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Abstract

There are many time-sensitive mission applications for persistent satellite coverage,
including dynamic and unpredictable events such as natural disasters, oil spills, ex-
treme weather events, or geopolitical conflicts, which may progress rapidly and require
frequently-updated information to co-ordinate the ground response. Reconfigurable
satellite constellations can provide on-demand regional coverage by maneuvering or-
bits to focus passes over the area of interest. In contrast, traditional satellite constella-
tions cannot maneuver to pass over specific ground locations, meaning that achieving
persistent coverage spanning all possible locations of interest globally results in a re-
quirement for thousands of satellites. This would present prohibitive costs for many
applications, as well as contributing to worsening issues of space traffic management
and congestion in Low Earth Orbit (LEO).

Incorporating reconfigurability into constellation design allows for responsive ma-
neuvering of satellites into repeating ground tracks (RGTs) over a location of interest,
simultaneously reducing the required constellation size by improving the utilization of
individual satellites and providing flexibility in the achievable ground coverage. Past
work on reconfigurable constellations (ReCon) demonstrated average cost savings of
20-70% compared to iso-performance static constellations, although the complexity
of the solution space for the design optimization process limited the maximum size
of constellations that could be evaluated.

In this thesis, a probabilistic performance metric is developed to compare constel-
lation designs, adopting principles of reliability-based design optimization to quantify
the confidence level that reconfigurable designs will outperform iso-cost static alter-
natives and by what margin of performance. The results show that 74.2% of recon-
figurable designs outperform iso-cost static designs with a confidence level of 90% or
higher, and with a margin of at least 10% improvement in the level of performance
achieved. Computational intensity of the model presents the major constraint upon
the size and complexity of simulation cases that may be modelled, so variance reduc-
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tion techniques are applied to lower the standard error of mean performance in the
output, allowing for a reduction in optimization size and runtime while maintaining
the same level of error in the predicted results. Decision options for the operational
phase of a reconfigurable constellation are presented and assessed to characterize
how satellite operators must weigh mission priorities to evaluate trade-offs between
propellant conservation and improved coverage of high-value targets.

Thesis Supervisor: David W. Miller
Title: Professor of Aeronautics and Astronautics

4



Acknowledgments

This research has been supported by the Aerospace Corporation, the MIT Department

of Aeronautics and Astronautics, and the MIT Office of Graduate Education, through

a combination of research assistantships and fellowships.

I would like to begin with particular thanks to my committee members, Dr. Robert

Legge, Prof. Paulo Lozano, Prof. Malcolm Macdonald, and especially my thesis

advisor Prof. David Miller. I am extremely grateful to my thesis readers, Prof.

Olivier de Weck and Prof. Richard Linares. My sincerest gratitude also goes to all

the members of the Aerospace-MIT ReCon project team, especially Kyle Hanifen at

the Aerospace Corporation and Alex Straub.

Thank you to all in the SSL who have made my time in the lab so great. Tonio, I

look forward to your next marathon fueled by deep dish pizza. Kat, Kit and Pratik,

thanks for all the board games. Keenan, Hailee, Rosemary, Alex, and everyone else

past and present who I have been lucky enough to overlap with in the lab. Thanks

to Catherine and Oliver for several years of companionable office-sharing in 37-307.

Many campus resources have helped me out along the way; I am particularly

grateful to Dr Melissa Mackel, Kathleen Monagle at DAS, Jason McKnight, and

Suraiya Baluch at GradSupport. I would also like to thank Marilyn Good for the

endless administrative support that holds the SSL together; Anthony Zolnik for huge

amounts of work around the department; Jean Sofronas for a lot of scheduling help;

Joyce Light for everything she does to keep us sane in AeroAstro; Pam Fradkin

for being the friendliest conversationalist in 37; and Beata Shuster for ushering this

thesis to the end. The MIT Writing and Communication Center’s ‘Writing Together

Online’ sessions were invaluable in completing this work, and I would especially like to

thank Juliana Cherston and Shawn Hu for their work as facilitators. Lauren Milechin

from the MIT Supercloud support team was endlessly helpful, and I would like to

acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center

for providing HPC resources that contributed to the research results reported within

this thesis.

5



Beth Marois has earned her own paragraph in these acknowledgments: her calm

expertise, support and knowledge throughout the last seven years have really done

more for me and for this thesis than I can put into words here. Thank you for your

guidance and advocacy, and for making the department feel like home.

Deep appreciation must go out to several years of GA3 committees, for providing

such a strong sense of community, so many friendships, and so much work that went

into making the department a better place to be: special thanks to Ben (my pset

buddy from the start), Aaron (but can you model snow?), Jacob (I owe you one

thank), Prash (the final forum group members!), Daniel (it’s time for a cutback week),

Jess, Amelia, Regina, Cadence, Christine, Cory, and Hugh and Parker for memorably

introducing me to GA3 and the department in the first place. Thank you to all

the GWAE committees over my time here, with particular shoutouts to Elizabeth,

Rosemary and Sydney for all your hard work. Thank you to all the students who

founded AeroAstro dREFS and those who keep it going.

There are an overwhelming number of other people I must thank for their support,

friendship, general advice, or other help over the course of the PhD: Anne, Kirsty,

Eva; Tyler, Mark, Erik and Ryan for saving the world with me; Mike and the rest of

the Muddy staff for the most relaxing place (and best workplace) on campus. Thank

you to all my friends from TMIRCE:BOS and Runfellow for the last four years of

running camaraderie and great memories; I hope there are many more ahead.

