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Advances in experimental methods in biology have allowed researchers to gain an unprecedentedly
high-resolution view of the molecular processes within cells, using so-called single-cell technologies.
Every cell in the sample can be individually profiled — the amount of each type of protein or metabolite
or other molecule of interest can be counted. Understanding the molecular basis that determines the
differentiation of cell fates is thus the holy grail promised by these data.

However, the high-dimensional nature of the data, replete with correlations between features, noise,
and heterogeneity means the computational work required to draw insights is significant. In particular,
understanding the differences between cells requires a quantitative measure of similarity between the
single-cell feature vectors of those cells. A vast array of existing methods, from those that cluster a
given dataset to those that attempt to integrate multiple datasets or learn causal effects of perturbation,
are built on this foundational notion of similarity.

In this dissertation, we delve into the question of similarity metrics for high-dimensional biological
data generally, and single-cell RNA-seq data specifically. We work from a global perspective — where
we find a distance function that applies across the entire dataset — to a local perspective — where
each cell can learn its own similarity function. In particular, we first present Schema, a method for
combining similarity information encoded by several types of data, which has proven useful in
analyzing the burgeoning number of datasets which contain multiple modalities of information. We
also present DensVis, a package of algorithms for visualizing single-cell data, which improve upon
existing dimensionality-reduction methods that focus on local structure by accounting for density in
high-dimensional space. Lastly, we zoom in on each datapoint, and show a new method for learning
𝑘-nearest neighbors graphs based on local decompositions.

Altogether, the works demonstrate the importance — through extensive validation on existing datasets
— of understanding high-dimensional similarity.

Thesis Supervisor: Bonnie Berger
Title: Simons Professor of Mathematics
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1 Introduction

The field of biology in recent decades has been completely revolu-
tionized by a profusion of data. In a virtuous cycle, the availability
of computational resources has spurred methods development: ex-
perimental methods generating ever more data, and computational
methods drawing deeper and deeper insights — thereby encouraging
experimentalists to pursue more ambitious methods.

Almost any type of biological data, from the number of genomes
sequenced, to the number of cells that can have their cellular products
individually processed, to the number of known connections between
neurons, show exponential growth (see Figure 1.1).

This dissertation aims to contend with the explosion of complexity by
approaching what is, at heart, a very straightforward question: How
can we tell when two pieces of biological data are similar to each
other? In fact, it is also one of the fundamental questions of the field.
The domain that a computational biologist works in is composed of
numerical representations of physical data — translating questions

Figure 1.1: Moore’s law in biology
The largest sizes of single-cell RNA-
sequencing datasets have been drasti-
cally increasing, super-exponentially
over the past decade; this is drawn
from Cho, Berger, and Peng [1]
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1: The model is decidedly a straight-
forward one, but nevertheless a gen-
erative model

2: This shows that even the field of
ethical AI is not fundamentally new.
The project of justifying racism with
the sterile language of statistics was
foundational for population genetics
and its spectre continues to be appar-
ent in modern genomics.

3: We discuss these sequences in de-
tail in Chapter 2

4: perhaps “posited” is more accu-
rate than “known”, as we continue
to learn that, in a theme throughout
this work, biology is complicated.
5: The computational construct of
a Turing machine certainly recalls
the biological process of translation,
which we will discuss below.
Human Genome Project: a massive
project running from 1990 to 2003
with the goal of sequencing the entire
human genome

in the physical world to their analogues in numerical world and
then translating the numerical insights back is one potential job
description for a computational biologist. Many of these questions,
as we fully discuss in Chapter 2, either implicitly or explicitly depend
on understanding biological similarity. We hope to show, through the
work we describe here, that answering this main question actually
requires a deep understanding of the biological processes that
generate the data and the mathematical models that act upon it.

From a historical perspective, parsing an explosion of data is not a
fundamentally new challenge for the field of biology, which has long
relied on computational insight for categorizing and making sense
of the data it collected. Markowetz [2] makes the point that if Carl
Linnaeus, considered the father of modern taxonomy, was around
today, “he would be a computational biologist”. Gregor Mendel’s
genetic analyses — when couched in terms a machine learning practi-
tioner would understand — involve fitting an empirical distribution
to expected counts from a generative model1.

As far as historical shadows go though, one must consider the turn
of the twentieth century, which saw population geneticists develop
much of the machinery of classical statistics — but in the service of
eugenics and justifying colonialism2 [3]. I bring this up as a shadow
not to disparage the potential benefits of bioinformatics but rather
as a stark reminder that any project that aims to understand human
differences can be fraught and must be undertaken carefully. As we
will find in the work presented in this dissertation, the prospect of
personalizing biology to the individual is indeed one of the great
promises of the data we work with.

Turning to more recognizably modern bioinformatics, we find in the
mid- and late-twentieth century the advent of computer science and
the paradigm of the biological organism as an information-processing
system, with its information stored in sequences3. For one, Jacob and
Monod [4] in 1961 began to describe simple regulatory circuits in
E. coli, revealing feedback mechanisms that could theoretically be
programmed. Because of the central dogma of biology (see Section 2.1)
it was known4 that these regulatory mechanisms must be encoded
in strings — which was exactly how theoretical computer scientists
were thinking about computers 5 [5].

It was developing algorithms for processing strings — reconstructing,
matching, imputing, finding an correcting errors— where biologists
confronted their next era of Big Data: the Human Genome Project
(HGP) forced computer scientists and biologists to figure out how
to piece together and match millions of short sequences of DNA.
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nature versus nurture: the question
of how much of an organism’s ap-
pearance or behavior are determined
by its genes or its environment
6: In a sign of the zeitgeist, the film
Gattaca, which considers just such a
dystopian future, was a hit back in
1997

7: This dissertation is the best evi-
dence for my faith in the value of
these high-resolution data

8: Don’t worry if these words don’t
mean anything, all shall be explained!

The wealth of sequencing data that became available through the
HGP (and through similar sequencing efforts for other organisms),
made it routine to find the analogues of particular sequences across
organisms.

The HGP provides yet another historical silhouette — in its infancy,
the sequencing of the human genome was considered the Holy Grail
for not just biology, but personal medicine. While the nature versus
nurture dilemma was certainly not settled, it was thought that the
genome would unveil all the secrets of, for example, human disease:
knowing your genetic sequence would allow you to map out a great
deal of your health6. In hindsight, it is perhaps unsurprising that
such a panacea did not pan out. As we discuss in Subsection 2.1.4,
we keep finding more and more complications and noise.

Today’s data are often attached to similar promises. Now, rather
than having a genome for every individual, biologists are able to
peer even deeper: into each cell within that individual, into each copy
of each protein found in that cell. Again, the point here is not to
disparage the new sources of data7, it is to once again highlight that
the layers of complexity are only just being pared.

In fact, analyzing the troves of data that modern bioinformaticians
must contend with has led to great insights but also continues to
reveal that biology is intensely complicated. Each new type of data
or inference method seems to lead to new questions — a bonanza
for new computational biologists. For example, we have realized
that the regions of so-called "junk" DNA actually serve regulatory
purposes and that proteins have regions of continuous variation and
RNA can itself have secondary structure8.

The work presented here took place entirely upon the shoulders of
the giant described above. I certainly do not claim to have “seen
farther” but everything done here would have been impossible
without the groundwork, in statistics, computer science, and biology
built up over the twentieth century. The contribution here attempts
to join some threads and understand biological similarity with the
language of mathematics.

The structure of the dissertation is as follows. We begin with an
in-depth overview of exactly those biological processes and mathe-
matical models in Chapter 2, and then we move into our research
contributions. Thematically, our work is ordered going from global
scale to local scale, and our algorithms build from global linear
transformations to very local nonlinear transformations. In Chap-
ter 3, we begin by discussing alignment of multimodal single-cell
technologies by finding a linear transformation of the original data
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9: These are the two most popular
methods for visualization of scRNA-
seq data, as discussed in Section 2.6.

that mediates between the distance metrics induced by the different
datasets. In Chapter 4, we move towards nonlinear transformations
of scRNA-seq data, delving into the objective functions of UMAP and
t-SNE9 and determining that they do not do a good job of preserving
high-dimensional density. Each chapter is paired with a chapter that
focuses on the extensive biological validation — Chapter 5 for metric
alignment, and Chapter 6 for dimensionality reduction. Finally, in
Chapter 7, we move towards the construction of the 𝑘-NN graphs
themselves that underlie the methods and evaluation in the previous
two chapters, and explore new methods for creating better 𝑘-NN
graphs.
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The education of a computational biologist covers a broad range of
disciplines. It is imperative for us to understand the experimental
methods that generate the matrices that cover our computers, so
generative models can be properly calibrated to underlying biological
processes. One must also learn the questions that biologists want
to be able to answer with the data that they have: numbers can
be crunched in any number of ways, but are most useful in the
service of understanding or clarifying actual biological hypotheses.
Lastly, of course, is the ability to convert questions from biology into
algorithmic or statistical questions, the technical ability to actually
answer those questions, and then translate the insights back into
biology.

We attempt in this chapter to lay the above groundwork — describ-
ing biological systems we evaluate, the experimental procedures
that make those biological systems interrogable, building the map
between biological and algorithmic questions, and describing how
we can evaluate effectiveness of algorithms.

2.1 Central Dogma of Biology

Molecular biology — and consequently, computational molecular
biology — has1 been built around understanding the central dogma
of biology, which describes the overarching mechanisms by which
information flows through organisms at the molecular level. Broadly,
the central dogma says that information flows from DNA (deoxyri-
bonucleic acid) to RNA (ribonucleic acid) to protein. We briefly
review each of these crucial macromolecules in turn.
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2: Biologists continue to discover just
how much of a simplification the cen-
tral dogma is. Rather than jamming
the narrative with all the caveats, we
will use these sidenotes to discuss ex-
ceptions. For example, we note here
that germ cells (sperm and eggs) do
not have the same copies of DNA as
somatic cells.
polymer: a molecule that is made by
combining smaller subunits, called
monomers

Adenine

Thymine

Cytosine

Guanine

Figure 2.2: The four nucleotides

3: Of course, this begs the question
about what else is there — the jury
is still out about exactly non-coding
regions are for, but it is clear they
serve important regulatory roles

Figure 2.3: Molecular structure of an
amino acid

4: Some proteins are made up of mul-
tiple strings which fold together. Also,
there exist proteins that help a protein
fold just so, when thermodynamics
alone isn’t enough.

2.1.1 DNA

DNA acts as the blueprint for the cell and the organism: each cell in
the organism has the same copy of DNA2. DNA is a polymer made
up on monomers called nucleotides, of which there are four: adenine,
thymine, cytosine, and guanine (see Figure 2.2). Famously, DNA
is double-stranded, and the strands are held together by hydrogen
bonds between the nucleotides — adenine binds to thymine and
guanine to cytosine — so each strand contains the information
necessary to replicate the other. When cells replicate, this redundancy
is crucial — the DNA strands are separated, and a new strand is
synthesized based on the complementarity of the nucleotides.

The sequence of nucleotides provides the “recipe” for the creation of
proteins, the workhorses of biology (see Subsection 2.1.2). In regions
known as coding regions 3, each triplet of nucleotides encodes one
of twenty possible molecules called amino acids, which are the
building blocks of proteins.

Decoding DNA was one of the earliest tasks for computational
biologists: from synthesizing the full string based on short sequenced
fragments, to figuring out which regions encode proteins, and
which regions are conserved across different species and organism.
Answering these and related questions is the remit of the field of
genomics.

2.1.2 Protein

As introduced above, proteins justly are considered the building
blocks of biology and mediate a wide, if not exhaustive, array of
biological functions, serving as enzymes for catalyzing reactions,
physical building blocks for cellular structures, signals for cellular
communications, channels for transporting metabolic products, and
the list goes on.

Proteins are also polymers, and their monomers are called amino
acids, which have a backbone of carbon and nitrogen along which
they are strung together, and a variable group, of which there are
twenty found in nature.

The thermodynamic interactions between the amino acids, especially
between the variable groups, cause the one dimensional string4 of
monomers to fold into a three-dimensional structure.

The end structure of a protein is crucial. For enzymes, the active
site must conform exactly to the molecules whose reaction is being
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active site: the physical site of the
enzyme where catalysis happens

5: And researchers continue to find
more and more types and roles for
this molecule. We will discuss only a
subset here.

6: Thus transcriptomics, the study
of the mRNA content of cells, joins
the extensive and ever growing list
of -omics suffixed data types
7: Technically, these are called
polypeptides, which are the precursor
to proteins, but we will use them in-
terchangeably.

catalyzed; the microtubulules that give structure to a cell must bear
its weight; cell signaling and regulatory proteins must assume their
active configuration in the presence of the correct molecular factors;
and channel proteins must selectively passage the correct set of
cellular products, under the correct circumstances.

Because of the centrality of protein structure, it has long been a
goal of computational biologists to figure out the eventual three-
dimensional structure of proteins, whether from just the amino acid
strings themselves, or through two dimensional images take through
electron microscopy. Studying the proteins in a cell is the realm of
proteomics.

2.1.3 RNA

Ribonucleic acid (RNA) is the molecule that mediates the transfor-
mation of information stored in DNA into the amino acid sequences
required to build proteins. Notably, while every cell has the same
DNA content, different cells in an organism perform vastly different
functions by expressing vastly different proteins. Understanding the
RNA content of a cell is key to understanding that cell’s specific role
in an organism. Because of this, keystone role, this molecule is also
the main focus of this dissertation.

There are many different types of RNA5 — in fact the broadly
accepted “RNA worlds” hypothesis posits that RNA was once the
only macromolecule, performing storage and enzymatic functions
on its own. Our primary focus here will be messenger RNA (mRNA),
which is a transcribed (i.e. copied) version of the coding regions of
DNA6. The mRNA transcripts are then translated into amino acid
strings7. Profiling the mRNA transcripts in a cell thus informs which
proteins (and how many copies) will be synthesized.

The diversity of RNA’s functions and forms is truly staggering,
and it is no wonder that the study of RNA has greatly benefited
from computational biology’s Big Data era. In addition to mRNA,
the central dogma is mediated by transfer RNA (tRNA), which
actually translates between nucleotide triplets and the particular
amino acid they represent by binding specifically to each; and
ribosomal RNA helps build the ribosome, the cellular structure that
serves as the site of protein synthesis. More recent work has also
discovered regulatory functions for RNA, including microRNA and
small-interfering RNA (siRNA), which help tag mRNAs and other
transcripts for degradation.
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eukaryote: organisms whose cells
have individual organelles, e.g. an-
imals and plants; the opposite are
prokaryotes, like bacteria

epigenetics: the study of the inter-
action between environment and ex-
pression

chromatin: the combination of DNA
and protein that constitute a chromo-
some

2.1.4 Complications to the central dogma

As mentioned above, the central dogma is an extreme oversimplifi-
cation of the actual process of protein synthesis. Just as Newtonian
mechanics in physics or stylized supply-and-demand graphs in eco-
nomics capture the gist of a labyrinthine reality, the neat DNA →
RNA → protein schematic is a useful introduction for non-experts
to get a toehold into biology. While understanding the central dogma
should be sufficient for the work presented here, we briefly highlight
some of its shortcomings for the interested reader.

Alternative splicing

The strand of RNA that is transcribed from the coding region of DNA
is, in eukaryotes, not immediately then translated into a protein.
The coding region is split into exons, which are actually translated,
and introns which are spliced from the RNA. Crucially, the same
transcribed region can have multiple possible splice sites, so the the
same region of DNA can lead to many different possible proteins,
depending on exactly which pieces are spliced out. This is known as
alternative splicing, and researchers are actively trying to understand
the process that mediates the different splicing possibilities.

Epigenetics and chromatin accessibility

As discussed in Subsection 2.1.3, different regions of the DNA are
expressed in different cells, and epigenetics tries to understand the
mechanisms behind these differences. While the search for these
mechanisms continues, one mechanism that is relatively well under-
stood is chromatin accessibility: if a region of DNA cannot physically
be accessed by the enzymes necessary for transcription, then any
proteins encoded in that region will not be expressed. Proteins called
histones are responsible for the packing of chromosomes, and the
interplay between these packaging proteins, transcription factors,
chromatin binding proteins, and other regulatory elements — all
heavily mediated by external and environmental stimuli — creates a
dynamic and complex set of conditions for chromatin accessibility
[6].

Non-coding regions

Only about one percent of the DNA in the human genome actually
encodes proteins [7]. We have discussed one portion of the non-
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ENCODE: the Encyclopedia of DNA
Elements, a project with the goal of
learning the function of the entire
human genome
promoter: DNA region where tran-
scription can start
enhancer: DNA regions that tran-
scription factors can bind to to in-
crease likelihood of transcription of
a gene

8: This is where the earlier distinc-
tion between protein and polypeptide
becomes meaningful

Figure 2.4: An example of a puri-
nosome, a multi-protein complex,
taken from Roy and Kundu [13]; each
color represents a separate peptide

9: for example, acting as channels
through membranes

coding regions above — the introns, which are regions within a
primary mRNA transcript that are spliced out before the translation
stage. Researchers long thought that the “rest” of the DNA between
the transcribed regions (called the intergenic region), served no
purpose and was thus called junk DNA. However, work by ENCODE
[8], has found that much of these intergenic regions also serve crucial
regulatory roles. Some regions, like promoters and enhancers, serve
as binding sites for important proteins, whereas others transcribe
the various types of RNA discussed in Subsection 2.1.3. Still other
non-coding sites do not have a known function but heterogeneity in
those sites is associated with different phenotypes, like disease.

Polypeptide processing

Even when alternative splicing is taken into account, the mRNA
that remains does not correspond one-to-one with the protein that
emerges in the cell8 [9, 10]. Once the polypeptide has been generated,
it undergoes a number of potential different processing steps before
it becomes a “production-ready” protein. Most straightforwardly,
many proteins are made up of a composition of several polypep-
tides [11], and several other proteins are involved in putting these
complexes together [12].

Other major types of processing involve additions made to the
single polypeptide chain itself [14]. Phosphorylation involves adding
a phosphoryl group to a protein, which often activates that protein
for signaling mechanisms (a phosphorylated protein can activate
other proteins); glycosylation similarly involves the addition of small
molecules called glycans, which heavily affect the folding and tertiary
structure of a protein; proteins destined for membranes9 often have
lipid modifications — lipids attached covalently to the protein; the
addition of the protein ubiquinone often actually marks a polypeptide
for degradation. All of the above processes are highly regulated
and driven by various (and still poorly understood) temporal and
environmental stimuli.

2.2 Single-cell RNA Sequencing

Recent advances in experimental methods have given biologists
an unprecedentedly high-resolution view into the transcriptomic
profiles of individual cells. Single-cell RNA sequencing (scRNA-seq)
is a sequencing technology that, for each cell in a sample, counts the
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10: For example, in droplet based se-
quencing methods, cells fed through
a stream of oil droplets, so each oil
droplet should contain a single cell.

transcription factor: protein com-
plexes that attach to the DNA and
mediate transcription into RNA, for
example accelerating or repressing
expression of a gene

metabolite: the small-molecule-sized
inputs and outputs of cellular pro-
cesses

amount of each particular gene transcript that is expressed in that
cell.

The resulting data gives us a so-called expression profile for each cell.
Under the hypothesis that cellular function is determined by the
proteins present in the cell, the differences in expression profiles help
us understand the underlying mechanisms for cellular differences.

While new methods for scRNA-seq are actively being developed, they
follow a similar framework: RNA fragments that are complementary
to the transcripts of interest are first prepared. Then, cells in the sam-
ple are individually10 combined with sets of these complementary
transcripts, and each set is identified with a unique “barcode”. In
this way, the sequenced transcripts can be traced back to the cells
that they came from.

Because of its incredibly high-resolution, scRNA-seq datasets and
corresponding methods for analysis have proliferated. For example,
recent experiments include profiles of the various immune cell types
known as peripheral blood mononuclear cells (PBMCs), which are crucial
to our immune response [15]; a look into each and every cell in the
roundworm C. elegans embryo [16]; and a comparative view into the
profiles of cells in tumors versus in healthy blood [17].

2.2.1 Multimodal single-cell technologies

While mRNA transcripts remain the most widely profiled type of
single-cell data, various other single-cell technologies are proliferat-
ing. Slide-seq is a technology that records the spatial location of cells
in a sample, leading to insights into cellular and tissue organization.
Chromatin Immuno-Precipitation-sequencing (ChIP-seq) is a method
to determine where transcription factors bind onto the DNA [18].
Chromatin accessibility profiling is a form of single-cell epigenetics,
and records which regions of the DNA are actually accessible in a
given cell, allowing researchers to understand why different cells
have different transcriptomic profiles. Single-cell metabolomics moves
further down the pipeline of the central dogma, and looks at the
metabolites present in each cell, to understand from a process-based
standpoint exactly what reactions are going on in which cells. Com-
bining the information from all these single-cell approaches is a space
that is rapidly proving to be extremely informative, and the so-called
multi-omic datasets combine information from several different data
types [9].
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11: We will mostly discuss problems
related to RNA-sequencing here, but
many of these also apply to the other
single-cell methods we’ve discussed.

12: Another open question, which we
touch on in Section 2.7 is whether dis-
crete cell-types exist at all. In other
words, is the fact that cells have differ-
ent expression patterns indicative of
noise around some core expression
profile, or is there value in dealing
with the core separately from the pe-
riphery around a cluster?

These data are ripe for analyzing computationally, and we will
discuss single-cell technologies from a computational standpoint
next.

2.2.2 A survey of scRNA-seq problems

The promise of high-resolution insights through single-cell technolo-
gies is paired with the unique computational challenges of analyzing
these high-dimensional data [19].

▶ Preprocessing: Cleaning up the raw data is itself a non-trivial
task when it comes to scRNA-seq data11. The experimental
techniques used for generating the data can lead to corrupted
data — sometimes two cells are mapped as a single-cell (these
are called doublets) or sometimes the cells captured are dy-
ing. Even accounting for these, the sequencing depths of the
different cells can be on different scales, and so normalization
procedures are required to be able to compare the outputs of
different cells.

▶ Cell-type identification: As noted above, one of the key ques-
tions that single-cell analyses can answer is, what makes different
cells look different from each other? The first step is of course to
identify whether there are different classes of cells within the
dataset. The cell-type identification problem involves taking
an unlabeled scRNA-seq dataset and determining whether
the data can be divided into discrete classes, and what class
each cell belongs to. In computational terms, this is done by
clustering (see Subsection 2.3.1 for an overview of methods),
and clustering has become a de facto first step for many analysis
pipelines. A major difficulty in the clustering of scRNA-seq
data in particular is the high-dimensionality of the data —
with potentially tens of thousands of genes, figuring out which
genes we should focus on to inform clustering remains an open
and active area of research (see Chapter 7 for our work on the
subject)12.

▶ Gene set enrichment: Identifying different coherent cell-types,
while crucial, is only part of the picture. It is also important to
understand what makes the cell-types different transcriptomi-
cally, by looking at the transcripts that are disproportionately
expressed in each of the cell-types that the clustering methods
may have found, a process called gene set enrichment or
differential gene expression. Identifying exactly what makes
the expression of a gene in a cell-type distinctive is not neces-
sarily straightforward: methods generally consider the subset
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13: The archetypal example is that
a high-dimensional Gaussian point
cloud has most of its mass not in its
center but rather in a ring around it
[20].

of genes within a cell type that have higher mean expres-
sion within the cell type than overall in the dataset, but one
might also be interested in variance of expression, a concept we
consider in Chapter 4.

▶ Visualization: The high-dimensional nature of single-cell
data also makes it very difficult to understand, since high-
dimensional data in general have some very unintuitive prop-
erties13. Communicating insight about these datasets thus
requires tools for visualization, and the state of the art tools
use dimensionality reduction in order to reduce the original data
to a two- or three-dimensional dataset, which can then be
interpreted via scatter plot. See Section 2.6.

▶ Trajectory inference: Understanding the differential gene ex-
pression of the different cell types in a dataset motivates
another dimension of analysis: temporal variability. Since the
multicellular organisms mostly studied in scRNA-seq experi-
ments grow from embryonic cells dividing and differentiating,
the temporal dynamics of gene expression can help under-
stand the differentiation process. However, since the act of
sequencing destroys the sample, one must infer the the dynam-
ics — the collection of trajectory inference algorithms aims to
learn, given the expression vector of the cell, which cell it is
moving towards and which cell was closest to its progenitor’s
expression [21].

▶ Integration: The problems above were all focused on analyzing
a single dataset. With single-cell sequencing becoming more
and more part of the molecular biologist’s toolkit, we often are
faced instead with multiple datasets, both many scRNA-seq
datasets of the same cell-types or multiple types of single-cell
data (e.g. ChIP-seq, Slide-Seq, and scRNA-seq), which we call
modalities. To analyze these datasets together, it is important
to figure out how to synthesizes the information they contain.
In the single-modality case (i.e. many scRNA-seq datasets),
the difficulty is batch effects, where experiment-specific noise
artifacts can make it seem like the cells within a dataset are
more similar to each other than to the proper cell-type. Many
methods attempt to correct for these batch effects by trying
to “anchor” cells of the same type together across datasets
[22, 23]. The case of multiple modalities presents additional
problems, as one must try to reconcile the different information
provided by each of the different modalities: if two cells are
far away from each other in expression space but close by
in chromatin-accessibility, what does that tell us about their
similarity? We aim to address these questions in Chapter 3.
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14: or ChIP-seq or slide-seq or any
other single-cell vector

15: While we focus on scRNA-seq
data here, most single-cell technolo-
gies can be easily dealt with analo-
gously.
16: The astute reader familiar with
scRNA-seq will recognize that we did
not use the word gene here — or for
that matter, at all so far! This is inten-
tional, as a solid definition of gene is
hard to find. For this work, we will
use gene to mean “unique transcript
of interest in an scRNA-seq dataset”.
17: One might ask, why ℝ instead of
ℕ, if the data are count data. Often
the count data are transformed, so
we leave the domain general

18: One might ask, isn’t statistics the
art of inference through data? It is
an open question what separates ML
from statistics.

As we now move towards the mathematical machinery relevant
to this work, the reader should keep the above problem types in
mind. Notably, the bulk of our mathematical discussion will focus
on the theme of distance metrics, namely, how to tell whether two
expression14 profiles are close to each other in some biologically
meaningful way. We should note that all the problems above, with
the exception of preprocessing, are heavily reliant on the ability to
assign similarity between cells; even the preprocessing step is done
with a focus on getting the cleanest possible data to be able to make
those similarity judgments.

2.3 Mathematical Setup

From a mathematician’s standpoint, an scRNA-seq dataset15 with 𝑁
cells and 𝐺 unique transcripts16 of interest can be represented as a
matrix 𝑋 ∈ ℝ𝑁×𝐺, where 𝑋𝑖 𝑗 represents the number of transcripts
of gene 𝑗 found in cell 𝑖17. So a cell can be thought of as a vector in
ℝ𝐺.

Analyzing a scRNA-seq dataset thus entails understanding distances
between the rows of this data matrix 𝑋. A fundamental question —
the fundamental question in this dissertation — is thus deriving a
biologically meaningful similarity score between two cells, given the
expression vector of a pair of cells.

2.3.1 Machine learning

Machine learning (ML) has become a crucial tool for the computa-
tional biologist, but it is often surprisingly hard to find an operational
definition. We generally take the approach of definition by enumer-
ation — discussing supervised and unsupervised tasks. But we first
attempt a more overarching view.

Generally, the unifying theme behind ML algorithms is data — if
it is about anything, machine learning is about inference through
data18. We might go even farther and claim that, given some data
{𝑋1 , . . . , 𝑋𝑁 } ⊂ V, ML involves learning some function 𝜙 : V→ Y

such that 𝑦𝑖 = 𝜙(𝑋𝑖) aids in some decision-making process. While we
expand on this in more detail presently, we can quickly see that some
canonical machine learning tasks fall into this framework:

Examples of ML tasks
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20: The labeled data are often called
training data

21: This will be defined in Section 2.4,
but it is basically a way to measure
distance between values.

22: The example of animals is specif-
ically chosen because it introduces an
interesting middle-ground — if the
labels are cat, dog, and spider, then
surely the distance between cat and
dog is closer than that to spider. This
realm of hierarchical classification is
getting closer to regression!

▶ Image classification: Given a set of images of animals, some
of which are cats and the others of which are dogs (and
several of which are labeled as such), decide if a given
unlabeled image is a cat. Here, 𝜙 : {Images} → {cat, dog},
and the output of the function itself is the decision

▶ Clustering: Given a collection of crabs19
19: Yes, the organism — it was in
solving a problem very similar to this
that the method of moments, a classical
technique in statistics, was developed

, figure out whether
the crabs are from separate species. Here again, 𝜙 is a
function that takes as input several characteristics of the
crabs and labels a particular crab, but we additionally have
to figure out what the possible set of labels actually is.

Of course, the above two examples are the archetypes of the split
between supervised an unsupervised learning, and without further
ado, we now elaborate on these terms.

Supervised learning

The crucial aspect of the data required for supervised machine
learning is labels — that is, we have some data for which we we know
the value of the aforementioned function 𝜙20. The goal of supervised
learning is to use the labeled examples to learn the functional form
of 𝜙, so it can be applied to the unlabeled data whose labels we want
to know.

Further organization of the this class is based on the type of the labels:
if the labels are discrete (e.g. {cat, dog} from the example above),
then the problem is known as classification. If the the labels are
continuous (say, predicting the weight of said cat based on the image),
then the problem is called regression. While the “discrete” versus
“continuous” nature of the problem is often used as the baseline to
split classification versus regression, and is generally sufficient for
our purposes here, the reality is slightly more complicated. A more
salient difference is that for a regression problem, the possible labels
have a metric21, and so, some labels can be closer to each other than
others.

The difference is patently obvious in the examples above: weights
of 20 lbs and 25 lbs are much closer to each other than weights of
10 lbs and 30 lbs. Conversely, if we label images by animal type, the
image either has a particular label or it does not22.

In designing the solution to the supervised learning problem, the
key decision that the practitioner must make is the functional form
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23: It should be noted that while
much of modern ML has moved be-
yond linear regression, the frame-
work is actually extremely powerful
and can accommodate nonlinearities
— interested readers should study or-
dinary least squares (OLS)

24: The reader may be curious why
deep learning hasn’t merited a discus-
sion yet. Deep learning is merely one
specification of the supervised learn-
ing problem, where the function class
takes the form a neural network, and
the method of optimization cleverly
minimizes a given objective function.

of 𝜙 and how it interacts with the input data 𝑋. Most well-studied
of course is the class of linear regression, where we write:

𝜙(𝑥) = 𝐴𝑥 + 𝑏

and find the matrix 𝐴 and vector 𝑏 that best match the labeled 𝑥𝑖 to
their label23 𝑦𝑖 . The process by which 𝐴 is found is called learning or
fitting, and is in general found by minimizing some notion of error,
which is usually called a loss function or objective. For example, in
the case of least squares regression, this error is:

min
𝐴

O=

𝑁∑
𝑖=1

(𝑦𝑖 − [𝐴𝑥𝑖 + 𝑏])2 , (2.1)

which is called the mean-squared error (MSE).

The flexibility of parametrized supervised learning is thus signposted
here: replacing the matrix 𝐴 with a general function from richer
function classes, and tailoring the loss function to achieve the desired
objective are the main knobs available for solving a supervised
learning problem24. In Subsection 2.3.2 we discuss a further degree
of freedom, whereby the input points can be transformed into some
new nonlinear space using the so-called kernel trick.

Unsupervised learning

Most of the work presented here is in the more nebulous realm of
unsupervised learning, where the data we are presented are not
labeled in any way. The array of tasks in this category focus on finding
some kind of inherent structure in the data can be learned without
knowledge of ground truth labels. In our generalized framework
for ML above, we noted that even in unsupervised learning, the
goal is to devise some kind of transformation 𝜙 that aids with a
decision-making process. The key in unsupervised learning is that
we do not know the values of 𝜙 for any of our existing data. While
not exhaustive, some of the main tasks in unsupervised learning are
clustering, metric learning, and dimensionality reduction.

Unsupervised learning tasks

▶ Clustering: Insofar as one exists, this is the classical unsu-
pervised learning task. The goal is to understand whether
your underlying data actually do fall into some discrete
classes (as one might have in the classification problem
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26: We are ignoring the constant 𝑏
from above here.

27: This is called an interaction term
in econometrics

above). Clustering methods have have been an active field
of development for decades25

25: Centuries might be more accurate
— the “classifying crabs” example
above was from the early twentieth
century, and the method-of-moments
might actually predate this, to, you
guessed it, Gauss.

, and the crux of the problem
is deciding what constitutes a cluster. Some look at density
— clusters are regions of high density surrounded by low-
density peripheries [24]; others posit that clusters should
be sets of points that are much closer to each other than to
other points [25]; still others assume the data come from
an underlying mixture of probability distributions and find
the assignments that maximize the likelihood

likelihood: given a particular prob-
ability distribution, the probability
density of seeing a particular data
point.

of the data
[26].

▶ Dimensionality reduction: The goal of dimensionality
reduction (DR) is to find a lower-dimensional representation
of the input data. So here, 𝜙 is a function that maps the
input vector 𝑥 to a lower dimensional vector 𝑦. One can
use DR to de-noise the data, to visualize it, or to learn
correlations between the input features. We cover DR in
detail is Section 2.6.

▶ Metric learning: The metric learning task is to find the
right notion of distance between the input data points. This
is a really important task in ML that often takes on many
names and has many approaches, and we discuss a few of
those approaches in Subsection 2.3.2 (which is about kernel
methods), Section 2.4 (the general metric learning problem),
and Section 2.5 (which is about the specific and crucial case
of manifold learning).

2.3.2 Kernel methods

As alluded to in our discussion of supervised learning, linear regres-
sion and its related linear methods have more power than is often
ascribed to them. This is because one can transform the input vectors
with some nonlinear functions and then apply linear regression on
those functions. For example, given an input vector:

𝑥 = (𝑥1 , . . . , 𝑥𝑘)𝑇

and a label 𝑦 ∈ ℝ, the traditional linear regression problem learns a
vector 𝑤 and sets26 𝑦 = 𝑤𝑇𝑥. However, if we think that actually, 𝑦
depends on the square of one of the features, and perhaps the product
of another pair27, we could come up with a new vector:

𝑥′ = 𝜓(𝑥) = (𝑥2
1 , 𝑥1𝑥2 , 𝑥1 , . . . , 𝑥𝑘)𝑇 (2.2)
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28: In the case of 𝑟 = 2 (i.e. all
quadratic terms), the kernel method
is not more efficient, but it will be as
𝑟 increases

combinatorics: a field of mathemat-
ics that deals with counting combina-
tions of objects

and a then learn a new weight vector 𝑤′ ∈ ℝ𝑘+2 — the key is that
under the hood, this remains a linear regression problem, despite
the “new” features having non-linear dependencies between each
other!

Kernel methods generalize this idea, by allowing the input vector
to first be transformed into some nonlinear feature space, and the
predictor to be applied in that space. The difficulty here is that
the data need to be transformed into the feature space, which is
potentially very high dimensional. For example, consider the natural
extension of (2.2) above to all quadratic terms:

𝑥′ = 𝜓(𝑥) = (𝑥𝑖𝑥 𝑗)𝑇𝑖≤ 𝑗≤𝑁 (2.3)

This requires learning a weight vector 𝑤′ ∈ ℝ𝑘(𝑘−1)/2 — and this
scales as 𝑂(𝑘𝑟) for learning interactions up to the power 𝑟.

This is where the kernel trick comes into play. The linear regression
problem can be converted to a problem that is solved only in terms
of the matrix 𝐺 = 𝑋𝑋𝑇 , which is called the Gram matrix — which
means only the elements of the Gram matrix need to be learned.
Note that

𝐺𝑖 𝑗 = 𝑥𝑇𝑖 𝑥 𝑗

In the case of the transformed vector 𝑥′ = 𝜓(𝑥) above, the Gram
matrix becomes 𝐺 = 𝜓(𝑋)𝜓(𝑋)𝑇 , where

𝐺𝑖 𝑗 = 𝜓(𝑥𝑖)𝑇𝜓(𝑥 𝑗)

Thus, instead of learning the 𝑂(𝑘𝑟) terms necessary to write out 𝜓,
we need to learn the 𝑘(𝑘 − 1)/2 pairwise dot products in the kernel28.
In fact, just defining a kernel implicitly transforms the given problem
into some complex feature space.

In this work, we rely heavily on kernel methods, as they are key to
learning useful distance metrics on biological data. Especially when
the local distances in a dataset are most important, the kernel trick is
closely associated with another crucial structure in ML, the graph,
which we introduce next.

2.3.3 Graph theory

Long a staple of algorithms in theoretical computer science or for
applications to routing and scheduling — namely combinatorial
tasks — graph theory has become a crucial aspect of ML, because
of the advent of manifold learning, which we discuss in Section 2.5.
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Figure 2.5: An example of an (a) di-
rected and (b) undirected graph

tree: a graph with no cycles, i.e. only
one path along edges between any
two points in the graph

Figure 2.6: The black edges from a
tree graph, with only one route from a
to b. Adding the dashed edge creates
a cycle, and there are now multiple
paths.

Here, we lay the groundwork by introducing the mathematical object
of a graph.

Definition 2.3.1 (graph) A graph is a set of vertices 𝑉 , which can
be any object, and a set of pairs of vertices (𝑣, 𝑤), where 𝑣, 𝑤 ∈ 𝑉 ,
which we call edges. We denote the set of edge 𝐸. Two vertices are called
connected if there is an edge between them.

Edges can be directed (if the ordering (𝑣, 𝑤) versus (𝑤, 𝑣) should be
separated) or undirected (in which case an edge will be denoted {𝑣, 𝑤}).

We can also put a weight function 𝑓 : 𝐸 → ℝ on the edges, in which
case the graph is called a weighted graph.

Intuitively, edges denote when two vertices have some sort of relationship
or connection.

A schematic of a graph is shown in Figure 2.5. Generally, graphs
are extremely useful for depicting relationships between the vertex
objects and are well known in biology as well — trees (see Figure 2.6
are used for representing the evolution of species, and graphs
map out the interactions between different proteins in a regulatory
network.

Our work, which focuses on distances in high-dimensional data,
focuses instead on a particular type of graph called a 𝑘-nearest
neighbors (𝑘-NN) graph, which is induced on a set of points that
have some notion of similarity or distance between them, and where
points are connected by an edge if they are one of each other’s nearest
neighbors. Formally:

Definition 2.3.2 (𝑘-nearest neighbors graph) Assume (𝑋1 , . . . , 𝑋𝑁 )
is a set of 𝑁 points, and let 𝑑𝑖 𝑗 ∈ ℝ+ represent the distance between 𝑋𝑖
and 𝑋𝑗29

29: not necessarily Euclidean, but
should be a metric

. Then, given a positive integer 𝑘, the 𝑘-radius of 𝑋𝑖 , denoted
𝑟
(𝑘)
𝑖

, is the distance to the 𝑘-th closest point to 𝑋𝑖 :

𝑟
(𝑘)
𝑖

= max
𝛿

{
𝛿 :

��{ 𝑗 : 𝑑𝑖 𝑗 ≤ 𝛿
}�� ≤ 𝑘

}
, (2.4)
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and let 𝑋𝑘(𝑖) be the point 𝑗 that is a distance 𝑟(𝑘)
𝑖

from 𝑋𝑖 . Then, the
𝑘-neighborhood of 𝑋𝑖 , denoted 𝑁 (𝑘)

𝑖
is:

𝑁
(𝑘)
𝑖

=

{
𝑋𝑗 : 𝑑𝑖 𝑗 ≤ 𝑟

(𝑘)
𝑖

}
(2.5)

Then, the symmetric 𝑘-nearest neighbors graph of 𝑋 , denoted 𝐺𝑋 , is
the graph 𝐺𝑋 = (𝑉, 𝐸), where:

𝑉 = {𝑋1 , . . . , 𝑋𝑁 }

𝐸 =

{
{𝑋𝑖 , 𝑋𝑗} : 𝑋𝑗 ∈ 𝑁 (𝑘)

𝑖

}
In words, 𝐺𝑋 is a graph where two points are connected if one is in the
others neighbor set.

While this is what we are usually referring to when we talk about 𝑘-NN
graphs, there are a couple of variations that are worth introducing.

The directed 𝑘-nearest neighbors graph of 𝑋, denoted 𝐷𝑋 , is the
graph above but with undirected edges replaced by directed edges:

𝑉𝐷 = {𝑋1 , . . . , 𝑋𝑁 }

𝐸𝐷 =

{
(𝑋𝑖 , 𝑋𝑗) : 𝑋𝑗 ∈ 𝑁 (𝑘)

𝑖

}
The mutual 𝑘-nearest neighbors graph of 𝑋, denoted 𝑀𝑋 , is the
restriction of the symmetric 𝑘-NN to edges where both vertices are in
each other’s neighbor set:

𝑉𝑀 = {𝑋1 , . . . , 𝑋𝑁 }

𝐸𝑀 =

{
{𝑋𝑖 , 𝑋𝑗} : 𝑋𝑗 ∈ 𝑁 (𝑘)

𝑖
and 𝑋𝑖 ∈ 𝑁 (𝑘)

𝑗

}
In general, we will drop the 𝑘 superscript when the value of 𝑘 is clear.

2.4 Metric Learning

The traditional method for judging the distance between two vectors
is the Euclidean distance: 𝑑𝐸(𝑥, 𝑦) =

(∑(𝑥𝑖 − 𝑦𝑖)2
)1/2. However, the

notion of distance can broadly be generalized: mathematically, a
distance metric is a function that satisfies the following conditions:

Definition 2.4.1 (metric) Given a vector space 𝑉 , a function 𝑑 :
𝑉 ×𝑉 → ℝ is a metric if the following hold:
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30: This is not explicitly true for many
parametric methods, but remains im-
plicitly true because of commonly
used continuity constraints of the
learned predictors. It is indeed explic-
itly true for the large class of kernel
methods (we will discuss these below),
which are built around the impor-
tance of similarity between inputs.
31: I have purposely left the defini-
tion of “correct” ambiguous, because
the notion of a correct distance metric
is, as we will see, absolutely essential
to problems in computational biol-
ogy.

32: This is easily extended to the
multi-class case, in which the pre-
dicted label is the one shared by a
plurality of neighbors.

1. 𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑉 (non-negativity)
2. 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 (uniqueness)
3. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑉 (triangle inequal-

ity)

Metrics play a key role in many inference algorithms in machine
learning: the prediction for a new datapoint is heavily dependent on
the predictions of similar input points30.

The field of metric learning aims to learn the correct31 metric for a
particular dataset or task. In the case where our data have labels, the
quality of a distance metric can be based on subsequent performance
in classification or regression tasks.

We can thus define the generalized supervised metric learning
task:

Definition 2.4.2 (supervised metric learning) Given a labeled dataset
(𝑋, 𝑦), where 𝑋𝑖 ∈ 𝑉 a vector space and 𝑦𝑖 ∈ Y is the label for vector
𝑋𝑖 (and 𝑦𝑖 can be discrete or continuous), let K be the space of kernel
functions, so an element

𝐾 ∈ K : V× V→ ℝ

defines similarity among input vectors; specifically, let

K𝑋 = {𝐾(·, 𝑥) : 𝑥 ∈ 𝑋}

be the set of kernel functions induced by the similarity function given
the input dataset 𝑋. Then assume we are given a loss function L :
Y× Y→ ℝ+ which evaluates a prediction for 𝑋𝑖 against its label 𝑦𝑖 ;
and of course a prediction function F : 𝑉 × K𝑋 → Y, which, given
the kernel function on the dataset 𝑋 , predicts the value for a given input,
the supervised metric learning problem aims to optimize:

arg min
𝐾∈K𝑋

1
𝑁

∑
𝑖

L(F (𝑋𝑖 , 𝐾), 𝑦𝑖) (2.6)

Thus, the task is to learn the similarity function between points such
that the loss on the input dataset is minimized.

A common use case is metric learning for nearest neighbors classification.
Here, a test point 𝑥 is assigned the label of the majority32 of its
𝑘-nearest neighbors for some hyperparameter 𝑘. So, the goal is to
have an input 𝑘-NN graph such that an input point with a label
ℓ ∈ {0, 1} is surrounded mostly by other training data that have label
ℓ as well.
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positive semidefinite (psd):𝑀 is psd
if 𝑥𝑇𝑀𝑥 ≥ 0 for all 𝑥; there are other
equivalent definitions

33: and many other 𝑘-NN and clus-
tering methods
soft clustering: instead of points be-
ing assigned to a single cluster, they
are given probabilities of belonging
to each possible cluster

Given a distance function 𝑑, let 𝑑𝑘(𝑥) be the distance to the 𝑘-th
farthest point from 𝑥. In symbols:

𝑑𝑘(𝑥) = min
𝑧

{
𝑧 ∈ ℝ+ : |{𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝑧}| = 𝑘

}
In this case, the kernel 𝐾 between data points can defined, given the
distance function 𝑑, as:

𝐾𝑑(𝑥, 𝑦) =
{

1, 𝑑(𝑥, 𝑦) ≤ 𝑑𝑘(𝑥)
0, otherwise

(2.7)

and the predictor assigns to 𝑥:

𝑦̂(𝑥) = F (𝑥, (𝐾𝑑)𝑋) = 1

(
1
𝑘

∑
𝑖

𝑦𝑖𝐾𝑑(𝑥, 𝑋𝑖) >
1
2

)
(2.8)

Thus, optimizing the loss function in (2.6) over the kernel means
finding the distance function 𝑑 that minimizes the classification
error.

2.4.1 Linear methods

Crucial to solving the metric learning problem is choosing the class
of distance functions that are allowed. This is generally the problem
of choosing the kernel, which is recognized as a difficult problem
[27]. The restriction to linearity, however, merits its own consideration
since it both allows a straightforward exposition for the problem
above and demonstrates the oft underestimated power of linear
methods, a theme we will return to in our own work.

In the linear metric learning problem, popularly introduced as
neighborhood component analysis (NCA) by Goldberger et al. [28],
the goal is to find a matrix 𝐴 such that transforming the data by 𝐴
yields a better Euclidean distance metric. For vectors 𝑥, 𝑦 ∈ 𝑉 , the
new distance metric 𝑑𝐴 is thus given by:

𝑑2
𝐴(𝑥, 𝑦) = 𝑑2(𝐴𝑥, 𝐴𝑦) = ∥𝐴𝑥 − 𝐴𝑦∥2

= (𝑥 − 𝑦)𝑇𝐴𝑇𝐴(𝑥 − 𝑦)

Letting𝑄 = 𝐴𝑇𝐴, the goal of finding the optimal𝑄 becomes learning
a positive semidefinite matrix that optimizes (2.8).

It is worth noting here that in NCA33 rather than the kernel matrix
being strictly binary (𝑋𝑗 is either a neighbor of 𝑥 or not), a soft
clustering method is actually used:

𝐾𝑑(𝑥, 𝑦) ∝ exp
(
−𝑑2(𝑥, 𝑦)

)
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semidefinite programming: a
method for solving constrained
optimization problems where the
constraints and the argument of
optimization expressed as psd
matrices

34: The astute reader will note that
we are moving to the realm of unsu-
pervised learning as laid out in Sub-
section 2.3.1.

where the proportionality constant is chosen so that ∑𝑦∈𝑋 𝐾𝑑(𝑥, 𝑦) =
1. In the specific case of NCA, we can write the full problem. Set:

𝑝 𝑗(𝑥) =
exp

(
−(𝑥 − 𝑋𝑗)𝑇𝑄(𝑥 − 𝑋𝑗)

)∑
𝑦∈𝑋 exp

(
−(𝑥 − 𝑦)𝑇𝑄(𝑥 − 𝑦)

) ,
which lets us define the predictor (which here, will be a membership
strength in [0, 1] rather than an assignment):

𝑦̂(𝑥) = 1
𝑁

∑
𝑖

𝑦𝑖𝑝𝑖(𝑥)

The goal of the algorithm is thus to maximize this quantity across
the training data:

L= − 1
𝑁

(∑
𝑖

𝑦𝑖 𝑦̂(𝑋𝑖) +
∑
𝑖

(1 − 𝑦𝑖)(1 − 𝑦̂(𝑋𝑖))
)

(2.9)

(where the negative sign is to make it a minimization problem).

This framework is quite powerful and has been used as the under-
lying objective function for different optimization methods, with
Goldberger et al. [28] following an explicit optimization approach to
learn the transform matrix 𝐴, and Weinberger, Blitzer, and Saul [29]
using the machinery of semidefinite programming, both showing
excellent performance compared to other methods state-of-the-art at
the time.

It also makes clear how one could move to nonlinear methods: by
allowing 𝐴 to come from more general function classes. The clear
limitation of NCA is that the transformation 𝐴 is limited to a matrix,
and so is insufficient for data that cannot be linearly transformed to
a Euclidean space.

2.5 Manifold Learning

Evaluating the quality of a metric in the previous section was possible
because we were given labeled data. In other words, there existed a
classification or regression task, and a good metric was one for which
the predictor performed well on that task. Frequently, we are not
given labels or a particular objective function to optimize and rather
want to learn a metric that is somehow intrinsically representative of
the data34. As one can guess, the notion of an intrinsically “correct”
metric for an arbitrary dataset is tricky to define, much less learn,
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Figure 2.7: A swiss roll in two dimen-
sions. Note that the point 𝐴 appears
closer to 𝐶 than to 𝐵 in Euclidean dis-
tance, but the opposite is true along
the roll.

manifold: for our highly applied pur-
poses, a manifold can be thought of
as a subspace of Euclidean space im-
bued with its own metric, where, at
small enough distance scales, the im-
bued metric is the same as the ambi-
ent Euclidean metric.

35: One reason is that the existence
of a “ground truth” distance in bio-
logical data is hard to show.
36: It should, however, be clear the
connection to the formal idea of a
manifold: the focus on small-scale
distances comports with the idea that
these distances are “easy” (i.e. Eu-
clidean)

but the intuition is actually straightforward and best conveyed by an
example.

Consider the “swiss roll” dataset shown in Figure 2.7. The generative
model for the swiss roll is:

𝑝𝑡 =

(
𝑥𝑡
𝑦𝑡

)
=

(
𝑡 cos(𝜋𝑡)
𝑡 sin(𝜋𝑡)

)
+ 𝑒𝑡

where 𝑒𝑡 is a small Gaussian error. Intuitively, this is a one-dimensional
structure that can be parametrized by the distance along the roll.
In fact, distance along the roll is intuitively a better metric that
Euclidean distance, which, for example, would consider point 𝐴
closer to 𝐶 than to 𝐵.

Learning intrinsically induced distance matrices often takes the form
of manifold learning, where the data are assumed to lie on an
underlying manifold. The theory of manifolds is a deep and rich
subset of topology, but in our case, we can essentially equate manifold
learning to the idea that only small scale Euclidean distances are
accurate.

Definition 2.5.1 (manifold hypothesis) Given a dataset 𝑋 ∈ ℝ𝑁×𝐺

a set of vectors in ambient 𝐺-dimensional Euclidean space, assume there
exists some (unknown) ground truth distance function 𝑑.

𝑋 satisfies the manifold hypothesis if there exists some small 𝜖 which,
for all 𝑖, there is some radius 𝑟𝑖 such that

��𝑑(𝑋𝑖 , 𝑋𝑗) − 

𝑋𝑖 − 𝑋𝑗

�� < 𝜖
for all 𝑗 s.t.



𝑋𝑖 − 𝑋𝑗

 < 𝑟𝑖 .

We note that this is an informal definition, as no conditions have
been put on size of 𝜖. One can formalize the definition by assuming
𝑋 is sampled from an underlying manifold, allowing us to take 𝜖 → 0
with higher and higher sampling depth.

In general, the work we present is highly applied and will not prove
that the manifold hypothesis holds for a particular dataset35, but the
machinery we develop implicitly assumes the hypothesis36. However,
there is much evidence to suggest that biological data does satisfy
the manifold hypothesis: among the most rigorous is the study of
a similar concept, entropic scaling by Yu et al. [30], who find that
biological data sets often have low-dimensional structure at local
scales.

Computationally, a manifold learning problem entails answering
the following two main questions:
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Figure 2.8: A representation of a ther-
modynamic system using reaction
coordinates, taken from [31]

38: Unless otherwise specified, the
nearest neighbors are calculated us-
ing Euclidean distance; we will see
in Chapter 7 the benefits of generat-
ing 𝑘-NN graphs with better distance
metrics
39: Note that this means the lo-
cal scale is not constant over the
dataset. Sparse regions have larger
(Euclidean) local scales and vice
versa. This idea underpins the results
of Chapter 4

40: As a former physicist, I feel I must
clarify — the probability of a state
is proportional to the number of mi-
crostates that correspond to that state,
which we proxy as stability.

Goals of manifold learning

1. At what scale are the data Euclidean?37
37: And, as we will see in Chapter 4,
how does this scale vary over the
data?

2. How do you compute distances outside this scale?

2.5.1 Nearest neighbor graphs

In answering the first question, many methods use neighborhoods
to determine scale. As introduced in Subsection 2.3.1, a dataset
𝑋 ∈ ℝ𝑁×𝐺 can induce, for 𝑘 ∈ ℕ, a 𝑘-NN graph, 𝐺(𝑘)

𝑋
= (𝑉 (𝑘)

𝑋
, 𝐸

(𝑘)
𝑋
)

(where we usually drop the 𝑘)38.

Under many manifold learning methods, the parameter 𝑘 is chosen as
a hyperparameter and the radius 𝑑𝑘(𝑋𝑖) of the nearest neighborhood
of point 𝑖 is implicitly taken as the local scale, the scale at which the
manifold can be considered Euclidean39.

