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Fano cone is K-polystable if and only if it is uniformly K-stable. Together with earlier works, this
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Chapter 1

Introduction

Throughout this paper, we work over the field C of complex numbers. The concept of K-stability
was first introduced by Tian and later formulated algebraically by Donaldson, as a criterion to char-
acterise the existence of Kahler-Einstein metrics on Fano manifolds. It was defined by looking at
the generalized Futaki invariant of all possible normal C*-degenerations (called test configurations)
of a Fano manifold X. Later, Fujita [Fuj19], Chi Li [Lil7] and Blum-Jonsson [BJ17| developed
a valuative criterion of K-(semi)stability, namely the d-invariant. Liu-Xu-Zhuang [LXZ21] proved
the higher rank finite generation Conjecture. Together with [BBJI8| and [LTW19], it implies the

Yau-Tian-Donaldson Conjecture for general Fano variety.

Log Fano cone singularity A Riemannian manifold is called Sasakian if its Riemannian cone is
Kahler. If, in addition, the cone is Ricci-flat, the manifold is called Sasakian-Einstein. Collins and
Székelyhidi [CS19] introduced the K-(semi)stability of log Fano cone singularities to characterise
the existence of Sasakian-Einstein metric on Fano cones. Later Li-Xu [LX18| gave a purely algebro-
geometric definition.

Given a normal affine variety X and a torus T'= (C*)" acting on X. We say the action is good

if it is effective, and there is a unique closed point x € X lies in the orbit closure of any 7- orbit.
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We shall call x to be the vertex point of X.

Let N = Hom(C*,T') be the co-weight lattice and M = N* the weight lattice. We have a
weight decomposition R = ®aepR, where A = {a € M | R, # 0}. We use 0¥ C My to denote

the cone generated by A over Q. The dual of oV is the Reeb cone
th = {£ € Ng | {a,&) >0 for any 0 # o € A}

Definition 1.0.1. Let (X, D) be an affine klt pair with a good T-action. For a fixed & € t, we

call the triple (X, D, &) a klt singularity with a log Fano cone structure that is polarized by &o.

Following the Q-Fano case, we can also define the notion of (special) test configurations of log
Fano cone singularities similarly. Given a test configuration (X, D, &y;n), the Futaki invariant is
defined as Fut (X, D, &y;n) = (D,n;(;l) (&), here \751('0) is the normalized volume of a valuation
v (see chapter 2 for more details). Then we can define the K-(semi)stability of log Fano cone
singularity similarly.

If & is rational, i.e. & generates a one dimensional torus, then quotient by T = (&), we
get a special test configuration (), ) of the log Fano pair (Y, FE) = ((X, D) — {z})/(&), and its
Futaki invariant is just a rescaling of the Futaki invariant of (), £). Hence the definition here is a

generalization of K-stability of Q-Fano variety (i.e. the rank 1 case).

Definition 1.0.2. Let (X, D, &) be a log Fano cone singularity, the delta invariant (also called
stability threshold) is defined as

A
S(X.D,&) = inf A
veVaI)T(,z S(X,D)(U)

where Val?x is the set of all T-equivariant valuations centered at x with finite log discrepancy,
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A(x,py(v) is the log discrepancy of v,

A(XvD) (Wt§0

Sexa(v) = “ERES ) /0 vol(F, RV)dt

We also define the beta invariant for every valuation v € Val)T(’m,

B(v) = Bx,pg)(v) == Ax.p)(v) — Six,p)(v)

Here F, is a filtration on R induced by a T-equivariant valuation v, and vol(F,R®) comes

naturally from the calculation of the volume. See Definition and Proposition for details.

Theorem 1.0.3. Let (X, D, &) be a log Fano cone singularity, then it is K-semistable if and only
if 6(X, D, &) > 1, or equivalently S(v) > 0 for all v € Val?w.

When & is rational, and (Y, E) = ((X, D) — {z})/(&), the delta invariant we defined here is
the same as the delta invariant defined in [Fuj19] and [BJ17]. Hence this is a generalization of the
result in the log Fano case.

The idea is to consider two series of valuations on the (speical) test configuration (X', D, &y, )
of the log Fano cone (X, D,&,). A series of valuations wte, on the central fiber X, and a series
of valuations w, on the general fiber which is isomorphic to X. They have the same normalized
volume \7o\l(wt§€) = ;c?l(we).

On the central fiber Xy, we have - |€:0\7(;l(wt§€) = Cy-Fut(X, D, &). On X we have - |E:g\7(;1(w6)
Cy- B(E), where C, Cy are positive constants. The S function in Definition comes from com-
puting %|E:0x751(w6). This explains why the delta invariant (or equivalently the beta invariant)

could be used as a criterion for K-(semi)stability.

The Delta invariant via filtrations We present another approach to define the delta invariant

in Chapter 4. That is to use the Okounkov body. Given a valuation v € Val?x, it induces a
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filtration on R by F R, = {f € Ra | v(f) > A}

For any linearly bounded filtration F on R (see chapter 2.4), we can define the functions S,,
and 0,, by looking at the jumping numbers of the filtration. More precisely, the jumping numbers
are

0< a1 <+ < Gapn,

defined for oo € A by
Qo j = Qo j(F) = inf{\ € R, | codim F*R, > j}

for 1 <j < N,, where N, = dim¢ R,. We define the rescaled sum of the jumping numbers:

We say an effective divisor B is an a-basis type divisor, if there exists a basis sq,..., sy, of Rq,

such that N
B — Zi:al{si = O}
<Oé, £0>NCV

Then we define
0o = inf{lct(X, D; B) | B is an a-basis type divisor }

for any o € A, here lct(X, D; B) is the log-canonical threshold, see [CS0§].

+oo
For any integer m, we define R, := @ R,, so R = @ R,,. Write N, := dim¢ R,,
m—1<{a,£o)<m m=0

and N,, :=dim¢ R,,

Notice that our definition of R,, is different from the definition in [Wu2l|. If & is rational
and that (X, D) is a cone over (Y, E), then up to rescaling of &, R,, defined above equals to
H°(Y,m(—Ky — E)). This matches with the definition of R, in [BJ17] and [LX20].
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For R,, we define the jumping numbers, S,,(F), m-basis type divisor and J,, similarly.

1
m

for o« € A,m € N, and
Om = inf{lct(X, D; B) | B is an m-basis type divisor }.

Finally we have

Theorem 1.0.4. The limit lim,, o, 0,, exists and equals to §(X, D, &) we defined in Definition

[1.0.3. Furthermore,
. AX D(U) . A(OrdE)
( ) 750) 1% SX,D(U) HEl S(ordE)

where E runs through all the T-invariant prime divisors over X.

Higher Rank Finite Generation Conjecture

Definition 1.0.5. A filtration F on R gives the associated graded ring grr R := @acr Oacrs,
gr} R,, where gr} Ry = F Ry/ Unsa FY¥R,. We use F, to denote the filtration induced by a

valuation v.

Theorem 1.0.6 (Higher Rank Finite Generation Conjecture). Let (X, D, &) be a log Fano cone
singularity of dimension n, X = Spec(R). Assume that 6(X, D, &) < ”T“ Then for any valuation
v that computes 6(X, D, &), the associated graded ring grz R is finitely generated.

We follow the idea in [LXZ21]. The key observation is that any valuation v computing
§5(X, D, &) < ™ is an lc place of a Q-complement I', and that complement satisfies some further

n

technical conditions (see special complement in Definition |6.1.1)). Moreover, any divisorial lc place
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w of the complement induces a weakly special degeneration. If finite generation holds for a quasi-
monomial valuation v, then for any valuation w that lies in the minimal rational affine subspace
of the dual complex DMR(X, D + I') containing v that are close enough to v, the central fibers
of the induced degenerations would be isomorphic to each other, so they are bounded. A key fact
is that the inverse is also true.

So we need to show that, given an monomial lc place of a special complement, there exists a
neighborhood of v in the rational affine subspace of the dual complex, such that the degenerations
corresponding to the rational points have bounded central fibers. This is done by giving a positive
lower bound of the alpha-invariant.

Notice that this statement does not depend on &, so we may assume & is rational and take the
quotient by (&y). Therefore we need to generalize the estimate of the alpha-invariant in [LXZ21]
to the toroidal case.

There are several remarkable corollaries of the finite generation result.

Theorem 1.0.7 (Optimal Destabilization Conjecture). Let (X, D, &) be a log Fano cone singu-
larity of dimension n. Assume that 6(X, D, &) < "T“ Then 6(X, D, &) € Q and there exists a

divisorial valuation ordg over X that computes 6(X, D, &).

Theorem 1.0.8 (Yau-Tian-Donaldson Conjecture). A log Fano cone singularity (X, D, &) is
K-polystable if and only if it is uniformly K-stable. Furthermore, A log Fano cone singularity
(X, D, &) admits a weak Ricci-flat Kahler potential if and only if it is K-polystable.

Chi Li [Li21] gives a different approach to prove the Yau-Tian-Donaldson Conjecture for Fano

cone, using the correspondence with g-weighted stability.
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Chapter 2

Preliminaries

2.1 Log Fano Cone Singularity

Assume X = Specq(R) is an affine variety with Q-Gorenstein klt singularities. Denote by 7" the

complex torus (C*)". Assume X admits a good T- action in the following sense.

Definition 2.1.1. Let X = Spec(R) be a normal affine variety. We say that a T- action is good
if it is effective and there exists a unique closed point x € X lies in the closure of any orbit. We

call z the vertex of X.

Let N = Hom(C*,T) be the co-weight lattice and M = N* be the weight lattice. We have the

weight decomposition

R =P R, where A = {a € M | R, # 0}

acl
The action being good implies Ry = C, which will always be assumed in the below. An ideal

a is called homogeneous if a = @,epa N R,. Denote by 0¥ C Mg the cone generated by A over Q,
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which is called the weight cone (or the moment cone), is the same as the following set
th ={ € Ng|{a,&) >0forany 0 #a € A}

Definition 2.1.2 (Reeb cone). The above set t is called Reeb cone. A vector £ € t is called a

Reeb vector. We define rank(¢) to be the dimension of the subtorus 7; generated by &.
We recall the following structure results for any 7T-varieties.