I cannot express enough gratitude for the friendship of Mary Tellers Strawser since

my arrival at MIT; I feel so lucky to have met my best friend within my first week

here. It seems almost inevitable that we ended up defending within a week of one

another, and I am excited to see what the amazing Dr Strawser does next. Harriett

Feenstra has been there for me for the last 16 years through many ridiculous scrapes,

even across the Atlantic, and I am so grateful for her presence in my life. I have

known Ross Fowkes almost as long, and am indebted for our many years of board

games, Tuesday Tilt, fancy coffees, mutual judgement, and assorted adventures.

It is impossible to sign off without thanking Pax and my parents for all of their

support, listening and advice, and belief that I could do whatever I wanted. Finally,

6



thank you to John, Bo and Rosie for your love, endless affection and enthusiasm,

laughter, and a lot of listening to me talking about satellites.

7



8



Contents

Nomenclature 27

1 Introduction 31

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3 Thesis roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Literature Review 39

2.1 Satellite constellations . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Constellation design . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.2 Constellation reconfiguration . . . . . . . . . . . . . . . . . . . 42

2.1.3 Multi-objective constellation optimization . . . . . . . . . . . 45

2.1.4 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Uncertainty analysis/designing for flexibility . . . . . . . . . . . . . . 47

2.2.1 Flexibility and real options . . . . . . . . . . . . . . . . . . . . 47

2.2.2 Uncertainty analysis for space systems . . . . . . . . . . . . . 49

2.2.3 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Probabilistic metrics for system design optimization . . . . . . . . . . 51

2.3.1 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Methodology 57

3.1 Existing simulation model . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Simulation layer . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9



3.1.2 Monte Carlo layer . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.3 Multi-objective optimization layer . . . . . . . . . . . . . . . . 77

3.2 MIT Supercloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Probabilistic metrics for statistical distribution of performance 83

4.1 Probabilistic versus deterministic coverage metrics . . . . . . . . . . . 92

4.1.1 Re-evaluated performance scores . . . . . . . . . . . . . . . . . 96

4.1.2 Iso-performance versus iso-cost metrics . . . . . . . . . . . . . 101

4.2 Calculating statistical dispersion of performance . . . . . . . . . . . . 106

4.3 Calculating confidence that ReCon outperforms static designs . . . . 119

4.3.1 Confidence metrics for comparing ReCon and static designs . 122

4.3.2 Results for confidence level that ReCon outperforms iso-cost

static designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.3 Results for confidence level that ReCon outperforms static de-

signs by a specified margin . . . . . . . . . . . . . . . . . . . . 138

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Sampling improvements and uncertainty quantification for design

optimization 153

5.1 Designing for flexibility using Monte-Carlo-based model propagation . 157

5.2 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2.1 Latitude versus longitude importance sampling . . . . . . . . 166

5.3 Non-parametric statistics . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3.1 Histograms and kernel density estimations . . . . . . . . . . . 173

5.3.2 Kernel density estimation implementation . . . . . . . . . . . 176

5.4 Stratified sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.4.1 Stratified sampling techniques . . . . . . . . . . . . . . . . . . 188

5.4.2 Stratified sampling comparison and results . . . . . . . . . . . 196

5.4.3 Runtime results . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

10



6 Operational decision options for responsive maneuvering 217

6.1 Effect of propulsion constraints . . . . . . . . . . . . . . . . . . . . . 219

6.2 Crossover latitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.2.1 Adjustment of crossover latitudes . . . . . . . . . . . . . . . . 247

6.2.2 Effect of elevation angle on crossover latitude coverage . . . . 260

6.3 Delaying reconfiguration maneuvers . . . . . . . . . . . . . . . . . . . 273

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

7 Conclusions and future work 281

7.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

7.3.1 Probabilistic metrics for system performance . . . . . . . . . . 284

7.3.2 Uncertainty analysis and variance reduction . . . . . . . . . . 287

7.3.3 Operational decision options . . . . . . . . . . . . . . . . . . . 288

7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

A MIT Supercloud code tuning 297

A.1 Tuning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

A.2 Tuning conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

11



12



List of Tables

4.1 Figures of merit for the coverage shown in Figure 4-3 for sample con-

stellation designs A, B and C . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Comparison of estimated and bootstrapped 95% confidence intervals

for 25th and 75th percentile reconfigurable design performance . . . . 118

4.3 Comparison of estimated and bootstrapped 95% confidence intervals

for 25th and 75th percentile static design performance . . . . . . . . . 118

4.4 Correlation coefficients and p-values for six reconfigurable design vari-

ables against confidence level that ReCon outperforms static . . . . . 146

5.1 An example target deck, consisting of the desired observation param-

eters for 20 events of interest occurring over a 5-year period . . . . . 165

5.2 Design parameters for the sample constellation used for an initial com-

parison of the three different sampling methods under investigation . 198

5.3 Comparison of standard error of the mean performance values calcu-

lated using the three sampling techniques . . . . . . . . . . . . . . . . 203

6.1 Orbital parameters for the six candidate RGT orbits used in the ReCon

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.2 Number of individual satellite crossover latitudes that occur per RGT

