve and that the composite curves touch

at a pinch point. Figure 3-1 illustrates this graphical conceptualization of the resource

balances and nonsmooth integration operator.

3.2.1 Determining Integration Variables

Before the nonsmooth operator can be used to solve a general integration problem,

qualities and states must be defined for each resource, and often the provided data

must be preprocessed in order to calculate these state and quality values. The sections

below present some special considerations when defining and calculating integration

variables, particularly for RCNs.
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Figure 3-1: Graphical illustration of the nonsmooth integration operator. The red
and blue plots are the source and sink composite curves whose qualities are generated
by RBP p

SR
and RBP p

SK
, respectively, at each potential pinch point, and the dashed

lines show the curve extensions. The sign of RBP p

SK
�RBP p

SR
+ rSK is indicated for

each region. These particular curves do not satisfy Equations (3.1) and (3.2) because
RBP p

SK
�RBP p

SR
+ rSK is not constrained to be nonnegative.

Quality Sign Selection

The pinch point balance as defined above calculates net quantity of resource trans-

ferred at qualities below the pinch point quality, including the waste resource quan-

tity. Therefore, our formulation requires the waste resource flow to have the lowest

quality value of all the sources and sinks and the fresh resource to have the high-

est. Thus, while the equations as written are applicable to any general integration

problem, the qualities used here may need to be transformed from those presented

in other works. For example, in many types of integration problems, including com-

mon RCNs, the qualities are cumulative values such as property loads. In the typical

RCN formulation, summarized by Foo [40], the cumulative property loads, Pi and pj,

are determined by summing up changes in load from a selected fresh resource load
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Pmin = pmin according to

P out

1
= Pmin, (3.3)

P in

i
= P out

i
+�Pi, 8i 2 SR, (3.4)

P out

i
= P in

i�1
, 8i 2 SR, i 6= 1 (3.5)

for the source loads and

pin

1
= pmin, (3.6)

pout

j
= pin

j
+�pj, 8j 2 SK, (3.7)

pin

j
= pin

j�1
, 8j 2 SK, j 6= 1, (3.8)

for the sinks. Pmin is usually chosen to be zero; however, the actual value is arbitrary

since only the changes in property load are relevant. Therefore, in this formulation,

the source exists at the lowest property load and the sink at the highest, so our

nonsmooth operator cannot use this definition of the property load as the quality in

the integration problem.

Instead, for RCNs, we define the qualities by subtracting the changes in property

load from a selected fresh resource quality Qmax = qmax. For the source qualities,

Qin

1
= Qmax, (3.9)

Qout

i
= Qin

i
��Qi, i = 1, . . . , |SR|, (3.10)

Qin

i
= Qout

i�1
, i = 2, . . . , |SR|, (3.11)

and for sink qualities,

qout

1
= qmax, (3.12)

qin

j
= qout

j
��qj, j = 1, . . . , |SK|, (3.13)

qout

j
= qin

j�1
, j = 2, . . . , |SK|, (3.14)
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(a) Defining qualities through a cumulative

difference so the source is at the highest

quality value and the sink at the lowest.

(b) Reformulating the integration opera-

tor to include the fresh resource below the

pinch point.

Figure 3-2: Illustration of approaches to determining problem qualities that can be
used in our approach. The source and sink composite curves are red and blue, re-
spectively.

where �Qi = �Pi and �qj = �pj. Again, the value of Qmax is arbitrary and is

usually set to zero. Now, the source is at the highest quality value, the sink is at

the lowest, and we maintain Qin

i
� Qout

i
and qout

j
� qin

j
. Thus, we can apply the

nonsmooth integration operator to these qualities.

In order to easily transfer the nonsmooth integration operator between problems,

in this work, for cases where the high purity streams have low property loads, we

always use this approach of defining the qualities through a cumulative difference

so that they are consistent with the operator formulation. If desired, an alternative

approach is to interchange the source and sink variables in the operator. With this

change, the pinch point balance now includes the fresh resource source instead of

the waste resource sink in the resource exchanged below the pinch point. Figure

3-2 visually demonstrates the difference between these two approaches. Figure 3-2a

shows the transformation of the cumulative loads so that the waste sink is correctly

included below the potential pinch point qualities, and Figure 3-2b shows swapping

the sources and sinks so that the qualities of the source composite curve are lower

than those of the sinks.

47



Sorting Property Values

In the integration problems such as RCNs discussed above, in which the qualities

are cumulative values, the qualities, and thus the calculated resource targets, are

highly dependent on the ordering of the sources and sinks. For RCNs where resource

reuse is limited by composition, El-Halwagi et al. prove that resource targets are

minimized if the sources and sinks are each sorted by increasing concentration [33],

and Kazantzi and El-Halwagi extend this principle to general property integration

where the sources and sinks are also sorted by their property values according to

decreasing purity [52]. To perform this sorting, most approaches to RCNs require all

source and sink properties, which are the states Si or sj in the general integration

problem and are usually the reciprocal of the property value, to be known a priori.

The few formulations that can solve for the properties are typically superstructures

that must be solved with MINLPs that scale poorly with problem size. However,

many sorting algorithms are inherently continuous but nonsmooth with respect to

the sorted elements because the sorted order only changes at the finite set of points

where two elements are equal. Thus, they can be incorporated directly into the

nonsmooth integration operator so that we can solve for properties and states in

RCNs using only equation-solving methods.

To incorporate sorting when it is required, we treat the sorting algorithm as a

nonsmooth function that maps the unsorted input to a sorted output. Then, the

overall nonsmooth system that simulates the integrated process is the composition

of the integration operator and the sorting operation. In practice, we preprocess

the problem data to create lists of property and property load pairs for the sources

and sinks and sort each list in order of nonincreasing purity (e.g. nondecreasing

contaminant concentration).

By selecting a sorting algorithm for which we can calculate LD-derivatives, be-

cause they obey a sharp chain rule, we can find the generalized derivative elements

for the composite function by supplying the derivatives for the sorted pairs with re-

spect to the unknown variables to the integration operators. Then these generalized
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Input: An unsorted list, A, with entries A[1], . . . , A[m]
Output: The list A, with the m entries sorted in order of increasing values
for i 1 to m do

for j  1 to m� 1 do
a min(A[j], A[j + 1])
b max(A[j], A[j + 1])
A[j] a
A[j + 1] b

return A

Figure 3-3: A simple bubble sort algorithm.

derivative elements can be used to solve the equation system using the nonsmooth

equation-solving methods detailed above. For all of the examples in this work, we

have used a simple bubble sort algorithm as shown in Figure 3-3. Because the only

operations required are taking the max or min of two functions and these operations

are performed the same number of times for any input of a given size, we can easily

incorporate this sorting algorithm into code for the nonsmooth integration operator

and apply AD methods to calculate the LD-derivatives for both the sorting process

and the composite integration equations. Therefore, using this method, the nons-

mooth integration operator can solve for property values in RCNs, a feature unique

to our approach.

3.2.2 Extension to the Threshold Problem

Another significant advantage of modeling integrated systems using nonsmooth equa-

tions is the ability to easily incorporate additional scenarios such as threshold prob-

lems. A threshold scenario can occur for a resource when the resource utilities are

unknowns and all other variables that the resources flows depend on, the process

variables, are fixed, i.e. the traditional targeting problem. For this problem type, it

may be infeasible for a pinch point to occur, in which case, resource usage will be

optimal when the fresh or waste resource flow is zero and the pinch point balance in

Equation (3.2) will be positive instead of zero. To capture this behavior, a simple
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min function wrapper can be added to Equation (3.2) so it becomes:

0 = min{min
p2P

{RBP p

SK
�RBP p

SR
}+ rSK , RSR, rSK}. (3.15)

This expression captures all possible cases for the basic resource-targeting prob-

lem: either a pinch point exists, so the pinch point balance is zero and the utilities are

nonnegative, or a pinch point does not exist, so the pinch point balance is positive,

and one of the utilities is zero and the other is nonnegative. Therefore, when the

process variables related to a resource are known, Equation (3.15) should be used in

place of Equation (3.2) for that resource. Then, unlike other approaches to process

integration, the nonsmooth operator will identify threshold cases even if they are not

known a priori.

It is important to note that Equation (3.15) should not be applied when process

variables are unknown. In this case, the free process variables ensure that a pinch

point is obtainable. Thus, if a pinch point is not enforced at the solution, both the

fresh and waste resource flows could feasibly be reduced, and the solution does not

describe a system under optimal resource reuse. Additionally, if one of the external

resource utilities is specified to be zero, the integration operator will be underde-

termined because Equation (3.15) will automatically be satisfied. Therefore, we use

Equation (3.2) in these scenarios to ensure the existence of a pinch point.

3.2.3 Nonsmooth Operator Implementation

To solve the general integration problem using the nonsmooth integration operator,

one operator is constructed for each integrated resource using the specifications de-

tailed above. The states and qualities for each resource are identified along with any

operations, including sorting, required to calculate them from the problem data and

unknowns. Then, the appropriate pinch point balance is selected from Equations (3.2)

and (3.15) depending on whether the resource states and qualities are dependent on

any unknown process variables. Once the integration operators are constructed, they

are combined with a process model to form a system of nonsmooth equations.
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The resulting system can be solved for different selections of unknowns, where

the degrees of freedom are determined by the size of the equation system, using the

nonsmooth equation-solving methods described in the Background section. Regard-

less of the number of sources and sinks in the problem, the integration operator for

each resource contributes only two equations to the system. This feature results in

a problem formulation that scales compactly with problem size. In comparison, the

optimization formulations for the pinch location method are either MINLPs that scale

at best quadratically with both the number of constraints and binary variables or non-

convex, NLPs that scale linearly in the number of constraints but require smoothing

approximations or nonsmooth solvers. Additionally, this strategy is applicable to

any generalized integration problem, and we show its implementation for a variety of

specific problems in the examples below.

3.3 Example Problems

In this section, we present a series of examples that demonstrate the use and potential

of the nonsmooth integration operator. These examples begin with a classic resource-

targeting problem and increase in complexity to include unknown process variables,

process models, and the simultaneous integration of multiple resources. They also

cover a wide range of resource types to show the utility of a truly generalizable

approach to the integration problem.

3.3.1 Example 1: Carbon-constrained Energy Planning

In this example, we demonstrate the ability of the nonsmooth integration operator

to solve for fresh and waste targets for any general integration problem where the

resource transfer is limited by a pinch point. We consider the carbon-constrained

energy-planning problem presented by Tan and Foo [82], which examines how best

to utilize energy sources under carbon limits during the transition to clean energy.

In this scenario, there is a set of geographical regions, which each have an expected

energy consumption and a CO
2

emission limit for the planning horizon, and a set of
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Table 3.2: Problem data for Example 1.[82]

Energy
resource

Emission
factor (t
CO2/TJ)

Available
resource
(106 TJ)

Demand
region

Expected
demand
(106 TJ)

Emission
limit (106

t CO2)
Coal 105 0.6 Region I 1.0 20
Oil 75 0.8 Region II 0.4 20
Natural gas 55 0.2 Region III 0.6 60

energy resources with different emission factors (tonnes CO
2

emitted per TJ of energy

produced) and availabilities. The provided data for this example is given in Table 3.2.

We need to determine the quantity of emission-free renewable energy sources required

to meet the emission targets for each region and the quantity of high-emission sources

that will go unused.

The first step in solving this problem with the generalized nonsmooth operator

is determining the problem states and qualities. Here, the energy is the resource

transferred from the production sources to the different regions where it is consumed,

and Tan and Foo use cumulative emission versus energy pinch plots to solve the

integration problem for optimal energy transfer. As for standard RCNs, the cumu-

lative emission loads are determined by sorting and source and sinks by increasing

emission factor. This approach suggests that the cumulative emission loads and recip-

rocal emission factors can be considered as the qualities and states for this problem,

respectively, which is consistent with our definitions since the energy transfer is con-

strained by the net carbon loads released from the energy sources and gained by the

different geographic regions and the change in carbon load for each source or sink

is proportional to its limiting emission factor. However, Tan and Foo’s approach to

calculating the cumulative emission loads, as in Equations (3.3)-(3.8), results in the

zero-emission energy source having the lowest cumulative load and the excess power

sink the highest. Therefore, for this problem, to be consistent with the nonsmooth

integration operator, we chose to use Equations (3.9)-(3.14) to calculate the qualities

as the cumulative difference of the changes in emission load.

We then transformed the problem data to these states and qualities to be used
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Table 3.3: Calculated states and qualities used in the nonsmooth integration operator
for Example 1.

Energy
resource

Si

(10�3

TJ/ t
CO2)

Qin
i

(106 t
CO2)

Qout
i

(106 t
CO2)

Demand
region

sj
(10�3

TJ/ t
CO2)

qin
j

(106 t
CO2)

qout
j

(106 t
CO2)

Natural
gas

18.2 0 -11 Region I 50 -20 0

Oil 13.3 -11 -71 Region II 20 -40 -20
Coal 9.5 -71 -134 Region III 10 -100 -40

with the integration operator. The resulting values are shown in Table 3.3. For

the energy resources, the states can be calculated directly as the reciprocals of the

emission factors. Then, the changes in emission load for each source can be found

from the known energy flows, Ri, according to �Qi = Ri/Si. Using these values,

we sorted the (Si, �Qi) pairs by nonincreasing state (nondecreasing emission load)

to be used in Equations (3.9)-(3.11) to find Qout

i
and Qin

i
. Here, the sources can be

sorted using any algorithm since the emission factors can be calculated explicitly from

the problem data. Note that the sorting procedure changes the order of the energy

resources as shown in Table 3.3. For the demand regions, we are given rj and �qj,

so we determined the states from sj = rj/�qj and found qin

j
and qout

j
from the sorted

(sj, �qj) pairs and Equations (3.12)-(3.14). We also set �Qmin = 0 since no driving

force is required for power transfer between the energy resources and demand regions.

Once the states and qualities are calculated, the appropriate operator equations

can be applied to these state and quality values, and the system can be solved using

one of the nonsmooth equation-solving methods described above. For this problem,

since all process variables are known, we used Equation (3.15) in addition to Equation

(3.1) to ensure potential threshold problems are identified. We solved this system for

RSR and rSK using the semismooth Newton method to give RSR = 0.81⇥106 TJ and

rSK = 0.81 ⇥ 106 TJ as expected. Figure 3-4 shows the pinch plot at the solution

both in terms of the qualities used in the integration operator and using the standard

representation for this problem type.
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(a) Quality versus quantity plot showing

the negative qualities used in the integra-

tion operator.

(b) Standard pinch representation.

Figure 3-4: Pinch plots for Example 1. The source and sink composite curves are red
and blue, respectively.

Semismooth Newton is a good equation-solving method for any application where

all unknowns are resource targets because the resource targets are not present in

any nonsmooth terms, and therefore, the algorithm cannot encounter any singular

generalized derivative elements along its solution path. Accordingly, in this example,

semismooth Newton converged to the solution for all initial guesses tested in only 1

or 2 iterations.

3.3.2 Example 2: Water Threshold Problem

The next example shows the use of our integration operator to automatically identify

and solve threshold problems. Here, we consider two cases presented by Foo for

fixed-flow water integration with the flow rates and concentrations given in Tables

3.4 and 3.5 [38]. The first data set describes a zero-discharge network in which all

of the source water can be used by the system, and the second a water network that

requires no fresh water feed.

Analogous to the carbon integration problem in Example 1, since Foo approaches

these problems using cascade tables with water and cumulative contaminant flow rates

sorted by increasing contaminant concentration, we selected the cumulative difference

of the contaminant flow rates and the reciprocal source and sink concentrations as

54



Table 3.4: Zero discharge problem data for Example 2.[38]

Water
source

Flowrate
(g/min)

Concentration
(ppm)

Water
sink

Flowrate
(g/min)

Concentration
(ppm)

1 20 20 1 50 20
2 50 100 2 20 50
3 40 250 3 100 400

Table 3.5: Zero fresh resource problem data for Example 2.[38]

Water
source

Flowrate
(t/h)

Concentration
(ppm)

Water
sink

Flowrate
(t/h)

Concentration
(ppm)

1 500 100 1 1200 120
2 2000 110 2 800 105
3 400 110 3 500 80
4 300 60

the qualities and states, respectively. We then transformed the problem data to these

states and qualities and applied Equations (3.1) and (3.15) with �Qmin = 0 since

no driving force is required for resource transfer. For both problems, we solved for

the fresh and waste water flow rates using the semismooth Newton method, and we

converged to the solutions in 1 to 2 iterations across a wide range of initial guesses.

As desired, for the zero-discharge problem, the integration operator determined the

correct zero waste water flow rate and a fresh water flow rate of 60 g/min, and for the

other, it found a zero fresh water flow rate and a waste water flow rate of 700 t/h.

In comparison, using Equation (3.2) for these targeting problems does not cor-

rectly identify threshold cases, giving infeasible waste and fresh water flow rates of

-26 g/min and -9.1 t/h for the zero-discharge and zero fresh flow cases, respectively.

Pinch plots comparing the results from using Equations (3.2) and (3.15) for the zero-

discharge problem are given in Figure 3-5. Although not appropriate for identifying

threshold problems in resource-targeting cases, when solving for process variables,

using Equation (3.2) enforces pinch points in the system to ensure resources are used

as efficiently as possible as demonstrated in the examples below.
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(a) Equation (3.2) enforces a pinch point. (b) Equation (3.15) correctly identifies the

solution in the threshold case.

Figure 3-5: Comparison of approaching the zero-discharge threshold problem using
Equations (3.2) and (3.15). The source and sink composite curves are red and blue,
respectively.

3.3.3 Example 3: Hydrogen Conservation Network

The next example highlights the ability of our formulation to solve for process vari-

ables in integration problems, particularly properties that must be sorted to determine

optimal resource transfer. In this example, we examine a refinery hydrogen recovery

network similar to that from Alves and Towler [7, 40]. The network contains four

hydrogen-consuming processes, a hydrocraking unit (HCU), a naphtha hydrotreater

(NHT), a cracked naphtha hydrotreater (CNHT), and a diesel hydrotreater (DHT),

and two in-plant hydrogen-producing facilities, a catalytic reforming unit (CRU) and

a steam-reforming unit (SRU). There is also an external feed of hydrogen that can

be purchased with an impurity content of 6.5%. The limiting data for the hydrogen

network is given in Table 3.6. We assume there is potential to upgrade the SRU

to produce higher-purity hydrogen, and we wish to determine the required flow rate

of external hydrogen and purity of the hydrogen produced by the SRU to achieve a

waste flow rate of 100 mol/s.