2.5.2 Density-based distances

To answer the second question, manifold methods frequently use
distances determined by density in the dataset. This approach builds
from earlier approaches in thermodynamics: a basic tenet of thermo-
dynamics is that the probability of seeing a system in a particular
state is proportional to the stability of that state40; and so, when look-
ing at a thermodynamic system in terms of its reaction coordinates
(see Figure 2.8), tracing the density of the states implies a reaction
trajectory.

This motivates an approach to non-local distances which we can
describe somewhat informally:
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geodesic: on a manifold, the shortest
continuous path between two points

41: And in this case, the density dis-
tance between 𝑥 and 𝑦 as defined is
merely the shortest path in the graph
between the two points

Figure 2.9: Noisy swiss roll dataset,
where the empty space in the roll is
sparsely populated. Now, one might
be able to traverse from 𝐴 to 𝐶 across
the chasm.

Definition 2.5.2 (density distance) Given a dataset 𝑋 ⊂ ℝ𝐺, we
define the density distance between 𝑥, 𝑦 ∈ 𝑋 as follows. Set

R(𝑥, 𝑦) {(𝑥, 𝑥𝑟1 , . . . , 𝑥𝑟𝑚 , 𝑦) : 𝑥𝑟𝑖 ∈ 𝑋 and ∥𝑥𝑟𝑖+1 − 𝑥𝑟𝑖 ∥ small} ,
(2.10)

so R is the set of possible paths between 𝑥 and 𝑦 where each step in the
path is small.

Then, we can define the density distance:

𝑑𝑅(𝑥, 𝑦) = inf
𝑅𝑟∈R(𝑥,𝑦)

∑
𝑖<|𝑅𝑟 |

∥𝑥𝑟𝑖+1 − 𝑥𝑟𝑖 ∥ , (2.11)

which intuitively is the distance of the shortest path between 𝑥 and 𝑦

The intuitive idea behind a density distance is that the points in the
dataset of interest 𝑋 “outline” the manifold, and so if a region of
ℝ𝐺 does not contain many points in 𝑋, then it is likely not part of
manifold. By jumping from neighbor to neighbor, you are intuitively
tracing out a geodesic between the points of interest. One possible
way to formalize the notion of “small” in (2.10) is to ensure that 𝑥𝑟𝑖+1

is one of the nearest neighbors41 of 𝑥𝑟𝑖 .

On the swiss roll dataset, the notion of density distances works quite
well. The dense regions of the roll trace out the spiral, and you would
never jump “across” the open space, the way Euclidean distance
would, to find nearest neighbors.

2.5.3 Diffusion map distances

The above formulation, has some notable weaknesses and rigidities,
especially if your data are noisy around the underlying manifold. For
example, consider the noisy swiss roll dataset in Figure 2.9, where
there are occasional spikes in noise that put points into the “empty”
part of the roll. Here, the density distance takes advantage of these
noisy points to traverse the emptiness.

To address these robustness concerns, Coifman and Lafon [32]
introduce diffusion maps, which, again, drawing from ideas in ther-
modynamics, model the distance between 𝑥 and 𝑦 on a manifold as
the time it would take for heat to diffuse from 𝑥 to 𝑦. Analogous to
the soft-clustering approach described above, diffusion maps overlay
the edges in a 𝑘-NN with an exponential kernel: the edge between
points 𝑥 and 𝑦 is given the weight 𝑤(𝑥, 𝑧) = exp

(
−∥𝑥 − 𝑧∥2/𝜎2

)
,

and this weight represents the probability that someone standing at
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42: Those familiar with the language
of Markov chains will recognize the
flavor of argument here — indeed, the
weights on edges are the transitional
probabilities between neighbors, and
the final distances are determined
by the stationary distribution of the
Markov chain

43: In other words, metric learning
methods don’t try to learn new fea-
ture vectors.

44: And practitioners tend to have
strong preferences in what should
be used, which we will discuss in
Section 2.7.

45: “Using a term like ‘nonlinear sci-
ence’ is like referring to the bulk of
zoology as the study of non-elephant
animals” — mathematician Stanislaw
Ulam

point 𝑥 will jump to point 𝑧. The diffusion distance between 𝑥 and 𝑦
can then be thought of as the probability that someone starting at
𝑥 will end up at 𝑦 (after potentially jumping through several other
points)42.

2.6 Dimensionality Reduction

The machinery of metric learning attempts to learn distances be-
tween data points, but is generally agnostic to the representation
of the point itself43. However, representations of the data are often
quite important — for example, for visualization or for input into
downstream tasks. Especially when data are assumed to be intrinsi-
cally low-dimensional, as discussed in Section 2.5, the appeal of a
low-dimensional representation is well motivated.

Often, the representation is chosen so that a straightforward distance
metric in the low-dimensional embedding (e.g. Euclidean distance)
corresponds to the more complex notion of distance in the original
data. This is actually exactly the case in NCA introduced in Sec-
tion 2.4: if the transform 𝐴 is chosen to be low rank (more columns
than rows), then the NCA-transformed data will have rank(𝐴) as
its dimensionality, and the output distance metric is Euclidean in
the transformed data. The swiss roll dataset again provides a com-
pelling illustration. An effective one-dimensional representation of
the dataset would “unroll” the dataset, mapping 𝑝𝑡 ↦→ 𝑡.

Under this paradigm, dimensionality reduction (DR) is in some ways
complementary to manifold learning: the goal of DR is to learn a
transformation of the data such that the “correct” distance metric in
the transformed data is Euclidean, rather than to learn the “correct”
distance on the original data itself.

There are many algorithms for dimensionality reduction44, making
it quite challenging to discuss the field in generality. Nevertheless,
we attempt to overlay some organizational hierarchy on existing
algorithms to help our exposition. As shown in Figure 2.10, the first
level split is between linear methods (Subsection 2.6.2), where the
transformed dataset is generated by applying a matrix operator; and
nonlinear methods (Subsection 2.6.3), which cover, well, everything
else45. In the space of nonlinear methods, we further split them into
parametric and nonparametric methods, although our focus will
be on the nonparametric variety. Lastly, a more experimental split
that we will explore later in Chapter 7 is the different between local
and global algorithms — briefly, the crux of the split is whether
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Figure 2.10: Organizing the space of
dimensionality reduction algorithms

embedding: the output of a DR al-
gorithm; overloading this term, we
refer to both the entire transformed
dataset and each transformed feature
vector as an embedding

46: When used without qualification,
we mean Euclidean distance

47: These will be introduced below

the algorithm uses the same objective function across the entire
dataset.

2.6.1 Objective function

Before working through the hierarchy of DR algorithms, it is worth
expanding on the objective of these algorithms. Unlike the context
of supervised learning, for example, there is no canonical objective
function that indicates the quality of an embedding. In fact, one of
the crucial difficulties in comparing different algorithms is that they
often implicitly optimize for different things.

Insofar as a “natural” objective exists, it might be the preservation of
pairwise distances46. If we can create a low-dimensional representa-
tion of our input dataset where every pairwise distance is preserved,
then in some sense, we have preserved all the information of the
original dataset in the embedding. Even if Euclidean distance is not
the “correct” distance, many kernel based methods that transform
the distance metric use Euclidean distance as their input, and so the
transformation would not affect their use.

We will see that several methods aim to optimize this objective
either implicitly (like PCA) or explicitly (like MDS)47. However,
the dream of perfectly representing your high-dimensional data in
low-dimensions by preserving all pairwise distances turns out to be
impossible. A classical result from Johnson and Lindenstrauss [33],
now known as the Johnson-Lindenstrauss (JL) lemma, gives a tight
lower bound on the number of dimensions you can reduce to while
accurately preserving pairwise distances:
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48: In fact, I would say rarely

49: And so their contribution to pair-
wise distances should be ignored

Theorem 2.6.1 (Johnson-Lindenstrauss) Let 𝜖 ∈ (0, 1/2), and let
𝑄 ⊂ ℝ𝐺 be a set of 𝑁 points, and set 𝑘 = (20 log𝑁)/𝜖2. There exists a
mapping 𝑓 : ℝ𝐺 → ℝ𝑘 such that for all 𝑥, 𝑦 ∈ 𝑄:

(1 − 𝜖)∥𝑥 − 𝑦∥2 ≤ ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥2 ≤ (1 + 𝜖)∥𝑥 − 𝑦∥2

so 𝑓 maps ℝ𝐺 → ℝ𝑘 which mostly preserving pairwise distances.

But, crucially, the JL lemma is tight [34], i.e. for any 𝑟 < 𝑘, there
is no embedding function that can preserve all pairwise distances
to within a factor of 𝜖. Since the optimal embedding function 𝑓 is
essentially achieved with random projections, the upshot is that no
DR algorithm can really beat random projections when it comes to
preserving pairwise distances.

To get past these fundamental limitations, we again return to the
crucial theme underlying this work: that understanding the correct
distance metric, which is not always48 Euclidean distance, is the key
to analyzing high-dimensional data. Some DR algorithms remain
useful past the JL boundary because they remove the influence of
features that are just noise and therefore not meaningful49. And
others, channeling the manifold learning ideas we introduced earlier,
only aim to preserve the local-scale distances which are meaningfully
Euclidean. As we review the methods below, the reader is advised
to keep in mind exactly what notion of distance the methods are
focused on.

2.6.2 Linear methods

As in most algorithmic developments, the earliest methods for DR
were linear, with the singular value decomposition (SVD) and the
related principal components analysis (PCA) the most popular, and
nearly ubiquitous not just in machine learning, but in many other
fields of data analysis.

The goal of both methods is to find a better set of axes to represent
a dataset — or, equivalently, to rotate the data so that each axis
represents something meaningful about the data. Specifically, each
axis should represent as much variation in the dataset as possible.
Mathematically, PCA is the eigendecomposition of the covariance
matrix:

Definition 2.6.1 (PCA) Given a data matrix 𝑋 where the mean of each
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Figure 2.11: Weaknesses of PCA
visualization: For an high dimen-
sional dimensional dataset (taken
from http://carbonandsilicon.
net/rblogging/2018/02/27/UMAP_

plots)

50: By visualization, we gener-
ally mean dimensionality reduction
down to two or three dimensions, so
the data points can be displayed on a
scatter plot
51: We will exhaustively discuss
what we mean by “structure” below
and in future chapters
nonparametric: there are many possi-
ble definitions, but we mean here that
we do not have an explicit definition
for the function that transforms the
high-dimensional data, which means
we do not know or specify its func-
tional form

column is 0, we can write its covariance matrix as 𝑋 𝑡𝑋. Let

𝑋 𝑡𝑋 =𝑊Λ𝑊 𝑡

be the eigendecomposition of the covariance matrix. Then the vectors
𝑤𝑖 are the change-of-basis from standard axes to the PCA axes, and the
PCA-transformed data is given by:

𝑇(𝑋) = 𝑋𝑊 (2.12)

The SVD is a closely related transformation that works with the data
matrix directly rather than the covariance matrix, but its output has
the same interpretation.

As a method for DR, since the principal components are ordered by
how much variation they describe, one should expect that the top
principal components represent most of the important information
about the dataset. Indeed, to reduce a 𝐺-dimensional dataset to 𝑟
dimensions, we rewrite (2.12) as:

𝑇𝑘(𝑋) = 𝑋𝑊(𝑘) (2.13)

where𝑊(𝑘) is the first 𝑘 columns of𝑊 .

It should be noted that despite the “classical” nature of many of
these methods and the seemingly onerous restrictions on power
imposed by linearity, research continues into developing them. See
for example the recent development of surprisal components analysis
(SCA) [35].

2.6.3 Nonlinear methods

Especially in the realm of visualization50, linear methods have often
not been successful at effectively communicating structure51, as
evidenced by Figure 2.11.

Our main focus in this work will be nonparametric nonlinear meth-

http://carbonandsilicon.net/rblogging/2018/02/27/UMAP_plots
http://carbonandsilicon.net/rblogging/2018/02/27/UMAP_plots
http://carbonandsilicon.net/rblogging/2018/02/27/UMAP_plots


46 2 Background

52: That is, they assume that the un-
derlying data lie on a manifold.

53: The advantage of Euclidean MDS
is that it can be optimized efficiently,
using properties of the Euclidean in-
ner product.

ods for DR, because they have become standard in visualizing single-
cell datasets and have started to garner interest as pre-processing
methods for downstream analyses. These methods are also often built,
explicitly or implicitly, around manifold learning principles52.

However, we first consider the setting the JL lemma addresses, and
consider the nonlinear methods that attempt to preserve pairwise
distances, namely multidimensional scaling (MDS). The context here
is that the full distance matrix of the original data is known, and our
goal is to find a new representation. Given a dataset (𝑋1 , . . . , 𝑋𝑁 ),
the generalized objective function for the various MDS algorithms
is:

O= 𝑓
( [
L(𝑑𝑖 𝑗 ,



𝑌𝑖 − 𝑌𝑗

)] 𝑖 , 𝑗≤𝑁 )
(2.14)

where 𝑌𝑖 is the embedding of input data point 𝑋𝑖 and 𝑑𝑖 𝑗 is the
distance between 𝑋𝑖 and 𝑋𝑗 in the original data. L is a loss function
that penalizes the embedding distances for being too far from the
original distances, and 𝑓 is any agglomeration function that combines
the losses from each pairwise distance into a total loss.

The goal of MDS is then to choose the 𝑌𝑖 such that O is minimized.
For example, in classical MDS, the specifics are:

𝑑𝑖 𝑗 =


𝑋𝑖 − 𝑋𝑗

 (Euclidean distance)

L(𝑑𝑋 , 𝑑𝑌) = (𝑑𝑋 − 𝑑𝑌)2 (squared loss)

𝑓 ((L𝑖 𝑗)𝑖 , 𝑗≤𝑁 ) =
( ∑
𝑖≠𝑗≤𝑁

L𝑖 𝑗

)1/2

(root-mean-square)

But the framework is flexible. In non-metric MDS (NMDS), for
example, the same framework as above is used, but the 𝑑𝑖 𝑗 can be an
entirely arbitrary metric53.

We note one particular modification of the agglomeration function
𝑓 and loss function L that we will build on in Chapter 3, Pearson
correlation between the distances:

L(𝑑𝑋 , 𝑑𝑌) = (𝑑𝑋 − 𝜇𝑑𝑋 )(𝑑𝑌 − 𝜇𝑑𝑌 ) (covariance)

𝑓 ((L𝑖 𝑗)𝑖 , 𝑗≤𝑁 ) =
1

𝜎𝑑𝑋𝜎𝑑𝑌

∑
𝑖≠𝑗≤𝑁

L𝑖 𝑗 (squared correlation)

where 𝜇𝑑𝑋 and 𝜎𝑑𝑋 are the mean and standard deviation of the
set of pairwise distances (and analogously for 𝑑𝑌). The rationale
behind correlation, rather than exact equality among distances is
the assumption that only the ordering of the distances matter, rather
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54: We note here that Ham et al. [37]
show that nearly all diffusion-based
DR methods are essentially a kernel-
ized version of PCA

than their actual value. This softens the necessity that the original
distance metric is correct — all that is necessary now is that the
ordering of distances in the original space is correct.

Diffusion-based methods

MDS traditionally performs poorly on visualization tasks and does
not scale well to large datasets. Unsurprisingly, these methods
struggle with manifold data, since large-scale distances are not easy
to learn on manifolds. The diffusion-based methods we discussed
in Subsection 2.5.3 use the diffusion-map distances, rather than
Euclidean distances, as their input for dimensionality reduction. As
we noted, the distance between points 𝑋𝑖 and 𝑋𝑗 is the stationary
probability that a random walk with restart (RWR) starting at 𝑋𝑖 will
end at 𝑋𝑗 . This allows for a density-based traversal of the dataset,
but also defines two points as close by if there are many ways to get
from 𝑋𝑖 to 𝑋𝑗 .

As a tool for DR (rather than just for metric learning), diffusion
maps apply an eigendecomposition to the random walk matrix and
use that as the reduced representation [32, 36]. Recalling that PCA
is the eigendecomposition of the covariance matrix of the data, we
can interpret the output of a diffusion map as a version of PCA
that considers the random-walk distance as the covariance matrix
of the data. In fact, we can consider the RWR matrix as a kernel, so
diffusion maps become a form of kernelized PCA54.

Manifold projections

We have built up now to the nonlinear, nonparametric DR algorithms
that have become the de facto standard in dimensionality reduction: t-
distributed stochastic neighborhood embedding (t-SNE) [38] and the
very recent uniform manifold approximation and projection (UMAP)
[39]. These algorithms both really focus on the manifold assumption,
eschewing the global intuition in PCA or the (kernel-PCA) diffusion
methods and dialing down on aligning only local distances.

We leave a thorough discussion of these algorithms to Chapter 4,
where we present our own improvements to the methods. However,
it is instructive to outline them here, especially as their objective
functions contrast with previous methods. Notably, they combine a
crucial aspect of diffusion maps — their focus on locality — while not
restricting the transformation to a linear one. In fact, the embedding
of a point is not actually the output of a parametric function but
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55: In fact, both algorithms actually
institute a repulsive force between all
pairs of points that do not have an
edge

56: There are several methods for do-
ing this initialization, which we won’t
worry about here

57: As we will discuss further in
Chapter 4, this is part of why using
UMAP or t-SNE embeddings as fea-
ture vectors for downstream analysis
is fraught

rather is dynamically chosen to minimize an objective function, as
in MDS.

The fundamental unit of analysis for both algorithms is the 𝑘-NN
graph we defined in Subsection 2.3.3. Rather than consider all
pairwise distances, only the edges in the graph are considered
significant55. A weight function (that rapidly decays with distance)
is placed on the edges between the points, further emphasizing the
focus on local distances.

After the points are initialized in low-dimensional space56 an analo-
gous low-dimensional weight function on distances in low-dimensions
is compared to the weight function in high-dimensions. The objec-
tive of the algorithm is thus to minimize the distortion between the
weight functions — the objective tends to be minimized when the
neighbors of a point in low-dimensions are the same as the neighbors
in high-dimensions.

Crucially, both methods are implicitly kernel methods (recall Subsec-
tion 2.3.2), so their input depends only on the definition of distance
in the original space; this scenario is basis for our method for gen-
erating locally informed 𝑘-NN graphs in Chapter 7. Similarly, the
embedding generated by these algorithms is also only dependent
on distances in the low-dimensional space. That is, the coordinate-
values themselves have no real meaning, only the distances induced
by those coordinates57.

2.7 Evaluating Algorithms

Developing the algorithms we have so exhaustively discussed here
is only one part of the task of answering the biological questions that
initially motivated this chapter. It is just as important to figure out how
we can know whether the algorithm has actually solved the desired
problem. In this section, we will discuss briefly the philosophy of
evaluation, which is itself a multidimensional problem. Some angles
that must be considered are discussed below:

Dimensions of evaluation

We note that the following are not necessarily entirely indepen-
dent of each other; nor are they exhaustive of all the potential
ways to think about evaluation.

▶ Appropriateness of translation: Do the mathematical ob-
jects accurately represent the important aspects of their
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60: While robust methods exist for
dealing with mislabeled data, these
considerations are not centered in
most existing methods

marker gene: a gene that is only ex-
pressed — and always expressed —
in one type of cell, and so presence of
that gene’s transcripts in a cell allows
its cell-type to be determined
61: which is, after all, one of the main
appeals of single-cell analyses.

62: i.e. normalized, and poten-
tially fed through a dimensionality-
reduction algorithm for noise reduc-
tion.

biological counterparts?
▶ Appropriateness of objective: Is the objective function that

the algorithm aims to optimize actually the correct objective
to answer the biological question? This is the key question
for a lot of our work — what kind of distortion is acceptable
when transforming biological data?

▶ Appropriateness of data model: Statistical models make
assumptions about the processes that generate their data58

58: Most notable is the i.i.d. assump-
tion — that each data point is gen-
erated from the same distribution,
independently

.
It is important to ask whether the assumed data model
is actually a reasonable representation of the data. Recent
work in scRNA-seq, for example, considers whether a type
of model called a zero-inflated negative binomial model59

59: briefly, a model that allows for
more zeroes than expectedappropriately represents expression data.

▶ Interpreting results: While the above examples are gener-
ally asking the question, “Is the model good?” the purpose
of creating these models is actually to ask, “What do the
results tell me about biology?” We spend a lot of time in
all the work presented in this dissertation asking exactly
that question: how can we translate the numerical results
our transformations yield to new biological insights and
questions.

2.7.1 Classification of single-cell data

Supervised learning tasks rely on labeled data, and the labels need
to be accurate60. The particular case of classification tasks, where the
goal is to assign a discrete label to a data point, demands special
attention.

In the realm of scRNA-seq, the discrete labels we are concerned
with are often cell-type assignments. Cell types can determined in
different ways — sometimes, known marker genes can be evaluated
while doing the sequencing itself. However, using marker-gene-based
cell-type assignment requires foreknowledge of the cell-types that
one expects to find in the dataset, which, especially when working
with new or under-studied datasets61, is not always possible.

In those scenarios where marker genes are not known, researchers
often have to turn to computational methods to determine cell-type
labels. Primarily, the main computational methods are built around
the clustering methods we discussed in Subsection 2.3.1: the scRNA-
seq data are processed62 and then a clustering algorithm is run. Each
resulting cluster is then representative of a discrete cell-type.
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While cell-type discovery is itself a task in its own right, the reason
it is important to discuss evaluation here is that the assignment of
cell-types is often used as a baseline step for evaluating or developing
downstream algorithms — if cell-type assignment is poorly done, the
errors can propagate through those downstream algorithms.

Cell-type dependent methods

There are several methods that depend on cell-type assignment
for either evaluation or as a baseline for their algorithms

▶ Differential gene expression: As discussed in Subsec-
tion 2.2.2, one of the major benefits of single-cell data is the
ability to understand the differences in different types of
cells, which necessitates deciding which cells are of different
types. Methods to find marker genes [40, 41] are evaluated
based on their abilities to “rediscover” known marker genes
for known cell-types; methods to find local coexpression

coexpression: the correlation be-
tween the expression-levels of genes
in a given [sub-]population

patterns specific to cells [42] build their networks based on
cell-type assignments.

▶ Rare cell-type detection: As single-cell datasets become
larger and larger, the resolution with which cell-types can
be found increases. Rare cell-type detection methods [43–
47] are necessarily evaluated on their ability to detect sub-
clusters within existing clustering methods. Even methods
that do not explicitly search for rare cell-types but are built
around understanding the distribution or density within
expression space of data [35, 48] are evaluated based on
how closely cells of the same cell-type are connected.

▶ Integration: As discussed in Subsection 2.2.2, combining
multiple datasets has become an important problem in
scRNA-seq. The crucial challenge in integration is to remove
batch effects that are specific to the dataset from “actual”
biological variation, which should be preserved. The way
that integration methods [22, 23, 49] are able to separate
these effects is by seeing whether the algorithms correctly
interweave cells that are of the same ground truth cell-type
but in different datasets.

It is therefore important to ensure that the discrete cell-types that
underlie these algorithms are reasonable!

For methods reliant on discrete cell-type classifications, an underly-
ing assumption is often that all the cells within that cell-type come
from the same generative model. Under this paradigm, the cells at
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63: It should be noted that the papers
cited do not attempt to prove — nor
is it obvious how or whether they
could prove — that Euclidean distance
within a cell-type is appropriate or
accurate.
64: including our own

65: We do however evaluate our
methods based on the so-called
ground truth of cell-type labels. Our
philosophy here is that if our unsuper-
vised methods can recreate cell-type
labels, then we can trust the other
types of structure that our methods
show.

66: We will delve more deeply into
the critiques in the chapters where
they are most appropriate.

the peripheries of their assigned cluster are just very noisy versions
of that cluster. Whether using clusters or marker-genes for identi-
fication, decisions about thresholds have to be made about when
a cell belongs to a cell-type. Even works that evaluate methods for
assigning cell-types [50] rely on known marker genes as ground truth.
Moreover, many works [51, 52] consider the cell-type assignments
when evaluating even unsupervised algorithms — the underlying
idea behind these evaluations is that within a cell-type, the cells
should be considered “close” enough that Euclidean distance is
reasonable63.

We engage in this discussion not to oppose the notion that cell-types
exist, but rather to alert the reader that all evaluations64 of cell-type-
based methods need to consider the possibility that their cell-type
assignments are not accurate. In Chapters 4 and 7, for example,
our work disambiguates existing cluster labels to find substructures
within a given label.

2.7.2 Metrics for unsupervised algorithms

Our work in developing better distance metrics for single-cell data is,
based on the discussion in the previous section, going to be mostly
unsupervised — we do not generally rely on cell-type labels when
coming up with metrics for single-cell data65.

Under the aegis of manifold learning (see Section 2.5), our goal in the
work we present here is to come up with notions of distance that do
not depend on cell-type labels. This is not an uncontroversial mode for
inquiry. In evaluating various methods for unsupervised methods,
practitioners in the field have struggled to develop “objective” criteria
for evaluation. The question to answer — that remains open, in our
view — is exactly what objective function an unsupervised method
in single-cell analysis should optimize. Here we discuss briefly some
of the ways that the field has attempted to evaluate unsupervised
methods66.

Among the most pervasive of critiques relies on the preservation of
Euclidean pairwise distances in the original high-dimensional space.
At face value, this is absolutely a reasonable critique of methods —
the Euclidean distance between high-dimensional vectors is as close
as one can get to a “natural” method for comparison, and a method
that scrambles Euclidean orderings of distance should naturally be
treated with suspicion. One of the most recent high-profile papers
that takes this approach is by Chari, Banerjee, and Pachter [51], who
find the state-of-the-art dimensionality reduction methods UMAP
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and t-SNE (discussed in Section 2.6) severely lacking in this pairwise
density preservation. In fact, the original paper motivating UMAP
for use in visualizing scRNA-seq data [52] touted its performance
on this metric as a reason for using it.

As Section 2.5 makes clear, the importance of pairwise distances
outside of some small local-scale is doubtful if one subscribes to
the manifold hypothesis. But, continuing the string of caveats that,
more than anything define this work, it does remain an open ques-
tion exactly how to determine this local scale. For example, the
aforementioned critique [51] considers, in one of their analyses, the
intra-cluster distance preservation in a UMAP embedding of an
scRNA-seq dataset — the implicit assumption here is that the scale
at which scRNA-seq data is Euclidean is within each cluster. It is
not clear that this true, especially when substructure inside a cluster
exists.

We do not attempt to — or claim to — prescribe a correct method
to evaluate unsupervised learning methods. Rather, our contention
is that there is no universal method for evaluating an unsupervised
learning method. Our aim, as we discuss in the following section,
is instead to use what is known experimentally to buttress our
unsupervised learning-based claims.

2.7.3 Evaluation in this work

In the works presented here, we generally attempt to combine
intuition that is motivated by theory and performance on real data.
Unlike other methods, we generally do not have existing objective
functions and ground truth labels to compare our performance to.
Thus, developing the objective function itself will be a major part of
our discussion, and motivating the choice of objective will figure
prominently in our evaluation.

From the theory-side, we do not generally have airtight proofs under-
lying our methods, but rather develop intuitions for the generative
model of the data, and show how our method is well-suited to that
intuition.

Theory examples

While we of course leave the details to the proper sections, we
signpost some examples of theoretical evaluation to demonstrate
how we combine intuition and rigor:
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▶ Manifold reshaping: When demonstrating why we are
interested in using correlation between distances as a way to
faithfully preserve global distances in Chapter 3, we use a toy
example where the manifold distance and global Euclidean
distance do not agree, and prove that our approach “fixes”
Euclidean distance.

▶ Density across dimensions: We motivate the use of a loga-
rithmic transform in the dimensionality reduction method
we develop by considering the extremely stylized case
of a ball

ball: given a radius 𝑟, the set of points
{𝑥 : ∥𝑥∥ ≤ 𝑟}

in high-dimensions being “squished” to low-
dimensions without affecting its density, and show that a
logarithmic transform is necessary for maintaining density.

Because the theory developed is focused on highly-simplified gener-
ative models, theory alone is not enough to “prove” that the methods
we have developed are useful. To that end, we combine empirical
evaluation, trying to be cognizant of the difficulties inherent in
empirical valuation of unsupervised learning methods discussed
above.

Empirical evaluation

We briefly highlight some empirical examinations that buttress
our claims.

▶ Differential gene expression: Our methods often “create”
new clusters that do not correspond to a “known” cell-type.
In order to “validate” the new clusters we are seeing, we
find the differentially expressed genes in the new cluster
and search the literature for evidence that such a subtype
exists.

▶ Fidelity: While we are cautious about the idea that cells of
a given cell-type label should always be embedded together,
we do concede that, usually, it is the case that cells of a given
cell-type are more similar to each other than those with other
labels. Thus, when evaluating the local decompositions in
Chapter 7, we show that our work actually makes sure that
cells of the same label are embedded closer together without
using the labels themselves to develop the method.
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In our attempts to understand distance metrics for single-cell data,
our first contribution concerns the multi-modal scenario considered
in Subsection 2.2.1, where we have multiple modalities of data about
the same single-cell dataset.

3.1 The Promise of Multimodal Data

High-throughput assays can now measure diverse cellular proper-
ties, including transcriptomic, genomic , epigenomic , proteomic,
functional, and spatial data modalities.

Types of multimodal data

We summarize the promise of some of the multimodal data types
from above:

▶ Transcriptomic: This is type of data we are most familiar
with, scRNA-seq data which counts the amount of the
mRNA transcripts in each cell in the sample [19, 55, 56].

▶ Genomic: Analogously, one can profile the genome itself in
each cell — this allows researchers to find mutations in the
genome, especially useful for studying tumors or datasets
representing multiple individual organisms [15, 57].

▶ Epigenomic: Methods have been developed for profiling the
environmental and physical factors that modulate gene ex-
pression. For example, chromatin accessibility profiling [58]

∗ The work in this section is drawn from the preprint ‘SCHEMA: A general
framework for integrating heterogeneous single-cell modalities’ by Singh et al.
[53], which is focused on developing the method itself, and the following Genome
Biology publication [54], which focuses on results when the methods are applied.
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1: The problem of integrating
datasets that consist of different cells
is a complementary problem that is
also well-studied [22, 23, 63–67]

2: In our language of distance met-
rics, what if we have two different
metrics on the same dataset, where
they disagree over a pair of points?

overfitting: a model is overfit if it per-
forms well in training but not in “the
wild” — it has learned characteristics
extremely particular to the testing set

measures which subsections of chromatin can be accessed
by transcriptional machinery and methylation profiling
finds which histone proteins are methylated, a well under-
stood epigenetic mechanism [59]; and ChIP-seq [60] focuses
on regions of the genome where transcription factors can
bind.

▶ Proteomic: Analogous to genomic and transcriptomic se-
quencing, single-cell proteomic sequencing [61] profiles
polypeptide counts at single-cell resolution.

▶ Functional: Understanding a cell’s products, as the above
methods are able to do, is enriched by the ability to under-
stand its interaction with stimuli. Functional sequencing
[15] profiles the metabolites — the products and inputs to
cellular reactions — also at single-cell resolution.

▶ Spatial: The importance of physical organization of tissues
has always been a focus of anatomy and physiology, but
the development of the Slide-seq sequencing platform [62]
allows researchers to understand physical organization at
the cellular level.

Excitingly, single-cell experiments increasingly profile multiple
modalities simultaneously within the same experiment [15, 58, 61,
62], enabling researchers to investigate covariation across modalities;
for instance, researchers can study epigenetic gene regulation by cor-
relating gene expression and chromatin accessibility across the same
population of cells. Importantly, since the underlying experiments
provide us with multimodal readouts per cell, we do not need to
integrate modalities across different populations of cells 1.

Simultaneous multimodal experiments present a new analytic chal-
lenge of synthesizing agreement and disagreement across modalities.
For example, how should one interpret the data if two cells look
similar transcriptionally but are different epigenetically2? Moreover,
given the rapid biotechnological progress that continues to enable
novel measurement modalities and easier simultaneous multimodal
profiling, a multimodal analysis paradigm should scale to massive
single-cell datasets, be robust to noise and sparsity in the data,
and be able to synthesize two or more arbitrary modalities in an
interpretable way. Many existing methods, however, struggle with
scalability, overfitting, or are specialized to specific multimodal
tasks (such as just spatial transcriptomic [68–70] or only gene-set
estimation [71, 72]).

We therefore present Schema, a method that synthesizes multimodal
data based on a conceptual framework that accommodates any
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Figure 3.1: Integration of simultaneously assayed modalities using Schema. a. Schema is designed for assays where
multiple modalities are simultaneously measured for each cell. The researcher designates one high-confidence modality as
the primary (i.e., reference) and one or more of the remaining modalities as secondary. b. Each modality’s observations
are mapped to points in a multi-dimensional space, with an associated distance metric that encapsulates modality-specific
similarity between observations. Across the three graphs, the dashed and dotted lines indicate distances between the same
pairs of observations. c. Schema transforms the primary-modality space by scaling each dimension so that the distances
in the transformed space have a higher (or lower, as desired) correlation with corresponding distances in the secondary
modalities; arbitrary distance metrics are allowed for the latter. Importantly, the transformation is provably guaranteed
to limit the distortion of the original space, thus ensuring that information in the primary modality is preserved. d. The
new point locations represent information synthesized from multiple modalities into a coherent structure. To compute the
transformation, Schema weights features in the primary modality by their importance to its objective; we have found this
feature-selection aspect very useful in biological interpretation of its results.

3: Recall from Section 2.4 that this is
the subfield of machine learning con-
cerned with computing an accurate
measure of similarity (equivalently,
distance) on a dataset

quadratic programming: a frame-
work for optimization that allows a
quadratic term in the objective func-
tion; see Subsection 3.4.3

4: We emphasize again that the cru-
cial simultaneity here is that the same
set of cells are used across the modal-
ities
5: where two or more modalities are
available per cell

number of arbitrary modalities. Schema draws from metric learning3

[73–76]. Our critical insight is to interpret each modality as describing
its own measure of distance between the underlying cells; we can
then newly formulate the synthesis problem as reconciling the
information implied by these different distance measures.

Schema achieves this multimodal synthesis through an interpretable
and principled quadratic programming formulation to compute
the optimal reweighting of a modality’s features that maximizes
its agreement with other modalities. Thus, a key advantage of our
approach is that it provides feature weights that enable a researcher
to understand where different modalities agree and where they do
not. Our constrained optimization approach also improves Schema’s
robustness to outliers and to overfitting.

3.2 Multimodal Analysis as Metric Learning

Before the advent of multimodal single-cell experiments, computa-
tional analysis has focused on variation within a single modality.
In contrast, analysis of simultaneous4 multimodal single-cell ex-
periments5 critically requires reasoning about information across
modalities in a mutually consistent way. Our key intuition is that
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6: and by default, remains the same
dimensionality

7: The notion of “highest-confidence”
modality is certainly somewhat ar-
bitrary, but generally the most high-
dimensional and least sparse modal-
ity is a good rule of thumb; one could
also potentially derive measures of
information content, which we have
not yet attempted

each modality gives us information about the biological similarity
among cells in the dataset, which we can mathematically interpret
as a modality-specific distance metric. For example, in RNA-seq
data, cells are considered biologically similar if their gene expression
profiles are shared; this may be proxied as the Euclidean distance
between normalized expression vectors, with shorter distances cor-
responding to greater similarity.

To synthesize these distance metrics, we draw inspiration from
metric learning. Given a reference modality, Schema transforms this
modality such that the Euclidean distances in the transformed space
agree with a set of supplementary distance metrics from the other
modalities, while also limiting the distortion of the original reference
modality. Analyses on the transformed data will thus incorporate
information from all modalities (Figure 3.1). For instance, with RNA-
seq data as the reference modality, Schema can transform the data
so that it incorporates information from other modalities but limits
the distortion from the original data so that the output remains
amenable6 to standard RNA-seq analyses (e.g., cell-type inference,
trajectory analysis, and visualization).

In our approach, the researcher starts by designating one of the
modalities as the primary (i.e., reference) modality, consisting of
observations that are mapped to points in a multi-dimensional space.
In the analyses presented here, we typically designate the most infor-
mative or high-confidence modality as the primary or the reference
modality, with RNA-seq being a frequent choice7 . The coordinates
of points in the primary modality are then transformed using infor-
mation from secondary modalities. Importantly, the transformation’s
complexity is constrained by limiting the distortion of the primary
modality below a researcher-specified threshold. This acts as a regu-
larization, preventing Schema from overfitting to other modalities
and ensuring that the high-confidence information contained in the
primary modality is preserved. We found this constraint to be crucial
to successful multimodal syntheses. Without it, an unconstrained
alignment of modalities using, for instance, canonical correlation
analysis (CCA), a common approach in statistics for inferring in-
formation from cross-covariance matrices, or autoencoders, a deep
learning approach for mapping multiple datasets to a shared latent
space [77–80], is prone to overfitting to sample-specific noise, as we
show in some of the case studies in Chapter 5.

To see how Schema’s transformation synthesizes modalities, consider
the case where the primary dataset is gene expression data. While
the points close to each other in Euclidean space are likely to be
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8: This is of course, the underlying
intuition behind the manifold hypothe-
sis discussed in Section 2.5. Schema
does not explicitly take advantage of
the manifold hypothesis but we show
that intuitively, short-term distances
are the ones that are conserved.

Pearson correlation: for random vari-
ables 𝑋,𝑌, the correlation is 𝜌 =
Cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

9: The interpretation as feature
weights is due to an extremely strin-
gent limitation on the class of func-
tions that transformation can take —
only scaling transforms; this provides
great computational and interpreta-
tion advantages

10: For example, dataset 𝐷1 may
record transcriptional information
(represented as a 𝑁 × 𝑘 matrix, 𝑘 be-
ing the number of genes), dataset 𝐷2
may have the 2-dimensional location
of the cell in a tissue slice (an 𝑁 × 2
matrix), and dataset𝐷3 might be cell-
line information (a 𝑁 × 1 vector of
labels)

11: And of course, the centrality of
distances is a key theme of this dis-
sertation

biologically similar cells with shared expression profiles, longer
Euclidean distances are less informative8.

Schema’s constrained optimization framework is designed to pre-
serve the information contained in short-range distances, while al-
lowing secondary modalities to enhance the informativity of longer
distances by incorporating, for example, cell-type metadata, differ-
ences in spatial density, or developmental relationships. To facilitate
the representation of complex relationships between modalities,
arbitrary distance metrics and kernels are supported for secondary
modalities.

Schema’s measure of inter-modality alignment is based on the
Pearson correlation of distances, which is optimized via a quadratic
programming algorithm, for which further details are provided in
Subsection 3.4.3. An important advantage of Schema’s algorithm is
that it returns coefficients that weight features in the primary dataset
based on their agreement with the secondary modalities (for example,
weighting genes in a primary RNA-seq dataset that best agree with
secondary developmental age information)9. These feature weights
enable greater interpretability into data transformations — this is not
immediately achievable by more complex, nonlinear transformation
approaches [77–83]. We demonstrate this interpretability throughout
our applications of Schema.

3.3 Manifold Intuition

We now discuss first at a high level the technical details motivating
the Schema algorithm before an in-the-weeds analysis in Section 3.4.
To begin with, suppose we have 𝑁 observations; in a single-cell
setting these would correspond to cells. Next, for each observation
we have multiple types (i.e., modalities) of data, 𝐷1 , 𝐷2 , . . . , 𝐷𝑟

10. If
these datasets all represent views of the same underlying biology,
they should be in some kind of agreement. But noise, experimental
artifacts and, importantly, unknown biological factors make this
hard to discern. Our approach to the heterogeneous integration task
is to produce a new dataset 𝐷∗ that combines the information from
𝐷1 , 𝐷2 , 𝐷3 and is in some agreement with each of them.

To crystallize this intuition of “agreement”, we build upon an idea
common to many machine learning techniques and single-cell anal-
yses [39, 84, 85]: analyze the data exclusively in terms of distances
between points in the data. Biologically, this is well justified. For
example, cells with similar expression profiles typically belong to
the same cell group/cluster11.
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Figure 3.2: Demonstration of Schema on a toy dataset. The original dataset (a) has a small set of points that are differently
colored (red). An analogy here would be to rare cell-types in a single-cell dataset. There is enough noise that a t-SNE plot of
the raw data (b) fails to clearly separate the red points. Running Schema produces (c), with the data now rotated and scaled
to accentuate the red points. Note how the t-SNE plot for this transformed data (d) clearly separates the red points from the
rest. (e,f) Manifold-reshaping interpretation of Schema. We depict three clusters of cells 𝑅 (red), 𝑃 (purple), and 𝐵 (blue) in
a high-dimensional space (e). The cells actually lie on a manifold (the gray curve) and Euclidean distance on the manifold is
misleading, since it makes it appear that 𝑅 is closer to 𝐵 than to 𝑃, when, on the manifold, 𝑃 should be between 𝑅 and 𝐵.
Schema can transform the data so that Euclidean distance is more reasonable. If we have some secondary data that tells us
that distance(𝐵, 𝑃) and distance(𝑅, 𝑃) are less than distance(𝐵, 𝑅), we can rotate the dataset and scale the axes so that the
manifold distance agrees better with Euclidean distance.

12: We will use dataset, view, and
modality interchangeably

13: Alternatively, we can say that the
ordering of all pairwise distances is
preserved
14: and not necessarily desirable, due
to brittleness

15: For computational tractability, we
approximate the Spearman correla-
tion with the Pearson correlation. The
difference between the two is that the
former works with ranks, while the
latter works with raw values.
16: Choosing which dataset should
be primary is sometimes obvious
(e.g., when using meta-data). Typi-
cally, the dataset where short-range
Euclidean distances would be most
meaningful should be chosen (see
the discussion related to manifold re-
shaping in Section 3.4). This is not
a “reference” dataset in the sense of
Stuart et al. [86]; here, the researcher
is explicitly allowed to distort the pri-
mary dataset.

We say that two datasets12 agree if they have a similar neighborhood
structure. Formally, we view each dataset as describing the same
𝑁 points in two different spaces and say that they have identical
neighborhood structures if for any point 𝑃 and any 𝑘 (1 ≤ 𝑘 ≤ 𝑁 − 1),
the 𝑘-nearest neighbors of 𝑃 are the same in both datasets. In other
words, a nearest-neighbor algorithm can not distinguish between
the two datasets13. Note that the distances need not be Euclidean, a
feature we will exploit later.

This is an extremely strong14 property, and we weaken it by con-
sidering instead the correlation of pairwise distances between the
datasets. For this, consider the set of

(𝑁
2
)
=

𝑁(𝑁−1)
2 pairwise distances

in each dataset. We say the two datasets are in agreement if pairwise
distances in one are highly correlated to the the other.15

Our goal is to combine the information from the input datasets
(𝐷1 , 𝐷2 , 𝐷3 here) into a single dataset 𝐷∗ that is in agreement with
each of them. First, we designate one dataset (say, 𝐷1 of shape
𝑁 × 𝑘) as the primary and the remaining datasets (here, 𝐷2 and
𝐷3) as secondary.16 Specifically, we pose the following constrained
optimization problem: find an embedding𝐷∗ (of shape 𝑁 × 𝑘) that is
a linear transformation of 𝐷1, where the pairwise squared Euclidean
distances in 𝐷∗ are i) maximally correlated to the corresponding
distances in 𝐷2 and 𝐷3; and ii) correlated to the corresponding
distances in the primary dataset 𝐷1 above some user-specified
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17: And as we will see in Chap-
ter 5, we are often confronted with
highly uncertain information in the
secondary modalities in real biolog-
ical data — allowing a focus on the
high-confidence modality lets us se-
lectively use information from the
lower-confidence views

18: In the next section, a toy exam-
ple where short-range distances are
selectively preserved is shown

threshold. By tuning the threshold, the user can trade off distortion
from the primary dataset 𝐷1 against agreement with the secondary
data in 𝐷2 and 𝐷3.

Introducing this constraint while keeping the optimization problem
feasible is a key conceptual contribution of this work: methods
like CCA, as well as standard approaches in metric learning, place
no such limits on the distortion of 𝐷1. Biologically, that is deeply
problematic because it de-emphasizes information in 𝐷1 that does
not co-vary with 𝐷2 and 𝐷3

17.

We now describe our solution to this optimization problem. Any
affine transform can be broken into three components: translation,
scaling (i.e., stretch or shrink the axes), and rotation. Distances are
invariant with respect to translation, so only the latter two are of
interest here. The key algorithmic contribution of this paper is a quadratic
programming (QP) formulation that computes the optimal scaling transform
for the optimization problem above.

We pair this scaling transform with a rotation produced by a change-
of-basis technique, thus producing an affine transform. In particular,
we use methods like principal component analysis (PCA) or non-
negative matrix factorization (NMF) for this change of basis. We
have found this to be surprisingly effective: doing a PCA and NMF
rotates the data so that dimensions with high variance or information
become axis-aligned. The QP-computed scaling transform then acts
as a feature selection mechanism on top of this, identifying which
axes are the most useful in maximizing agreement between the
datasets.

3.3.1 Motivating the choice of correlation as an objective

As a measure of the alignment between our transformation and a
dataset, correlation of pairwise distances is a flexible and robust
measure. Given a pair of dataset, the connection between their
pairwise-distance Spearman rank correlation and the neighborhood-
structure similarity is deep: if the correlation is greater than 1 − 𝜖,
the fraction of misaligned neighborhood-relationships will be less
than𝑂(

√
𝜖). There is a manifold interpretation that is also compelling:

assuming the high-dimensional data lie on a low-dimensional man-
ifold, small distances are more accurate than large distances, so
the local neighborhood structure is worth preserving. We can show
intuitively that optimizing the correlation aims to preserve local
neighborhood structure18. Using correlation in the objective also
affords the flexibility to broaden Corr(𝑤, 𝜌 𝑗) in (3.2) to any function
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19: This is a slightly stronger ver-
sion of the kernel trick from Subsec-
tion 2.3.2; specifically, 𝑓𝑗 is a kernel
function that depends only on the
given distance between points (rather
than a general kernel)
20: We explore a bandwidth-limited
version of Schema below

21: This is for computational reasons
that will become apparent in Subsec-
tion 3.4.3

22: Notably, other choices of both
integration and other classes of trans-
formation are easily incorporated

23: diag(𝜔) is a 𝑘×𝑘 diagonal matrix
with 𝜔 as its diagonal entries

24: In other words, 𝜔𝑖 being large
means that the 𝑖th coordinate of 𝐷1
is important

𝑓𝑗 of the metric: i.e. Corr(𝑤, 𝑓𝑗 ◦ 𝜌 𝑗)19; this allows us to, for exam-
ple, invert the direction of alignment or more heavily weigh local
distances20.

As scRNA-seq dataset sizes reach millions of cells, even calculating
the 𝑂(𝑁2) pairwise distances becomes infeasible. In this case, we
sample a subset of the pairwise distances. As an estimator, sample-
correlation is a robust measure. This allows Schema to perform well
even with relatively small subsets; in fact, we only need a sample-
size logarithmic in our desired confidence level to generate high-
confidence results (Appendix A). This enables Schema to continue
scaling to more massive scRNA-seq datasets.

3.4 Mathematical Formulation

Recall that we are assuming we have𝑁 observations across 𝑟 datasets
𝐷𝑗 , 1 ≤ 𝑗 ≤ 𝑟, where 𝐷𝑗 = {𝑥(𝑗)

𝑖
, 1 ≤ 𝑖 ≤ 𝑁} contains data (cate-

gorical or continuous) for each observation. We will refer to 𝐷1
as the primary dataset and the rest as secondary. Each dataset’s
dimensionality and domain may vary. In particular, we assume 𝐷1

is 𝑘-dimensional, i.e., 𝑥(1)
𝑗

∈ ℝ𝑘 for all 𝑗. For notational convenience,
we drop the superscript when referring to the primary dataset and
its data. Each dataset 𝐷𝑗 must also have some notion of distance
between observations attached to it, which we will denote 𝜌 𝑗 , so
𝜌 𝑗(𝑥(𝑗)𝑛 , 𝑥

(𝑗)
𝑚 ) is the distance between observations 𝑛 and 𝑚 in 𝐷𝑗 . Ac-

tually, since our entire framework below deals in squared distances21,
for notational convenience we will let 𝜌 𝑗 be the squared distances
between points in 𝐷𝑗 ; also, we drop the superscript in 𝑥

(1)
𝑗

when
referring to the primary dataset 𝐷1 and its data.

The goal is to find a transformation Ω such that Ω(𝐷) generates
a dataset 𝐷∗ for which the Euclidean metric 𝜌∗ on 𝐷∗ “mediates”
between the various metrics 𝜌 𝑗 , each informed by its respectively
modality. Note that none of the 𝜌 𝑗 need to be Euclidean. The above
setup is quite general22, and we now specify the form of the trans-
formation Ω and the criteria for balancing information from the
various metrics. Here, we limit Ω to a scaling transform. That is,
Ω(𝐷) = {diag(𝜔)𝑥 | 𝑥 ∈ 𝐷} for some 𝜔 ∈ ℝ𝑘23. The scaling trans-
form 𝜔 acts as a feature-weighting mechanism: it chooses the features
of 𝐷1 that align the datasets best24. We note here that a natural
extension would be allowing general linear transformations for Ω;
however, in that context, the fast framework of quadratic program-
ming would need to be substituted for the much slower framework
of semidefinite programming.
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25: But our current implementation
only allows a hard constraint on the
primary modality

To measure quality of integration between the modalities’ metrics 𝜌 𝑗 ,
our approach here is to learn a metric 𝜌∗ that preserves the neighbor-
hood structure in each modality as well as possible. Our measure of
the alignment between 𝜌∗ and 𝜌 𝑗 is given by the Pearson correlation
between pairwise squared distances under two metrics. Intuitively,
maximizing the correlation coefficient encourages distances under
𝜌∗ to be large when the corresponding 𝜌 𝑗 distances are large and
vice versa. This can be seen from the formula:

Corr(𝜌∗ , 𝜌 𝑗) =
Cov

[
𝜌∗ , 𝜌 𝑗

](
Var [𝜌∗]Var

[
𝜌 𝑗

] )1/2
(3.1)

To deal with multiple modalities, we try to maximize the correlation
between 𝜌∗ and the distances on each of the metrics, allowing the
user to specify how much each modality should be weighted. The
theory can also allow hard constraints, whereby the correlation
between the transformed data and some 𝐷𝑗 has to be at least some
value25. Our goal is thus to find:

max
𝜔∈ℝ𝑘

𝑟∑
𝑗=1

𝛾𝑗Corr(𝜌∗(𝜔), 𝜌 𝑗) (3.2)

subject to Corr(𝜌∗(𝜔), 𝜌 𝑗) ≥ 𝜙 𝑗 for 𝑗 ∈ {1, . . . , 𝑟}

where 𝛾𝑗 and 𝜙 𝑗 are hyperparameters that determine the importance
of the various metrics. We have also highlighted that 𝜌∗ is a function
of 𝜔 and is determined entirely by the solution to (3.2). In the rest of
our discussion, we will primarily refer to 𝜔, rather than 𝜌∗.

In order to make this optimization feasible, we use the machinery of
quadratic programming.

3.4.1 Setting up the quadratic program

Quadratic programming (QP)is a framework for constrained convex
optimization problems that allows a quadratic term in the objective
function and linear constraints. The general form is:

min
𝑣∈ℝ𝑠

𝑣𝑇𝑄𝑣 + 𝑞𝑇𝑣 (3.3)

subject to
𝐺𝑣 ⪯ ℎ

𝐴𝑣 = 𝑏

where 𝑄 is a positive semidefinite (psd) matrix, and the notation
𝑦 ⪯ 𝑧 means the inequality is true for each coordinate (i.e., 𝑦𝑖 ≤ 𝑧𝑖
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regularization: a technique to avoid
overfitting by penalizing a predictor
for being too “complex” and learning
random noise in the training set

for all 𝑖).

To put our optimization (3.2) in a QP formulation, we expand the
covariance and variance terms in (3.1), and show that the covariance
is linear in the transformation and variance is quadratic:

Cov(𝑤, 𝜌ℓ ) =
(

1
|𝑃 | 𝑎ℓ −

1
|𝑃 |2 𝑏ℓ

)
𝑤 (3.4)

Var(𝑤) = 𝑤𝑇
(

1
|𝑃 |𝑆 − 1

|𝑃 |2𝑇
)
𝑤 (3.5)

where 𝑎ℓ and 𝑏ℓ are 𝑘-dimensional vectors that depend only on 𝐷ℓ ;
and 𝑆 and 𝑇 are 𝑁 × 𝑘 matrices that depend only on 𝐷1; and 𝑃

is the set of pairs of observations. It is also not hard to show that
(|𝑃 |−1𝑆 − |𝑃 |−2𝑇) is psd, as required. For details of the derivation,
see Subsection 3.4.3.

There is one more difficulty to address. The correlation is the quotient
of the covariance and the standard deviation, and the QP framework
cannot handle quotients or square roots. However, maximizing a
quotient can be relaxed to maximizing the numerator (the covariance),
minimizing the denominator (the variance), or both.

We now have the ingredients for the QP and can frame the optimiza-
tion problem as:

max
𝑤∈ℝ𝑘

𝑟∑
𝑗=1

𝛾𝑟Cov(𝑤, 𝜌2
𝑗 ) − 𝛼Var(𝜌∗) − 𝜆| |𝑤 − 1| |2 (3.6)

subject to
Cov(𝑤, 𝜌 𝑗) ≥ 𝛽 𝑗 for 1 ≤ 𝑗 ≤ 𝑟

𝑤 ⪰ 0

where 0 and 1 are the all-zeros and all-ones vectors (of the appropriate
length) respectively. Here,𝜆 is the hyperparameter for regularization
of 𝑤, which we want to penalize for being too far away from the all-
ones vector (i.e. equal weighting of all the features). One could also
regularize the ℓ2 norm of 𝑤 alone (i.e. incorporate −𝜆| |𝑤 | |2) which
would encourage 𝑤 to be small; we have found that empirically the
choices yield similar results.