period and per day, for prograde vs retrograde orbits . . . . . . . . . 251

6.3 Mean altitude changes that would be required to move between any of

the six candidate RGT orbits . . . . . . . . . . . . . . . . . . . . . . 254

6.4 Mean ∆𝑉 changes that would be required to move between any of the

six candidate RGT orbits . . . . . . . . . . . . . . . . . . . . . . . . . 255

13



6.5 Mean altitude changes and ∆𝑉 required to change between adjacent

RGT orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

14



List of Figures

3-1 Comparison of satellite revisit times and ground coverage achieved

in Global Observation Mode (left) versus Regional Observation Mode

(right). Image credit: Robert Legge[8] . . . . . . . . . . . . . . . . . 59

3-2 Example of a Pareto chart, showing a range of constellation designs

plotted by normalized performance against cost . . . . . . . . . . . . 61

3-3 Structure of Legge’s ReCon framework for constellation design and

optimization. Image credit: Robert Legge[8] . . . . . . . . . . . . . . 63

3-4 The five modules that make up the simulation model layer of the ReCon

codebase. Image credit: Robert Legge[8] . . . . . . . . . . . . . . . . 65

3-5 Probability density function of natural disaster risk weighted by eco-

nomic impact, represented here by 1000 locations randomly gener-

ated using the PDF from the World Bank analysis of natural disaster

hotspots[92] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3-6 Overlapping histograms showing normalized performance for a pair

of iso-cost designs (one static, one reconfigurable) over 500 random

scenarios, with highlighted region of uncertainty for which it cannot be

stated with confidence that the reconfigurable design will outperform

the static design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4-1 Ground track plots shown for a single satellite in a 15/1 repeating

ground track (RGT) orbit on two different projections . . . . . . . . . 85

4-2 Histogram of coverage over the course of one day, as a function of latitude 86

15



4-3 Three sample coverage charts comparing observations and coverage

gaps for designs A, B and C . . . . . . . . . . . . . . . . . . . . . . . 88

4-4 Comparison of Legge’s persistence metric with traditional coverage

metrics of average revisit time, maximum revisit time and mean re-

sponse time. Image credit: Robert Legge[8] . . . . . . . . . . . . . . . 90

4-5 Pareto chart showing the output from a ReCon design optimization

run: a range of constellation designs plotted by cost against normalized

performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4-6 Percentage change from original optimization performance score for 182

non-dominated designs, when re-evaluated against 24 different target

decks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4-7 Change in performance score for re-evaluated reconfigurable designs

compared to optimization performance values, for 12 different opti-

mization sizes re-evaluated against 500 target decks . . . . . . . . . . 98

4-8 Change in performance score for re-evaluated static designs compared

to optimization performance values, for 12 different optimization sizes 99

4-9 Mean percentage change in re-evaluated performance score compared

to original optimization score for different optimization sizes . . . . . 100

4-10 Pareto chart comparing cost and performance for two sets of non-

dominated designs: one for reconfigurable constellations and another

for static constellations. The Value of Reconfigurability (VoR) is high-

lighted in blue. Image credit: Robert Legge[8] . . . . . . . . . . . . . 102

4-11 Pareto chart showing cost and performance for two distinct Pareto

fronts, for a non-dominated set of reconfigurable constellation designs

(plotted in blue) and a non-dominated set of static constellation designs

(plotted in red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4-12 Pareto chart for an iso-cost subset of the two sets of designs shown in

Figure 4-11, with each reconfigurable design (plotted in blue) paired

with a static design (plotted in red) with a cost difference of less than

±3% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

16



4-13 a) Left-hand plot shows a recreation of the Pareto chart from Figure

4-12, with iso-cost pairs of reconfigurable (in blue) and static (in red)

constellation designs b) Right-hand plot takes a sample iso-cost pairing

with a 1.14% cost difference and shows histograms of the distribution

of performance scores from 500 re-evaluations of these two designs . . 107

4-14 95% confidence interval for the mean performance of iso-cost pairs of

reconfigurable and static designs, plotted onto a Pareto chart showing

cost against normalized performance . . . . . . . . . . . . . . . . . . 113

4-15 95% confidence interval for the median performance of iso-cost pairs of

reconfigurable and static designs, plotted onto a Pareto chart showing

cost against normalized performance . . . . . . . . . . . . . . . . . . 117

4-16 95% confidence interval for the 25th percentile performance of iso-cost

pairs of reconfigurable and static designs, plotted onto a Pareto chart

showing cost against normalized performance . . . . . . . . . . . . . . 119

4-17 95% confidence interval for the 75th percentile performance of iso-cost

pairs of reconfigurable and static designs, plotted onto a Pareto chart

showing cost against normalized performance . . . . . . . . . . . . . . 119

4-18 A Pareto chart of iso-cost sets of reconfigurable and static designs,

showing the full range of performance scores from 500 re-evaluations . 121

4-19 A magnified view of the low-cost region in Figure 4-18 where perfor-

mance distributions overlap for reconfigurable and static designs . . . 121

4-20 Histograms of normalized performance distributions over 500 scenarios

for an iso-cost pair of designs, with the overlap in performance scores

highlighted in red . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4-21 Histograms of normalized performance distributions over 500 scenarios