To solve this problem using the integration operator, we note that the system is

a RCN of the same form as the water networks in Example 2. Therefore, we again

selected qualities that are the cumulative differences of the impurity loads and states

that are the reciprocal concentrations. In this case, because the external hydrogen
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Table 3.6: Problem data for Example 3.[40]

Sink Hydrogen
consump-
tion
(mol/s)

Concentration
(mol %)

Source Hydrogen
production
(mol/s)

Concentration
limit (mol
%)

HCU 2495.0 19.39 HCU 1801.9 25.0
NHT 180.2 21.15 NHT 138.6 25.0
CNHT 720.7 24.86 CNHT 457.4 30.0
DHT 554.4 22.43 DHT 346.5 27.0

SRU 623.8 -
CRU 415.8 20.0

source has a fixed impurity concentration and is not the highest possible purity, we

treated it as an additional source stream with an unknown flow rate and set RSR = 0.

Because process variables are unknown, we applied Equations (3.1) and (3.2), and

to solve for the SRU concentration, we used the bubble-sort algorithm presented in

Figure 3-3 to determine the generalized derivatives of the functions composed with

the sorting process. Using these generalized derivatives in the semismooth Newton

algorithm gave a SRU hydrogen purity of 7.00 mol % and an external hydrogen feed

of 268.8 mol/s in 1 to 2 iterations. Figure 3-6 gives the pinch plot for this result,

which shows the node corresponding to the SRU correctly sorted among the other

hydrogen sources to achieve a pinch point in the optimally integrated system.

In comparison to our approach, most other integration methods are unable easily

to solve for quality variables in RCNs due to the complexity of the sorting operations.

Historically, determining these variables has required repeatedly solving the integra-

tion problem at different quality values or using large mixed-integer programs [7, 6].

Instead, our approach allows for the efficient identification of network properties by

solving only a single system of equations. However, when using the nonsmooth inte-

gration operators to solve for process variables, to ensure the system is well-defined, it

is important to be mindful of where the process variables are present in the operator

equations when they are transformed to the appropriate qualities and quantities. For

example, when using flow rate and property data for a RCN, the overall resource bal-

ance in Equation (3.1) is only a function of the resource flow rates, so the integration
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Figure 3-6: Pinch plot for Example 3. The source and sink composite curves are red
and blue, respectively. The source node corresponding to the SRU is highlighted in
yellow.

operator is only able to solve for one quality value. As demonstrated in the next

example, this limitation can be mitigated by including a process model or integration

operators for other resources to fix unknown properties.

3.3.4 Example 4: Dephenolization and Recycling of Aqueous

Wastes

This final example extends the use of the integration operator to a problem that

includes both a process model and the joint integration of multiple resources whose

flows are dependent on the process variables. We have adapted a problem presented

by El-Halwagi [30], which involves an oil recycling facility that uses steam strippers to

remove sulfur and other light compounds from the oil streams. The main contaminant

of concern in the stripper condensates is phenol, which can be removed through

transfer to the oil streams in a MEN. Here, we analyze a proposed retrofit of a facility

that processes lube oil, which considers both adding capacity for recycling gas oil and

the possibility of reuse of the stripper condensate after dephenolization to reduce both

fresh water consumption and wastewater production. The proposed plant therefore

includes two steam strippers, a mass integration network for reducing the condensate
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Figure 3-7: Simplified process diagram for the proposed process in Example 4.

phenol concentration, and a water network to reuse the water output in the strippers.

Figure 3-7 shows a simplified process diagram for the plant.

We wish to determine the minimum attainable fresh and waste water flow rates

as well as the phenol concentrations and water flow rates throughout the system,

particularly in the new gas oil stripper. We require that no external utilities are used

in the MEN and that the concentrations of the two stripper condensates are the same

when they exit the MEN. We also assume that there are phenol concentration limits

in the boilers that limit the inlet concentrations to the strippers and that the mass of

phenol transferred in each stripper is constant. (This assumption can be replaced by

more complex stripper models if desired.) The parameters for this system are given

in Table 3.7.

To solve this problem, we applied two integration operators, one for the allocation

of water and one for the mass exchange of phenol. As in Example 2, the water network

qualities and states were taken as the cumulative differences in contaminant (phenol)

load and the reciprocal contaminant concentration, respectively. Again, we obtained

the sorted mass fractions required to determine these states and qualities using the

bubble sort algorithm. For mass integration, the qualities and states are analogous

to those defined in the common heat integration problem; as shown in Table 3.1, the

qualities are the stream contaminant concentrations, and the states are the stream
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Table 3.7: System parameters for Example 4. Lube oil is processed in stripper 1, and
gas oil in stripper 2.

Stream Flow rate Inlet mass fraction Outlet mass fraction
(kg/h)

Lube Oil 5 0.005 0.015
Gas Oil 3 0.010 0.030
Stripper 1 steam 2.5 0.005 z2
Stripper 2 steam z1 0.002 z4
Stripper 1 wastewater 2.50 z2 z3
Stripper 2 wastewater z1 z4 z5

Fresh water z6 - -
Wastewater z7 - -

Stripper 1 mass load: 0.11 kg/h
Stripper 2 mass load: 0.03 kg/h

Equilibrium relation for lube oil: y = 2.00x1

Equilibrium relation for gas oil: y = 1.53x2

Minimum MEN concentration difference in oil streams: ✏ = 0.001

flow rates. However, to ensure that concentrations can be compared in a meaningful

way, the equilibrium expressions must be used to transform the stream concentrations

to their equivalent values in a selected reference stream, which we chose as the stripper

condensate. The stream flow rates in the system must also be transformed to ensure

the overall resource balance holds. Additionally, in this problem, the minimum MEN

concentration difference is given in reference to the oil streams, so we included this

concentration difference in our transformations, i.e. y = m(x+✏), and set �Qmin = 0.

In addition to the two integration operators, we also included process equations

describing the constant mass transfer in the strippers and equating the MEN water

outlet concentrations:

m1 = V1(z2 � y0,1),

m2 = z1(z4 � y0,2),

z3 = z5,

where m1,2 are the mass loads of phenol transferred in each stripper, V1 is the steam
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(a) Water allocation network. (b) Mass integration network.

Figure 3-8: Composite curves for the optimized dephenolization system. The source
and sink curves are red and blue, respectively.

flow rate through Stripper 1, and y0,1 and y0,2 are the inlet steam concentrations to

the strippers.

With these process equations, we obtained a nonsmooth system of 7 equations

which we solved for 7 unknowns using a semismooth Newton method to give z =

(0.84, 0.049, 0.013, 0.038, 0.013, 2.27, 2.27). For a range of initial guesses, the semis-

mooth Newton method quickly converged to the solution in 3 to 9 iterations. The

mass and water composite curves for this solution are given in Figure 3-8 and demon-

strate that our solution method produces the optimal pinch behavior. These results

highlight the unique ability of our approach to simultaneously integrate multiple re-

sources that are coupled through process variables.

3.4 Conclusions

In this work, we present a new, generalizable, and efficient approach for solving

resource-targeting problems using compact, nonsmooth operators. These operators

are nonsmooth systems of only two equations per integrated resource, regardless of the

number of sources and sinks in the system. New methods in AD for LD-derivatives

make it easy to solve these operators, in combination with process models, for re-

source targets or any process variable, including qualities that require sorting. We
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include a series of examples that, together, demonstrate the ability of our approach

to automatically identify threshold problems, solve for sorted qualities, include pro-

cess models, and be applied to any pinch-constrained resource, including multiple

resources simultaneously.

The current formulation is only applicable to problems with preclassified sources

and sinks and can only consider a single contaminant for each resource. However,

because our approach is nonsmooth, there is the potential to easily incorporate other

work that uses explicit max and min expressions to address unclassified streams and

multicontaminant problems while retaining the desirable features of our methods

[88, 6]. We have begun this work by extending our formulation to a class of mul-

ticontaminant mass and water integration problems, which is discussed in Chapter

4.

Additionally, the method presented in this chapter is only applicable to process

integration, not optimization, and has degrees of freedom limited by the size of the

equation system. Nevertheless, with advances in nonsmooth optimization methods,

nonsmooth integration operators can be embedded in mathematical programming

problems to perform simultaneous process integration and optimization and increase

the degrees of freedom. This approach promises significant improvements in scaling

and efficiency compared to existing methods because nonsmooth operators introduce

two equality constraints per resource regardless of the size of the process without

requiring embedded optimization problems or large numbers of constraints and binary

variables that increase rapidly with the number of sources and sinks. Chapter 5

describes how we have initially applied this optimization approach to integrate heat

in cogeneration systems.

Our nonsmooth formulation is the only approach to the resource-targeting prob-

lem that can solve for any unknown quantity while scaling compactly, only requires

equation-solving methods, and is explicitly generalizable to multiple resources. There-

fore, the nonsmooth integration approach is a good candidate for performing integra-

tion for large, even interplant, systems and can be easily extended as pinch analysis

is applied to new problems. Thus, we have formulated a readily adaptable approach
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that significantly reduces problem complexity and can provide computationally prac-

tical solutions to a wide variety of new integration problems to improve resource use

and sustainability in chemical processes.
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Chapter 4

Multicomponent Mass and Water

Integration

In the previous chapter, we presented a general integration operator that uses non-

smooth equations to improve the adaptability and scaling of current approaches to

process integration. However, the general integration operator assumes that resource

transfer is limited by a single quality of the resource streams. Therefore, this chapter

extends the benefits of the general integration operator by adapting it to systems in

which multiple factors can limit resource transfer.

This characteristic is particularly common in mass integration problems because

there are typically multiple materials present in each solvent stream. In these mass

integration problems, the goal is to utilize a set of solvent streams that are lean in

some components to remove those components from a set of rich streams. When mul-

tiple components are present, they not only each independently limit the feasibility of

mass transfer and reuse, but they are also transferred dependently in mass exchange

operations. Therefore, in these problems, all the materials must be considered simul-

taneously to avoid infeasible results, further increasing the size and complexity of the

integration problem. To address these challenges, this work presents a new, tailored

approach to the multicomponent mass integration problem that both improves upon

the limitations of traditional integration strategies and also accounts for the unique

complications in real world systems.
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Of the existing approaches to mass integration, superstructures have been the

primary technique adapted to solve multicomponent problems as first proposed by

Takama et al. [81] These methods solve the targeting and network design portions

of the integration problem simultaneously by creating a superstructure of potential

resource stream pairings and exchange units. These superstructures are then solved

using a mixed-integer or global nonlinear programing formulation.

For integration problems, this superstucture approach is flexible and easy to set

up, making it simple to adopt for the multicomponent problem by adding new con-

straints to address the mass transfer and limits of the additional components. There-

fore, there has been a significant amount of previous work investigating variations to

the superstructure setup, its mixed-integer reformulation, and optimization strategies

to improve the solution efficiency. Improvements to the superstructure include using

pinch insights to reduce the number of constraints [18] and incorporating necessary

conditions for optimality [9, 76]. There has also been work reformulating the su-

perstructure problem to a nonlinear program without integer variables by including

all possible matches and later eliminating matches with negligible flowrates [21, 13];

however, while these approaches can make the mathematical programs easier to solve,

they often also introduce numerical issues without careful tuning. For each of these

formulations, methods have been proposed to improve the robustness and efficiency

of optimization such as initialization heuristics [21, 60, 84], linearization approaches

[89, 83], and the application of heuristic algorithms [58, 86, 74, 63].

In addition, due to their flexibility, superstructure methods have been extended

to heat integrated water networks, total water networks and regeneration systems,

integration under uncertainty, batch processes, etc. However, we will not go into

these extensions in detail here because they are out of the scope of this work. For a

comprehensive review of these and other mass integration approaches, we recommend

Jezowski [50]. Note that although the review focuses on approaches that have been

applied to water integration, any fixed-load water integration approach can be applied

to the class of mass integration problems considered in this work.

However, even with these improvements, the superstructure approach scales poorly
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in the number of constraints and variables with both the number of resource streams

and components in the problem, making them ill-suited for addressing large systems

or being embedded in screening and optimization problems. In addition, because

these methods must limit the superstructure to a finite number of possible exchange

units and connections, it is not guaranteed that they will produce an optimal utility

target.

As an alternative to the superstructure approach, pinch-based techniques are sim-

pler and scale better because they only address the targeting problem. However,

although there has been significant success using pinch-based approaches for the

single-contaminant problem [31, 32], the extension of these methods to the multi-

component problem has been limited. Any multicomponent pinch-based approach

must incorporate methods to describe mass transfer relationships between the com-

ponents since this interdependence makes it unlikely that all the concentration limits

specified in the problem can be achieved simultaneously. Additionally, multicompo-

nent approaches must consider all of the components when prioritizing the use of

the sources and sinks. Wang and Smith first introduced these considerations in the

case of the fixed-load water integration problem, a subset of the mass integration

problem in which the lean solvent streams are water [92]. They developed a heuristic

approach for scaling and shifting the rich stream concentrations that uses both mass

transfer relations and comparisons of the limits introduced by each component. Liu

et al. also presented a variation of these heuristics with comparable results but us-

ing simpler calculations [62]. Alva-Argaez et al. subsequently refined this method by

proposing nonsmooth scaling relations for the rich stream outlet concentrations that

simultaneously relate the mass transfer of the components in each rich stream and also

identify the limiting component [5]. These scalings are included in a transshipment

formulation to identify a pinch point in one of the scaled components.

In both Wang and Smith’s and Alva-Argaez et al.’s approaches, the scalings can

be easily modified to describe any mass transfer relation. However, the scope of these

scaling techniques is slightly limited compared to superstructure methods because

they are only applicable to systems with a single lean solvent stream or, as in the
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case of fixed-load water integration, systems in which the lean solvent streams are

miscible. Nevertheless, since these types of systems are common, the main limitation

of pinch-based multicontaminant approaches is still the same as that for most single-

component pinch approaches, the inability to solve for most process variables.

Our goal with this work was to overcome this limitation of pinch-based integration

methods and provide a tractable and flexible solution to the multicomponent mass

integration problem. Because our nonsmooth approach was successful in addressing

these limitations for the single-component problem, our strategy was to extend the

generalized integration operator by incorporating scaling techniques and considering

pinch conditions over all components simultaneously. The result is still a nonsmooth

system of two equations that now scales compactly in both the number of sources

and sinks in the problem as well as the number of components. Like other pinch-

based approaches, our method applies to any mass integration problem with a single

or miscible lean streams, including fixed-load water integration problems. However,

unlike other approaches, our multicomponent integration operator can be used to

determine any process variable, even component concentrations that are arguments

of the nonsmooth scaling relations.

The remainder of this chapter provides the background and details necessary to

understand and implement our novel approach to the multicontaminant problem. We

begin by formally defining the problem we are addressing, and then introduce previous

work on scaling relations that we drew on to develop our approach. The main body

of the chapter presents the details of the multicomponent integration operator and

applies it to a literature case study to demonstrate its use and its success as a tractable

and flexible approach to this challenging problem.

At the time of writing, the work in this chapter is in preparation for publication

[71].
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4.1 Problem Definition

In this work, we consider a common subset of the multicomponent mass integration

problem in which a single lean solvent stream is used to remove material from a series

of rich streams. In mass integration targeting problems, often we assume that there

are no concentration-independent mass utilities available and solve for the system

parameters that would make these utilities zero with maximum resource recovery.

Commonly, there is assumed to be a single fresh solvent stream in the system that

is used as a concentration-dependent mass sink. Using this framework, the fresh

solvent can be treated as a lean stream, and its minimum flow rate, L, for feasible

mass recovery from the rich streams is determined.

To understand this multicomponent problem, we begin by defining the equivalent

single-component mass integration problem, which is an instance of the general inte-

gration problem described in both Chapters 2 and 3 of this thesis. In this problem

there is a system with a set of source solvent streams, R, that are rich in a given

component and a set of sink streams, S, that are lean in that component. For each

stream, the qualities that limit resource transfer are the component concentrations.

Here, we denote the inlet and outlet concentrations of a rich stream, i 2 R as yin

i
and

yout

i
, respectively, its flow rate as Gi, and the mass transferred from the stream as

MR,i. Analogously, the concentrations for the lean solvent stream are xin and xout,

the flow rate is L, and the mass transferred to the stream is ML. We determine the

mass of material transferred from a rich stream or to the lean stream by the linear

relations MR,i = Gi(yin

i
� yout

i
) and ML = L(xout� xin), respectively. We also assume

that for mass to be transferred from a rich stream to the lean stream, the rich stream

concentrations must be larger than those in the lean stream.

To meaningfully compare concentrations when solving these mass integration

problems, the concentrations and flow rates we refer to above are scaled according to

their equilibrium relations. Given a set of expressions describing the equilibrium con-

centration yi in rich stream i corresponding to a concentration x in the lean stream,

we can transform each concentration in the problem to a corresponding concentra-
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tion in the lean reference stream. Then, the stream flow rates are also transformed

using these equilibrium expressions so that the mass loads transferred do not change

from their original values. These scaled quantities are used to solve the integration

problem, and the equilibrium relations are again used to transform the solution back

to real values.

For example, for affine equilibrium relations

yi = mix+ bi (4.1)

and a minimum feasible concentration difference for mass transfer ✏i, the concentra-

tions in the lean stream are

ŷi =
1

mi

(yi � bi)� ✏i, (4.2)

and the scaled flow rates are given by

Ĝi = miGi. (4.3)

Using this procedure, equilibrium relations of any form can also be applied to perform

the transformations [31].

The goal of the mass integration problems in this work is to minimize the flow

rate of the lean stream required to feasibly meet the rich stream concentration re-

quirements. Mathematically, we can express this problem as

h(x,y) = 0, (4.4)

y 2 argmin
y=[L xout]

L

s.t. Mass balance holds,

Mass transfer is feasible,

External utilities are zero.
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While these single-component mass integration problems can provide useful lower

bounds on the utility requirements, most real systems have multiple components

present in the rich and lean solvent streams. In these systems, the mass loads trans-

ferred must now meet the rich and lean stream requirements for each of the com-

ponents present. In addition, for feasible mass transfer, the concentrations of every

component in the rich stream must exceed the concentration of the corresponding

component in the lean stream. Another consideration in these multicomponent sys-

tems is that the mass transfer of each component cannot be controlled independently

meaning that the concentration requirements cannot be met simultaneously. Instead,

to meaningfully solve the integration problem, mass transfer relations must be used to

determine the actual concentration removal or gain that meets the given limits. To-

gether, these new requirements make it likely that failing to consider all components

simultaneously will result in an infeasible solution. Therefore, to address these multi-

component systems, we extend Problem (4.4) to the following optimization problem,

where the set C is introduced to describe the different components present.

h(x,y) = 0, (4.5)

y 2 argmin
y=[L x

out

1 ... x
out

|C| ]

L

s.t. Mass balance holds,

Mass transfer is feasible, 8c 2 C

Mass transfer is consistent,

External utilities are zero.