This program can be solved by standard QP solvers (see Subsec-
tion 3.4.3 for the full details of how to put the above program in
canonical form for a solver), and the solution 𝑤∗ can be used to
transform unseen input data, using 𝜔∗ ∈ ℝ𝑘 , where 𝜔∗

𝑖
=

√
𝑤∗
𝑖
.
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26: And Schema’s feature selection
then acts on the transformed basis

3.4.2 Hyperparameters

A well-known challenge for machine learning algorithms is inter-
pretability of hyperparameters. Here, the QP solver needs values for
𝜆, 𝛼, and 𝛽, and specifying these in a principled way is a challenge
for users. Our approach is thus to allow the user to specify more nat-
ural parameters. Specifically, we allow the user to specify minimum
correlations between the pairwise distances in 𝐷∗ and each of the
𝐷𝑖 ; and also the ratio of the largest value of 𝑤 to its average value,
Formally, the user can specify 𝑠𝑖 and 𝑤̄ such that:

Corr(𝜌∗ , 𝜌𝑖) ≥ 𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑟

| |𝑤 | |∞
| |𝑤 | |1

≤ 𝑤̄

𝑘
(3.7)

While these quantities are not directly optimizable in our QP for-
mulation (3.6), we can access them by varying the hyperparameters
𝛼, 𝛽,𝜆. We note that, in its current implementation, Schema supports
the constraint 𝑠𝑖 only for 𝑖 = 1, i.e., the primary dataset. In the future,
we intend to support all 𝑠𝑖 .

Intuitively, we note that the choice of 𝜆 controls whether 𝑤 satisfies
𝑤̄; and 𝛼 and 𝛽 control whether the correlation constraints 𝑠𝑖 are
satisfied. To satisfy these constraints, we simply grid search across
feasible values of {𝛼, 𝛽,𝜆}: we solve the QP for fixed values of
𝛼, 𝛽,𝜆, keeping only the solutions for which the {𝑠𝑖 , 𝑤̄} constraints
are satisfied. Of these, we choose the most optimal. The efficiency of
quadratic programming means that such a grid search is feasible,
which gives users the benefit of easily interpretable and natural
hyperparameters.

Preprocessing transforms

Standard linear decompositions, like PCA or NMF are useful as
preprocessing steps for Schema, as they transform the features into
a more meaningful basis26. PCA is a good choice in this regard
because it decomposes along directions of high variance; NMF is
slower, but has the advantage that it is designed for data that is non-
negative (e.g., transcript counts). The transform 𝜔 that we generate
can be interpreted as a feature-weighting mechanism, identifying the
directions (in PCA) or factors (in NMF) most relevant to aligning the
datasets. The user can also employ a feature-set that is a union of
features from two methods (e.g., PCA and CCA).
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27: For those not interested in a some-
what tedious derivation, this section
can be skipped without loss of conti-
nuity.

3.4.3 Details of the quadratic program

For the interested reader, we fully specify the quadratic program
here — proving that the covariance and variance are indeed linear
and quadratic in the transformation respectively as claimed in (3.4)
and (3.5)27.

We introduce some notation to condense the expressions. Define
𝑤 ∈ ℝ𝑘 where 𝑤𝑖 = 𝜔2

𝑖
, 𝛿𝑖 𝑗 ∈ ℝ𝑘 with (𝛿𝑖 𝑗)𝑠 = ((𝑥𝑖)𝑠 − (𝑥 𝑗)𝑠)2

(i.e. squared elements of 𝑥𝑖 − 𝑥 𝑗) and, for convenience, let 𝑃 be
the set of pairs of observations 𝑃 = {{𝑖 , 𝑗} : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁}.
Using the fact that the covariance between variables 𝑋 and 𝑌 is
given by Cov(𝑋,𝑌) = 𝔼[𝑋𝑌] − 𝔼[𝑋]𝔼[𝑌], and the variance as
Var(𝑋) = 𝔼[𝑋2] − 𝔼2[𝑋], we can expand:

Cov(𝑤, 𝜌ℓ ) =
1
|𝑃 |

∑
{𝑖 , 𝑗}∈𝑃

𝜌ℓ (𝑥(ℓ )𝑖 , 𝑥
(ℓ )
𝑗
)𝛿𝑇𝑖𝑗𝑤

− 1
|𝑃 |2

( ∑
{𝑖 , 𝑗}∈𝑃

𝛿𝑇𝑖𝑗𝑤

) ( ∑
{𝑖 , 𝑗}∈𝑃

𝜌ℓ (𝑥(ℓ )𝑖 , 𝑥
(ℓ )
𝑗
)
)

=

(
1
|𝑃 | 𝑎ℓ −

1
|𝑃 |2 𝑏ℓ

)𝑇
𝑤

Var(𝑤) = 1
|𝑃 |

∑
{𝑖 , 𝑗}∈𝑃

𝑤𝑇𝛿𝑖 𝑗𝛿
𝑇
𝑖𝑗𝑤 − 1

|𝑃 |2

( ∑
{𝑖 , 𝑗}∈𝑃

𝛿𝑇𝑖𝑗𝑤

)2

= 𝑤𝑇
(

1
|𝑃 |𝑆 − 1

|𝑃 |2𝑇
)
𝑤

where 𝑎ℓ and 𝑏ℓ are 𝑘-dimensional vectors that depend only on 𝐷ℓ ;
and 𝑆 and 𝑇 are 𝑁 × 𝑘 matrices that depend only on 𝐷1.

Explicitly, we derive:

𝑎ℓ =
∑

{𝑖 , 𝑗}∈𝑃
𝜌ℓ (𝑥(ℓ )𝑖 , 𝑥

(ℓ )
𝑗
)𝛿𝑖 𝑗

𝑏ℓ =

( ∑
{𝑖 , 𝑗}∈𝑃

𝜌ℓ (𝑥(ℓ )𝑖 , 𝑥
(ℓ )
𝑗
)
) ∑
{𝑖 , 𝑗}∈𝑃

𝛿𝑖 𝑗

𝑆 =
∑

{𝑖 , 𝑗}∈𝑃
𝛿𝑖 𝑗𝛿

𝑇
𝑖𝑗

𝑇 =

( ∑
{𝑖 , 𝑗}∈𝑃

𝛿𝑖 𝑗

) ( ∑
{𝑖 , 𝑗}∈𝑃

𝛿𝑇𝑖𝑗

)

We recall the general optimization problem (3.6) that needs to be
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mapped to this framework:

max
𝑤∈ℝ𝑘

𝑟∑
𝑗=1

𝛾𝑟Cov(𝑤, 𝜌 𝑗) − 𝛼Var(𝜌∗) − 𝜆| |𝑤 − 1| |2 (3.8)

subject to
Cov(𝑤, 𝜌 𝑗) ≥ 𝛽 𝑗 for 1 ≤ 𝑗 ≤ 𝑟

𝑤 ⪰ 0

and the framework for quadratic programming in (3.3) that this
needs to be mapped to:

min
𝑣∈ℝ𝑠

𝑣𝑇𝑄𝑣 + 𝑞𝑇𝑣 (3.9)

subject to
𝐺𝑣 ⪯ ℎ

𝐴𝑣 = 𝑏

The mapping is straightforward:

𝑣 = 𝑤

𝑄 =
1
|𝑃 |𝑆 − 1

|𝑃 |2𝑇 + 𝜆𝐼𝑘

𝑞 = −2𝜆1 −
𝑟∑
𝑗=1

𝛾ℓ

(
1
|𝑃 | 𝑎ℓ +

1
|𝑃 |2 𝑏ℓ

)

We also require that 𝑄 be positive semidefinite (psd). This is also
straightforward to show. We can write:

𝑄 = 𝜆𝐼𝑘 +
1
|𝑃 |

∑
{𝑖 , 𝑗}∈𝑃

(𝛿𝑖 𝑗 − 𝜇)(𝛿𝑖 𝑗 − 𝜇)𝑇

where 𝜇 = 1
|𝑃 |

∑
{𝑖 , 𝑗}∈𝑃 𝛿𝑖 𝑗 , so it is a sum of psd matrices.

For the linear constraint, we express 𝐺 as a block matrix:

𝐺 =

(
𝐻 0
0 −𝐼𝑘

)
where each row in 𝐻 is given by:

𝐻𝑗 = − 1
|𝑃 | 𝑎 𝑗 −

1
|𝑃 |2 𝑏 𝑗 for 1 ≤ 𝑗 ≤ 𝑟
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28: Another way to put this is that
we want to transform global Euclidean
distances in the primary modality but
not local distances

and ℎ is an 𝑟 + 𝑘-dimensional vector, where:

ℎ 𝑗 =

{
−𝛽 𝑗 for 1 ≤ 𝑗 ≤ 𝑟

0 for 𝑟 + 1 ≤ 𝑗 ≤ 𝑟 + 𝑘

If 𝛽 𝑗 = 0 for some 𝑗 (i.e. no correlation constraint) the corresponding
rows can be deleted from 𝐻 and ℎ. We note here that while the
framework can handle as many correlation constraints as the user
desires, our current implementation only works with a correlation
constraint on the primary dataset (i.e. 𝛽 𝑗 = 0 for all 𝑗 > 1); we believe
for most use cases, this will be sufficient.

We have no equality constraints in our optimization, so 𝐴 and 𝑏 from
(3.9) are not needed.

3.4.4 Manifold reshaping

Recent work by Yu et al. [30] has provided evidence that even
very high-dimensional biological data often actually lie on some
implicit low-dimensional manifold. Thus, the proper way to measure
the similarity between points is using manifold’s metric and not
the Euclidean metric of the high-dimensional ambient space. For
machine learning applications that operate on distances between
points, it is therefore crucial that we can access the correct distances,
even if we do not know the manifold. This is, of course, the premise of
manifold learning, a main theme running through this dissertation.

Assuming the data manifold is “smooth” (as practitioners usually
do), the Euclidean distances between nearby points closely approx-
imate the distances on the manifold. Therefore, we can assume
that the small distances in the primary dataset are accurate and
should be preserved, and as importantly, the ranking of the distances
should be preserved. Concretely, if 𝜌(𝑥𝑖 , 𝑥 𝑗) > 𝜌(𝑥𝑖 , 𝑥ℓ ), then we
should encourage 𝜌∗(𝑥𝑖 , 𝑥 𝑗) > 𝜌∗(𝑥𝑖 , 𝑥ℓ ); in other words, the local
neighborhoods of points should not be distorted.

Suppose our dataset consists of well-separated clusters (common in
scRNA-seq datasets, where the clusters could potentially represent
different cell types/lines) and lies on a manifold as in Figure 3.2.
The within-cluster distances are well represented by the Euclidean
distance in the ambient space, but the between-cluster distances are
not. The goal for our algorithm is to encourage global movement of
the entire clusters, rather than distorting the neighborhoods within
each cluster28.
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29: Again, this section is quite in the
weeds — the reader can skip it with-
out loss of continuity

We consider a simplified dataset and show that optimizing the
Spearman rank coefficient encourages global and not local moves.
Suppose we have two clusters, one centered at the origin (call it 𝑂),
and the other (call it 𝑀) drawn from a Gaussian with mean 𝜇 and
variance 𝜎2𝐼𝑘 (the analysis does not require an isotropic Gaussian,
but it is cleaner)29.

We define here our notion of local and global movements. In the local
scenario, we perturb the points in 𝑀 randomly to generate 𝑇:

𝑇 = {𝑥 + 𝑧 | 𝑥 ∈ 𝑀, 𝑧 ∼ Normal(0, 𝜏2𝐼𝑘)}

In other words, the points in the cluster get some isotropic Gaussian
noise with variance 𝜏2.

In the global scenario, we want all the points in the cluster to move
in generally the same direction. The simplest way to achieve this is
to choose a Gaussian with variance only in one direction. To that
end, we fix a random vector 𝜈 such that ∥𝜈∥ = 1. Then, we generate
another perturbation 𝑆 analogously:

𝑆 = {𝑥 + 𝑧 | 𝑥 ∈ 𝑀, 𝑧 ∼ Normal(0, 𝑘𝜏2𝜈𝜈𝑇)}

Thus, 𝑆 is the points in 𝑀 perturbed in the direction of 𝜈. We
multiply the variance by 𝑘 to make sure that norms of variances of
the Gaussians for both 𝑆 and 𝑇 are the same.

We consider the inter-cluster distances between 𝑆 or 𝑇 and 𝑂 and
compare them to the distances between𝑀 and𝑂. The goal is to show
that the global perturbation has a higher Spearman rank correlation
with the original distances than the local perturbation.

First, we simplify the model: assume that 𝜇 is large with respect
to the variances of the clusters, so we can approximate distances
between any point in 𝑂 and some 𝑥 in any of 𝑀, 𝑆, 𝑇 as ∥𝑥∥. We can
also consider the clusters as random variables:

𝑀 ∼ Normal(𝜇, 𝜎2𝐼𝑘)
𝑆 = 𝑀 + 𝑍𝑆
𝑍𝑆 ∼ Normal(0, 𝑘𝜏2𝜈𝜈𝑇)
𝑇 = 𝑀 + 𝑍𝑇
𝑍𝑇 ∼ Normal(0, 𝜏2𝐼𝑘)

Note that 𝑆 and 𝑇 are both Gaussian as well. To evaluate which
perturbation weakens the Spearman rank correlation the most, we
determine the probability that the perturbation swaps the norms of
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Figure 3.3: Empirical evaluation of
global v. local perturbations. Com-
paring the effect of global and local
perturbations of two point clouds on
the Spearman correlation (comparing
before and after perturbation). Note
that across the parameter choices
shown here, the global perturbation
results in a higher Spearman corre-
lation. This supports the manifold
learning interpretation of Schema

30: Essentially, this comes down to
an analysis of non-standard 𝜒2 distri-
butions, which are generally tricky
but can usually be handled with
clever tricks — the requisite bolt of
inspiration has not yet struck

two points in the cluster. Probabilistically, we compare:

Pr(∥𝑀1 + (𝑍𝑇)1∥2 > ∥𝑀2 + (𝑍𝑇)2∥2 given ∥𝑀1∥2 < ∥𝑀2∥2)
Pr(∥𝑀1 + (𝑍𝑆)1∥2 > ∥𝑀2 + (𝑍𝑆)2∥2 given ∥𝑀1∥2 < ∥𝑀2∥2)

Note that the norm of a multivariate Gaussian follows a𝜒2-distribution,
so the above probabilities can be simulated using that distribution.
Figure 3.3 illustrates the outcome of this simulation. Across a wide
range of parameter choices, the global perturbation causes fewer
swaps or rank and therefore a higher Spearman rank correlation. In
future work, we will aim to prove this fact analytically30.

3.5 Limitations of Existing Metric Learning Tools

Unfortunately, existing metric learning methods [73–76]. are not
well suited to the challenge of synthesizing multi-modal single-cell
data. These methods, some of which list below, are designed to
synthesize two datasets at a time, necessitating an ad hoc approach
to integrating additional modalities. Like CCA, standard metric
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31: And other transforms like PCA
and NMF with interpretable re-
sults can be used as pre- and post-
processing steps

learning approaches do not limit the distortion of the primary
modality. Setting a researcher-specified limit on this distortion is an
important regularization mechanism in Schema (as we will see in
Chapter 5, when we evaluate the algorithms on real data), increasing
the robustness of its results and ensuring that insights from the
primary modality are not lost.

We designed Schema so it could scale to the large and ever-growing
single-cell datasets. Towards that end, Schema deviates from existing
metric learning approaches in computing a scaling transform and
not a general affine transform. While affine transforms potentially
offer more general alignment, Schema’s ability to accept arbitrary
distance metrics on the secondary modalities partly compensates for
this limitation on the primary modality transform. Additionally, the
reach of a scaling transform is enhanced by featurizing the primary
modality so that each feature represents a source of variance that
is axis-aligned and orthogonal to others (e.g., using PCA or NMF).
Most crucially for our needs, scaling transforms can be computed
efficiently; they can be optimized using fast quadratic programming
methods whereas an affine transform would need to be optimized
using the much slower framework of semi-definite programming31.
Moreover, the ability to implement a kernel version of distance
drastically increases the flexibility of even a scaling transform .
Additionally, our choice of correlation as the measure of agreement
allows for a sampling approach that further enhances scalability
while producing provably accurate results (see Appendix A).

These design choices allow Schema to scale up to large single-cell
datasets. We ran a set of metric learning algorithms on one of the
Slide-seq samples [62] (puck 1804301: 22943 cells ×18133 genes),
using implementations made available on the creators’ websites or
in the Python package metric_learn [87]. We tested the following
methods: neighborhood component analysis (NCA) [73]; metric
learning for kernel regression (MLKR) [88]; local Fisher discriminant
analysis (LFDA) [89]; large margin nearest neighbors (LMNN) [75];
and information theoretic metric learning (ITML) [74]. On a Linux
server with 24 Intel Xeon 2.40 GHz cores and 386 GB RAM, each
of these methods either crashed or failed to produce a meaningful
output within 6 hours. In contrast, the aggregate runtime of an
ensemble of Schema runs over different choices of the minimum
correlation hyperparameter was 34 minutes on this dataset (see
Table H.1); in each run, Schema sampled a subset of the pairwise
distances between points.
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32: for example, batch information
and cell age

33: as motivated by the general ker-
nel methods discussed in Subsec-
tion 2.3.2

3.6 Discussion

We designed Schema to be a powerful approach to multimodal data
analysis. Schema is based on an elegant conceptual formulation
in which each modality is defined using a distance metric. A key
conceptual advance of this work is to formulate the synthesis task as
a constrained optimization problem, allowing Schema to robustly
accommodate noisy and sparse modalities. The strength of this
intuition enables analysis of an arbitrary number of modalities and
applicability to any modality, so long as it is possible to define an ap-
propriate distance metric. Importantly, the synthesis is interpretable,
with Schema identifying the features of the primary (i.e., reference)
modality that drive the integration.

Our approach enables the researcher to supervise the synthesis by
choosing which modality to transform, the degree to which it can be
distorted, and the desired level of agreement between modalities.
While existing methods like Seurat v3 [86] and LIGER [67] are
designed for unsupervised discovery of common patterns across
experiments, Schema’s supervised formulation facilitates a broader
set of investigations, enabling us to not only infer cell types and
identify gene sets but also, for instance, rank amino acids by selection
pressure.

When choosing a primary modality, we generally recommend se-
lecting the most high-confidence modality or the one for which
feature selection will be most informative, though it can sometimes
be productive to integrate insights across multiple invocations of
Schema with varying primary modality choices. In many of our
demonstrations, we chose RNA-seq as the primary modality since it
is often the modality where preprocessing and normalization are best
understood, boosting our confidence in it; additionally, transformed
RNA-seq data lends itself to a variety of downstream analyses. Once
a primary modality has been designated, Schema can synthesize
an arbitrary number of secondary modalities with it. In contrast,
methods designed around pairwise modality comparison need ad
hoc adaptations to accommodate additional modalities. Schema’s
approach is advantageous not only for datasets with more than
two modalities[15, 90] but also in cases where metadata32 can be
productively incorporated as additional modalities.

Intuitively, our correlation-based alignment approach has parallels to
kernel canonical correlation analysis (kernel CCA), a generalization
of CCA where arbitrary distance metrics33 can be specified when
correlating two datasets. While Schema offers similar flexibility for
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34: Of course, generalized kernel
CCA has more power to express arbi-
trary functions

35: That is, values approaching 1 will
increasingly limit the influence of the
secondary modalities

36: at least 0.9; the default setting in
our implementation is 0.99

37: Note that kernels can already be
applied to the secondary modalities

secondary modalities, it limits the primary modality to Euclidean
distances. Introducing this restriction enhances scalability, inter-
pretability and robustness. Unlike kernel CCA, the optimization
in Schema operates on matrices whose size is independent of the
dataset’s size, enabling it to scale sub-linearly to massive single-cell
datasets. Also, the optimal solution is a scaling transform that can
be naturally interpreted as a feature-weight vector34. Perhaps most
importantly, Schema differs from kernel CCA in performing a con-
strained optimization, thus reducing the distortion of the primary
dataset and ensuring that sparse and low-confidence secondary
datasets do not drown out the primary signal.

The constrained optimization in Schema acts as regularization, help-
ing ensure that the computed transformation and feature selection
remain biologically meaningful. By choosing a high-confidence
modality as the primary modality and bounding its distortion when
incorporating the secondary modalities, Schema enables information
synthesis while retaining high-confidence insights. This bound on
the distortion is an important parameter, directly controlling how
much the secondary modalities inform the primary dataset35. There-
fore, we recommend that studies using Schema for feature selection
should aggregate the results over a range of values of this parameter
while analyses that utilize only a single parameter should keep it
high36 to preserve fidelity with the original dataset. If sufficient data
is available, cross-validation can also be used to tune this parameter.
We strongly recommend that studies with a single parameter should
report the value of this parameter alongside their results.

3.6.1 Future explorations

Interesting future methodological work could explore alternative
formulations of the Schema objective, potentially including more
complex nonlinearities than our quadratic-program formulation.
Schema can also be used in conjunction with data-integration meth-
ods [67, 86] designed for cases where each modality was assayed on
different cells: after a cross-modality cell-to-cell correspondence has
been computed, Schema can be applied to interpret the integrated
data. It can also guide further biological experiments that profile
only the highly-weighted features based on other data modalities,
enabling efficient, targeted follow-up analysis.

We are also keen to build upon the connection with kernel CCA
mentioned previously, with the perhaps obvious goal of combining
the power of the arbitrary kernel with the efficiency of Schema. A
major difficulty in adapting Schema to general kernel methods37 is
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38: This probably would not be pos-
sible for general kernels

39: which, recall, are those most im-
portant under the manifold hypothe-
sis

40: http://schema.csail.mit.

edu

that the features of the primary modality are weighted — and these
features independently are meaningless for kernel methods. One ap-
proach would be to explicitly understand the way the kernel matrix
varies as a function of the weights on each feature38. However, more
directly, and very related to our discussion on manifold learning,
would be to use a so-called bandwidth-limited kernel, which essen-
tially only considers pairwise distances within a certain bandwidth.
Intriguingly, some preliminary work emphasizing, for example, the
small-scale distances39 in the primary modality revealed interesting
conclusions about semantics and global distances.

Given the current pace of biotechnological development, we antici-
pate that high-throughput experiments, and their conclusions, will
increasingly rely on more than one data modality, underscoring
the importance of Schema and its conceptual framework. Schema
is publicly available for use40 and as the Python package schema_-

learn.

http://schema.csail.mit.edu
http://schema.csail.mit.edu
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Moving from the global transformations in the previous chapter,
our second contribution is more squarely in the realm of manifold
learning, as introduced in Section 2.5; and, while Schema can be
used for dimensionality reduction (see Chapter 5), we now turn to
methods explicitly designed for that purpose.

4.1 Analysis Begins with Visualization

Exploratory analyses of large-scale biological datasets typically begin
with visualizing the data in low dimensions, in the hopes of revealing
high-level structural insights to be probed in downstream analyses.
This approach has been especially critical in the rapidly emerging
field of single-cell transcriptomics (see Section 2.2), where high-
throughput single-cell RNA sequencing (scRNA-seq) technologies
are empowering researchers to study gene expression at an unprece-
dented resolution across diverse tissues, organisms, and biological
conditions. Driven by the high-dimensionality of scRNA-seq datasets
(thousands of different transcripts per cell) and their increasingly
large-scale (hundreds of thousands of cells), many researchers rely
on two- or three-dimensional data visualizations for quickly and
intuitively finding structural patterns1 and communicating biological
insights with the scientific community [19, 92].

Two of the most popular techniques for high-dimensional data
visualization are t-stochastic neighborhood embedding [38] (t-SNE)
and uniform manifold approximation and projection [39] (UMAP),
both of which have been widely adopted in scRNA-seq analysis [52,

∗ The text in this section is from the publication ‘Assessing single-cell transcriptomic
variability through density-preserving data visualization’ by Narayan, Berger,
and Cho [91]
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2: As noted in Subsection 2.6.3, this
just means the embedding coordi-
nates are not a linear function of the
original coordinates

3: Importantly, here we are using
close-by and far away in the absolute
sense, i.e. the Euclidean distance is
large, not the ordinal sense of close-by
compared to other points

local density: we define this precisely
later on, but essentially, this measures
how close the nearest neighbors of a
point are to it

93]. In contrast to traditional methods for dimensionality reduction,
e.g. principal component analysis (PCA) (see Subsection 2.6.2), both
t-SNE and UMAP learn a nonlinear embedding2 of the original
space by optimizing the embedding coordinates of individual data
points using iterative algorithms. Both methods aim to accurately
preserve the original local neighborhood of each data point in
the visualization, while being more permissive of distortions in
long-range distances. Because of the expressiveness of nonlinear
embeddings, t-SNE and UMAP are well-regarded for their empirical
performance at elucidating sophisticated manifold structures and
clustering patterns in high-dimensional data [19, 92].

Despite their strengths, t-SNE and UMAP suffer from a major, often-
overlooked pitfall: they neglect information about the local density of
data points in the source dataset. In other words, data points whose
neighbors are close-by in the original data are not distinguished in
the visualization from those whose neighbors are far away3. This
limitation leads to misleading visualizations where the apparent size
of a cluster largely reflects the number of points in the cluster rather
than its underlying heterogeneity. In scRNA-seq data, this omitted
information about heterogeneity corresponds to the variability of
gene expression within a subpopulation of cells. Thus, accurately
portraying differences in local density in visualizations could provide
another “dimension” of information, reflecting heretofore hidden
insights into the transcriptomic landscape of single cells.

In this chapter, we introduce density-preserving data visualization
methods den-SNE and densMAP that build upon t-SNE and UMAP,
respectively, to enable researchers to more accurately visualize and
extract deeper biological insights from the growing compendium of
single-cell transcriptomic experiments. Our methods leverage the
insight that, since both t-SNE and UMAP construct their embeddings
by iteratively optimizing an objective function, we can augment that
objective function with an auxiliary term that measures the distortion
of local density at each data point in the visualization. To this end,
we develop a general, differentiable measure of local density, called
the local radius, which intuitively represents the average distance to
the nearest neighbors of a given point. Our design of this measure
enables efficient optimization of the density-augmented visualization
objective. The algorithmic techniques we introduce could be used to
augment other visualization tools based on iterative optimization
and thus are of general interest.

In Chapter 6, we demonstrate the utility of density-preserving
visualization by applying den-SNE and densMAP to a diverse range
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Figure 4.1: Overview of density-preserving data visualization. Given a set of points in a high-dimensional space as input
(e.g. gene expression profiles from single-cell RNA-seq experiments), the goal of data visualization is to embed these points
in 2D or 3D while preserving the structure of the original data. To this end, standard visualization tools t-SNE and UMAP
first construct the 𝑘-nearest neighbor (KNN) graph as a compact summary of the data manifold (1). These methods then
optimize the visualization coordinates of the points to maximally preserve local distances between neighbors in the graph (2).
However, because t-SNE and UMAP adaptively choose length-scale to normalize local distances within each neighborhood,
they produce visualizations that neglect information about density in the original space, thus omitting a key structural
feature of the data. To enhance data visualization by incorporating density information, we introduce a general, differentiable
measure of density called the local radius (Methods), which is efficiently calculated on the same KNN graphs that t-SNE and
UMAP leverage (3). By augmenting the original visualization objective with a new term that encourages local radii to be
consistent between the original space and the visualization, we transform both t-SNE and UMAP into density-preserving
counterparts, den-SNE and densMAP, which more accurately portray the structure of the underlying data (4).

of published scRNA-seq datasets. Our work shows that density-
preserving data visualization can unveil unforeseen patterns in
single-cell transcriptomic landscapes and enrich our understanding
of biology.

4.2 Overview of Density-preserving Data
Visualization

Our density-preserving visualization methods, den-SNE and densMAP,
augment t-SNE and UMAP respectively, generating embeddings
that preserve both local structure and variability in the original data
(Figure 4.1). To capture the local structure of the data, t-SNE and
UMAP both create a nearest-neighbors graph (see Subsection 2.3.3)
and preserve only the distances between neighboring points in this
graph. We use the same nearest-neighbors graphs underpinning
each of the original methods to calculate a local radius around each
point, which represents the average distance from the point to its
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4: As the sizes of scRNA-seq datasets
become ever-larger, the potential
for representing rare transcriptomic
states increases — they get ignored if
underrepresented visually!

nearest neighbors; this conveys the density of that point’s neigh-
borhood. The two original algorithms have an objective function
that quantifies the agreement between a given embedding and the
original nearest-neighbors graph, and they rearrange the embedding
to maximize this agreement. We augment these objective functions
with an additional term that measures the agreement between the
local radii in the original dataset and in the embedding, ensuring
that local structure is still preserved in the embedding while also
conveying information about local variability. Our techniques have
strong theoretical foundations, enable efficient optimization, and
are easily generalized to other data visualization algorithms that
similarly use gradient-based optimization.

Applying our methods to simulated datasets featuring heteroge-
neous density landscapes revealed the misleading visual conclusions
that could be made without density preservation (Figure 4.2). Visu-
alizing a mixture-of-Gaussian point clouds with different variances,
t-SNE and UMAP generate clusters that are all similarly sized, while
den-SNE and densMAP accurately depict the different variances
(Figure 4.2a). When the point clouds are translated linearly with
overlap, reflecting a trajectory, lack of density preservation in t-SNE
and UMAP obscures dynamic changes in variability over the trajec-
tory (Figure 4.2c). Conversely, when size is constant but a region is
oversampled, t-SNE and UMAP overrepresent this oversampled re-
gion, giving the impression of increased variability and downplaying
undersampled regions4 (Figure 4.2b and d). Our following results
show that these considerations are critical in biological analyses.



4.3 Method Details 79

a c

db

t-SNE den-SNE

UMAP densMAP

t-SNE den-SNE

UMAP densMAP

t-SNE den-SNE

UMAP densMAP

t-SNE den-SNE

UMAP densMAP

Original data

Original data

Original data

Original data

Figure 4.2: Density-preserving visualization more accurately captures the true underlying shape of synthetic datasets
than existing tools. We compared the visualizations of our density-preserving methods den-SNE and densMAP to those of
t-SNE and UMAP on different synthetic datasets: mixture-of-Gaussian point clouds with (a) increasing variances with the
same sampling rate; (b) same variance, but with increasing sampling rates; (c) increasing variances in a linear translational
motion with overlap, representing a temporal trajectory; and (d) a grid of points, whereby the density grows linearly in one
direction. The synthetic datasets are generated in twenty dimensions for the point clouds and two dimensions for the grid,
and the depictions of the original data in the figure represent two-dimensional linear projections for the former. While t-SNE
and UMAP produce misleading visualizations where the apparent size of a cluster of points (marked by different colors) is
unrelated to the amount of space it occupies in the original space and is biased by sampling rate, den-SNE and densMAP
more accurately portray the shape of the original data by preserving density information.

5: and emphasizing especially their
similar underlying philosophy

4.3 Method Details

We now delve deeply into the details of our augmented methods, first
laying a solid groundwork for both t-SNE and UMAP5, highlighting
precisely why they do not preserve density, and then explaining how
we fix the problem.

4.3.1 Review of t-SNE and UMAP.

The most widely-used nonlinear visualization algorithms in single-
cell transcriptomic analysis are t-SNE [38] and UMAP [39], and both
follow a similar methodology.

Outline of t-SNE and UMAP

Both t-SNE and UMAP build their embeddings using the follow-
ing steps:
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7: For our purposes, 𝑥𝑖 will generally
be the gene expression profile of a cell
8: See Subsection 2.3.3 to recall the
difference between directed and undi-
rected graphs
Gaussian kernel distance: given 𝑥

and 𝑦, the gkd is the density value of
𝑥 for a Gaussian distribution centered
around 𝑦; equivalent to exponential
kernel introduced in Subsection 2.5.3

9: i.e. chosen at runtime dependent
on the data — we detail exactly how
below

1. They first compute a nearest-neighbor graph of the high-
dimensional data and introduce a type of probability distri-
bution on the edges of this graph that assigns larger weights
on smaller distances6

6: To be pedantic, for t-SNE, this dis-
tribution is over all edges, and for
UMAP, it is over each edge

.
2. They then initialize an embedding in two-dimensions and

define a similar distribution on pairwise distances in the
embedding.

3. They then optimize the coordinates of the points in the
embedding to minimizes the distance between this original
probability distribution and a embedding distribution.

The key differences between the two algorithms lie in their choices
of these distributions and the objective function quantifying the
difference between the two distributions.

Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 be our input dataset with 𝑛 data points, where each
𝑥𝑖 ∈ ℝ𝑑7. Let 𝐸 be the set of edges (𝑖 , 𝑗) in the (directed) 𝑘-nearest
neighbor graph constructed on this dataset8, where 𝑗 is one of the
𝑘 points closest to 𝑖. For t-SNE, the probability distribution on the
original data, 𝑃t-SNE

𝑖 𝑗
, is given by normalizing and symmetrizing

Gaussian kernel distances:

𝑃̃𝑗 |𝑖 = exp
(
−


𝑥𝑖 − 𝑥 𝑗

2/𝜎2

𝑖

)
𝑍𝑖 =

∑
𝑗:(𝑖 , 𝑗)∈𝐸

𝑃̃𝑗 |𝑖

𝑃t-SNE
𝑖 𝑗 =

1
2𝑛

(
𝑃̃𝑗 |𝑖
𝑍𝑖

+
𝑃̃𝑖 | 𝑗
𝑍 𝑗

)
(4.1)

where 𝜎𝑖 is chosen adaptively9 for each 𝑖 and corresponds the length-
scale at 𝑥𝑖 .

UMAP uses a slightly different kernel, representing a rescaled expo-
nential distribution:

𝑃̃𝑗 |𝑖 = exp
(
−(



𝑥𝑖 − 𝑥 𝑗

 − dist𝑖)/𝛾𝑖
)

𝑃UMAP
𝑖 𝑗 = 𝑃̃𝑗 |𝑖 + 𝑃̃𝑖 | 𝑗 − 𝑃̃𝑗 |𝑖 𝑃̃𝑖 | 𝑗 (4.2)

where 𝛾𝑖 is chosen adaptively and also corresponds to the length-
scale, and dist𝑖 is the distance from 𝑥𝑖 to its nearest neighbor. We
expand on the role of 𝜎𝑖 and 𝛾𝑖 in the next section.

For the probability distributions computed on the embedding, both
t-SNE and UMAP use a heavy-tailed distribution (e.g. Student’s 𝑡-
distribution for t-SNE), which emphasizes preserving local structure
in the original dataset while being more lenient towards longer
distances (see the original papers [38, 39] for a thorough explanation).
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stochastic gradient descent: a modi-
fication of the gradient descent opti-
mization algorithm whereby the em-
bedding coordinates are updated for
a small chunk of data at a time

conditional: briefly, the conditional
distribution gives the probability of
an event happening given that an-
other event has happened

Formally, the probability distributions 𝑄t-SNE
𝑖 𝑗

and 𝑄UMAP
𝑖 𝑗

in the
embedding are defined as

𝑄̃𝑖 𝑗(𝑎, 𝑏) = (1 + 𝑎𝑑2𝑏
𝑖𝑗 )

−1 (4.3)

Z𝑖(𝑎, 𝑏) =
∑
𝑗≠𝑖

𝑄̃𝑖 𝑗(𝑎, 𝑏) (4.4)

𝑄t-SNE
𝑖 𝑗 = 𝑄̃𝑖 𝑗(1, 1)

(∑
𝑘

Z𝑘(1, 1)
)−1

(4.5)

𝑄UMAP
𝑖 𝑗 = 𝑄̃𝑖 𝑗(𝑎, 𝑏) (4.6)

where 𝑑𝑖 𝑗 represents the distance between points 𝑖 and 𝑗 in the
embedding (Euclidean for both methods), and 𝑎 and 𝑏 are additional
shape parameters UMAP introduces to control the spread of the
distribution according to a user parameter. In the following, we omit
the superscripts of 𝑃 and 𝑄 when they are clear from the context.

The goal of both algorithms is to generate an embedding that min-
imizes the difference between 𝑃 and 𝑄. The loss function used
by t-SNE to quantify this difference is the Kullback-Leibler (KL)
divergence:

KL(𝑃∥𝑄) = −
∑
𝑖 𝑗

𝑃𝑖 𝑗(log𝑃𝑖 𝑗 − log𝑄𝑖 𝑗).

UMAP instead uses the cross-entropy (CE) loss summed over all the
edges:

CE(𝑃∥𝑄) = −
∑
𝑖 𝑗

𝑃𝑖 𝑗 log𝑄𝑖 𝑗 + (1 − 𝑃𝑖 𝑗) log
(
1 −𝑄𝑖 𝑗

)
.

Both methods optimize the embedding coordinates to minimize
the respective loss functions using standard gradient descent opti-
mization techniques (see Appendix C for details). Notably, the fact
that UMAP does not require 𝑄 to be renormalized over all edges
allows UMAP to use stochastic gradient descent, making it more
computationally efficient than t-SNE in general.

4.3.2 Adaptive length-scale selection in t-SNE and UMAP
erases density information

The length-scale parameters 𝜎𝑖 and 𝛾𝑖 play an important role. The
exponentially-decaying tails of the 𝑃 distribution in both t-SNE and
UMAP mean that the points a few multiples of the length-scale away
from 𝑥𝑖 are effectively omitted from the conditional distribution
𝑃·|𝑖 . Thus, the choice of the length-scale at point 𝑥𝑖 determines the
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Figure 4.3: The need for different
length-scales in a dataset; the top
point cloud is much denser than the
bottom

10: The concept of “smooth” here is
imprecise — essentially, if a point’s lo-
cal neighborhood has only 𝑘−1 points
rather than 𝑘 points, then using 𝑘

neighbors could result in poor perfor-
mance; perplexity discounts points
that are extremely far away even if 𝑘
is chosen as the desired value.
11: i.e. more points are significantly
represented in 𝑃·|𝑖 as 𝜎𝑖 increases

Figure 4.4: Adaptive length-scales
cancel density information; since the
length-scale term 𝜎 is proportional to
the variance of the point cloud and
the pairwise distances are divided by
that term.

radius of the local structure around 𝑥𝑖 that the embedding aims to
preserve. Since different points in the dataset can have vastly different
distribution of distances to their respective nearest neighbors, it is
desirable to use a different 𝜎𝑖 or 𝛾𝑖 for each point 𝑥𝑖 in order to
evenly capture the local structure across all parts of the data (see
Figure 4.3).

In t-SNE, the 𝜎𝑖’s are chosen by setting the perplexity of each con-
ditional distribution 𝑃·|𝑖 constant. Perplexity can be thought of as
a “smooth” analog of the number of nearest neighbors10 and is
formally defined as Perp𝑖 = 2𝐻𝑖 , where 𝐻𝑖 denotes the entropy of
the conditional distribution 𝑃·|𝑖 :

𝐻𝑖 = −
∑
𝑗

𝑃𝑗 |𝑖 log2 𝑃𝑗 |𝑖 . (4.7)

Since perplexity monotonically increases in11 𝜎𝑖 , t-SNE performs a
binary search on each 𝜎𝑖 to obtain a constant perplexity for all 𝑖.
UMAP’s length-scale selection is analogous, but instead of fixing the
value of perplexity, it fixes the marginal sum of probabilities at each
point 𝑖, ∑𝑗 𝑃𝑖 𝑗 , by choosing an appropriate 𝛾𝑖 .

Although it is effective for capturing local structure, adaptive choice
of length-scale has the undesirable consequence of canceling out
differences in density around each point in the original data, as
t-SNE (implicitly) and UMAP (explicitly) both assume the data
points are distributed uniformly on an underlying manifold. Note
that, in both t-SNE and UMAP, a sparse neighborhood of 𝑥𝑖 leads to
a large length-scale, whereas a dense neighborhood leads to a small
length-scale, as shown in Figure 4.4. Since the distance between
points is divided by the length-scale parameter in the computation
of 𝑃, we can intuitively see that this normalization removes density
information from the data.

We can actually make this example more formal

Invariance under data dilation

More formally, consider a dataset of points 𝑋 = {𝑥𝑖}𝑛𝑖=1 with
Euclidean pairwise distances {𝑑𝑖 𝑗}𝑛𝑖,𝑗=1. Suppose we dilate the
data space by a factor of 𝛼 > 1 to generate a sparser dataset
𝑍 = {𝑧𝑖}𝑛𝑖=1 with the same underlying structure, where the new
pairwise distances are scaled by 𝛼, i.e.



𝑧𝑖 − 𝑧 𝑗

 = 𝛼𝑑𝑖 𝑗 . A key
observation is that the distribution 𝑃 computed on 𝑋 by t-SNE
or UMAP will be identical to 𝑃 computed on 𝑍, even though 𝑍
represents a more heterogeneous set of points than 𝑋 . Intuitively,
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12: The skeptical reader may won-
der how to decide how many nearest
neighbors to use for this; this is in-
deed non-trivial and expanded on
below

13: That is, 𝜌 is a function of the dis-
tance metric 𝑑

14: We do not yet have a theory for
why this might be, and experiment-
ing with other distance metrics might
be helpful!

this is because obtaining the same perplexity/marginal sum of
probabilities on 𝑍 requires that the respective length-scales be
scaled by 𝛼, which cancels out the increase in distances and leaves
the resulting 𝑃 unchanged. Since 𝑃 is the only information about
the dataset provided as input to the embedding step of each
algorithm, the original differences in density in different regions
of the data space are entirely lost in the embedding.

We provide a more detailed description of this property and its gen-
eralization to a broader class of generative models for the underlying
data in Section 4.5.

4.3.3 Capturing density information using the local radius

To generate embeddings that retain information about the density
at each point, we introduce the notion of a local radius to make
concrete our intuition of spatial density. Intuitively, a point is in a
dense region if its nearest neighbors are very close to it, and in a sparse
region if its nearest neighbors are far away. Thus, we use average
distance to nearest neighbors12 as a measure of density for a given
point.

To formalize this notion, for a point 𝑥𝑖 , we require two components:
(i) a pairwise distance function 𝑑(𝑥𝑖 , 𝑥 𝑗), and (ii) a probability distri-
bution 𝜌 𝑗 |𝑖 that weighs each 𝑥 𝑗 based on its distance from13 𝑥𝑖 , with
faraway points having lower weights. We can now define the local
radius:

Definition 4.3.1 (local radius) Given a distance metric 𝑑 and a
probability distribution 𝜌 that is decreasing in 𝑑, the local radius at 𝑥𝑖 ,
denoted 𝑅𝜌(𝑥𝑖), as the expectation of the distance function over 𝑥 𝑗 with
respect to 𝜌 𝑗 |𝑖 , thus capturing the average distance from 𝑥𝑖 to nearby
points:

𝑅𝜌(𝑥𝑖) := 𝔼𝑗∼𝜌𝑗 |𝑖
[
𝑑(𝑥𝑖 , 𝑥 𝑗)

]
. (4.8)

In the following, we let the distance function be the squared Euclidean
distance, i.e. 𝑑(𝑥𝑖 , 𝑥 𝑗) =



𝑥𝑖 − 𝑥 𝑗

2, which we found to have better
empirical performance than standard Euclidean distance14. Other
choices of distance function can be easily incorporated into our
framework.

In den-SNE and densMAP, we take advantage of the probability
distributions 𝑃t-SNE and 𝑃UMAP which already capture local relation-
ships; for the local radius in the original embedding, we renormal-
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15: In other words, we cannot deter-
mine the adaptive length scale in the
process of the optimization
16: It is worth noting that, in the case
of t-SNE, 𝑄 is based on a Cauchy dis-
tribution, which can be interpreted
as the marginalization of a Gaussian
distribution over an unknown vari-
ance [94]. Thus, 𝑄 intuitively reflects
an average over all length-scales.

ize the edge probabilities 𝑃𝑖 𝑗 to obtain a conditional distribution
𝜌 𝑗 |𝑖 = 𝑃𝑖 𝑗/

∑
𝑗 𝑃𝑖 𝑗 and calculate the local radius as

𝑅𝑃(𝑥𝑖) =
1∑
𝑗 𝑃𝑖 𝑗

∑
𝑗

𝑃𝑖 𝑗 ∥𝑥𝑖 − 𝑥 𝑗 ∥2

for both methods. Note that 𝑃 vanishes rapidly outside the neighbor-
hood of each 𝑥𝑖 and is thus well-suited for density estimation. We
can show in fact that this representation of density (inversely-related)
has the desirable property that it scales with the variance of a range
of data-generating distributions and increases when the length-scale
term 𝜎𝑖 increases (Section 4.5).

Next, we define the local radius in the embedding. Let 𝑦𝑖 be the
embedding coordinates of the point 𝑥𝑖 given by the algorithm of
choice. We need a distribution analogous to 𝑃 for calculating the
expected distance between 𝑦𝑖 and its neighbors in the embedding. It
would still be desirable for this distribution to have adaptive length-
scales like 𝑃 in order to ensure that a comparable number of nearest
neighbors are taken into consideration for calculating the local radius
at different points in the dataset. However, this would present a
major hurdle for optimization because the binary search used to
determine 𝜎𝑖 and 𝛾𝑖 is not differentiable15. Instead, we leverage the
embedding distribution 𝑄 computed by t-SNE and UMAP as an
approximation for the adaptive scheme16 Letting 𝜌 𝑗 |𝑖 = 𝑄𝑖 𝑗/

∑
𝑗 𝑄𝑖 𝑗

and 𝑑(𝑦𝑖 , 𝑦𝑗) = ∥𝑦𝑖 − 𝑦 𝑗 ∥2, the local radius in the embedding is given
as

𝑅𝑄(𝑦𝑖) =
1∑
𝑗 𝑄𝑖 𝑗

∑
𝑗

𝑄𝑖 𝑗



𝑦𝑖 − 𝑦 𝑗

2
. (4.9)

Note that we adopt the squared Euclidean distance for consistency
with local radius computation in the original space.

For ease of notation, we denote the local radius in the original data
as 𝑅𝑜 and the local radius in the embedding as 𝑅𝑒 in the following
sections.

4.3.4 Augmenting the visualization objective to induce
density preservation.

To preserve density, we aim for a power-law relationship between the
local radius in the original dataset and in the embedding, i.e.𝑅𝑒(𝑦𝑖) ≈
𝛼 [𝑅𝑜(𝑥𝑖)]𝛽 for some 𝛼 and 𝛽, inspired by the exponential scaling of
density with respect to dimensionality (see Subsection 4.3.5). This
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17: The invariance is useful because
we do not need to know the param-
eters of the power law, just that one
exists
18: Note that these quantities are
estimated by considering the tu-
ples {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 as 𝑛 independent
samples from the same distribution;
e.g., the mean of 𝑟𝑒 is estimated as
1
𝑛

∑𝑛
𝑖=1 𝑟𝑒 (𝑦𝑖)

19: In Chapter 6, we give some em-
pirical guidelines for how one might
choose this parameter, and show that,
for the data sets we considered, the
output embeddings are generally ro-
bust

20: an extremely stylized example,
but nevertheless helpful

can be reframed as an affine relationship between the logarithms of
the local radii, i.e.,

𝑟𝑒(𝑦𝑖) ≈ 𝛽𝑟𝑜(𝑥𝑖) + 𝛼,

where we define 𝑟𝑜(𝑥𝑖) := log𝑅𝑜(𝑥𝑖) and 𝑟𝑒(𝑦𝑖) := log𝑅𝑒(𝑦𝑖). The
goodness-of-fit of this relationship can be measured by the correlation
coefficient

Corr(𝑟𝑒 , 𝑟𝑜) =
Cov(𝑟𝑒 , 𝑟𝑜)

(Var(𝑟𝑒)Var(𝑟𝑜))1/2
, (4.10)

which is invariant to the parameters 𝛼 and 𝛽17. Cov(·, ·) denotes the
covariance function, and Var(·) denotes the variance function18.

Our density-preservation objective is to choose the embedding
{𝑦𝑖}𝑛𝑖=1 such that correlation between the log local radii of the original
dataset and the embedding is maximized. This approach is closely
related to canonical correlation analysis [95] (CCA), which finds
a linear transformation of a dataset that maximizes its correlation
with another. We are further motivated by recent work that extends
CCA to nonlinear transformations [96] — our procedure can be
interpreted as a nonlinear CCA, where we specify the nonlinear
transform as the computation of the local radius.

Augmenting the loss functions of t-SNE and UMAP with this density-
preservation objective yields the den-SNE and densMAP objectives,
respectively:

Lden-SNE = KL(𝑃t-SNE∥𝑄t-SNE) − 𝜆Corr(𝑟t-SNE
𝑜 , 𝑟t-SNE

𝑒 ), (4.11)
LdensMAP = CE(𝑃UMAP∥𝑄UMAP) − 𝜆Corr(𝑟UMAP

𝑜 , 𝑟UMAP
𝑒 ), (4.12)

where 𝜆 is a user-chosen parameter19 that determines the relative
importance of the density-preservation term compared to the original
objective.

4.3.5 Motivating the power-law relationship between
embedded and original local radii

We motivate the connection between density-preservation and a
power-law relationship between the original and embedding local
radii with an example20. Suppose for a point 𝑥 ∈ ℝ𝑑 in the original 𝑑-
dimensional dataset, the 𝐾 points in its neighborhood are uniformly
distributed in a ball of radius 𝛾𝑑 and volume 𝑉 ∝ 𝛾𝑑

𝑑
, as shown in

Figure 4.5.
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Figure 4.5: Scaling of density in a
ball. As the dimensions increase, the
volume of a ball increases for a given
radius

21: Note that the centering of 𝑟𝑜
𝑖

and
normalizing by standard deviation
does not depend on the embedding
and thus can be precomputed

Now, suppose we want to embed the dataset into 𝑠 < 𝑑 dimensions
while preserving structure and density. This means we want 𝑥 and its
neighbors to be mapped to an 𝑠-dimensional ball of uniform density
with radius 𝛾𝑠 , and, to preserve the density of the 𝐾-neighborhood
of 𝑥, the volume of the 𝑠-dimensional ball should still be 𝑉 (see
Figure 4.5). Since 𝑉 ∝ 𝛾𝑠𝑠 , this suggests a power law relationship
between 𝛾𝑠 and 𝛾𝑑, i.e. 𝛾𝑠 ∝ 𝛾𝑑−𝑠

𝑑
. Taking logarithms, log 𝛾𝑠 =

(𝑑 − 𝑠) log 𝛾𝑑 + 𝛽 for some 𝛽.

Drawing the analogy between the local radius we defined and
𝛾 above, density preservation thus corresponds to a power law
relationship between the local radii in the original and the embedded
datasets.

4.3.6 Optimizing the embedding with respect to
density-augmented objectives

Our differentiable formulation of the local radius enables us to
optimize the density-augmented objective functions (4.11) and (4.12)
using standard gradient descent techniques. Since both t-SNE and
UMAP are also based on gradient descent, it suffices for us to
calculate the contribution of the density-preservation objective to
the overall gradient and add it to the existing t-SNE and UMAP
gradients.

The gradient of the density-preservation objective with respect to
the embedding coordinates 𝑦𝑖 is given by

∇𝑦𝑖Corr(𝑟𝑒 , 𝑟𝑜) =
∑
𝑗≠𝑖

[
𝜕

𝜕𝑑2
𝑖 𝑗

Corr(𝑟𝑒 , 𝑟𝑜)
]
(𝑦𝑖 − 𝑦 𝑗),

where 𝑑𝑖 𝑗 = ∥𝑦𝑖 − 𝑦 𝑗 ∥. To simplify the notation, let 𝜇𝑒 = 𝔼[𝑟𝑒],
𝑟𝑒
𝑖
= 𝑟𝑒(𝑦𝑖), and 𝑟𝑜

𝑖
:=

(
𝑟𝑜(𝑥𝑖) − 1

𝑛

∑
𝑖 𝑟𝑜(𝑥𝑖)

)
/Var1/2(𝑟𝑜)21. Now, the

inner gradient term with respect to 𝑑2
𝑖 𝑗

can be calculated as

𝜕

𝜕𝑑2
𝑖 𝑗

Corr(𝑟𝑒 , 𝑟𝑜) =
Var(𝑟𝑒)

(
𝑟𝑜
𝑖

𝜕𝑟𝑒
𝑖

𝜕𝑑2
𝑖 𝑗

+ 𝑟𝑜
𝑗

𝜕𝑟𝑒
𝑗

𝜕𝑑2
𝑖 𝑗

)
− Cov(𝑟𝑒 , 𝑟𝑜)

(
(𝑟𝑒
𝑖
− 𝜇𝑒)

𝜕𝑟𝑒
𝑖

𝜕𝑑2
𝑖 𝑗

+ (𝑟𝑜
𝑗
− 𝜇𝑒)

𝜕𝑟𝑒
𝑗

𝜕𝑑2
𝑖 𝑗

)
(𝑛 − 1)Var(𝑟𝑒)

3
2

,

where

𝜕𝑟𝑒
𝑖

𝜕𝑑2
𝑖 𝑗

=
𝑄̃2
𝑖 𝑗
(𝑎, 𝑏)

Z𝑖(𝑎, 𝑏)
[
𝑎𝑏𝑑

2(𝑏−1)
𝑖 𝑗

+ 𝑒−𝑟𝑒𝑖 (1 + 𝑎(1 − 𝑏)𝑑2
𝑖 𝑗)

]
.
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22: 𝑍𝑖(𝑎, 𝑏) is required only in t-SNE

epoch: a round of edge-wise updates
for the entire dataset

23: This approach is akin to t-SNE’s
“early exaggeration”, whereby the
first several iterations of the optimiza-
tion emphasize attractive forces to
help guide the direction of the opti-
mization; it can also be thought of as
a type of simulated annealing

The terms 𝑄̃𝑖 𝑗(𝑎, 𝑏) and 𝑍𝑖(𝑎, 𝑏), defined in (4.3) and (4.4), respec-
tively, are quantities computed by t-SNE and UMAP to capture the
local structure of the embedding22. Setting the parameters 𝑎 = 𝑏 = 1
results in the t-SNE formulation, whereas UMAP sets these two
parameters as a function of a user parameter. A detailed derivation
of our gradients above is provided in Appendix C.