for an iso-cost pair of designs . . . . . . . . . . . . . . . . . . . . . . 130

4-22 Histogram of ∆𝑃 evaluated for the same pair of designs and over the

same 500 scenarios shown in Figure 4-21 . . . . . . . . . . . . . . . . 130

4-23 Histogram of improvement in performance due to reconfigurability, cal-

culated as percentage improvement from the static performance score 131

17



4-24 Two plots showing the level of confidence that ReCon outperforms

static, with independent hypothesis test results plotted in blue and

covariance hypothesis test results plotted in red . . . . . . . . . . . . 134

4-25 A magnified view of the confidence levels from Figure 4-24 showing dif-

ferences between the two methods for the predicted confidence within

the cost region from $100M–350M . . . . . . . . . . . . . . . . . . . . 134

4-26 Two plots showing the confidence level that ReCon outperforms static,

with the Monte Carlo tally of ∆𝑃 plotted in blue and results using the

statistical distribution of ∆𝑃 plotted in red . . . . . . . . . . . . . . 135

4-27 A magnified view of the confidence levels from Figure 4-26 showing dif-

ferences between the two methods for the predicted confidence within

the cost region from $100M–350M . . . . . . . . . . . . . . . . . . . . 135

4-28 Bootstrapped confidence level that ReCon outperforms static . . . . . 136

4-29 Comparison of results for the confidence level that reconfigurable de-

signs outperform static, calculated from all 5 methods . . . . . . . . . 136

4-30 Magnified view of the confidence levels from Figure 4-29 showing differ-

ences in the predicted confidence within the cost region from $100M–350M136

4-31 Bootstrapped confidence levels that ReCon outperforms static by a

specific performance percentage of at least a) 0% b) 10% c) 20% d)

30% e) 40% and f) 50% . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4-32 Bootstrapped confidence levels that ReCon outperforms static by a

specific margin of performance, expressed as a percentage of the static

design performance between 0–50% . . . . . . . . . . . . . . . . . . . 144

4-33 Bootstrapped minimum ∆𝑃 values (with 95% confidence) for each de-

sign pairing, expressed in terms of normalized performance . . . . . . 145

4-34 Bootstrapped minimum ∆𝑃 values (with 95% confidence) for each de-

sign pairing, expressed as a percentage of static performance . . . . . 145

4-35 95% confidence intervals for mean and minimum values of ∆𝑃 , ex-

pressed as a percentage of the static constellation design performance 149

18



5-1 Visual comparison of code executions (left) consisting of one constella-

tion design evaluated against one target deck, against functional eval-

uations (right) consisting of one constellation design evaluated against

24 target decks to arrive at an averaged performance value . . . . . . 160

5-2 19 target locations taken from a single example target deck, overlaid

onto a world map (upper plot, targets shown as red circles) and shown

separately against a plain background (lower plot, targets shown as

blue circles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5-3 The same 19 target locations illustrated in Figure 5-2 are plotted as

a longitude-only distribution (left plot (a)) and a latitude-only dis-

tribution (right plot (b)) to highlight the loss of information in only

considering a single dimension of the location PDF . . . . . . . . . . 169

5-4 The location data from Figure 5-2 is replotted with the latitude and

longitude co-ordinates now separately sorted in ascending order . . . 169

5-5 The location data from Figure 5-2 is replotted to show the range of

possible target locations that may be recreated once the latitude and

longitude distributions have been disconnected . . . . . . . . . . . . . 170

5-6 Two normalized histograms plotted using the same data set of 5 points

but different bin widths and locations, to illustrate the contrasting

impressions that are given of the underlying PDF . . . . . . . . . . . 174

5-7 Comparison of the two histograms previously shown in Figure 5-6 (left)

with a KDE (right) created using the same data set . . . . . . . . . . 176

5-8 Comparison of two KDEs generated from natural disaster latitude

data, with (a) the left-hand plot created using a built-in MATLAB

KDE function featuring automatic bandwidth selection, and (b) the

right-hand plot created using custom code and featuring a range of

possible bandwidth values . . . . . . . . . . . . . . . . . . . . . . . . 177

19



5-9 KDE of latitude data (plotted as the thicker black line) generated using

a custom-built MATLAB function, also illustrating the 20 constituent

kernels (plotted as the smaller red curves) that were stacked to build

up this estimation of the underlying latitude PDF . . . . . . . . . . . 179

5-10 Four histograms of latitude data plotted using various bin widths (1/2/5/10°

of latitude), illustrating the discretization issues inherent to histograms

and the difficulty of converging to a smooth and accurate estimation

of the underlying PDF . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5-11 3D histogram of natural disaster location data (weighted by economic

impact) generated using Legge’s original array of target decks . . . . 181

5-12 Orthographic views of the 3D histogram shown previously in Figure

5-11, with a front-on view of the longitude axis shown on the left in

Figure 5-12a and a end-on view of the latitude axis shown on the right

in Figure 5-12b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5-13 A top-down flattened orthographic view of the 3D histogram from Fig-

ure 5-11, showing all geographic locations with any level of natural

disaster activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5-14 A 3D surface plot generated from a 2D KDE of natural disaster location

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5-15 Orthographic views of the 3D surface plot generated from the 2D KDE

shown above in Figure 5-14, with a front-on view of the longitude axis

shown on the left in Figure 5-15a and a end-on view of the latitude

axis shown on the right in Figure 5-15b . . . . . . . . . . . . . . . . . 185

5-16 A top-down flattened orthographic view of the 3D surface plot gen-

erated from a 2D KDE that was shown in Figure 5-14, showing all

geographic locations with any level of natural disaster activity. The

inset boxes show magnified views of two locations in more detail, al-

lowing for the detail of the heatmap color scheme to be observed at

this enlarged scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

20



5-17 Histograms showing the PDF of natural disaster data by latitude, strat-

ified into (a) 5 subgroups (b) 10 subgroups and (c) 20 subgroups . . . 190

5-18 Histograms of natural disaster data by latitude divided into equiproba-

ble bins, using (a) 10 bins each containing 10% of the distribution and

(b) 20 bins each containing 5% of the distribution . . . . . . . . . . . 193

5-19 Natural disaster data by latitude KDE generated using a custom MAT-

LAB function, showing the individual kernel functions (in a variety of

colors) that were stacked to arrive at the PDF estimation, and high-

lighting the placements of each Gaussian kernel with black arrows at

the centerpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5-20 Comparison of standard error of mean performance calculated using