This multicomponent formulation, like the single-component problem, includes a

process model and considers the concentrations and flow rates that have been scaled

by the equilibrium relations shown above. The first two sets of constraints are also

equivalent to the single-component case but are now applied 8c 2 C to ensure mass

transfer and feasibility holds across all components. The third set of constraints

introduces the interdependence of mass transfer and defines the component concen-
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trations such that they can be achieved simultaneously within the limits given by the

problem and considered in the final constraints. For the multicomponent problem,

we only consider the case where there are no external utilities because there is gener-

ally no physically meaningful way to consider independent external utilities for each

component.

While the multicomponent problem has been solved before, having to consider the

interactions between each rich and lean stream pair and then each component within

those matches typically results in approaches that scaled very quickly with both the

number of streams and components and are ill-suited to address large systems. In the

rest of this work, we address this limitation by introducing a new approach for solving

the multicomponent mass integration problem, which uses nonsmooth equations to

maintain a compact and tractable formulation that is simultaneously flexible enough

to determine any system parameters.

4.1.1 Extension to Water Integration

The mass integration problem as it is presented here can also be used to solve a

class of water integration problems called “fixed-mass” problems [91, 39]. These prob-

lems consider a series of water-using operations that have constant water flow rates

throughout the unit. The rich streams in the system are the process streams in the

water-using operations that transfer mass to the water streams, and the lean stream

is the fresh water required to supply the units. Typically, the data given for the rich

streams in these problems is transformed to equivalent concentration and flow rate

limits for the water supplied to each operation, which is called the limiting water

curve.

In many works, the problem of fixed-mass water integration is considered distinct

from mass integration because this type of data analysis can extend to a wide range

of processes beyond mass exchangers, including utility use, filtration, washing or

evaporation. However, once the data is transformed to a limiting water curve, the

targeting problem for fixed-mass water integration problem can be solved using the

mass integration approaches presented below.
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Nevertheless, it is useful to note that the results of the network design problem can

look significantly different between mass and water integration because water streams

are usually allowed to mix while this may not be feasible for the different solvents in a

more general mass integration problem. For a multicomponent problem with multiple

lean or fresh streams, the inability of general solvents to mix can also introduce

additional mass transfer limits. Therefore, our assumption of a single fresh solvent

source in this work is important when extending it to water integration problems.

4.2 Background: The Single-component Mass

Integration Operator

As a starting point for designing a multicomponent integration approach, we used our

previous work on the generalized, nonsmooth integration operator. This approach was

developed to solve a general class of integration problems, which includes the single-

component mass integration problem. The details of this general approach can be

found in Chapter 3, but the following section provides the specific formulation for the

type of mass integration problems considered in this chapter.

The nonsmooth integration operator uses a nonsmooth system of two equations

to describe solutions to the single-component problem detailed under Problem (4.4).

The first equation is a simple resource balance, ensuring the total mass produced by

the rich streams can be accommodated by the lean stream. The second equation guar-

antees that the mass transfer is both feasible and optimal by enforcing the presence of

a pinch point in the system. According to pinch analysis theory, a pinch point occurs

in a mass integration problem at a concentration where the mass balance holds inde-

pendently for both the concentrations above and below the pinch point. The presence

of a pinch point indicates optimal mass reuse because decreasing the lean stream flow

rate further past this point would require mass at the pinch point to be transferred

infeasibly from a low to high concentration. Pinch analysis theory has also shown

that the pinch point must occur at one of the stream inlet concentrations. Therefore,
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we can express this pinch condition using a single nonsmooth equation by calculating

the mass balance below each of these inlet concentrations, or potential pinch points,

and setting the minimum balance to zero at the pinch point. This condition also

ensures that mass transfer is feasible at the other potential pinch points by keeping

the mass balance nonnegative.

The equation system for a mass integration problem with a single concentration-

dependent mass sink is:

0 =
X

i2R

Ĝi(ŷ
in

i
� ŷout

i
) + L(xin � xout), (4.6)

0 = min
p2P

{MBP p

S
�MBP p

R
}, (4.7)

where P is the finite index set of pinch point candidates that give the potential pinch

concentrations

zp =

8
<

:
ŷin

i
, 8p = i 2 R,

xin.
(4.8)

These potential pinch points are used to calculate the source and sink mass bal-

ances below the corresponding concentrations:

MBP p

R
:=

X

i2R

Ĝi[max{0, zp � ŷout

i
}�max{0, zp � ŷin

i
}+ EXT p

R
], 8p 2 P, (4.9)

MBP p

S
:= L[max{0, zp � xin}�max{0, zp � xout}+ EXT p

S
], 8p 2 P. (4.10)

The EXT terms create nonphysical extensions to the mass balances to ensure the

difference between the rich and lean stream balances is always defined and are given

by

EXT p

R
= max{0, zp � ŷmax}�max{0, ŷmin � zp}, 8p 2 P, (4.11)

EXT p

R
= max{0, zp � xmax}�max{0, xmin � zp}, 8p 2 P, (4.12)
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where ŷmin,max and xmin,max are the minimum and maximum concentrations across the

rich and lean streams, respectively. Here, xmin = xin is known a priori.

We solve the nonsmooth system of equations using the techniques described in

the Background chapter.

As discussed in Chapter 3, this approach to solving the integration problem has

unique benefits. The nonsmooth equation system is only two equations regardless

of the system size, resulting in superior scaling and tractability for large systems.

And because we use an equation-solving approach instead of optimization, we can

also solve the system for any process variable, which allows us to design systems for

specified resource targets. However, although these benefits make the nonsmooth in-

tegration operator a good approach for single-component mass integration problems,

it cannot address the multicomponent case. Specifically, while the integration oper-

ators for multiple resources can be used in parallel, combining the single-component

operators for multiple components assumes that each material can be optimally in-

tegrated simultaneously. However, because the component concentrations cannot be

manipulated independently, we are only guaranteed optimal resource transfer for one

material and feasibility for the others. Additionally, the integration operator does

not provide a way to describe how the component concentrations vary due to the

interdependent mass transfer. Therefore, this work focuses on addressing these lim-

itations in order to extend the nonsmooth integration operator to multicomponent

mass integration problems.

4.3 Solution Method

4.3.1 Concentration Shifting for Multicomponent Mass Trans-

fer

While our approach to single-component integration provides tools to describe the

conditions for optimal mass reuse, a key barrier limiting its extension to multiple

components is that it does not include a strategy to describe their dependent mass
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transfer. To incorporate these strategies, we have adopted a method proposed by

Alva-Argaez et al. that uses nonsmooth expressions to determine the limiting com-

ponent in each operation and to scale the component concentrations accordingly.

Below, we provide the background required to implement our multicomponent inte-

gration approach, but we recommend referring to Alva-Argaez et al. for details on

the derivation and applications of the scaling method [5].

This approach begins by assuming a mass transfer relation that governs the depen-

dent mass transfer of the different components. Common mass transfer assumptions

discussed by Alva-Argaez et al. are a fixed mass load distribution, where the mass

of a component transferred is proportional to its rich stream inlet concentration,

and proportional mass transfer, where the proportion of the mass load transferred is

constant between components. The selection of the mass transfer relation depends

on the process. For mass-exchange units, the fixed-mass load assumption is usually

more accurate, but for some water-using operations like washing, proportional mass

transfer may be a better choice. It is also important to note that these mass transfer

assumptions do not limit the utility of this approach; any mass transfer relation can

be incorporated, and different relations can be selected for each operating unit.

When selecting and using a mass transfer relation, it is also important to consider

which pieces of data are physically relevant. For a system, data on the rich streams

may be given as the inlet and outlet concentration limits, flow rates, or mass removal

requirements. Because these four factors are interdependent, only three are necessary

to fully define the problem. Typically, the concentration limits are given because they

are important operating constraints. Our definition of the mass integration problem

assumes that the additional data is given as the solvent flow rates for each operating

unit. If the operating units are mass exchange units where the rich streams have real,

physical flow rates, this choice of variables is a good representation of the system.

However, in a washing-type operation, there is not a physical flow rate to use, and

the relevant data is the mass of each component that is removed. In this case, the

mass removal requirements can be used to calculate a representative limiting flow

rate, which is described in more detail below. While these limiting flow rates are a
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good method for describing operations without a physical rich stream, we caution

against using limiting flow rates when a rich stream is present. If mass removal and

concentrations are given as limits or requirements, the limiting flow rates calculated

may be different than the real rich stream flow rate, and these variations will affect

the result of the mass transfer scalings that are used.

Below, we present mass transfer scalings for the two cases described above. Note

that because these scalings describe the behavior of the comomponents in the rich

streams, they should generally be performed before the equilibrium adjustments de-

scribed under Problem Definition. However, if the equilibrium concentrations are

proportional, which is a common assumption in mass integration problems, then the

ordering of the scaling processes is interchangable.

Fixed Mass Load

In a unit described by a fixed mass load mass transfer relation, the rich stream inlet

concentrations are the real system concentrations, but the outlet concentrations are

the minimum concentration removal limits. Because the materials in the system

are transferred together during mass exchange, it is likely not physically possible

for each component to reach its outlet concentration limit simultaneously. However,

because these concentrations are upper bounds, we can instead transfer mass from

the rich stream until just one component is at its limit and the others are at or below

theirs. Alva-Argaez et al.’s scaling approach can be used to determine the real outlet

concentrations of each component in this limiting case.

Presenting the scaling results from Alva-Argaez et al., the mass loads of contam-

inants c and c0 from a rich stream i can be related by

Mi,c

yin

i,c

=
Mi,c0

yin

i,c0
. (4.13)

Alva-Argaez et al. show that when the lean stream concentrations are negligible com-

pared to the rich stream outlet concentrations, this relation can described by a con-
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stant relative use across all the components:

Rui,c =
yout

i,c

yin

i,c

=
yout

i,c0

yin

i,c0
. (4.14)

Thus, the component requiring the lowest relative use will determine the use of the

other components, and the actual concentrations yout

i,c
that allow all the components

to reach or exceed their given limits yout, max

i,c
are

Rui = min
c2C

yout, max

i,c

yin

i,c

, (4.15)

yout

i,c
= yin

i,c
Rui. (4.16)

A visual representation of this scaling argument is shown in Figure 4-1.

Now that the concentration limits are scaled so they are consistent between com-

ponents, they can be used to calculate an improved fresh solvent target for the system.

This updated target is the maximum target calculated across all the components using

the scaled concentrations, where the individual component targets can be calculated

using any integration approach. In Alva-Argaez et al.’s work, these component targets

are found by solving a MILP transshipment formulation.

(a) Fixed-mass-load scaling. Cout, A is de-

creased to meet the same concentration ratio

as component B.

(b) Proportional mass transfer scaling.

Cin, A is decreased so that the limiting flow

rate for component A is the same as for B.

Figure 4-1: Visual representation of the scalings for the two mass transfer relations
presented in this work.
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Proportional mass transfer

The next mass transfer relation that we consider is proportional mass transfer. Alva-

Argaez et al. also show the results of their method for this case, but do not show

the corresponding scaling relation used to obtain these results. Therefore, we have

derived our own scaling relations from our interpretation of this mass transfer relation

as shown below.

Under the assumption of proportional mass transfer, the mass loads of contami-

nants transferred from a rich stream i to the fresh solvent stream are fixed at their

given values for the system. For given concentration limits and a required mass load,

an effective rich stream flow rate can be calculated for each component. This effec-

tive flow rate is the maximum lean solvent flow rate needed to remove the required

mass load of the component. Therefore, the maximum lean solvent flow rate for an

operation is the maximum over the components:

Flim,i = max
c2C

Mi,c

yin,max

i,c
� yout

i,c

. (4.17)

Then, the concentration scaling for this assumption reduces yin

i
for each component

in a unit so that its mass transfer reaches the desired value for the effective flow rate

Flim,i. If the flow rates calcuated for each component are the same, the concentrations

will remain unchanged relative to the given limits.

yin

i,c
=

Mi,c

Flim,i

+ yout

i,c
. (4.18)

A visual representation of this scaling argument is shown in Figure 4-1.

This scaling is equivalent to decreasing the allowable lean solvent outlet concen-

trations. The smaller concentration limits will increase the required lean solvent

flow rates so they can handle the higher effective rich stream flow rate enforced by

the limiting component. As for the assumption of a fixed mass load, these scaled

concentrations can then be used in an integration approach in place of the original

concentration limits, and the maximum target over the components is a valid fresh
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solvent target for the overall system.

Tightness of the Fresh Solvent Target

This scaling approach introduced by Alva-Argaez et al. offers significant advantages

over the alternative heuristic scalings first developed by Wang and Smith. Alva-

Argaez et al.’s approach only requires modifying a single concentration instead of

both the inlet and outlet concentrations in Wang and Smith’s method. In addition,

Alva-Argaez et al.’s scaling can be performed separately for each unit, while Wang and

Smith’s concentration adjustments for an operation are dependent on the adjusted

concentrations of all the upstream units.

Neglecting the dependence between the operating units makes the targeting prob-

lem significantly easier to solve. The fresh solvent target can be calculated automat-

ically without requiring a superstructure and can be used to quickly screen design

alternatives or be embedded in larger problems. This approach is also guarenteed to

give a valid lower bound for the fresh solvent flow rate as long as the mass transfer

scalings accurately describe the physics in the system. Pinch theory results for the

single-component problem show that the pinched fresh solvent flow rates are lower

bounds for these systems. The addition of multiple components increases the con-

straints on how water can be reused and can only increase the fresh solvent required.

Therefore, maximizing the pinched targets across each component will still give a

lower bound for the system. The scaling arguments given above represent physical

limits of the rich streams that are present due to the interdependent mass transfer

between the components. The fixed mass load scaling accounts for the additional

mass that must be transferred to meet the concentration targets across all compo-

nents, and the proportional mass scaling keeps the fresh solvent flow rate consistent

for a given washing unit. If these or other scalings correctly describe the physical

constraints, the lower bound argument above still holds.

Nevertheless, neglecting this dependence between operating units does have the

potential to decrease the tightness of the lower bound. In other words, while the

target will be a valid lower bound, it is no longer guaranteed to be a tight lower

80



bound. In this case, it is not possible to design a solvent network that exactly meets

the calculated target. Because Alva-Argaez et al.’s work does not discuss the tightness

of their calculated target, we present our analysis supporting these conclusions below.

First, we examined the case study Alva-Argaez et al. use to demonstrate their method

and found that the target they calculate for this scenario is smaller than the minimum

fresh water flow rate that can be feasibly achieved by a water network design.

To determine the minimum attainable fresh water flow rate, we used the NLP

superstructure formulation from Doyle and Smith [27]. Because Doyle and Smith

assume constant mass or constant outlet concentration to calculate their network

designs, we added the constraint

�mi,c

Cout,max

i,c

=
�mi,c+1

Cout,max

i,c+1

, 8c 2 C, c 6= |C| (4.19)

for consistency with Alva-Argaez et al.’s fixed-mass-load mass transfer assumption.

Here, the notation for the concentrations is different than that in Equation (4.13)

because Doyle and Smith’s model is written in terms of the solvent concentrations in-

stead of the rich stream concentrations. With the addition of this equality constraint,

the mass loads calculated in Constraints 16 and 17 are variables in the formulation

instead of parameters for the system.

We implemented this NLP in GAMS [2] and solved it to global optimality for the

system in Alva-Argaez et al. Example 1 using the software Antigone [1]. We found

a minimum fresh water flow rate of 129.6 t/h which is obtained by the water reuse

network shown in Figure 4-2. The target of 109.5 t/h calculated by Alva-Argaez

et al. is 15.5% lower than this attainable flow rate. Therefore, our results show that

the target produced by Alva-Argaez et al.’s concentration scaling procedure is not

guaranteed to be a feasible, tight lower bound.

Seemingly conflicting with our results, Alva-Argaez et al. present a water network

that has a fresh water flow rate equivalent to their target of 109.5 t/h. A representa-

tion of this network is shown in Figure 4-2. This network meets the water inlet and

outlet concentration limits given in the original data, and the fixed-mass-load ratio
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(a) Network from Alva-Argaez et al..

(b) Network developed using Doyle and Smith’s superstructure approach.

(c) Operation 2 in Alva-Argaez et al.’s net-

work.

(d) Operation 2 in our superstructure-

derived network.

Figure 4-2: Comparison of the water reuse networks developed for Alva-Argaez et al.
Example 1. For clarity, only the water flows are shown.

holds for the rich streams in each operation. However, on closer inspection, the mass

transfer in this potential network is infeasible.

The infeasibility occurs because the water flow rate in Operation 2 is larger than

the limiting water flow rate. Alva-Argaez et al. present the rich stream data as a

limiting water profile, which means that its concentrations have been transformed to

their equivalent concentrations in the water reference stream. This data is given in

terms of minimum mass loads and concentration limits, so Equation (4.17) can be

used to calculate the rich stream flow rates (in terms of the water reference) that

Alva-Argaez et al. use in their transshipment formulation. This limiting water flow

rate for Operation 2 is 34 t/h, which represents both the physical rich stream flow

rate and the maximum water flow rate required to meet the mass and concentration
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removal requirements.

Because the water flow rate through Operation 2 is larger than the limiting flow

rate at 38.8 t/h, using the water inlet and outlet cocentrations provide by Alva-

Argaez et al., the mass loads of each component that are transferred in the operation

are �m = [4.0 414.7 6.0] in kg/h for HC, H
2
S, and salt respectively. The rich stream

enters Operation 2 at the equivalent water concentrations ŷin = [120 12500 180]

ppm. Then, for a rich stream flow rate of 34 t/h, the outlet concentrations are

ŷout = [2.9 304.2 4.5]. Although these concentrations meet the removal limits, the

excess mass removal from a higher water flow rate means that now the inlet water

concentrations given for both HC and salt are larger than their outlet rich stream

concentrations, which makes mass transfer infeasible.

We can also see the effects of this flow rate increase in the concentrations of the

water stream into Operation 2. Here, both the hydrocarbon and salt inlet concentra-

tions exceed the inlet concentration limits found from the scaling procedure despite

the unit meeting the mass load ratio in Equation (4.13).

To confirm that this infeasibility is the result of an increase in the water flow rate

above its limiting value, we also solved the superstructure formulation while allowing

the rich stream flow rate to vary, which resulted in the same water network presented

by Alva-Argaez et al.