Optimizing the densMAP objective requires special consideration
because UMAP uses stochastic gradient descent (SGD), whereby
edges are sampled according to 𝑃𝑖 𝑗 and the gradient update is
performed for one edge at a time. Since the gradient formula (4.10)
involves a sum over its neighbors with equal weights, edges sampled
from 𝑃 must be re-weighted to obtain unbiased estimates of our
gradient. To this end, we multiply the density term in the gradient
for an edge {𝑖 , 𝑗} by 𝑍/𝑛𝑃𝑖 𝑗 where 𝑍 =

∑
{𝑘,ℓ }∈𝐸 𝑃𝑘ℓ , to correct for

sampling bias. In addition, there are a number of global terms that
are computationally burdensome to update for every edge, which
include Var(𝑟𝑒), Cov(𝑟𝑒 , 𝑟𝑜), and 𝜇𝑒 . We compute these terms in the
beginning of each epoch and consider them as fixed during the
epoch. This can be viewed as a form of coordinate descent, where
the objective is optimized with respect to a subset of variables at a
time while conditioning on the rest. We describe these techniques in
detail in Appendix C.

4.4 Implementation Details

To ensure that our methods find good local optima of (4.11) and
(4.12) that are as effective as t-SNE and UMAP in separating clusters,
we take a two-step approach where we run the original algorithms
without the density-preserving objective for the first 𝑞 fraction of
iterations, then optimize the full objective for the remaining 1 − 𝑞
fraction of iterations23. We note that an alternative approach is
to smoothly activate the density-preserving objective, but because
any non-zero weight on this term incurs all of the associated com-
putational overhead with little benefit, we opted for the two-step
approach instead.

For computational efficiency, we approximate the embedding dis-
tribution 𝑄 used in our local radius computation (4.9) by allowing
𝑄𝑖 𝑗 to be non-zero only when 𝑃𝑖 𝑗 is non-zero (i.e. 𝑖 and 𝑗 are 𝑘-
nearest neighbors in the original space), thus inducing sparsity in
𝑄. This technique is especially well-suited for the aforementioned
two-step approach, since the embedding already closely follows
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24: This controls the 𝑎 and 𝑏 param-
eters in 𝑄𝑖 𝑗 ; see (4.6)

25: As noted above, assessing perfor-
mance of visualization techniques is
hard; here, our “assessment” is meant
to show that density differences de-
picted are actually found in the origi-
nal data

26: Notably, we do not compute an
adaptive length scale

the nearest-neighbor structure in 𝑃 when this approximation takes
effect.

There are several parameters of den-SNE and densMAP that the users
can modify to tailor the behavior of these algorithms. We inherit all of
the parameters from t-SNE and UMAP, including perplexity (t-SNE)
or number of neighbors (UMAP), number of iterations/epochs, and
the “min-dist” parameter for UMAP24. We refer the readers to the
original publications for a detailed discussion of these parameters.
There are two additional parameters we introduce in den-SNE and
densMAP: the weight𝜆 ≥ 0 given to the density-preserving objective,
and the fraction 𝑞 ∈ [0, 1] of iterations that take the density term into
account. All of our experimental results are based on the following
default parameter settings that we recommend. For den-SNE, we
use perplexity of 50 and 1000 iterations (same as the default setting
of t-SNE), along with 𝑞 = 0.3 and 𝜆 = 0.1. For densMAP, we use 30
neighbors, 750 epochs, 𝑞 = 0.3, and 𝜆 = 2. We note that changing the
value of 𝜆 leads to qualitatively different embeddings that achieve
different trade-offs between the original visualization objective and
the density-preservation term (Figure G.20). For MNIST, we took
advice from the scientific community and Kobak and Berens [97] to
increase the early exaggeration parameter for t-SNE and den-SNE to
1,000, which resulted in better clustering of the digits [97].

4.4.1 Quantitative evaluation of density preservation

To assess the performance25 of visualization algorithms at preserving
density, we compute the correlation between the log local radii in the
original dataset and two measures of visual density in the embedding
generated by the algorithm.

The first measure of visual density is the local radius computed
in the same manner as in the original space. Recall that during
the optimization, we compute the local radius in the embedding
approximately using the heavy-tailed distribution 𝑄 computed by
t-SNE or UMAP and consider only the edges present in the nearest-
neighbors graph of the original data26. For accurate evaluation, here
we compute the local radius more directly as follows. Given the
embedding points {𝑦𝑖}𝑛𝑖=1, we compute the analog of the 𝑃 matrix
on the original data on these embedding points, denoted 𝑃′. For
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27: Of course, this is also the usual
definition of density

28: An obvious question is why we
do not use neighborhood count in
the original space; this is because
choosing ℓ in high-dimensions is ex-
tremely difficult — if the dataset ex-
hibits vast variation in density, a par-
ticular choice of ℓ will not work across
the data

t-SNE and den-SNE, we define 𝑃′ as:

𝑃′
𝑗 |𝑖 = exp

(
−


𝑦𝑖 − 𝑦 𝑗

2/𝜎𝑖

)
𝑍′
𝑖 =

∑
𝑗

𝑃′
𝑗 |𝑖

𝑃′
𝑗 |𝑖 = 𝑃

′
𝑗 |𝑖/𝑍

′
𝑖

where 𝜎′
𝑖
, the length-scale parameter, is chosen to achieve the same

perplexity as in the original 𝑃 matrix.

For UMAP and densMAP, we define 𝑃′ as:

𝑃̃′
𝑗 |𝑖 = exp

(
−(



𝑦𝑖 − 𝑦 𝑗

 − dist𝑖)/𝛾′
𝑖

)
𝑃′
𝑖 𝑗 = (𝑃̃′

𝑗 |𝑖 + 𝑃̃
′
𝑖 | 𝑗 − 𝑃̃

′
𝑗 |𝑖 𝑃̃

′
𝑖 | 𝑗)

𝑃′
𝑗 |𝑖 = 𝑃

′
𝑖 𝑗/

𝑛∑
𝑗≠𝑖

𝑃′
𝑖 𝑗

where dist𝑖 is the distance to the nearest neighbor of 𝑦𝑖 , and 𝛾′
𝑖

is
chosen to achieve the same constant marginal ∑𝑗 𝑃

′
𝑗 |𝑖 as the original

𝑃 matrix.

Since 𝑃′ more explicitly focuses on the local neighborhoods of points
in the embedding than 𝑄 by adaptively choosing the length-scale,
calculating the local radius using this distribution more accurately
reflects the actual density of each point in the embedding:

𝑅𝑃′(𝑦𝑖) =
∑
𝑗≠𝑖

𝑃′
𝑗 |𝑖


𝑦𝑖 − 𝑦 𝑗

2

.

Note that the adaptive length-scale ensures that a similar number of
neighbors are considered when computing the local radius for both
dense and sparse neighborhoods in the embedding. Our quantita-
tive metric of density preservation is then the Pearson correlation
coefficient (𝑅2) between log𝑅𝑃′(𝑦𝑖) and 𝑟𝑜(𝑥𝑖) = log𝑅𝑃(𝑥𝑖), where
the latter is the log local radius in the original data space.

The second measure of visual density in the embedding is the
neighborhood count, which is motivated by the visual perception of
density as the number of points in a given area27. For a point 𝑦𝑖 in
the embedding and a radius ℓ , the ℓ -neighborhood count of 𝑦𝑖 is
the number of points 𝑦 𝑗 that are within a distance of ℓ from 𝑦𝑖 in
the embedding28. Thus, dense regions will have large neighborhood
counts and sparse regions, small counts. This natural notion of local
density has been extensively used in the psychology of vision [98,
99].
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29: We use the square root because
the embeddings we consider are two-
dimensional

30: We chose smaller values for
densMAP and UMAP because those
embeddings are more compact in gen-
eral than those of den-SNE and t-SNE
for our parameter choices

31: Essentially, we needed to show
that our notion of density preserva-
tion does not come at the cost of per-
formance on existing methods

To systematically choose ℓ for each dataset, we first compute the
area 𝐴 of the smallest bounding box of the embedded points, then
calculate an average length-scale ℓ𝑎𝑣𝑒 =

√
𝐴/𝑛29, where 𝑛 is the

number of points in the dataset. To assess density preservation across
different length-scales, we tested different multiples of ℓ𝑎𝑣𝑒 ; for den-
SNE and t-SNE, we chose ℓ from {ℓ𝑎𝑣𝑒 , 2ℓ𝑎𝑣𝑒 , 4ℓ𝑎𝑣𝑒}, and for densMAP
and UMAP, from { 1

2ℓ𝑎𝑣𝑒 , ℓ𝑎𝑣𝑒 , 2ℓ𝑎𝑣𝑒}30. For each chosen ℓ , we calculate
the ℓ -neighborhood count for each point in the embedding and
calculate the correlation (in log space) with the local radii in the
original space as a quantitative metric of density preservation. A
strong negative correlation is desirable, which indicates that points
with a higher neighborhood count (higher visual density) tend to
have a smaller local radius in the original dataset (smaller underlying
variability).

4.4.2 Additional metrics for evaluating visualization quality

We additionally evaluated the performance of our methods on three
previously proposed metrics31 of visualization quality on scRNA-seq
data [52]: classification score (CS), mutual information score (MIS),
and pairwise distance score (PDS). Intuitively, CS and MIS measure
clustering accuracy based on the visualization, and PDS measures
the preservation of pairwise distances among the datapoints.

Additional metrics of visualization quality

▶ Classification score (CS): evaluates the accuracy of clas-
sifiers that assign each datapoint to one of the known32

32: in other words, assuming a
ground truth clustering clusters based on the visualization coordinates. Following

prior work [52], we trained a random forest classifier on
the visualization33

33: using 60% of the data
to predict the cluster labels from the

original dataset using the RandomForestClassifier class
in Python scikit-learn package with default parameters.
We then calculated the CS as the accuracy of the trained
classifier on a held-out test set34

34: the remaining 40% of the data
. We averaged the results

across three trials of cross-validation to produce the final
score.

▶ Mutual information score (MIS): measures the agreement
between the output of a clustering algorithm in the original
and the embedding space. As previously proposed [52],
we used agglomerative clustering with 𝑘 = 100 clusters to
generate a high-resolution clustering of the original dataset,
then applied the same procedure to obtain a clustering based
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36: The following sections consist of
our attempts to motivate our tech-
niques with some more rigorous the-
ory, for the interested reader; for
those not inclined to following math-
ematical proofs, they can be skipped
37: Unfortunately, UMAP’s use of
a non-standard distribution for its
𝑃 matrix (the re-scaled exponential
distribution) precludes this analysis
from being extended to UMAP
38: These are the neighbors used in
the computation of t-SNE’s 𝑃 matrix
39: We note that we put no restric-
tions on the covariance; Σ can be any
psd matrix

on the visualization. We performed the clustering using
scikit-learn’s AgglomerativeClustering class with the
default Ward linkage

Ward linkage: briefly, the condition
the clustering method uses to join
two clusters together (hence agglom-
erative) is finding the pair that would
least increase the variance of the new
cluster

. MIS is calculated as the mutual
information

mutual information:given two ran-
dom variables,𝑋 , and𝑌, their mutual
information is a quantity from infor-
mation theory that measures how the
conditional distribution of 𝑋 given 𝑌
is different from that of 𝑋 indepen-
dently

between the two cluster assignments, which
measures their agreement. To produce a robust estimate of
the score, we computed MIS on three 60% subsamples of
the original dataset and averaged the results.

▶ Pairwise distance score (PDS): we sampled 1, 000 points
at random from the dataset and calculated the score as the
squared correlation coefficient (𝑅2) between the pairwise
distances among the chosen points in the original space
and those in the visualization, again following the previ-
ously proposed approach [52]. Note that this score equally
considers all pairs of points regardless of their distance,
even though the nonlinear data visualization algorithms
like t-SNE and UMAP are designed to focus on preserving
distances within local neighborhoods35

35: Not to put too fine a point on it,
but this is essentially a metric UMAP
and t-SNE should not perform well on
— and under the manifold hypothesis,
its utility is questionable too

. To more compre-
hensively assess the preservation of pairwise distances at
different scales in the original dataset, we calculated PDS
for different subsets of pairwise distances with an increas-
ing upper limit on their original distance in the dataset.
More precisely, we calculated the PDS for the bottom 𝑥% of
pairwise distances in the original space for 𝑥 ranging from
0 to 100.

4.4.3 Code availability

We provide the software for den-SNE and densMAP in the densVis
package available at: http://densvis.csail.mit.edu/ and https:

//github.com/hhcho/densvis. Our densMAP implementation is
also available as part of the Python umap package (https://github.
com/lmcinnes/umap) on the 0.5dev branch.

4.5 Theoretical Motivation for the Local Radius

Here36, we motivate density-preservation by more rigorously show-
ing that t-SNE does not preserve density due to its use of a constant
perplexity for choosing the length-scale37. The setup is as follows.

Assume that for a given point 𝑋, we draw its 𝑛-nearest neighbors38

as iid random variables X = {𝑋1 , . . . , 𝑋𝑛} where each 𝑋𝑖 ∈ ℝ𝑑 is
drawn from a Gaussian distribution with mean 𝑋 and covariance
matrix39 Σ. Let 𝑃𝑋 be a row of the un-symmetrized probability

http://densvis.csail.mit.edu/
https://github.com/hhcho/densvis
https://github.com/hhcho/densvis
https://github.com/lmcinnes/umap
https://github.com/lmcinnes/umap
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entropy: in physics, entropy is a mea-
sure of disorder or uncertainty; we do
not concern ourself with the formal
thermodynamic definition here, but a
high entropy means more neighbors
should be involved in the computa-
tion

40: In other words, these collections
are clusters of points that are well
separated from each other

41: While this can probably be more
general, we use well-separated to re-
fer to this block diagonal structure

matrix induced by t-SNE, as in (4.1):

(𝑃𝑋)𝑗 = 𝑍−1
𝑋 exp

(
−


𝑋 − 𝑋𝑗



2/𝜎2
𝑋

)
𝑍𝑋 =

𝑛∑
𝑗=1

exp
(
−


𝑋 − 𝑋𝑗



2/𝜎2
𝑋

)
.

The length-scale term 𝜎𝑋 is chosen to make the perplexity, Perp,
constant as in (4.7):

log Perp = H𝑋 = −𝑍−1
𝑋

𝑛∑
𝑗=1

(𝑃𝑋)𝑗 log(𝑃𝑋)𝑗 + log𝑍𝑋 , (4.13)

where H𝑋 is the entropy of 𝑃𝑋 .

We showed above in Subsection 4.3.2 that dilating a set of points
𝑋 = {𝑥𝑖}𝑖=1𝑛 by multiplying the coordinates by some 𝛼 > 1 does not
change the input probability distribution 𝑃 for t-SNE or UMAP. We
first observe that one can extend this result to a collection of sets of
points 𝑋1 , 𝑋2 , . . . , 𝑋𝑘 , where, for some 𝐾, all the 𝐾 nearest neighbors
of a point 𝑦 ∈ 𝑋ℓ are also in40 𝑋ℓ . Now, assume that each collection
𝑋ℓ is scaled by some 𝛼ℓ , and suppose we choose 𝑠 < 𝐾 nearest
neighbors to construct the nearest neighbors graph for the input
distribution 𝑃 (for either t-SNE or UMAP). Then, 𝑃 is a block diagonal
matrix: 𝑃𝑖 𝑗 = 0 whenever 𝑥𝑖 and 𝑥 𝑗 are from different collections.
Thus, the length-scale terms for t-SNE and UMAP are computed on
each block independently, and so each block is invariant to scaling
the points in that collection by 𝛼ℓ . Since each block of 𝑃 does not
change, the full matrix 𝑃 does not change when each cluster is scaled
independently, meaning that the density differences between the
clusters after scaling are lost when the dataset is embedded. Thus,
for our results below, we analyze the case with one point cloud,
and note that the results generalize to well-separated41 point clouds
where each cloud is individually scaled.

4.5.1 Scaling of 𝜎 in t-SNE

We can consider 𝜎𝑋 as a function of the covariance of the generative
model for X, i.e. 𝜎𝑋 = 𝜎(Σ), since it is based on the length-scale, so
𝜎𝑋 itself can be thought of as a random variable. Notably, Vladymy-
rov and Carreira-Perpiñán [100] show that 𝜎 has a unique value
that satisfies (4.13), so we just need to find any 𝜎 that satisfies the
equation.

We first show that 𝜎 scales as the variance.
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Proposition 4.5.1 Suppose, we draw X = {𝑋1 , . . . , 𝑋𝑛}, 𝑋𝑖 ∈ ℝ𝑑

from a Gaussian distribution N𝑋 with mean 𝑋 and covariance Σ, and
given 𝛼 > 0, we now draw Y = {𝑌1 , . . . , 𝑌𝑛}, 𝑌𝑖 ∈ ℝ𝑑 from a Gaussian
distribution N𝑌 with mean 𝑌 and covariance 𝛼Σ. Let 𝜎𝑋 be chosen
so that H𝑋 = log Perp for a constant value of Perp. Then, for any
𝜙, 𝛿 ∈ (0, 1/4), with 𝑛 = 𝑂(log(1/𝛿)/𝜙2), setting 𝜎𝑌 = 𝛼𝜎𝑋 will
yield (1 − 𝜙)H𝑋 < H𝑌 < (1 + 𝜙)H𝑋 with probability at least 1 − 𝛿.

This is the proof that we go into in the most detail, and so we break
it down into the following lemmas.

Proof outline

In order to prove that the length-scale 𝜎 scales as the variance of
the point cloud, we show the following:

1. Lemma 4.5.2 shows that an idealized version of entropy
scales with the length-scale term

2. Lemma 4.5.3 shows that this idealized version of entropy is
not much different from the actual entropy calculated on
the sample.

3. Combining the two results shows that the actual entropy
also approximately scales with the length scale selection

Our proof involves approximating the sums on the right-hand side
of (4.13) by expectations over the generating Gaussian distribution.
To that end, we define:

G𝑋(𝜎2) =
𝔼𝑧∼N𝑋

[
exp

(
−∥𝑧 − 𝑋∥2/𝜎2

)
∥𝑧 − 𝑋∥2/𝜎2

]
𝔼𝑧∼N𝑋

[
exp

(
−∥𝑧 − 𝑋∥2/𝜎2

)] + log𝔼𝑧∼N𝑋
[
exp

(
−∥𝑧 − 𝑋∥2/𝜎2

)]
.

(4.14)

We will show that H𝑋 − log 𝑛 → G𝑋 in the large-sample limit. We
first show the behavior of Gunder dilations of the length-scale, i.e.
G(𝛼𝜎2):

Lemma 4.5.2 Given the distributions N𝑋 and N𝑌 defined above, and
length-scale term 𝜎:

G𝑌(𝛼𝜎2) = G𝑋(𝜎2).

That is, scaling 𝜎 by the same amount as the covariance results in a
constant value for G.

Proof. (Lemma 4.5.2) Introducing the simplifying notations 𝑑(𝑧) :=
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43: Note that the SVD takes the form
of an eigendecomposition because Σ

is psd

44: by the Woodbury matrix identity

∥𝑧 − 𝑋∥, 𝑝(𝑧, 𝜎) := exp
(
−𝑑(𝑧)2/𝜎2) , and𝔼𝑋[·] := 𝔼𝑧∼N𝑋 [·], we write:

G𝑋(𝜎2) =
𝔼𝑋

[
𝑝(𝑧, 𝜎) 𝑑

2(𝑧)
𝜎2

]
𝔼𝑋[𝑝(𝑧, 𝜎)]

+ log𝔼𝑋[𝑝(𝑧, 𝜎)]. (4.15)

Letting 𝑓 (𝑧;𝜇,Σ) denote the pdf of the multivariate normal distri-
bution42

42: Throughout, we urge the reader
to consider how one might generalize
from this case; specifically, the scaling
of the pdf with the variance appears
to be the key factor

with mean 𝜇 and covariance Σ, we can thus compute the
expectations explicitly:

𝔼𝑋

[
𝑝(𝑧, 𝜎)𝑑

2(𝑧)
𝜎2

]
=

1
𝜎2

∫
𝑓 (𝑧;𝑋,Σ)𝑝(𝑧, 𝜎)𝑑2(𝑧)d𝑧

∝ 1
𝜎2 detΣ1/2

∫
exp

(
−1

2
((𝑧 − 𝑋)𝑇(Σ−1 + 2𝜎−2𝐼)(𝑧 − 𝑋))

)
𝑑2(𝑧)d𝑧 .

(4.16)

The factors hidden by the proportionality symbol throughout are
constants that depend only on the dimension and not on 𝑋, 𝜎, or Σ.

We show now that we can, without loss of generality, assume that
the covariance matrix Σ is diagonal. Intuitively, this is because the
calculation of 𝜎 relies only on distances, which are invariant under
orthogonal transformations, and we can transform to a coordinate
system where Σ is diagonal. More formally, assume we have a non-
diagonal covariance matrix. Then we can take its singular value
decomposition Σ = 𝑈Λ𝑈𝑇 where Λ is diagonal and 𝑈 orthonor-
mal43. Then, replacing the integration variable in (4.16) with 𝜃 = 𝑈𝑧

and Φ = 𝑈𝑋, we see:

𝔼𝑋

[
𝑝(𝑧, 𝜎)𝑑

2(𝑧)
𝜎2

]
∝ 1

𝜎2 detΛ1/2

∫
exp

(
−1

2
((𝜃 −Φ)𝑇(Λ−1 + 2𝜎−2𝐼)(𝜃 −Φ))

)
𝑑2(𝜃)d𝜃 ,

(4.17)

which is identical to (4.16).

The exponential term in the integral in (4.16) is the (unnormalized)
pdf of a normal distribution with mean 𝑋 and covariance matrix44

(Σ−1 + 2𝜎−2𝐼)−1 = 𝜎2Σ(𝜎2𝐼 + 2Σ)−1. Thus, (4.16) is:

∝ 𝐶(𝜎,Σ) 1
𝜎2 detΣ1/2

∫
𝑓 (𝑥;𝑋, 𝜎2Σ(𝜎2𝐼 + 2Σ)−1)∥𝑥 − 𝑋∥2 d𝑥 ,

where we define 𝐶 as the normalization factor for the normal
distribution 𝑓 inside the integral. The integral is thus the expectation
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of the sum of the variances in each dimension of the distribution, i.e.
the total variance, given by the trace of the variance matrix:

𝔼𝑋

[
𝑝(𝑥, 𝜎)𝑑

2(𝑥)
𝜎2

]
∝ det

[
𝜎Σ1/2(𝜎2𝐼 + 2Σ)−1/2

]
︸                          ︷︷                          ︸

𝐶(𝜎,Σ)

1
𝜎2 detΣ1/2

Tr
[
𝜎2Σ(𝜎2𝐼 + 2Σ)−1]︸                    ︷︷                    ︸
total variance of 𝑓

.

(4.18)

Similarly,

𝔼𝑋 [𝑝(𝑥, 𝜎)] ∝ 1
detΣ1/2

∫
exp

(
−1

2
((𝑥 − 𝑋)𝑇(Σ−1 + 2𝜎−2𝐼)(𝑥 − 𝑋))

)
d𝑥 ,

and thus the integral is just the normalization of 𝑓 (𝑥;𝑋, 𝜎2Σ(𝜎2𝐼 +
2Σ)−1), so:

𝔼𝑋 [𝑝(𝑥, 𝜎)] ∝ det
[
𝜎Σ1/2(𝜎2𝐼 + 2Σ)−1/2

]
︸                          ︷︷                          ︸

𝐶(𝜎,Σ)

1
detΣ1/2

. (4.19)

We thus have the form of G𝑋(𝜎2) by plugging (4.18) and (4.19) into
(4.15):

G𝑋(𝜎2) = 𝐶1 Tr
[
Σ(𝜎2𝐼 + 2Σ)−1] + 𝐶2 log

(
det

[
𝜎Σ1/2(𝜎2𝐼 + 2Σ)−1/2]

detΣ1/2

)
,

(4.20)

where 𝐶1 and 𝐶2 are constants that do not depend on 𝑋, 𝜎, or Σ45
45: This will be used throughout, but
can take on different values.

Now, we turn to 𝑌, whose neighbors are drawn from a normal
distribution with mean𝑌 and covariance 𝛼Σ. Repeating the analyses
above, it is easy46

46: in the way that mathematicians
say things are easy, or an “exercise
for the reader”

to see then that:

G𝑌(𝜏2) = 𝐶1 Tr
[
𝛼Σ(𝜏2𝐼 + 2𝛼Σ)−1] + 𝐶2 log

(
det

[
𝜏(𝛼Σ)1/2(𝜏2𝐼 + 2𝛼Σ)−1/2]

det(𝛼Σ)1/2

)
.

(4.21)

Plugging in 𝜏 = 𝛼𝜎, we see:

G𝑌(𝛼𝜎2) = 𝐶1 Tr
[
𝛼Σ(𝛼𝜎2𝐼 + 2𝛼Σ)−1] + 𝐶2 log

(
det

[
𝛼𝜎(𝛼Σ)1/2(𝛼𝜎2𝐼 + 2𝛼Σ)−1/2]

det(𝛼Σ)1/2

)
= 𝐶1 Tr

[
�𝛼Σ��𝛼−1(𝜎2𝐼 + 2Σ)−1] + 𝐶2 log

(
�

��𝛼𝑑/2 det
[
𝜎Σ1/2(𝜎2𝐼 + 2Σ)−1/2]

���𝛼𝑑/2 det(Σ)1/2

)
= G𝑋(𝜎2).
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Thus, when the variance of the underlying distribution is scaled
by 𝛼, the length-scale selection needs to also scale by 𝛼 to keep G

constant.

Next, we now show that, for sufficiently large 𝑛, the entropy H𝑋

calculated on a sample and scaled appropriately by 𝑛, does not differ
much from G𝑋 .

Lemma 4.5.3 Suppose we draw X = {𝑋1 , . . . , 𝑋𝑛} i.i.d. from N𝑋 . Then,
for any 𝛼, 𝛿 ∈ (0, 1/4) and 𝑛 > 𝑂

(
log(1/𝛿)

𝜖2

)
, we have:

(1 − 𝛼)G𝑋 + log(1 − 𝛼) < H𝑋 − log 𝑛 < (1 + 𝛼)G𝑋 + log(1 + 𝛼)

with probability at least 1 − 𝛿.

Proof. (Lemma 4.5.3) Using our notation from above, we have:

G𝑋(𝜎2) = 𝔼𝑋[𝑝(𝑧, 𝜎)𝑑2(𝑧)]
𝜎2𝔼𝑋[𝑝(𝑧, 𝜎)]

+ log𝔼𝑋[𝑝(𝑧, 𝜎)]

H𝑋 =

∑𝑛
𝑗=1 𝑝(𝑋𝑗 , 𝜎)𝑑2(𝑋𝑗)
𝜎2 ∑𝑛

𝑗=1 𝑝(𝑋𝑗 , 𝜎)
+ log

(
𝑛∑
𝑗=1

𝑝(𝑋𝑗 , 𝜎)
)
.

We use Hoeffding’s inequality to show that:

𝔼𝑋[𝑝(𝑧, 𝜎)𝑑2(𝑧)] ≈ 1
𝑛

𝑛∑
𝑗=1

𝑝(𝑋𝑗 , 𝜎)𝑑2(𝑋𝑗)

𝔼𝑋[𝑝(𝑧, 𝜎)] ≈
1
𝑛

𝑛∑
𝑗=1

𝑝(𝑋𝑗 , 𝜎).

Given 𝑋1 , . . . , 𝑋𝑛 i.i.d. random variables drawn from a distribu-
tion 𝐹, bounded in [0, 𝑠], Hoeffding’s inequality quantifies how
far the sample mean 𝑋 = 1

𝑛

∑
𝑖 𝑋𝑖 deviates from its expectation

𝜇 = 𝔼𝑋∼𝐹[𝑋]:

Pr[𝑋 > (1 + 𝜖)𝜇] < exp
(
−𝛿2𝑛𝜇

3𝑠

)
Pr[𝑋 < (1 − 𝜖)𝜇] < exp

(
−𝛿2𝑛𝜇

2𝑠

)
.

Taking the weaker bound (the first one) and setting the probability
to 𝛿, we can solve for 𝑛 to see that 𝑋 will be between (1 ± 𝜖)𝜇 when
𝑛 >

3𝑠 log(1/𝛿)
𝜇𝜖2 . Now, we note that the random variable 𝑝(𝑧, 𝜎) lies
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47: in other words, maximizing the
numerator and minimizing the de-
nominator

within [0, 1], and the random variable 𝑝(𝑧, 𝜎) 𝑑
2(𝑧)
𝜎2 lies within [0, 1/𝑒],

so we can set the range 𝑠 to be 1. Thus, with sufficiently large 𝑛, we
have that:

(1 − 𝜖)𝔼𝑋[𝑝(𝑧, 𝜎)𝑑2(𝑧)] < 1
𝑛

𝑛∑
𝑗=1

𝑝(𝑋𝑗 , 𝜎)𝑑2(𝑋𝑗) < (1 + 𝜖)𝔼𝑋[𝑝(𝑧, 𝜎)𝑑2(𝑧)],

(4.22)

and

(1 − 𝜖)𝔼𝑋[𝑝(𝑧, 𝜎)] <
1
𝑛

𝑛∑
𝑗=1

𝑝(𝑋𝑗 , 𝜎) < (1 + 𝜖)𝔼𝑋[𝑝(𝑧, 𝜎)]. (4.23)

Now, the above two equations (4.22) and (4.23) provide bounds
for the numerator and the denominator of the first term of G𝑋(𝜎2),
respectively. Thus, in the worst case47, we see that:

(1 − 𝜖)𝔼𝑋[𝑝(𝑧, 𝜎)𝑑2(𝑧)/𝜎2]
(1 + 𝜖)𝔼𝑋[𝑝(𝑧, 𝜎)]

+ log(1 − 𝜖) + log𝔼[𝑝(𝑧, 𝜎)]

<H𝑋 − log 𝑛

<
(1 + 𝜖)𝔼𝑋[𝑝(𝑧, 𝜎)𝑑2(𝑧)/𝜎2]

(1 − 𝜖)𝔼𝑋[𝑝(𝑧, 𝜎)]
+ log(1 + 𝜖) + log𝔼[𝑝(𝑧, 𝜎)].

To write these bounds in terms of G𝑋 , we note that 1+2
√
𝜖 > 1+𝜖

1−𝜖 and
1 − 2

√
𝜖 < 1−𝜖

1+𝜖 for 𝜖 < 1/4, we can combine the above and compare
H𝑋 and G𝑋 :

(1 − 2
√
𝜖)G𝑋 + log

(
1 − 2

√
𝜖
)
< H𝑋(𝜎) − log 𝑛 < (1 + 2

√
𝜖)G𝑋 + log

(
1 + 2

√
𝜖
)
..

Setting 𝛼 = 2
√
𝜖 gives us the desired bounds.

With these two results, we can prove Proposition 4.5.1.

Proof. (Proposition 4.5.1) By Lemma 4.5.2, G𝑌(𝛼𝜎2
𝑋
) = G𝑋(𝜎2

𝑋
). By

our concentration bounds in Lemma 4.5.3, we take enough samples
so that H𝑋(𝜎2

𝑋
) is within a (1+𝛽)multiplicative factor of G𝑋 . Similarly,

with as many samples, we know that H𝑌(𝛼𝜎2) is within a (1 + 𝛽)
multiplicative factor of G𝑌 . Thus in the worst case:

(1 − 𝛽)2H𝑋 < H𝑌 < (1 + 𝛽)2H𝑋

Taking 𝛽 = 1
3𝜙 (which allows us to discard the quadratic terms), we

see the above can be relaxed to

(1 − 𝜙)H𝑋 < H𝑌 < (1 + 𝜙)H𝑋 ,
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48: We should note that the propor-
tionality factors that are subsumed
might be significant, but, even from
a practical standpoint, the datasets
we consider are large enough that
asymptotics are probably reasonable

as required.

For the remainder of this section we will assume that the quantities
calculated can be well approximated by their expectations, as we
do above by approximating H𝑋 with G𝑋 . For all the below propo-
sitions, Hoeffding’s inequality can be used as in Lemma 4.5.3 to
achieve arbitrarily close approximations, logarithmic in the number
of samples48.

We extend the above analysis to the case of uniformly distributed
data.

Proposition 4.5.4 Let 𝑋 be such that its 𝑛-nearest neighbors are dis-
tributed uniformly in a ball 𝐵𝑋 of radius 𝛾, and 𝑌 another point whose
neighbors are distributed uniformly in a ball 𝐵𝑌 of radius

√
𝛼𝛾. Then,

G𝑌(𝛼𝜎2) = G𝑋(𝜎2) where G is as defined analogously to (4.15):

G𝑋(𝜎2) =
𝔼𝑧∼𝐵𝑋

[
𝑝(𝑧, 𝜎) 𝑑

2(𝑧)
𝜎2

]
𝔼𝑧∼𝐵𝑋 [𝑝(𝑧, 𝜎)]

+ log𝔼𝑧∼𝐵𝑋 [𝑝(𝑧, 𝜎)].

Proof. As in Proposition 4.5.1, we then explicitly compute the terms
𝔼𝑋

[
𝑝(𝑧, 𝜎) 𝑑

2(𝑧)
𝜎2

]
and 𝔼𝑋 [𝑝(𝑧, 𝜎)], assuming a uniform distribution

now instead of a Gaussian:

𝔼𝑋

[
𝑝(𝑧, 𝜎)𝑑

2(𝑧)
𝜎2

]
∝ 1

𝛾𝑑𝜎2

∫
exp

(
−∥𝑧 − 𝑋∥2/𝜎2

)
𝑑2(𝑧)d𝑧︸                                    ︷︷                                    ︸

total variance of (unnormalized) N(0,(1/2)𝜎2𝐼)

∝ 𝜎𝑑

2𝑑/2𝛾𝑑𝜎2
𝑑

2
𝜎2 (4.24)

∝ 𝜎𝑑

𝛾𝑑
, (4.25)

where the factors of 2 and 𝑑 are absorbed into the proportionality
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49: This is a slightly indirect way of
showing that the local radius is re-
lated to the density — for a given
sampling depth, a larger variance in-
dicates lower density

constant. Similarly:

𝔼𝑋 [𝑝(𝑧, 𝜎)] ∝ 1
𝛾𝑑

∫
exp

(
−∥𝑧 − 𝑋∥2/𝜎2

)
d𝑧︸                            ︷︷                            ︸

normalization factor of N(0,(1/2)𝜎2𝐼)

∝ 𝜎𝑑

2𝑑/2𝛾𝑑

∝ 𝜎𝑑

𝛾𝑑
.

Repeating the above calculations for 𝑌 shows that:

𝔼𝑌

[
𝑝(𝑦, 𝜎)𝑑

2(𝑦)
𝜎2

]
∝ 𝔼𝑌 [𝑝(𝑥, 𝜎)] ∝

𝜎𝑑

𝛼𝑑𝛾𝑑
.

Choosing 𝜎2
𝑋

to achieve target perplexity for 𝑋, we see that setting
𝜎2
𝑌
= 𝛼𝜎2

𝑋
makes the above terms equal to their corresponding terms

in 𝑋 and thus achieves the target perplexity.

4.5.2 Scaling of the local radius with variance and
length-scale

We now turn to the definition of local radius. Recall from Equation 4.8
in Subsection 4.3.3 that our local radius is defined as:

𝑅𝑃𝑋 = 𝑍−1
𝑋

∑
𝑗

𝑑2(𝑋𝑗)𝑝(𝑋𝑗 , 𝜎𝑋).

So, assuming the samples are drawn from generating distribution
𝐹𝑋 , when we approximate this in the large-sample limit by 𝑇𝑋(𝜎2),
as we did for the length-scale, we have:

𝑇𝑋(𝜎2) = 𝔼𝑧∼𝐹𝑋 [𝑑2(𝑧)𝑝(𝑧, 𝜎)]
𝔼𝑧∼𝐹𝑋 [𝑝(𝑧, 𝜎)]

. (4.26)

For the Gaussian and uniform generating distributions discussed
in Propositions 4.5.1 and 4.5.4, it is straightforward to show that
the local radius scales with the variance of the underlying distribu-
tion49.

Proposition 4.5.5 Let 𝐹𝑋 and 𝐹𝑌 be a Gaussian or a spherical uniform
distribution centered at 𝑋 and 𝑌 respectively. For the Gaussian case,
assume 𝑋 has a covariance matrix Σ, and for the uniform distribution
assume a radius 𝛾;𝑌 has covariance 𝛼Σ or radius

√
𝛼𝛾. Then, given 𝜎2

𝑋
,
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50: for now . . .

51: We again do not expand deeply
on the thermodynamic connection,
but the partition function is crucial
in understanding the entropy of a
system

the length-scale for 𝑋 , and 𝜎2
𝑌
= 𝛼𝜎2

𝑋
as in Propositions 4.5.1 and 4.5.4,

𝑇𝑌(𝜎2
𝑌
) = 𝛼𝑇𝑋(𝜎2

𝑋
).

Proof. Note that for a given distribution,

𝑇𝑋(𝜎2
𝑋) = 𝜎2

𝑋G𝑋(𝜎
2
𝑋) − log𝔼𝑋[𝑝(𝑧, 𝜎𝑋)].

If 𝐹 is Gaussian, then plugging the value of G𝑋(𝜎2
𝑋
) from (4.20):

𝑇𝑋(𝜎2
𝑋) ∝ 𝜎2

𝑋 Tr
[
Σ(2𝜎2

𝑋 𝐼 + Σ)−1] ,
and if 𝐹 is uniform, then from (4.25):

𝑇𝑋(𝜎2
𝑋) ∝ 𝜎2

𝑋

𝜎𝑑
𝑋

𝛾𝑑𝜎2
𝑋

𝜎2
𝑋 ∝

𝜎𝑑
𝑋

𝛾𝑑
𝜎2
𝑋 .

Now, plugging in 𝜎2
𝑌
= 𝛼𝜎2

𝑋
into corresponding equations for𝑇𝑌(𝜎2

𝑌
),

we see, in the Gaussian case:

𝑇𝑌(𝛼𝜎2
𝑋) = 𝐶1𝛼𝜎

2
𝑋 Tr

[
𝛼Σ(𝛼𝜎2𝐼 + 2𝛼Σ)−1] = 𝛼𝑇𝑋(𝜎2

𝑋),

where the proportionality constant is the same for 𝑇𝑋 and 𝑇𝑌 (as it
does not depend on the covariance). In the uniform case:

𝑇𝑌(𝛼𝜎2
𝑋) = 𝐶1

(
𝛼𝜎𝑋
𝛼𝛾

)𝑑
𝛼𝜎2

𝑋 = 𝛼𝑇𝑋(𝜎2
𝑋),

as required.

For more general distributions we are unable50 to show the explicit
linear scaling of local radius with the variance of the underlying
distribution as above. However, we can still connect the local radius
to the length-scale parameter 𝜎 chosen by t-SNE, which itself is
known to empirically proxy the length scale at each point.

We show that the local radius 𝑅𝑜 in the original space is an increasing
function of the length-scale parameter 𝜎. Thus, the local radius recap-
tures the length-scale information lost when normalizing by 𝜎. The
proposition below builds off the connection made by Vladymyrov
and Carreira-Perpiñán [100] between the t-SNE Gaussian kernel and
the partition function from thermodynamics51.

Here, we assume again that given a point 𝑋 , its 𝑛-nearest neighbors
are given by 𝑋1 , . . . , 𝑋𝑛 , but unlike before, we assume no knowledge
of the distribution of the 𝑋𝑗 . Thus, we cannot use expectations of
known distributions for large-sample approximations and instead
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52: ;)

53: For the physicists in the room, 𝛽
plays the role of inverse temperature
in this system

55: Here, the computation is tedious
but direct

consider a discrete distribution. To elucidate, define 𝛽 = 1
𝜎2 and

rewrite 𝑅𝑋(𝛽) := 𝑅𝑃𝑋 (𝜎2) from above suggestively52 as:

𝑅𝑋(𝛽) =
𝑛∑
𝑗=1

𝑞̃(𝑋𝑗 , 𝛽)
𝑍𝑋(𝛽)

𝑑2(𝑋𝑗),

where 𝑞̃(𝑧, 𝛽) = exp
(
−𝛽𝑑2(𝑋𝑗)

)
= 𝑝(𝑧, 𝜎), and we make clear the sum

𝑍𝑋 ’s dependence on 𝛽. Now, we note that since 𝑍𝑋(𝛽) =
∑
𝑗 𝑞̃(𝑋𝑗 , 𝛽),

we can treat 𝑞(𝑋𝑗 , 𝛽) := 𝑞̃(𝑋𝑗 , 𝛽)𝑍−1
𝑋
(𝛽) as probabilities from a discrete

distribution, i.e. since ∑
𝑗 𝑞(𝑋𝑗 , 𝛽) = 153. Using the moments of this

discrete distribution, we can show that the local radius is a decreasing
function of 𝛽 (and so an increasing function of the length-scale
𝜎).

Proposition 4.5.6 Let 𝑅𝑋(𝛽) =
∑
𝑗 𝑞(𝑋𝑗 , 𝛽)𝑑2(𝑋𝑗), where 𝜎 = 𝛽−1/2

is chosen as before, to ensure constant entropy54 54: The way 𝛽 has to change to match
a given entropy is akin to how sys-
tems with different intrinsic order
need to vary their temperature to
achieve a given entropy

. Then 𝜕𝑅𝑋
𝜕𝜎 > 0.

Proof. Consider the expectation of 𝑑2, taken over the distribution 𝑞:

𝔼𝑋𝑗∼𝑞(𝛽)[𝑑2] =
𝑛∑
𝑗=1

𝑞(𝑋𝑗)𝑑2(𝑋𝑗) = 𝑅𝑋(𝛽). (4.27)

Thus, 𝑅𝑋 is expectation of the variable 𝑑2 over the discrete distribu-
tion 𝑞.

Now, we aim to understand the derivative of 𝑅𝑋 with respect to 𝛽.
First it is straightforward55 to verify:

𝑅𝑋(𝛽) = 𝑍−1
𝑋 (𝛽)

∑
𝑗

𝑑2(𝑋𝑗) exp
(
−𝛽𝑑2(𝑋𝑗)

)
= − 1

𝑍𝑋

𝜕𝑍𝑋
𝜕𝛽

.

Now, take the derivative:

𝑅′
𝑋(𝛽) =

1
𝑍2
𝑋

(
𝜕𝑍𝑋
𝜕𝛽

)2

− 1
𝑍𝑋

𝜕2𝑍𝑋

𝜕𝛽2

= 𝑅2
𝑋 − 1

𝑍𝑋

𝜕2𝑍𝑋

𝜕𝛽2 .

By (4.27), we see that the first term is
(
𝔼𝑞(𝛽)[𝑑2]

)2. Expanding the
second term we see:

1
𝑍𝑋

𝜕2𝑍𝑋

𝜕𝛽2 =
1
𝑍𝑋

∑
𝑗

𝑑4(𝑋𝑗) exp
(
−𝛽𝑑2(𝑋𝑗)

)
= 𝔼𝑋𝑗∼𝑞(𝛽)[(𝑑2)2],
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56: for example, by comparing the
variance of gene expression between
cell types [106]

so this term is the second moment of the variable 𝑑2 over the
distribution 𝑞.

Thus, we have

𝑅′
𝑋(𝛽) =

(
𝔼𝑞(𝛽)[𝑑2]

)2 − 𝔼𝑞(𝛽)[(𝑑2)2] = −Var𝑞(𝑑2) < 0.

where Var𝑞(𝑑2) is the variance of 𝑑2 calculated over 𝑞 and is therefore
positive.

Since 𝑅𝑋 is a decreasing function of 𝛽, that means it is an increasing
function of 𝜎, since 𝜎 = 1/

√
𝛽 is monotonic.

4.6 Discussion

Effective tools for visualizing the single-cell landscapes captured by
ever-larger single-cell experiments are pivotal for accelerating and
disseminating discoveries. den-SNE and densMAP overcome a major
limitation of the state-of-the-art tools t-SNE and UMAP: that they
neglect differences in the local variability of gene expression across
the transcriptomic landscape. While t-SNE and UMAP remain useful
for revealing clustering or trajectory patterns, we demonstrated on a
range of datasets that the local density information we incorporate
into our visualizations harbors insights that can enrich our under-
standing of biology beyond what existing visualization tools offer.
Our density-preservation techniques are broadly applicable to other
visualization algorithms, including recent extensions of t-SNE [101,
102] and force-directed layout embedding [31, 103] (FDLE), and also
to other types of biological data where visualization has been useful,
such as scATAC-seq [104] and metagenomics [105].

In theory, targeted analyses could also capture the changes in tran-
scriptomic variability made apparent by our visualizations56. How-
ever, by visualizing this information over the entire dataset, our ap-
proach allows easier interpretation and understanding. This method-
ological shift is akin to how t-SNE and UMAP have streamlined
cell-type identification workflows by visually revealing clustering
patterns in the dataset, despite the fact that clustering algorithms
could be applied independently of visualization. Similarly, our meth-
ods can help researchers to easily grasp variability changes in their
data and, consequently, to generate new biological hypotheses.

Its analytical benefits aside, density-preserving visualization, as our
results illustrate, more faithfully represents the underlying structure
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of the dataset. Even as the community becomes increasingly aware
of the intricate limitations of existing visualization tools, inaccurate
visualizations will continue to expose researchers to potential biases
in data interpretation. A large body of work in the social sciences
highlights the problematic nature of inaccurate visualizations: for
example, even though distortions in Mercator projections of the
world map are well-known, they still suggest biased conclusions to
viewers [107, 108]. Our density-preserving visualization tools will
reduce such distortions and can help prevent unintentional biases
and misdirection when researchers interpret and share insights from
these data.

Our work motivates a number of interesting directions for further
research, as we will detail in Chapter 6. First, the changes in tran-
scriptomic variability we discovered in tumor-infiltrating immune
cells suggest differential variability as a general tool for characterizing
different cell states. A change in variability likely reflects underlying
alterations of gene regulatory programs, and identifying the key
drivers of this pattern and their roles merits further exploration.
Our visualizations also motivate local density measures for noise
reduction, as they often reveal fine-grain structure within a cell
type, typically a dense “core” surrounded by a sparse cloud of
cells with more divergent expression patterns. By focusing on only
this core, one could obtain crisper canonical representations of cell
states and developmental trajectories. Lastly, other popular tools for
scRNA-seq analysis based on the nearest-neighbors representation
of the transcriptomic landscape may also benefit from information
about local variability, motivating density-augmented algorithms
for tasks such as clustering [109], trajectory analysis [21], and data
integration [23]. Our work represents a key step forward in under-
standing the dynamic structure of complex single-cell transcriptomic
landscapes.





1: As discussed in Subsection 2.2.1,
chromatin accessibility assays mea-
sure which sections of chromatin are
physically accessible in a given cell
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In this chapter, we demonstrate the generality and utility of Schema
on a range of published datasets. We synthesize RNA-seq and ATAC-
seq modalities from multimodal data on 11,296 mouse kidney cells
to infer cell types, with Schema enabling an 11% increase in accu-
racy over previously described approaches. On a dataset of 62,468
spatially-resolved transcriptomes in the mouse cerebellum, we use
Schema’s feature selection capabilities to identify genes differen-
tially expressed between sparsely and densely packed granule cell
neurons. We demonstrate how UMAP and t-SNE visualizations
can be made more informative by infusing additional information,
like cellular age, into the visualizations. Going beyond gene ex-
pression, we perform a feature selection analysis on a dataset of
62,858 T cells to estimate the locations and residues in the T-cell
receptor’s complementarity-determining region 3 (CDR3) impor-
tant to its binding specificity. Schema is thus designed to support
the continually-expanding breadth of single-cell technologies while
retaining the power, tunability and interpretability required for
effective exploratory analysis.

5.1 Inferring Cell Types by Synthesizing Gene
Expression and Chromatin Accessibility

We first sought to demonstrate the value of Schema by applying it to
the increasingly common and broadly interesting setting in which
researchers simultaneously profile the transcriptome and chromatin
accessibility1 of single cells [58]. Focusing on cell type inference, a

∗ The work in this section is drawn from the Genome Biology publication [54], which
focuses on results when Schema was applied. I was not the primary author on
any of these results; they are included to demonstrate the power of the method.
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Figure 5.1: Synthesis of RNA-seq and ATAC-seq information leads to more accurate cell type inference. a. Leiden
clustering [110] of per-cell transcriptional profiles results in greater agreement (measured as the adjusted Rand index, ARI)
with ground-truth cell type labels when featurizing cells by RNA-seq profiles alone compared to featurizing with ATAC-seq
profiles alone. ATAC-seq does provide relatively more information when distinguishing PT cells. b. Ground truth labels
from Cao et al. [58]. c, d, e. To assess the ground-truth accuracy of Leiden clustering, we assigned each cluster to the cell type
most frequently seen in the ground-truth labels of its members. Clusters where labels are more mixed will thus have lower
accuracy. Clustering on RNA-seq profiles alone results in many PT cells assigned to such clusters. Schema synthesis of RNA-
and ATAC-seq features, followed by Leiden clustering, results in significantly greater concordance with ground-truth on PT
cell types when compared to Leiden clustering on the RNA-seq features alone (One-sided binomial test, 𝑝 = 6.7 × 10−15). f.
ARIs of clusters from Schema-synthesized data are higher, especially for PT cells. Synthesizing the modalities using canonical
correlation analysis (CCA), totalVI (an autoenconder-based deep learning approach), or a “pseudocell” approach described
in the original study results in lower ARI scores.

2: notwithstanding the discussion in
Subsection 2.7.1 about the existence
or lack thereof of discrete cell types
ATAC-seq: the methodology for as-
saying chromatin accessibility, which
works by degrading the sections of
chromatin in a cell that are accessible

3: See Chapter 3 for a refresher on
the method

4: These expertly designed labels
are traditionally determined using
known marker genes

key analytic step in many single-cell studies2, we applied Schema on
a dataset of 11,296 mouse kidney cells with simultaneously assayed
RNA-seq and ATAC-seq modalities and found that synthesizing
the two modalities produces more accurate results than using either
modality in isolation (Figure 5.1F; Figure G.23).

With RNA-seq as the primary (i.e., reference) dataset and ATAC-seq
as the secondary, we applied Schema to compute a transformed
dataset in which pairwise RNA-seq distances among cells are better
aligned with distances in the ATAC-seq peak counts data while
retaining a very high correlation with primary RNA-seq distances (≥
99%)3. We then clustered the cells by performing Leiden community
detection [110] on the transformed dataset and compared these
clustering assignments to the Leiden clusters obtained without
Schema transformation. We measured the agreement of these fully-
automated clusterings with expertly-defined ground-truth cluster
labels4 (from Cao et al. [58]), quantifying this agreement with the
adjusted Rand index (ARI), which has a higher value if there is
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5: significance calculated using the
one-sided binomial test, 𝑝 = 6.7 ×
10−15

6: For the biologists in the room, the
top hits are Pnisr, Ankrd11, and Kmt2c
7: GO:0060255, FDR 𝑞 = 0.0103
8: GO:0051171, FDR 𝑞 = 0.0133

greater agreement between two sets of labels. Leiden clustering
on Schema-transformed data better agrees with the ground truth
annotations of cell types (ARI of 0.46) than the corresponding Leiden
cluster labels using just RNA-seq or ATAC-seq datasets individually
(ARIs of 0.40 and 0.04, respectively, Figure 5.1F). Here, Schema
facilitated a biologically informative synthesis despite limitations of
data quality or sparsity in the ATAC-seq secondary modality. We
observed that using only ATAC-seq data to identify cell types leads
to poor concordance with ground-truth labels (Figure G.24a), likely
because of the sparsity of this modality (for example, only 0.28% of
the peaks were reported to have non-zero counts, on average); this
sparsity was also noted by the original study authors.

To further analyze why combining modalities improves cell type
clustering, we obtained Leiden cluster labels using either the RNA-
seq or the ATAC-seq modalities individually. We then evaluated
these cluster assignments by iterating over subsets of the data, each
set covering only a pair of ground-truth cell types and used the
ARI score to quantify how well the cluster labels distinguished
between the two cell types. While RNA-seq clusters have higher
ARI scores overall, indicating a greater ability to differentiate cell
types, ATAC-seq does display a relative strength in distinguishing
proximal tubular (PT) cells from other cell types (Figure 5.1A).

PT cells are crucial to kidney function, with the specific PT cell
sub-types playing distinct roles in, for instance, glucose reabsorption
[111]. They are also the most numerous cells in this dataset and many
of the misclassifications in the RNA-seq based clustering relate to
these cells (Figure 5.1B-D). When the two modalities are synthesized
with Schema, a significant number of these PT cells are correctly
assigned to their ground truth cell types5, leading to an overall
improvement in clustering quality (Figure 5.1E).