Theorem 2.1.3 (JAHO06]). Let X = Spec(R) be a normal affine variety and suppose T = Spec(C([M]))
acts effectively on X with weight cone 0¥ C Mg. Then there exists a normal semiprojective variety
Y such that m: X — Y 1s the good quotient under T-action and a polyhedral divisor ® such that

there is an isomorphism of graded algebras:

R~ H(X,0x)= €P H(Y,0(D(u))) =: R(Y,D).

ucoVnNM

In fact, X is equal to Spece(Bucovrnr HO (Y, O(D(u)))).

Theorem 2.1.4 (|[LX18]). Assume a T-variety X is determined by the data (Y,0,D) such that Y
18 projective, o is a maximal dimension one cone in Ng and 2 is a polyhedral divisor.
1. For any T-invariant quasi-monomial valuation v, there exists a quasi-monomial valuation

v over Y and £ € Mg such that for any f - x* € R, we have :

o(f - x") =vO(f) + (u,€).

2. T-invariant divisors on X are either vertical or horizontal. Any horizontal divisor is de-
termined by a divisor Z on'Y and a vertex v of ®, and will be denoted by D(z.y. Any vertical

divisor is determined by a ray p of o and will be denoted by E,,.
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3. Let D be a T-invariant vertical effective Q-divisor. If Kx + D is Q-Cartier, then the log
canonical divisor has a representation Kx + D = 7 H + div(x™™) where H = ), az - Z is a
principal Q-divisor on'Y and ug € Mg. Moreover, the log discrepancy of the horizontal divisor E,,
s given by:

A(X,D) (Ep) = <U(), np>a

where n, is the primitive vector along the ray p.

Using the above structure theorem, we have the following (see |[LX18||Lemma 2.16, Lemma

2.18] )

Proposition 2.1.5. Any Reeb vector £ gives a quasi-monomial valuation on X
wte : f o> min{(a, &) | f = fa, fa # 0}

The rational rank of wte is rank(&), the center of wte is x, and the log discrepancy of wte is

giwen by Ax p)(wte) = (uo, §).

Definition 2.1.6. Using the above notation, for any n € tg, we define:
Ax,p)(n) = (uo,m).

Definition 2.1.7 (log Fano cone singularity). Let (X, D) be an affine klt pair with a good torus
action, where D is a T-invariant vertical divisor. For a fixed & € t3, we call the triple (X, D, &)
a klt singularity with a log Fano cone structure that is polarized by &. We denote T" to be the

torus generated by &.
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2.2  Valuations and normalized volume

Let X be a normal variety. A real valuation of its function field K (X) is a nonconstant valuation
map v : K(X)* — R which is trivial on C.

We say a valuation is centered at a scheme-theoretic point & = cx(v) if v > 0 on Ox ¢ and
v > 0 on the maximal ideal myx,. Let Valx, denote all the valuations centered at the closed
point x € X. If we have a torus T' acting on X, we use Valff to denote all valuations v € Valy
that are T-equivariant. For the purpose of this paper, we only care about the valuations that are

T-equivariant.

Definition 2.2.1. If Y — X is a proper birational morphism, with Y normal, and £ C Y is a
prime divisor (called a prime divisor over X), then E defines a valuation ordg : C(X)* — Z in
Valy given by order of vanishing at the generic point of E. Any valuation of the form v = cordg

with ¢ € Ry will be called divisorial.

Definition 2.2.2 (quasi-monomial valuation). Let 7 : Y — X be a birational morphism where
Y is normal. Let n € Y be a scheme-theoretic point such that Y is regular at n. For a regular
system of parameters (yi,...,¥.) of Oy, and a € R%;, we define a valuation v, as follows. For
f € Oy, — {0}, we may write f in 6;7 =~ k(M yr,. -,y as f = Zﬁezgo cpy®, where cg € K(n)
and y? = y7 P with 8= (By,...,5). We set .

va(f) == min{(a, B) | 5 # 0}.

A valuation is called quasi-monomial if v = v, for some 7 : Y — X,n,(y1,...,y,) and a. It is
proven in [ELS03| that a valuation is quasi-monomial if and only if it is an Abhyankar valuation,
i.e. v satisfies trdeg(v) +rat.rk(v) = dim X where trdeg(v) is the transcendental degree of v. From

the above defition, we have that for ant f € Oy, — {0}, the function o — v, (f) is piecewise
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rational linear and is concave, i.e.

Uta1+(1—t)oz2(f> >t qu(f) + (1 - t) ) Uoc2(f)

for any 0 < ¢ < 1 and any a;,a; € RY,. In particular, for any non-trivial effective Q- Cartier
divisor D (resp. graded sequence a, of ideals) on X, the function o +— v, (D) (resp. a — v4(a,))
is piecewise rational linear and concave. If, in addition, 7 : (Y, E = Y.\_|)E;) — X is a log smooth
model where (y; = 0) = E; for 1 < i < r as an irreducible component of E, then we denote
the set {v, | @ € RLy} by QM, (Y, E). We also set QM(Y, E) = U, QM, (Y, E) where 1 runs
through all generic points of N;erE; for some non-empty subset I C {1,...,ll}. Notice that if v is
a quasi-monomial valuation and ¢ is its rational rank, then the log resolution 7 : ¥ — X can be

chosen (by passing to a further blowup) such that v € QM,, (Y, E) for some codimension ¢ point 7.

Given a valuation v € Valx, and any integer m, we define the associated valuation ideal

am(v) = {f € Oxa | 0(f) > m}.

Definition 2.2.3. Let X be an n-dimensional normal variety. Let x € X be a closed point. We

define the volume of a valuation v € Valx , as

volx . (v) = lim sup HOxa/tm(v))
U, mn™/n!

Definition 2.2.4. Let (X, A) be a kit log pair. Consider a proper birational morphism from a
normal variety p: Y — X, and a prime divisor £ C Y. We define the log discrepancy function of

valuations A(x a)(ordg) to be:

Axay(ordg) := 1+ ordp(Ky — p"(Kx + A))

The log discrepancy function can be naturally extended to a lower semicontinuous function
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Ax.a @ Valxy — (0,400] extending A(x ay(ordg) that is homogeneous of order 1. See [BAFFU15]

for details.

We use vy,4, to denote the trivial valuation, and set
Valy := (Val%)" = {v € Valk | Ax p(v) < 400 and v # vy, }-

If (X, D) is lc, then v € Valy is an lc place of (X, D) if Ax p(v) = 0. If (Y, E) is a log smooth
model over an lc pair (X, D) satisfying Supp(Fz(7) + 7, ' D) C E, then we know that the set of
all lc places of (X, D) coincides with QM(Y, ') where E’ is the sum of irreducible components E;
of F satisfying Ax p(E;) = 0. In particular, anuy lc place of (X, D) is a quasi-monomial valuation

in QM(Y, E).

Definition 2.2.5 (|Lil18]). Let (X, A) be an n-dimensional klt log pair. Let x € X be a closed

point. The normalized volume function of valuations @(X,A)J : Valx, — (0, +00] is defined as

— A(X,A) (U)" Vle,x(U), ifA(X’A)(U) < 400
VOl(X’A),x(U) =
+00, ifA(X,A)(U) = +00

Let V' be a Q-Fano variety and X = C(V, —Ky ) is the affine cone with vertex o. Consider V'
as the exceptional divisor of the blow up Bl,X — X, we have the canonical divisorial valuation

ordy on X.

Theorem 2.2.6 (|Lil7]). (V, —Ky) is K-semistable if and only if vol is C*-equivariantly minimized

at ordy over (X, o).
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2.3 K-semistability of log Fano cone singularity

Following the log Fano case, we can also define the notion of (special) test configuration, Futaki

invariant and K-stability for log Fano cone singularities.

Definition 2.3.1. Let (X, D, &) be a log Fano cone singularity and 7" be the torus generated by
&. A T-equivariant special test configuration of (X, D, &) is a quadruple (X, D, {y; 1) with a map
7 : ((X,D) — Al(= C) satisfying the following conditions:

(1) 7 is a flat family of log pairs such that the fibers away from 0 are isomorphic to (X, D) and
X = Spec(R) is affine, where R is a finitely generated flat C[t] algebra. The torus T acts on X,
and we write R = @&,R, as the decomposition into weight spaces;

(2) 1 is an algebraic holomorphic vector field on X generating a C*-action on (X, D) such that
7 is C*-equivariant where C* acts on the base C by multiplication (so that m,n = td, if t is the affine
coordinate on A') and there is a C*-equivariant isomorphism ¢ : ((X, D) x¢ C* = (X, D) x C*;

(3) the algebraic holomorphic vector field £ on X x¢ C* (via the isomorphism ¢) extends to
a holomorphic vector field on X’ (still denote by &;) and generates a T-action on ((X,D) that
commutes with the C*- action generated by 7 and preserves (Xo, Dy);

(4) (Xo, Do) has klt singularities and (X, Dy, &o|x,) is a log Fano cone singularity.

((X,D,&;n) is a product test configuration if there is a T-equivariant isomorphism ((X, D) =
(X,D) x C and n = 1y + t0; with ny € t.

By abuse of notation, we still denote &|x, by &. For simplicity, we still just say that ((X, D)
is a special test configuration if £y, n are clear. We also say ((X,D, &, n specially degenerates to

(X0, Do, &o;m) (or simply (Xo, Dy)).

Since T-action and C*-action commute with each other, X, has a 7" = (T'xC*)-action generated
by {&o,n}. Let ¢ = Lie(T"). For any £ € t", we have wte € Valy, » where o' € X is the vertex
point of the central fiber X,. So we can define its volume vol(wt¢) and normalized volume @(wtg).

For simplicity of notations, we will frequently just write £ in place of wt,.

21



Remark 2.3.2. The volume vol(§) is given by

L T dlm(c R/Clm (th)
vol(§) := volx (wte) = mgrfoo m"/n! :

In [CS19] the volume can be viewed via the index character. Let Xy = Spec(B) and B = @, By

be the weight decomposition with respect to 7”. For any & € 77, the index character is defined as
Ot,€) =D e ") dim B

Then (¢, ) has the expansion:

O(t,6) = V;}f) O™,

Definition 2.3.3 ([CS19]). Let (Xo, Dy, &) be a log Fano cone singularity with a good action by
T' = (C*)*+'. Denote vol = vol(x, p,) on ty and A = A(x, p,) on th. Assume & € t;". For any

n € t;, we define the generalized Futaki invariant to be:

Fut(Xo, Do, §o; 1) 1= (D—yvol) (§o) = nA(&)" " A(—n) vol(&) + A(€)" - (D, vol) (o).