Intuitively, the target calculated by Alva-Argaez et al.’s scaling approach is not

guaranteed to be tight because it assumes that the target water inlet concentra-

tions for each component can be achieved simultaneously. However, because the flow

rates in the network are nonnegative, there may not be a feasible combination of the

recycled and fresh water streams that reaches the optimal concentrations in each com-

ponent at an operation’s inlet. To demonstrate this limitation, we look at the inlet

to Operation 2 in the example above. The fixed-mass-load scalings for this operation

give a rich stream outlet composition of 2.8 ppm hydrocarbons, 300 ppm H
2
S, and

4.3 ppm salt. Therefore, using the water outlet concentrations from Operations 1 and
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Figure 4-3: Plot of the constraints on the recyled water flow rates to Operation 2 in
Alva-Argaez et al. Example 1. Limits on the hydrocarbon and salt concentrations
from Equations (4.21) and (4.23) are blue and red, respectively, and the feasible region
is shown in yellow. The H

2
S limit is out of the bounds of this plot.

3 given in Figure 4-2, the inlet water stream must satisfy the inequalities

Fij � 0, 8i, j 2 R, i 6= j, (4.20)
F32

FT

 2.8

220
� 15

220

F12

FT

, (4.21)

F32

FT

 300

45
� 400

45

F12

FT

, (4.22)

F32

FT

 4.3

9500
� 35

9500

F12

FT

, (4.23)

where FT =
P

i2R Fi2+Ffw, F12 and F32 are the flow rates of the water recycled from

Operations 1 and 3, respectively, and Ffw is the fresh water flow rate to Operation

2. Figure 4-3 shows the resulting feasible region. Because not all three inequalities in

Equations (4.21)-(4.23) can be active at the same time, the feasible water inlet con-

centrations will be less than the scaled rich-stream outlet concentrations in at least

one component, which can further increase the achievable fresh water target com-

pared to the target found from the scaled outlet concentrations. Here, the maximum

water reuse by Operation 2 occurs for F12
FT

= 0.12 and F12
FT

= 0 which gives an inlet

water composition of 1.8 ppm hydrocarbons, 49 ppm H
2
S, and 4.3 ppm salt. These
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reduced concentrations increase the mass load of hydrocarbons below the pinch point,

increasing the fresh water requirement. The adjusted composite curves are shown in

Figure 4-4.

(a) Results from Alva-Argaez et al.’s scal-

ing approach. The required fresh water

flow rate in 109.5 t/h.

(b) Results from solving the network su-

perstructure. The required fresh water

flow rate in 129.6 t/h.

Figure 4-4: Comparison of composite curves for the solutions to Alva-Argaez et al.
Example 1. The rich and lean streams are shown in red and blue, respectively.

4.3.2 The Multicomponent Nonsmooth Operator

The mass-transfer scaling presented above identifies the limiting component for each

rich stream or water-using operation and uses this information to ensure that all

of the concentration limits in these mass sources are consistent. However, in order

to calculate the minimum lean solvent flowrate or mass utilities, we also need to

determine the overall limiting component for the system. Therefore, we have extended

our previous work on the nonsmooth integration operator to develop an approach

that automatically identifies and solves the mass integration problem for the limiting

component.

In this section, we introduce this extension to the integration operator. This

formulation assumes that the process variables have been transformed to account for

both the different solvents and simultaneous mass transfer in the system. Specifically,

the flow rates and concentration values have been transformed to a single reference

stream using equilibrium relations like those in Equations (4.2) and (4.3) (or an appro-
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priate limiting water curve has been constructed), and these reference concentrations

have been adjusted to be consistent with the limiting contaminant in each rich stream

using a selected mass transfer relation, as described in the Concentration Scalining

section above.

Our discussion of the target tightness demonstrates that a valid lower bound on

the fresh solvent flow rate can be found by taking the maximum fresh solvent flow

rate or utility after performing integration for each component [5]. Therefore, one fea-

sible strategy to solve the multicomponent problem is to apply our single-component

integration operator to each component and include an additional nonsmooth equa-

tion that sets the solvent flowrate to be the maximum solution across the component

set. This method would result in an equation system whose size remains the same

with the number of rich streams in the system and scales linearly with the number of

components, which is a significant improvement in scaling over other approaches.

While this maximization approach can be useful to provide an intuitive under-

standing of the limiting component and pinch behavior in the system, we have found

that we can further take advantage of the nonsmooth behavior of the system to formu-

late an approach that also scales compactly in the number of the components. Using

the maximization method, the minimum fresh solvent flow rate calculated for each

component is the flow rate that will result in a pinch point in that component. Taking

the maximum over these flow rates therefore guarantees that at least one component

will be pinched in the resulting system, while the others will remain feasible. Thus,

an equivalent method to minimize the feasible fresh solvent flow rate is to enforce just

one pinch point across all of the components. The example composite plots shown in

Figure 4-5 visually demonstrate this argument.

Mathematically, we can ensure a single pinch point by using the same pinch point

balance presented in Equation (4.7) for the single-component integration operator

but extending the set of candidate pinch points so that includes the potential pinch

points for all components. This pinch point balance is combined with an overall

resource balance in a single component. Any component can be selected for this

overall balance and used to directly calculate the concentrations of other components
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Figure 4-5: Enforcing a single pinch point across components and feasibility elsewhere
will select the minimum feasible water flow rate for the system. In the scenario above,
component B (gold) can be identified as the limiting component because enforcing a
pinch point in B results in feasible water flow rate for A (red). Conversely, the pinched
flow rate for A is not feasible for component B and cannot satisfy this condition.

of interest during post processing. The resulting equation system is:

0 =
X

i2R

Ĝi(ŷ
in

i,c
� ŷout

i,c
) + L(xin

c
� xout

c
), c = Cref (4.24)

0 = min
p2P,c2C

{MBP p

S,c
�MBP p

R,c
}. (4.25)

Now, the balances included in the minimization are those below the sets of can-

didate pinch points P whose concentrations for a given component c are:

zp
c
=

8
<

:
ŷin

i,c
, 8p = i 2 R,

xin

c
.

, (4.26)

As in the single component case, the balances below these pinch concentrations
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are:

MBP p

R,c
:=

X

i2R

Ĝi[max{0, zp
c
� ŷout

i,c
}�max{0, zp

c
� ŷin

i,c
}+ EXT p

R,c
], 8p 2 P, 8c 2 C,

(4.27)

MBP p

S,c
:= L[max{0, zp

c
� xin

c
}�max{0, zp

c
� xout

c
}+ EXT p

S,c
], 8p 2 P, 8c 2 C.

(4.28)

However, here, xout

c
, c 6= Cref are functions of the other variables such that xout

c
=

P
i2R Ĝi/L(ŷin

i,c
� ŷout

i,c
). The EXT nonphysical extensions are given by

EXT p

R,c
= max{0, zp

c
� ŷmax

c
}�max{0, ŷmin

c
� zp

c
}, 8p 2 P, 8c 2 C, (4.29)

EXT p

S,c
= max{0, zp

c
� xmax

c
}�max{0, xmin

c
� zp

c
}, 8p 2 P, 8c 2 C, (4.30)

where ŷmin,max

c
and xmin,max

c
are now the minimum and maximum concentrations of

component c across the rich and lean streams, respectively. Because the problems in

this work consider a single lean stream, xmin

c
= xin

c
and xmax

c
= xout

c
.

Because this approach uses a combined pinch point balance to identify the limiting

component automatically instead of determining it explicitly, the resulting equation

system remains only two equations regardless of both the number of rich streams and

the number of components in the system. To our knowledge, our method is thus the

only approach to the multicomponent integration problem that can achieve the same

scaling and efficiency as a single-component method. (Although, the complexity of

the function evaluation for Equation (4.25) now scales with |P ||C|.) The nonsmooth

equation system can also be solved for any process variable, including concentra-

tions that are arguments of the nonsmooth mass transfer scalings, using the efficient

nonsmooth equation solving methods outlined in the Background.
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4.4 Examples

The following section demonstrates the use and benefits of our nonsmooth approach

by applying it to a series of example problems.

4.4.1 Example 1, Fixed Mass Load

This first example, adapted from Wang and Smith and Alva-Argaez et al., is a water

integration problem from the petroleum refining industry. Petroleum refining requires

large quantities of water for steam stripping, washing away contaminants from hy-

drocarbon streams, etc. This example includes three such units that introduce three

different contaminants into the wastewater streams. Table 4.1 gives the limiting wa-

ter curve that has been derived for this process. In the cases below, we use this

data to demonstrate how to use our methods both to include different mass transfer

assumptions and to solve for different types of process variables.

Table 4.1: Concentration scaling for Example 1.

Ĝ ŷin ŷout,max Ru ŷout

(t/h) (ppm) (ppm) (ppm)

Steam 45 HC 225 0 0 0
Stripper H

2
S 400 0 0 0

Salt 150 0 0 0

Hydro- 34 HC 240 30 0.125 30
desulphurisation H

2
S 800 200 0.25 100

Salt 320 80 0.25 40

Desalter 56 HC 300 100 0.33 60
H

2
S 100 50 0.5 20

Salt 1500 300 0.2 300

Scenario 1, Calculation of Water Target

In this first case, we assume that the transfer of mass from the water-using oper-

ations to the water streams follows a fixed mass load distribution. As detailed in

the Concentration Scaling section above, under this assumption, each contaminant
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in a given operation must have the same relative recovery, and each component at

the operation outlet must be at or below the desired concentration limit (or here the

equivalent concentration in the limiting water profile). The resulting scaling for these

assumptions is given in Equation (4.16).

First, we use this assumption to determine the minimum required freshwater flow

rate for the concentration limits given in Table 4.1. For each unit, we use Equation

(4.16) to calculate the limiting contaminant, fix the relative recovery for the unit,

and calculate the actual outlet concentration for each contaminant. These scaled

concentrations are also given in Table 4.1. The scaled concentrations are used in

the nonsmooth equation system given by Equations (4.25) and (4.24), which is then

solved using the semismooth Newton’s method with LD derivatives as the generalized

derivative elements. Here, we selected the hydrocarbon concentrations to use for

the overall mass balance in Equation (4.24), but any choice of contaminant gives

equivalent results.

We solved the system of two equations for the minimum freshwater requirement

and the corresponding concentration of hydrocarbons in the wastewater stream, which

were found to be 115.5 t/h and 265.8 ppm, respectively. Using a variety of initial

guesses resulted in convergence of the semismooth Newton’s method in 2-5 iterations.

If needed, the outlet concentrations of the other components can be calculated directly

from these results using the overall mass balances from Equation (4.24) for each of

these components. Figure 4-6 gives the composite curves for each component. These

plots show a pinch point in the hydrocarbon composite curves while the curves for

the other components are feasible but not pinched. This result demonstrates that

hydrocarbons are the overall limiting factor in the system and also how our method

can automattically identify this pinched component.

We also solved this problem using the MILP1 formulation from Alva-Argaez et al.

to confirm these results. We note that we also get consistent results to Alva-Argaez

et al. when using our method to solve their instance of the petroleum refining problem;

we have only modified the concentration limits used here to improve the visual com-

parison with subsequent parts of this example. While Alva-Argaez et al.’s approach
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Figure 4-6: Results for Example 1, Scenario 1. The rich-stream composite curves are
plotted using the adjusted outlet concentrations given in Table 4.1

uses a MILP that can be solved relatively efficiently compared to other mathematical

programming problems, even for this simple system, it requires 60 constraints and 100

continuous variables, which will grow quadratically with the number of solvent-using

operations in the system. As written, Alva-Argaez et al.’s formulation also includes

21 binary variables; however, for this problem with one water stream, there is only

one feasible set of binary variables, which can be determined during preprocessing.

In comparison, our nonsmooth approach only involves solving a two-equation system,

regardless of the process size.

As explained above, the fresh water requirement calculated by both our approach

and Alva-Argaez et al.’s MILP1 is not guaranteed to be a tight lower bound. Similar

to the results for the original data in Alva-Argaez et al., for this modified problem,
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solving the water network superstructure gives an attainable fresh water flow rate of

116.7 t/h, which is about 1 % higher than our calculated limit. While our limiting

flow rate is not as tight those that can be calculated for a single-component problem,

it still represents a significant improvement over results that do not account for the

interdependence of the species concentrations during mass transfer. For this example,

calculating the fresh water flow rate using the unscaled concentration limits gives a

target of 105.6 kg/h, 9.5 % below the feasible target. Figure 4-7 compares the hy-

drocarbon composite curves for the unscaled concentration limits and the corrected

concentrations. When the interdependent mass transfer is considered, the outlet con-

centration of hydrocarbons in the desalter decreases from 100 to 60 ppm to allow salt

to reach its maximum outlet concentration. This change increases the hydrocarbon

load for the system, which also increases the required fresh water flow rate. Because

the unscaled approach does not account for how the hydrocarbon concentrations must

change, the results it produces are much lower than the feasible target for the system.

Figure 4-7: Comparison of results for Example 1, Scenario 1 using scaled (left) and
unscaled (right) rich stream outlet concentrations. The scaled fresh water target is
used for both plots, and the lack of pinch point for the unscaled concentration limits
shows how the consideration of interdependent mass transfer increases the calculated
target.

Scenario 2, Calculation of Concentration Limit

Next, instead of determining the minimum water requirements for a given process,

we design a process to meet a specific water limit. We now assume that there is
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freshwater limit of 100 t/h for the petroleum refining process, possibly due to local

availability and climate, government regulations, or capacity of a water regeneration

or desalination process. In this example, the process engineers have identified that

there may be room to improve the performance of the process so the concentration

of hydrocarbons entering the steam stripper decreases from its current value of 225

ppm. Therefore, we used our approach to determine how much the inlet concentration

requirement of hydrocarbons in the steam stripper would need to be reduced to give

a freshwater flow rate of 100 t/h.

We used semismooth Newton’s method to solve Equations (4.25) and (4.24), using

hydrocarbons for the system balance, for the concentration of hydrocarbons into

the steam stripper and the outlet concentration of hydrocarbons in the wastewater

stream. Note that now, the concentration scalings are composed in the evaluation

of the equations rather than computed as a preprocessing step before solving the

equations.

All other component concentrations remained the same as those given in Table

4.1. The results were 125.1 and 262.1 ppm for the inlet and wastewater hydrocar-

bon concentrations, respectively. Figure 4-8 shows how the pinch plot for the system

changes for this solution compared to Scenario 1. This inlet hydrocarbon concen-

tration is the maximum allowable concentration to achieve a freshwater flow rate of

100 t/h because our integration operator will identify the system for which 100 t/h

is the minimum attainable flow rate. Therefore, increasing the inlet hydrocarbon

concentration any further will make a freshwater flow rate of 100 t/h infeasible.

The ability to solve this type of integration problem is a significant benefit of

our approach. Other pinch-based approaches to the multicomponent problem are

not able to solve for any concentration process variables because these concentrations

are the arguments of nonsmooth functions. The concentrations are both sorted to

determine concentration intervals for mass transfer and are arguments of the “min”

and "max" functions used to determine the limiting component in the concentra-

tion scalings. Derivatives cannot be calculated for these algorithms to be used in

optimization solvers, and therefore, these other pinch-based approaches require all
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Figure 4-8: Comparison of results for Example 1, Scenario 1 (left) and Scenario 2
(right).

concentration values to be known a priori. As a result, superstructures were previ-

ously the only methods capable of solving for these process variables. But because

our integration operator is explicitly nonsmooth, we can solve for any process variable

while maintaining significantly better scaling than a superstructure.

Figure 4-9: Changes to the limiting water flow rate with the inlet concentration of
hydrocarbons to the steam stripper. When this concentration is no longer pinched,
it does not affect the fresh water target.

One challenge with our nonsmooth integration operator is that the nonsmooth

system of two equations only allows for two free variables. Therefore, selecting the

appropriate unknown concentrations to reach a given fresh solvent flow rate requires
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prior knowledge of the limiting components and operations in the process. Addition-

ally, even if an appropriate unknown is determined, it is possible that this variable

is no longer limiting at the solution, meaning that the Jacobian will become sin-

gular along the solution path. Figure 4-9 shows how the limiting water flow rate

changes with the inlet concentration of hydrocarbons to the steam stripper. When

this concentration goes below 96 ppm or above 240 ppm, the pinched concentration

in the system changes and varying the concentration of hydrocarbons into the steam

stripper no longer changes the fresh water target. A potential area of future work is

incorporating additional nonsmooth expressions to switch automatically to the cur-

rent limiting component. However, although it currently cannot be accomplished

automatically, an advantage of using a pinch-based approach is that it is easy to both

determine and visually observe the limiting processes and components.

4.4.2 Example 2, Proportional Mass Transfer

In this example, we consider the same system for integration and the same concentra-

tion data as in Example 1 above. However, we assume that the water-using operations

are washing units in which the mass loads of each component remain constant. Thus,

physical rich streams with the flow rates in Table 4.1 are no longer present, and the

relevant data for the problem is now the mass loads of each component, which are

given in Table 4.2. To address this different mass transfer scenario, we scale the in-

let concentrations using Equation (4.18) so that the effective, limiting flow rates are

consistent across components. The results of this scaling are also given in Table 4.2.

As for the case of a fixed mass load distribution, in this scenario, we determine

the minimum required fresh water flow rate using the two-equation system given

by Equations (4.24) and (4.25). Now, in these equations, ŷin

i,c
are the scaled inlet

concentrations and rich stream flow rates are the limiting values Ĝi = Flim,i. With

this new mass transfer assumption, the minimum fresh water requirement decreases

to 101.9 t/h and the hydrocarbon outlet concentration in the water stream is 250.3

ppm. The composite curves for the pinched hydrocarbons are shown in Figure 4-10.

Changing the mass transfer assumption for this problem did not change the number of
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Table 4.2: Concentration scaling for Example 2.

M ŷin,max ŷout Flim ŷin

(g/h) (ppm) (ppm) (t/h) (ppm)

Steam HC 9000 225 0 40 200
Stripper H

2
S 18000 400 0 45 400

Salt 6000 150 0 40 133.3

Hydro- HC 6510 240 30 31 221.5
desulphurisation H

2
S 20400 800 200 34 800

Salt 8000 320 80 33.3 315.3

Desalter HC 10000 300 100 50 278.6
H

2
S 2600 100 50 52 96.4

Salt 67200 1500 300 56 1500

equations required to describe the system nor the rate of convergence of the Newton

solver.

The fresh water flow rate calculated is again a lower bound for the minimum

attainable flow rate but is not guaranteed to be tight. To evaluate the tightness of

the bound, we calculated the minimum attainable flow rate for this system using

the superstructure approach from Doyle and Smith. For a constant mass load, their

formulation can be used directly, and the additional constraint in Equation (4.19) is

no longer required. Solving the superstrucutre to global optimality gave an attainable

flow rate of 111.8 t/h, making our bound 9% lower than the feasible target.

Although our lower bound is not always tight, this example demonstrates that

the flexibility provided by treating the units separately. We can easiliy modify mass

transfer assumptions without changing the structure or scaling of our method. In

addition, changing these assumptions does not impact our ability to solve for any

process variables. For example, we can once again calculate the concentration re-

quirements in the stream stripper needed to decrease the fresh water bound to 100

t/h. Although the system is pinched in hydrocarbons, in this case, decreasing the

inlet hydrocarbon limit to the stream stripper will not initially decrease the water

target because the scaled inlet concentration is limited by the effective flow rate of

H
2
S. Thus, we instead solve for the inlet concentration of H

2
S required to reach 100
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Figure 4-10: Composite curves for Example 2 using the data in Table 4.2

t/h. Solving Equations (4.24) and (4.25) using this limit gives a H
2
S inlet require-

ment of 476 ppm H
2
S to the steam stripper and a hydrocarbon waste concentration

of 255.1 ppm. Because the 100 t/h target is not a tight limit, these results mean that

the system must be modified so that the water exiting the steam stripper is allowed

to reach at least 476 ppm H
2
S, but additional changes to the system may also be re-

quired. For instance, at 476 ppm H
2
S, the limiting component in the steam stripper

changes, and decreasing our target flow rate past this point will require adjusting the

limits for other components.