three different methods of location sampling in the ReCon code for 10

optimization runs each, with (a) showing results using Legge’s original

sampling; (b) showing results using proportionate definition; (c) show-

ing results using kernel sampling; and (d) showing a direct comparison

of the standard error for the three techniques, averaged across the 10

runs that were carried out for each method . . . . . . . . . . . . . . . 200

5-21 Comparison of standard error of mean performance calculated using

three different methods of location sampling in the ReCon code and

averaged from 10 runs for each plotted line, with (a) showing results

for 20 designs using Legge’s original sampling; (b) showing results for

20 designs using proportionate definition; (c) showing results for 20

designs using kernel sampling; and (d) showing a direct comparison

of the standard error for the three techniques, averaged across the 20

designs and 10 runs that were carried out for each method . . . . . . 201

5-22 A zoomed-in version of Figure 5-21d, magnified to give a clearer view

of the relative standard error obtained using the three sampling tech-

niques. Black crosshairs are used to highlight Legge’s original use of 24

decks and the associated standard error of mean performance at this

sample size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

21



5-23 Early Phase runtime data shown in blue circles for optimization runs

with a maximum of 18 satellites per constellation and a range of 4–36

target decks, with the line of best fit shown in yellow to highlight the

trend of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5-24 Early Phase runtime data shown for optimization runs with 3 different

maximum constellation sizes (12/24/36 satellites) and a range of 20–24

target decks, with trendlines plotted in matching colors for each data set207

5-25 Triples Mode runtime data shown in blue circles for optimization runs

with a maximum of 18 satellites per constellation and a range of 2–24

target decks, with the line of best fit shown in yellow to highlight the

trend of the data. Figure 5-25a shows mean runtime data for each

target deck value; and Figure 5-25b shows a scatter plot of runtime for

all 76 optimization runs to illustrate the amount of variation around

the trendline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5-26 Mean number of functional evaluations required to reach the termina-

tion criterion for optimization runs using 2–24 target decks . . . . . . 211

5-27 Mean time per functional evaluation for optimization runs using 2–24

target decks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6-1 Pareto curves of constellation cost against normalized performance,

showing non-dominated design fronts for six different upper limits

placed on propulsion system mass fraction, for ∆𝑉𝑟𝑒𝑐𝑜𝑛 budgets of a)

1000 m/s b) 500 m/s c) 250 m/s and d) 150 m/s . . . . . . . . . . . . 223

6-2 Pareto curves of constellation cost against normalized performance,

showing non-dominated design fronts for four different upper limits

placed on the ∆𝑉 budget for reconfiguration, for maximum propulsion

system mass fractions of a) 0.1 b) 0.2 c) 0.3 d) 0.4 e) 0.5 and f) 0.6 . 226

6-3 Breakdown of ∆𝑉 used for reconfiguration by an 18-satellite constel-

lation over a sample 5-year mission consisting of 19 target locations of

interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

22



6-4 Impact of inclination on orbital altitudes for 6 different candidate RGT

orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6-5 Ground tracks plotted in latitude/longitude for a single prograde orbit

of a 15/1 RGT, showing the variation in shape that occurs for a range

of orbital inclinations between 10–80° . . . . . . . . . . . . . . . . . . 234

6-6 Ground tracks plotted in latitude/longitude for a single retrograde or-

bit of a 15/1 RGT, showing the variation in shape that occurs for a

range of orbital inclinations between 100–170° . . . . . . . . . . . . . 236

6-7 Histogram of the selected orbital inclinations for 5049 non-dominated

constellation designs collated from 36 optimization runs of the ReCon

code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6-8 Six candidate RGT orbits plotted at a prograde inclination of 60° (in

blue) and a retrograde inclination of 120° (in red), showing the increase

in orbits per day with decreasing orbital altitude . . . . . . . . . . . . 239

6-9 A scatter plot showing the normalized performance values achieved by

a sample constellation against 9765 events of interest from 500 target

decks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6-10 An averaged plot of the values from Figure 6-9, showing the mean