If (X, D, &);n) is a special test configuration of (X, D, &), then the Futaki invariant of (X, D, &y;n),
denoted by Fut(X, D, &y; n) is defined to be Fut(Xy, Do, &o;n).

Remark 2.3.4. When &, is rational, i.e. & generates a one dimensional torus 7" = C*, then
quotient by T we get a log Fano pair (Y, E). In this case (X, D) is indeed a cone over a log Fano
pair. The special test configuration of (X, D, ;) becomes a special test configuration of (Y, F).
The Futaki invariant defined in is a rescaling of Fut(Y, E) (see |[Lil7, Lemma 6.20]). This
also verifies the definition coincides with the one in [CS19| as any vector could be approximated

by rational ones and the Futaki invariant in both definitions are continuous and coincide when &
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is rational.

Definition 2.3.5. Let (X, D, &;n) be a log Fano cone singularity. We say it is K-semistable if for
any T-invariant special test configuration X’ that degenerates (X, D, &) to (Xo, Do, £;n), we have

Fut(Xo, Do, §o;1) > 0.

We will need the following result later.

Theorem 2.3.6. [LX18] (X, D,&) is K-semistable if and only if wte, is a minimizer of \7(;1(;(7[))

in Val%.

2.4 Filtrations

Definition 2.4.1. A filtration F on R = ®.R, is a family F*R, C R, of C-vector spaces of R,
for « € A and X € RT, satisfying:
(1) F is decreasing: F*Ry C FN Ry if A > N;
2) F is left continuous: F*R, = NycrFY R, for A > 0;
3) F is multiplicative: F R, - F¥ Ry C FMY Ryvar:
4) F is T—invariant: F R = @aeaF Ra;

(
(
(
(5) F°R = R, and for any o € A, F*R = 0 for A > 0.

)
)
)
)
Definition 2.4.2. Let F be a filtration on R. The associated graded ring gr» R of F is defined as

grr R = @ @ grj\rRa

a€A )\ERZO

where gr} R, = F R,/ Uysx F¥ R,. We say that F is finitely generated if gry R is finitely

generated C- algebra. For a valuation v € Valy, we define the associated graded ring of v by
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gr, R:=grr R.

“+oo
Definition 2.4.3. For any integer m, we define R,, := @ R,, so R = @Rm. Write
m—1<{a,£o)<m m=0

N, := dim¢ R,, and N,, := dim¢ R, for m € N and M(R) C N for the semigroup of m € N for
which N,, > 0. For later convenience, we rescale &, to make R,, # ) for sufficiently large m.

Denote R = Zig F*R,.. We define the volume

dim fktRk
vol(R®Y := lim sup ———> "%

Remark 2.4.4. Notice that our definition of R, is different from the definition in [Wu21]. If &, is
rational, we know (X, D) is a cone over (Y, E'), then up to rescaling of &, R, defined above equals

to H°(Y, m(—Ky — E)). This matches with the definition of R, in [BJ17] and [LX20].

We define R, := F™R,, for m € N and ¢t € R, , and set
T, = To(F) :=sup{t > 0| Fro2 R, +£0}

Ty :=Tyn(F) :==sup{t > 0| Rl, = F™R,, # 0}.
Notice that {FR,,}men is not a filtration, but we still have

Lemma 2.4.5. We define the pseudo-effective threshold
T :=T(F) :=supT,(F).

Then lim,,_,o T}, exists and equals to T'.

Proof. First assume T' < +00, then for any € > 0, we can find some oy € A such that T,, > T —e.
Let e, e2,..., e, be a lattice basis for A. Suppose ag = ). ¢; - €;, where ¢; € N. Notice that

for any two lattice points oy, an € A, we have (&o, a1)Ty, + (€0, 2)Tn, < (€0, 00 + a9)T oy 10, SO
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for any o = nag+ >, ¢i-e; € A where 0 < ¢; < ¢;,n € N, we have (&, a)T, > n(&y, ag)Tp,-
Since (§o, @) < (n+ 1)(&o, o), 50 T > 5 T0y > 55 (T — €). When n is sufficiently large we have

T, > T —2e. For sufficiently large m we can always find some « above such that R, C R,,, notice
that

T%,S Sup jgfg
m—1<(&o,a)<m m— 1

we have T}, > T — 3¢ when m > 1. Hence lim,,, oo T;,, = 1.
If T' = 400, we just choose any M > 0 and find 7,,, > M. The rest is the same.
O

The filtration is said to be linearly bounded if T'(F) < oo. Note that being linearly bounded is

not independent of the choice of &.

Example 2.4.6 (Filtration from test configuration). [Wu2ll, Prop 3.8] Any test configuration
(X = SpecR, D, &y;n) for (X, &) induces a filtration F on R defined by

FR:=@D{f € Ra |t ] € Ra}
acA
for A\ € Z,, where f denotes the pullback of f under the composition X x,1 (Al — {0}) =
X x (A'—{0}) —» X, and
F*R, = FR,

for general A € R,. This filtration is linearly bounded, and finitely generated as a Z-filtration, i.e.

the bi-graded algebra

® (@)

a€el AEZ

is a finitely generated C[t|—algebra.

Example 2.4.7 (Filtration from valuation). Any valuation v € Valx induces a filtration F, on R
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as

qu\Ra ={s€ Ry |v(s) > A}

2.5 Complement

Definition 2.5.1. A Q-complement of (X, D) is an effective Q-Cartier Q-divisor B ~¢p —Kx — D
such that (X, D+ B) is log canonical. A Q-complement B is called an N-complement for N € Z-q
if N(Kx+ D+ B)~0,and N(D+ B) > N|D| + | (N + 1){D}]| where {D} =D — | D].

For the purpose of this paper, unless state otherwise, we only discuss T-equivariant complement.

For any Q-complement B of (X, D) we define the dual complex of (X, D + B) to be
DMR(X,D + B) :={v € Val§ | Ax,p+p)(v) =0 and Ax p(v) = 1}.

In particular, the space of all lc places of (X, D + B) is a cone over DMR(X, D + B). By abuse
of notation, we usually write v € DMR(X, D + B) if v is an lc place of (X, D + B).
As in |[LXZ21, Lemma 2.28|, we have

Lemma 2.5.2. Assume that v is a divisorial lc place of some Q-complement. Then gr, R is finitely

generated.
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Chapter 3

A valuative criterion for K-semistability

3.1 A general volume formula

Let (X, D,&) be a log Fano cone singularity with 7" = (C*)" action. Let v; be a T-invariant
valuation centered at the vertex x € X, with Ay p)(v1) < +00. We write vy := wtg, to denote the
canonical valuation.

We define the filtration F on R as follow
F Ry ={f € Ro | n1(f) > x}.

If A(v1) < 400, then the filtration is linearly bounded. Indeed by Izumi’s theorem, there exists
c1, ¢y > 0 such that civg < v < cpvg. If f € Ry, vi(f) > o then vo(f) > ¢;'2 so when z > cyvo(f),
we have F*R, = 0. So F is linearly bounded from above. Similarly, if x < cjvg(f) for some
f € R, then F*R, = F,. So F is linearly bounded from below.

For later convenience, from now on we will fix the following constant:

. U0
¢ :=inf — >0
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We still write F* Ry, to denote G g, cr,, F*Ro. The filtration F can help us calculate the volume

of v; via the following observation.

Lemma 3.1.1. For any m € Ry, we have
+o0
> dime(Ry/F"Ry) = dimg(R/ap(v1)).

k=0

Notice that because F is linear bounded, so there are only finitely many nonzero elements in the

left hand side.

Proof. For each a € A, we set d, = dim¢(R,/F™R,). Then we can choose a basis of R, /F™R,:

{[fila | i € Ra,1 i < da},

here we use [], to denote the quotient class in R,/F™R,. When (o, &) > m/c;, the set becomes

empty. We want to show the set
B:={[f"]11<i<ds,0<{a,§) <m/er}

is a basis of R/a,,(v1), here ] means taking quotient in R/a,,(v;). First we show that the elements

in B are linearly independent. Assume we have a nontrivial linear combination of [f{]:

Sy el = | LS| =+ s = 1)

acl i=1 |:a€A i=1

where f* # 0 is an element in Ry, — F" Ry, and ky < ko < -+ < k. Now ff ¢ F"Ry, and
v1(F) > ky, so that f* + ... ff & a,,(v)). Hence [F] # 0 € R/a,,(vy).
Next we show that B indeed spans R/a,,(v;). Suppose on the contrary we have some oy € A

and some element f € R,, — a,,(v1) such that [f] # 0 € R/a,,(v1) that cannot be written as a
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linear combination of [f#*]. Let us assume f € Ry. We first show that we could find a maximal k

such that this thing happens. This is from the fact that the following set

{vo(g) | 9 € R—am(v1)}

is finite (because v; is bounded by vy).

So we could find some k such that any «; such that (aq,&) > k and g € R,,, [g] lies in the
span of B.

If f € Ry — F™Ry, then since [ff*]o, where £k — 1 < (o, &) < k is a basis of Ry/F™Ry, we
can write [ as Zj ciff + hy where hy € F™Ry;. So there exists some h € a,(v1) such that
f=2>2¢fi+hand vo(h — hg) > k. By the maximality of k, [h — hy] lies in the span of B, so [f]

lies in the span of B. This is a contradiction.