4.4.3 Example 3, Expanded System

The final example in this work extends the system in Example 1 to include additional

operating units and an additional component. The results demonstrate how our

nonsmooth approach solves integration problems just as efficiently as the size of the

system increases. The data used for this example is modified from the examples in

Chang and Li [21].
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Scenario 1, Additional Units

In this first scenario, we consider two additional water-using units whose data is given

in Table 4.3. To solve this problem, we will return to the assumption of fixed mass

load mass transfer and use the concentration scaling given in Equation (4.16). We

again solve the system of Equations (4.24) and (4.25) for the minimum fresh water

flow rate using a semismooth Newton’s method, which converged in 2-4 iterations

for a variety of initial guesses. These calculations gave us a minimum fresh water

flow rate of 121.3 t/h and a corresponding hydrocarbon outlet concentration of 263.8

ppm. We also solved this system using Alva-Argaez et al.’s MILP1 and achieved

equivalent results. Figure 4-11 shows the composite curves for the pinched component

in this solution. To examine the tightness of this lower bound, we also solved this

problem using the superstructure approach described under “Concentration Scaling.”

This approach gave a minimum attainable fresh water flow rate of 131.3 t/h, which

indicates that our target is low by 7.6%.

Table 4.3: Additional data for Example 3, Scenario 1

Ĝ ŷin ŷout,max

(t/h) (ppm) (ppm)

Vacuum 8 HC 50 0
Ejector H

2
S 400 0

Salt 60 0

Hydro- 8 HC 150 20
desulphurisation H

2
S 8000 60

2 Salt 120 20

Scenario 2, Additional Component

In the next scenario, we analyze the same five units from Scenario 1 above, but now

consider the suspended solids present in the rich streams as an additional contaminant

in the system. The suspended solid concentrations for each unit are given in Table 4.4.

To solve this problem, we repeat the process form Scenario 1 to get a minimum fresh

water flow rate of 143.4 t/h and a corresponding hydrocarbon outlet concentration of
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Figure 4-11: Composite curves for Example 3, Scenario 1 using the data in Tables
4.1 and 4.3

246.9 ppm in 2-5 iterations. We again verified our result using Alva-Argaez et al.’s

MILP1. Figure 4-12 shows the composite curves for this solution. The superstructure

solution for this problem gives an attainable fresh water flow rate of 144.4 t/h, so our

lower bound underestimates the feasible solution by only 0.8%.

Table 4.4: Suspended solid concentrations for Example 3, Scenario 2

ŷin ŷout

(ppm) (ppm)

Steam Stripper 60 10
Hydro-desulphurisation 1 100 30
Desalter 75 0
Vacuum Ejector 70 50
Hydro-desulphurisation 2 100 25

Note that with the additional consideration of the suspended solids, it becomes

the limiting component in the overall system instead of hydrocarbons. Thus, this

example demonstrates how important it is to be able to include all components when

solving an integration problem, even when their concentrations seem relatively small.

By enforcing the pinch point across all components in Equation (4.25), our nonsmooth

approach automatically identifies this change without requiring any prior knowledge
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of the limiting component.

Figure 4-12: Composite curves for Example 3, Scenario 2 using the data in Tables
4.1, 4.3, and 4.4

In addition, our nonsmooth approach shows increasing benefits in efficiency as the

size of the system increases. Although the size of the system has increased in both the

number of components and process units, our approach still only requires solving a

system of two equations, and the equation-solving process converges at a similar rate

as it does for the smaller system in Example 1. In comparison, Alva-Argaez et al.’s

approach to calculate the same lower bound requires 188 constraints, 301 continuous

variables, and 45 binary variables (if the formulation is not simplified during prepro-

cessing). Calculating the rigorous lower bound from the network superstructure used

162 constraints and 91 continuous variables and also required a global optimization

approach to solve the nonconvex program with 40 bilinear terms. In addition, while

this data allows for the use of an NLP to represent the superstructure, this is not

guaranteed, and in some problems, additional binary variables may be required for

numerical stability.
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Scenario 3, Combining Mass Transfer Relations

Finally, we also use this example to demonstrate the ability of our method to tailor

the mass transfer assumptions to each unit. Let us now assume that the relation

between the components in the hydrodesulphurization units can better be described

by proportional mass transfer with the mass loads given in Table 4.5. We also still

assume that the concentrations in the other three units vary according to a fixed mass

load distribution. To solve the system, we simply apply Equation (4.18) to scale the

inlet concentrations to the hydrodesulphurization units and Equation (4.16) to scale

the outlet concentrations for the remaining units. Then, these scaled concentrations

are used in Equations (4.24) and (4.25) to solve for the fresh water target.

Solving this system gives a fresh water flow rate of 134.5 t/h and a waste water

hydrocarbon concentration of 225.3 ppm. The system is now pinched in hydrocarbons,

and the pinch plot is given in Figure 4-13. The superstructure solution for this

problem gives an attainable fresh water flow rate of 137.4 t/h, so our lower bound

underestimates the feasible solution by 2%.

Table 4.5: Mass loads for Example 3, Scenario 3

M
(g/h)

Hydro- HC 6510
desulphurization H

2
S 20400

1 Salt 8000
SS 2240

Hydro- HC 750
desulphurization H

2
S 60800

2 Salt 440
SS 550

4.5 Discussion

Our goal with this work was to develop a new approach that can provide tractable

and flexible solutions to the multicomponent mass integration problem. The result
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Figure 4-13: Composite curves for Example 3, Scenario 3 using the data in Tables
4.1, 4.3, 4.4, and 4.5.

is a nonsmooth integration operator that uses a system of two nonsmooth equations

to enforce a single pinch point across the components. This system can be solved

efficiently using new advances in nonsmooth equation solving to give a target fresh

solvent flow rate that is a lower bound on the minimum attainable flow rate for

the system. Our integration operator incorporates concentration scaling techniques

to account for different mass transfer relations within the operating units and to

increase the tightness of the lower bound.

We have applied our integration operator to a series of examples that show its

success in calculating fresh solvent targets that capture the potential for reuse in

a mass transfer system. A summary of these results is given in Table 4.6. These

examples also demonstrate the unique benefits of our approach which include

• Compact scaling: Regardless of the number of operations or components in

a mass transfer system, our integration operator only requires two equations.

This ability to retain the same number of equations for any system makes this

approach better equiped to handle large-scale systems than the existing methods

that scale at least polynomially with the system size.

• Ease of varying mass transfer assumptions: This compact structure of our ap-
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proach also remains the same no matter which mass transfer assumptions are

used in the problem. Using the scaling approach, different mass transfer rela-

tions can easily be substituted for different problems or units without changing

the size or complexity of our equation system.

• Ability to solve for any process variable: Because our approach only requires

equation-solving instead of optimization, we are able to take advantage of non-

smooth equation-solving methods to solve for variables that are arguments of

nonsmooth functions. In existing heuristic and transshipment approaches to

multicomponent integration, like those from Wang and Smith and Alva-Argaez

et al., the concentrations and rich stream flow rates must be known a priori in

order to perform nonsmooth scalings or sorting. Therefore, unlike these meth-

ods, our nonsmooth operator can be embedded in outer optimization problems

to perform simultaneous integration and optimization.

Table 4.6: Summary of calculated fresh water targets. The unscaled flow rate is
calculated using Equations (4.24) and (4.25) without accounting for the mass transfer
interactions. The minimum attainable flow rates are the results from solving the
network superstructure to global optimality, and the once-through flow rates are the
fresh water requirements without water reuse. All units are in t/h.

Unscaled Target Our Approach Minimum Attainable Once through

Ex 1, S1 105.6 115.5 116.7 119.6
Ex 2 94.6 101.9 111.8 119.6
Ex 3, S1 109.8 121.3 131.3 135.2
Ex 3, S2 116.5 143.3 144.4 146.3
Ex 3, S3 115.1 134.5 137.4 143.7

Another important result from this work is our analysis of the target tightness

for multicomponent integration problems. We show that targets calculated for multi-

component systems using pinch analysis are not guarenteed to be tight lower bounds

as they are for single-component integration problems. To our knowledge, this limita-

tion is inherent to pinch-based methods, meaning it is unlikely that there is another

approach that can both guarantee exactness of the bound and tractably be embed-

ded in optimization problems. Efficiently calculating exact lower bounds will likely
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require potential improvements to superstructure methods to decrease the system size

and avoid the need for global optimization.

While our nonsmooth approach has many unique benefits, it can continue to be

improved by further increasing its flexibility and relaxing assumptions on the system.

Currently, to solve a design problem for a given solvent flow rate, our method requires

the selection of the correct process variable as an unknown in the system. To address

this challange, we believe that additional nonsmooth expressions could be used to

automatically select the process variable that will affect the solvent target. This

issue may be less relevant when the integration operator is used for simultaneous

integration and there are more free variables in the system.

It would also be beneficial to extend our results to additional types of mass and

water integration problems. There is potential to adapt our method to problems with

multiple fresh solvent streams by deriving new scaling relations. However, we think

that the most useful extension of our work would be to fixed-flow water integration

problems. This problem formulation often describes real world systems better than

fixed-load water integration because it allows the water flow rates to vary within a

unit. This additional complexity can also make fixed-load water integration problems

more difficult to solve; to prioritize the water sources and sinks in the problem, they

must be sorted by concentration. But when multiple components are present, these

priorities may conflict. For this reason, there are very few fixed-flow multicomponent

water integration approaches that do not use a superstructure technique. However,

recent work from Chin et al. presents a heuristic for sorting sources and sinks by their

limiting components so the pinch problems can be solved separately by component

to get a total fresh water requirement [24]. Therefore, our plan for our future work

includes describing these sorting operations using nonsmooth expressions so we can

incorporate this method into our nonsmooth approach.

Although there is room for improvement, our method is well tailored to solve

screening and optimization problems, especially for large-scale systems, and this work

significantly improves our ability to design and operate mass transfer systems with

the smallest possible costs.
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Chapter 5

Design of Variable-temperature

Cogeneration Systems

This chapter applies the nonsmooth integration approaches discussed earlier in this

thesis to design real systems. The application we consider is process cogeneration,

which is the recovery of process waste heat by using it to drive a power cycle and

produce electricity.

Waste heat from chemical processes is a significant and underutilized energy re-

source. Many processes involve exothermic reactions or require high temperatures to

achieve conversion. The global industrial waste heat availability is estimated to be

14.6 GW with 8.8 GW released at temperatures above 450 °C [34, 17]. Major heat

sources include sulfuric acid production, steel and aluminum mills, cement plants, and

turbine and engine exhaust. This high-temperature, high-quality heat is a promising

energy source for generating electricity using power cogeneration systems. Cogen-

eration systems produce power without additional emissions and can also decrease

energy costs for chemical producers. However, currently, less than 800 MW of waste

heat is converted to electricity.

In addition, when cogeneration systems are implemented, they are designed to take

in heat at a single temperature and cannot optimally recover heat from a variable-

temperature heat source [34]. This type of design does not take advantage of the

high-temperature waste heat, which increases exergy losses and limits the useful heat
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recovery. To address this limitation and increase the benefits from cogeneration, we

propose a power system design that includes multiple power cycles with different

operating temperatures. With this approach, heat recovery is improved because each

cycle can be supplied with waste heat from the process or heat rejected from higher-

temperature power cycles. While cascading power cycles have been widely proposed

as bottoming cycles in power generation systems, no other approach has considered

optimizing these systems for a variable-temperature heat source.

In this chapter, we present an efficient optimization formulation to determine

design parameters for these types of variable-temperature cogeneration systems. This

problem is challenging because we need to account for all possible methods of heat

recovery to ensure the design is optimal, including heating of all cycles using the

process streams, cascading heat between power cycles, and recuperation within power

cycles. We also need to constrain this heat transfer so it only occurs between high

and low temperatures. One approach to solving this problem is to fully design the

heat transfer network so we can enforce feasibility in each heat exchanger. However,

this approach requires creating a superstructure of all possible interactions and thus,

the numbers of constraints and variables grow exponentially with the number of heat

streams.

An alternative approach is to avoid network design by solving the heat integra-

tion targeting problem using the methods described earlier in this thesis. Of these

approaches, the nonsmooth methods of Duran and Grossmann [29] and Watson et al.

[92] are able to solve for any process variable and also scale most favorably with

the number of hot and cold streams. Therefore, we adopt these nonsmooth meth-

ods to optimize cogeneration designs. By appropriately classifying the heat sources

and sinks in the power cycles and variable temperature heat source, we use these

heat integration approaches as constraints in an outer optimization problem with a

selected design objective. Unlike work and heat exchange problems as in Holiastos

and Manousiouthakis [49] that also incorporate engines into heat exchange networks,

our approach considers and designs real power generation cycles rather than ideal

Carnot cycles and includes multiple different-temperature streams in a single power
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cycle. The result is a scalable and tractable approach to designing optimal and im-

plementable cogeneration systems.

We have also developed an original approach for estimating the cost of our com-

bined power cycles without having to design the full heat exchanger network. A

traditional challenge when using a targeting approach to solve integration problems

is that it cannot be used to estimate capital costs of the system required to achieve

heat recovery. Since targeting approaches do not determine the network of stream

matches and heat exchangers for the integrated process, they do not provide conve-

nient information on the required equipment that could be used to estimate capital

costs. As a result, in previous work, targeting approaches have only been used to

calculate utility operating costs and superstructures are used to assess equipment

needs.

To obtain information on the relative network requirements, [92] develop a nons-

mooth equation to estimate the heat exchanger area necessary for integration, assum-

ing a multistream heat exchanger is used. We extend this method with additional

nonsmooth expressions to partition the network into multiple multistream heat ex-

changers by the temperatures of the fluid streams. By partitioning the network, we

can account for how the equipment requirements vary with phase or temperature and

improve the accuracy of the cost estimation without needing to determine the full

network design. Thus, we are able to screen and optimize power generation systems

by their capital costs while retaining the efficiency of the targeting method.

In the sections below, we detail our novel approaches for optimizing variable-

temperature cogeneration systems and estimating the costs of heat integration net-

works. We then use these approaches to design combined sCO
2

Brayton and steam

Rankine cycle cogeneration systems for two promising applications, sulfuric acid and

cement production.

At the time of writing, the work in this chapter is in preparation for publication

[70].
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5.1 Problem Definition

The objective of this work is to determine the optimal power cycle parameters for a

cogeneration system.

Given a set of heat flows from a chemical process and a set of power cycles, S, a

sketch of the optimization problem we are trying to solve is

x 2 argmin
x

g(x) (5.1)

s.t. Process models hold, 8s 2 S,

Energy balance holds,

Heat transfer is feasible,

where x is a set of design variables for the cogeneration system and g(x) is any

objective function for the design. In this problem, the energy balance constrains the

optimization to the given waste heat input.

To define the heat input, we assume that we have complete stream data for the

chemical process being considered for cogeneration. These streams include any waste

heat that can be used for cogeneration (that have temperatures above the minimum

power cycle heat input temperature). They can also consider cold streams in the

chemical process that must be heated by the waste heat. Note that if these cold

streams are included in our problem formulation, their heating takes precedent over

the power cycles. For all streams, we use stream data in the form of inlet and outlet

temperatures and heat capacity flow rates, and we assume that these quantities are

linearly related. Thus, we have a set of hot streams, H, that vary in temperature

from T in

i
to T out

i
for a heat output �Qi = Fi(T in

i
� T out

i
), and a set of cold streams,

C, that vary in temperature from tin
j

to tout

j
for a heat input �Qj = fj(tout

j
� tin

j
).

If the heat-temperature relationships for the process streams are nonlinear, they can

be linearized by subdividing them into as many substeams as necessary using the

method presented by Watson et al. [92]. Note that in this chapter, Q refers only

to enthalpy, which is the resource quantity, not quality as it does in the general
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integration operator in Chapter 3.

When solving this design problem, we also assume that the designer has selected

the set of power cycles S with a variety of working fluids. For best results, the working

temperatures of these fluids will cover as much of the range of the hot stream temper-

atures as possible As detailed below, our method enforces a pinch point in the system

to optimize heat recovery. Figure 5-1 illustrates that if the working temperatures for

the power cycles are not high enough relative to the hot stream temperatures, then

this pinch point is not attainable. On the other hand, the working fluids also should

also reach low enough temperatures to recover all the waste heat from the process and

rejected by higher-temperature cycles. Increasing the number of cycles will improve

the heat recovery for the system because their temperatures can be tuned to better

match the hot stream temperatures. However, it is likely a trade-off will be reached

with the high capital costs required to install many smaller power cycles.

Figure 5-1: Composite curves comparing the heat transfer for a Rankine-only cogener-
ation system (left) and a combined-cycle system (right). The hot and cold composite
curves are shown in red and blue, respectively, and represent the availability of the
waste heat sources and the requirements of the cycle heat intake. For this example
heat source, a Rankine cycle cannot reach the high temperatures of the heat source,
so heat recovery is supoptimal. However, when a higher-temperature cycle is added,
the rejected heat is high enough quality to be recovered by the Rankine cycle, which
increases the amount of heat that can be recovered. Minimizing the distance between
the hot and cold composite curves increases the temperature of the rejected heat and
maximizes the heat recovery.

Finally, we assume that the user provides a model for the operation of each candi-

date power cycle. In the example section, we will demonstrate how we have modeled

both steam Rankine and sCO
2

Brayton cycles. However, our approach is not limited
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to these cycle types, and can be extended to any realistic power cycle by including

appropriate property models for the working fluid. We assume the models provide

the necessary temperature and enthalpy data to define the heat flows to and from the

cycles in the form specified for the process streams above. The models should also

output any other variables required to calculate the objective function. Additionally,

we assume knowledge of any fixed parameters in the objective function, such as cost

correlations for cycle equipment when optimizing the system costs.

5.2 Methods

5.2.1 Cogeneration Constraints

This work presents an efficient approach to solving the cogeneration design problem

given by Equation (5.1). To our knowledge, this is the only approach presented

in the literature that explicitly considers temperature variations in the heat source

for power generation. And therefore, our method has the potential to improve the

recovery of waste heat from a wide variety of sources and processes. Designing for

variable-temperature heat sources is challenging because it requires:

1. Considering all possible heat flows both from the heat sources to the power

cycles and cascaded between power cycles,

2. Evaluating the feasibility of these potential heat flows,

3. Determining the optimal selection of feasible heat flows.

However, heat integration methods are formulated to solve this problem of optimal

heat recovery.