Furthermore, upon analyzing Schema’s feature-selection output we
found that the genes it up-weighted in the primary RNA-seq modality
were differentially expressed in PT cells (one-sided 𝑡-test, FDR 𝑞 <
0.01 for each of the three PT cell types), thus emphasizing the RNA-
seq subspace where support from the secondary modality signal was
strongest. These genes6 are enriched for regulation of macromolecule
metabolic process7 and regulation of nitrogen compound metabolic
process8.
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9: Recall that we mean keeping the
ordering of pairwise distances the
same

10: There is a general paradigm in bi-
ology that some patterns in a dataset
are “biologically relevant” and oth-
ers are artifacts; it is not obvious how
to distinguish them except through
expert validation!

autoencoder: briefly, an autoencoder
tries to learn an efficient (usually low-
dimensional) representation of an un-
labeled dataset, with the goal that the
data can be recovered from the en-
coding

11: This was to ensure that the single-
modality latent space representations
were reasonable in themselves
12: ARIs of 0.365 and 0.038 for scVI-
generated representations of RNA-
seq and ATAC-seq data, respectively
13: ARI of 0.0043

5.2 Schema’s Constrained Data Synthesis
Outperforms Unconstrained Approaches

In general, synthesis of multimodal data can also be done by sta-
tistical techniques my like canonical correlation analysis (CCA) or
deep learning architectures that represent multiple modalities in a
shared latent space [77–83]. A key conceptual advance of Schema
over these approaches is its emphasis on limiting the distortion9 of
the high-confidence reference modality, allowing it to extract signal
from the lower-confidence secondary modalities without overfitting
to their noise and artifacts. Intuitively, the synthesis of two modalities
requires the identification of a subspace (or latent space) in each
modality that aligns well with the other. Due to noise and artifacts,
an unconstrained approach may overfit by identifying a pair of
subspaces that align well but are biologically uninformative10. In
contrast, Schema’s constrained optimization formulation, combined
with the use of a high-confidence modality as the primary, ensures
that any possible alignment will use only a biologically-informative
subspace of the primary modality and thus guides the quadratic
programming optimizer towards correspondingly informative sub-
spaces in the other modalities. To demonstrate the importance of this
constrained approach, we evaluated the performance of CCA and
totalVI [80] in integrating the RNA-seq and ATAC-seq modalities
(Figure 5.1F). We applied CCA to synthesize the two modalities
and performed Leiden clustering on the resulting dataset, finding
its overlap with the ground truth labels (ARI of 0.31) to be lower
than that from Schema’s synthesis (0.46). Indeed, this is a lower ARI
than is achievable just with RNA-seq data (0.40), indicating that the
CCA-based synthesis may be overfitting to the sparse and noisy
ATAC-seq data.

To evaluate an autoencoder-based synthesis of these modalities,
we applied Lopez et al. [77] and totalVI to compute per-modality
and dual-modality latent space representations, respectively. We
performed Leiden clustering in the autoencoder latent spaces and
evaluated the clustering’s overlap with ground truth labels. We first
verified that the single-modality latent space representations did lead
to Leiden clusters of comparable quality11 as had previously been
observed from Leiden clustering on the raw data12. However, the
dual-modality shared-space representation from totalVI produced
a Leiden clustering (Figure G.23b) that had a low overlap with the
ground truth13. We hypothesize that the sparsity and low signal-
to-noise ratio in the ATAC-seq modality led totalVI to a latent
space representation that corresponds to low biological-information
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14: This is often a buzzword in ma-
chine learning; here, we mean that
Schema tells us exactly which fea-
tures are used in the synthesis

15: This is by design, as UMAP and
its ilk are unsupervised and only use
the features to calculate their embed-
dings

16: ≥ 0.99
17: Essentially, this means that there
is plenty of “wiggle room” in the
embedding to maintain orderings

subspaces of the two modalities, rather than their respective high
information subspaces. We note that we were able to achieve better
performance with totalVI when applying the same procedure to
a synthetic, less-noisy secondary modality consisting of partially-
randomized RNA-seq observations.

While these CCA and autoencoder results were likely due to overfit-
ting, the Schema-based synthesis constrains the ATAC-seq modal-
ity’s influence, enabling us to extract additional signal provided by
ATAC-seq while preserving the rich information provided by the
transcriptomic modality. We believe that this regularization offered
by Schema’s constrained optimization formulation is a key advantage
that will be crucial in multimodal single-cell data synthesis. We also
note that Schema offers additional advantages: unlike CCA, it can
incorporate more than two modalities simultaneously and, unlike
totalVI, its synthesis is interpretable14, revealing a more accurate
characterization of PT cells.

5.3 Schema Highlights Secondary Patterns While
Preserving Primary Structure

Another powerful use of Schema is to infuse information from other
modalities into RNA-seq data while limiting the data’s distortion so
that it remains amenable to a range of standard RNA-seq analyses.
Since widely used visualization methods such as UMAP [39] do not
allow a researcher to specify aspects of the underlying data that they
wish to highlight in the visualization15, we sought to apply Schema to
improve the informativity of single-cell visualizations. We leveraged
Schema to highlight the age-related structure in an RNA-seq dataset
of Drosophila melanogaster neurons [56] profiled across a full lifespan,
while still preserving most of the original transcriptomic structure.
We chose RNA-seq as the primary modality and temporal metadata
(cell age) as the secondary modality, configuring Schema to maximize
the correlation between distances in the two while constraining the
distortions induced by the transformation. We then visualized the
transformed result in two dimensions with UMAP.

While some age-related structure does exist in the original data,
Schema-based transformation of the data more clearly displays a
cellular trajectory consistent with biological age (Figure 5.2). Impor-
tantly, revealing this age-related structure required only a limited
distortion of the data, corresponding to relatively high values16 of
the minimum correlation constraint (Figure 5.2c)17.
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Figure 5.2: Incorporating temporal metadata into UMAP visualizations of aging neurons captures developmental changes.
UMAP visualization of RNA-seq profiles of D. melanogaster neurons at 0, 1, 3, 6, 9, 15, 30, and 50 days after birth, representing
the full range of a typical D. melanogaster lifespan. The transcriptomic data (primary modality) was transformed to a limited
extent using Schema by correlating it with the temporal metadata (secondary modality) associated with each cell. a. UMAP
visualization of the original transcriptomic data. b, c, d. Visualizations of transformed data with varying levels of distortion.
As the value of the minimum correlation constraint 𝑠 approaches 1, the distortion of the original data is progressively
limited. Decreasing 𝑠 results in a UMAP structure that increasingly reflects an age-related trajectory. e. Feature-selection
interpretation of Schema’s transformation. In synthesizing the two modalities, Schema up-weights genes (top 15 shown here)
that are differentially active at the start or end of the time-course. For clarity, the set of genes has been reordered by the
difference in their early and late-stage expression.

18: for example, Rm62, CG5010 and
IscU
19: for example, Rpl22 and Rpl23A

20: one-sided binomial test, FDR 𝑞 <
10−21 for the 1, 30 and 50-minute sub-
sets

pseudotime: a computational esti-
mate of the age of a cell given it
scRNA-seq vector
21: In other words, the Spearman cor-
relation indicates that the estimated
pseudotime in the new embedding
corresponds better to actual cell age

22: 𝑅2 = 0.059
23: There is of course, the reason-
able question about whether imbuing
the visualization with additional side-
information reduces its quality (since
you will see what you are expect-
ing); this depends on how much you
trust the additional information to be
biologically meaningful; see Chari,
Banerjee, and Pachter [51] for a dis-
cussion on these semi-supervised em-
beddings
24: This could, for example, be due to
metadata like age or spatial location

Analysis of Schema’s feature selection indicated an up-weighting of
genes differentially expressed at the start or end of the aging process
(Figure 5.2E), with genes implicated in cell organization/biogenesis18

[112] active at the start while ribosomal genes19 were active at the
end. We also confirmed that there was a significant overlap between
Schema’s highest-ranked genes and those found by a standard
differential expression test between time-points20. To additionally
verify that Schema was infusing additional age-related structure into
RNA-seq data, we performed a diffusion pseudotime analysis of
the original and transformed datasets and found that the Spearman
rank correlation between this pseudotime estimate and the ground-
truth cell age increased from 0.365 in the original data to 0.405 and
0.436 in the transformations corresponding to minimum correlation
constraints of 0.999 and 0.99, respectively21.

We note that the constrained optimization of Schema was again
important to retaining biological signal during the synthesis: in
comparison, an unconstrained synthesis by CCA led to a lower
pseudotime correlation22 than seen in the original RNA-seq dataset;
the corresponding CCA-based UMAP visualization was also less
clear in conveying the cellular trajectory (Figure G.26). Schema thus
enables visualizations that synthesize biological metadata, while
preserving much of the distance-related correlation structure of the
original primary dataset23. With Schema, researchers can therefore
investigate single-cell datasets that exhibit strong latent structure24,
infusing this secondary information into the primary RNA-seq
modality. We recommend specifying a high minimum-correlation
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25: One reason why the constraint
can be so high is in some sense the
converse of the JL-limits from Theo-
rem 2.6.1 — in high dimensions, there
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move around while not changing dis-
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26: See Subsection 2.2.2 for the dis-
cussion about the difference between
these problems

27: Noting that these transcriptomes
are not guaranteed to be single-cell

28: It’s all about density!

29: “Distance” in the categorical
modality is merely the “one-hot” dis-
tance — two cells have a distance of
1 if they are different cell-types and 0
if they are the same cell-types

30: for example, ion-channel trans-
port (REACTOME FDR 𝑞 = 1.82 ×
10−3), ion transport (GO:0022853,
FDR 𝑞 = 1.8 × 10−17), and elec-
tron transfer (GO:009055, FDR 𝑞 =

2.87 × 10−11)

constraint (e.g., 0.99) during the synthesis, having observed that only
a small transformation of the RNA-seq data is (generally) needed to
make the latent structure visible25.

5.4 Spatial Density-informed Differential
Expression Among Cerebellar Granule Cells

In addition to cell type inference, another important single-cell anal-
ysis task that stands to benefit from multimodal synthesis is the
identification of differentially expressed marker genes26. To perform
differential expression analysis with Schema, RNA-seq data should
be used as the primary modality, while the distance metrics of the
secondary modalities specify how cells should be differentiated
from each other. We applied Schema to spatial transcriptomics data,
another increasingly important multimodal scenario, here encom-
passing gene expression, cell-type labels, and spatial location.

We obtained Slide-seq data containing 62, 468 transcriptomes that
are spatially located in the mouse cerebellum. In the original study,
these transcriptomes were assigned to putative cell types27, and thus
cell types are located throughout the tissue [62, 113]. Interestingly, we
observed spatial density28 variation for certain cell types; specifically,
transcriptomes corresponding to granule cell types are observed in
regions of both high and low spatial density (Figure 5.3B).

Schema’s feature-selection capabilities could thus identify genes that
are differentially expressed in granule cells in high density areas
versus granule cells in low density areas. Schema is well suited to
the constrained optimization setting of this problem: we optimize
for genes expressed specifically in granule cells and in dense regions,
but not all granule cells are in dense regions and not all cells in dense
regions are granule cells. We specified RNA-seq data as the primary
modality and spatial location and cell-type labels as the secondary
modalities29. In the spatial location modality, the distance metric was
defined such that two cells are similar if their spatial neighborhoods
have similar density.

The densely-packed granule cell genes identified by Schema are
strongly enriched for GO terms and REACTOME pathways [114]
related to signal transmission30. This finding suggests potentially
greater neurotransmission activity within these cells (Figures G.29
and G.30, Appendix F).
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Figure 5.3: Schema identifies a gene set in granule neurons whose expression covaries with spatial cellular density. a.
Rodriques et al. [62] simultaneously assayed spatial and transcriptomic modalities in mouse cerebellum tissue (data from
puck 180430_1 is shown here). In addition, they labeled beads (each corresponding to a transcriptome) with a putative
cell-type by comparing gene expression profiles with known cell-type markers. b. Spatial distribution of the most common
cell types in the tissue: granule cells, Purkinje cells, interneurons, and oligodendrocytes. Note the variation in spatial density
for granule cells. c. We quantified this spatial density variation by computing a two-dimensional Gaussian-kernel density
estimate, with cells in dense regions assigned a higher score. d. Schema is able to identify a set of genes that are highly
expressed only in densely-packed granule cells. The four figures here show mutually disjoint sets of cells: granule cells with
high expression of the gene set, granule cells with low expression of the gene set, other cells with high expression, and other
cells with low expression. Here, a cell is said to have high expression of the gene set if the cell’s loading on this gene set
ranks in the top quartile. e. Schema’s results are robust across biological replicates. Across three replicates, we evaluated the
consistency of gene rankings computed by Schema, canonical correlation analysis (CCA), SpatialDE and Trendsceek. The
black points indicate the Spearman rank correlation of gene scores across pairs of replicates. We needed to adapt SpatialDE
and Trendsceek for this task by first applying them separately on granule and non-granule cells and then combining the
results; here, the black and grey points indicate the cross-replicate correlations of the final and intermediate gene-rankings,
respectively.
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31: We note that Schema is not explic-
itly designed for this type of analysis

32: This is meant in the sense that
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modalities to be spatial

33: We focus on spatial density vari-
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37: FDR 𝑞 < 0.001 in all cases

38: the gray points in Figure 5.3e

5.5 Schema Outperforms Alternative Methods for
Spatial Transcriptomic Analysis

We sought to benchmark our method by comparing the robustness
of Schema’s results with those based on canonical correlation anal-
ysis (CCA) and with two methods specifically intended for spatial
transcriptomics31, namely SpatialDE [68] and Trendsceek [69].

An important point is that CCA, SpatialDE, and Trendsceek are less
general32 than Schema and therefore require non-trivial modifica-
tions to approximately match Schema’s capabilities. CCA is limited
in that it can correlate only two datasets at a time, whereas here
we seek to synthesize three modalities: gene expression, cell-type
labels, and spatial density. We adapted CCA by correlating two
modalities at a time and combining the sub-results. In the case of
SpatialDE and Trendsceek, their unsupervised formulation does not
allow the researcher to specify the spatial features to pick out33. To
adapt these, we collated their results from separate runs on granule
and non-granule cells. Notably, the ad hoc modifications required
to extend existing methods beyond two modalities underscore the
benefit of Schema’s general analytic formulation that can be nat-
urally extended34 to incorporate any number of additional data
modalities.

Reasoning that a robust computational approach should return con-
sistent results across biological replicates35, we evaluated the stability
and quality of each spatial transcriptomic technique by comparing
its results on three replicate samples of mouse cerebellum tissue36.
While both Schema and CCA identify a gene set that ostensibly cor-
responds to granule cells in dense regions (Figure 5.3D; Figure G.24),
the gene rankings computed by Schema are more consistently pre-
served between pairs of replicates than those computed by CCA, with
the median Spearman rank correlation between sample pairs being
0.68 (Schema) versus 0.46 (CCA). Likewise, with Schema, 69.1%
of enriched GO biological-process terms are observed in all three
samples and 78% are in at least two samples. The corresponding num-
bers for CCA were 35.7% and 59.5%, respectively 37. We thus find
that Schema’s results are substantially more robust across the three
replicates. Compared to CCA’s unconstrained synthesis, Schema’s
constrained formulation avoids overfitting to sample-specific noise,
enhancing its robustness (Figure 5.3e; Figure G.25).

When performing the same gene list robustness analysis with Spa-
tialDE and Trendsceek, while also looking at the stability of their
gene rankings specific to the precursor cell type38, we found that Spa-
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39: The underlying assumption is
that residues present in the T-cells
that bind to many residues are impor-
tant for binding specificity

Hamming distance: between two se-
quences, this is the number of posi-
tions in which they differ

tialDE produced slightly more stable gene rankings than Trendsceek,
with median sample-pair correlations of 0.089 and -0.002, respec-
tively, but these were still much lower than those for Schema. We also
observed that SpatialDE and Trendsceek had substantially longer
running times and we performed our analysis of the two methods
on subsets of the overall dataset (see Section 5.8 for precise runtime
and memory usage). These results demonstrate the robustness and
efficiency of Schema’s supervised approach.

5.6 Beyond Gene Expression: Schema Reveals
CDR3 Segments Crucial to T-cell Receptor
Binding Specificity

To further demonstrate the generality of Schema, we applied it to
synthesize data modalities beyond gene expression. We integrated
single-cell multimodal proteomic and functional data with Schema
to better understand how sequence diversity in the hypervariable
CDR3 segments of T-cell receptors (TCRs) relates to antigen binding
specificities [115]. De novo design of TCRs for an antigen of interest
remains a pressing biological and therapeutic goal [116, 117], making
it valuable to identify the key sequence locations and amino acids
that govern the binding characteristics of a CDR3 segment. Towards
this end, we analyzed a single-cell dataset that recorded clonotype
data for 62, 858 T-cells and their binding specificities against a panel
of forty four ligands [15] and used Schema’s feature-selection capa-
bilities to estimate the sequence locations and residues in the CDR3
segments of 𝛼 and 𝛽 chains important to binding specificity39.

To estimate location-specific selection pressure, we ran Schema with
the CDR3 peptide sequence data as the primary modality and the
binding specificity information as the secondary modality, perform-
ing separate runs for 𝛼 and 𝛽 chains. In the primary modality, each
feature corresponds to a CDR3 sequence location and we used the
Hamming distance metric between observations. In the secondary
modality, for T-cell 𝑖, coordinate 𝑗 for the feature vector 𝑥𝑖 indicates
the binding strength between cell 𝑖 and ligand 𝑗. Aligning the modal-
ities well would emphasize the residues that are preserved across
the T-cells that bind strongly to similar ligands. Schema assigned
relatively low feature weights to the location segments 3-9 (in 𝛼
chain CDR3) and 5-12 (in 𝛽 chain CDR3), suggesting those regions
can tolerate greater sequence variability while preserving binding
specificity.
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40: Spearman rank correlations of
0.38 and 0.92 for the 𝛼 and 𝛽 chains,
respectively; Figure 5.4c–d
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43: so in this case, a 20-dimensional
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0.74, two-sided 𝑡-test 𝑝 = 2 × 10−4

45: for example, metadata like batch
information, cell line, or donor infor-
mation

To evaluate these results, we compared them to estimates based on
CDR3 sequence motifs sourced from VDJdb [118], a curated database
of TCRs with known antigen specificities. In VDJdb, TCR motifs
are scored using an adaptation of the relative-entropy algorithm by
Murugan et al. [119] that assigns a score for each location and amino
acid in the motif. We aggregated these scores into a per-location score,
allowing a comparison with Schema’s feature weights (Figure 5.4).
While the comparison at locations 11-20 is somewhat complicated
by VDJdb having fewer long sequences, there is agreement between
Schema and VDJdb estimates on locations 1-10 where both datasets
have good coverage40. We note that weight estimation using Schema
required only a single multimodal dataset; in contrast, extensive
data collection, curation, and algorithmic efforts underlie the VDJdb
annotations41. The latter covers multiple experimental datasets, in-
cluding the 10x Genomics dataset [15] we investigated here; we saw
similar results when comparing against an older version of VDJdb
without this dataset.

Next, we used Schema to investigate the selection pressure on amino
acids present in the variability-prone locations identified above.
We first selected a sequence location42 and constructed a primary
modality where each cell was represented by a one-hot encoding of
the amino acid at the location43. The secondary modality was binding
specificity information, as before. We performed separate Schema
runs for each such location of interest on the two chains, computing
the final score for each amino acid as the average score across these
runs. These scores are in good agreement with the corresponding
amino acid scores aggregated from the VDJdb database44. The
residue and location preferences estimated here can directly be used
in any algorithm for computational design of epitope-specific CDR3
sequences to bias its search towards more functionally plausible
candidate sequences.

Schema’s ability to efficiently synthesize arbitrarily many modalities,
with their relative importance at the researcher’s discretion, allows
information that might otherwise be set aside45 to be effectively
incorporated, enhancing the robustness and accuracy of an analysis.
We exemplify this use-case on the TCR dataset by incorporating
measurements of cell-surface markers as an additional secondary
modality, hypothesizing that cell-surface protein levels should be
unrelated to V(D)J recombination variability.
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Figure 5.4: Schema reveals the locations and amino acids important in preserving binding specificity of T-Cell receptor
CDR3 regions. a. We analyzed a multimodal dataset from 10x Genomics [15] to understand how a T-cell receptor’s binding
specificity relates to the sequence variability in the CDR3 regions of its 𝛼 and 𝛽 chains. The primary modality consisted of
CDR3 peptide sequence data which we correlated with the secondary modality, the binding specificity of the cell against
a panel of 44 epitopes. We optionally synthesized an additional modality, proteomic measurements of 12 cell-surface
marker proteins, as a use-case of incorporating additional information. b. We performed two Schema analyses: (b.1) to infer
location-wise selection pressure, each feature of the primary modality corresponded to a location in CDR3 sequence and
(b.2) to infer amino-acid selection pressure, the primary modality was the Boolean vector of residues observed at a specific
sequence location; we aggregated over an ensemble of Schema runs across various locations. c, d. Schema identifies sequence
locations 3–9 (𝛼 chain) and 5–12 (𝛽 chain) as regions where sequences can vary with a comparatively modest impact on
binding specificity. We compared Schema’s scores to statistics computed from motifs in VDJdb. Here, we have inverted the
orientation of Schema’s weights to align them with the direction of VDJdb weights. e. Schema and VDJdb agree on the
relative importance of amino acids in preserving binding specificity (Spearman rank correlation of 0.74, two-sided 𝑡-test
𝑝 = 2 × 10−4). The low weight assigned to cysteine is likely due to its infrequent occurrence in the data.
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46: Recalling Chapter 3 Schema’s fea-
ture selection can be interpreted as
differential expression analysis

47: This is a type of analysis
called RNA velocity analysis — since
unpsliced mRNAs become spliced
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of the two indicates how quickly the
RNA is being processed

48: three modalities, 20, 823 tran-
scriptomes ×17, 607 genes

49: The computer scientists will gri-
mace at this!

5.7 Additional Demonstrations

Applying Schema on a mouse gastrulation dataset [120] consisting
of 16, 152 epiblast cells split over three developmental timepoints
and with two replicates at each timepoint, we performed differential
expression analysis46 while simultaneously accounting for batch
effects and developmental age, and evaluated its results alongside
those from MOFA+, a recently introduced single-cell multimodal
analysis technique [72] (Figure G.21; Appendix D). We also used
Schema to study cell differentiation by synthesizing spliced and
unspliced mRNA counts in a dataset of 2, 930 mouse dentate gyrus
cells47 [120]. As in standard RNA velocity analyses, correlating
spliced and unspliced counts in a cell picks up on the time derivative
of a cell’s expression state and thus illuminates the cell differentiation
process. Schema’s results agree with those from the dedicated RNA
velocity tool scVelo [58], and we also demonstrate how Schema can
be used to infuse velocity information into a t-SNE visualization
(Figure G.22; Appendix E).

5.8 Schema Can Scale to Massive Single-cell
Datasets

We have designed Schema to process large single-cell datasets ef-
ficiently, with modest memory requirements. On average, Schema
processes data from a Slide-seq replicate48 in 34 minutes, requir-
ing less than 5GB of RAM in the process (Table H.1). The runtime
includes the entire set of Schema sub-runs performed over an ensem-
ble of parameters, as well as the time taken for the pre-processing
transformation.

Schema’s efficiency stems from our novel mathematical formulation.
Deviating from standard metric learning approaches, we formulate
the synthesis problem as a quadratic-program optimization, which
can be solved much faster than the semi-definite program formula-
tions typically seen in these approaches (Section 3.5). Additionally,
while the full Schema algorithm has scales quadratically49 in the
number of cells, our formulation allows us to obtain good approx-
imations with provably bounded error using only a logarithmic
subsample of the dataset (Appendix A), enabling sublinear scalability
in the number of cells that will be crucial as multimodal datasets
increase in size. These subsampling techniques can also leverage
diversity-preserving data sketching techniques [44, 46] that may
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empirically lead to greater representation of rare cell types in the
Schema analysis.
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The utility and importance of methods focused on visualization
is not entirely obvious, despite their ubiquity. After all, one might
expect that a “good” scientist would not draw conclusions based on
just a scatterplot reading of their complex, high-dimensional data.
In this chapter, we focus on the applications of the densMAP and
den-SNE algorithms introduced previously, highlighting both the
importance of good visualization methods and the shortcomings of
existing methods. We focus on a diverse array of published datasets,
from lung cancer patients [17], human peripheral blood cells [121]
and embryonic roundworm Caenorhabditis elegans [16], as well as
the UK Biobank human genotype profiles [122] and the canonical
MNIST hand-written digit images. These methods not only capture
additional information beyond existing visualization techniques
but also biological insights others miss, including immune cell
transcriptomic variability in tumors; specialization of monocytes and
dendritic cells; and temporally modulated transcriptomic variability
across developmental lineages of C. elegans.

6.1 Visualizing the Heterogeneity of Immune
Cells in Tumor

To illustrate the value of density-preserving visualization for biolog-
ical studies, we first applied our methods to a scRNA-seq dataset of
41, 861 immune cells in matched tumor and peripheral blood sam-
ples from seven non-small-cell lung cancer (NSCLC) patients [17].
The original study identified distinct transcriptomic states spanned

∗ The text in this section is also from the publication ‘Assessing single-cell tran-
scriptomic variability through density-preserving data visualization’ by Narayan,
Berger, and Cho [91]; it focuses on the Results sections of that work
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1: In other words, these immune cells
are worth focusing on precisely be-
cause they are active in cancerous
conditions

2: This is a function of the fact that
t-SNE assumes uniform density of all
clusters
3: 𝑛 = 2861 for tumor-infiltrating
and 𝑛 = 9217 for circulating

4: 𝑛 = 10701

5: Note that it is inversely-related for
local radius

6: 𝑅2 = 0.650 for local radius; av-
erage 𝑅2 = 0.657 for neighborhood
count across different length-scales

7: 𝑅2 = 0.004; 𝑅2 = 0.023

8: 𝑅2 = 0.590; 𝑅2 = 0.632

9: 𝑅2 = 0.045; 𝑅2 = 0.008

10: 𝑅2 < 0.05 in all cases; Figure G.3

by tumor-infiltrating myeloid cells that were reproducibly observed
across different individuals, suggesting their potential relevance for
cancer immunotherapies1. We asked whether our methods could
more accurately capture the transcriptomic landscape of tumor-
infiltrating immune cells than existing tools.

Comparison of den-SNE and t-SNE embeddings revealed several
immune cell types with noticeable differences between the visu-
alizations (Figure 6.1): tumor-infiltrating neutrophils and plasma
cells occupy considerably more space in the den-SNE visualization
than their t-SNE counterparts, while tumor-infiltrating T cells are
relatively smaller in den-SNE. These discrepancies arise because
visual size of a cluster in t-SNE corresponds more closely to the
number of cells in the cluster than to underlying variability2. Thus,
in t-SNE, tumor-infiltrating neutrophils occupy much less space
than circulating neutrophils3 despite den-SNE indicating they have
comparable variability. The rich transcriptomic diversity of tumor-
infiltrating plasma cells is also lost in t-SNE. Conversely, T cells, the
most populous cell type in tumors4 are visually overrepresented in
t-SNE relative to their actual variability.

To quantify the improvement in density preservation that our al-
gorithms offer, we calculate two complementary measures of local
density in the visualization — (i) local radius and (ii) neighborhood
count (as defined in Subsection 4.4.1) — and assess their correla-
tion with the local radii in the original data space, which represent
underlying variability in the dataset. Both measures quantify our
perception of density in the visualizations5; intuitively, the local
radius captures the size of a neighborhood that contains a fixed
number of nearest neighbors, and the neighborhood count captures
the number of points within a fixed radius around each point. The
former is consistent with how our algorithms model density for effi-
cient optimization, while the latter is arguably a more direct notion
of density previously used in the literature on visual perception
[99].

The accuracy of den-SNE’s visualization of local density is confirmed
by the high correlation based on both measures6 compared to t-SNE
7 (Figure 6.1c; Figure G.1). Results with densMAP 8 and UMAP 9

are analogous (Figures G.1 and G.2). Different parameter choices
for UMAP and t-SNE did not improve their density-preservation
performance10, as is expected based on our theoretical analysis in
Section 4.5. We also observed that even on previously proposed
metrics of visualization quality based on clustering accuracy and
pairwise distance preservation [52], our density-preserving tools
largely preserve or improve upon the performance of the original
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11: This in itself is quite an interest-
ing occurrence, considering that the
algorithms mentioned are both well-
motivated and well-used; we contend
it is because they are not designed
for the drastic reduction down to two
dimensions that we require for visu-
alization

12: In other words, we can now make
conclusions about variability based
on examining the visualizations alone
now, whereas this was impossible
with the original algorithms
13: We discuss this in more detail,
but essentially we are interested in
the variance of these genes within a
cell-type
14: RGS1 encodes a regulator for the
G-protein signaling pathway known
to be involved in chemokine-induced
lymphocyte migration [127], and
DUSP4 encodes a phosphatase that
modulates a T cell receptor signal-
ing pathway with known association
with immunological disorders [128]
15: This is a loaded word, but essen-
tially, we were able to replicate our
conclusions about genes that drive
variability
16: Nine out of nineteen genes were
found to have significant increase in
variance in tumor in the validation
dataset; Table H.12)
17: This is a known modulator of cell
proliferation
18: Specifically, 42% among top
twenty genes across all cell types
overdispersion: a random variable
is overdispersed, if its variance in-
creases super-linearly as its mean;
this is motivated by the fact that
the Poisson distribution, common for
count variables, has its variance equal
to its mean

methods (Appendix B; Figures G.4 to G.8). Traditional dimensionality
reduction approaches, including principal component analysis [123]
(PCA), multidimensional scaling [124] (MDS), and Isomap [125], were
ineffective both at preserving density and at visualizing clustering
structure11 (Figure G.9). Our improved visualizations of simulated
datasets in Figure 4.2 are similarly supported by our quantitative
measures (Figure G.10).

Our visualizations motivate transcriptomic variability as a key dis-
tinguishing factor among cell types and biological conditions. To
illustrate, we examined tumor-infiltrating lymphocytes (TILs) com-
pared to those in blood. While essential in the anti-tumor immune
response [126], these cells’ molecular mechanisms in cancer remain
poorly understood. Density-preserving visualization newly high-
lighted the increased transcriptomic variability of T and B cells
compared to their counterparts in blood (Figure 6.1d). Despite an
apparent size-difference between the tumor and blood TILs in t-SNE,
lack of density-preservation means this pattern could only imply a
difference in cell counts, not in variability of expression12.

Ranking genes by their contribution to the increase in transcriptomic
variability13 in tumor implicated several biological processes as
potential driving factors of TIL diversity (Subsection 6.1.1; Tables H.2
to H.11. Top genes for CD8 T cells and CD4 memory T cells were
significantly enriched in negative regulation of IL2 production,
transcription, and metabolic processes, suggesting that T cells in
tumor are subjected to variable degrees of proliferation control, likely
in response to biochemical signals in the tumor microenvironments
(Tables H.7 and H.8). Notably, RGS1 and DUSP4 showed the largest
difference in variability for both T cell types14. We validated15 the
variability difference of these two genes in CD8 T cells between
tumor and blood based on another scRNA-seq dataset of TILs from
NSCLC patients [129], along with seven other genes in our list of
genes ranked by contribution to variability16. On the other hand,
top genes for naïve CD4 T cells are enriched in proteins targeting
membranes and in those that ensure the decay of mis-transcribed
mRNA (Table H.9). For B cells, key biological processes underlying
the variability difference included leukocyte activation and protein
complex assembly for memory B cells, and response to cyclic AMP17

and biotic stimulus for naïve B cells, along with transcriptional and
metabolic regulation processes similar to those implicated for T cells
(Tables H.10 and H.11).

While many genes implicated here are lowly-expressed in blood
and activated in tumor, we also found a substantial portion18 that
show statistically significant overdispersion in tumor, whereby
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Figure 6.1: Density-preserving visualization reveals heterogeneity in transcriptomic variability of immune cells in blood
and tumor. Dataset of tumor and blood immune cells from lung cancer patients [17] using den-SNE and t-SNE, colored
by (a) cell type and (b) tissue type (tumor or blood); den-SNE exposes striking density differences between immune cell
types and between blood and tumor, not seen in t-SNE. Note that the relative heterogeneity of neutrophils, plasma cells,
and T cells sizes are misleading in t-SNE. c. Scatter plots comparing the local radii in the original space to local radius
and neighborhood count in the den-SNE embedding. Higher correlations of den-SNE show that den-SNE more accurately
conveys the density landscape. d. The same visualizations for den-SNE (top) and t-SNE (bottom), restricted to each of four
notable cell types (neutrophils, plasma cells, T cells, and B cells) and colored by tissue type (tumor or blood). Neutrophils
and plasma cells in tumor considerably expand in size in den-SNE, reflecting transcriptomic variability. T and B cells show
a large increase in heterogeneity in tumor compared to blood in den-SNE. Although t-SNE shows a similar pattern, its
lack of a density-preservation property precludes reasoning about differences in heterogeneity. e. Violin plots showing the
distributions of gene expression in tumor and blood for the top three genes with the highest increase in variance in tumor for
each subtype of T and B cell (see Appendix H for the full list of genes). These genes indicate potential biological mechanisms
underlying the increased heterogeneity of T and B cells in tumor. (∗, †, and ‡ denote statistically-significant difference in
variance, dispersion, and mean, respectively, between blood and tumor, Bonferroni-corrected 𝑝 < 0.01).
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19: for example, RPS27 in naïve B
cells, which encodes the MPS-1 pro-
tein that modulates the activity of
tumor-suppressor p53 [130]

20: because these analyses focus on
differences in mean expression only

21: 1, 621 cells in blood, 443 cells in
tumor
22: 1, 036 cells in blood, 9, 019 cells
in tumor
23: 437 cells in blood, 61 cells in tu-
mor
24: 67 cells in blood, 4, 811 cells in
tumor
25: 83 cells in blood, 396 cells in tu-
mor
26: To be precise, this is the variance
of that gene’s expression within cells
of the given cell-type

the increase in variance cannot be explained by an increase in
mean expression (Subsection 6.1.1, Tables H.2 to H.6). In fact, some
genes19, show a significant increase in variance without a significant
change in mean. These genes are especially common in the top
genes for naïve CD4 T cells. Their stability in mean expression
implies that these key distinguishing genes cannot be identified
by conventional differential expression analysis20. Moreover, since
standard visualization algorithms separate clusters largely based on
difference in mean expression, the effects of these genes are lost in
their visualizations. Our findings demonstrate that the transcriptomic
variability landscape uncovered by our visualizations helps open new
analytic directions for the study of anti-tumor immune response.

6.1.1 Differential analysis of gene expression variability in
the lung cancer data.

For each cell type with visible expansion of transcriptomic variability
in tumor in our visualizations — CD8 T cells21, CD4 memory resting
T cells22, CD4 naïve T cells23, memory B cells24, and naïve B cells25 —
we identified the twenty genes with the largest increase in variance
in tumor compared to blood26 for further analysis. For each gene
and cell type, we calculated the differences in the mean and variance
of expression between tumor and blood. The statistical significance
of the observed differences is assessed using a permutation test.

Permutation testing

Permutation testing allows you to perform statistical significance
testing even when you do not know the distribution your data
come from, by randomly permuting the connection between
features and label to generate the null distribution.

In this case, the assignment of cells to tumor or blood is randomly
permuted, and the statistic computed on the permuted dataset is
viewed as samples from the null distribution where there is no
difference between tumor and blood.

▶ Test for variance: For comparing the variance, we centered
the expression levels for each group (tumor or blood) before
the permutation procedure to control for the shift in mean.
The 𝑝-value is calculated as the fraction of permutations
that result in a statistic whose magnitude is larger than
the statistic computed on the original dataset. We used
100k permutations to estimate the 𝑝-values and applied
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31: In fact, this is precisely what raises
questions about the utility of discrete
cellular subtypes

Bonferroni correction within each cell type to account for
multiple hypothesis testing27

27: Briefly, when 𝑘 hypotheses are
considered, the probability that any
one incorrectly appears significant
based on a given 𝑝-value is around
𝑘𝑝, so Bonferroni correction uses 𝑝/𝑘
as the significance level for each indi-
vidual test

.

When considering changes in the variance of gene expression,
it is important to note that an increase in variance can often
be explained by an increase in mean28

28: For example, under the Pois-
son process model of underlying
count distributions, variance of the
observed counts naturally scales with
the mean [106]

. Thus, we additionally
calculated the difference in dispersion indexdispersion index: given by 𝜎2/𝜇,

where 𝜇 and 𝜎2 are the mean and
variance of expression

(DI) to assess the
extent to which the change in variance is unexplained by a
corresponding change in mean.

▶ Test for dispersion: We assessed the statistical significance
of the difference in DI also using a permutation test. For
the null distribution, we assume that in the absence of
excess difference in dispersion, the variance of expression
has a linear dependence29

29: So 𝜎2 = 𝛼𝜇 + 𝛽 for some fixed 𝛼
and 𝛽

on the mean (as suggested by
the dispersion index). A permutation scheme that correctly
reflects this null distribution is one where the expression
levels within each group (tumor or blood) are transformed
as 𝑥 ↦→ 𝜇−1/2(𝑥 − 𝜇) + 1 before the permutation, where 𝜇 is
the sample mean of the group. This transformation maps
both groups to the same mean (𝜇 = 1) while preserving the
DI30

30: That is, the sample variance is
equal to the dispersion index

, so that permuting the labels leads to a valid sample
from the null distribution. Similar to the mean and variance
tests, we used 100k permutations to estimate the 𝑝-values
and applied Bonferroni correction.

6.2 Visualizing Immune Cell Specialization and
Diversification in Peripheral Blood

While the above illustrates changing patterns of variability that come
about due to disease, we show here that variability of expression
within cellular subtypes also reveals interesting underlying biology31.
We used densMAP to visualize a benchmark scRNA-seq experiment
that profiled 68, 551 peripheral blood mononuclear cells (PBMC)
from 10X Genomics [15, 121]. While both UMAP and densMAP
separate the various clusters corresponding to different cell types,
the densMAP embedding considerably expands the sizes of natural
killer (NK) cells, cytotoxic T cells, CD14+ monocytes and dendritic
cells (DCs), and shrinks naïve cytotoxic T cells (Figure 6.2a). Similar
to the cancer dataset, the sizes of these clusters in UMAP correspond
to the number of cells belonging to them and do not accurately
reflect their variability of expression. By quantifying the agreement
between the local radius in the original dataset and the local density
measures in each visualization, we confirmed that densMAP more
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32: 𝑅2 = 0.712 for local radius; av-
erage 𝑅2 = 0.727 for neighborhood
count
33: 𝑅2 = 0.000; 𝑅2 = 0.000

34: 𝑅2 = 0.704; 𝑅2 = 0.696

35: 𝑅2 = 0.052;𝑅2 = 0.037

36: We do not attempt some rigorous
definition for when subtypes exist,
rather just appealing to visual judg-
ment, in the tradition of Justice Potter
Stewart
37: While clustering algorithms are
notoriously dependent on parame-
ter selection, these clusterings were
generally robust
38: In other words, CD14 was found
in the sparse cluster

39: This is again operationalizing the
notion that density corresponds to
variability

40: We note that we merely propose
this as a mechanism that needs to
be evaluated experimentally; but this
is indeed the intended use of visu-
alization — to motivate interesting
analyses

41: one-sided Mann-Whitney U test,
𝑝 = 6.61 × 10−7 for the PBMC2
dataset, 𝑝 = 2.89 × 10−4 for the
PBMC3 dataset, see Subsection 6.2.1
and Figure G.14

42: Indeed, this is a cell-type that
again motivates the difficulty of clas-
sification
43: again, in the exploratory manner
of visualization

accurately preserves density32, compared to UMAP33 (Figure 6.2c;
Figure G.11). The same pattern is observed when comparing den-SNE
to t-SNE, with the density correlations in den-SNE much higher34

than in t-SNE35 (Figures G.11 and G.12).

We focus here on the monocyte and DC clusters, which are strikingly
different between the two visualizations (Figure 6.2b). While both
reveal two subtypes36 of monocytes, densMAP separates them by
density, with a dense subcluster adjacent to a much sparser one.
Clustering these cells in the original gene expression space indeed
identifies the two subtypes as separate clusters37 (Figure G.13). These
cells begin life as classical monocytes, characterized by expression of
the gene CD14 and a lack of CD16 (also called FCGR3A); these can
then differentiate into CD16 monocytes, macrophages, or dendritic
cells (DCs) [132] (Figure 6.2d). Marker gene expression associated38

the sparse cluster with classical monocytes and the dense cluster
with CD16 monocytes (Figure 6.2f), suggesting that classical mono-
cytes exhibit a high level of variability39 before developing into more
homogeneous CD16 monocytes. This trajectory has intriguing bio-
logical significance. Recent work has revealed that monocytes are an
extremely heterogeneous cell type with complex intermediate states
[133] and high transcriptional diversity [134]. However, non-classical
monocytes are more specialized: they are thought to emerge from
a small population of intermediate (CD14+CD16+) monocytes and
spike rapidly during infections [133]; since their progenitor cell is
rare and accounts for a small portion of transcriptional diversity rep-
resented by CD14 monocytes (Figure 6.2f), this supports the notion
of a bottleneck in the development of non-classical monocytes40.

We validated this difference in variability between classical and
non-classical monocytes in two other scRNA-seq datasets of immune
cells, one that profiled 1, 078 monocytes, DCs and their subtypes
[131] (PBMC2) and the other that profiled 13k PBMCs from two
healthy donors [135] (PBMC3). In both, classical monocytes were
sparser than non-classical ones: classical monocytes had larger local
radii in the gene expression space than non-classical monocytes41.

A similar analysis can be performed on the DC subset: this cell type
shows (i) a dense cluster of cells adjacent to the CD14 monocytes,
(ii) a dense cluster overlapping the CD16 monocytes, and (iii) a
sparser cluster near the CD14 monocytes (Figure 6.2b). While the
classification of dendritic cells42 is still actively researched [136],
the colocalization of the DCs (i) and (ii) and the monocytes in the
densMAP visualization suggests43 that these DCs originate from
monocytes. By analyzing the expression of the marker genes of DC
subtypes identified by the the PBMC2 study [131] in these DC subsets,
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Figure 6.2: Density-preserving visualization of peripheral blood mononuclear cells reveals monocyte and dendritic cell
subsets that differ in transcriptomic variability. a. We visualized the PBMC dataset [121] using densMAP (left) and UMAP
(right), colored by cell type. b. The same visualizations restricted to the monocyte-DC subset revealed distinct subtypes
of monocytes (CD16 Mono and CD14 Mono) and DCs (DC3, DC4, and DC6) with clear density differences in densMAP
(using the classification from PBMC2 [131]). Density difference between the subtypes is lost in UMAP c. Scatter plots
comparing the local radii in the original space and local radius and neighborhood count in the visualization (embedding) for
densMAP and UMAP, colored by cell-type. Higher correlations in densMAP support the validity of the observed density
differences.. d. Graphical illustration showing the biological relationships among the five monocyte and DC subtypes we
found in the monocyte-DC subset. Under inflammatory conditions, CD14 Mono (classical monocytes) differentiate into
CD16 Mono (non-classical monocytes) for immune response. Both CD14 Mono and CD16 Mono can differentiate into DCs.
DC6 represents plasmacytoid DCs (pDCs), which come from a different differentiation trajectory than the rest. densMAP
visualization suggests that the differentiation paths from CD14 Mono to CD16 Mono and DC3 both represent specialization
with considerable decrease in transcriptomic variability. e. Gene expression heatmaps of DC marker genes from PBMC2
[131] for DC3 (top) and DC6 (bottom) in the densMAP visualization restricted to DCs. These support our assignment of DC
clusters to DC3 and DC6 (see Figure G.15 for a comprehensive set of heatmaps). f. Gene expression heatmaps of monocyte
marker genes CD14, S100A8, and CD16 in the densMAP visualization restricted to monocytes. CD14+CD16 indicate joint
expression of the two genes, which is set to their mean if both are expressed, and zero otherwise.
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44: referred to as DC3 in PBMC2
45: referred to as DC4 in PBMC2
46: referred to as DC6 in PBMC2

47: one-sided Mann-Whitney U test,
𝑝 = 5.43 × 10−14

48: with a log-scale threshold (deter-
mined ad hoc) of 3.9

49: The original study assigned cell
types based on similarity to purified
samples

we hypothesize that (i) corresponds to classical monocyte-derived
DCs44 (cDCs); (ii) corresponds to the poorly understood CD141–
CD1C– DCs45; and (iii) corresponds to plasmacytoid DCs46 (pDCs);
(see Figure G.15). Despite the apparent closeness of the DC6 and
DC4 clusters, we did not find any evidence that either subtype is
derived from the other.

Our visualizations reveal that the DC3 cluster is far denser than the
CD14 monocytes colocated with it, hinting that, as with CD16 mono-
cytes, these cells specialize as they develop from CD14 monocytes.
Similarly, in PBMC2, the DC3 cluster is significantly denser than
the classical monocyte cluster47; (Subsection 6.2.1 and Figure G.14).
In addition, the pDC cluster expands drastically in the density-
preserving visualization compared to the standard visualization,
revealing previously hidden variability (Figure 6.2b). The PBMC3
dataset was omitted from this analysis as it contained too few DCs
to draw conclusions about subtypes.

We also note the DCs dispersed throughout the CD14 monocytes
(Figure 6.2b). When we classify the DC3 subset into dense and sparse
categories based on their original local radius48, we find that the
sparse subset has intermediate expression of the marker genes of
DC3 and those of CD14 monocytes (Figure G.15). While this could
be due to misclassification49, it could also indicate a bridging state
between the two cell types, offering insights into the dynamics of cell
state transition. These results suggest that there are key differences
in transcriptomic variability among immune cell subtypes that are
obscured by existing visualization tools.

6.2.1 Assessing significance of density differences in
monocytes and dendritic cells

To verify our claims that classical (CD14+) monocytes have more
variability of expression than both CD16+ monocytes and DC3
dendritic cells (as characterized by the PBMC2 dataset), we compared
the distribution of the log local radius in the original data for
each of these cell types in the PBMC2 and PBMC3 datasets. To
assess significance, we used the one-sided Mann-Whitney U (MWU)
test [137], which tests the hypothesis that values drawn from one
distribution are larger than those drawn from another. We calculated
the MWU test statistic for: CD14+ monocytes and CD16+ monocytes
in the PBMC2 and PBMC3 datasets; and for CD14+ monocytes and
DC3 dendritic cells in PBMC2. In PBMC2, there are 163 CD14+
monocytes, 122 CD16+ monocytes, and 107 DC3 cells; in PBMC3,
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50: or lack thereof

lineage distance: the number of gen-
erations to the nearest common an-
cestor

51: since this would reflect the in-
creasing diversity

52: 𝑅2 = 0.590 for local radius; av-
erage 𝑅2 = 0.585 for neighborhood
count
53: 𝑅2 = 0.045;𝑅2 = 0.052

54: 𝑅2 = 0.619; 𝑅2 = 0.596

55: 𝑅2 = 0.000;𝑅2 = 0.063

56: We define this ad hoc as those
with greater than 1000 cells

57: This is measured by the average
local radius in the original dataset
across time

clades: in population genetics, a clade
is a population that has the same
common ancestor

there are 1, 264 CD14+ monocytes, 398 CD16+ monocytes, and 142
DCs.

6.3 Visualizing Time-dependent Transcriptomic
Variability in C. elegans Development

To explore embryo development at high-resolution, Packer et al. [16]
performed scRNA-seq profiling of C. elegans to create an atlas of gene
expression at almost every cell division of the embryo. We asked
whether density-preserving visualization could better capture the
diversification50 of different developmental lineages, complementing
investigations into time-dependent patterns of gene expression in
organism development and cellular differentiation [138–140].

For most of the cell types profiled, the lineage distance between cells
correlates strongly with transcriptomic dissimilarity, and many cells
from the same progenitor diverge after gastrulation [16]. Thus, an
accurate visualization should show that the density of cells for most
cell types decreases over time51, as the cells adopt their terminal fates.
While both densMAP and UMAP show a central “progenitor” region
that branches into the different major tissues, densMAP more clearly
highlights the increase in variability in the outer branches of the
lineages (Figure 6.3a and b). Evaluating the agreement between the
local radius in the original dataset and both measures of local density
in the visualization show that densMAP52 more accurately preserves
density than UMAP53 (Figure 6.3c and Figure G.16). Results are
analogous when comparing den-SNE54 to t-SNE 55 (Figures G.16
and G.17).

While transcriptomic variability generally increases over the course
of differentiation, notable exceptions are also made apparent by
densMAP. Specifically, of the cell types well-represented56, the intesti-
nal, body-wall muscle (BWM), and hypodermis cells show relative
homogeneity in density57 throughout embryo development when
compared to other cell types, e.g. both non-amphid and amphid
neurons and seam cells; densMAP more accurately preserves these
temporal changes in local density than UMAP (Figure 6.3d and e).

The underlying biology supports these visual patterns since intestinal,
BWM, and hypodermis cells are so-called semi-clonal lineage clades
[16]. A semi-clonal lineage model is intermediate between clonal
development, which closely adheres to the lineage structure whereby
branching patterns in cell proliferation leads to increasingly more
divergent cells, and non-clonal development, where daughter cells are
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Figure 6.3: Density-preserving visualization of C. elegans development reveals temporal dynamics of transcriptomic
variability in different developmental lineages. Visualizing the C. elegans dataset [16] using densMAP and UMAP, colored
by (a) cell type (major cell types labeled) and (b) embryo time. densMAP clearly conveys an overall increase in transcriptomic
variability as the organism develops. c. Scatter plots comparing the local radii in the original space to local radius and
neighborhood count in the den-SNE embedding. Higher correlations of den-SNE show that den-SNE more accurately conveys
the density landscape. d. To assess lineage-specific patterns of transcriptomic variability, we summarized the average local
radius of each cell type (marked by different line style) within each embryo time interval for the original data (top), densMAP
(middle), and UMAP (bottom). The plot for original data represents the temporal changes in the underlying transcriptomic
variability of each cell type, and the plots for densMAP and UMAP represent apparent changes in variability based on the
respective visualizations. The y-axis shows the change in average local radius compared to the earliest time interval in log
scale. densMAP closely follows the temporal patterns of each cell type unlike UMAP These patterns uniquely captured by
densMAP highlight the relatively constant variability of semi-clonal lineages (BWM, intestinal, and hypodermis) in contrast to
the increasing variability of clonal lineages (seam, amphid and non-amphid neurons). e. densMAP and UMAP visualizations
restricted to hypodermis and amphid cells for comparison, colored by embryo time. UMAP vastly under-represents the
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variability, a pattern that is lost in UMAP. BWM: body-wall muscle.
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58: This is just a measure of which
level of cell division the given cell
emerges

59: 94% of the 534k individuals at
the time of this study

60: I note here that the traditional
method of using the Hamming dis-
tance between the SNP vectors of
different individuals as the input to
these algorithms has had its utility
questioned — I too am skeptical but
the upshot here is that if one uses
these methods, one should at least
use them accurately!
61: The obvious and problematic in-
terpretation of these visualizations is
that because the cluster of white peo-
ple is so large, they must have more
genetic diversity
62: These subpopulations are com-
putationally identified using off-the-
shelf clustering

only loosely associated with their progenitors and different lineage
branches share commonalities through horizontal transitions [141].
Semi-clonal cell types are thus expected to remain more compact in
expression space than clonal lineages. Indeed, when we compare
the average change in density over embryo time58 for semi-clonal
cells, this change is considerably lower than the average change for
the other cell types (Figure G.17). The difference in density between
these semi-clonal cell types and the rest is made clear in our density-
preserving visualization but completely hidden by UMAP. In fact,
the UMAP plots tend to show a decrease in density in many lineages
because fewer cells were profiled at the late time-points (Figure G.17).
Our methods can thus accurately portray continuous changes in
transcriptomic variability in developmental trajectories, which are
not captured by existing visualization tools.

6.4 General Applicability of Density-preserving
Data Visualization

Visualizing high-dimensional data is broadly useful both within
and outside biology. Like t-SNE and UMAP, our density-preserving
methods require only a distance metric defined between data points.
To illustrate the performance of our methods on other data domains,
we analyzed a genotype dataset from the UK Biobank and the MNIST
image dataset widely used by the machine learning community.

The UK Biobank [122] (UKBB) project collects extensive genotypic
and phenotypic data from British individuals for use in health-related
research. Due to the skew in ethnicity of the British population, most
of the individuals in the dataset self-identify as white59. This lack of
diversity has raised important concerns about biases in downstream
scientific analyses [142]. When visualizing the individuals in the
dataset based on their genotype profiles, an analytic approach that
is increasingly being explored60 [143], t-SNE and UMAP show the
cluster corresponding to white individuals disproportionately large,
while the clusters corresponding to Asian and Black people can
scarcely be seen61 (Figure 6.4). Visualizing this data using den-SNE
and densMAP results in a more balanced representation of ethnicities,
considerably expanding the people-of-color clusters and shrinking
the white cluster (Figure 6.4). Existing visualization tools thus grossly
under-represent the genetic diversity of minority populations due to
their limited sample sizes. Even among the white population, density-
preserving visualizations obtain a more balanced representation of
subpopulations62. In the UMAP and t-SNE visualizations, only the
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63: This is a fancy way of saying that
1 is merely a line, whereas other digits
can be drawn more “creatively”

64: We note briefly here that
densMAP has been used to represent
DNA methylation data [144], politi-
cal polarization [145] (also in unpub-
lished work from Data for Progress),
and heavy metal spectroscopy [146],
among others!

two most populous subgroups take up significant space, whereas
densMAP and den-SNE show five subgroups with comparable
diversity.