If f e F"R, C Ri. Then by the definition of F™ Ry, we can find some h € R such that
f+h € ay(v1) and vo(f + h) = vo(f). Since we assumed [f] # 0 in R/a,,(v1), so h # 0 and
k' =wvo(h) > vo(f) = k. So we know that [f] = [(f + h) — h| = [—h] lies in the span of B. This is

still a contradiction. OJ

Lemma 3.1.2. Let F be a linearly bounded filtration on R. For any u € Ry and v > —cy, we

have
TL' lup/(v+e1)] +o0 u”dm
. e 2 : . P—vi D\ (w)y__ = ™

Proof. Let ¢(y) = dimc(F**""R|,;). Then ¢(y) is an increasing function on [m,m + 1) for
any m € Zso and ¢(y) < dimc R, < Cy"'. Notice F* is decreasing in z, so that ¢(y) >
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dime(F*~*W R|,). So we have

Lup/(v+e1)] . Lup/(v+e1)] =1 .
Z dlm(c (]_-up—mRi) S ( Z dlm(c (]_-up—mRi)> + dlmc RLup/(U+C1)J
i=0 i=0

IA

( / e ¢<y>dy) + oY)

(o[ oG ) ot

Then we have

— i sup e Rl )
pr-oc pt/(n=1)!
dime (F2 D Ry o)) [up/ (@ + )"0 u !
!

/vt )
WSO =1 — 1)1

< lim sup

prtoo  up/(v+2)["7/(n = 1)1 (up/(v+ )" (v+ )"
= vol(R(x))(UiT-

The last equality holds by [BC11]. Now by Fatou’s lemma, we have:

n Lup/(ve1)] 4 o (p —1)! up udx
lim sup — Z dim¢(FP7"R;) < nlimsup (/ o( ) + O(pl))
C1

p—too D" o p—>-+00 pnt vt (U + x)Q

< n/+°° lim sup d(up/(v+x)) wudr

potoo PP/ (n =D (0 + 2)?

400 n
< n/ vol(R™) ud

- (/U + I)n—"_l .

We can prove the other direction similarly. Define ¢(y) = dimc(F**~"¥Ryy1). Then ¢(y) is an

increasing function on (m,m + 1] for any m € Zso and ¢(y) < dim¢ Ry, < Cy™ ', and that
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Y(y) < dime(FPVIRp,1). So we have

lup/(v+ec1)) ‘ [up/(v+ec1)] ‘
Z dimc(}—uz)_mRi) > ( Z dim(c(]:uP_WRi)> — dim¢ R[up/(v_,_cl)]
=0 =0

v

(f e By ) + 0™

(o[ o) 0w

Then we have

i g SEF O R o))
p—+4o0 prt/(n —1)!
dime (F7/ ) Rpypyosa)) [up/ (v + 2)]" 7w

L/ (v + 2)
ptoo p=1/(n—1)!

o+ 2 (n— 1)! (up/f(v + )L (o 4 )]
— wol(R
(R >(v + )1

By Fatou’s lemma, we get the other direction of the estimate:

lup/(v+ec1)) too
; - —1)! d
lim inf — Z dime(FP7"R;) > nliminf </ (n—1) U( up ) uax - +O(p_1))
c1

p—+oo pn — p—+00 pr—t v+a’(v+x)

T g PR/ (vt 2) ude
2 [ i G

+o0o n
(e)y__u"dr
> n/ vol(R )(v o)

C1

Therefore we have the identity

TL' lup/(v+e1)] +oo @) UndZE
i " i P—vi ) )y~ &
lim o Z:; dimg(FR;) = n / 1 vol(R®@) PERsE
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Proposition 3.1.3. Given a valuation v, € Val(TX,D)W we have

1 too
vol(v1) = — vol(&) — n/ vol(R®) dt
c (&

1 1

Proof. By Lemma we have

+oo
> dime(Ry/F™Ry,) = dime(R/ay, (v1)).
k=0
Now that
+o00
n!dimc(R/a,(v1)) = n! Z dime(Ry/F™Ry)
k=0
Lm/e1]
=n! > (dimg Ry, — dime F™ Ry)
k=0

m" tee dt e
= Fvol(fo) — n/ Vol(R(t))thr1 +O(m"™1)

. c1

The last equality uses Lemma [3.1.2] Now

dt

tn—l—l

vol(vy) = lim l; dim¢(R/a,,(v1)) = in vol(§y) — n/+°° vol(R®)

m—o0 17 Cl c1

3.2 Kollar components

Definition 3.2.1. Let 0 € (X, D) be a klt singularity. We call a proper birational morphism

p:Y — X a Kollar component S, if p is isomorphic over X — {0} and p~'(0) is an irreducible
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divisor S, such that (Y, S + u;'D) is plt and (—S) is Q-Cartier and ample over X.

If we denote K¢+ Ag = (Ky + S+ p; 'D)|s, then (S, Ag) is kit log Fano.

Special test configurations from Kollar component Let S be a T-invariant Kollar compo-
nent over o € (X, D) and 7 : Y — X be the plt blow up extracting S and let Ky + 7, 'D + S|g =:
Ks + Ag. We can use the deformation to the normal cone construction to get a degeneration of
X to an orbifold cone over (S, Ag).

Denote the associated ring graded ring of vy = ordg by

+o0 +oo
A= @ a(vo)/ar41(vo) = @ Ak
k=0 k=0

We have a decomposition

T acts equivariantly on the extended Rees algebra:

R =P Ri =P arlwo)t™ C Rlt, 1]

kEZ keZ

Let X = Spec(R’). Then we get a flat family 7 : X — Al satisfying X; = X xu {t} = X
and Xy = X x4 {0} = Spec(A). Let D be the strict transform of D x A! under the birational
morphism X --» X x Al

Definition 3.2.2. Assume that o € (X, D) is a klt singularity with a good T-action and S is a T-
invariant Kollar component. Let X — A! be the associated degeneration which degenerates (X, D)

to a (Xo, Do) and admits a 7" = T'x C*-action. Forany f =) fr € R, ordg(f) = min{k | fi # 0}.
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Over X, ordg corresponds to the C*-action corresponding to the Z- grading, Denote the generating
vector by &g € tig.

With the above notation, we say that (X, D, &; {s) is the special test configuration associated
to the Kollar component S. If & and &g are clear, we just use (X, D) to denote the special test

configuration.

Lemma 3.2.3. [LX1§] Let (X, D,&y;Es) denote the special test configuration associated to a T-
invariant Kolldr component S. Let (Xo, Do) be the corresponding paor on the special fiber. For
any & € t]/RJr, let & also denote the induced Reeb vector on Xy. Then we have:

1. Ax,py(ords) = A(x,,p0)(Wteg ), volix,py(ords) = vol(xy pg)(Wteg)

2. Ax,p)(Wtgy) = A(xy,00)(Whey ), VOl(x,py(Wte,) = volix,,po) (Whe,)

3.3 The valuations w, and wtg,

Let (X, D, &;n) be any special test configuration. Let { = §y—en € t]/g , then wt, can be considered
as a valuation on X. Using the embedding C(X) — C(X) = C(X x C*) = C(X x C), wt¢, can be
restricted to become a valuation w, on X. (see [Lil7]) Alternatively by equivariantly embedding
of X into CV x C, wtg, is induced by a linear holomorphic vector field, still denoted by &, on
C¥. The weight function associated to &, induces a filtration on R whose associated graded ring
is equal to the coordinate ring of Xj. By [LX18, Lemma 2.11], this filtration is indeed determined
by a valuation w. on X. As a consequence we have vol x py(w.) = vol(x, p,)(Wte, ) because w, and

wt,. have the same associated graded ring. On the other hand, we have the following lemma.

Lemma 3.3.1. Use the above notation, for each fived €, Ax py(we) = A(x,,p0)(Wte.). Therefore

\a(X,D) (we) = \70\1(X07D0)(Wt56). As a consequence:

—

d — d
Fut(Xo, Do-bosm) = —=| _ voloxo,noy(Whe,) = —=| _ volox,py(we)
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Proof. For sufficiently small € > 0, we choose a sequence of rational vector fields § . € ta approach-
ing & as kK — +o00. Then the C*-action generated by & . corresponds to a Kollar component Sy, .
which is isomorphic to the quotient Xy/(exp(C - &.)). So up to a base change, (X, D, &; k) is
equivalent to the special test configuration associated to Sy . and there exists constants ¢ . > 0 such
that wte, _[c(x) = cre-ords, . — we as k — +00. So by Lemma , we know Ay p(cp-ords, ) =
Ax, Do <Wt55k,e)' By taking a limit & — +o00, we get A(x p)(we) = A(x,,00)(Wte, ). O

3.4 Proof of the valuative criterion

First we show that S(v) > 0 for all v € Valg implies K-semistability of (X, D, &).

By [LX18, Proposition 3.6, we only need to consider the special test configuration associated
to the Kollar components. Let S be a T-invariant Kollar component, and (X, D, &y;n = —Es) be

the corresponding test configuration, we have the valuations w, as above.

For any f € R, we have

we(f) = min{(a, &) + cords(fo) | f =D fa. fo # 0}

so Fif Ry = f‘fgf’&’WERa. Notice that Ry = @ R, so

O
k—1<{o,&0)<k

Fo oV er, C Fr Ry C FS PRy,

ordg ordg

ke—1) | 1 k(z—1) di FF*R
sodime F, yo Ry < dime FA Ry, < dime F, 47 Ry. Recall that vol(F,R®) = lim sup %
k—o00 "/n!
50 VOI(Fyp, R®)) = vol(Fopa, RE).
We also have inf We _ 1, so ¢; = 1. By Proposition |3.1.3| we have
m Whe,
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dt

+o0
vol(w,) = vol(&) — n/ vol( .7-"w€R(t))thrl

—+o00
_ 0y__cdt
= vol(&) n/o vol(FsR (1 ety

The log discrepancy is given by

Ax,py(we) = Ax,p)(Wte,) + € Ax.p)(5).

So we get the normalized volume of w,:

edt
(14 et)n+t

— +oo
vol(w,) = (Ax(&) + € Ax(S))"(vol(&) — n /0 vol(FsRM) ).

The derivative at € = 0 is equal to:

— +oo
di vol(we) = nAx (&))"t Ax(S) vol(&) — nAx (&))" vol(&) / vol(FsR®)dt
0

€le=0
Ax (%)

=nAx (&) vol(&)(Ax(S) — vol(&p)

+o0
/ vol(FsR®M)dt)
0
= nAx ()"~ vol(&)B(S)
By Lemmal3.3.1] we know the Futaki invariant of (X, D, &; 1) is precisely nAx (&)™ vol(&)B(S).
So (S) > 0 implies Fut((X, D, &y; 1)) > 0. Hence we proved one side of the criterion.
For the other side, suppose (X, D, &) is K-semistable, we show that f(ordg) > 0 for all T-

equivariant divisor E over X.