Superstructure approaches to heat integration systematically consider all possible

heat transfer networks and scale exponentially with the number of sources and sinks.

Therefore, they quickly become infeasible to use for design problems with many waste

heat streams or multiple power cycles. However, incorporating targeting methods

for heat integration addresses these challenges because they determine the system
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parameters for optimal heat recovery without requiring the full design of the heat

exchanger network.

Because targeting methods combine heat sources and sinks into composite curves,

they automatically assess all potential modes of heat recovery, which for the cogener-

ation problem include transfer to any power cycle and heat cascading between power

cycles. In addition, because composite curves do not distinguish between the differ-

ent origins of the waste heat or requirements, if both the heating and cooling for an

individual cycle are included for integration, the targeting method must also encom-

pass reheating (recuperation) within that cycle. Thus, we present two optimization

formulations for solving the variable-temperature cogeneration design problem that

utilize the nonsmooth targeting approaches of Duran and Grossmann and Watson

et al., which are described in the Background chapter.

For the cogeneration design problem, we set the external heating and cooling loads

in the heat integration problem to zero. This constraint ensures both that the process

heat is the only energy source considered and that all of the process heat is utilized

by the cogeneration system. Then, these formulations are:

x 2 argmin
x

g(x) (5.2)

s.t. 0 = hs(x), 8s 2 S,

0 =
X

i2H

Fi(x)(T
in

i
(x)� T out

i
(x))�

X

j2C

fj(x)(t
out

j
(x)� tin

j
(x)),

0 = min
p2P

{EBP p

C
� EBP p

H
+ EXT p

C
� EXT p

H
},

and

x 2 argmin
x

g(x) (5.3)

s.t. 0 = hs(x), 8s 2 S,

0 =
X

i2H

Fi(x)(T
in

i
(x)� T out

i
(x))�
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where hs(x) are the process models describing the behavior of the power cycles and

x are the design decision variables for the power cycles. Alternatively, these process

models can be used to explicitly determine the required cycle parameters and be

incorporated directly into the objective function and the hot and cold stream data

calculations. The set of hot streams, H = ([s2SHs) [Hw, includes

• The set of fixed waste heat streams, Hw, that describe the variable temperature

heat source. Note that fixing the magnitude of the heat sources constrains the

optimization problem so that the resulting cogeneration designs are comparable.

• The sets of rejected hot streams, Hs, from power cycle coolers or condensers

that have the potential for reuse. This criterion implies that the upper bound

of the hot stream outlet temperature is higher than the lower bound of any of

the cold stream inlet temperatures: maxi{T out

i
} � minj{tinj }. Any of the stream

variables, Fi, T in

i
or T out

i
, in Hs can be functions of the design variables x.

The set of cold streams, C = ([s2SCs) [ Cw, contains

• The set of cold process streams, Cw, that must be heated using the process

waste heat,

• The sets of power cycle heat inputs, Cs, to the heaters or evaporators. These

stream variables can also be functions of x.

If any of the streams in H or C do not follow the linear relationship between temper-

ature and enthalpy transfer, these streams can be subdivided into multiple streams

with different heat capacity flow rates until the linearity assumption is reasonable for

each substream. All substreams are then included in H or C and the overall formula-

tion remains unchanged. More details on this process can be found in Watson et al.

[92].

Formulation (5.2) using the Watson et al. constraints is advantageous because

the number of constraints will remain the same regardless of the complexity of the

heat source or the power system design. This property also means that there is no

penalty for subdividing hot and cold streams to achieve linearity. Regardless of how
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many divisions occur, the number of constraints will remain unchanged. While the

Duran and Grossmann formulation in (5.3) does not scale as well in the number

of constraints, because inequalities are used instead of just equality constraints, in

practice, it can sometimes be easier to converge to an optimal solution for some solvers

or objective functions.

The decision variables, x, in the optimization formulation can be any unknowns

in the cycle designs. To fully design the cogeneration system, there will typically

be nine unknowns for each power cycle in S: the temperatures and pressures at the

inlets of each of the cycle components as shown in Figure 5-2 and the mass flow rate

of the working fluid in the cycle. If the power cycle process models are incorporated

into the objective and heat integration operator instead of expressed explicitly as

separate constraints, then the number of free variables decreases by one per process

component. A typical choice is to explicitly calculate the outlet temperatures of the

compressor or pump and the turbine. Then, since pressures are fixed across the heat

exchangers, a potential vector of unknowns is x = [ṁs, t2,s, T4,s, P2,s, P3,s, 8s 2 S].

Figure 5-2: Representation of a cogeneration design using a Brayton and Rankine
cycle. The numbering indicates the locations of potential unknown temperatures and
pressures in the system.

When using Formulation (5.2) with the equality constraints from Watson et al.,

it may also be necessary to include �Tmin as a decision variable. In the Duran

and Grossmann formulation, the inequalities ensure that the temperature approach

between the hot and cold streams will never be smaller than �Tmin and thus, that the
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heat transfer network is feasible. However, for an objective function that is nonlinear,

it is not guaranteed that a pinch point will be present at the solution. On the other

hand, the equalities from Watson et al. enforce a pinch point in the system. This

property allows the designer to specify the minimum difference to optimize a fully

integrated system instead of just a feasible one. If the goal is to explore the full space

of feasible cogeneration systems, we can allow the temperature difference between the

curves to vary by treating �Tmin as a design variable and using the minimum feasible

temperature difference as a lower bound.

Note that if the objective for the cogeneration design is to maximize power gen-

eration, then �Tmin can be specified even when considering all feasible designs. A

system with maximum power generation will have optimal heat recovery and thus

a pinch point is present. If there is no pinch point in the system, then there is the

potential to add additional source and sink capacity to the system to increase the

heat recovery. Because the process heat source is fixed, these increases in capacity

correspond to increases in size of the power cycles. Since the power output of a given

power cycle increases monotonically with the heat input to the cycle, the total power

generated by the system must also increase. Thus, a pinch point will be present in a

system with optimal power generation. In practice, our results are consistent with this

argument. When maximizing power generation using the Watson et al. formulation,

we consistently see �Tmin reach its lower bound at the solution.

5.2.2 Heat Exchanger Costing

We have also developed an original approach for estimating the cost of our com-

bined power cycles without having to design the full heat exchanger network. One

of the benefits of our optimization approach is that we avoid needing to determine

the structure of the heat exchanger network by using targeting methods for heat

integration. However, this approach makes it difficult to estimate the capital costs

of the heat exchanger networks because cost correlations for these systems typically

require knowledge of the heat exchanger area, A, or the product of the area and the

heat transfer coefficient, UA. These quantities are usually calculated for individual
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two-stream heat exchangers, which requires knowledge of the heat exchanger network.

Therefore, we need a unique approach for costing a heat exchanger network without

needing to know the network connections.

Our approach to this problem has been to assume the heat exchange for the system

is accomplished using one or more multistream heat exchangers. Multistream heat

exchangers approach the ideal heat recovery for a system by transferring heat between

multiple streams simultaneously instead of requiring individual connections between

hot and cold stream pairs. Therefore, we can estimate the heat exchanger area or UA

for a multistream heat exchanger by assuming this ideal heat recovery, which does

not require designing the multistream heat exchanger. To calculate the multistream

heat exchanger area, we adapt the methods of Watson et al. [92] and Hewitt and

Pugh [47].

As described in Chapter 2, for a multistream heat exchanger with ideal heat

recovery, heat is transferred directly between streams at the same enthalpy value in

the pinched composite curves. Therefore, the product of the heat exchanger area

and its heat exchanger coefficient, UA, can be estimated by treating each enthalpy

interval between nonsmooth points as a separate two-stream heat exchanger. Watson

et al. use nonsmooth expressions to automatically determine these enthalpy intervals

and calculate the overall UA for the multistream heat exchanger by summing the

contributions from each interval as given in Equation (2.9). Thus, for heat exchanger

cost correlations that scale with UA, we utilize Equation (2.9). We note that in

practice, both for this method and the modifications described below, we find it more

robust to calculate the unknown temperatures using a seach and linear interpolation

procedure. Then, these values are used with the implicit equations to find their

LD-derivatives.

However, some cost correlations for heat exchangers use area as a scaling factor

instead of UA. In this case, we incorporate insights from Hewitt and Pugh to estimate

the area contributions from each interval. Given the enthalpy intervals for a set of

composite curves, Hewitt and Pugh [47] proposed a method for combining volumetric

heat transfer coefficients for individual streams to calculate an overall volumetric heat
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transfer coefficient for each interval. They then use these heat transfer coefficients to

calculate the contributions to the heat exchanger volume from each interval. In the

absence of volumetric costing data, we chose to adapt Hewitt and Pugh’s approach

by using area-based heat transfer coefficients to calculate the heat exchanger area.

Therefore, Equation (2.9) becomes

0 = A�
X

k2K,k 6=|K|

��k

�T k

LM

, (5.4)

where ��k = �k+1 � �k is the enthalpy contribution from the interval weighted by

the inverse heat transfer coefficients of the streams in the interval. The process of

calculating ��k for each enthalpy interval is similar to finding �Qk for UA. For each

stream inlet or outlet temperature in T k and tk, we still calculate the corresponding

unknown temperature and enthalpy values with Equations (2.7) and (2.8). Now, we

also define �k using

�k :=
X

i2H

Fi

Ui

(max{0, T k � T out

i
}�max{0, T k � T in

i
}) (5.5)

+
X

j2C

fj
Uj

(max{0, tk � tout

j
}�max{0, tk � tin

j
}),

where Ui/j are the individual heat transfer coefficients for each hot or cold stream.

The (Qk, T k, tk, �k) quadruples are sorted by their enthalpy values, and the resulting

enthalpy intervals are used to calculate the heat exchanger area in Equation (5.4).

For certain systems, it may also be desirable to use different cost correlations

across different temperature ranges. For example, some cost correlations are only

valid for certain stream phases, such as those for a recuperator or boiler. In addition,

if the system contains process streams with fluids, pressures, or temperatures that

require heat exchangers with specialized construction, it may be beneficial to use

multiple multistream heat exchangers so that the more complex construction is not

needed for the entire heat exchange system.

To automatically classify process streams between the high and low temperature
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exchangers, we have developed a new nonsmooth method to neglect streams below

or above an enthalpy bound. Mathematically, all streams are included in both heat

exchanger area calculations. However, the enthalpy values Qk are adjusted so that

enthalpy intervals above or below the bound do not contribute to the calculated

area. The procedure for calculating the initial enthalpy intervals is very similar to

the one presented by Watson et al. The only modification we made to this part

of the calculation was to add the cutoff temperature T ⇤ to the list of hot stream

temperatures, T k. As a result, when the enthalpy intervals are determined using

Equations (2.7) and (2.8), a boundary point is calculated at (Q⇤, T ⇤, t⇤). Alternatively,

in a general problem, Q⇤ or t⇤ could be specified instead of T ⇤ and used to calculate

the remaining values. If the heat exchanger area is being determined, �⇤ is also

included in this set.

Once the enthalpy-temperature sets are computed and sorted, the heat exchanger

areas or UA values are given by Equations (2.9) and (5.4), respectively. However, we

modify the calculations for �Qk or ��k according to

(�Qk)high = max{Qk+1, Q⇤}�max{Qk, Q⇤}, (5.6)

(�Qk)low = min{Qk+1, Q⇤}�min{Qk, Q⇤}, (5.7)

(��k)high = max{�k+1, �⇤}�max{�k, �⇤}, (5.8)

(��k)low = min{�k+1, �⇤}�min{�k, �⇤}. (5.9)

Here high and low denote the high- or low-temperature heat exchangers, respectively.

In principle, this sorting procedure can also be performed by adjusting the stream

temperatures before determining enthalpy intervals, i.e.,

Thigh = max{T k, T ⇤} thigh = max{tk, t⇤} (5.10)

Tlow = min{T k, T ⇤} tlow = min{tk, t⇤} (5.11)

However, because this method generates repeated temperatures, there will be points

with a large number of potential selection functions which makes generalized deriva-
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tive calculations more expensive.

When using these methods in an optimization formulation, we make one addi-

tional modification to ensure the objective function is defined at all points. If the

solver reaches an infeasible point where the composite curves overlap, �T k

LM
may be

undefined. Therefore, we define:

�T k := max{T k � tk,�Tmin}. (5.12)

Because the heat exchanger area, and thus the heat exchanger cost, decreases as �T k

increases, setting �T k to �Tmin when the system is infeasible helps increase T k � tk

and find a feasible point.

To our knowledge, this method is the first presented to estimate the cost of heat

integration systems without needing to determine the full network design. Other

targeting approaches have only been used to calculate utility and operating costs,

and superstructures are required to assess equipment needs. With our approach, we

are able to screen and optimize power generation systems by their capital costs while

retaining the efficiency of the targeting method. By dividing the heat exchanger into

multiple temperature regions, we also improve the accuracy of our approach, and in

principle, this technique can be used to continue to divide it into as many MHEXs as

are necessary to fully describe its behavior.

5.3 Case Studies

5.3.1 Cycle Selection and Models

For the following case studies, we chose to optimize a set of two power cycles to

improve cogeneration for two different chemical processes. These power cycles consist

of a steam Rankine cycle and a supercritical CO
2

(sCO
2
) Brayton cycle. We selected

these two cycles because they can cover the temperature ranges of the process waste

heat. Because the fluid in a Brayton cycle remains the same phase throughout the

power cycle, it can operate at high temperatures relative to Rankine cycles. However,
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because a compressor is required instead of a pump, the efficiency of a simple Brayton

cycle is lower than a Rankine cycle. Using a Rankine cycle at lower temperatures can

therefore improve the overall efficiency of the combined cycle system while still better-

utilizing high-temperature waste heat. This Rankine-Brayton cycle combination is

used to improve efficiency in traditional combined-cycle power plants [53],[79] and

has also been applied to alternative energy sources such as nuclear [100] and thermal

solar [28], [75]. Our work extends these approaches by uniquely considering a variable

temperature heat source and allowing it to be paritioned between the Brayton and

Rankine cycles instead of just using the Rankine system as a bottoming cycle.

For the Rankine cycle, we chose water as a working fluid because it can be cooled

at ambient temperatures. sCO
2
is a popular choice of working fluid for closed Brayton

cycles because it has a higher specific heat capacity than other choices such as helium

used in nuclear power plants or air in the open Brayton cycles in combined-cycle power

plants or jet engines. While sCO
2
cycles have not yet been used on an industrial scale,

they are widely studied [65, 78, 90, 98, 17] and have been implemented in several pilot

plants up to 50 MW [25, 4, 66] and a small commercial facility [46]. Although the

sCO
2

Brayton cycle is a promising case study for our method, it is important to note

that the immaturity of the sCO
2

Brayton technology means that the capital costs we

estimate for this cycle are likely higher than they will be in the future.

To optimize this Rankine-Brayton power generation system, we implemented mod-

els for each power cycle. The most significant portions of these models were the

property models used to describe the specific enthalpies and entropies of the working

fluids.

For water, we implemented the IAPWS R7-97 steam property model [85]. We

utilized the expressions for specific enthalpy and entropy as functions of temperature

and pressure, as well as the expression for specific enthalpy as a function of specific

entropy and pressure and the expression for temperature as a function of specific

enthalpy and pressure. We implemented these expressions for both Regions 1 and

2 to capture both the liquid and vapor properties in the temperature ranges of a

typical steam Rankine cycle. We also included the Region 4 equation for the two-
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phase temperature as a function of pressure.

In combination with these IAPWS property equations, we also developed a non-

smooth method that automatically selects the correct phase of the working fluid for

a given pressure and specific entropy. This approach determines the quality, x at a

point (s, P ) using the equation

0 = mid{x, x� s� sl
sv � sl

, x� 1}, (5.13)

where the nonsmooth mid function selects the middle value of its three arguments.

Here, sl(P ) and sv(P ) are the water liquid and vapor entropies, respectively, at pres-

sure P on the two-phase boundary. If (s, P ) is in the liquid region, the entropy fraction

is negative, so the mid function will select x = 0. If (s, P ) is in the vapor region,

the entropy fraction is greater than one, so the mid function will select x� 1 = 0. If

(s, P ) is in the two-phase region, the entropy fraction is between zero and one, and

therefore, the quality is equal to this fraction.

Once Equation (5.13) is solved implicitly for the quality, this value can be used

to determine the enthalpy at (s, P ) using the equation

h(s, P ) = xhR2(P, sR2) + (1� x)hR1(P, sR1), (5.14)

where sR2 := max{s, sv} and sR1 := min{s, sl}.

While we use this approach in our model to convert between enthalpy and entropy

values at a given pressure, the theory can be extended to conversions between other

properties with different state variables specified. Our approach of automatically

determining the water phase has the advantage of not constraining the problem by

needing to assume the phases in certain regions of the power cycle. Even when two

phases are not allowed in the turbine, this approach is useful in considering outlet

conditions for which the isentropic enthalpies are in the two-phase region. It can also

be used to constrain the phase within the turbine or pump.

Additionally, because this method is nonsmooth, we can find LD-derivatives for

the arguments of Equation (5.13) using the implicit function theorem from Khan
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and Barton [12, 55]. Therefore, we can use this approach inside of an optimization

formulation with the arguments of the nonsmooth functions as decision variables;

whereas, this flexibility is not possible to achieve using alternative methods like if/else

statements.

To model the properties of sCO
2
, we use the Lee-Kessler equation of state [59].

Lee-Kessler is a useful property model for non-ideal gasses and has been demonstrated

to be one of the most accurate methods for describing the behavior of sCO
2

[95]. The

Lee-Kessler property model solves the Lee-Kessler equation to find the compressibility

factor of an ideal fluid and a reference fluid at a given temperature and pressure. These

compressibility factors are combined using fluid-specific acentric factors to find the

compressibility factor for the fluid of interest. This compressibility factor can then be

used to calculate enthalpy and entropy departures. For this work, we used acentric

factors of !r = 0.3978 and !CO2
= 0.239. To calculate temperature as a function

of pressure and enthalpy or pressure and entropy, we implicitly solve the departure

functions for temperature. The calculated temperature can then be used to convert

between enthalpy and entropy values.

We incorporated these property models into process models for basic Rankine

and Brayton power cycles. Figure 5-2 shows a diagram of one of these power cycles.

For these models, we treat the turbine inlet and outlet pressures and the turbine

and compressor or pump inlet temperatures as decision variables. We assume both

the heating and cooling units are isobaric, which fixes the pressures for the cycle.