A complementary situation occurs in the MNIST dataset, a dataset
of handwritten digit images. Here, t-SNE and UMAP generate
ten evenly sized clusters; den-SNE and densMAP visualizations,
however, reveal that the cluster corresponding to the digit 1 is
strikingly less variable than the other digits (Figure 6.5). This is
as expected, since 1 is drawn with considerably limited degrees of
freedom63. Analyzing the local radii in the original data reveals that,
indeed, 1 has a higher density than the other digits (Figure 6.5).
The improved accuracy of our visualizations for UKBB and MNIST
datasets are supported by both density-preservation metrics based
on local radius and neighborhood count (Figures 6.4, 6.5, G.18
and G.19). Taken together, these results show that density-preserving
visualization reveals important insights about the data not captured
by the existing methods on diverse types of datasets64.
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Figure 6.4: Density-preserving
methods more accurately visualize
diversity of small subpopulations
in UKBB data. We visualize the
genotype profiles of 97,676 UKBB
participants (a 20% subsample of
the dataset) using (a) densMAP, (b)
UMAP, (c) den-SNE and (d) t-SNE.
For each, in the left plot, points
corresponding to white people are
colored by five computationally-
identified subpopulations; in the
middle plot, non-white people are
colored according to their ethnicity;
right shows correlation of local
radius between the original dataset
and the embedding, with points
colored by ethnicity and 𝑅2 reported.
We show the analogous scatter
plots using neighborhood count
to measure local density in the
visualization in Figure G.18. As 94%
of the the people in the UKB dataset
self-identified as white, the UMAP
and t-SNE plots give overwhelming
visual space to this group, hiding the
genetic variability of the other ethnic
groups. The density-preserving
plots, however, clearly expand the
clusters of non-white people as well
as certain white subpopulations,
more accurately conveying their
genetic diversity.
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Figure 6.5: Density-preserving vi-
sualization of MNIST handwritten
digit image dataset reveals the rela-
tive homogeneity of the digit 1. We
visualize the MNIST handwritten dig-
its with (a) den-SNE and t-SNE and
(b) densMAP and UMAP, with points
colored by digit. Note that the size
of the cluster corresponding to the
digit 1 shrinks under both density-
preserving algorithms. Plots on the
right show the correlation of the lo-
cal radii between the original dataset
and the embedding in each algorithm,
with points colored by digit and the
𝑅2 score reported. The higher 𝑅2 for
the density-preserving methods il-
lustrates that the digit 1 indeed has
higher density than the other digits.
We show the analogous scatter plots
using neighborhood count to mea-
sure local density in Figure G.19.



134 6 Results for Density-preserving Visualization

65: Datasets have reached orders of
millions of cells

66: where 𝑛 is dataset size
67: Both existing methods scale
super-linearly, estimated at
𝑂(𝑛 log 𝑛) with approximations
made
68: an overhead of about 30% for den-
SNE and 20% for densMAP on our
largest dataset with 250k points
69: Of course, this is a subjective
claim — one can modulate the over-
head by reducing the number of
density-preserving computations

70: While each data set has its be-
spoke techniques, these generally fil-
ter out low-quality cells and focus on
“important” genes
71: The “units” of the value at cell
𝑖 for gene 𝑗 are thus “transcripts of
gene 𝑗 in cell 𝑖 per 10k transcripts of
cell 𝑖
72: While this is mostly an empiri-
cally motivated step, the justification
is to “flatten” the data, so genes with
extremely high counts do not domi-
nate the analysis
73: This parameter is generally cho-
sen in an ad hoc manner — it is an
active area of research to choose the
“right” number of PCs

6.5 Practical Considerations

6.5.1 Density-preserving visualization is almost as efficient
as existing approaches

As experimental methods continue to generate larger datasets65,
computational tools to analyze them need to scale as well. By lever-
aging computations already done by t-SNE and UMAP, our density-
preserving methods incur only 𝑂(𝑛) additional computation66 and
achieve the same asymptotic scaling as those methods67. Although
density preservation increases the overall runtime of den-SNE and
densMAP68, we believe that this additional cost is not onerous, when
weighed against additional information conveyed by accurately de-
picting density69. While t-SNE, even without density preservation,
has limited scalability to datasets approaching many hundreds of
thousands of cells, recent computational improvements to t-SNE for
massive datasets [102, 147] could be augmented with our density-
preservation technique. The memory requirements of den-SNE and
densMAP are nearly identical to those of t-SNE and UMAP, respec-
tively (Figure 6.6).

6.5.2 Data preprocessing

We obtained three publicly available scRNA-seq datasets for the main
analyses: a dataset of immune cells in lung cancer and blood [17], a
dataset of peripheral blood mononuclear cells (PBMCs) in healthy
individuals [121], and a dataset that profiled the developmental
trajectory of C. elegans [16]. We used three additional scRNA-seq
datasets for validation experiments, including another lung cancer
dataset [129] and two blood immune cell datasets [131, 135]. For each
dataset, we applied the same cell and gene filtering schemes used by
the original publications70, then normalized the data so that each
cell has the same total number of counts71. Following the standard
in scRNA-seq analysis, we then log-transformed the normalized
counts72, i.e. 𝑥 → log(1 + 𝑥). Principal component analysis (PCA)
was then used to produce lower-dimensional representations of
individual cells, which are provided as input to the visualization
algorithms. We used the number of principal components (PCs)
prescribed by the original publications if present, or used 50 dimen-
sions otherwise73. The resulting datasets for the main experiments
included 48, 969 cells and 306 PCs (representing 34.7% of total vari-
ance) for lung cancer, 68, 551 cells and 50 PCs (9.7%) for PBMCs, and
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Figure 6.6: den-SNE and densMAP
are nearly as efficient as t-SNE and
UMAP in runtime and memory. We
compare (a) den-SNE and t-SNE and
(b) densMAP and UMAP with re-
spect to runtime and peak memory
usage on all of the datasets analyzed
in this study. For these tests, we ex-
clude the time taken to compute the
local radii of the final embedding,
which is used only for evaluation and
does not affect the embedding. Left
plots running time in seconds at dif-
ferent data sizes (achieved by sub-
sampling the datasets); middle shows
the ratio of the density-preserving
algorithm’s runtime to that of the
original method; right shows peak
memory usage over different data
sizes. Although density-preserving
methods take longer, the overhead
is small (around 30% additional run-
time for den-SNE and 20% additional
runtime for densMAP both for our
largest dataset). Both densMAP and
UMAP obtain fast runtimes for large
datasets, taking less than ∼30 min-
utes for all our datasets. Peak memory
usage is the same between t-SNE and
den-SNE, and differs by a small con-
stant between UMAP and densMAP.

86, 024 cells and 100 PCs (25.2%) for C. elegans. We used the cell type
labels provided by the original datasets for visualization.

For the UK Biobank dataset [122], we used the 40 PC loadings pro-
vided as part of the genetic data for visualization. We analyzed
a 20% subsample of the dataset including 97, 676 individuals, for
computational efficiency. Ethnicity labels for the individuals were
obtained from Data Field 21000, which was collected from the partic-
ipants via a touchscreen questionnaire. To visualize subpopulation
structure within the white British individuals, we performed spectral
clustering using the 40 PCs as input to identify five subclusters.

For the MNIST dataset, we flattened each of the 60,000 28× 28 pixel
images to a 784-dimensional vector and used the top 50 PCs (82.4%
of total variance) as our input to the visualization algorithms. Labels
classifying the handwritten digits were provided in the dataset.
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74: the three scRNA-seq datasets, UK
Biobank, and MNIST
75: that is, subsamples of size 𝑁/2,
𝑁/4, down to 1, 000 datapoints for a
dataset of size 𝑁

76: https://github.com/

astrofrog/psrecord

77: https://support.

10xgenomics.com/

single-cell-gene-expression/

datasets

78: https://singlecell.

broadinstitute.org/

79: https://www.ukbiobank.ac.

uk/

80: http://yann.lecun.com/exdb/

mnist/

81: http://densvis.csail.mit.

edu/datasets

6.5.3 Runtime and memory benchmarking

To evaluate runtime and memory usage of our density-preserving
visualization methods, we used each of the five datasets74 along with
logarithmically downsampled subsets of each75. The dataset from
Packer et al. [16] with 86, 024 cells is the largest scRNA-seq dataset
used in this paper. In addition to the full dataset, we subsampled it
into smaller datasets, including 43, 012 cells, 21, 506 cells, 10, 753 cells,
and 5, 376 cells. We measured the runtimes of den-SNE, densMAP,
t-SNE, and UMAP on each of the datasets with the default parameter
settings and profiled memory usage using the psrecord package76.
All experiments were run on an Intel Xeon Gold 6130 (2.30 GHz)
processor and used a single core.

6.5.4 Data availability

The lung cancer [17] and C. elegans [16] datasets are available from the
Gene Expression Omnibus (GEO) database with accession numbers
GSE127465 and GSE126954, respectively. The PBMC dataset [121] is
available from 10x Genomics77. For our validation datasets, the sec-
ondary lung cancer dataset [129] is available from GEO (GSE99254),
and the PBMC2 [131] and PBMC3 [135] datasets can be accessed
through the Broad Institute’s Single Cell Portal 78 with dataset IDs
SCP43 and SCP345, respectively. Data access applications for the
UK Biobank data can be submitted online 79. The MNIST dataset is
available online80. We also provide our preprocessed data for the
main datasets (lung cancer, PBMC, and C. elegans)81.
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1: This is essentially the diffusion dis-
tances discussed in Subsection 2.5.3

2: Waving our hands, by “covari-
ance structure”, we generally just
mean how one coordinate varies with
another coordinate around a given
point
3: Essentially, our contention is that
the scale of the nearest neighbors is
not small enough to be considered
naïvely Euclidean
4: This causes points to “fall off” the
manifold in the manner of noisy
Swiss roll in Figure 2.9
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7.1 Introduction

Recent methods for the analysis of high-dimensional datasets have
taken advantage of the latent structure that these data might have
— namely, that the data lie upon some low-dimensional manifold.
One of the key consequences of this hypothesis is that computing
similarity between data points cannot merely be done using Euclidean
distance; rather, the geodesics along a manifold have to be learned
using the data.

Methods to learn these geodesics rely on the fact that manifolds
are locally Euclidean, and thus piece together “global” distances by
making several short “jumps” between the points. Thus, in many
ways the foundational data structure for manifold learning is the
𝑘-nearest neighbors graph, where each data points is connected to
its 𝑘 nearest neighbors in the dataset1.

Despite their key importance, the process of constructing 𝑘-NN
graphs has received comparatively little attention. Most methods
tend to assume that, as a baseline, the 𝑘 nearest points in terms of
Euclidean distances accurately reflect the manifold neighborhood
and covariance structure2 at that point. In this work, we interrogate
this assumption and present a method for calculating local distances
informed by the local covariance structure of the manifold3.

The presence of noise is what motivates this question. As we discuss
in Section 7.3, our generative model assumes a sparse covariance
structure at each point, but potentially significant uncorrelated noise
across the features4. In high-dimensional conditions, the uncorre-
lated noise can drown out the signal of the actual neighbors in the
manifold.
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5: This is mostly an empirical claim,
as our results will show

6: Much of this material is covered in
Section 2.2, but we include the section
here for completeness

7: For example, in droplet based se-
quencing methods, cells fed through
a stream of oil droplets, so each oil
droplet should contain a single cell

8: by definition!

We thus present topological stitching, which breaks the dataset up
into coherent locales, and learns the relevant covariance structure
within each locale; then, the distance information induced by each
locale is stitched back together to produce a global 𝑘-NN graph.

Our main motivation is high-dimensional biological data, where, em-
pirically, the scenario of significant uncorrelated noise and nontrivial
manifold structure, is ubiquitous5. We now motivate the biological
case where our method is most applied.

7.1.1 Single-cell RNA-sequencing challenges

Recent advances in experimental methods have given biologists
an unprecedentedly high-resolution view into the transcriptomic
profiles of individual cells6. Single-cell RNA sequencing (scRNA-seq)
is a sequencing technology that, for each cell in a sample, counts the
amount of each particular gene transcript that is expressed in that
cell.

The resulting data gives us a so-called expression profile for each cell.
Under the hypothesis that cellular function is determined by the
proteins present in the cell, the differences in expression profiles help
us understand the underlying mechanisms for cellular differences.

While new methods for scRNA-seq are actively being developed, they
follow a similar framework: RNA fragments that are complementary
to the transcripts of interest are first prepared. Then, cells in the
sample are individually7 combined with sets of these complementary
transcripts, and each set is identified with a unique “barcode”. In
this way, the sequenced transcripts can be traced back to the cells
that they came from.

Single-cell RNA-sequencing technologies, by allowing us to assess
the expression profiles of individual cells, have greatly expanded our
understanding of the cells that modulate immune responses to tu-
mors [148, 149]. However, a major hurdle is recovering rare cell types,
which comprise just a small portion of the sample8 and are often
distinguished from other cell types by just a handful of marker genes,
but may play important roles in the tumor microenvironment. For
example, gamma-delta and MAIT cells have shown promise in early
trials despite accounting for 5% or less of immune cells present [150,
151]. Traditional clustering and dimensionality-reduction pipelines
frequently fail to highlight these cells [44, 46].

Mathematically, a scRNA-seq dataset with 𝑁 cells and 𝐺 genes can
be thought of as a matrix 𝑋 ∈ ℝ𝑁×𝐺, where each row represents a
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9: In order to deal with large counts,
a log-transform: 𝑥 ↦→ log(1 + 𝑥) is
common as well.

10: It might even be considered the
default
11: 𝑀 is commonly less than 100

12: Even having approximately
equidistant points is difficult, an-
other consequence of Theorem 2.6.1
[51]

13: That is, a marker gene for one
cell-type could just be noisy in other
regions

14: as is common in many down-
stream methods

cross-edges: when different cell-
types are each other’s nearest neigh-
bor

cell and each column a gene — so 𝑋𝑖 𝑗 is the number of transcripts
of gene 𝑗 found in cell 𝑖9 Analyzing a dataset thus comes down to
understanding similarity between these vectors: finding cell-types
by clustering the data, finding the genes whose expression drives
cell-types, and inferring trajectories, are just some of the tasks for
the computational biologist.

In computing distances between cells, most existing methods rely on
some form of Euclidean distance, potentially after some global linear
transform. For example, one extremely common pre-processing tech-
nique in the field10 is to use principal component analysis (PCA) on
the original data, taking the first𝑀 principal components11, and then
computing a 𝑘-nearest neighbors (𝑘-NN) graph (see Subsection 7.2.1)
based on those components. That 𝑘-NN graph is then the input
to downstream algorithms such as clustering, visualization, and
trajectory inference [38, 39, 110, 152]

7.1.2 Problems with global decomposition

The global decomposition step has severe limitations. In general,
there are mathematical limitations to how well high-dimensional
distances in a dataset can be represented in low-dimensions. For
example, in 𝑑 dimensions, you can construct a set of at most 𝑑 +
1 points which are all pairwise equidistant, so low-dimensional
representations must distort some relationships12.

But perhaps more importantly, even calculating the distance between
points in high-dimensional datasets is difficult. For example, because
of the noisiness of scRNA-seq data, the expression counts of some
genes can be uncorrelated noise in some region of the data, but
highly informative in another region13. For example, in Figure 7.1,
we see each gene shows up as uncorrelated noise for a dyadic subset
of the cells, and then becomes a marker gene for the remaining cells.
While we go into details in Subsection 7.4.1, we note that the classes
would not be nearest-neighbors because of the noisy features. Thus,
it is crucial to find exactly which features are noise and which are
markers in a local neighborhood.

Notably, we see in the above example that even when the Euclidean
metric is used only to calculate nearest neighbors14, the presence of
noisy genes makes even the nearest-neighbors noisy. Downstream
methods that use these nearest-neighbors data as an input have a
fundamental assumption: that cells and their neighbors are similar
— and the presence of these cross-edges belies this assumption.
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Figure 7.1: Results on synthetic, hierarchical data. a. Construction of the synthetic dataset. Clusters are related in a binary
tree structure, with different sets of features defining each split. We then add noise to the resulting dataset to simulate
dropouts and variable capture rate. b. UMAP plots with k-nearest-neighbor graphs computed downstream of global PCA,
ICA, and SCA (top), and local version (bottom), colored according to cluster. topological stitching consistently produces
better separation between clusters. c. Adjusted mutual information (AMI) of Leiden clusterings downstream of each method
with the true cluster labels. topological stitching gives higher AMI than global dimensionality reductions, even with as many
as 200 global components.

7.1.3 Introducing local dimensionality-reduction

In the synthetic example in Figure 7.1, the main confounder was that
features that are noise in a given context are used to compute local
distances. In an ideal world, for a datapoint 𝑖, the only features that
would be used to compute its neighbors would be the set of features
F𝑖 that are not noise for that cell.

We present a novel algorithm which combines geometric, topological,
and statistical properties of single-cell data to learn context-aware
distance metrics based on localized feature selection. Combining
these metrics to create global affinities enables detection of small
and clinically relevant immune cell subpopulations at high resolu-
tion, with the potential to guide the development and targeting of
immunotherapies.

The goal of topological stitching is to create more accurate nearest-
neighbor graphs for representing scRNA-seq datasets by detecting
informative genes locally and using that information to learn more
accurate local distance functions.
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Figure 7.2: Overview of topological stitching. a: Expression of the leading principal components of the single-cell dataset
from [153]. PC1 identifies HEK cells, and PC2 identifies B cells (see Figure 7.4a). b: Histogram of expression values for the
leading principal components. c: Overview of topological stitching. We cover the data with overlapping locales, and generate
𝑘-nearest neighbor graphs in each locale separately. We then aggregate these local 𝑘-nearest neighbor graphs into a global
one for downstream analysis, using mean random walk with restart probabilities (Methods).

7.2 Methods

Topological stitching essentially consists of three main pieces: (1) the
dataset is covered by overlapping locales, where each cell is included
in at least 𝐶 locales; (2) dimensionality reduction is performed within
each locale: the underlying assumption is that axes of variation
within a locale better capture differences between the cells therein;
(3) since each cell is in multiple locales, the final step is to integrate
the locales back together into a global 𝑘-NN graph (see Figure 7.2).
We discuss each briefly before going into detail below:

Outline of topological stitching

▶ Generating locales: The key consideration for the initial
split of the dataset is to ensure that every cell is well-
represented. In other words, every cell should be in some
locales where it is relatively close to the center, and so its ex-
pression is close to the average expression within the locale.
A particularly important consideration is rare cell types —
a good method for locale construction would ensure that
even rare cell types are in multiple locales. We detail our
method for locale construction in Subsection 7.2.2.

▶ Local feature reduction: Within a locale, our goal is to
find the genes that are most informative in constructing
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15: We will often drop the super-
script 𝑘 when it is clear

distance metrics between the cells. While we are generally
agnostic to the method used to do the local decomposition,
we note that one of the major benefits of our focus on
locales is that even straightforward linear decomposition
methods (like PCA) perform well. We motivate PCA and
the recently developed surprisal component analysis (SCA)
[35] in Subsection 7.2.3; and in Subsection 7.3.1, we discuss
a local factor model interpretation that explains why local
linear decompositions can perform well.

▶ Topological stitching: After the local decomposition step,
every locale has an induced distance metric. In order to get a
global 𝑘-NN graph, the different induced distances need to
be integrated. Specifically, consider points 𝑖 and 𝑗 which are
both in locales 𝐿1 and 𝐿2. This means the “global” distance
between has to reconcile between 𝑑𝐿1(𝑖 , 𝑗) and 𝑑𝐿2(𝑖 , 𝑗), the
distance in 𝐿1 and 𝐿2 respectively.
In Subsection 7.2.4, we detail our method for stitching:
mean random walk with restart (RWR) distance. Essentially,
we take the average distance across locales between the two
points using the probability of getting one point to other
through a random walk — this ensures that points that are
well connected with each other have high similarity.

7.2.1 Mathematical setup

We are given an scRNA-seq dataset of 𝑁 cells, where cell 𝑖 is
represented by a 𝐺-dimensional vector 𝑥𝑖 ∈ ℝ𝐺. The dataset can
thus be represented by an 𝑁 × 𝐺-dimensional matrix 𝑋.

Given a distance function 𝑑𝑋 where 𝑑𝑋(𝑖 , 𝑗) is the distance between
cells 𝑖 and 𝑗, the 𝑘-neighborhood of 𝑖, denoted 𝑁 (𝑘)

𝑖
, is the set of 𝑘

points in 𝑋 that are closest to 𝑖15. The 𝑘-neighborhood structure of
𝑋, denoted 𝑁 (𝑘)

𝑋
, is then the function:

𝑖 ↦→ 𝑁
(𝑘)
𝑖

From the 𝑘-neighborhood structure, we can generate the 𝑘-nearest-
neighbors (𝑘-NN) graph for 𝑋, 𝐺(𝑘)

𝑋
. Each point in the dataset is a

vertex in the graph, and the edges from 𝑖 are those to the points in
𝑁

(𝑘)
𝑖

.

Our goal is thus to learn the best distance function 𝑑∗ so that a
global 𝑘-NN graph can be made for downstream analyses. As
discussed in Section 7.2, this is a three-part problem: constructing
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16: Of course, this is depending on
the clustering method; if the periph-
eries are clustered separately, this
might not be true

17: Morally, our goal is that each
point is not in the periphery in at least
one of these clusterings, although we
cannot guarantee that

18: 𝐶 is chosen by the user, with the
tradeoff being coverage vs efficiency

locales, decompositions within locales, and stitching the datasets
back together. We discuss each section in turn.

7.2.2 Locale construction

The goal of dividing the entire dataset up into locales is that gene
coexpression patterns will be more coherent at these smaller scales
than across the entire dataset [42]. Clustering the dataset and using
the clusters as locales is the obvious way to achieve this division.

However, a clustering does not represent all cells equally well — cells
near the center of a cluster are probably more similar to each other
than to those at the periphery16. And, since one of the motivating
reasons for our topological stitching method is that errors in naïve
distance metrics leads to poor clustering, we have to recognize the
possibility that peripheral cells would fit better in a different cluster
or in an entirely different clustering.

To that end, we perform a multiclustering of the data. That is, we
make sure that each point is in several locales. We aim thus to ensure
that each point is well suited17 in at least some subset of the locales
it is contained in.

The objective function used for generating locales also should take
into account the goal that each point should be relatively close
to some locale center. This is similar to the goal of sketching (i.e.
subsampling) scRNA-seq data while ensuring that rare cell types are
found in the subsample [44, 46] — here the points that are chosen
for a subsample can be used as the centers for locales.

For our implementation, we use a modified version of the Hopper
algorithm [46] adapted to graph-distances (which we call Graph-
Hopper). First, the 𝑀 cluster centers are chosen according to the
Hopper objective of greedily minimizing the Hausdorf distance
between the centers and the entire dataset: for a given subset M ⊆ 𝑋

with 𝑀 points, the Hausdorf distance is given by:

H(M) = max
𝑥∈𝑋

{
min
𝑚∈M

𝑑(𝑥, 𝑚)
}

(7.1)

M∗ = arg min
M

H(M), (7.2)

where the subset given by (7.2) is the objective of Hopper.

To go from the subset to locales, each point in the dataset is assigned
to its 𝐶 nearest locales18. For each locale 𝑚 ∈ M, let 𝑅𝑚 be the set of
points from 𝑋 assigned to that locale.



144 7 Local 𝑘-nearest Neighbors Graphs

19: See Subsection 7.3.1 for a discus-
sion on a theoretical description of
the difference

20: That is, which have significant
covariance in the locale

7.2.3 Local decomposition

The locales 𝑅𝑚 become the units of our analysis now — each rep-
resents one local piece of the dataset. We now want to separate
the noisy and marker genes within these locales: intuitively, we are
looking for the genes that show strong patterns of coexpression with
other genes for cells within the same cell-type19.

The most canonical method for noise reduction is principal compo-
nent analysis (PCA). The goal of PCA is to find a new orthogonal
basis for the dataset, where each basis vector captures the direction
of maximum variance in the dataset. Under the condition that the
magnitude of noise is smaller than the magnitude of any real co-
expression, the top principal components capture the signal in the
data.

The issue with PCA, of course, is that it looks at global variance across
the dataset — this is exactly what we aim to solve by breaking the
dataset into locales. In the PCA-version of topological stitching, we
thus run PCA on each of the locales, keeping the top 𝑝 principal
components — in other words, for locale 𝑚, we learn a linear
transform 𝑃𝑚 : ℝ𝐺 → ℝ𝑝 , and, for points 𝑖 and 𝑗 in locale 𝑚, the
locale-mediated distance becomes:

𝑑𝑚(𝑖 , 𝑗) = | |𝑃𝑚𝑥𝑖 − 𝑃𝑚𝑥 𝑗 | |.

We note, however, that when the locales or the noise are relatively
large, PCA might not be the most appropriate decomposition method.
The surprisal components analysis (SCA) [35] algorithm learns a
transform that more explicitly tries to capture which genes are
meaningful20. We refer the reader to DeMeo and Berger [35] for
the details of the algorithm, but briefly, the algorithm learns the
genes that are selectively expressed within neighborhoods in the
datasets, and learns a linear transformation that emphasizes those
genes. The default application of topological stitching uses SCA as
its local decomposition method.

7.2.4 Topological stitching

The crucial last step of topological stitching is the stitching back
together of the local decompositions from above. Recall that the goal
is to generate a global 𝑘-NN graph, which means that, for each point 𝑖
in the dataset, a unified distance metric 𝑑∗

𝑖
(·) = 𝑑∗(𝑖 , ·) must be found,

so that the nearest neighbors of 𝑖 can be found across locales.
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21: This is reasonable, since the lo-
cales are chosen with the aim of fully
covering the neighborhood of 𝑖

22: In fact, this is the ideal case, as it
provides multiple pieces of evidence
for “closeness” of the points
23: One could consider other aggre-
gation methods; we also tried the
maximum, which gave comparable
results

24: and would be an improvement
over global Euclidean distance

26: The utility of methods in bioinfor-
matics is a fraught question that we
briefly broached in Section 2.7 — one
tenet is that methods that show inter-
esting results that can be biologically
validated are useful

One fundamental assumption of topological stitching is that the
nearest neighbors of 𝑖 must be found within the locales that 𝑖 is a
part of21. Thus, the 𝑘-nearest neighbors of 𝑖 can be taken as the 𝑘
closest points to 𝑖 across the locales it is part of.

For a given pair (𝑖 , 𝑗), if the set of locales that contain them both is
empty, the above discussion indicates that 𝑗 will not be considered
as a neighbor of 𝑖. A similarly straightforward case is when the pair
are both only in one locale together. In this case, the distance 𝑑𝑖(𝑗) is
the distance induced in that locale.

The main nontrivial case is when the pair are shared by multiple
locales22. In this case, each locale gives some information about how
to get from 𝑖 to 𝑗, depending on what subspace it is traversing. For
our application, we thus just take the average23 distance between the
two points across all the locales.

Having the distances 𝑑𝑖(𝑗) calculated for all the 𝑗 that 𝑖 shares at
least one locale with, the computation of the neighborhood 𝑁𝑖 is
straightforward — choose the smallest 𝑘 distances.

Of course, the discussion here is heavily dependent on the choice of
distance metric. While Euclidean distance can be used at this local
scale24, we take advantage of the local structure of the data and use a
form of random walk distance, which was defined in Subsection 2.5.3:

Random walk with restart

Recalling our exposition, the distance between two points is
the probability that a random walk starting at one point ends
up at the other, with each edge-wise probability represented
by the exponential kernel. However, one complication of this
formulation is that with enough time steps 𝑡, the probability of
reaching a point from any other point becomes 125 25: Of course, this assumes the graph

is connected, which we will indeed
assume

.

To get around that, we use a random walk with restart, which
means that at each timestep, there is a non-zero probability of
going all the way back to its starting point. This ensures that, even
as 𝑡 → ∞, there is a non-degenerate limiting distribution on the
edges between points.

7.3 Theory

As with our work in density-preserving visualization, the main
validation of our method is in its empirical performance, which
we detail below in Section 7.426. However, as we did with density-
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preserving visualization, we attempt here to ground our method in
some theoretical footing.

We note that the underlying assumption of topological stitching is
that, as we range over an scRNA-seq dataset, different genes become
marker genes. Our goal here is not to prove that assumption, but
rather to show that if that assumption holds, then our method can
pick up those marker gene variations. Specifically, we consider an
extremely simplified model, where the actual expression vectors of
the dataset are generated by a straightforward transformation when
the marker genes are known. We detail this model below.

7.3.1 Generative model

We are given an input scRNA-seq dataset𝑋 ∈ ℝ𝑁×𝐺. Assume that the
data are generated by some complicated probability distribution P.
We further assume that the P can be decomposed into a distribution
Q which has support on some low dimensional manifold M, and
independent noise acting on each gene. Formally, the expression
vector of cell 𝑖 is the sum of random variables:

𝑋𝑖 = 𝑀𝑖 + 𝐸𝑖

where

𝑀𝑖 ∼ Q where supp𝑄 = M

𝐸𝑖 ∼ Normal(0, 𝐷)

where 𝐷 is a diagonal variance matrix.

Learning M is the goal of manifold learning. Here, we restrict ourselves
to learning the neighborhood structure of the points in our dataset
based on the manifold distance.

Given a distance function 𝑑𝑋 where 𝑑𝑋(𝑖 , 𝑗) is the distance between
cells 𝑖 and 𝑗, define the 𝑘-neighborhood of 𝑖, denoted 𝑁

(𝑘)
𝑖

, as the
set of 𝑘 points in 𝑋 that are closest to 𝑖. (We will often drop the
superscript 𝑘 when it is clear). The 𝑘-neighborhood structure of 𝑋,
denoted 𝑁 (𝑘)

𝑋
, is then the function:

𝑖 ↦→ 𝑁
(𝑘)
𝑖

Letting 𝑑M(·, ·) represent the geodesic distance along M, we define
the dataset distance metric 𝑑𝑋(𝑖 , 𝑗) = 𝑑M(𝑀𝑖 , 𝑀𝑗) — so for each
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27: Note that we are implicitly taking
advantage of the locally Euclidean
property of our data manifold, by as-
suming that a linear covariance struc-
ture at each point can essentially de-
termine local distances accurately

28: This is actually probably a sepa-
rate condition on the manifold, which
we may at some point have to expand
on

29: So the set of genes not affected
by 𝑄 but affected by 𝐸 make up the
“noise genes” from above

point, we must be able to separate its manifold component from its
independent noise component.

The signal and the noise

The assumption that our data lie on a lower dimensional manifold
constrains the shape of the data by restricting the ability of the
different genes to be expressed independently. For example, in the
swiss roll dataset that is ubiquitous in motivating manifold learning,
the possible 𝑦-coordinate of a point is heavily reliant on its 𝑥-value.

This motivates understanding the covariance (or in the case of scRNA-
seq data, the coexpression), between the features. At any point on the
manifold, there will be a subset of genes have non-trivial coexpres-
sion, and a subset of genes whose expression is just independent
noise. Learning the manifold distance between points can thus be
reduced to learning the set of non-trivial genes at a particular point
and the distance induced by those genes27.

Factor models

We rely on the fact that manifolds are (a) locally Euclidean and (b)
smoothly varying28 to help learn the non-trivial non-trivial subset.
In particular, we assume that each cell’s expression vector is locally
generated from a linear factor model.

A factor model is a generative model for a random vector 𝑋 ∈ ℝ𝑑.
Let 𝐶 = (𝐶1 , . . . , 𝐶𝑘)𝑇 be a vector of 𝑘 random variables that are
independent — these are the factors — and let 𝑄 ∈ ℝ𝑑×𝑘 be a fixed
matrix of weightings.

Then, we write:
𝑋 = 𝑄𝐶 + 𝐸,

where 𝐸 is a mean zero noise vector with diagonal covariance 𝜎2
𝐸
𝐼,

totally independent29 from 𝐶.

It is straightforward to compute the mean and variance of 𝑋 under
this model:

𝔼𝑋 = 𝑄 𝔼𝐶

var𝑋 = 𝜎2
𝐶𝑄

𝑇𝑄 + 𝜎2
𝐸𝐼

Under certain conditions for the distributions of 𝐶 and 𝐸 it can
be seen that the MLE for the span of 𝑄 is given by looking at the
principal components of the emprirical variance matrix. This insight
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30: It should be noted that we cannot
identify 𝑄 exactly but rather only its
span. So when we write for example
𝑄, we actually mean �span𝑄, which
we will not write out for the sake of
notational brevity

will be crucial in motivating our local decomposition and stitching
methods.

Factor variation

The key idea behind our approach to local dimensionality reduction
is that a single factor model cannot adequately describe the entire
dataset. Therefore, we assume that the factor matrix 𝑄 varies with
each point, so we treat it as a function:

𝑄 : ℝ𝑑 → ℝ𝑑×𝑘

Crucially, we assume that the variation in 𝑄 is smooth because the
underlying manifold M is smooth, which means 𝑄(𝑥) ≈ 𝑄(𝑦) if
𝑥 ≈ 𝑦. Thus, for a given cell 𝑖 in 𝑋 , we can use the expression vectors
of its nearest neighbors to compute an empirical variance matrix and
thus an estimation30 for 𝑄(𝑋𝑖):

𝑄(𝑋𝑖) = 𝐹(v̂ar𝑁 (𝑘)
𝑖

)

where 𝐹 is an inference procedure that we detail below.

7.3.2 Inferring the factors

Having defined our local factor generative process, we now turn to
the task of inference. Our goal is to learn the underlying factor weight
function𝑄 at each of the points in 𝑋 , and then use the learned factor
weights to compute pairwise distances in the dataset.

The factor matrix is ideally suited for computing distances because it
is a denoised version of the data. Under our modeling assumptions,
the actual expression vector is generated through a random process
mediated by the factors 𝐶 and the white noise 𝐸, whereas 𝑄 is
fixed. For example, the structure of the span of 𝑄 indicates the
dependencies between the different genes in the dataset (and which
genes are noise versus having a non-trivial covariance in a particular
region).

PCA-version

As mentioned above, the principal components of the variance matrix
of a dataset, under certain conditions, give the MLE of the weights
matrix for the factors 𝑄. Of course, computing an estimator requires
multiple i.i.d. samples from the factor model in question, and our
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31: There is a Bayesian interpretation
where the function 𝑄 is drawn from
its own prior distribution and the
tuple (𝑋𝑖 , 𝑄) are indeed i.i.d. — this
is an interpretation we are keen to
explore

32: By locality here, we mean that
the set of genes with non-trivial coex-
pression can vary across the dataset.

assumption that 𝑄 varies over the dataset means that, of course, the
rows of 𝑋 are not i.i.d. samples. In fact, every element of the dataset
is technically drawn from its own distribution31.

However, because we assume that the weighting matrix varies
slowly over the dataset, we make the assumption that the 𝑘-nearest
neighbors of a point can be thought of as being sampled using the
same weight matrix.

For each point 𝑖, we thus compute the principal components of the
matrix restricted to the nearest neighbors of 𝑖, denoted 𝑋𝑁𝑖 :

𝑇𝑖 = 𝑋𝑁𝑖𝑊𝑖

where𝑊𝑖 are the eigenvectors of 𝑋𝑇
𝑁𝑖
𝑋𝑁𝑖 . Our estimator for 𝑄(𝑋𝑖)

is then, based on Bishop [154] 𝑇𝑖 restricted to the top 𝑘 principal
components (𝑘 is the rank of 𝑄(𝑥𝑖)). So we write:

𝑄(𝑋𝑖) = 𝑇𝑖[𝑘]

We should note here that 𝑄 as defined above is not the MLE of
the factor model we have described, since we are not inferring it
through i.i.d. samples. However, it is empirically reasonable that
cells with very similar expression profiles (i.e. nearest neighbors)
fulfill very similar biological functions and are therefore described
by very similar biological program. In fact, many algorithms used
for analyzing single-cell transcriptomics data actually assume that
broad clusters of the data can be treated as members of the same
population.

SCA-version

While PCA is popular and effective in denoising data and finding the
most salient features, recent methods have focused more directly on
locality (which is our ultimate goal here)32 We use the recent surprisal
components analysis (SCA) algorithm, which learns a (global) linear
transformation that purports to project the data onto a space that
learns locally important genes.

SCA is built upon the idea of surprisal, an idea from thermodynamics
used to evaluate how well data fit a particular model. The surprisal
of an observation is based on comparing the observed proportion
of an observation to the probability of that observation under the
explanatory model:

𝑆 = − log
𝑝0

𝑝
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singular value decomposition: de-
composes a matrix 𝑀 into 𝑀 =

𝑈Σ𝑉 𝑡 where Σ is a diagonal matrix
of singular values and 𝑈 and 𝑉 are
orthogonal matrices

33: This is not actually necessary, but
it might be convenient to think of 𝛿𝑖
as positive

where 𝑝0 is the probability under the null model. For each cell in
the dataset, SCA computes the surprisal of each gene, based on its
prevalence in the neighborhood of that cell compared to the entire
dataset. Computing the principal components of the surprisal matrix
picks out patterns of high surprisal amongst the genes. SCA was
found to effectively parse out rare cell types from within clusters.

We find that SCA is well-suited to our focus on locality, and we
build further on this idea by learning local linear transformations
through SCA instead of one global transform and then stitching
those individual transformations together (see Subsection 7.2.4).

To figure out why an SCA-based version of topological stitching has
good performance, we consider a relatively simple mode of variation
in the factor model 𝑄 across the dataset. So, again, each point 𝑖
has a factor matrix 𝑄(𝑋𝑖). In the PCA version above, we estimated
𝑄(𝑋𝑖) (which we write as 𝑄𝑖 below) by assuming 𝑄 is constant over
a locale. However, we can also assume that, rather than the locale
having constant factors, the variation of the factor across the locale is
smooth or easy to describe. To make this concrete, assume that we
can infer a factor model 𝑄𝑙𝑜𝑐𝑎𝑙𝑒 across the locale, and assume there
is some variation from the actual 𝑄𝑖 for an 𝑖 in the locale:

∥𝑄𝑖 −𝑄𝑙𝑜𝑐𝑎𝑙𝑒 ∥2 ≥ 𝜖∥𝑄𝑙𝑜𝑐𝑎𝑙𝑒 ∥2 (7.3)

Considering a particularly simple model variation, we take the
singular value decomposition (SVD) of 𝑄𝑙𝑜𝑐𝑎𝑙𝑒 :

𝑄𝑙𝑜𝑐𝑎𝑙𝑒 = 𝑈Σ𝑙𝑜𝑐𝑎𝑙𝑒𝑉
𝑡 =

∑
𝑗

𝜎𝑗𝑢𝑗𝑣
𝑡
𝑗 ,

where 𝜎𝑗 are the diagonal elements of Σ and 𝑢𝑗 and 𝑣 𝑗 are columns
of𝑈 and 𝑉 .

Now, crucially, we assume that 𝑄𝑖 varies significantly from 𝑄𝑙𝑜𝑐𝑎𝑙𝑒

only in one singular value, say 𝜎ℓ :

𝑄𝑖 = 𝑈Σ𝑖𝑉
𝑡 =

∑
𝑗≠ℓ

𝜎𝑗𝑢𝑗𝑣
𝑡
ℓ + 𝜎∗

ℓ𝑢ℓ𝑣
𝑡
ℓ

Assuming without loss of generality33 that 𝜎∗
ℓ
> 𝜎ℓ , and setting

𝛿𝑖 = 𝜎∗
ℓ
− 𝜎ℓ , we see that:

Δ𝑖 = 𝑄𝑖 −𝑄𝑙𝑜𝑐𝑎𝑙𝑒 = 𝛿𝑖𝑢ℓ𝑣
𝑡
ℓ ,
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34: This is because these are the coor-
dinates that have significant surprisal
scores in the SCA matrix
35: We note here that the rest of this
analysis is not complete and airtight;
rather, we are building a conjectural
case that hopefully our future work
can batten down

36: Again, by marker genes here, we
mean genes that have nontrivial co-
variance across the locale

37: In the example above, only the
top principal component should be
significant because only one singular
value changes
38: There is also a kernel-PCA flavor
to this algorithm, where the surprisal
matrix is the kernel, that PCA is done
on, similar to how diffusion maps per-
form PCA on the diffusion distance
matrix (Subsection 2.5.3)

and crucially,

∥Δ𝑖 ∥2
= 𝛿2

𝑖 , (7.4)

which by (7.3), means that

𝛿2
𝑖 ≥ 𝜖 (7.5)

Recalling that the gene expression counts themselves for cell 𝑖 are
given by 𝑄𝑖𝐶𝑖 , our goal is thus to determine for which genes the
expression of 𝑄𝑖𝐶𝑖 is markedly different from 𝑄𝑙𝑜𝑐𝑎𝑙𝑒𝐶𝑖

34.

Under our model, this set of genes is entirely described35 by the
module 𝑢ℓ𝑣𝑡ℓ𝐶𝑖 — the difference in expected values being something
like:

𝛿𝑖𝑢ℓ𝑣
𝑡
ℓ 𝔼𝐶 (7.6)

If 𝛿𝑖 is large enough for the points 𝑋𝑖 in the locale, then the large
differences between expression vectors for a particular cell and its
locale will be within the gene module given by the ℓ th singular
value. If we could thus identify ℓ , then we could precisely identify
the marker genes within the locale36.

In fact, this is exactly what the procedure detailed by SCA accom-
plishes! This is because the elements of the surprisal matrix that have
large values are those which have variation across the locale, and so
are those determined by the gene module in question. And taking
the top principal components of the surprisal matrix as SCA does will
then identify this gene module37. In fact, one could think of the SCA
procedure as finding the principal components of variation across
the locale38.

7.4 Results

7.4.1 Topological stitching resolves classes in synthetic data

To demonstrate the limitations of global dimensionality reduction
and highlight the advantages of local reduction, we generated a
“worst-case scenario" synthetic dataset whose clusters are arranged
in a hierarchical binary tree structure, with a different set of features
defining each split of the tree. Features 1-10 separate the cells into
two groups, which we label 1 or 2, taking the value 0 on group 1 and 1
on group 2. Features 11-20 evenly subdivide group 1 into two further
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39: Note the noise is uncorrelated, as
desired
40: that is, replaced value 𝑥 by 1 − 𝑥

41: Note this is different than the tra-
ditional known-marker-gene method
of cell-type determination
42: The wide diversity in this atlas
makes it particularly ripe for locally
motivated analyses

43: XIST,TSIX, DDX3Y, EIF2S3Y,
and UTY

groups (1.1 and 1.2), and features 21-30 evenly subdivide group 2
into groups 2.1 and 2.2. We continue this for four levels, yielding 32
groups with 50 cells each, for a total of 1600 cells and 3100 features
(Figure 7.1). To add noise, we randomly inverted 10% of the counts39

in the resulting matrix40, and added random Gaussian noise with
variance 0.2. This data challenges global dimensionality reduction,
since the features defining each division of the hierarchy add noise
to further subdivisions. A heat map of the resulting data is shown in
Figure 7.1.

We performed topological stitching using twenty locales with cover-
age three computed using Graph-Hopper. Ten principal, indepen-
dent, or surprisal components were computed within each locale,
and the downstream 15-nearest neighbor graphs were aggregated
using mean random walk distance with a restart probability of
0.1. We found that the 15-nearest neighbor graphs computed using
topological stitching were far better at separating the clusters, even
compared to global reductions with as many as 200 components
(Figure 7.1). To quantify this, we performed Leiden clustering on
each graph with resolution 1.0, and assessed the adjusted mutual
information (AMI) with the true clusters. Global PCA achieved a
maximum AMI score of 0.755. Global SCA performed slightly better,
with a maximum AMI score of 0.816. In both cases, increasing the
number of global components did not improve the AMI score. Local
PCA and Local SCA performed far better, with AMI scores of 0.964
and 0.998 respectively.

7.4.2 Re-analyzing the Tabula Muris data

The Tabula Muris Consortium produced a compendium of mouse
single-cell data comprising over 100, 000 cells over twenty different
organs [155]. To identify cell types, the authors performed PCA
followed by Louvain clustering on each tissue separately, manually
refined the resulting clusterings, and inferred cell types based on
differentially-expressed genes41. Since the dataset contains a wide
range of cellular environments42, we hypothesized that local dimen-
sionality reduction on the full dataset would allow recovery of the
identified populations in a single pass, and potentially reveal novel
populations.

We obtained raw counts from GEO accession GSE109774. Following
the original authors’ analysis, we performed transcript-per-million
normalization (TPM) followed by log transformation with a pseudo-
count of one transcript per million. In addition, to remove variation
due to donor sex, we removed five sex-specific genes43.
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Figure 7.3: Performance of topological stitching on the Tabula Muris Consortium data. a: UMAP plots of the entire dataset
downstream of PCA, ICA, SCA reductions (top), or locally-computed neighborhood graphs aggregated with topological
stitching. b: Dotplot of differentially-expressed genes among the microglial Leiden clusters, where clusters are computed
downstream of the topological stitching neighborhood graph on the whole dataset. c: Dotplot of differentially-expressed
genes among the hepatocyte Leiden clusters. d: UMAP plots of microglia using neighborhoods computed globally (top), or
using topological stitching (bottom), colored by Leiden clusters computed downstream of topological stitching. e: UMAP
plots of hepatocytes using various neighborhood graphs, colored by Leiden cluster. f: F1 Scores for recovery of known cell
types from Leiden clusters computed from different kNN-graph-generating strategies. Cell types for which all methods
achieve F1 score greater than 0.8 are excluded
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44: We note that the visualizations
are robust across parameter choices

45: That is, it is higher resolution

46: This shows, for example, that
domain knowledge is important for
these methods

47: for example, Bergmann glial cells,
myofibroblasts, natural killer cells,
and pancreatic D cells

Using Graph-Hopper on a 50-dimensional PCA reduction, we con-
structed 50 locales such that each cell belonged to at least three
locales. Within each locale, we computed 20-dimensional linear pro-
jections of the data using either principal component analysis (PCA)
[123] or surprisal component analysis (SCA) [35], and generated
15-nearest neighbor graphs using Euclidean distance in the chosen
reduction. We then aggregated these graphs using mean random
walk with restart distance with restart probability 1%, producing
a global 15-nearest neighbor graph. For comparison, we also com-
puted global 15-nearest neighbor graphs using Euclidean distance in
global PCA or SCA reductions with 50, 100, or 200 components. For
each nearest-neighbor graph, we performed Leiden clustering with
resolution 3.0, and UMAP embeddings with default parameters44.

The UMAP embeddings suggest that topological stitching gives a
more granular45 view of the data, with stronger separation between
the original authors’ annotated cell types (Figure 7.3a). To quantify
this, we assessed whether the cell types could be recovered from
the Leiden clusters computed from each nearest-neighbors graph.
For each Leiden clustering, we first split each cluster by tissue of
origin to ensure that this knowledge is incorporated46. Then, for
each cell type, we identified the set of clusters with highest overlap
with that type, and computed the F1 score for detecting the cell
type via the union of these clusters. This represents the accuracy
with which the cell type can be detected via unsupervised clustering
on the 𝑘-nearest neighbor graph, with knowledge of tissue origin.
We found that topological stitching recovers many of the rarer cell
types47 where the global methods fail (Figure 7.3f).

In many cases, we recover finer-grained classifications.

Classification of TMC under topological stitching

We can summarize some of the main findings that topological
stitching enables:

▶ Leiden cluster 139 corresponds to a small subset of mi-
croglia with specific expression of CLEC7A[][*-1]48

48: This is a co-stimulatory molecule
which promotes activation and prolif-
eration in response to a T-cell ligand

; and
GAS2L349

49: This promotes genomic stability
during proliferation

[156, 157] (Figure 7.3b). This indicates that this
cluster contains cells that are proliferating in response to
an endogenous signal, perhaps to T-cells.

▶ Clusters 75 and 8 highly express JUN, FOS, EGR1, and IER2,
indicating a role in neuronal early response [158]. Cluster 75
is distinguished from cluster 8 by the presence of actin and
albumin50

50: ACTA1 and ALB
and the absence of pro-inflammatory activation
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53: Immune cells are among the most
highly variable of all cell-types

markers S100A8 and S100A9, suggesting these cells may be
actively cycling. UMAP plots of the microglial subpopu-
lation indicate that these clusters are poorly separated by
global PCA, ICA, and SCA, but readily emerge using local
SCA and topological stitching (Figure 7.3d).

▶ Topological stitching also more distinctly reveals hepato-
cyte populations (Figure 7.3e). Among the clusters newly
separated are:

• cluster 116, which lacks CD302 and highly expresses
many excision repair genes51

51: ERCCs
, suggesting damaged

cells [159];
• and Cluster 119, which specifically expresses Cytochrome

P-genes52
52: CYP2B9, CYP2B13, and others

important to liver clearing [160];
• and clusters 124 and 129 also express cytochrome

genes, but an entirely different set than clusters 116
and 119 (Figure 7.3c).

7.4.3 Topological stitching recovers rare immune subtypes

The human immune system contains a wide range of cell types with
specialized roles in identifying and responding to various foreign
antigens and other cellular abnormalities [148, 149]. Emerging thera-
pies increasingly recruit, promote, or target the immune system to
treat diseases [149, 161, 162]. Single-cell techniques have become im-
portant in understanding the immune landscape of complex diseases
[163] , but subtle differences between immune subtypes challenge
the technology53, particularly in larger studies. We hypothesized
that topological stitching could better detect these differences by
adapting to local cellular environments.

We obtained quality-filtered transcript measurements of a bench-
marking dataset with a variety of human cell types profiled using
Smart-seq 3 from Hagemann-Jensen et al. [153]. The authors grouped
the cells into broad classes using known marker genes. As with the
Tabula Muris data, we performed PCA, ICA, and SCA reductions on
the data with 10, 20, 50, 100, or 200 components, and downstream 15-
nearest neighbor networks using the Euclidean distance. In addition,
we used topological stitching to generate locally-tuned 15-nearest-
neighbor networks. We used 30 locales with each cell belonging to
three locales, generated local 15-nearest-neighbor networks using
Euclidean distance in 10-dimensional PCA, ICA, or SCA space, and
aggregated local networks using random walks with restart proba-
bility 0.1. UMAP plots downstream of each network-construction



156 7 Local 𝑘-nearest Neighbors Graphs

Figure 7.4: Topological stitching on cellular populations from [153]. a: UMAP plots downstream of PCA, ICA, SCA, and
their local versions computed with topological stitching. b: F1 scores for recovery of the gamma-delta and MAIT populations
using Leiden clusterings downstream of each method. c: UMAP plots of the cytotoxic T subset of the data, colored by TRDV2,
a marker gene for gamma-delta T-cells. d: UMAP plots of the cytotoxic T subset colored by SLC4A10, a MAIT marker gene.

54: But again, results are robust
across these choices

55: in UMAP

56: marked by the delta T-receptor
TRDV2
57: marked by SLC4A10

strategy are shown in Figure 7.4a. Here, global reductions are 100-
dimensional54.

Overall, we found that topological stitching improved visual separa-
tion55 between annotated cell types compared to global reductions.
In topological stitching using SCA, the cytotoxic T-cell population ap-
peared to have finer substructures. Examining this population more
closely, we found that these corresponded to known populations:
gamma-delta T-cells56; and MAIT cells57 (Figure 7.4c,d). To quantify
this improvement, we performed Leiden clusterings from each 𝑘-NN
network with resolution 2.0, assessed whether these cell types could
be recovered as unions of Leiden clusters. We defined gamma-delta
T-cells as those expressing at least two of TRDV2, TRGV9, and TRDC;
and MAIT cells as those expressing at least one of SLC4A10 and
LTK. topological stitching with SCA followed by Leiden clustering
recovered these two populations with high F1 score (Figure 7.4b).
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In a famous story that is sadly apocryphal but nevertheless conveys
the zeitgeist of the field, Lord Kelvin declared in 1900 that, “There
is nothing new to be discovered in physics now”. The success of
Lagrangian and Hamiltonian mechanics, and the development of
the statistical theory of thermodynamics had together seemed to
ably describe all forms of dynamics in the natural world. Kelvin
noted in passing the two “clouds on the horizon” — which, of course,
became quantum mechanics and relativity, both of which absolutely
revolutionized the study of physics in the twentieth century. In
some ways, the world of single-cell RNA-sequencing, the primary
focus of this dissertation, feels as though it has arrived at a similar
crossroads1.

Attention is moving towards more and more complex data types —
multimodal sequencing, which adds ever more types of data to the
picture; different types of -omics, like transcription factor binding
sites or chromatin accessibility; perturbation testing; and of course,
larger and larger datasets. While the questions posed by these new
and exciting methodologies are important in their own right, the
goal of this dissertation has been to show that the very fundamental
task of understanding what makes two cells biologically similar
given their expression profiles is still open — and indeed remains
both algorithmically and biologically interesting.

While the work presented here is not restricted to RNA, the theme of
focusing on distance and distortions of that distance runs throughout.
In this chapter, our aim is precisely to tie the research presented
together and to draw some broad conclusions, not only about the
algorithms but also about how one can think about metrics in biology
more generally.
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2: Indeed, the power of linear meth-
ods in high-dimensions is often un-
derrated

3: We note here that there are pos-
sible extensions to Schema, where
we can use kernel distances and focus
on particular bandwidths of distance.
This is a thread we are eager to pursue

4: We should note that computing the
𝑘-NN graph, for example, can be slow
and naïvely quadratic; in fact, some of
the main algorithmic developments
in, for example, t-SNE and UMAP are
in quickly computing the neighbors
graphs

8.1 Summary of Work

As with any good progression of work, our first project focuses
squarely on linear transformations2. In Schema, presented in Chap-
ter 3, we stuck with Euclidean distance — modifying it with just
a scaling transform to massage the original coordinate vectors to
integrate other types of information. In other words, the goal was to
work within the confines of Euclidean distance, taking advantage of
the structure that that metric imbues on the space.

The flexibility of Schema is a great advantage — in Chapter 5 we
see how the simple framework can be cleverly utilized to answer
facially quite complex questions. However, the limitations of Eu-
clidean distance especially at large scales were already apparent,
which motivated the push into understanding manifold learning
algorithms, where the focus is on local distances only, at the expense
of large-scale distances3.

This is the assumption underlying the manifold hypothesis, which
we discussed in detail in Section 2.5. Algorithms for visualization
and dimensionality-reduction have shown remarkable success em-
pirically in the scRNA-seq world by relying on this hypothesis. We
also note that, while there often a tradeoff between runtime and
complexity, the manifold hypothesis actually often gives a runtime
advantage: rather than needing to pay attention to all𝑂(𝑁2)pairwise
distances, we only need 𝑂(𝑘𝑁) distances (where 𝑘 is the number of
neighbors that make up the local scale)4.