Given any T-invariant divisor E over X, we can similarly define the valuations w, to be

we(f) = min{{o. &) + eordp(fa) | f =) fa. fa # 0}
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The above calculation still holds, which gives us - \70\1(106) = nAx(&)" ! vol(&)B(E). By
e=0

V/\ol(we) > 0, hence

e=0

Theorem [2.3.6, we know vol reaches its minimum at wtg, = wp, SO %
B(E) > 0.
To prove the other side of the criterion, it suffices to show that S(E) > 0 for all T-equivariant

divisor E implies 3(v) > 0 for all v € Val. This is done by Theorem [4.3.5] (notice we do not use
any result in this section to prove Theorem in chapter 4).
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Chapter 4

Filtrations and the Delta invariant

4.1 Okounkov bodies

We follow the idea in [Wu2l]. Let u: Y — X be a log resolution of X at the vertex x, and set

Yy = pHz) = Y icr bill. After possible replacing Y by further blowups at x, one may pick a

regular system of parameters x, .. ., x, for Oy, with y the generic point of N}, £; and x; defining
E;. Then by Cohen structure theorem, 6y\y >~ Clxy,...,z,]. This gives us a rank n valuation

v=(v1,...,0,) : Oyy — {0} = N" with v; = ordg, on Y,

f

Vg
Ly,

()

mj<v:Ej>

for 2 < i < n, and N" equipped with the lexicographic ordering.

vi(f) := ordg, (

k<i
As in [Wu2ll Lemma 3.1] we have the following Izumi type estimate.

Lemma 4.1.1. There is a constant C' > 0 such that v;(f) < Cordo(f) forall f € Rand1 <i <n.
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Now for each m € N, define
[ =v(R,) CN" T':={(z,m)|xzel,,,meN_}

We denote by X(T") C R™"! the closed convex cone generated by I'. We define the convex body of
(X - Spec R7 Da 60) by
A=Ax{1}:=%5T)Nn(R" x {1}).

We claim this is indeed a local version of Okounkov body.

Lemma 4.1.2. Let I" be as above. Then I' satisfies the following conditions:

(1) Ty = {0},

(2) There exists finitely many a; € N™ such that (a;, 1) span a subsemigroup B C N"™1 con-
tatning I

(3) The subgroup generated by T in Z"' is Z"H1.

Proof. The first condition is a straight forward check. For the second part, we use the Izumi type
estimate.

For the second part, by [BEJ14, Prop 4.8], we have some constant C’ > 0 such that ordy(f) <
C've(f). Then we know for all 0 < i <nand 0 # f € Ry, v;(f) < CC” where C comes from [4.1.1]
So that the vectors (aq, ..., a,, 1) will span a semigroup containing T".

For the last part, we write x; = f;/g; with f;, g; € R. Then v(f;) —v(g;) = €;,1 <1 < n where
{e;} denotes the standard basis for Z". Since (0,1) € ', we have that T" will generate all of Z"*.

O

Now as in [Wu2ll, Theorem 3.3| we have

Theorem 4.1.3. For any m > 1, let p,, = # errm Om-1, be a positive measure on A. Then
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lim,, o0 P = p weakly, where p denotes the Lebesque measure on A. In particular, the limit

| |
vol(A) = lim i#Fm = lim idimc R,

m—oo M m—oo M
exists and equals vol(&p).
Follow [BJ17, Lemma 2.2| we have

Lemma 4.1.4. For every € > 0, there exists a my = my(e) > 0 such that

/gdpmS/gdp+€
A A

for every m > myq and every concave function g : A — R satisfying 0 < g < 1. Notice that we

require the uniformity in g.

4.2 Concave transform and limit measure

Let A be the Okounkov body of (X, D,&,), and F be a linearly bounded filtration on R. For
t > 0, we define A C A to be the local Okounkov body associated to R!, as in [Wu2ll, Prop
3.10]. More precisely, let It = v(Rf), I'" := {(z,m) | x € [}, m € N}, and A" = A x {1} =
(TN (R™ x {1}).

Define G : A — R, to be 2 — sup{t € R, | x € A’}. Then G is a concave, upper continuous
function taking values in [0, T'(F)].

As in |[BJ17], we define the limit measure p of the filtration F as the pushforward

d
= G,p = ——vol(A").
= Gup dtVO( )

Thus p is a positive measure on R of mass vol(&) with support [0, 7'(F)].
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Definition 4.2.1. For a linearly bounded filtration F, we define the volume (or the S-invariant)
of F to be

n! !

+o00 n! 400
S(F) = e /0 vol (&)t = s /0 O Vo%w /A Gdp.

Jumping Numbers Given a filtration F on R, consider the jumping numbers
0<any < Zaan, = (@, 80)Ta(F)
defined for oo € A by
Ao = Qo j(F) = inf{\ € R, | codim F*R, > j}

for 1 <j < N,.
For R, we also define the jumping numbers
0 S Qm,1 S e S Qm,N,, = me(]:)
for m € N by
Umj = Am;(F) = inf{\ € R, | codim F*R,, > j}
for 1 < j < N,,.

We define the rescaled sum of the jumping numbers:

1 Ve

Sa(]:) = m Zaa,j,Sm(]:) = Qm,j

j=1 =1
for o € A,m € N.
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Define a positive measure u,, = p. on R, by

d

1 1 d .
Mm = w zj:(smlam,j = —%d—t dlmfm Rm

We have the following result as in [BCI11, Theorem 1.11], [Wu2l, Theorem 3.12]

Theorem 4.2.2. Let F be a linearly bounded filtration on R, then we have

lim p, = p

m—0o0
in the weak sense of measures on R .

Proof. The proof goes along the same lines as in [BCT1, Theorem 1.11]. Notice that dim¢ F AR, =

g if and only if a,, n,,—j <A < @m,N,,—j+1. SO We have

Edlm}" R, = — 25%,].
j

in the sense of distributions. Let g,,(f) = = dim R!,. By and the Okounkov body construc-
tion, we have

lim gn(t) = g(t) = vol A(RY),

t——4o00

1

loc Dy dominated conver-

for 0 <t < T(F). Since g, are uniformly bounded above, g,, — ¢ in L

gence, and hence —pu,, = ¢/, — ¢ = —p as distributions. H

Then we can rewrite the S,,,(F) as

1 mnr +oo
Sm(F) = N ZamJ =N ; tdpim(t).
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Lemma 4.2.3. Let F be a linearly bounded filtration on R, we have

m?’L
Smfg—/de,
(F) N, |, G

m
and furthermore we have

S(F) = lim S, (F).

m—0o0

Proof. The limit comes directly from the above theorem. For the inequality, we choose a basis
$1,52,...,5nN,, of Ry, such that v(s;) = am;,1 < j < N,,. Let r; := v(s;) where v = (vy,...,v,)
comes from our construction of the Okounkov body in section 2.6. Notice v has trasnscendence

degree 0, we have I, = {ry,...,7,}. So

N,
m" 1
— | Gdp,, = — E G(m ™ 'r;
Nm/A Ny, e ( 5)

and

1 &
Sm(JE) = N_ Zm_lam,j.
j=1

m .

So it suffices to show G(m~'r;) > m™'a,,; for 1 < j leqN,,. This is by the definition of G. O
Proposition 4.2.4. For any € > 0, there exists mg = mq(€) > 0, such that
Sm(F) < (14 €)S(F).

Proof. Let V' := vol(A). Take ¢ > 0 such that (V™' + &)V + (n+1)¢) < 1+ e Since
0<G<T(F). By take g = G/T(F) we could find some mg such that

/ Gdpy, < / Gdp+ € T(F) = VS(F) + € T(F) < (V+ (n+1)¢)S(F)
A A
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for m > mgy. By we could also assume JZL—Z < V=L 4+ ¢€ for m > my. The above lemma gives

us

SulF) < 5 [ Glp < (V4 YV 4 (4 DOSF) £ (14 9S(F)

for m > my. O

4.3 The Delta invariant via filtration

Let v be a T-invariant valuation on log Fano cone (X, D, &,). Then we have the filtration F = F,
on R by F*R, = {f € Ry | v(f) > x}. We also write F*R,,, = {f € R, | v(f) > x}. We write
Sa(v) = Sa(Fy), Sm(v) = S (Fo).

Definition 4.3.1. For any a € A, we say an effective divisor B is an «a-basis type divisor, if there

exists a basis s1,...,sn, of Ry, such that

_ Zi]ial{si = 0}
b= (, §0) Na

Similarly for any m € N, we say an effective divisor B is an m-basis type divisor, if there exists

a basis s1,...,sy,, of R, such that

5 Liifsi=0}
mN,,

Definition 4.3.2. For any o € A, we define

0o = inf{lct(X, D; B) | B is an a-basis type divisor }
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For any m € N, we define
dm = inf{lct(X, D; B) | B is an m-basis type divisor }

here lct(X, D; B) is the log-canonical threshold, see [CS08].
Proposition 4.3.3. For any a € \, we have

AXJ)(U) . fAX,D(OrdE)

0 = =
vel\r/lalg( Sa(v) B Sa(ordg)

where E runs through all the T-invariant prime divisors over X.

Similarly, for any m € M(R), we have

AX’D(U) i AX,D(OI'dE)
veValy Sy, (v) E  Spn(ordg)

Om =

where E runs through all the T-invariant prime divisors over X.
We need a simple observation.