Then, we model the turbine and compressor or pump by assuming fixed isentropic

efficiencies, ⌘s as model parameters, which we set to ⌘s = 0.80. These models give the

work input or output for each unit as well as the outlet temperatures. The resulting

equations are

hout

turbine
= ⌘s(hs � hin) + hin, (5.15)

hout

comp/pump
=

1

⌘s
(hs � hin) + hin, (5.16)

W out = ṁ(hin � hout), (5.17)
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where hs(s, P out) and s(P in, T in) are calculated using the property models given above

and ṁ is the mass flow rate of the working fluid in the cycle.

These process models fully define the power cycles and provide all the information

required to calculate our objective functions and the hot and cold composite curves

for the cycles. In our formulation, we chose to embed these calculations within the

objective or constraint evaluations to reduce the search space for optimization.

To obtain the composite curve data, we calculate the enthalpies at temperatures

along the heating and cooling units. We then calculate the heat capacity flow rates

in each temperature region by assuming a linear dependence between enthalpy and

temperature. Each region is then treated as a separate hot or cold stream in our

formulation. For the Brayton cycle heating, we selected 4 evenly spaced temperature

intervals and for the Brayton cycle cooling, 2 intervals. For the Rankine cycle heat-

ing, we used 3 intervals partitioned at the phase boundaries. In general, any number

or spacing of temperature intervals can be selected to improve the accuracy of the

linearization. Because the heat rejected by the Rankine cycle is not high enough tem-

perature to be reused and we assume the Rankine cycle cooling can be accomplished

by ambient cooling water, we do not need to include the hot streams from this unit

in our composite curves.

5.3.2 Cost Calculations

For the following case studies, we optimize the power system design for two objective

functions: maximum power output and minimum system cost. To minimize the

system cost, we use a version of the levelized cost of electricity defined by

LCOE =

P
l2L Cl(Zl, Tl, Pl)

W out
, (5.18)

where Cl are correlations used to estimate the capital costs of each of the |L| major

components in the power system that are functions of their size factors Zl and, for

some components, a temperature factor Tl or pressure factor Pl. W out is the total

turbine power output for the given power system for the fixed waste heat input. For
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the purposes of these calculations, we only consider capital costs and neglect auxil-

iary costs such as piping and installation. If desired, these costs can be easily added

using additional multiplicative factors. The cost correlations are taken from litera-

ture data. The steam turbine and water pump costs are calculated from basic cost

correlations [96], while the correlations for the sCO2 turbine and compressor are spe-

cialized functions for sCO
2

power generation developed and baselined by researchers

at Sandia National Laboratory [94]. We have adjusted all cost correlations to 2020

dollars using the Chemical Engineering Plant Cost Index.

These correlations take the following forms:

Cl(Zl) = C0,lfl
✓

Zl

Z0,l

◆n

. (5.19)

For the steam turbine, fsteam = 1, and for the pump and Brayton cycle components,

fpump(Pl) =

✓
Pl

1 MPa

◆a

, (5.20)

fBrayton(Tl) = 1 + amax{0, Tl � Tc}+ b(max{0, Tl � Tc})2, (5.21)

where Tc = 550°C. For the Brayton cycle components, we have reexpressed these

temperature factors using nonsmooth functions instead of the conditionals in the

original work so that we can obtain generalized derivative information for the objective

function. The constants for the turbine, pump, and compressor correlations are given

in Table 5.1.

For the Brayton-Rankine power generation system presented above, the available

heat exchanger correlations are limited by the relative immaturity of sCO
2

Brayton

cycle technology. The costing data provided by Sandia National Laboratory includes

targeted correlations for sCO
2

heaters, coolers, and recuperators. These correlations

are valuable for assessing the costs of this specialized equipment. However, using

these expressions to cost the entire heat exchanger system will likely overestimate its

cost both because equipment for high-temperature sCO
2

processing is more complex

than what is necessary for the other process streams and because these costs are
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Table 5.1: Constants for the capital cost correlations used in this work. Outputs are
in millions of 2020 USD.
* includes 1.6 factor for high pressure steam turbine
** size factor is (pump head)(mass flow rate)
*** includes 2.4 factor for nickel alloy construction, selected to reduce corrosion from
low-temperature sCO

2
streams

Component Size factor C0,l Z0,l n a b
units

Rankine kW 1.45* 3000 0.46 - -
turbine

Rankine m kg/s** 6.1⇥ 10�5 1 0.75 0.3553 -
pump

Brayton MW 0.1826 1 0.5561 0 1.106⇥ 10�4

turbine

Brayton MW 1.23 1 0.3992 0 0
compressor

Low-temp m2 0.2156*** 100 0.71 - -
heat
exchangers

High-temp W 4.945⇥ 10�5 1 0.7544 0.02141 0
recuperator
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likely higher than they will be in the future. Therefore, we use our new approach for

costing heat exchangers to divide the network into two temperature regions. We chose

to use the sCO
2

recuperator correlation to cost a high-temperature multistream heat

exchanger and a more standard shell and tube heat exchanger correlation to cost a

second lower-temperature heat exchanger. These correlations are given in Table 5.1.

The prefactor for the low-temperature exchanger is flt = 1, and the correlation for

the high-temperature recuperator takes the form in Equation (5.21). We used 450 °C

as a temperature cut off because it is at the high end of what can be handled by the

nickel construction of the low-temperature exchanger.

Because the Rankine cycle cooling is not included in the heat integration con-

straints, we separately calculate the area and cost of the condenser. We assume a

constant temperature heat sink at 20 °C and use Equation (5.4) to estimate the ex-

changer area. Then we calculate the exchanger cost using the same low-temperature

correlation as for the heat integration network.

5.3.3 Sulfuric Acid Cogeneration

In our first case study, we optimized the design of a Brayton-Rankine power system

for the heat output of a sulfuric acid production plant. Because the sulfuric acid

production process is highly exothermic, it is common for plants to recover the waste

heat for power production [8]. However, current systems use single steam Rankine

cycles that cannot take full advantage of the high temperatures reached during sul-

furic acid production. Since sulfuric acid is a widely produced commodity chemical,

improving sulfuric acid cogeneration by utilizing this high-temperature heat has the

potential to result in significant power generation worldwide.

We solved the optimization problem given by Equation (5.1) for a variety of differ-

ent objective functions to understand the potential improvements from a combined-

cycle design and the specifications required to acheive them. We optimized these ob-

jectives over the cycle sizes, the two free temperatures and pressures in each cycle, and

the minimum feasible temperature for heat transfer so that x = [ṁBrayton, t2,Brayton,

T4,Brayton, P2,Brayton, P3,Brayton, ṁRankine, t2,Rankine, T4,Rankine, P2,Rankine, P3,Rankine,�Tmin].
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Table 5.2: Waste heat streams for the sulfuric acid production process.
* Heat transfer coefficients are typical values for high pressure gas streams [47].

Hot stream T in

i
T out

i
F U*

(°C) (°C) (MW/K) (W/m2 K)

Burner outlet 464 207 0.130 190
Converter 1 outlet 495 447 0.133 190
Converter 2 outlet 584 427 0.136 190
Converter 3 outlet 1003 394 0.139 190

Table 5.3: Parameters used in IPOPT.

hessian_approximation ‘limited-memory’
limited_memory_max_history Number of decision variables
mu_strategy ‘adaptive’
tol 1⇥ 10�4

constr_viol_tol 1⇥ 10�6

recalc_y_feas_tol 10

We also considered a fixed sulfuric acid waste heat input. The hot stream data

for this input are given in Table 5.2. These values are derived from process data for

a wet production process with a 16 kg/s sulfur feed.

We solved these optimization problems using the solver IPOPT as described in the

Nonsmooth Optimization Section. Table 5.3 gives the solver parameters used. Most

of these parameters are adopted from Watson et al. [93]. Unlike Watson et al., we

did not change the bound_push and bound_frac tolerances from their default values

because empirically, we found that convergence improved when the initial guess was

not a feasible point.

We also specified upper and lower bounds for each of the decision variables in the

optimization problem, which are given in Table 5.4. The pressure and temperature

bounds are typical ranges for sCO
2

and steam cycles. While most of these bounds are

flexible assuming they are within the equipment specifications, several are important

for maintaining the feasibility of the system. Pressures in the Brayton system must

be greater than 7.4 MPa so the CO
2

remains supercritical. In addition, the temper-

atures in the Rankine cycle must remain a feasible temperature difference above the

available cooling sink. We also use the pressure and temperature bounds to ensure

126



Table 5.4: Bounds for decision variables used in cogeneration optimization.

Variable Units Lower bound Upper bound

ṁBrayton kg/s 0 1000
P2,Brayton MPa 18 30
P3,Brayton MPa 7.6 15
t2,Brayton °C 400 980
T4,Brayton °C 90 200
ṁRankine kg/s 0 1000
P2,Rankine MPa 2 20
P3,Rankine MPa 0.1 1
t2,Rankine °C 400 600
T4,Rankine °C 25 75
�Tmin K 20 200

the turbine inlet pressures are greater than their outlet and the turbine outlet tem-

peratures are greater than the pump or compressor inlet temperatures. Alternatively,

these conditions can be enforced through additional inequality constraints.

When optimizing over this space, we used a variety of initial guesses. Due to the

differences in parameters across objectives, we could not achieve convergence in all

scenarios with the same initial guess. With an appropriate choice of initial guess, we

converged to a local minimum in 30 to 80 iterations. We observed that if the number

of iterations exceeded these values, the solver was unlikely to converge. In these cases,

we saw the solution path continuously oscillate around the local minimum but never

reach the specified absolute tolerances.

To achieve convergence, we can either modify the initial guess or increase the

absolute tolerance. For the results given below, we chose to keep the tolerances

in Table 5.3. However, we noticed that increasing the absolute tolerance does not

typically change the design parameters that the solver converges to, and thus, this

strategy may be useful to quickly understand the types of designs that optimize the

current objective.

Using these constraints, we first maximized the power output for the given waste
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Table 5.5: Cogeneration optimization results for sulfuric acid production.

Variable Units Minimum Minimum Maximum Maximum
Cost Rankine Integrated Power Power with
Cycle Cost SA heating

ṁBrayton kg/s 0 124.4 112.6 112.6
P2,Brayton MPa - 30.00 30.00 30.0
P3,Brayton MPa - 7.60 7.60 7.60
t2,Brayton °C - 559.6 972.2 972.1
T4,Brayton °C - 90.0 90.0 101.5
ṁRankine kg/s 47.0 45.7 40.1 34.1
P2,Rankine MPa 5.18 3.90 11.93 11.96
P3,Rankine MPa 0.10 0.10 0.10 0.10
t2,Rankine °C 596.4 600.0 600.0 600.0
T4,Rankine °C 73.4 75.0 65.7 101.5
�Tmin K 164.8 20 20 20
W out MW 38.5 41.8 54.2 47.3
LCOE $/W 0.520 0.656 1.478 1.695

heat input:

W out

tot
= Wturbine,Rankine +Wturbine,Brayton +Wpump,Rankine +Wcompressor,Brayton. (5.22)

Results from solving this optimization problem are given in Table 5.5. When maxi-

mizing the power output of the sulfuric acid cogeneration system, we were not able

to find an initial guess that allowed the equality formulation in (5.2) to converge in

under 500 iterations. However, by using the inequality constraints, we converged to

a local minimum in under 50 iterations.

Maximizing the power output for the system results in a significant increase in

power output of 40.8% compared to the minimum-cost Rankine cycle. To improve the

total heat recovery, this design maximizes the high temperature and pressure drop

accross the Brayton cycle.

Given this potential for improved power output, we next mimimized the combined-

cycle LCOE to understand if the capital costs of these designs are competitive with

single-cycle approaches. For this problem, we used Equation (5.18) as our objective
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function where

C = Cturbine,Rankine + Cturbine,Brayton + Cpump,Rankine + Ccompressor,Brayton (5.23)

+ Ccondenser,Rankine + CHEX,high + CHEX,low.

Because the system with the minimum LCOE consisted of only a Rankine cycle, we

also minimized LCOE for an integrated system to provide insight on the parameters

that reduce costs for sCO
2

Brayton cycles. This optimal integrated system contains a

Brayton cycle because the size of the Rankine cycle is reduced to achieve a pinch point,

and a Brayton cycle is required to recover the remaining waste heat. Because optimal

LCOE is independent of optimal heat recovery, the choice to analyze the integrated

system is an arbitrary approach to producing a two-cycle design. Alternatively, the

cycle flow rates could be constrained to ensure both are present.

To minimize the LCOE of an integrated system, it is necessary to use the equality

formulation to constrain �Tmin = 20 K and enforce the presence of a pinch point.

However, unlike optimizing the power output, Formulation (5.2) converges for a va-

riety of initial guesses. To minimize the integrated LCOE, we also chose to remove

the minimum cold stream inlet temperature from the set of candidate pinch points,

P . Because all the power cycle temperatures are decision variables, if this Rankine

cycle temperature is included, the minimum hot and cold stream temperatures can

be selected so they are separated by �Tmin. This solution would result in an artificial

pinch point where composite curves only approach at their minimum temperatures

and could include a solution with only a Rankine cycle.

The results for both the Rankine and integrated minimum-LCOE designs are in-

cluded in Table 5.5. In the minimum-LCOE combined-cycle design, the Brayton cycle

temperatures do not approach the temperatures of the sulfuric acid waste heat because

minimizing the costs of an integrated system reduces the costs over the maximum-

power design by lowering the maximum Brayton cycle temperature. Table 5.6 shows

the difference in the cost of the cycle components between this system and the maxi-

mum power system as a percentage of the total system cost. We see that the Brayton

129



Table 5.6: Comparison of component costs for sulfuric acid cogeneration.

Component Maximum Power Minimum LCOE

Capital Cost Percent Capital Cost Percent
(M$) of Total (M$) of Total

Brayton Turbine 23.925 29.9 0.969 3.5
Brayton Compressor 3.398 4.3 3.5364 12.9
Rankine Turbine 9.712 12.1 9.299 33.9
Rankine Pump 0.481 0.6 0.154 0.6
Rankine Condenser 1.094 1.4 1.073 3.9
High temp MHEX 34.635 43.3 8.3867 30.6
Low temp MHEX 6.775 8.5 3.980 14.5

turbine is a significant portion of the total cost in the maximum-power system, and

that reductions in the turbine cost result most in the difference in the costs between

the two cycles. Because the cost of the sCO
2

turbine is temperature dependent for

an inlet temperature over 550 °C, reducing the Brayton cycle temperatures decreases

its capital cost.

In addition, we also have found another local minimum in the integrated cycle

LCOE at x = [157.0, 18.33, 15, 400, 90, 46.2, 5.99, 0.10, 600, 75, 20] with a maximum

Brayton cycle temperature at its lower bound. This result suggests that further

decreasing the Brayton cycle temperatures continues to lower its LCOE because the

cost of the high-temperature heat exchanger network decreases. Given the high cost of

the sCO
2
-specific equipment, these capital cost improvements outweigh the reduction

in power output.

With these changes, the combined-cycle cost approaches the optimal Rankine cost.

However, the reductions in power output from the maximum-power system result in

improvements of only 8.6% over the Rankine-only cycle. The pinch plots in Figure

5-3 shows the decrease in Brayton temperature and the corresponding reduction in

overall heat recovery for the minimum-LCOE integrated design.

Because sCO
2

cycles are a new technology that is primarily in the pilot stage,

there is still potential for the costs of the sCO
2

components to decrease significantly.

For the cost of the maximum-power system to reach the same LCOE of the Rankine-
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Figure 5-3: Composite curves for maximum-power (left) and minimum integrated
LCOE (right) combined-cycle systems for sulfuric cogneration. The hot and cold
composite curves are shown in red and blue, respectively. The lower maximum cold-
stream temperature for the minimum-LCOE design decreases the total heat recovery
as shown by the decrease in the magnitude of the x-axis.

only cycle, the overall cost of the sCO
2

-specific components needs to decrease by

87.7%.

Although the capital investment for the maximum-power system is higher, there

still may be economic benefits from increased power production. Thus, we also esti-

mate the difference in net present value (NPV) over time between the Rankine and

combined-cycle systems. For these calculations, we multiply the capital costs from

our LCOE by an additional factor of 1.25 to account for installation, piping, and

wiring costs [42]. We also assume yearly operating and maintenance costs of 2% of

the capital costs of the turbines, compressors, and pumps, and 4% of the heat ex-

changers [42]. We choose an installation period of two years and divide the capital

and installation costs evenly between them. Then, for a AAA corporate bond interest

rate of i = 0.03, the NPV of the system at year n is given by:

NPV =
nX

t=0

Rt

(1 + i)t
, (5.24)

where Rt is the cash flow over year t.

We first calculated the NPV assuming the electricity produced can be sold at

the average US electricity price of about 0.10 $/kWh [87]. The results from this
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calculation are shown in Figure 5-4. Although the costs for both combined cycles

are initially higher than that of the Rankine cycle, the profits exceed those of the

Rankine cycle after 6 years for the minimum-LCOE combined system and 12 years

for the maximum power system. And at 15 years after beginning construction, the

NPV of the maximum power system begins to exceed that of the minimum-LCOE

design.

Figure 5-4: Plots of the NPV of the sulfuric acid cogeneration designs, assuming
electricity prices of 0.10 $/kWh (left) and 0.20 $/kWh (right).

Since energy prices can vary widely by region, the benefits of a combined-cycle

system may be even more pronounced in regions with expensive or variable power

sources. For instance, the average electricity price in Europe is more than double

the average for the United States [35]. Thus, we compared the NPV of these designs

for an electricity price of 0.20 $/kWh. These results are also included in Figure 5-4.

Now, the minimum-LCOE NPV exceeds the Rankine cycle NPV at only 4 years. The

maximum power NPV becomes larger than the Rankine system and the minimum-

LCOE design at 6 and 7 years, respectively. By the 15-year mark, the combined-cycle

NPVs exceed the Rankine system by 7 and 20%, respectively.

There is potential to increase the NPV for a given project duration even further

by calculating the maximum NPV designs using our optimization approach. Thus, we

used Formulation (5.2) to maximize NPV in Equation (5.24) for a variety of project

durations and an electricity price of 0.20 $/kWh. These results are given in Table

5.7. Figure 5-5 compares the optimal NPV for each project duration to the NPV of
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minimum-capital cost Rankine and maximum-power combined cycle designs.

As expected, the optimal-NPV designs result in improvements over the other

designs that do not account for the project duration. In addition, for each project

length we considered, the optimal-NPV designs are all combined-cycle systems. The

NPV improvements for these combined-cycle designs exceed at least 10% over the

minimum-capital cost design even for project durations of only 5 years. These results

demonstrate that although combined-cycle designs required larger initial investments,

they improve the project outcome even for short-duration projects.