normalized performance by latitude for the sample constellation . . . 240

6-11 Satellite ground tracks for a 18-satellite constellation in a 15/1 RGT

orbit at 61.26° inclination . . . . . . . . . . . . . . . . . . . . . . . . 242

6-12 Zoomed-in view of ground tracks from the upper-right quadrant of

Figure 6-11a, highlighting a ‘crossover’ point over which both ascending

and descending satellite passes occur . . . . . . . . . . . . . . . . . . 243

6-13 The latitudes of the crossover points shown in Figure 6-11 are overlaid

onto the mean normalized performance by latitude shown in Figure 6-10244

6-14 The latitudes of 14/1 RGT crossover points overlaid onto the mean

normalized performance by latitude achieved by the second sample

constellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

23



6-15 Repeating ground tracks plotted for a single satellite in each of the six

RGT candidate orbits, assuming a 60° prograde orbital inclination . . 249

6-16 Ground tracks for a 60° inclination 31/2 RGT orbit, divided into the

first and second days of the 2-day repeating ground track . . . . . . . 252

6-17 Individual satellite crossover latitudes plotted by orbital altitude for

all six candidate RGT orbits at 60° inclination . . . . . . . . . . . . . 254

6-18 Effect of inclination on altitude change required to transition between

adjacent pairs of RGT orbits . . . . . . . . . . . . . . . . . . . . . . . 258

6-19 Effect of inclination on ∆𝑉 required to transition between adjacent

pairs of RGT orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

6-20 Diagram of the angular relationships between a satellite, a target lo-

cation on the Earth’s surface, and the Earth’s center . . . . . . . . . 261

6-21 Comparison of the extent of possible crossover latitude coverage (shown

as shaded areas of color) achievable for each of the six RGTs at four

different minimum elevation angle requirements . . . . . . . . . . . . 264

6-22 Comparison of usable ground coverage for a 15/1 RGT (plotted for a

single satellite over one day) based on four different minimum elevation

angle requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

6-23 Percentage of latitude range where crossover coverage is achievable for

each RGT orbit, compared between static choice of a single RGT (in

blue) vs reconfiguring between adjacent RGTs (in orange), compared

for four different minimum elevation angle requirements . . . . . . . . 270

6-24 The effect of minimum elevation angle requirements on percentage

improvement in the amount of achievable crossover latitude coverage

when maneuvering between adjacent RGTs is implemented . . . . . . 271

6-25 Variation of the number of satellites that are reconfigured in response

to one event, for different constellation designs and delay lengths . . . 275

6-26 Variation of the total ∆𝑉 used across the whole constellation to re-

spond to one event, for different constellation designs and delay lengths 275

24



6-27 Variation of the number of satellites that are reconfigured in response

to one event, for different constellation designs and delay lengths and

a second set of designs . . . . . . . . . . . . . . . . . . . . . . . . . . 276

6-28 Variation of the total ∆𝑉 used across the whole constellation to re-

spond to one event, for different constellation designs and delay lengths

and a second set of designs . . . . . . . . . . . . . . . . . . . . . . . . 276

6-29 Zoomed-in view of total ∆𝑉 used for designs 80–90 shown in Figure 6-28277

6-30 Impact of delay length of total ∆𝑉 used for six sample constellation

designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

A-1 Effect of the assigned number of processes per node on length of run-

time to achieve 100 functional evaluations when using 1 node and 1

thread per process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

A-2 Effect of number of threads per process on runtime, shown for four

different number of nodes and 40 processes per node . . . . . . . . . . 301

A-3 Effect of number of processes per node on runtime, when using 8 nodes

and 20 threads per process . . . . . . . . . . . . . . . . . . . . . . . . 301

A-4 Effect of number of nodes on runtime, when using 40 processes per

node and 1 thread per process . . . . . . . . . . . . . . . . . . . . . . 302

25



26



Nomenclature

Constants

�̇� Earth’s rotation rate, 360°/sidereal day

𝜇 Earth’s gravitational constant, 398600.44 km3/s2

𝐷* Length of a sidereal day, 86164.1 seconds

𝐽2 Earth’s oblateness factor, 0.0010826269

𝑅𝐸 Earth’s equatorial radius, 6378.1 km

Variables

𝑃 Mean performance

�̄� Sample mean

∆𝑃 Change in performance

∆𝑉 Change in velocity [m/s]

∆𝑉𝑇 Total change in velocity [m/s]

∆𝑉𝑟𝑒𝑐𝑜𝑛 Change in velocity for reconfiguration [m/s]

Ω̇ Rate of change of the right ascension of the ascending node [deg/sidereal

day]

�̇� Rate of change of the argument of perigee [deg/sidereal day]

27



�̇� Rate of change of the mean anomaly [deg/sidereal day]

𝜖 Satellite elevation angle [deg]

𝜖𝑚𝑖𝑛 Minimum elevation angle [deg]

𝜂 Nadir angle [deg]

𝜆 Earth central angle [deg]

𝜆𝑚𝑎𝑥 Maximum Earth central angle [deg]

Ω Right ascension of the ascending node, see also RAAN [deg]

𝜌 Angular radius of the Earth [deg]

𝜎 Standard deviation

𝜎𝑥 Sample standard deviation

𝜎�̄� Standard error of the mean

𝑎 Semi-major axis [km]

𝑐4(𝑛) Bias correction factor

𝐷 Slant range [km]

𝐷𝑚𝑎𝑥 Maximum slant range [km]

𝑒 Eccentricity

𝐻 Orbital altitude [km]

ℎ Orbital altitude [km]

𝐻0 Estimated RGT orbital altitude [km]

𝑖 Orbital inclination [deg]

𝐼𝑠𝑝 Specific impulse [s]

28



𝑗 Number of orbits

𝑘 Number of days

𝑛 Mean angular motion [deg/sidereal day]

𝑛 Number of orbits over a specified number of days in a repeating ground

track orbit, presented as n/1 or n/2 RGT options

𝑛 Number of samples

𝑁𝑁 Number of nodes

𝑁𝑃𝑃𝑁 Number of processes per node

𝑁𝑇𝑃𝑃 Number of threads per process

𝑃𝑅𝑒𝐶𝑜𝑛 Reconfigurable design performance

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 Static design performance

𝑞 Quantile

𝑤𝑠𝑤𝑎𝑡ℎ Satellite coverage swath width [km]

𝑥𝑑𝑖𝑓𝑓 Desired performance margin

Acronyms

CI Confidence interval

CPU Central processing unit

EP Electric propulsion

GA Genetic algorithm

GOM Global observation mode

GPU Graphics processing unit

29



GSD Ground sample distance

HPC High performance computing

KDE Kernel density estimation

LEO Low Earth orbit

LLSC Lincoln Laboratory Supercomputing Center

MOEA Multi-objective evolutionary algorithm

NICM NASA Instrument Cost Model

NRE Non-recurring engineering

NSGA-II Non-dominated Sorting Genetic Algorithm II

PDF Probability density function

PSMF Propulsion system mass fraction

RAAN Right ascension of the ascending node, see also Ω

ReCon Reconfigurable constellations, or a reference to the ReCon codebase cre-

ated by Robert Legge[8]

RGT Repeating ground track

ROM Regional observation mode

SSCM Small Satellite Cost Model

SSP Sub-satellite point

UMDO Uncertainty-based multidisciplinary design optimization

UQ Uncertainty quantification

USCM8 Unmanned Spacecraft Cost Model, version 8

VoR Value of Reconfigurability

30



Chapter 1

Introduction

1.1 Motivation

Persistent satellite coverage has a broad range of mission applications, from Earth

imaging, to weather monitoring, to global communications and data transmission.