Lemma 4.3.4. For any a € A, and any v € Val%, we have

1
Sa(v) = max ———— »  v(s;),
“ i <O[, €0>Na ]Zl !
where the mazimum s over all bases sy, ...,sy, of Ry. The similar result holds for R,,.
Proof. For any basis sy, ..., sy, of R,, we may assume v(s1) < --- < v(sy,). Then v(s;) < Gaipha,;
-1

by the definition of the jumping numbers. Thus ((«, &) N,) 7U(s5) < ((a,€0)Na) ™' 32 Gay =

Sa(v). On the other hand, if we pick basis s; such that v(s;) = a,,j, then the equality holds. The

case of R,, is the same. O
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proof of Proposition[4.53.3. Recall that (see [CS08|)

. AXD(U)
let(X, D; B) = inf : .
C ( Y ) ) 111} U(B)

So we have
AX,D (U)
v(B)

do = inf{inf | B of a-basis type divisor }

where the second infimum runs through all divisorial valuations v € Val%. Switching the two

infimum and then Lemma [4.3.4] implies the result. O]

Theorem 4.3.5. The limit lim,, ., 0., ezists and equals to 6(X, D, &y) we defined in Definition
[1.0.3. Furthermore,

. AX D(U) . A(OI‘dE)
X,D = inf —— = —r.
5( ’ 750) Hl} SX,D(U) lrEl’ S(OI’dE)

where E runs through all the T-invariant prime divisors over X.

Proof. Let ¢ := limsup,), 0,,. By Proposition and Proposition [4.3.3]

. . Axp (U)
limsup ¢,, < inf —— .
m P v SX,D(U)

On the other hand, for any € > 0, we could find some my = my(e) such that S,,(v) < (1+ €)S(v)

for all v € Val and m > mg. Therefore

6= limﬂfup Om = hmﬂfup inf 51*1(22) = 1%1—6 inf gléz;

Hence 6 = lim,, §,,. By Lemma and Proposition [4.3.3] it is straightforward to check that
d =0(X,D,&). The same argument in the proof of Proposition m shows

. AX D(U) . A(ordE)
f——— 7 —inf ——~
Hi} SX7D(U) l% S(Ol"dE)
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Theorem [4.3.5] together with Chapter 3.4 completes the proof of Theorem [I.0.3]
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Chapter 5

Valuations computing the stability
threshold

In the log Fano case, [BJ17] showed that there exists a valuation computing (X, D) if the ground
filed k is uncountable, and in [BLX19] when 6(X, D) < 1 for a general ground field, where it is also
shown that in this case any minimizer is an lc place of a Q-complement. In [LXZ21] the bound is

extended to . We follow the idea of [LXZ21] here.

Definition 5.0.1. Let F be a filtration on R. A basis (s1, ..., sy, ) of R, is said to be compatible
with F if F R, is spanned by some of the s;’s for every A € Rsg. An a-basis type divisor
B = Nia S Mo (s; = 0) is said to be compatible with F if (s1,...,sy,) is compatible with F. By
abuse of notation, we say that an a-basis type divisor B is compatible with a valuation v if B is
compatible with the filtration induced by v on R.

Similarly, a basis (si,...,sn,, ) of R, is said to be compatible with F if F*R,, is spanned by
some of the s;’s for every A € R>(. An m-basis type divisor B = ﬁ Zi]\i”{(si = 0) is said to be

compatible with F if (s1,...,sy,,) is compatible with F.
We recall a useful fact. The proof is the same as in [AZ20]
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Lemma 5.0.2. Let F and G be two filtrations on R. Then for any o € A (resp. m € Z~g), there

exists an a-basis type divisor (resp. m-basis type divisor) that is compatible with both F and G.

We want to show that when §(X, D, &) < ”TH, the valuation computing ¢ is an lc place of

some Q-complement, and that complement satisfies some further technical properties (which will

called special complement).

Lemma 5.0.3. Let (X, D, &) be a log Fano cone singularity of dimension n and 6(X, D, &) =0 <

WY N Q. Then

”TH. Let v be a T-equivariant valuation computing §. Let o € (0, min{n%l, 1— "%

for any effective divisor B ~g —(Kx + D), there exists some Q-complement I' of (X, D) such that
' > aB and v is an lc place of (X, D +7T).

Theorem 5.0.4. Let (X, D, &) be a log Fano cone singularity of dimension n, with 6(X, D, &) <
"TH. Then,

(1) there ezists a T-equivariant valuation computing 6(X, D, &y); and

(2) there exists a positive integer N depending only on dim(X), &y and the coefficients of D

such that for any T'-equivariant valuation v computing 6(X, D, &), there exists an N-complement

B of (X, D) which satisfies that v is an lc place of (X, D + B).

Proof. We first show (1). Recall we know that there exists some uy € Mg such that Kx +
D = n*H + div(x ") and H is a principal Q-divisor. For any sufficiently divisible m € N, let
Om = Omue (X, D, &), and let E,, be a divisor over X such that % = J,,. Fix a sufficiently
large positive integer mg and let H,, be a smooth divisor (f = 0) for some f € R,,,., that does not
contain the center of F,,. For any such m, by we can find some mug-basis type divisor B,,
which is compatible with both E,, and H,,. We could write B, = I';, + a,, H,, where Supp(T',,)
does not contain H,,. We notice that the coefficient a,, does not depend on the choice of H,, and

moreover lim,,_,o G, = Now we know

1
mo(n+1)°

< Axen)(Em) _ Ax.p(Em)
~ ordg,, (Bn) Sm(Em)

50

lct(X, D; By,)




where ordg,, (Dy,) = Si(Ey,) comes from the B, is compatible with E,,. By definition of §,, we
know that lct(X, D; B,,) > 6,, and we know lct(X, D; B,,) = d,,, and that the corresponding log
canonical threshold is computed by F,,. Since H,, does not contain the center of E,, we know

that (X, D + 0,,I',,) is still lc and E,, is an lc place of this pair.

Notice that limy, 0 0m = 6(X, D, &) < . So for sufficiently large m we get
6mFm = 5m(Bm — amHm) ~Q _)\m(KX + D)

for lambda = 6,,(1 — mpa,,) € (0,1). Thus E,, is an lc place of a Q-complement. The rest of
the proof is the same as in [BLX19, Theorem 4.6]: we know that FE,, is indeed an lc place of an
N-complement for some N that only depends on dim(X), &, and the coefficients of D. Therefore,
after passing to a subsequence, we can find an N-complement B, together with lc places F,, of
(X, D + B), such that gj:g((g:)) = 3§§<(523 for all sufficiently divisible m € Nyq. If we take v to
be the limit of (Ax p(Fy,)) ' ordg, in DMR(X, D + B) then v computes 6(X, D, &) as

AXD(U) . AXD(Fm) . AXD(Em) .
——— = lim ———— = lim ————= = lim =J(X, D).

For (2), we know from there exists some (Q-complement I' such that v is an lc place of I.
There exists a log smooth model (Y, F) — (X, D+ B) such that every component E;(i =1,..., M)
of E is an lc place of (X, D +I') and every prime divisor on Y with log discrepancy 0 with respect
to (X, D 4 I') is contained in E. So we know v € QM(Y, E). By [BCHMI0, Corollary 1.4.3],
there exists a Q-factorial birational model p : X — X that extracts exactly the divisors E; and
Y --» X is isomorphic at the generic point of any component of all non-empty intersections of
NierB; for I C {1,...,M}. Let a; = coeffg, (D) if E; is a prime divisor on X, otherwise set
a; = 0. Then we can argue as in the proof opf [BLX19, Theorem 3.5]: (X, u;' D+ (1 —a;)E))

has a Q-complement, therefore also has an N-complement, whose pushforward on X gives an
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N-complement B of (X, D) that has all E; as lc places. In particular, it also has v as an lc
place. O
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Chapter 6

Finite generation

In this chapter we prove the Higer Rank Finite Generation Conjecture for log Fano cone singular-

ities.

Theorem 6.0.1. Let (X, D, &) be a log Fano cone singularity of dimension n, X = Spec(R).
Assume that §(X, D, &) < ”TH Then for any valuation v that computes 6(X, D, &), the associated

graded ring grz R is finitely generated.

6.1 Special complement

We follow the idea in [LXZ21]. We define the notion of special complement, and show that the
existence of a special Q-complement and an lc place v implies the finite generation of the associated

graded ring gr, R.

Definition 6.1.1. Given a a log Fano cone (X, D,&,) with 7- action. A (T-equivariant) Q-
complement I" of (X, D, &) is called special complement with respect to a T-equivariant log smooth
model 7 : (Y, E) — (X,D) if I'y = 7n;'T' > G for some effective ample Q-divisor G on Y whose

support does not contain any stratum of (Y, E). Here a log smooth model means a log resolution
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7m:Y — (X, D) and a reduced divisor E on Y such that E + Ex(r) + 7, 'D has simple normal
crossing support. Any valuation v € QM(Y, E) N DMR(X, D + T') is called a monomial lc place
of the special Q-complement I' with respect to (Y, E).

Lemma 6.1.2. Let (X, D, &) be a log Fano cone singularity of dimensionn with 6(X, D, &) < .
Let v be a T-invariant valuation computing d. Then there exists a T-invariant log smooth model
m: (Y,E) — (X,D) and a special Q-complement 0 < I' ~q —(Kx + D) with respect to (Y, E),

such that v e QM(Y, E) NDMR(X,D +1T1).

Proof. Because v is quasi-monomial and 7T-invariant, we could find a T-invariant log smooth model
7 (Y, E) — (X, D) whose exceptional locus supports a m-ample divisor F' such that v € QM(Y, E).
Choose some small € > 0, set L = —1*(Kx + D)+¢ F and let G be a general divisor in the Q-linear
system |L|g whose support does not contain any stratum of (Y, E). Let B = n.G ~ —(Kx + D)
and let a < min{niﬂ, — n"—fl} be a fixed rational positive number. By , we have some 7-
invariant complement I' of (X, D) such that I' > B and v is an lc place of (X, D +I'). Replace

G by aG then T is indeed a special Q-complement with respect to (Y, E). m

Assume gr, R is finitely generated for some v, we define X, := Projgr, R and D, is the induced
degeneration of D to X,. More precisely, suppose D = Zizl a;D; where D; is a prime divisor on
X and a; € Qs¢. Let Ip, € R be the graded ideal of D;. Let in(Ip,) C gr, R be the initial
ideal of Ip,. Then D, := Zizl a;D, ;, where D, ; is the divisorial part of the closed subscheme
V(in(Ip,)) € X,. So that D,; and V (in(Ip,)) coincide away from a codimension 2 subset of X,.