Figure 5-5 illustrates how the optimal NPV values transition between the NPV of

the Rankine-only design at the start of operation and the maximum-power NPV for

long project durations. The design parameters in Table 5.7 also transition between

those of a minimum-LCOE and a maximum-power design. In particular, the tem-

perature of the Brayton turbine inlet increases as the project length increases and

the benefits of improved electricity output outweight the increase in turbine cost. As

a result, we also see the improvements in the NPV over the Rankine-only designs

increase as the project duration increases and the revenue from the electricity pro-

duction further dominates over the capital costs. We see that for a project duration

of over 15-years, our combined-cycle approach results in substainal increases in profit

exceeding 23%.

We also used our method of analysis to assess the tradeoffs between using waste

heat sources for power production versus heating process cold streams. In some

sulfuric acid production processes, waste heat from the SO
2

conversion process is

used to provide heat to the recycled sulfuric acid stream. Data for this cold stream is

given in Table 5.8. Including this data in the set of cold streams C, we repeated the

design process above to find the parameters that maximize the power output when

there is process heating. The results from this optimization are included in Table 5.5.

To compare the NPV for this design, we introduce an external hot utility with

a cost of 100 $/kW/year [20] to the systems without internal heating. The results

from this calculation are included in Figure 5-6. They show that the total capital

cost of the system with process heating is nearly as high as the capital costs of the
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Table 5.7: Maximum NPV results for SA production.

Variable Units Project Length
5 years 10 years 15 years

ṁBrayton kg/s 120.0 117.9 115.0
P2,Brayton MPa 30.00 30.00 30.00
P3,Brayton MPa 9.16 9.36 9.01
t2,Brayton °C 684.6 843.2 895.0
T4,Brayton °C 90.0 90.0 90.0
ṁRankine kg/s 42.7 41.5 41.1
P2,Rankine MPa 11.26 12.73 12.84
P3,Rankine MPa 0.10 0.10 0.10
t2,Rankine °C 600.0 600.0 600.0
T4,Rankine °C 75.0 75.0 75.0
�Tmin K 20.6 20.0 20.0
NPV M$ 167.3 486.3 768.6
Improvment over % 11.9 20.2 23.0
Rankine-only

Table 5.8: Cold stream data for the sulfuric acid production process.

Cold stream tout

j
tin
j

F U
(°C) (°C) (MW/K) (W/m2 K)

Burner outlet 390 204 0.118 190

system with external heating. These costs are comparable because the additional

heat exchanger costs for internal heating negate the cost decreases from a smaller

power generation system. Thus, it is not worth the decrease in revenue from using

waste heat for heating instead of power generation. These results suggest that for

intra-process heat integration to be competitive with heat recovery for just electricity

production, the system with process heating must significantly decrease the capital

costs of the design.

5.3.4 Cement Cogeneration

The next case study optimizes the design of the Brayton-Rankine power system for

heat recovery from a cement production plant. Because cement production is very

energy and heat intensive, it is a good candidate for power cogeneration, and cogen-
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Figure 5-5: Plot comparing the NPV of the sulfuric acid cogeneration designs to the
optimal values, assuming an electricity price of 0.20 $/kWh.

eration systems have been implemented for a number of cement plants, primarily in

Asia [3]. As for sulfuric cogeneration systems, these current heat recovery systems

for cement production use steam Rankine cycles that only capture low temperature

heat from the kiln preheaters and the clinker cooler exhaust. However, the raw ma-

terial in this process must reach temperatures of over 1000 °C for clinker conversion.

As a result, waste heat recovery from cement production has been suggested as an

application for sCO
2

Brayton cycles to utilitze this high-quality heat [96].

We consider the waste heat streams in Table 5.9, given in Boldyryev et al. [15] for a

plant with a 57 t/h production rate. As for the sulfuric acid case study, we optimized

the Brayton-Rankine system for this heat source to both maximize the power output

and minimize the LCOE. Once again, the minimum-LCOE design consists of only

the Rankine cycle, so we also minimized the LCOE for an integrated system with

�Tmin = 20 K. For these optimizations, we used the solver parameters included in

Table 5.3 and the bounds in Table 5.4, although we increased the upper bound for

T2,Brayton to 1430 K. As before, we use the inequality Formulation (5.3) to maximize

power and the equality constraints in Formulation (5.2) to minimize the integrated

LCOE, and we see similar convergence behavior. The resulting design parameters

for each system are given in Table 5.10 and a comparison of the capital costs of the
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Figure 5-6: Plot comparing the NPV of the sulfuric acid cogeneration designs with
internal and external process heat sources assuming electricity prices of 0.20 $/kWh.

components are in Table 5.11. The pinch plots for the two integrated designs are

shown in Figure 5-7.

Overall, these results show similar behavior to those in the sulfuric acid case study.

The high costs of the sCO
2

Brayton cycle components prevent the combined-cycle

capital costs from being competitive with the Rankine-only system. In particular,

the cost of the high-temperature sCO
2

turbine dominates the maximum-power sys-

tem, and the minimum-LCOE design reduces this cost by significantly decreasing the

Table 5.9: Waste heat streams for the cement production process from Boldyryev
et al. [15].
* Heat transfer coefficent for the cement clinker is taken from Cheng et al. [23]

Hot stream T in

i
T out

i
F U

(°C) (°C) (kW/K) (W/m2 K)

Gases to raw mill 370 105 13.35 190
Hot gases from kiln 860 380 40.97 190
Gasses to cooling tower 370 175 11.68 190
Gases to coal mill 370 90 0.73 190
Clinker after kiln 1450 60 15.00 73*
Hot air to cement grinding 270 105 8.86 190
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Figure 5-7: Composite curves for maximum-power (left) and minimum integrated
LCOE (right) combined-cycle systems for cement cogneration. The hot and cold
composite curves are shown in red and blue, respectively.

maximum heat intake temperature for the power system. As a result, even though

the minimum-LCOE integrated design approaches the LCOE for the Rankine system,

the power improvements are small.

Although the maximum-power system improves power output over the Rankine

cycle by 14.7%, these improvements are less significant than for sulfuric acid cogener-

ation. This difference is likely due to the relatively lower heat loads that are released

at high temperatures during cement production. Because a high proportion of the

cement production waste heat is at lower temperatures, there is less heat available to

reuse between cycles, and the benefits from a large Brayton cycle decrease.

Even for a system with high temperature waste heat, there may not be power

improvements from the addition of a Brayton cycle. For example, in some cement

production systems, it is also possible to include a lower-temperature combined waste

stream with the residual hot gasses [15]. However, with the addition of this stream,

it is no longer feasible to include a Brayton cycle. The Rankine cycle necessary to

capture the low-temperature heat is now large enough that it requires the entire waste

heat source.

We also repeated the NPV calculations for the cement cogeneration designs. The

results assuming both a 0.10 $/kWh and 0.20 $/kWh price of electricity are shown in

Figure 5-8. Because the power improvements are lower for cement cogeneration, for
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Table 5.10: Cogeneration optimization results for cement production.

Variable Units Rankine Only Maximum Minimum
Power Integrated Cost

ṁBrayton kg/s 0 24.4 23.2
P2,Brayton MPa - 25.2 30.00
P3,Brayton MPa - 8.00 8.70
t2,Brayton °C - 1020 572.0
T4,Brayton °C - 90.0 90.0
ṁRankine kg/s 15.3 13.1 14.3
P2,Rankine MPa 6.24 11.30 6.12
P3,Rankine MPa 0.10 0.10 0.10
t2,Rankine °C 600.0 600.0 600.0
T4,Rankine °C 75.0 25.0 40.0
�Tmin K 69.1 20 20
W out MW 12.9 14.8 13.1
LCOE $/W 0.828 1.823 1.073

Table 5.11: Comparison of component costs for cement cogeneration.

Component Maximum Power Minimum LCOE

Capital Cost Percent Capital Cost Percent
(M$) of Total (M$) of Total

Brayton Turbine 11.685 43.4 0.381 2.7
Brayton Compressor 5.567 20.6 5.612 39.8
Rankine Turbine 1.682 6.2 1.714 12.2
Rankine Pump 0.196 0.7 0.106 0.8
Rankine Condenser 0.552 2.1 0.552 3.7
High temp MHEX 4.152 15.4 2.935 20.8
Low temp MHEX 3.132 11.6 2.827 20.1
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a 0.10 $/kWh electricity price, the NPV of the combined cycle designs do not surpass

the stream Rankine system in a 15-year period. For 0.20 $/kWh, the NPV of the

maximum power design now exceeds the other systems after 9 years. However, at 15

years, the percent improvement over the Rankine cycle is still lower than the sulfuric

acid combined-cycle system at 5%.

By optimizing the NPV for an electricity price of 0.20 $/kWh, we can increase the

improvements to 6.6% for a 15-year project and we can reach improvements of 5% for

a shorter 10-year project. The results for these optimizations are given in Table 5.12,

and Figure 5-9 compares the optimal NPV for each project duration to the NPV of

the minimum-capital cost Rankine and maximum-power combined-cycle designs.

As for sulfuric acid cogeneration, the improvement in NPV increases as the project

length increases. Specifically, the temperature of the Brayton turbine inlet increases

to increase the power output as the benefits of improved electricity output outweight

the increase in turbine cost. However, because the improvements in power output

from a combined cycle are smaller for cement cogeneration, our results show that the

combined-cycle system is not optimal for project durations under 10 years. For a 5-

year project, a Rankine-only design still optimizes the NPV. This outcome highlights

the importance of considering project duration when selecting a system design and

suggest that the project must reach a certain duration threshold before combined-

cycle designs become the optimal choice.

Figure 5-8: Plots of the NPV of the cement cogeneration designs, assuming electricity
prices of 0.10 $/kWh (left) and 0.20 $/kWh (right).
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Table 5.12: Maximum NPV results for cement production.

Variable Units Project Length (years)
5 10 15

ṁBrayton kg/s 0 12.1 11.9
P2,Brayton MPa - 30.00 30.00
P3,Brayton MPa - 7. 85 7.60
t2,Brayton °C - 737.2 810.2
T4,Brayton °C - 90.0 90.0
ṁRankine kg/s 14.8 14.5 14.5
P2,Rankine MPa 12.6 12.73 12.87
P3,Rankine MPa 0.10 0.10 0.10
t2,Rankine °C 600.0 600.0 600.0
T4,Rankine °C 75.0 75.0 75.0
�Tmin K 62.8 20 20
NPV M$ 48.3 136.7 212.9
Improvment over % 2.9 5.2 6.6
Rankine

5.4 Discussion

This work presents two novel methods that apply approaches in heat integration to

real systems. Our methods are uniquely able to:

1. Optimize the design of power systems for variable-temperature heat sources by

considering all potential methods for heat recovery, including transfer to any

power cycle, heat cascading between power cycles, and intra-cycle recuperation,

2. Estimate the cost of heat integration networks whose equipment requirements

vary by temperature without needing to determine the full network design.

In addition to being the only methods in the literature designed to solve these prob-

lems, our approaches also use nonsmooth equations to improve scaling so the resulting

optimization formulations remain a tractable size for large systems.

We applied these new methods to design combined Brayton-Rankine cogenera-

tion systems for two different waste heat sources. In both cases, we saw a significant

increase in power production through the addition of the high-temperature Brayton

cycle. However, we found that the current costs of the specialized sCO
2

components
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Figure 5-9: Plot comparing the NPV of the cement cogeneration designs to the opti-
mal values, assuming an electricity price of 0.20 $/kWh.

required for the combined-cycle system make the LCOE of these systems not com-

petitive with a single Rankine cycle design. Nevertheless, we also show that in regions

with higher energy costs, high-power combined-cycle systems can improve long-term

profits by over 20%.

Comparing our optimal designs for the two different waste heat sources, we see

that adding a high-temperature cycle is more beneficial when the portion of the waste

heat at these temperatures is larger. If too large a portion of the waste heat is at

low temperatures, it may not even be feasible to design a fully integrated system

with the additional Brayton cycle. However, if most of the waste heat is high-quality,

incorporating multiple power cycles can result in significant cost and energy savings.

We also use our methods to determine how best to allocate waste heat sources

between heating process cold streams and producing electricity. We show that for

the heating requirements of our sulfuric acid cogeneration case study, the additional

heat exchanger costs are too large to justify decreasing the power output of the cycle

design. These results show that for intra-process heat integration to be competitive

with heat recovery for just electricity production, the system with heat integration

must significantly decrease the captial costs of the design.

Although, we focused our case studies on analyzing the potential of using simple
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Brayton cycles for high-temperature heat recovery, our approach is generalizable to

any type of power cycle. Our approach automatically considers recuperation within

the cycle, but we can extend our process models to describe other complex cycle

designs including recompression or stream splitting [65].

We can also incorporate additional power cycles with different working fluids. We

particularly see potential for our approach to be used to design cogeneration systems

with organic Rankine cycles. Organic Rankine cycles have been widely proposed as

bottoming cycles for heat recovery because they can reach lower temperatures than

steam Rankine cycles [64]. However, no other approach has optimized their design

for low-temperature heat recovery from variable temperature sources.

We are particularly interested in using organic Rankine cycles in cogeneration

designs for recovering waste heat from Haber-Bosch ammonia production processes.

Ammonia is the second most produced industrial chemical, and Haber-Bosch, the

primary production method, accounts for over 1.5% of the world’s fossil fuel use

[22]. As a result, these processes offer significant potential for waste heat recovery.

However, the waste heat temperatures are lower than those in our case studies, making

it impossible to achieve a fully integrated system with the addition of a Brayton cycle.

As a result, an organic Rankine cycle combined with a steam Rankine cycle and/or a

sCO
2

Brayton cycle may be a promising approach for maximizing heat recovery from

this process.

Overall, we believe that the flexibility of our approach allows for the design of

cogeneration systems for a wide variety processes whose waste heat is not currently

recovered.

The primary challenge for this approach is the current limitations in nonsmooth

optimization methods. While we were able to obtain local minima using the LD-

derivative approach for each system we considered, at times, achieving convergence

required careful choices of initial guess. In addition, we used a local optimization

approach, which means that there may be better solutions than those we found. Bon-

gartz and Mitsos [16] show that power cycle design problems are particularly prone to

having multiple suboptimal local minima, and in practice, we also encountered these
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for our system.

We suggest that future work focus on applying deterministic global optimization

methods to solve the nonsmooth optimization formulations. One approach could be to

adopt the method of Khan et al. [56] who develop and apply differentiable McCormick

relaxations to solve nonsmooth optimization problems using continuous branch and

bound. This approach can take advantage of existing branch and bound algorithms

and converges to a global solution. To compute upper bounds in this approach, we

could quickly find feasible points using nonsmooth equation-solving algorithms or

local optimization with large absolute but small constraint tolerances. We think that

this global optimization approach can improve the robustness of our cogeneration

design method and make it even easier to design for a wide range of heat sources and

power cycles.
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Chapter 6

Conclusions

This thesis presents three contributions to the field of process integration. These con-

tributions use nonsmooth functions to develop methods for solving process integration

problems that are scalable, flexible, and efficient.

First, we extend a previous nonsmooth approach for heat integration to develop a

generalized integration operator that can integrate any resource with a single limiting

quality. This operator uniquely

• Only requires two equations per integrated resource, regardless of the number

of sources and sinks in the system,

• Uses new methods in nonsmooth equation-solving to easily determine resource

targets or any process variables, including qualities that require sorting,

• Can be combined with process models and other operators to simultaneously

integrate multiple resources,

• Automatically identify and solve threshold problems where the source or sink

utility is zero and a pinch point may be infeasible.

Thus, we have formulated a readily adaptable approach that significantly reduces

problem complexity and can provide computationally practical solutions to a wide

variety of new integration problems to improve resource use and sustainability in

chemical processes.
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Our next contibution was to adapt our generalized integration operator so that

it can address more complex cases in which mass or water integration is limited by

multiple components. The multicomponent operator can be solved give a target fresh

solvent flow rate that is a lower bound on the minimum attainable flow rate for

the system and incorporates concentration scaling techniques to account for different

mass transfer relations within the operating units and to increase the tightness of the

lower bound.

Like the general integration operator, our multicomponent approach

• Retains only two equations regardless of the size and complexity of the sys-

tem, which now includes both the number of solvent streams, the number of

components present, and the mass transfer assumptions in the problem,

• Can be solved for any process variables, including component concentrations

that are arguments of the nonsmooth scalings.

Finally, we develop methods to apply these nonsmooth integration approaches to

the design of variable-temperature cogeneration systems. Our methods are uniquely

able to:

1. Optimize the design of power systems for variable-temperature heat sources by

considering all potential methods for heat recovery,

2. Estimate the cost of heat integration networks whose equipment requirements

vary by temperature without needing to determine the full network design,

3. Remain tractable for large systems with numbers of constraints that either

remain the same or scale linearly with the number of process streams or sub-

streams.

Each of these projects provide a tool to address a key type of integration prob-

lem, and together, they increase the applicability of computationally efficient process

integration methods to a wide range of chemical processes. We demonstrate the appli-

cation of these approaches using a variety of case studies. These applications include
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carbon-constrained energy planning, hydrogen conservation networks, simultaneous

mass and water integration, and water recovery from petroleum refining with multiple

contaminants. In addition, we designed improved cogeneration systems for sulfuric

acid and cement production processes hat can increase power production by over 40%

and long-term profits by over 20%. The results from these examples show the flex-

ibility and scalability of our approaches and the breadth of improvements they can

provide to both established systems and new designs.

Therefore, we believe that process integration can be a key tool in transitioning to

a sustainable chemical industry with a decreased environmental impact. Developing

tools, like the nonsmooth integration operators in this thesis, that can handle more

complex types of integration and larger systems will increase the number of available

opportunities for resource recovery.

We recommend that future work with these methods focus on making them more

robust and accessible to design engineers. These steps could include

1. Packaging and distributing code for the general integration operator: Because

the general integration operator is widely applicable and uses well-established

methods for solving nonsmooth equations, it is a good candidate to distribute

and reduce the barrier for implementing and applying nonsmooth approaches.

2. Implementing deterministic global optimization methods to solve nonsmooth

optimization formulations: We believe applying the methods discussed in Chap-

ter 5 will make it easier to perform simultaneous optimization and integration

using our nonsmooth approaches by being robust to different initial guess and

ensuring the best possible solution.

3. Continuing to extend nonsmooth methods to more complex integration types:

While the approaches in this thesis cover a wide array of integration problems,

there are still a few key areas that are out of the scope of this work. We

suggest beginning with multicomponent water integration to ensure our nons-

mooth methods are applicable to real processes in which flow rates vary within

operating units.
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As these nonsmooth methods are implemented and improved, they can be ex-

tended to more problems across all fields of engineering. By compactly describing

properties and phenomena that vary by physical regime, nonsmooth equations can

significantly reduce the complexity and improve the efficiency of modeling and op-

timization approaches. This thesis demonstrates this potential for nonsmooth ap-

proaches to improve process and system design and to increase the scope of cost

savings, waste reduction, and other benefits by solving problems on a scale that was

previously impossible.
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