Time-sensitive data from orbit may be required to respond to rapidly unfolding events

on the ground, such as extreme weather events, natural disasters, or conflicts. Where

these events may be changing rapidly over time, persistent coverage is highly desirable

for supplying up-to-date information to co-ordinate the necessary ground response,

while obtaining only intermittent imagery may be insufficient to reach full under-

standing of the dynamic details of the situation. Persistence is defined for these

applications in terms of how closely the achieved coverage matches the desired revisit

cadence needed to track events as they develop over a prolonged period of interest.

For some scenarios, a rapid response to gather data via ground transportation

may be possible, but in other cases the local conditions may rule this out. Aircraft

and airborne systems may also be able to supply air-based support across a regional

area, but cannot respond at a global scale and may encounter access issues over cer-

tain regions. In both cases, if vehicles must be brought to the relevant region from

elsewhere, the timescale involved may take longer than utilising satellites which are

already in orbit.
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Static constellations extensive enough to provide a high level of persistent cover-

age over any possible ground location of interest are associated with costs that would

be prohibitive for many applications. This is primarily due to inefficient utilization of

the individual satellites, especially when measured against the performance of recon-

figurable systems; many more satellites must be launched into static orbits to achieve

a comparable level of coverage. As static constellations cannot flexibly respond to

uncertainty in future operating contexts, attempting to optimize the design variables

for static architectures over a range of target decks will result in the selection of more

conservative (and therefore costly) designs, in order to build in the necessary mar-

gins to achieve an acceptable level of coverage when target regions of interest are not

known in advance.

Although the issue of space debris has been known for decades, with Kessler’s

work in the 1970s describing the potential for an exponential cascade in collisions

creating a debris belt,[1] there have been increasing concerns raised about the prob-

lem as space becomes more congested.[2] Studies have been carried out on the po-

tential impact of the mega-constellations planned by various companies including

Boeing (1396 satellites, with a later 1560 to be added), SpaceX’s Starlink (over 2100

satellites already launched of a planned 4425 V-band satellites, with a further 7518

intended within Ka- and Ku-bands) and OneWeb (428 satellites already launched of

a planned constellation of 648 satellites, later intended to rise to 882),[3] concluding

that greater regulatory oversight may be needed to prevent a large increase in future

debris levels,[4] with simulations suggesting that the first generation of such a large-

scale constellation would have a 35% probability of catastrophic fragmentation, and

that hundreds or even thousands of collision avoidance maneuvers would be required

over the mission lifetime depending on the selected orbital altitude.[5] Further in-

vestigation of whether the proposed large-scale communications constellations could

achieve similar performance by launching significantly fewer reconfigurable satellites

would make for an interesting and relevant optimization scenario to investigate using
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the upgraded reconfigurable constellation codebase, if runtime can be sufficiently re-

duced to enable analysis of such large systems.

Although many satellite applications involve delivering coverage of areas that are

well-defined in advance, there are also numerous applications which require flexibility

due to a lack of advance knowledge of the desired coverage locations. Such types of

missions include weather monitoring, storm tracking, wildfire tracking, oil spill con-

tainment, or regionally persistent communications capacity over seasonal or emerging

events (such as other forms of natural disaster). By the very nature of these types

of event, their locations will not be known ahead of time, and so a constellation

operator wishing to attain persistent coverage from orbit must design flexibility into

their approach, aiming to “improve results by recognizing that the future is inevitably

uncertain”.[6] A crucial distinction must be drawn here in order to avoid the ‘flaw of

averages’: that “plans based on average assumptions are wrong, on average”.[7] It may

be possible to determine a probable distribution for some applications even when it is

impossible to know exactly where the next event will occur; for example, hurricanes

tend to fall within a similar spatial distribution each year, and knowledge of this

distribution may be used to inform the design choices made for a constellation that

seeks to acquire persistent hurricane coverage. However, designing a satellite constel-

lation to achieve optimal coverage of an imagined perfectly average hurricane is likely

to be “wrong, on average”; it must be appreciated in making such design decisions

that the mean of the distribution is not the same thing as the distribution of the mean.

Where the areas of interest are not known ahead of time, the constellation must

be designed to perform well under uncertain conditions, despite the fact that the

initially-selected satellite orbits are unlikely to prove optimal in achieving coverage of

a randomized target location. Incorporating reconfigurability into the design allows

for flexibility in the achievable ground coverage due to the ability to modify satellite

orbits throughout the mission lifetime. Using a reconfigurable constellation therefore

allows for improved satellite utilization, as all or part of the constellation can be ma-
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noeuvred into appropriate repeating ground track (RGT) orbits to achieve persistent

coverage over the desired target region.