Theorem 6.1.3. Let (X, D, &) be a log Fano cone singularity. Let v be a T-equivariant quasi-
monomial valuation on X. The following are equivalent.

(1) The associated graded ring gr, R is finitely generated and the central fiber (X, D,) of the
induced degenetation is klt.

(2) The valuation v is a monomial lc place of a special Q-complement T with respect to some

T-equivariant log smooth model (Y, E).
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Theorem together with Lemma [6.1.2] immediately implies Theorem [6.0.1} The proof of
the easier side of Theorem ie. (1) = (2) is the same as in [LXZ21]. To show the harder

side, we need

Theorem 6.1.4. Let (X, D,&) be a log Fano cone singularity, and let 0 < T ~g —(Kx + D) be
a T-equivariant Q-complement. Let vy be an lc place of (X, D +1T') and let ¥ C DMR(X,D +1T')
be the minimal rational PL subspace containing vy induced by a fixed log smooth model of (X, D).
Then the following are equivalent.

(1) The associated graded ring gr, R is finitely generated.

(2) There exists an open neighborhood vy € U C ¥ such that the set

{(Xo, Do) [0 € U(Q) :=UNX(Q)}

15 bounded.
(8) The S-invariant function

V= SX,D(’U)

18 linear on a neighborhood of vy in 2.

6.2 Estimate of alpha invariants

By Lemma[6.1.2)and Theorem|[6.1.4] to prove Theorem|[6.1.3] we only need to show the boundedness
of {(X,, D,) | v € U(Q)} for some open neighborhood U C ¥. This could be proven by showing a

lower positive bound of the alpha invariants.

Theorem 6.2.1. [Jia20] Fix positive integers n,C and three positive numbers V,ag,do. If we
consider the set cal P of all n-dimensional log Fano pairs {(X, D)} such that C' - D ‘s integral,
(—Kx —D)"=V and a(X,D) > g (resp. 6(X,D) > &), then P is bounded.
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Notice that this boundedness property is independent from the choice of &, so we could assume
&o is rational, and take the quotient ((X, D) — {z})/(£). We cannot guarantee a simple normal

crossing pair, so we need to generalize the calculation in [LXZ21] to the toroidal case.

Theorem 6.2.2. Let (X, D) be a log Fano pair. Let T' be a special complement with respect to a
resolution m : (Y, E) — (X, D). Let K C DMR(X,D +T) be a compact subset that is contained
in the interior of a simplicial cone in QM(Y, E). Then there exists some constant ag > 0 such that
for all rational points v € K, the alpha invariant (X, D,) of the induced degenerations (X, D,)

s bounded from below by ay.

Lemma 6.2.3. Let v be a divisorial valuation such that gr, R is finitely generated and let o € (0, 1)
be a rational number. Then o(X,,D,) > «a if and only if for all 0 < B ~o —(Kx + D), there
exists some 0 < B' ~qg —(Kx + D) such that (X,D + aB + (1 — a)B’) is lc and have v as an lc

place.
We call such B’ an («, v)-complement of B.

Proof. We have a G,,-action on (X, D,). Taking the limit under the G,,-action we see that any
effective divisor G ~g —(Kx, + D,) degenerates to some G,,-invariant divisor Gy. Using the semi-
continuity of log canonical threshold we have lct(X,, D,; G) > lct(X,, Dy; Go), and so a(X,, D,) >
a if and only if 1ct(X,, D,; Go) > « for all G,,-invariant divisors Gy ~g —(Kx, + D,). Any such
G) is also the specialization of some divisor 0 < D ~g —(Kx + D) on X, and lct(X,, D,; Go) > «
means that v induces a weakly special degeneration of (X, D+ «aB). By [BLX19, Theorem 3.5], this
is equivalent to say, for all sufficiently small € € QQ, the valuation v is an lc place of a QQ-complement
of the kit pair (X, D + (o — €)B), so that B has an (a — €, v)-complement.

It suffices to show this is equivalent to say B has an («,v)-complement. We could write
v =c-ordg. Because F is an lc place of a Q-complement, by [BCHMI0], there exists a birational

model 7 : Y — X that extracts E as the only exceptional divisor, and Y is of Fano type. Moreover,
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if follows from the existence of (o — €, v)-complement that the pair (Y, 7, '(D + (o —€)B) V E) has
a Q-complement for all sufficiently small e. By [HMX14] this implies that (Y, 7, (D + aB) V E)

also has a Q-complement, and the pushforward of X is an (a,v)-complement of D. O

Next we want to construct the («,v)-complements for some uniform constant . We fix an
effective ample Q-divisor G on Y that does not contain any stratum of E and that I'y > G. For
any divisorial valuation v € DMR(X,D + ') N QM(Y, E), let u : Z — Y be the corresponding
weighted blowup, F' the exceptional divisor and (Z, Dy), (Y, Dy) to be the crepant pullbacks. Let
Dt = DzVv0V F. Notice that (Z, D") is plt. By adjunction we have Kp+® = (K7 + D%)|r. Set

L= /L*W*(KX —|—D) - AX,D(F) - F

Since v = ¢ - ordp is an lc place of (X, D + I'), and F' is not contained in the support of p*7*I" —
Ax p(F) - F ~g L, so the Q-linear system |L|g # () and we define

a, = lct(F, ®; |Lr|g).

€, :=sup{t > 0| p*G —tAx p(F) - F is nef}.

We have €, > 0 because —F is p-ample, and for any 0 < ¢t < ¢, the divisor ©*G — tAx p(F)F is

ample.

Lemma 6.2.4. Given constants a,b > 0, there exists some constant o > 0 depending only on

a,b, (X, D), T such that o(X,, D,) > a if a, > a and €, > b.

Proof. According to Lemma m, it suffices to find some constant « > 0 such that («,v)-
complement exists for any effective divisor B ~g —(Kx + D).

We claim it suffices to find an (a, v)-complement for divisors B such that v(B) = Ax p(v). If
so, take a sufficiently small € > 0 such that G +e7n*(Kx + D) is ample. Then T(G;v) > € -Tx p(v),
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and that Ty p(v) = T(m*[;0) > v(m*'T — G) + T(G;v) > v(l) + € Tx p(v) = Ax p()v + € Tx p(v).
So (1—¢€)Tx p(v) > Ax p(v). Notice that by definition of « invariant, we know a(X, D)T'x p(v) <
AX,D(”)'

Since 0 < a < % < 1 —¢, so we could find some A € (0,1) that only depends on € and
a(X, D), such that for any 0 < p < T, we can find some 0 < ¢ < T and some r > A, such that
rp+ (1 —r)g = A. Therefore we could find some constant 0 < A < 1 that depending only on ¢
and a(X, D) such that for any effective divisor B ~g —(Kx + D), there always exists an effective

divisor B’ ~qg —(Kx + D) and r > X such that rv(B) + (1 — r)v(B’) = Ax p(v).

If an (o, v)-complement exists for rB+ (1 —r)B’, then (a\, v)-complement exists for B. There-

fore we proved the claim.

Now fix a sufficiently small ¢ > 0, and set s := (1 — a)t/(1 — ) < b, then we know that
p*G — sAx p(F) - F is ample. Fix an effective divisor B ~g —(Kx + D) with v(B) = Ax p(v).
Let H' be a general member of the Q-linear system |*G — sAx p(F)F|g, and let H = p, H'.

We now show that the pair (Y, Dy + an*B + £ H) is lc along u(F) and has F as its unique

lc place.

Notice that Ay p, (F) —ordp(ar*B+ >t H) = Ax p(F) —aAx,p(F)— (1 —a)Ax p(F) = 0. Let
B' = p*'r*B —ordp(B)F = p*n*B — Ax p(F)F ~q L. Since (F,® 4 aB'|r) is kle and so we know
(because H is general) (F,® + aB'|p 4+ £t H'|p) is also klt. By inversion of adjunction, we know
(Z, Dt +aB'+tH") is plt along F. Since D > DV F, we deduce that (Z, Dz VF+aB' + 1 H')

is also plt along F'. Then we know
/ 1—t / / * 1—1
K;+DzVF +aB +TH = (Ky + Dy +ar B+TH)’

so that Y, Dy + ar*B + %H is lc along p(F') and F is the only lc place.
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Similarly we know
1—t
(Y, Dy + t(am*B + TH) +(1-t)(m ' =G)) =Y, Dy +atn*B+ (1 —-t)(m"'[' — G+ H))

is lc along p(F') and F' is the only lc place of the pair in a neighborhood of p(F'). So that p(F') is
a connected component of the non-klt locus of the pair. Since Ky + Dy + atm*B + (1 — t)(7*[" —
G+H)=m1"(Kx+D+atB+(1—t)(I' —7.G+7*H),so (X,D+atB+(1—t)(7*T = n.G+7.H))
is lc along m(u(F')). By Kollar-Shokurov connectedness theorem, we know 7(u(F')) is a connected
component of its non-klt locus.

Similarly we know
—(Kx+D+atB+ (1—-t)I' —m.G+m.H)) ~¢ —(1 —a)t(Kx + D)

is also ample. So we know (X, D + atB + (1 — t)(I' — m.G + m.H)) is lc everywhere by Kollar-
Shokurov connectedness theorem. Notice that v = ¢ - ordp is an lc place of (X, D + atB + (1 —
t)(I' — m.G + 7m.H)), so we could add some effective general divisor B’ ~g —(1 — a)t(Kx + D) to
the pair and so that B has an (at, v)-complement. Here ¢ only depends on a, b.

]

Lemma 6.2.5. Use the same notation as above. Let K C DMR(X,D +T') be a compact subset
contained in the interior of some simplicial cone in QM(Y, E). Then there exists some constants

a > 0 such that o, > a for all divisorial valuations v € K.

Proof. Let E;(1 <i <r) be the irreducible components of F, and that W = N]_, E; is the common
center of valuations in K on Y. Any divisorial valuation v € K corresponds to a weighted blowup
at W with weight wt(FE;) = a; for some a; € N5, and we could assume ged(a;) = 1. Notice that
K is compact, so we could find some constant C' > 0 such that Z—; <(Cforall 1 <i,j5<r.