Our first effort to contend with the manifold hypothesis concerned
the now ubiquitous visualization algorithms t-SNE and UMAP.
Having analyzed the objective functions of these algorithms, we
found that, in their attempt to focus on local distances and preserving
neighborhood structures, they end up washing out information
about the density of points in high-dimensional space. Our work in
diagnosing and improving upon this shortcoming resulted in the
densVis package — we showed that preserving density information
leads to interesting insights about variability of expression. The idea
of considering variance as an important feature of gene expression is
not new, but our work shows it as a useful mode of analysis for a wide
range of datasets — from immune cells in tumor to differentiation
during embryo development.

While our presentation in Chapter 4 follows the traditional paradigm
of exposition in mathematics, where problems and solutions descend
from the heavens, it is instructive to pare back the process by which
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5: or, really, any type of transforma-
tion

Figure 8.1: Noise confounds near-
est neighbors. In a dataset where
two clusters are separated by vari-
ance in the 𝑥-dimension (a), most of
the neighbors of magenta points are
orange (b).

developed our method a little, as it demonstrates the way that
opaque, nonlinear methods can be interrogated.

It was while experimenting with various synthetic models where we
knew what the underlying structure should be — in fact, we often
used two-dimensional input data itself, so the input and output
scatterplots could themselves be compared — that we discovered
the lack of density-preservation in state-of-the-art algorithms.

While attempting to understand differentiating cells, which we
modeled as a Gaussian point-cloud with increasing variance, we
found that the representations did not look any different for differing
variances. From there, digging into the objective function revealed
that density is not preserved — almost by design. But by fiddling
with the adaptive length-scale term, its importance became clear,
motivating the consideration of multiple characteristic length-scales
that seem present by default in these high-dimensional datasets.

Walking through this is not an exercise in exhausting the reader, but
rather an example of a broader set of principles for analysis.

For one, it is crucial to think about exactly what metrics a dimensionality-
reduction5 algorithm can preserve — because some information must
necessarily be lost. Our use of ground truth data allows us to better
understand exactly what properties are lost under a transforma-
tion.

But finding a metric on which an algorithm does poorly, while
mathematically interesting, only becomes biologically interesting
when the metric can be shown to have a biological analogue. Our
ground truth modeling of differentiation, indeed, seemed to indicate
that density is worth considering from a biological perspective, in
that it reflects some notion of variability.

While our work with t-SNE and UMAP really centered the impor-
tance of 𝑘-NN graphs, in moving to topological stitching (Chapter 7),
we wanted to interrogate even those local distances. Since we were
already discounting the meaningfulness of non-local distances, the
question of whether even those nearest distances are correct.

Our topological stitching algorithm thus asks exactly what makes
even a local distance accurate. One of the key drivers of this question
is whether local distance also can be corrupted by noise — can the
presence of a noisy gene preclude a cell from finding its correct
nearest neighbors, a scenario that is again motivated by a simulated
dataset (see Figure 8.1) where a feature is a marker for one class but
very noisy for another.
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6: while I proceed to indeed over-
work the analogy

Our work in using local feature selection also improves on a structure
(the 𝑘-NN graph) that is so foundational for other tools, and so we
hope that our consideration of distance metrics is impactful across
the field.

8.2 Outlook

We contend that our work, while answering some questions of its
own, more importantly opens up further questions in the craft of
analyzing single-cell RNA-seq datasets. In fact, the notion of cell
similarity, and in general that of generative models for scRNA-seq
data might play the part of Lord Kelvin’s “clouds” on the horizon.

Not to overwork the analogy6, but these “clouds” have only become
clouds because of the massive increase in size and resolution that
these scRNA-seq datasets have now achieved — just as classical
physics was a fine description of the world until the resolution of
instruments became strong enough that classical dynamics could be
observably wrong.
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A Concentration Bounds for Schema

Our approach is to show that, given a 𝜔̂ that has been calculated based on a random sample, the
correlation coefficient between all pairwise distances cannot be too different than the correlation
coefficient computed on the sample. To do this, we use Chernoff bounds, which bound how far away
a random variable can be from its expectation, on the covariance and variance terms of correlation
coefficient given by (3.1). This gives us a bound on how far away the correlation coefficient on the
whole population can be from the one calculated on the sample.

Let 𝑃 be a random subset of all possible interactions. For now, we assume that interactions are chosen
uniformly at random. Solving the optimization problem (3.2) with our sample 𝑃 yields 𝜔̂, an estimator
for the true optimal transform 𝜔. We show that 𝜔̂ approximates 𝜔 well by showing that the pairwise
distances of 𝜔̂(𝐷) have high correlations with the secondary datasets as long as 𝜔̂ has high correlations
on the subsample.

Formally, we will guarantee, for any 𝛼, 𝛿 > 0 and sample size at least |𝑃 | = 𝑂
(

log(1/𝛼)
𝛿2

)
,���Corr(𝑤̂, 𝜌 𝑗) − Ĉorr(𝑤̂, 𝜌 𝑗)

��� < 𝛿 with probability at least 1 − 𝛼, (A.1)

where Ĉorr( · , · ) is the sample correlation coefficient.

This is a powerful result, made possible by our restriction to scaling transforms, which are easy to
analyze. First of all, note that we only need a sample-size logarithmic in our desired confidence level in
order to get strong concentration, allowing analysis of massive scRNA-seq datasets.

To begin our analysis, let𝑊 ⪰ 0 be a 𝑘 × 𝑘 psd matrix (in our specific case it will be diagonal, but this
analysis will generalize to any psd matrix, which motivates the generalization to all psd matrices in
Subsection 3.6.1). We also assume randomly draw pairwise distances 𝛿 uniformly from the set of pairs
of points in our primary dataset. Here, we focus on the correlation between the transformed dataset
and the primary dataset (i.e. the one that appears in the constraint in all of our examples). Analyses for
correlations between the transformed data and the secondary datasets will be similar.
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Consider the form of the (population) correlation:

Corr(𝑊, 𝜌1) =

𝐴︷          ︸︸          ︷
𝔼[𝛿𝑇𝑊𝛿𝛿𝑇𝛿] −

𝐵︷     ︸︸     ︷
𝔼[𝛿𝑇𝑊𝛿]

𝐶︷ ︸︸ ︷
𝔼[𝛿𝑇𝛿]

Var1/2(𝑊)︸      ︷︷      ︸
𝐷

Var1/2(𝜌1)︸      ︷︷      ︸
𝐸

(A.2)

If, for our samples, we can determine confidence intervals of size 2𝜖 for each of the terms 𝐴, 𝐵, 𝐶, 𝐷, 𝐸,
then we can bound the distance away from the correlation on the entire set of pairwise distances. This
distance is maximized when 𝐴 is as small as possible, and 𝐵, 𝐶, 𝐷, and 𝐸 is as large as possible. So:

Ĉorr(𝑊, 𝜌1) ≥
(𝐴 − 𝜖) − (𝐵 + 𝜖)(𝐶 + 𝜖)

(𝐷 + 𝜖)(𝐸 + 𝜖)

≈ 𝐴 − 𝐵𝐶 − (1 + 𝐵 + 𝐶)𝜖
𝐷𝐸(1 + 𝜖/𝐷)(1 + 𝜖/𝐸)

≈
(
𝐴 − 𝐵𝐶
𝐷𝐸

− 𝐵 + 𝐶 + 1
𝐷𝐸

𝜖

)
(1 − 𝜖/𝐷)(1 − 𝜖/𝐸)

≈
(
𝐴 − 𝐵𝐶
𝐷𝐸

− 𝐵 + 𝐶 + 1
𝐷𝐸

𝜖

)
(1 − 𝜖/𝐷 − 𝜖/𝐸)

≈
(
𝐴 − 𝐵𝐶
𝐷𝐸

) (
1 + 𝐷 + 𝐸

𝐷𝐸
𝜖

)
− 𝐵 + 𝐶 + 1

𝐷𝐸
𝜖

= Corr(𝑊, 𝜌1)
(
1 −

Var1/2(𝑊) + Var1/2(𝜌1)
Var1/2(𝑊)Var1/2(𝜌1)

𝜖

)
− 1 + 𝔼[𝛿𝑇𝑊𝛿] + 𝔼[𝛿𝑇𝛿]

Var1/2(𝑊)Var1/2(𝜌1)
𝜖

Thus, for a desired overall confidence level 𝜂, the relationship between 𝜖 and 𝜂 is given by:

𝜖 =

(
Var1/2(𝑊)Var1/2(𝜌1)

max
{
Var1/2(𝑊) + Var1/2(𝜌1), 1 + 𝔼[𝛿𝑇𝑊𝛿] + 𝔼[𝛿𝑇𝛿]

} )
𝜂

To show that we can bound each of the terms 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 we use Hoeffding’s inequality to limit how far
away the terms can be from their expectations. Let 𝑋1 , . . . , 𝑋𝑛 be i.i.d. random variables drawn from
bounded range [𝑎, 𝑏], and set 𝑠 = 𝑏 − 𝑎, and let 𝑋̄ = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 . Then Hoeffding’s inequality states:

Pr
[
𝑋̄ − 𝔼𝑋 ≥ 𝑡

]
≤ exp

(
−𝑛𝑡

2

𝑠2

)
This can be converted into giving a (one-sided) confidence interval of length 𝑡 by substituting the
probability on the left with a desired confidence level 𝛼, and solving for 𝑛, which gives a statement:

𝔼𝑋 ≥ 𝑋̄ − 𝑡 with confidence 1 − 𝛼 for 𝑛 ≥ 𝑠2 log(1/𝛼)
𝑡2

(A.3)

We begin by applying the inequality on term 𝐴 = 𝔼[𝛿𝑇𝑊𝛿𝛿𝑇𝛿] by bounding 𝛿𝑇𝑊𝛿𝛿𝑇𝛿. It is clear that
|𝛿𝑇𝑊𝛿𝛿𝑇𝛿 | ≤ |𝛿𝑇𝑊𝛿 | |𝛿𝑇𝛿 |, so we can bound each individually. Note that we can assume without loss
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of generality that𝑊 is diagonal here, because otherwise (since it is psd), we could write𝑊 = 𝑈𝐷𝑈𝑇 ,
where 𝐷 is diagonal and 𝑈 is unitary; setting 𝑦 = 𝑈𝛿 yields

��𝛿𝑇𝑊𝛿
�� = ��𝑦𝑇𝐷𝑦��, and, by unitarity,

∥𝛿∥ = ∥𝑦∥.

Then, by Cauchy-Schwarz: ��𝛿𝑇𝑊𝛿
�� ≤ ��∑ 𝛿𝑖𝑊𝑖𝑖𝛿𝑖

�� ≤ ∥𝑊 ∥∥𝛿∥2 (A.4)

where ∥𝑊 ∥ is the matrix-norm, i.e. ∥𝑊 ∥ =
√

Tr
(
𝑊𝑇𝑊

)
. So for a diagonal matrix, ∥𝑊 ∥2

=
∑
𝑊2
𝑖𝑖

. We
can bound | |𝛿 | | ≤ max𝑥𝑖 ,𝑥 𝑗∈𝐷{



𝑥𝑖 − 𝑥 𝑗

} ≡ diam(𝐷).

Thus,
��𝛿𝑇𝑊𝛿𝛿𝑇𝛿

�� ≤ ∥𝑊 ∥diam4(𝐷).

To get a confidence interval of size 𝜖, we plug into (A.3), so we require:

𝑁 ≥ ∥𝑊 ∥diam8(𝐷) log(1/𝛼)
𝜖2

Note that the diameter is an extremely coarse bound for the above bound. Morally, one can replace
“diameter” with “variance”, and the user has control over ∥𝑊 ∥ by choice of hyperparameters. We also
note that the sample complexity improves drastically if we focus only or local distances, as discussed in
Subsection 3.6.1.

The same analysis can be used for terms 𝐵 and 𝐶 in (A.2), but the dependency on the diameter is not
as bad for those terms, so term 𝐴 is the worst case.

Now, we consider the variance terms 𝐷 and 𝐸. For term 𝐸, note:

Var(𝛿𝑇𝛿) = 𝔼[(𝛿𝑇𝛿 − 𝔼[𝛿𝑇𝛿])2]

Again,
��𝛿𝑇𝛿 − 𝔼[𝛿𝑇𝛿]

�� is bounded by the maximum squared distance in the dataset diam2(𝐷), so we
can use the Hoeffding inequality from above in the same way.

And term 𝐷 takes the same form as above, but with 𝛿𝑇𝑊𝛿 instead of 𝛿𝑇𝛿. As noted in (A.4), this is a
bounded random variable as well, but here with bound ∥𝑊 ∥2diam4(𝐷).

Thus, in order to get a uniform confidence interval across all the terms, we require:

𝑁 ≥ ∥𝑊 ∥2diam8(𝐷) log(1/𝛼)
𝜖2 (A.5)





B Density-preservation on Traditional Metrics

To further assess the impact of our density-preservation objective on the properties of existing
visualization tools, we evaluated our methods on three previously proposed metrics of visualization
quality [52]: classification score (CS), mutual information score (MIS), and pairwise distance score
(PDS) (Methods). Intuitively, CS and MIS measure the effectiveness of a visualization in conveying
the clustering structure of the original dataset. To this end, CS evaluates the accuracy of classifiers
that assign cells to known clusters based on the visualization coordinates, whereas MIS quantifies
the agreement between clustering in the original space and in the visualization. Next, PDS measures
the preservation of pairwise distances, considering long-range distances that our methods as well as
UMAP and t-SNE do not aim to preserve, but might still convey useful information about the global
organization of the dataset.

Across all five datasets we analyzed, den-SNE and densMAP consistently obtained CS and MIS close to
those of t-SNE and UMAP, respectively, albeit with a slight reduction in performance; on average, CS
was 2.3% lower for den-SNE and 1.8% lower for densMAP compared to their corresponding baselines,
and MIS was 1.7% lower for den-SNE and 8.9% lower for densMAP (see Figures G.4 to G.8). These
results are consistent with the observation that density-preserving visualizations, despite largely
recapitulating the properties of the existing algorithms while additionally incorporating density
information, occasionally show less clear cluster boundaries due to the sparsity of boundary regions.
Overall, however, our algorithms still retain the substantial edge that nonlinear data visualization
algorithms have in preserving clustering structure; e.g., a traditional approach to dimension reduction
using PCA results in 35.7% (36.7%) lower performance on CS and 63.2% (64.1%) lower on MIS
on average compared to t-SNE (UMAP). Moreover, the trade-off between preserving density and
capturing the clustering structure can be modulated by the user by changing the weight of the
density-preservation objective, and we confirmed that the den-SNE and densMAP scores converge to
t-SNE and UMAP scores as that weight decreases (Figures G.4 to G.8).

With respect to PDS, den-SNE and densMAP generally outperformed t-SNE and UMAP, respectively,
across a wide range of original distances. For instance, when computing the PDS over the shorter half
of sampled pairwise distances, den-SNE obtained 19.9% higher PDS and densMAP obtained 47.2%
higher PDS than their counterparts on average, agreeing with the intuition that preserving density is
closely related to preserving the original distances between points. An exception is for the PDS on the
full range of distances on the UKB and NSCLC datasets, where UMAP outperformed densMAP. We
hypothesize that this behavior is due to outlier points from extremely sparse regions of the dataset,
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which may distort the long-range distances in the visualization (e.g. between different clusters) to a
greater extent than the existing tools. Note that the primary focus of nonlinear visualization tools like
t-SNE and UMAP is to preserve the local structure of the dataset. Indeed, when the longest distance
quantiles are added, a linear dimension reduction by PCA tends to obtain higher PDS than all of
the nonlinear methods, despite the overall poor visual clarity of embeddings produced by PCA for
complex transcriptomic landscapes (see Figure G.9). These results demonstrate that our methods
achieve density preservation while maintaining competitive performance according to existing notions
of visualization quality.



C Gradient Computations for Density-preserving
Visualizations

The core of our density-preserving tools lies in the optimization of the Pearson correlation between
the log local radius of points in the original dataset and in the embedding (see Methods). Here we
compute the gradient of this correlation with respect to the embedding coordinates for optimization. Let
𝑋 = {𝑥𝑖}𝑁𝑖=1 be our original dataset and 𝑦𝑖 = 𝑠(𝑥𝑖) be our embedding, where 𝑠 ∈ {den-SNE, densMAP}
is our algorithm of choice.

Let {𝑅𝑜
𝑖
}𝑁
𝑖=1 and {𝑅𝑒

𝑖
}𝑁
𝑖=1 be measures of pointwise density in the original and embedded spaces

respectively. We discuss specific density functions at the end, but allow full generality here. Let
𝑟𝑒
𝑖
= log𝑅𝑒

𝑖
. We center the original densities, so we let 𝑟𝑜

𝑖
= log𝑅𝑜

𝑖
− 𝑁−1 ∑𝑁

𝑘=1 log𝑅𝑜
𝑖
.

Since we want the densities in the embedded and original dataset to have a power-law relationship,
(Subsection 4.3.5) we maximize the correlation between 𝑟𝑜 = {𝑟𝑜

𝑖
}𝑁
𝑖=1 and 𝑟𝑒 = {𝑟𝑒

𝑖
}𝑁
𝑖=1, denoted 𝜌𝑒 ,𝑜 .

We write:

𝜌𝑒 ,𝑜 =
Cov(𝑟𝑒 , 𝑟𝑜)

𝜎𝑜𝜎𝑒
=

∑𝑁
𝑘=1(𝑟

𝑒
𝑘
− 𝜇𝑒)𝑟𝑜

𝑘

𝑠𝑜(𝑁 − 1) 1
2
[
𝜎2 +∑𝑁

𝑘=1(𝑟𝑘 − 𝜇𝑒)2
] 1

2
(C.1)

where 𝜇𝑒 is the average of 𝑟𝑒 ; 𝜎𝑜 and 𝜎𝑒 are the sample standard deviations of 𝑟𝑜 and 𝑟𝑒 respectively,
and 𝜎2 is a user-specified constant for regularization (this ensures that the standard deviation of the
embedded local radii does not go to zero).

Now, we compute the gradient of the correlation with respect to pairwise squared distances of the
embedded datapoints, 𝑑2

𝑖 𝑗
=



𝑦𝑖 − 𝑦 𝑗

2:

𝜕𝜌𝑒 ,𝑜

𝜕𝑑2
𝑖 𝑗

= (𝑠𝑜)−1(𝑁 − 1)− 1
2

[
Ṽar(𝑟𝑒)− 1

2
𝜕C̃ov(𝑟𝑒 , 𝑟𝑜)

𝜕𝑑2
𝑖 𝑗

− 1
2

C̃ov(𝑟𝑒 , 𝑟𝑜)Ṽar(𝑟𝑒)− 3
2
𝜕Ṽar(𝑟𝑒)
𝜕𝑑2

𝑖 𝑗

]
,

where Ṽar(𝑟𝑒) = (𝑁−1)
[
𝜎2/(𝑁 − 1) + Var(𝑟𝑒)

]
and C̃ov(𝑟𝑒 , 𝑟𝑜) = (𝑁−1)Cov(𝑟𝑒 , 𝑟𝑜) (these are sample

variances and covariances, hence the normalization by 𝑁 − 1 instead of 𝑁).
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Now consider the component parts:

𝜕C̃ov(𝑟𝑒 , 𝑟𝑜)
𝜕𝑑2

𝑖 𝑗

=

𝑁∑
𝑘=1

𝑟𝑜
𝑘

(
𝜕𝑟𝑒

𝑘

𝜕𝑑2
𝑖 𝑗

− 𝜕𝜇𝑒

𝜕𝑑2
𝑖 𝑗

)
=

𝑁∑
𝑘=1

𝑟𝑜
𝑘

𝜕𝑟𝑒
𝑘

𝜕𝑑2
𝑖 𝑗

− 𝜕𝜇𝑒

𝜕𝑑2
𝑖 𝑗

𝑁∑
𝑘=1

𝑟𝑜
𝑘

(C.2)

=

𝑁∑
𝑘=1

𝑟𝑜
𝑘

𝜕𝑟𝑒
𝑘

𝜕𝑑2
𝑖 𝑗

,

where the second term in (C.2) is zero since 𝑟𝑜 is centered. Similarly,

𝜕Ṽar(𝑟𝑒)
𝜕𝑑2

𝑖 𝑗

= 2
𝑁∑
𝑘=1

(𝑟𝑒
𝑘
− 𝜇𝑒)

(
𝜕𝑟𝑒

𝑘

𝜕𝑑2
𝑖 𝑗

− 𝜕𝜇𝑒

𝜕𝑑2
𝑖 𝑗

)
= 2

𝑁∑
𝑘=1

(𝑟𝑒
𝑘
− 𝜇𝑒)

𝜕𝑟𝑒
𝑘

𝜕𝑑2
𝑖 𝑗

− 2
𝜕𝜇𝑒

𝜕𝑑2
𝑖 𝑗

𝑁∑
𝑘=1

(𝑟𝑒
𝑘
− 𝜇𝑒) (C.3)

= 2
𝑁∑
𝑘=1

(𝑟𝑒
𝑘
− 𝜇𝑒)

𝜕𝑟𝑒
𝑘

𝜕𝑑2
𝑖 𝑗

,

where, similar to before, the second sum in (C.3) is zero.

For many density functions (and certainly the one we use), 𝑟𝑖 will only depend on {𝑑𝑖𝑘 , 𝑑𝑘𝑖}𝑁𝑘=1, so we
can further simplify the above expressions to:

𝜕C̃ov(𝑟𝑒 , 𝑟𝑜)
𝜕𝑑2

𝑖 𝑗

= 𝑟𝑜𝑖
𝜕𝑟𝑒

𝑖

𝜕𝑑2
𝑖 𝑗

+ 𝑟𝑜𝑗
𝜕𝑟𝑒

𝑗

𝜕𝑑2
𝑖 𝑗

𝜕Ṽar(𝑟𝑒)
𝜕𝑑2

𝑖 𝑗

= 2

(
(𝑟𝑒𝑖 − 𝜇𝑒)

𝜕𝑟𝑒
𝑖

𝜕𝑑2
𝑖 𝑗

+ (𝑟𝑒𝑗 − 𝜇𝑒)
𝜕𝑟𝑒

𝑗

𝜕𝑑2
𝑖 𝑗

)
.

Under this scenario, putting this all together, we get:

𝜕𝜌𝑒 ,𝑜

𝜕𝑑2
𝑖 𝑗

=

Ṽar(𝑟𝑒)
(
𝑟𝑜
𝑖

𝜕𝑟𝑒
𝑖

𝜕𝑑2
𝑖 𝑗

+ 𝑟𝑜
𝑗

𝜕𝑟𝑒
𝑗

𝜕𝑑2
𝑖 𝑗

)
− C̃ov(𝑟𝑒 , 𝑟𝑜)

(
(𝑟𝑒
𝑖
− 𝜇𝑒) 𝜕𝑟

𝑒
𝑖

𝜕𝑑2
𝑖 𝑗

+ (𝑟𝑜
𝑗
− 𝜇𝑒)

𝜕𝑟𝑒
𝑗

𝜕𝑑2
𝑖 𝑗

)
𝑠𝑜(𝑁 − 1) 1

2 Ṽar(𝑟𝑒) 3
2

. (C.4)

The measure of local density for the embedded points we have used is the squared distance, weighted
by the embedding distribution 𝑄 for either t-SNE or UMAP:

𝑅𝑒
𝑘
=

(
𝑁∑
ℓ=1

(1 + 𝑎𝑑2𝑏
𝑘ℓ
)−1

)−1
𝑁∑
𝑚=1

𝑑2
𝑘𝑚

(1 + 𝑎𝑑2𝑏
𝑘𝑚

)−1 = Z−1
𝑘

𝑁∑
𝑚=1

𝑑2
𝑘𝑚

(1 + 𝑎𝑑2𝑏
𝑘𝑚

)−1 ,

where Z𝑘 =
∑𝑁
𝑚=1(1+ 𝑎𝑑2𝑏

𝑘𝑚
)−1. We also write 𝑄𝑘ℓ = Z−1

𝑘
(1+ 𝑎𝑑2𝑏

𝑘ℓ
)−1. Note that these are related to the
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𝑄 matrix and Zpartition functions of t-SNE and UMAP, equations (4.5) and (4.6) in Methods, by

Z=
∑

Z𝑖

𝑄𝑖 𝑗 = 𝑄𝑖 𝑗
Z𝑖

Z
.

To finish (C.4), we need to evaluate 𝜕𝑟𝑒
𝑖

𝜕𝑑2
𝑖 𝑗

.

𝜕𝑟𝑒
𝑖

𝜕𝑑2
𝑖 𝑗

=
𝜕

𝜕𝑑2
𝑖 𝑗

log
(
Z𝑖𝑅

𝑒
𝑖

)
− 𝜕

𝜕𝑑2
𝑖 𝑗

log Z𝑖

= (𝑅𝑒𝑖Z𝑖)−1 𝜕(Z𝑖𝑅
𝑒
𝑖
)

𝜕𝑑2
𝑖 𝑗

− Z−1
𝑖

𝜕Z𝑖

𝜕𝑑2
𝑖 𝑗

= (𝑅𝑒𝑖Z𝑖)−1
[
(1 + 𝑎𝑑2𝑏

𝑖𝑗 )
−1 − 𝑎𝑏𝑑2𝑏−2

𝑖 𝑗 𝑑2
𝑖 𝑗(1 + 𝑎𝑑2𝑏

𝑖𝑗 )
−2)

]
+ Z−1

𝑖 𝑎𝑏𝑑2𝑏−2
𝑖 𝑗 (1 + 𝑎𝑑2𝑏

𝑖𝑗 )
−2

=
𝑄𝑖 𝑗

𝑅𝑒
𝑖

(1 − 𝑎𝑏𝑑2𝑏
𝑖𝑗 (1 + 𝑎𝑑2𝑏

𝑖𝑗 )
−1) + 𝑎𝑏𝑑2𝑏−2

𝑖 𝑗 𝑄2
𝑖 𝑗Z𝑖

= (1 + 𝑎𝑑2𝑏
𝑖𝑗 )

−1𝑄𝑖 𝑗

[
1 + 𝑎𝑑2𝑏

𝑖𝑗 − 𝑎𝑑
2𝑏
𝑖𝑗

]
+𝑄2

𝑖 𝑗Z𝑖

= 𝑄2
𝑖 𝑗Z𝑖

[
1 +

1 + 𝑎𝑑2𝑏
𝑖𝑗
(1 − 𝑏)

𝑅𝑒
𝑖

]
Note that when 𝑎 = 𝑏 = 1, as in t-SNE, this simplifies to:

𝜕𝑟𝑒
𝑖

𝜕𝑑2
𝑖 𝑗

= 𝑄2
𝑖 𝑗Z𝑖

[
1 + 1

𝑅𝑒
𝑖

]
. (C.5)

As discussed in Methods, in both den-SNE and densMAP, for the sake of efficiency, we assume for the
local radius computation that, for a point 𝑖 with embedding 𝑦𝑖 and original coordinates 𝑥𝑖 , 𝑑2

𝑖 𝑗
≠ 0

only for 𝑗 such that 𝑖 and 𝑗 are in the edge set 𝐸 of the 𝑘-nearest neighbors graph produced by each
algorithm. Since the objective functions of each algorithm prioritize preserving local structure, they
should encourage 𝑖 and 𝑗 to be nearest neighbors in the embedding as well, and so we only need to
consider density with respect to those points.

We can now write the full den-SNE gradient by combining the gradient of the correlation with the
gradient of the original t-SNE objective function [38] (we discuss adaptations needed for the densMAP
gradient below):

∇𝑦𝑖L
den-SNE =

∑
{𝑖 , 𝑗}∈𝐸

𝑃𝑖 𝑗𝑄𝑖 𝑗Z(𝑦𝑖 − 𝑦 𝑗) −
∑
𝑗≠𝑖

𝑄2
𝑖 𝑗Z(𝑦𝑖 − 𝑦 𝑗) − 𝜆

∑
{𝑖 , 𝑗}∈𝐸

𝜕𝜌𝑒 ,𝑜

𝜕𝑑2
𝑖 𝑗

(𝑦𝑖 − 𝑦 𝑗),

where 𝜆 is a user-provided parameter that determines the weight of the density-preservation objective,
and 𝜕𝜌𝑒 ,𝑜

𝜕𝑑2
𝑖 𝑗

is given in (C.4) with (C.5) plugged in.
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C.1 Stochastic Gradient Descent for densMAP

Here we detail how densMAP adapts the stochastic gradient descent (SGD) formulation of UMAP.
The cross-entropy loss function for UMAP and its gradient with respect to the squared distance 𝑑2

𝑖 𝑗

between points 𝑖 , 𝑗 in the embedding [39], given 𝐸, the set of edges in the nearest-neighbors graph,
is:

L=
∑

{𝑖 , 𝑗}∈𝐸
𝑃𝑖 𝑗 log𝑄𝑖 𝑗︸      ︷︷      ︸

attractive

+ (1 − 𝑃𝑖 𝑗) log
(
1 −𝑄𝑖 𝑗

)︸                    ︷︷                    ︸
repulsive

𝜕L

𝜕𝑑2
𝑖 𝑗

= 𝑃𝑖 𝑗
𝜕

𝜕𝑑2
𝑖 𝑗

[log𝑄𝑖 𝑗] + (1 − 𝑃𝑖 𝑗)
𝜕

𝜕𝑑2
𝑖 𝑗

[log
(
1 −𝑄𝑖 𝑗

)
],

where 𝑃 and 𝑄 are the distributions on the original and embedded data respectively. Note that in
UMAP, unlike t-SNE, the value 𝑄𝑖 𝑗 depends only on distance 𝑑2

𝑖 𝑗
and does not involve a normalization

term over all edges.

To optimize the attractive term of the objective function, at each step, UMAP draws an edge {𝑖 , 𝑗} ∈ 𝐸
randomly according to the distribution 𝑃, and computes the gradient 𝜕

𝜕𝑑2
𝑖 𝑗

(
log𝑄𝑖 𝑗

)
(𝑦𝑖 − 𝑦 𝑗). This

means that, over the course of the optimization, edge {𝑖 , 𝑗} will be chosen with proportion 𝑃𝑖 𝑗/𝑍,
where 𝑍 =

∑
𝑖≠𝑖 𝑃𝑖 𝑗 . To estimate the repulsive term, a set of points 𝑆 = {𝑘𝑠}𝑛𝑠𝑠=1 is chosen uniformly at

random and the algorithm computes the gradient 1
|𝑆 |

∑
𝑘∈𝑆

𝜕
𝜕𝑑2

𝑖𝑘

[log(1 −𝑄𝑖𝑘)] (𝑦𝑖 − 𝑦 𝑗). The size of 𝑆 is
a tunable parameter 𝑛𝑠 .

Now, incorporating the density-preservation term into this objective function means taking the gradient
of the correlation (C.1) and adding it to the UMAP gradient. The full gradient becomes:

∇𝑦𝑖L=
∑

{𝑖 , 𝑗}∈𝐸

(
𝑃𝑖 𝑗

𝜕

𝜕𝑑2
𝑖 𝑗

[log𝑄𝑖 𝑗] + (1 − 𝑃𝑖 𝑗)
𝜕

𝜕𝑑2
𝑖 𝑗

[log
(
1 −𝑄𝑖 𝑗

)
] + 𝜆

𝜕𝜌𝑒 ,𝑜

𝜕𝑑2
𝑖 𝑗

)
(𝑦𝑖 − 𝑦 𝑗).

Note that, for the correlation term of the optimization, each edge is given equal weight (i.e. the term is
not weighted by 𝑃𝑖 𝑗). Since, in the stochastic descent algorithm of UMAP, an edge is actually chosen
with proportion 𝑃𝑖 𝑗/𝑍, we re-weight the gradient estimate of the correlation term by multiplying by
𝑍/(𝑁𝑃𝑖 𝑗) (we divide by the number of points 𝑁 for numerical stability, since 𝑍 grows with 𝑁).

The densMAP gradient estimate for an edge {𝑖 , 𝑗} at each iteration of the SGD is then:

∇𝑦𝑖L|{𝑖 , 𝑗} =
(

𝜕

𝜕𝑑2
𝑖 𝑗

[log𝑄𝑖 𝑗] + 𝜆
𝑍

𝑁𝑃𝑖 𝑗

𝜕𝜌𝑒 ,𝑜

𝜕𝑑2
𝑖 𝑗

− 1
|𝑆 |

∑
𝑘∈𝑆

𝜕

𝜕𝑑2
𝑖𝑘

[log(1 −𝑄𝑖𝑘)]
)
(𝑦𝑖 − 𝑦 𝑗),

where 𝑆 is a set of edges adjacent to 𝑖 chosen uniformly at random. This ensures that, over the course
of the optimization, the edges are weighted equally when optimizing the correlation term.

Next, we consider the 𝑄 distribution. Since, unlike t-SNE, UMAP does not normalize 𝑄𝑖 𝑗 over all the
edges, it treats the term as a Bernoulli random variable over each edge. For the calculation of the
local radius, however, we need a probability distribution over the nearest neighbors of each point. In
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other words, we need 𝑄𝑖 𝑗/
∑
𝑘:{𝑖 ,𝑘}∈𝐸 𝑄𝑖𝑘 = 𝑄𝑖 𝑗/Z𝑖 . To achieve this, we compute Z𝑖 at the start of each

epoch and take it as fixed for all the edges that are updated in that epoch, which is akin to performing
coordinate descent with the update for Z𝑖 happening once per epoch. Similarly, we compute the local
radius 𝑅𝑒

𝑖
, and global variance and covariance terms at the start of each epoch. These techniques allow

us to use SGD to optimize densMAP in a similar manner as UMAP.





D Schema: Differential Expression and Batch Effects

Aside from cell type inference, another important single-cell analysis task that stands to benefit
from multimodal synthesis is the identification of differentially expressed marker genes. To illustrate
how, we explored a mouse gastrulation single-cell dataset [120], consisting of 16, 152 epiblast cells
split over three developmental timepoints (𝐸6.5, 𝐸7.0, and 𝐸7.25) and with two replicates at each
timepoint, resulting in six distinct batches (Figure G.21a). Applying Schema to this dataset, we sought
to identify differentially expressed genes that are consistent with the developmental time course
while being robust to batch effects between the replicate pairs. To perform differential expression
analysis with Schema, RNA-seq data should be used as the primary modality, while the distance
metrics of the secondary modalities specify how cells should be differentiated from each other. Here,
we used batch and developmental-age information as secondary modalities, configuring Schema to
maximize RNA-seq data’s agreement with developmental age and minimize its agreement with batch
information. We weighted these co-objectives equally; results were robust to ±25% variations in these
weights (Figure G.28). We used RNA-seq data as the primary dataset, representing it by its top ten
principal components. (Methods below).

We evaluated Schema alongside MOFA+, a recently introduced single-cell multimodal analysis
technique [72, 90]. Schema and MOFA+ approach the data synthesis problem from complementary
perspectives: while the emphasis in Schema is to identify important features of the primary dataset and
its corresponding transformation that reflects a synthesis of the various modalities, MOFA+ focuses on
de novo identification of features that explain the covariation across modalities. In MOFA+ analysis by
Argelaguet et al. [72] of this dataset, the authors identified ten factors that capture similar information
to the top principal components (Figure G.27). To identify differentially expressed genes with MOFA+,
we selected the top genes from two factors (MOFA1 and MOFA4) reported by Argelaguet et al. [72] as
capturing developmental variation.

In addition to accounting for batch effects, we could also configure Schema to reduce the weight of
transient changes in expression, thus identifying genes with monotonically changing expression along
the time course (Figure G.21b–d). To do so, we encoded developmental age as a distance metric by
specifying zero distance between cells at the same timepoint, unit distance between directly adjacent
timepoints, and an additive sum of the unit distances across more separated timepoints. As a control,
we also tested a metric that did distinguish between the stages but did not increase in time, finding
that the highest-weighted feature (PC5) in that case was indeed non-monotonic (Figure G.21b–c). To
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encode batch effect as a distance metric, we specified zero distance between cells in the same replicate
and unit distance otherwise.

We estimated the set of differentially expressed genes as the top-loading genes of the principal
components up-weighted by Schema. Seeking to evaluate if the Schema or MOFA+ genes did show
time-dependent monotonicity in expression, we linearly regressed each identified gene’s normalized
expression against an ordering of the three developmental stages (we expand on this below). We
found that the Schema genes corresponded to regression coefficients significantly different from zero
(Figure G.21d–e), consistent with time-dependent monotonicity (two-sided 𝑡-test, 𝑝 = 3.83 × 10−6);
this was not true of MOFA+ (𝑝 = 0.77).

Next, we evaluated the batch-effect robustness of Schema and MOFA+ gene sets. Our configuration
of Schema balances batch-effect considerations against differential expression considerations. For
instance, introducing the batch-effect objective in Schema reduces the weights associated with the first
and second principal components (PC1 and PC2), which show substantial within-timepoint batch-effect
variations without a compensating time-dependent monotonicity, by 11% and 17%, respectively. In
comparison, explicitly up-weighting “good” variation or down-weighting “bad” variation is difficult
when using MOFA+. To systematically evaluate the batch-effect robustness of Schema and MOFA+ gene
sets, we constructed benchmark sets of differentially expressed genes by applying a standard statistical
test, adjusting for batch effects by exploiting the combinatorial structure of this dataset. Specifically,
we aggregated over computations that each considered only one replicate per timepoint (Methods
below). We then measured the overlap of Schema and MOFA+ gene sets with these benchmarks
(Figure G.21f) and found that, compared to MOFA+, the Schema gene set shows a markedly higher
overlap with the benchmarks that is statistically significant (hypergeometric test with Bonferroni
correction, 𝑝 = 5.9 × 10−12 for the benchmark set of size 188). Schema allows us to express the
intuition that variation attributable to batch effects should be ignored while variation attributable to
developmental age should be highlighted.

D.1 Methods

This mouse gastrulation dataset was originally described by Pĳuan-Sala et al. [120] and investigated by
Argelaguet et al. [90] and [72] using the MOFA+ algorithm. We operated on the data as preprocessed
and made available by them and, for the MOFA+ evaluation in this paper, also used their pretrained
models.

We first reduced the RNA-seq data (primary modality) to its top 10 principal components (PCs), to be
in line with the 10 MOFA+ factors from Argelaguet et al. [90]. The MOFA+ algorithm can be thought
of as a generalization of PCA and we did indeed observe that the top PCs were very similar to the top
MOFA+ components (Figure G.27), validating that Schema was able to access the same sources of
variation as found by MOFA+ here.

We configured Schema to use batch information as a secondary modality with weight −1 and
developmental age information as a secondary modality with weight +1; thus, correlation with the
former was minimized and the latter was maximized. The minimum correlation threshold was set to
0.9; we found that the results were robust to variations in this setting (0.8 and 0.95).
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Since Schema accepts arbitrary distance measures on secondary datasets, we could investigate the
impact of treating developmental timepoints as categories rather than a time ordering. In the categorical
distance metric, we defined two cells to be at distance 0 if they were at the same developmental
timepoint and at distance 1 otherwise. In the time-ordering metric, we specified the first and third
time-points to be at distance 2 apart and the middle time-point to be at distance 1 from either end. The
two distance measures lead to different feature-selection results from Schema, reflecting the distinct
underlying variations in expression profiles. For category-based distances, PC5 receives the highest
weight while PCs 4 and 6 are given higher weights in the time-ordering case (Figure G.21b). This
happens because the mean expression level of PC5 shows large variation across the three time-points
but does not change monotonically along the time course; in contrast, the PCs 4 and 6 display expression
profiles that change monotonically with developmental age (Figure G.21c). Schema’s flexibility to
incorporate a distance measure that highlights specific variability patterns can thus enable researchers
to identify precisely targeted gene-sets.

To create a gene set from Schema’s feature weighting, we selected the intersection of 𝑘 top loadings (by
absolute value) of PCs up-weighted by Schema (PCs 4, 6 and 9 for the time-ordering metric); we choose
𝑘 so that the intersection contained 30 genes. For MOFA+, we chose genes that had the top loadings
(by absolute value) in the factors MOFA1 or MOFA4. Here, we were following Argelaguet et al. [72]
who, after an investigation of the various MOFA+ factors, had identified these two as the most relevant
to understanding developmental age variability. Since the top loadings of the two MOFA+ factors do
not overlap much, we chose the top 16 genes from each, with their union consisting of 31 genes (there
was one overlap between the two subsets).

For each gene identified by Schema or MOFA+, we regressed its expression against developmental time,
encoding stages 𝐸6.25, 𝐸7.0 and 𝐸7.25 as timepoints 1, 2 and 3, respectively. The gene’s expression
profile (across all cells) was first normalized to zero mean and unit standard deviation.

We created batch-effect adjusted benchmark gene sets by using different combinations of replicates.
One can create a subset of the original dataset by sampling cells from only one of the two replicates
at each time-point. By iterating over all possible combinations of replicates, we created eight such
subsets. These subsets differ in the batch information they contain but share the same developmental
age information. Using the Wilcoxon rank sum test in scanpy [164], we identified genes differentially
expressed between the first (𝐸6.5) and last (𝐸7.25) stage in each subset and defined the benchmark gene
set to consist of genes that are differentially expressed across a majority of the subsets. The benchmark
set is thus robust to batch effects, being comprised of genes whose differential expression stands
out across different replicates (i.e., batches). By varying the thresholds of the test, we could create
benchmark sets of varying sizes and measured the overlap of Schema and MOFA+ gene sets with these.
The Schema gene set has a higher overlap and for benchmark sets of all sizes, its overlap with them
was significant (hypergeometric test with Bonferroni correction, 𝑝 = 5.9 × 10−12 for the benchmark set
of size 188 and Bonferroni-corrected 𝑝 < 10−5 for benchmark sets of all sizes, Figure G.21e); this was
not the case for MOFA+.





E Schema and RNA Velocity

We next leveraged the flexibility of Schema to study cell differentiation by synthesizing spliced and
unspliced mRNA counts in a dataset of 2, 930 mouse dentate gyrus cells [120]. Specifying spliced
counts as the primary dataset and unspliced counts as the secondary dataset, we configured Schema to
compute a transformation of the spliced data that maximizes the correlation of its Euclidean distances
with those in the unspliced dataset while distorting the former only minimally (Figure G.22a-c).

Our intuition here is the same as that underlying RNA velocity techniques: correlating spliced and
unspliced counts in a cell should pick up on the time derivative of a cell’s expression state and thus
illuminate the cell differentiation process. To validate this intuition, we computed a pseudotime
measure from the difference between transformed and original RNA-seq data, finding it to be highly
correlated with the latent-time estimate produced by Bergen et al. [165] and their RNA velocity tool
scVelo (Spearman rank correlation 0.72, two-sided 𝑡-test 𝑝 < 10−128, Figure G.22d). Since Schema relies
on the same underlying biological phenomena as specialized RNA velocity tools but analyzes the data
differently, these results show the breadth of Schema’s generality and may be used to help supplement
and strengthen the findings from standard RNA velocity analyses.

Schema can complement methods like scVelo by facilitating additional analyses. As in our demonstra-
tions of cell type inference and UMAP visualization, the transformed data produced here by Schema
incorporates additional information (the time derivative of expression) but remains analyzable as an
RNA-seq dataset. As an example, we visualized the transformed dataset with t-SNE, finding that the
two-dimensional t-SNE plot of the Schema-transformed data places more closely together cell types
at similar stages of differentiation (as quantified by scVelo latent-time, Figure G.22e–g). To confirm
this visual observation, we computed the Spearman rank correlation of scVelo latent-time differences
between pairs of cells and their corresponding Euclidean distances in the t-SNE embedding space,
finding that it increases from 0.397 in the original dataset to 0.432 in the transformation corresponding
to a minimum correlation constraint of 0.95 (Methods below). In contrast, an unconstrained synthesis
using CCA produced a substantially lower correlation of 0.163; see Figure G.26 for the corresponding
CCA-based t-SNE visualization. Schema can thus facilitate visualizations that reflect the deeper
underlying differentiation processes.
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E.1 Methods

We normalized the spliced and unspliced counts, log transformed them and reduced them to their top
100 principal components. These were specified to Schema as the primary and secondary modalities,
respectively. To construct a pseudotime estimate from Schema’s output, we first computed the mean
per-cell difference between the transformed and original RNA-seq data. Interpreting this difference as
the major axis of transcriptional change, we projected the original RNA-seq values on it. The magnitude
of projection for each cell is a score that we interpreted as a pseudotime measure.



F Schema and Differential Expression in Granule
Cells

The densely-packed granule cell genes identified by Schema are strongly enriched for signal trans-
mission, potentially indicating greater neurotransmission activity within these cells. In particular,
REACTOME [114] pathway enrichment analysis (top 1000 genes, mapped to human) include vesicle-
mediated transport (FDR 𝑞 = 5.11 × 10−4), ion-channel transport (FDR 𝑞 = 1.82 × 10−3), and cellular
responses to external stimuli (FDR 𝑞 = 6.44𝑥10−15) (Table S2, Figure G.30). An enrichment analysis of
this gene set against the Gene Ontology (GO) database, performed using the GOrilla web-tool [166]
and visualized using REViGO [167] also identified terms consistent with such activity: ion transport
(GO:0022853, FDR 𝑞 = 1.8 × 10−17), electron transfer (GO:009055, FDR 𝑞 = 2.87 × 10−11) and enzyme
binding (GO:0019899, FDR 𝑞 = 2.72 × 10−11). (Table S3, Figure G.29). Interestingly, we also observed
enrichment in REACTOME pathways related to autophagy (FDR 𝑞 = 3.19 × 10−4), ubiquitination
(FDR 𝑞 = 1.94 × 10−4) and protein metabolism (FDR 𝑞 = 3.3 × 10−7). In particular, we observed
enrichment for the process of Neddylation (FDR 𝑞 = 2.26 × 10−3), shown to have a role in nuclear
protein aggregation [168, 169].
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Figure G.1: Density-preserving methods preserve density robustly at different scales on lung cancer data based on
neighborhood count. We compared the local radius of each point in the original lung cancer dataset to its neighborhood
count in the visualizations (a measure of visual density; see Methods) for (a) densMAP and UMAP; and (b) den-SNE
and t-SNE. We chose for each embedding, a length-scale ℓave and multiples of that length-scale for which to compute the
neighborhood counts (Methods): { 1

2ℓave , ℓave , 2ℓave} for densMAP and UMAP, and {ℓave , 2ℓave , 4ℓave} for den-SNE and t-SNE.
Since neighborhood count represents the density around a given point, a visualization that preserves density information will
have higher neighborhood counts for points with smaller local radii in the original space. Note that this negative correlation
is significantly stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern holds across the different
length-scales.
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Figure G.2: Visualizing lung cancer using densMAP recapitulates den-SNE results. We repeat the analysis presented
in Figure 6.1 using densMAP and UMAP. a. Top is a densMAP embedding and bottom is a UMAP embedding; points are
colored by cell type. Note that the relative heterogeneity of neutrophils, plasma cells, and T cells are misleadingly portrayed
in the UMAP visualization. b. densMAP (left) and UMAP (right) plots, now colored by tissue type (blood or tumor). c.
Scatter plots comparing the local radii, our measure of local density (Methods), in the original space and in the visualization
(embedding). Points are colored by cell type, and the 𝑅2 value of the correlation is shown for each plot. Higher correlation of
densMAP shows that densMAP more accurately conveys the density landscape of the original data than UMAP. Scatter plots
based on neighborhood count (another measure of visual density; Methods) are included in Figure G.1. d. densMAP (top)
and UMAP (bottom) plots restricted to each of four notable cell types (neutrophils, plasma cells, T cells, and B cells) and
colored by tissue type (tumor or blood). Neutrophils and plasma cells in tumor considerably expand in size in densMAP,
reflecting transcriptomic variability previously hidden in UMAP. T and B cells show a large increase in heterogeneity in
tumor compared to blood in densMAP. Although UMAP shows a similar pattern, its lack of density-preservation property
precludes reasoning about differences in heterogeneity.
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Figure G.3: Other choices of parameter do not yield density-preservation in tSNE and UMAP. Although changing the
perplexity and n_neighbor parameters in t-SNE (a) and UMAP (b), respectively, can yield drastically different embeddings,
this does not result in density preservation. We used the lung cancer dataset for this analysis. For t-SNE, we tried perplexity
(Perp) values of 10, 25, 75, and 90, all of which resulted in near-zero correlation between the original and the embedded local
radius. For UMAP, we chose n_neighbors (NNs) to be 10, 20, 40, and 50, and similarly, none of these choices led to density
preservation. These results are consistent with our theoretical understanding of t-SNE and UMAP.
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Figure G.4: Density-preserving methods achieve competitive performance on existing metrics for visualization quality
on lung cancer data. We computed the classification score (a), the mutual information score (b), and the pairwise distance
scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including
PCA as a baseline representing traditional dimensionality reduction approach. a. Both densMAP and den-SNE perform
comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of
five subsample, with dots showing each individual measure. b. Both densMAP and den-SNE largely retain the superior
performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance
of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to
their sparse nature. We also varied the weight 𝜆 of the density preserving methods from its default value to zero. The
MIS increases as 𝜆 decreases, indicating a tunable tradeoff between clustering performance and density preservation (see
Figure G.20). Each bar is the mean of three subsample, with dots showing each individual measure. c. We plot the pairwise
distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space)
for the bottom 𝑥% of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving
algorithms outperform their counterpart on all except the last decile. Each measure is performed on one subsample. d. We
assign pairwise distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in the
embedding space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The whiskers
extend to extrema (except outliers, individually marked outside of whiskers, which are defined as those points more than
1.5x the interquartile range (IQR) away from the box boundaries).
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Figure G.5: Density-preserving methods achieve competitive performance on existing metrics for visualization quality
on PBMC data. We computed the classification score (a), the mutual information score (b), and the pairwise distance
scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including
PCA as a baseline representing traditional dimensionality reduction approach. a. Both densMAP and den-SNE perform
comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of
five subsample, with dots showing each individual measure. b. Both densMAP and den-SNE largely retain the superior
performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance
of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to
their sparse nature. We also varied the weight 𝜆 of the density preserving methods from its default value to zero. The
MIS increases as 𝜆 decreases, indicating a tunable tradeoff between clustering performance and density preservation (see
Figure G.20). Each bar is the mean of three subsample, with dots showing each individual measure. c. We plot the pairwise
distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space)
for the bottom 𝑥% of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving
algorithms outperform their counterpart on all deciles. Each measure is performed on one subsample. d. We assign pairwise
distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in the embedding
space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The whiskers extend to
extrema (except outliers, individually marked outside of whiskers, which are defined as those points more than 1.5x the
interquartile range (IQR) away from the box boundaries).
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Figure G.6: Density-preserving methods achieve competitive performance on existing metrics for visualization quality
on C. elegans data. We computed the classification score (a), the mutual information score (b), and the pairwise distance
scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including
PCA as a baseline representing traditional dimensionality reduction approach. a. Both densMAP and den-SNE perform
comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of
five subsample, with dots showing each individual measure. b. Both densMAP and den-SNE largely retain the superior
performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance
of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to
their sparse nature. We also varied the weight 𝜆 of the density preserving methods from its default value to zero. The
MIS increases as 𝜆 decreases, indicating a tunable tradeoff between clustering performance and density preservation (see
Figure G.20). Each bar is the mean of three subsample, with dots showing each individual measure. c. We plot the pairwise
distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space)
for the bottom 𝑥% of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving
algorithms outperform their counterpart on all deciles. Each measure is performed on one subsample. d. We assign pairwise
distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in the embedding
space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The whiskers extend to
extrema (except outliers, individually marked outside of whiskers, which are defined as those points more than 1.5x the
interquartile range (IQR) away from the box boundaries).
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Figure G.7: Density-preserving methods achieve competitive performance on existing metrics for visualization quality
on UK Biobank data. We computed the classification score (a), the mutual information score (b), and the pairwise distance
scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including
PCA as a baseline representing traditional dimensionality reduction approach. a. Both densMAP and den-SNE perform
comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of
five subsample, with dots showing each individual measure. b. Both densMAP and den-SNE largely retain the superior
performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance
of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to
their sparse nature. We also varied the weight 𝜆 of the density preserving methods from its default value to zero. The
MIS increases as 𝜆 decreases, indicating a tunable tradeoff between clustering performance and density preservation (see
Figure G.20). Each bar is the mean of three subsample, with dots showing each individual measure. c. We plot the pairwise
distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space)
for the bottom 𝑥% of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving
algorithms outperform their counterpart on all except the last two deciles. Each measure is performed on one subsample. d.
We assign pairwise distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in
the embedding space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The
whiskers extend to extrema (except outliers, individually marked outside of whiskers, which are defined as those points
more than 1.5x the interquartile range (IQR) away from the box boundaries).
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Figure G.8: Density-preserving methods achieve competitive performance on existing metrics for visualization quality
on MNIST data. We computed the classification score (a), the mutual information score (b), and the pairwise distance
scores (c and d) as proposed in the literature (Methods) for t-SNE, den-SNE, UMAP, and densMAP, additionally including
PCA as a baseline representing traditional dimensionality reduction approach. a. Both densMAP and den-SNE perform
comparably to their counterpart on classifying cell types using embedding coordinates as features. Each bar is the mean of
five subsample, with dots showing each individual measure. b. Both densMAP and den-SNE largely retain the superior
performance of nonlinear data visualization methods on MIS compared to PCA, albeit with a slight reduction in performance
of density-preserving methods. We believe this is due to the less clear cluster boundaries in our visualizations owing to
their sparse nature. We also varied the weight 𝜆 of the density preserving methods from its default value to zero. The
MIS increases as 𝜆 decreases, indicating a tunable tradeoff between clustering performance and density preservation (see
Figure G.20). Each bar is the mean of three subsample, with dots showing each individual measure. c. We plot the pairwise
distance score (Pearson correlation coefficient between the pairwise distances in the original and the embedding space)
for the bottom 𝑥% of pairwise distances in the original space (indicated on the x-axis). Note that the density-preserving
algorithms outperform their counterpart on all deciles. Each measure is performed on one subsample. d. We assign pairwise
distances in the original space to 25 quantile bins and plot the corresponding distribution of distances in the embedding
space. The boxes span the 25th to the 75th percentiles of the distribution, with the median marked. The whiskers extend to
extrema (except outliers, individually marked outside of whiskers, which are defined as those points more than 1.5x the
interquartile range (IQR) away from the box boundaries).
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Figure G.9: Traditional dimensionality reduction algorithms struggle to produce informative visualizations of scRNA-
seq data. Traditional dimensionality reduction algorithms, such as principal component analysis (PCA), Isomap, and
multidimensional scaling (MDS), do not use an adaptive length-scale to model the data manifold, thus having the potential
to preserve density better than t-SNE and UMAP. We tested these methods on the lung cancer dataset, subsampled to 10,000
cells (since Isomap and MDS do not scale to larger datasets). The resulting visualization and a scatter plot comparing local
radius in the original space and in the visualization are shown for each method: densMAP (a), Isomap (b), MDS (c), and PCA
(d). Isomap struggles to separate the clusters as well as densMAP; while its performance on the local radius correlation is
better than that of UMAP (Figure G.2), it is substantially worse on this metric compared to densMAP. MDS attempts to
preserve all pairwise distances and therefore struggles with high dimensional data; no clusters are visible in the embedding
and density is not preserved. Similarly, PCA fails to clearly visualize the clustering structure of the dataset. Although PCA
performance on local radius correlation is marginally better than UMAP (Figure G.2), it is significantly worse than densMAP.
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Figure G.10: Quantitative evaluation of density preservation on simulated datasets. We computed the local radius for each
algorithm on the simulated datasets shown in Figure 4.2 to show the improvement that den-SNE and densMAP yield upon
t-SNE and UMAP, respectively, with respect to density preservation. For each dataset, we include a scatter plot comparing
the log local radius in the original space and in the embedding and the 𝑅2 value of correlation between the two. Each dataset
illustrates a different pattern of heterogeneity in local density: a. Gaussian point clouds with increasing variance and the
same number of points; b. Gaussian point clouds with the same variance but increasing number of points; c. overlapping
Gaussian point clouds with increasing variance; d. A grid of points, where density grows linearly in one direction. Consistent
with the visual observation that our visualizations more accurate portray the original density landscape (Figure 4.2), the
correlation in local radius is significantly higher for our methods compared to t-SNE and UMAP for all datasets.
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Figure G.11: Density-preserving methods preserve density robustly at different scales on PBMC data based on neigh-
borhood count. We compared the local radius of each point in the original PBMC dataset to its neighborhood count in the
visualizations (a measure of visual density; see Methods) for (a) densMAP and UMAP; and (b) den-SNE and t-SNE. We chose
for each embedding, a length-scale ℓave and multiples of that length-scale for which to compute the neighborhood counts
(Methods): { 1