In an open neighborhood of a point = € W, if E; is given by (e; = 0), we set Z; generated by
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T

monomials e{' ... e such that > ;aid; > d. Then the weighted blowup is given by Proj,.  (Oy @
7y @ ...). The exceptional divisor F' is a weighted projective space bundle over W with fiber
Fy isomorphic to (A" — {0})/G,, with the action X - (y1,...,4,) = (A y1,...,A\y,). Let ¢; :=
ged(aq, ..., d;, ... a,), and ¢ =¢q1 ... ¢, a; = %. Then Fy = P(d),...,dl).

i y 4y

Let ¢; = Ax p(E;) > 0,b; = max{0,ordg, (Dy)} < 1, then we have

T

Ax p(F) = Z a;Ax p(E;) = aicy + -+ + apcp.

=1

» T

Let Lg, := L|g, ~q AX+%F)LO where L is the class of O(1) on P(a},...,a.). We define g, =
D|p, = 7, B=HiLy, — 0}, where x; are the weighted homogeneous coordinates on P(a), . . . , a.).

Let

where the direct sum runs over all (my,...,m,) € N” such that Y, a;m; = m.

For any m € N, such that mL is Cartier, we have
u*OF(mL) = Oy(—mﬂ'*<KX + D)) & M*Oz<—mAX7D(F)F)/M*Oz(—(mA)QD(F) + 1)F),

SO

(1.Op(mL) = 4 Ow(—mr*(Kx 4+ D) — (miEy + ... m,E,)).

Di—y Gimi=m} iy aici
Take C' = [C'Y_,], then Y7, m; < C'm. Take a very ample line bundle Hy such that Hy + E;
are very ample for all 1 < i < r, and Hy+ 7*(Kx + D) is ample, then for sufficiently divisible
m, we have the inclusion Ow (—mn*(Kx + D) — (muEy +...m,E,.) = Ow((m+>_._, m;)Hy) —
Ow ((C" + 1)mH,) for each direct summand in p*Op(mL). Therefore for H = (C" + 1)Hy, and
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sufficiently divisible m we have
,u*(QF(mL) — Ow(mH)@Nm

for some N,,, = rank(byay (7))
Notice that F is toric, therefore lct(Fy, @p,;|Lr,|g) is computed by one of torus invariant

divisors {x; = 0}, so that

minlgigr az(l — bz)

lct(Fo, @rys [Lrylo) = S ac za
i=1 AiCi

for some constants a > 0 depending only on b;,¢; and C. Set Dy = (Dy VO — >/ b;E;)|w.
By Izumi’s inequality we have lct(W, Dy ; |H|g) > 0. So we may assume lct(W, Dy ; |Hl|g) > a by
replacing a by a smaller positive number (notice that a does not depend on (W, D,,)).

Let 0 <t < a, and ¢’ ~g L|r be an effective divisor. We claim that (F, ® +¢®’) is lc. Suppose
not, then we could find some divisorial valuation vy over F' such that Apgiie(vg) < 0 and the
center of vy does not dominate W. Now v restricts to a divisorial valuation w on W.

Consider the birational morphism ¢ : W7 — W such that the center of w is a divisor ) on Wh,
and let F; = F xy Wy, &1 = ¢*(® — u*Dyw ), and let P be the preimage of @) in F;. Notice that

F — W is locally a trivial product Fy x W, by projection formula, we see
H(Fy, O (g"'mL — kP)) = H* (W1, ¢"11.0r(mL) @ Ow, (—kQ)).

For sufficiently divisible m we have j1,Or(mL) — Ow (mH)®N» so that H°(Fy, Op,(g*mL —
kP))neq0 = H°(Wi, Ow,(mg*H —kQ)) # 0 for any k € N. So ordp(®’) < sup g p, ordo(H').
Notice sup ¢, ord(H') < 2 Aw,py, (Q) = Apa(P) (because lct(W, Dy ; |H|g) > a ), so we have
tordp(®') < Ape(P) (remember ¢t < a). If we write g*(Kp+ ®+t9') = Kp, + Py + AP+ D where
P ¢ Supp(D) then the coefficient A < 1.
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Notice the divisor P is vertical, so over a general fiber of P — @, we have D|g, ~g tg*®'|r, ~¢
tL|g,. Sothat (P, (P14 D)|p) is lc along the general fibers of P — ). So by inversion of adjunction,
we know (Fj,®; + AP + Q) is also lc along the general fibers of P — (). So it is lc at the center
of vg. This is a contradiction. So (F, ® + t®’) is Ic and so o, > a as we want.

O

Lemma 6.2.6. Use the same notation as above. Let K C DMR(X,D +T') be a compact subset
contained in the interior of some simplicial cone in QM(Y, E). Then there exists some constants

b > 0 such that €, > b for all divisorial valuations v € K.

Proof. Follow the notation from above, we set a,, 1= ;1,.Oz(—mAx p(F)F). Remember a;/a; < C
for all 1 < 4,7 < r, there exists some constant M € N such that mordp(f) > Lmulty (f)
for all regular function f around the generic point of W. So that II%[’" Ca,, for allm € N.

As in [LXZ21], Claim 4.15|, we can find a sequence of ideals Oy D Zyy D --- D a,, D -+ D IH™
on Y such that the quotients of consecutive terms are all isomorphic to Ow (—nEy — -+ — n, E,.)
for some (ny...,n,) € N with Y/, n, < Mm.

Now we choose some sufficiently large and divisible integer mg, p > 0 such that:

(1) the line bundles G, (2G — E;)|w are globally generated for all i,

(2) H(W, Ow (mpGnY_, E;)) = 0 for all i, m € Ny and all (ny,...,n,) € Nwith >, n; < Mm,

(3) Oy (mpG) @ TH™ is globally generated and H’(Y, Oy (mpG) @ Z¥™) = 0 for m > my, and
Jj € NL.

Let Z; O 7, be two consecutive terms in the above filtration, then we have the exact sequence
0 — Oy (mpG) @ Iy — Oy (mpG) @ I; — Ow (mpGlw) @ (Z,/Z3) — 0.

Because (Z,/Z;) = Ow(—>_,nE;) for some (ny,...,n.) € N" and > ,n; < Mm, so we have
HYW, Ow (mpGlw) @ (Z,/I,)) = 0 for all i > 0. So H(Y, Oy (mpG|w) ® Iy) = 0 for i > 0 implies
HY(Y, Oy (mpGlw) @ Z;) = 0 for i > 0. Now we know Oy (mpG) ® I, is globally generated.
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So by induction, we know that Oy (mpG) ® a,, is globally generated for all m > mq. So that
p*G — Ax p(F)F is nef. Therefore we know €, > 1/p, and p does not depend on the valuation v.

So we are done. O]

Now Theorem follows from Lemma [6.2.4, Lemma and Lemma [6.2.6l So we finished
the proof of Theorem [6.1.3] and therefore the proof of Theorem [6.0.1]
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Chapter 7

Applications

In this chapter we present some applications of the finite generation result.

Theorem 7.0.1 (Optimal Destabilization Conjecture). Let (X, D, &) be a log Fano cone singu-
larity of dimension n. Assume that §(X, D, &) < ”T“ Then §(X, D, &) € Q and there exists a

T-equivariant divisorial valuation ordg over X that computes 6(X, D, &p).

Proof. Let v be a T-equivariant valuation on X that computes §(X, D, ;). By Lemma ,
there exists some T-invariant complement I' of (X, D) such that v € DMR(X,D + T'). Let
Y C DMR(X,D +T) be the smallest rational PL subspace containing v. By Theorem m,
we know the S-invariant function w +— Sx p(w) on X is linear in a neighborhood of v. Since v

computes §(X, D, &), we know
Ax,p(v) = 0(X, D,&)Sx,p(v)-

Since the log discrepancy function w — Ax p(w) is linear in a neighborhood of v € ¥ and by the
definition of § we know

AX7D(UJ) Z (S(X,D,fo)S)gD(w)
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for all w € ¥, we know that
Ax p(w) = d0(X, D, &)Sx,p(w)

in a neighborhood U C ¥ of v. So we know any divisorial valuation w € U(Q) also computes
d(X, D). Since w is a divisorial lc place of a complement, it induces a weakly special test configu-
ration of (X, D). By our calculation of § invariant in section 3, we could see that 5(X, D, ) € Q.
Notice that Ax p(w) is rational, so (X, D, &) € Q. O

Theorem 7.0.2 (Yau-Tian-Donaldson Conjecture). A log Fano cone singularity (X, D,&) is
K-polystable if and only if it is uniformly K-stable. Furthermore, A log Fano cone singularity
(X, D, &) admits a weak Ricci-flat Kdhler potential if and only if it is K-polystable.

Proof. Suppose that (X, D, &) is K-polystable. Let T C Aut(X, D) be a maximal torus (one could
assume 7' = T). We show that dr > 1. Suppose not, then we know o = 1 and that §(X, D, &)
is computed by some T-invariant quasi-monomial valuation v that is not of the form wt, for any
¢ € Hom(G,,,T) ®z R, and v is an lc place of a complement. Let m € N be sufficiently divisible

and consider the T—invariant linear system
M :={s€ H'(—m(Kx + D)) | v(s) > m- Ax p(v)}.

Let By € |[M| be a general member and let B = £ By. Then (X, D 4+ L M) has the same set of
lc places as (X, D + B) and so we know v € DMR(X, D + B). Notice T is a connected algebraic
group, every lc place of the T-invariant pair (X, D + %) is automatically T-invariant. So we know
DMR(X, D + B) consists only of T-invariant valuations.

By the same argument as in the proof of Theorem [7.0.1] we see that 6(X, D, &) is also computed
by some divisorial valuations w € DMR(X, D + B) that are sufficiently close to v. Because w
is T-invariant, we know w induces a T-equivariant special test configuration (X, D) of (X, D)

with Fut(X,D) = 0. Notice T C Aut(X, D) is a maximal torus and w # wte for any £ €
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Hom(G,,, T) ®z R, we know that (X, D) is not a product test configuration. This contradicts with
the assumption that (X, D, &) is K-polystable. Therefore we show §(X, D, &) > 1 and (X, D, &) is
uniformly K-stable. When the ground field is C, the existence of a weak Ricci-flat Kéhler potential

follows from this equivalence and [HL20]. O
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