2ℓave , ℓave , 2ℓave} for densMAP and UMAP, and {ℓave , 2ℓave , 4ℓave} for den-SNE and t-SNE. Since neighborhood
count represents the density around a given point, a visualization that preserves density information will have higher
neighborhood counts for points with smaller local radii in the original space. Note that this negative correlation is significantly
stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern holds across the different length-scales.
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Figure G.12: Visualizing PBMC data using den-SNE recapitulates densMAP results. We repeat the analyses presented in
Figure 6.2 using den-SNE and t-SNE. a. den-SNE (left) and t-SNE (right) visualizations of the data, colored by cell-type. The
group of clusters corresponding to monocytes (cluster 1) and dendritic cells (DCs; cluster 2) showed the most pronounced
difference between the two visualizations. b. For a detailed comparison, we plotted the same visualizations restricted to the
monocyte-DC subset, which revealed distinct subtypes of monocytes (CD16 Mono and CD14 Mono) and DCs (DC3, DC4,
and DC6) with clear density differences in den-SNE. Each subtype is annotated using the classification from the PBMC2
study (Villani et al., 2017; Methods) based on marker gene expression. Although the same subtypes are visible in t-SNE, their
relative density differences are lost. c. Scatter plots comparing the local radii, our measure of local density (Methods), in the
original space and in the visualization (embedding). Points are colored by cell type, and the 𝑅2 value of the correlation is
shown for each plot. Higher correlation of den-SNE shows that den-SNE more accurately conveys the density landscape of
the original data than t-SNE. Scatter plots based on neighborhood count (another measure of visual density; Methods) are
included in Figure G.11. d. Gene expression heatmaps of monocyte marker genes CD14, S100A8, and CD16 in the den-SNE
visualization restricted to monocytes. The patterns of expression support our classification of the dense cluster as CD16 Mono
and the sparse cluster as CD14 Mono. e. Gene expression heatmaps of DC marker genes from the PBMC2 study (Villani
et al., 2017; Methods) for DC3 (top) and DC6 (bottom) in the densMAP visualization restricted to DCs. These support our
assignment of DC clusters to DC3 and DC6.
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Figure G.13: Monocyte and dendritic cell subtypes with density differences correspond to distinct clusters in the original
dataset. To test whether the monocyte (a) and dendritic cell (b) subtypes with density differences highlighted by our
visualizations reflect distinct subpopulations of cells, we performed Louvain clustering of each cell type in the PBMC dataset
based on their high-dimensional gene expression profiles. The top plots show the heatmaps of marker gene expression
as shown in Figure 6.1 for reference, and the bottom plot shows the densMAP visualization colored by labels from the
high-dimensional clustering. In both cell types, the identified clusters indeed correspond to subtypes with clear density
differences.
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Figure G.14: Density differences among monocytes and dendritic cell subtypes are validated on additional datasets.
Density-preserving visualizations of the (a) PBMC data, zoomed in on the monocytes and DCs (densMAP); (b) PBMC2
data (den-SNE); and (c) PBMC3 data (den-SNE) (Methods). In (a), the labels assigned are hypothesized based on subtypes
determined in the PBMC2 dataset (see Figure G.15). The visualizations of PBMC2 and PBMC3 data recapitulate the density
differences between CD14 Mono (which are sparse) and CD16 Mono/DC3 subsets (which are dense) observed in PBMC data.
d. We further validated these density difference on the PBMC2 and PBMC3 data based on the original local radii computed
for each of these datasets. For both PBMC2 (left) and PBMC3 (right), the local radius in the original data is significantly
larger in CD14 monocytes than in CD16 monocytes. Similarly, DC3 has significantly smaller local radii than CD14 monocytes
in the PBMC2 data; in the PBMC3 dataset, DC subtype labels were not available but the local radii of CD14 monocytes are
still larger than that of the DCs. In PBMC2, there are 163 CD14+ monocytes, 122 CD16+ monocytes, and 107 DC3 cells; in
PBMC3, there are 1,264 CD14+ monocytes, 398 CD16+ monocytes, and 142 DCs. The ∗ indicates a 𝑝-value less than 5 × 10−4

for a one-sided Mann-Whitney U test statistic (see Methods). NK: Natural killer cells; Mem B: Memory B cells
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Figure G.15: Marker gene expressions for dendritic cell subtypes in the PBMC dataset. We plot gene expression heatmaps
for the marker genes identified in the original study of PBMC2 for the dendritic cell (DC) subtypes (a) DC3, (b) DC6, and (c)
DC4 on our densMAP visualization of the PBMC data, restricted to DCs. d. Violin plots showing the expression of marker
genes identified by the PBMC2 study in our putative DC subtypes in the PBMC dataset: DC3 (left), DC6 (middle), and
DC4 (right). The higher expression of these genes in our assigned subtypes and the expression patterns in (a) through (c)
support our assignment of the DCs in the original PBMC dataset to the known subtypes in the PBMC2 dataset. The asterisk
indicates our putative cell type assignment based on marker gene expression. e. Noting the existence of sparse and dense
parts of the DC3 cluster in Figure 6.2, we compare the expression of DC3 and classical monocyte marker genes in the dense
DCs (log local radius less than 3.9), sparse DCs (log local radius greater than 3.9), and classical monocytes; the violin plot
indicates that sparse DCs are intermediate in expression of these marker genes between dense DCs and classical monocytes,
potentially indicating a transition between the two states. The asterisk indicates our putative cell type assignment based on
marker gene expression.
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Figure G.16: Density-preserving methods preserve density robustly at different scales on C. elegans embryo development
data based on neighborhood count. We compared the local radius of each point in the original C. elegans embryo development
dataset to its neighborhood count in the visualizations (a measure of visual density; see Methods) for (a) densMAP and
UMAP; and (b) den-SNE and t-SNE. We chose for each embedding, a length-scale ℓave and multiples of that length-scale for
which to compute the neighborhood counts (Methods): { 1

2ℓave , ℓave , 2ℓave} for densMAP and UMAP, and {ℓave , 2ℓave , 4ℓave}
for den-SNE and t-SNE. Since neighborhood count represents the density around a given point, a visualization that preserves
density information will have higher neighborhood counts for points with smaller local radii in the original space. Note that
this negative correlation is significantly stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern
holds across the different length-scales.
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Figure G.17: Visualizing the C. elegans embryo development data with den-SNE recapitulates densMAP results. We
repeat the analysis presented in Figure 6.3 using t-SNE and den-SNE. a. den-SNE embedding of dataset, colored by cell-type
(t-SNE ommitted for space). b. Same data, now colored by embryo time, with den-SNE above and UMAP below. The scatter
plots on the right compare the local radius, our measure of local density, in the original space, with the local radius in the
embedding (Methods). Points are colored by embryo time, and the 𝑅2 value of the correlation is shown for each plot. The
higher correlation in den-SNE than in t-SNE supports the increase in transcriptomic variability over time seen in the den-SNE
plot. Analogous correlation plots based on neighborhood count, our other measure of local distance (Methods), are included
in Figure G.16. c. To assess lineage-specific patterns, we consider the mean local radius within different time bins for six
different cell-types in the original data (top), den-SNE (middle), and t-SNE (bottom). In the original data, the plots illustrate
the temporal changes in the underlying local density, while for den-SNE and t-SNE, they illustrate the apparent changes in
density based on the visualizations. Time intervals were given in the original dataset, and the 𝑦-axis shows the change in
average local radius compared to the earliest time interval in log-scale. Note that the trajectories traced out by den-SNE follow
those of the original dataset more closely than those from t-SNE, supporting the relative temporal homogeneity seen in the
den-SNE plots of semi-clonal cell types (hypodermis [7,746 cells], intestinal [1,732 cells], and BWM [17,520 cells]) compared to
the other cell types. d. We show the best linear fit of local radius v. embryo time for the three semi-clonal cell-types against all
clonal cells (59,026 cells), again aggregating cells within the time-intervals given in the publication, with error bars showing
one standard deviation in local radius for all cells within the interval. The slope of the linear fit for clonal cells is significantly
higher than those of the semi-clonal cells: 99% two-sided confidence intervals of the slope coefficients do not overlap. We
show densMAP and UMAP plots restricted to the examples of semi-clonal (e) and clonal (f) cell types; circles are centered at
the centroid of the points in each time bin, and radius indicates one standard deviation of these coordinates (both based on
visualization coordinates). densMAP more accurately portrays that the variability of the semi-clonal cell types (e) is more
homogeneous compared to the clonal cell types (f), whereas UMAP produces misleading visualizations.
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Figure G.18: Density-preserving methods preserve density robustly at different scales on UKBB data based on neighbor-
hood count. We compared the local radius of each point in the original UKBB dataset (20% subsample) to its neighborhood
count in the visualizations (a measure of visual density; see Methods) for (a) densMAP and UMAP; and (b) den-SNE
and t-SNE. We chose for each embedding, a length-scale ℓave and multiples of that length-scale for which to compute the
neighborhood counts (Methods): { 1

2ℓave , ℓave , 2ℓave} for densMAP and UMAP, and {ℓave , 2ℓave , 4ℓave} for den-SNE and t-SNE.
Since neighborhood count represents the density around a given point, a visualization that preserves density information will
have higher neighborhood counts for points with smaller local radii in the original space. Note that this negative correlation
is significantly stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern holds across the different
length-scales.
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Figure G.19: Density-preserving methods preserve density robustly at different scales on MNIST data based on
neighborhood count. We compared the local radius of each point in the original MNIST dataset to its neighborhood
count in the visualizations (a measure of visual density; see Methods) for (a) densMAP and UMAP; and (b) den-SNE,
and t-SNE. We chose for each embedding, a length-scale ℓave and multiples of that length-scale for which to compute the
neighborhood counts (Methods): { 1

2ℓave , ℓave , 2ℓave} for densMAP and UMAP, and {ℓave , 2ℓave , 4ℓave} for den-SNE and t-SNE.
Since neighborhood count represents the density around a given point, a visualization that preserves density information will
have higher neighborhood counts for points with smaller local radii in the original space. Note that this negative correlation
is significantly stronger for our density-preserving tools than for t-SNE and UMAP, and this pattern holds across the different
length-scales.
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Figure G.20: Varying the density weight parameter in densMAP and den-SNE controls the trade-off between density
preservation and cluster separation. We demonstrate on the C. elegans dataset the effects of varying the weight 𝜆 of the
density-preservation term in the objective function of (a) densMAP and (b) den-SNE. As 𝜆 increases, so does the correlation
between the log local radii in the original data and the embedding, but the clusters begin to fade into each other, likely due to
lack of space in the visualization. As 𝜆 decreases, the correlation becomes worse and the embeddings become closer to those
of t-SNE and UMAP. Based on our results from a wide range of datasets, we recommend the default values of 𝜆 = 0.1 for
den-SNE and 𝜆 = 2.0 for densMAP.
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Figure G.21: Batch-effect adjusted identification of differentially expressed genes along a developmental time course.
a. We obtained a dataset of developing mouse epiblast cells spanning three timepoints, with two experimental batches
per timepoint. PCA and MOFA+ components show significant within-timepoint variability. In this panel, loadings of each
principal component (PC) were normalized to zero mean and unit standard deviation. b, c. Weights computed by Schema
after accounting for batch effects and developmental age with two different distance metrics, one that provides Schema
with temporal-ordering and another that does not provide this order. When incorporating order information, Schema
down-weights PC5, which shows substantial within-timepoint, batch-related variability, and up-weights PC9, which has
higher correlation with time. Correspondingly identified PCs reflect the effect of these metric. d, e. Schema identifies genes
with monotonically changing expression. For each gene identified by Schema or MOFA+, we regressed its expression
(normalized to zero mean and unit standard deviation) against developmental time, encoding stages E6.25, E7.0 and E7.25 as
timepoints 1, 2 and 3, respectively. Consistent with stage-dependent monotonicity in expression, the fitted slopes for Schema
genes were significantly different from zero (two-sided 𝑡-test, 𝑝 = 3.83 × 10−6); this was not true of MOFA+ (𝑝 = 0.77). f.
Schema has stronger overlap with batch-effect adjusted benchmark sets of differentially expressed genes (hypergeometric test
with Bonferroni correction, 𝑝 = 5.9 × 10−12 for the benchmark set of size 188).
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Figure G.22: Synthesis of spliced and unspliced mRNA counts recovers RNA velocity and enables informative
visualization. a. t-SNE visualization of the spliced mRNA counts b, c. We synthesized spliced and unspliced mRNA counts,
with the former as the primary and the latter as the secondary modality, respectively. Schema’s transformation picks up the
time derivative of gene expression, thus accentuating the cell differentiation process. t-SNE visualizations of synthesized data
with 0.99 and 0.95 minimum correlation, respectively, are shown. d. Schema’s results are in agreement with the RNA velocity
tool, scVelo. By measuring each cell’s Schema transformation, we computed a pseudotime estimate which we found to be
significantly correlated with scVelo’s latent-time estimate (Spearman rank correlation 0.716, two-sided 𝑡-test 𝑝 < 10−128). e–g.
Same t-SNE visualizations as above, but with cells colored by their scVelo latent-time, showing that Schema puts cells at
similar differentiation stages progressively closer.
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Figure G.23: a. Leiden clustering for RNA-seq and ATAC-seq data individually and Schema’s synthesis. b. Leiden clustering
for totalVI and CCA synthesis
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Figure G.24: Visually, CCA seems to be effective at identifying a gene set that is differentially expressed only in densely-located
granule neurons. The Slide-seq sample used here (Puck 180430_1) is the same as in Figure 5.3d. However, as shown in
Figure 5.3e, the gene ranking computed by Schema is better preserved across three Slide-Seq samples than those produced
by CCA (median sample-pair Spearman rank correlation of 0.675 and 0.457, respectively)
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Figure G.25: Investigation of CCA and Schema cell loadings. We sorted Slideseq transcriptomes by their loading on the
Schema-implied gene scores and investigated how the exposure to secondary modalities (cell-type labels and spatial density)
varied in this ordering; we repeated the analysis for CCA cell loadings. For 𝑘 = 1, . . . , 99, we selected cells with loadings in
the percentile range [𝑘, 100] and computed the frequency of granule-cell labels and the average Gaussian kernel density
score of a cell in this set; higher values of these measures indicate stronger agreement with the cell type and spatial density
modalities, respectively. In the plot, the size of a point is proportional to 𝑘. For both Schema and CCA, the higher cell loadings
typically correlate with a higher granule-cell fraction and higher kernel density, as both the methods transform the primary
gene-expression modality to align it with the secondary modalities. However, for Schema this relationship plateaus after a
point because Schema’s regularization mechanism limits the distortion of the primary modality, constraining the extent of
match with the secondary modalities. In contrast, the unconstrained framework of CCA produces loadings where the 99th
percentile cell loading has significantly higher spatial density exposure than the 95th percentile. This may lead to overfitting
as CCA computes gene rankings that are overly determined by sample-specific artifacts. In contrast, the regularization
mechanism of Schema produces gene rankings that are better preserved across samples.
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Figure G.26: Evaluation of canonical correlation analysis (CCA) performance. a. Inferring cell types by synthesizing
RNA-seq and ATAC-seq data. The metric of evaluation here is the agreement between Leiden clustering on the synthesized
dataset and ground truth cell-type labels, measured using the adjusted Rand index (ARI), with higher scores indicating
greater agreement. This panel contains the same information as Figure 5.1e and is reproduced here for convenience. b.
Inferring RNA velocity by synthesizing spliced and unspliced mRNA counts. Spliced and unspliced data were correlated
using CCA and the synthesized data was visualized with t-SNE. The bottom half of the panel colors cells by their scVelo
latent-time estimate. This panel should be compared with Figure G.22b–f , which display the corresponding plots produced
by Schema synthesis of the data. CCA’s synthesis does not place cells with similar stages of differentiation as closely together
as Schema. Quantitatively, the Spearman rank correlation between t-SNE distances and latent-time difference is 0.163 for
CCA, less than the correlation achieved using just the spliced mRNA counts (0.397); in contrast, the Schema transformation
corresponding to a minimum correlation constraint of 0.95 results in a correlation of 0.432. c. Schema highlights secondary
patterns while preserving primary structure. RNA-seq data was synthesized with cell age metadata using CCA. Compared to
a synthesis by Schema (Figure 5.2b–d), the CCA-based visualization less clearly communicates the developmental trajectory.
We quantified the age-related structure in the transformed dataset by a diffusion pseudotime analysis. The Spearman rank
correlation between the pseudotime estimate and the ground-truth cell age is only 0.059 for the CCA-synthesized data while
it 0.365 in the original, untransformed dataset and 0.436 in the Schema-transformed dataset corresponding to a minimum
correlation constraint of 0.99.
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Figure G.27: Correlation of factor loadings between MOFA+ factors and principal components.
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Figure G.28: Differential expression analysis while accounting for batch effects and developmental stage. Schema
feature-selection results for different weights of the developmental-stage and batch-effect modalities. The middle column is
the one shown in the main text: equal (and opposite) weights for the batch-effects and developmental-stage modalities. The
left-most column corresponds to using only the batch-effect modality while the right-most column corresponds to using only
the developmental-stage modality.
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Figure G.29: Visualization of enriched GO terms in Schema-ranked genes across 3 samples of Slide-Seq data. (via
REViGO [167], using

��log10 𝑝
�� )
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Figure G.30: Voronoi-tessellation visualization of REACTOME pathways enriched in Schema-ranked genes across 3
samples of Slide-Seq data





H Supplementary Tables



232 H Supplementary Tables

Table H.1: Runtime comparison of
Schema with CCA, SpatialDE and
Trendsceek. The values above were
averaged over the three previously
described mouse cerebellum samples
from the Slide-seq dataset. All pro-
grams were run on a Linux server
with 24 Intel Xeon 2.40 GHz cores
and 386 GB RAM. Each program was
allowed to use as many cores as were
available; Schema, CCA and Spa-
tialDE did so, but Trendsceek did not.
The server is a shared resource and
while we did periodically check it to
confirm that ample system resources
were available, the runtime estimates
above may be influenced by the load
from other programs. For Schema,
the runtime includes the time for pre-
processing and encompasses the com-
plete ensemble of sub-runs on differ-
ent parameter choices. The runtime
for CCA also encompasses the entire
pipeline: pairwise modality combina-
tions and then a final integration. For
Schema and CCA, we were able to
use all the data of each sample. For
SpatialDE and Trendsceek, we exper-
imented with small subsets of data
and increased the subset size until
the demand on the shared resource
(server) became infeasible. The sub-
set of cells for SpatialDE and Trend-
sceek were randomly chosen, with an
equal split between granule and non-
granule cells; for both, genes were
selected based on high expression
variability.

Program Average per sample

# of cells # of genes Runtime (min)

Schema 20823 17607 34
CCA 20823 17607 50
SpatialDE 16000 9000 244
Trendsceek 2000 3000 338
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Gene Expression in Tumor vs. Blood (T Cells CD8)

Permutation Test 𝑝-value
(Bonferroni-corrected)

Rank Gene Δ(Variance) Δ(Dispersion) Δ(Mean) Dispersion Mean Variance

1 DUSP4 1.034 0.492 0.919 <2E-4 <2E-4 <2E-4
2 RGS1 0.995 0.009 0.926 1.0 <2E-4 <2E-4
3 RGCC 0.922 0.045 1.024 1.0 <2E-4 <2E-4
4 TNFAIP3 0.816 -0.173 0.970 1.0 <2E-4 <2E-4
5 NR4A2 0.800 0.023 0.933 1.0 <2E-4 <2E-4
6 ZFP36 0.792 0.128 0.864 0.1346 <2E-4 <2E-4
7 CCL4 0.783 0.619 0.358 <2E-4 <2E-4 <2E-4
8 CREM 0.764 -0.201 0.811 1.0 <2E-4 <2E-4
9 JUNB 0.742 0.116 0.736 0.676 <2E-4 <2E-4
10 HSP90AA1 0.701 0.252 0.605 <2E-4 <2E-4 <2E-4
11 DNAJB1 0.693 0.055 0.616 1.0 <2E-4 <2E-4
12 FOSB 0.678 0.594 0.565 <2E-4 <2E-4 <2E-4
13 RPS26 0.675 0.199 0.516 <2E-4 <2E-4 <2E-4
14 ZNF331 0.670 0.456 0.641 <2E-4 <2E-4 <2E-4
15 JUND 0.656 -0.027 0.906 1.0 <2E-4 <2E-4
16 FTH1 0.588 0.141 0.618 0.0516 <2E-4 <2E-4
17 FOSL2 0.585 0.008 0.599 1.0 <2E-4 <2E-4
18 IGKC 0.579 1.135 0.335 <2E-4 <2E-4 <2E-4
19 YPEL5 0.569 0.193 0.575 0.005 <2E-4 <2E-4
20 TSC22D3 0.560 0.231 0.476 <2E-4 <2E-4 <2E-4

Table H.2: Genes with largest differ-
ence in variance between blood and
tumor CD8 T cells. The columns Δ

{Dispersion, Mean, Variance} show
the changes in the corresponding
statistic for each listed gene in tu-
mor (1,621 cells) relative to blood (443
cells). We performed one-sided per-
mutation tests (last three columns)
to calculate the significance of the
change in mean, dispersion, and vari-
ance, and those 𝑝-values which are
significant after Bonferroni correction
(𝑝 < 0.01) are shown in boldface.
Zero 𝑝-values are shown as <2E-4,
which is the smallest possible non-
zero 𝑝-value we could obtain based
on 100k permutation trials after Bon-
ferroni correction.

Gene Expression in Tumor vs. Blood (T Cells CD4 Memory Resting)

Permutation Test 𝑝-value
(Bonferroni-corrected)

Rank Gene Δ(Variance) Δ(Dispersion) Δ(Mean) Dispersion Mean Variance

1 RGS1 1.013 -0.009 1.069 1.0 <2E-4 <2E-4
2 DUSP4 0.952 0.295 0.753 <2E-4 <2E-4 <2E-4
3 TNFAIP3 0.818 -0.205 1.099 1.0 <2E-4 <2E-4
4 JUNB 0.810 -0.070 1.110 1.0 <2E-4 <2E-4
5 ZFP36 0.809 0.039 1.045 1.0 <2E-4 <2E-4
6 RGCC 0.779 0.101 0.922 0.0124 <2E-4 <2E-4
7 CREM 0.762 0.111 0.937 0.1886 <2E-4 <2E-4
8 HSP90AA1 0.730 0.185 0.795 <2E-4 <2E-4 <2E-4
9 NR4A2 0.669 0.216 0.737 <2E-4 <2E-4 <2E-4
10 HSPA1A 0.664 0.911 0.367 <2E-4 <2E-4 <2E-4
11 LMNA 0.656 0.455 0.556 <2E-4 <2E-4 <2E-4
12 DNAJB1 0.610 0.201 0.566 <2E-4 <2E-4 <2E-4
13 JUND 0.598 -0.049 0.979 1.0 <2E-4 <2E-4
14 FTH1 0.583 0.041 1.067 1.0 <2E-4 <2E-4
15 SLC2A3 0.561 0.091 0.631 0.0196 <2E-4 <2E-4
16 ZNF331 0.560 0.029 0.586 1.0 <2E-4 <2E-4
17 YPEL5 0.557 0.052 0.657 1.0 <2E-4 <2E-4
18 HSPH1 0.553 0.297 0.493 <2E-4 <2E-4 <2E-4
19 TSC22D3 0.549 0.213 0.534 <2E-4 <2E-4 <2E-4
20 FOSL2 0.541 0.211 0.612 <2E-4 <2E-4 <2E-4

Table H.3: Genes with largest differ-
ence in variance between blood and
tumor cells) memory resting CD4
T cells. The columns Δ {Dispersion,
Mean, Variance} show the changes in
the corresponding statistic for each
listed gene in tumor (9,019 cells) rel-
ative to blood (1,036 cells). We per-
formed one-sided permutation tests
(last three columns) to calculate the
significance of the change in mean,
dispersion, and variance, and those
𝑝-values which are significant after
Bonferroni correction (𝑝 < 0.01) are
shown in boldface. Zero 𝑝-values are
shown as <2E-4, which is the smallest
possible non-zero 𝑝-value we could
obtain based on 100k permutation tri-
als after Bonferroni correction.
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Table H.4: Genes with largest dif-
ference in variance between blood
and tumor CD4 naïve T cells. The
columns Δ {Dispersion, Mean, Vari-
ance} show the changes in the corre-
sponding statistic for each listed gene
in tumor (61 cells) relative to blood
(437 cells). We performed one-sided
permutation tests (last three columns)
to calculate the significance of the
change in mean, dispersion, and vari-
ance, and those 𝑝-values which are
significant after Bonferroni correction
(𝑝 < 0.01) are shown in boldface.
Zero 𝑝-values are shown as <2E-4,
which is the smallest possible non-
zero 𝑝-value we could obtain based
on 100k permutation trials after Bon-
ferroni correction.

Gene Expression in Tumor vs. Blood (T Cells Naïve CD4)
Permutation Test 𝑝-value

(Bonferroni-corrected)

Rank Gene Δ(Variance) Δ(Dispersion) Δ(Mean) Dispersion Mean Variance

1 MT-ATP6 1.143 0.416 -0.331 <2E-4 0.0078 <2E-4
2 RPS26 1.114 0.047 0.97 1.0 <2E-4 <2E-4
3 FTH1 1.052 0.432 0.787 <2E-4 <2E-4 <2E-4
4 RPS14 0.899 0.404 -0.048 <2E-4 1.0 <2E-4
5 CREM 0.888 0.628 0.66 1.0 <2E-4 <2E-4
6 MT-RNR2 0.887 0.253 0.82 0.0128 <2E-4 <2E-4
7 RPLP1 0.833 0.372 0.007 <2E-4 1.0 <2E-4
8 RPS27 0.832 0.299 -0.097 0.0046 1.0 <2E-4
9 RPS3 0.828 0.457 -0.198 <2E-4 0.497 <2E-4
10 MTRNR2L12 0.82 0.274 0.797 0.0194 <2E-4 <2E-4
11 CXCR4 0.814 0.366 0.661 0.166 <2E-4 <2E-4
12 SRGN 0.81 0.377 0.678 0.129 <2E-4 <2E-4
13 MT-ND1 0.762 0.315 -0.155 0.0042 1.0 <2E-4
14 RPL34 0.754 0.361 -0.426 <2E-4 <2E-4 <2E-4
15 TTC19 0.753 0.414 0.026 <2E-4 1.0 <2E-4
16 PABPC1 0.744 0.481 -0.099 <2E-4 1.0 <2E-4
17 MT-CO2 0.733 0.307 0.407 0.0084 <2E-4 <2E-4
18 RPL11 0.721 0.469 -0.601 <2E-4 <2E-4 <2E-4
19 MT-CO1 0.719 0.391 -0.118 <2E-4 1.0 <2E-4
20 RPL27A 0.716 0.387 -0.289 <2E-4 0.0138 <2E-4

Table H.5: Genes with largest dif-
ference in variance between blood
and tumor memory B cells. The
columns Δ {Dispersion, Mean, Vari-
ance} show the changes in the cor-
responding statistic for each listed
gene in tumor (4,811 cells) relative
to blood (67 cells). N/A values in
the Δ(Dispersion) and Dispersion 𝑝-
value columns indicate that the gene
had zero mean-expression in blood,
and so dispersion is undefined. We
performed one-sided permutation
tests (last three columns) to calcu-
late the significance of the change in
mean, dispersion, and variance, and
those 𝑝-values which are significant
after Bonferroni correction (𝑝 < 0.01)
are shown in boldface. Zero 𝑝-values
are shown as <2E-4, which is the
smallest possible non-zero 𝑝-value
we could obtain based on 100k per-
mutation trials after Bonferroni cor-
rection.

Gene Expression in Tumor vs. Blood (B Cells Memory)
Permutation Test 𝑝-value

(Bonferroni-corrected)

Rank Gene Δ(Variance) Δ(Dispersion) Δ(Mean) Dispersion Mean Variance

1 RGS1 0.882 0.644 0.764 <2E-4 <2E-4 <2E-4
2 NR4A2 0.839 N/A 1.022 N/A <2E-4 <2E-4
3 JUNB 0.742 -0.074 0.896 1.0 <2E-4 <2E-4
4 CD83 0.674 0.230 0.771 0.224 <2E-4 <2E-4
5 RGS2 0.647 -0.177 0.711 1.0 <2E-4 <2E-4
6 HSP90AA1 0.644 0.227 0.682 0.3564 <2E-4 <2E-4
7 FOSB 0.635 N/A 0.667 N/A <2E-4 <2E-4
8 JUND 0.598 0.151 0.893 1.0 <2E-4 <2E-4
9 GPR183 0.586 0.366 0.539 0.0246 <2E-4 <2E-4
10 HSPH1 0.565 0.244 0.555 0.3082 <2E-4 <2E-4
11 ZNF331 0.560 0.489 0.557 <2E-4 <2E-4 <2E-4
12 SRGN 0.541 0.047 0.619 1.0 <2E-4 <2E-4
13 DUSP4 0.529 N/A 0.404 N/A <2E-4 <2E-4
14 TSC22D3 0.515 -0.158 0.794 1.0 <2E-4 <2E-4
15 NR4A3 0.512 N/A 0.454 N/A <2E-4 <2E-4
16 HSPA1A 0.507 0.957 0.350 <2E-4 <2E-4 <2E-4
17 SLC2A3 0.504 -0.317 0.569 1.0 <2E-4 <2E-4
18 LY9 0.503 0.098 0.569 1.0 <2E-4 <2E-4
19 HSP90AB1 0.499 0.122 0.573 1.0 <2E-4 <2E-4
20 MCL1 0.496 0.215 0.492 0.3442 <2E-4 <2E-4
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Gene Expression in Tumor vs. Blood (B Cells Naïve)
Permutation Test 𝑝-value

(Bonferroni-corrected)

Rank Gene Δ(Variance) Δ(Dispersion) Δ(Mean) Dispersion Mean Variance

1 JUNB 0.967 0.264 1.094 0.322 <2E-4 <2E-4
2 CD83 0.852 -0.013 0.937 1.0 <2E-4 <2E-4
3 RPS27 0.827 0.329 -0.239 <2E-4 0.6354 <2E-4
4 NR4A2 0.811 N/A 0.876 N/A <2E-4 <2E-4
5 JUND 0.681 -0.087 1.025 1.0 <2E-4 <2E-4
6 FOS 0.660 N/A 0.515 N/A <2E-4 <2E-4
7 FOSB 0.652 0.320 0.573 0.4072 <2E-4 <2E-4
8 RPL13A 0.634 0.287 -0.362 <2E-4 0.008 <2E-4
9 DUSP1 0.629 -0.188 0.632 1.0 <2E-4 <2E-4
10 IGHM 0.625 0.506 -0.928 <2E-4 <2E-4 <2E-4
11 RGS1 0.620 N/A 0.416 N/A <2E-4 <2E-4
12 ZNF331 0.616 -0.140 0.584 1.0 <2E-4 <2E-4
13 TSC22D3 0.609 0.048 0.715 1.0 <2E-4 <2E-4
14 JUN 0.590 -0.875 0.498 1.0 <2E-4 <2E-4
15 HERPUD1 0.581 -0.033 0.583 1.0 <2E-4 <2E-4
16 RPS15A 0.578 0.394 -0.490 <2E-4 <2E-4 <2E-4
17 LY9 0.575 0.474 0.548 <2E-4 <2E-4 <2E-4
18 RPS12 0.567 0.292 -0.434 0.0052 <2E-4 <2E-4
19 SLC2A3 0.552 0.070 0.560 1.0 <2E-4 <2E-4
20 RPS19 0.549 0.374 -0.403 <2E-4 <2E-4 <2E-4

Table H.6: Genes with largest dif-
ference variance between blood and
tumor naïve B cells. The columns Δ
{Dispersion, Mean, Variance} show
the changes in the corresponding
statistic for each listed gene in tumor
(396 cells) relative to blood (83 cells).
N/A values in the Δ(Dispersion)
and Dispersion 𝑝-value columns in-
dicate that the gene had zero mean-
expression in blood, and so disper-
sion is undefined. We performed one-
sided permutation tests (last three
columns) to calculate the significance
of the change in mean, dispersion,
and variance, and those 𝑝-values
which are significant after Bonferroni
correction (𝑝 < 0.01) are shown in
boldface. Zero 𝑝-values are shown
as <2E-4, which is the smallest possi-
ble non-zero 𝑝-value we could obtain
based on 100k permutation trials af-
ter Bonferroni correction.

T Cells CD8 (GO Enrichment)
GO Biological Process Complete Bgnd Count Expected +/- Fold Enrich P-value

negative regulation of interleukin-2 production (GO:0032703) 24 3 0.03 + >100 2.55E-02
response to bacterium (GO:0009617) 691 7 0.72 + 9.68 4.06E-02
negative regulation of transcription by RNA polymerase II (GO:0000122) 886 8 0.93 + 8.63 1.63E-02
negative regulation of RNA metabolic process (GO:0051253) 1371 9 1.43 + 6.27 4.13E-02
regulation of transcription by RNA polymerase II (GO:0006357) 2255 11 2.36 + 4.66 3.96E-02
regulation of nucleobase-containing compound metabolic process (GO:0019219) 4019 15 4.21 + 3.57 4.81E-03
regulation of RNA metabolic process (GO:0051252) 3768 14 3.94 + 3.55 1.88E-02
regulation of cellular macromolecule biosynthetic process (GO:2000112) 3894 14 4.08 + 3.44 2.84E-02
regulation of macromolecule biosynthetic process (GO:0010556) 4033 14 4.22 + 3.32 4.38E-02
negative regulation of cellular process (GO:0048523) 4768 15 4.99 + 3.01 4.78E-02
negative regulation of biological process (GO:0048519) 5355 16 5.6 + 2.86 2.91E-02
regulation of nitrogen compound metabolic process (GO:0051171) 5821 17 6.09 + 2.79 1.11E-02
regulation of primary metabolic process (GO:0080090) 6004 17 6.28 + 2.71 1.79E-02
regulation of macromolecule metabolic process (GO:0060255) 6140 17 6.43 + 2.65 2.53E-02
regulation of cellular metabolic process (GO:0031323) 6212 17 6.5 + 2.62 3.03E-02
Analysis Type: PANTHER Overrepresentation Test (Released 20190711)
Annotation Version and Release Date: GO Ontology database Released 2020-02-21

Table H.7: GO enrichment analy-
sis of differentially variable genes
between tumor and blood for CD8
T cells in the lung cancer dataset.
We obtained the gene ontology
(GO) terms significantly enriched
in the top twenty genes ranked
by increase in variance in tumor v.
blood for CD8 T cells (shown in Ta-
ble H.2). The analysis was performed
using the web service available
at: http://geneontology.org/. Signif-
icance is calculated using Fisher’s ex-
act test, and 𝑝-values are Bonferroni
corrected. Bgnd: Background count

T Cells CD4 Memory Resting (GO Enrichment)
GO Biological Process Complete Bgnd Count Expected +/- Fold Enrich P-value

negative regulation of interleukin-2 production (GO:0032703) 24 3 0.03 + >100 2.55E-02
chaperone cofactor-dependent protein refolding (GO:0051085) 30 3 0.03 + 95.56 4.74E-02
regulation of cellular response to heat (GO:1900034) 79 4 0.08 + 48.38 1.38E-02
response to unfolded protein (GO:0006986) 166 5 0.17 + 28.78 6.92E-03
response to topologically incorrect protein (GO:0035966) 188 5 0.2 + 25.41 1.26E-02
negative regulation of transcription by RNA polymerase II (GO:0000122) 886 8 0.93 + 8.63 1.63E-02
cellular response to stress (GO:0033554) 1744 11 1.83 + 6.03 3.05E-03
regulation of transcription by RNA polymerase II (GO:0006357) 2255 11 2.36 + 4.66 3.96E-02
positive regulation of macromolecule metabolic process (GO:0010604) 3388 13 3.55 + 3.67 4.34E-02
regulation of nucleobase-containing compound metabolic process (GO:0019219) 4019 15 4.21 + 3.57 4.81E-03
regulation of macromolecule biosynthetic process (GO:0010556) 4033 15 4.22 + 3.55 5.04E-03
regulation of cellular macromolecule biosynthetic process (GO:2000112) 3894 14 4.08 + 3.44 2.84E-02
regulation of biosynthetic process (GO:0009889) 4258 15 4.46 + 3.37 1.05E-02
negative regulation of cellular process (GO:0048523) 4768 15 4.99 + 3.01 4.78E-02
regulation of macromolecule metabolic process (GO:0060255) 6140 17 6.43 + 2.65 2.53E-02
Analysis Type: PANTHER Overrepresentation Test (Released 20190711)
Annotation Version and Release Date: GO Ontology database Released 2020-02-21

Table H.8: GO enrichment analy-
sis of differentially variable genes
between tumor and blood for CD4
memory resting T cells in the lung
cancer dataset. We obtained the gene
ontology (GO) terms significantly en-
riched in the top twenty genes ranked
by increase in variance in tumor v.
blood for CD4 memory resting T cells
(shown in Table H.3). The analysis
was performed using the web service
available at: http://geneontology.
org/. Significance is calculated us-
ing Fisher’s exact test, and 𝑝-values
are Bonferroni corrected. Bgnd: Back-
ground count

http://geneontology.org/
http://geneontology.org/
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Table H.9: GO enrichment analy-
sis of differentially variable genes
between tumor and blood for CD4
naïve T cells in the lung cancer
dataset. We obtained the gene ontol-
ogy (GO) terms significantly enriched
in the top twenty genes ranked by in-
crease in variance in tumor v. blood
for CD4 naïve T cells (shown in Ta-
ble H.4). The analysis was performed
using the web service available
at: http://geneontology.org/. Signif-
icance is calculated using Fisher’s ex-
act test, and 𝑝-values are Bonferroni
corrected. Bgnd: Background count

CD4 T Cells Naïve

GO biological process complete Bgnd Count Expected +/- Fold Enrich P-value

SRP-dependent cotranslational protein targeting to membrane (GO:0006614) 96 8 0.1 + 83.55 4.25E-10
cotranslational protein targeting to membrane (GO:0006613) 101 8 0.1 + 79.41 6.26E-10
nuclear-transcribed mRNA catabolic process, nonsense-mediated decay (GO:0000184) 120 9 0.12 + 75.19 2.01E-11
protein targeting to ER (GO:0045047) 110 8 0.11 + 72.92 1.2E-09
establishment of protein localization to endoplasmic reticulum (GO:0072599) 114 8 0.11 + 70.36 1.58E-09
viral transcription (GO:0019083) 115 8 0.11 + 69.75 1.68E-09
translational initiation (GO:0006413) 142 9 0.14 + 63.55 8.55E-11
viral gene expression (GO:0019080) 132 8 0.13 + 60.76 4.84E-09
protein localization to endoplasmic reticulum (GO:0070972) 138 8 0.14 + 58.12 6.8E-09
nuclear-transcribed mRNA catabolic process (GO:0000956) 194 9 0.19 + 46.51 1.27E-09
protein targeting to membrane (GO:0006612) 177 8 0.18 + 45.32 4.62E-08
mRNA catabolic process (GO:0006402) 213 9 0.21 + 42.36 2.87E-09
oxidative phosphorylation (GO:0006119) 109 4 0.11 + 36.79 0.0388
RNA catabolic process (GO:0006401) 247 9 0.25 + 36.53 1.04E-08
establishment of protein localization to membrane (GO:0090150) 289 8 0.29 + 27.75 0.00000203
nucleobase-containing compound catabolic process (GO:0034655) 372 9 0.37 + 24.26 0.000000366
translation (GO:0006412) 378 9 0.38 + 23.87 0.000000421
peptide biosynthetic process (GO:0043043) 403 9 0.4 + 22.39 0.000000734
protein targeting (GO:0006605) 371 8 0.37 + 21.62 0.000014
heterocycle catabolic process (GO:0046700) 429 9 0.43 + 21.03 0.00000126
cellular nitrogen compound catabolic process (GO:0044270) 430 9 0.43 + 20.98 0.00000129
aromatic compound catabolic process (GO:0019439) 444 9 0.44 + 20.32 0.0000017
organic cyclic compound catabolic process (GO:1901361) 478 9 0.48 + 18.88 0.00000323
establishment of protein localization to organelle (GO:0072594) 448 8 0.45 + 17.9 0.0000596
peptide metabolic process (GO:0006518) 519 9 0.52 + 17.39 0.00000659
amide biosynthetic process (GO:0043604) 526 9 0.52 + 17.15 0.0000074
protein localization to membrane (GO:0072657) 514 8 0.51 + 15.6 0.000171
mRNA metabolic process (GO:0016071) 690 9 0.69 + 13.08 0.0000767
protein localization to organelle (GO:0033365) 761 9 0.76 + 11.86 0.000178
cellular amide metabolic process (GO:0043603) 777 9 0.77 + 11.61 0.000212
viral process (GO:0016032) 784 9 0.78 + 11.51 0.000229
symbiotic process (GO:0044403) 876 9 0.87 + 10.3 0.00059
cellular macromolecule catabolic process (GO:0044265) 907 9 0.9 + 9.95 0.000793
macromolecule catabolic process (GO:0009057) 1048 9 1.05 + 8.61 0.00269
intracellular protein transport (GO:0006886) 997 8 0.99 + 8.04 0.0254
organonitrogen compound biosynthetic process (GO:1901566) 1382 10 1.38 + 7.25 0.00218
cellular nitrogen compound biosynthetic process (GO:0044271) 1638 10 1.63 + 6.12 0.0105
negative regulation of gene expression (GO:0010629) 1757 10 1.75 + 5.71 0.0199
cellular localization (GO:0051641) 2393 11 2.39 + 4.61 0.0382

Analysis Type: PANTHER Overrepresentation Test (Released 20200407)
Annotation Version and Release Date: GO Ontology database Released 2020-02-21

Table H.10: GO enrichment analy-
sis of differentially variable genes
between tumor and blood for mem-
ory B cells in the lung cancer
dataset. We obtained the gene ontol-
ogy (GO) terms significantly enriched
in the top twenty genes ranked by in-
crease in variance in tumor v. blood
for memory B cells (shown in Ta-
ble H.5). The analysis was performed
using the web service available
at: http://geneontology.org/. Signif-
icance is calculated using Fisher’s ex-
act test, and 𝑝-values are Bonferroni
corrected. Bgnd: Background count

B Cells Memory
GO Biological Process Complete Bgnd Count Expected +/- Fold Enrich P-value

chaperone-mediated protein complex assembly (GO:0051131) 18 3 0.02 + >100 1.00E-02
regulation of cellular response to heat (GO:1900034) 79 4 0.08 + 50.8 1.12E-02
leukocyte activation involved in immune response (GO:0002366) 615 7 0.61 + 11.42 1.30E-02
cell activation involved in immune response (GO:0002263) 619 7 0.62 + 11.35 1.35E-02
response to organic substance (GO:0010033) 3009 12 3 + 4 4.55E-02
Analysis Type: PANTHER Overrepresentation Test (Released 20190711)
Annotation Version and Release Date: GO Ontology database Released 2020-02-21
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B Cells Naïve
GO Biological Process Complete Bgnd Count Expected +/- Fold Enrich P-value

response to cAMP (GO:0051591) 101 6 0.1 + 59.6 6.52E-06
cellular response to calcium ion (GO:0071277) 85 5 0.08 + 59.02 2.14E-04
SRP-dependent cotranslational protein targeting to membrane (GO:0006614) 96 5 0.1 + 52.26 3.83E-04
cotranslational protein targeting to membrane (GO:0006613) 101 5 0.1 + 49.67 4.88E-04
protein targeting to ER (GO:0045047) 110 5 0.11 + 45.61 7.35E-04
establishment of protein localization to endoplasmic reticulum (GO:0072599) 114 5 0.11 + 44.01 8.72E-04
viral transcription (GO:0019083) 115 5 0.11 + 43.62 9.10E-04
response to organophosphorus (GO:0046683) 142 6 0.14 + 42.4 4.63E-05
nuc.-transc. mRNA catab. proc., nonsense-med. decay (GO:0000184) 120 5 0.12 + 41.81 1.12E-03
response to calcium ion (GO:0051592) 151 6 0.15 + 39.87 6.61E-05
response to purine-containing compound (GO:0014074) 157 6 0.16 + 38.34 8.27E-05
viral gene expression (GO:0019080) 132 5 0.13 + 38.01 1.76E-03
protein localization to endoplasmic reticulum (GO:0070972) 138 5 0.14 + 36.35 2.18E-03
translational initiation (GO:0006413) 142 5 0.14 + 35.33 2.51E-03
protein targeting to membrane (GO:0006612) 177 5 0.18 + 28.34 7.23E-03
cellular response to metal ion (GO:0071248) 193 5 0.19 + 25.99 1.10E-02
nuclear-transcribed mRNA catabolic process (GO:0000956) 194 5 0.19 + 25.86 1.12E-02
mRNA catabolic process (GO:0006402) 213 5 0.21 + 23.55 1.76E-02
response to mechanical stimulus (GO:0009612) 218 5 0.22 + 23.01 1.97E-02
cellular response to inorganic substance (GO:0071241) 221 5 0.22 + 22.7 2.10E-02
RNA catabolic process (GO:0006401) 247 5 0.25 + 20.31 3.58E-02
response to metal ion (GO:0010038) 370 6 0.37 + 16.27 1.16E-02
cellular response to hormone stimulus (GO:0032870) 612 7 0.61 + 11.48 1.26E-02
response to bacterium (GO:0009617) 691 7 0.69 + 10.16 2.79E-02
response to organic cyclic compound (GO:0014070) 926 8 0.92 + 8.67 1.46E-02
response to organonitrogen compound (GO:0010243) 1006 8 1 + 7.98 2.70E-02
response to other organism (GO:0051707) 1322 10 1.32 + 7.59 1.43E-03
response to external biotic stimulus (GO:0043207) 1324 10 1.32 + 7.58 1.45E-03
response to biotic stimulus (GO:0009607) 1356 10 1.35 + 7.4 1.81E-03
response to nitrogen compound (GO:1901698) 1089 8 1.09 + 7.37 4.85E-02
interspecies interaction between organisms (GO:0044419) 1964 12 1.96 + 6.13 4.25E-04
cellular nitrogen compound biosynthetic process (GO:0044271) 1638 10 1.63 + 6.13 1.04E-02
RNA metabolic process (GO:0016070) 1679 10 1.67 + 5.98 1.30E-02
cellular macromolecule biosynthetic process (GO:0034645) 1694 10 1.69 + 5.92 1.41E-02
macromolecule biosynthetic process (GO:0009059) 1753 10 1.75 + 5.72 1.93E-02
negative regulation of gene expression (GO:0010629) 1757 10 1.75 + 5.71 1.97E-02
response to external stimulus (GO:0009605) 2443 12 2.43 + 4.93 4.76E-03
negative regulation of macromolecule metabolic process (GO:0010605) 2682 12 2.67 + 4.49 1.32E-02
negative regulation of metabolic process (GO:0009892) 2942 12 2.93 + 4.09 3.58E-02
response to stress (GO:0006950) 3572 13 3.56 + 3.65 3.63E-02
Analysis Type: PANTHER Overrepresentation Test (Released 20190711)
Annotation Version and Release Date: GO Ontology database Released 2020-02-21

Table H.11: GO enrichment analy-
sis of differentially variable genes
between tumor and blood for naïve
B cells in the lung cancer dataset.
We obtained the gene ontology (GO)
terms significantly enriched in the
top twenty genes ranked by in-
crease in variance in tumor v. blood
for naïve B cells (shown in Ta-
ble H.6). The analysis was performed
using the web service available
at: http://geneontology.org/. Signif-
icance is calculated using Fisher’s ex-
act test, and 𝑝-values are Bonferroni
corrected. Bgnd: Background count
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Table H.12: Validation of top dif-
ferentially variable genes between
tumor and blood in CD8 T cells on
a secondary dataset. We repeat the
tests for difference in mean, variance,
and dispersion index of 19 of the top
20 genes from Table H.2 for CD8 T
cells in blood (1,250 cells) and lung
cancer (2,123 cells) on a secondary
dataset from Guo et al. (2018) (IGKC
was not found in the dataset). Other
cell types we analyzed did not have
a close match in this dataset and
were omitted from the analysis. The
columns Δ {Dispersion, Mean, Vari-
ance} show the changes in the corre-
sponding statistic for each listed gene
in tumor relative to blood. We per-
formed one-sided permutation tests
(last three columns) to calculate the
significance of the change in disper-
sion, mean, and variance, and those
𝑝-values which are significant after
Bonferroni correction (𝑝 < 0.01) are
shown in boldface. We see that 9 of
the 19 genes are significant in dif-
ferential variance in this dataset as
well and TSC22D3 is also signifi-
cantly overdispersed in tumor in this
dataset. Zero 𝑝-values are shown as
<2E-4, which is the smallest possi-
ble non-zero 𝑝-value we could obtain
based on 100k permutation trials af-
ter Bonferroni correction.

T Cells CD8 (Validation)
Permutation Test 𝑝-value

(Bonferroni-corrected)

Rank Gene Δ(Variance) Δ(Dispersion) Δ(Mean) Dispersion Mean Variance

1 RGS1 8.099 -0.782 4.155 1.0 <2E-4 <2E-4
2 DUSP4 4.170 0.522 1.238 1.0 <2E-4 <2E-4
3 FOSB 4.143 0.126 1.182 1.0 <2E-4 <2E-4
4 RGCC 3.299 -0.697 0.941 1.0 <2E-4 <2E-4
5 NR4A2 2.788 0.496 0.631 0.1368 <2E-4 <2E-4
6 TSC22D3 2.517 0.585 -0.766 <2E-4 <2E-4 <2E-4
7 CREM 2.475 -0.437 0.765 1.0 <2E-4 <2E-4
8 TNFAIP3 1.747 -1.071 1.789 1.0 <2E-4 <2E-4
9 JUND 0.785 -0.334 0.335 1.0 <2E-4 <2E-4
10 ZNF331 0.433 -0.115 0.127 1.0 0.687 0.8736
11 DNAJB1 0.397 0.077 0.058 1.0 1.0 0.6108
12 JUNB 0.350 -0.666 0.805 1.0 <2E-4 1.0
13 YPEL5 0.249 -0.586 0.504 1.0 <2E-4 1.0
14 FOSL2 0.007 -0.161 0.018 1.0 1.0 1.0
15 FTH1 -0.051 -0.011 0.086 1.0 1.0 1.0
16 ZFP36 -0.286 -0.287 0.687 1.0 <2E-4 1.0
17 HSP90AA1 -0.435 -0.191 0.395 1.0 <2E-4 1.0
18 RPS26 -0.452 -0.330 -0.045 1.0 1.0 1.0
19 CCL4 -2.924 -1.309 2.323 1.0 <2E-4 1.0
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