Past work on reconfigurable satellite constellations has demonstrated that they

can provide greater responsiveness than traditional static constellations due to their

ability to change orbits over time in response to ground events and changes in de-

sired coverage. Robert Legge determined the Value of Reconfigurability (VoR) for a

reconfigurable constellation to be around 20 to 70% cost saving, when compared to a

static architecture offering the same level of performance. Legge also demonstrated

that both reconfigurable and static constellations performed better than other archi-

tectures that might be suggested as potential solutions for these applications, such as

sun-synchronous or rapidly-launched satellites.[8]

However, Legge treated predicted constellation performance as a point metric,

despite the fact that by the very nature of operating a reconfigurable constellation in

unpredictable circumstances, any optimized design will give a range of utility values

under a variety of scenarios. No two mission scenarios for the constellation lifetime

will provide exactly the same performance value, with the selection of different sub-

sets of satellites being maneuvered at different times and to different drift orbits in

order to achieve the desired coverage of ground locations. Recognizing the statistical

nature of this performance as a range and not a point metric allows for a more in-

formative characterization of the utility supplied by the constellation under a range

of mission scenarios. This allows for the establishment of confidence metrics that not

only predict the percentage of scenarios in which reconfigurable constellations will

outperform static designs, but also quantify by how much.

Due to the computational intensity of the models required to optimize a constella-

tion design for an uncertain operating context, simplifications must be made in order

to arrive at a computationally tractable problem. However, with the application of

previously unused uncertainty quantification techniques to the parameter sampling
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within the simulation model, improvements in efficiency may be made to decrease

the runtime of the design optimization code. Using techniques such as a quasi-Monte

Carlo method[9] or Latin Hypercube sampling[10] may allow for the statistical confi-

dence of the input distribution to be maintained while reducing the number of inputs

needed, thereby reducing the simulation runtime. Another addition that may improve

the efficiency of the simulation is importance sampling, a technique which recognizes

that some input variables in a model have a greater impact on the output parame-

ters than others, and weights sampling resources accordingly to reduce the estimator

variance.

Rather than focusing exclusively on optimizing the design of reconfigurable con-

stellations, considering the options and variability introduced to the operational phase

of the system by the reconfiguration decision is another area of interest for this re-

search. Quantifying the trade-off between fuel use and time taken to reconfigure is

recognized in the literature as a difficult problem for multiple reasons, including the

dependence of the solution on the orbit of the particular satellite under consideration

and the desired final orbit, which may vary widely between operating scenarios.[11]

However, delaying reconfiguration maneuvers may save fuel and even lead to the

selection of different drift orbits that affect the total time taken to reconfigure the

constellation over a desired imaging location. This motivates the necessity of devel-

oping decision tools which may be used by satellite operators, supplying details of

potential trade-off between maneuvers which may be balanced according to the par-

ticular needs of the mission at hand.

Another topic of interest in the realm of operator decisions is that of crossover lat-

itudes: the ground track latitudes over which both ascending and descending passes

occur. These crossovers can be defined in two ways: the ground track of an individual

satellite passing over its own previous tracks, and the ground track of an individual

satellite passing over the ground track of the satellite in the adjacent plane within

the constellation. Due to the fact that a notable performance increase is shown over
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these latitudes, there is a strong motivation to determine operator ability to shift and

redefine them after launch in order to improve performance over areas of interest as

they arise. Depending on the mission objective under investigation, there are also a

wide number of other design and performance criteria that may be considered to be

more or less important by the operator, with the effect of propulsion constraints on

constellation design and performance being one such factor examined here.

1.2 Research objectives

The previous section highlights some of the limitations in the existing simulation

model and past research conducted on optimizing the designs of reconfigurable con-

stellations, leading to the selection of research objectives for this work where potential

improvements were identified.

Legge developed a custom performance metric to place a value on the utility pro-

vided by both reconfigurable and static constellations under a range of operating sce-

narios. He compared simulation results for optimized designs on an iso-performance

basis, showing cost savings of 20–70% for a reconfigurable constellation to provide

the same utility as a static constellation design. However, these performance values

are primarily presented as point-value predictions, rather than characterizing the sta-

tistical range of values that result from simulating these designs under a selection of

varied operating scenarios.

The first objective of this work is to establish the statistical parameters of this

performance comparison, which will allow for not only calculating the level of con-

fidence in how often reconfigurable designs outperform static designs across a range

of scenarios, but also for the quantification of how much these designs outperform

by. Rather than simply showing that reconfigurable designs are ‘better’ over some

percentage of scenarios, a metric can be established to show confidence that reconfig-
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urable architectures are specifically at least 10% better, or 20% better, or any specific

desired value by which the performance excess may be quantified.

As computational intensity is the limiting factor in the size and complexity of

simulation cases that can be modelled, another objective of this research is improving

the efficiency of the model in order to retain the level of confidence in the simulation

results while decreasing the runtime required. A hypothesis for this research is that

applying uncertainty quantification techniques, stratified sampling and importance

sampling to the model will allow for such an objective to be achieved.

Finally, past research has focused heavily on optimizing the design of reconfig-

urable constellations, but less so on the operational phase of such a constellation

after it is launched. Beyond characterizing maneuver selection, little work has been

carried out on satellite operator choices that may have significant impacts on the

performance of a reconfigurable constellation during its operational lifetime. A final

objective of this work is to investigate the impact of some of these factors on per-

formance and present methods of incorporating these into decision tools for satellite

operators. Specific decisions considered include the effect of reconfiguration delays

on the maneuvers that are then selected as optimal, changes to the ∆𝑉 budget for

reconfiguration (including broadening the available choice of RGTs for gathering im-

agery), and the ability to adjust crossover latitudes (at which both ascending and

descending passes occur) during the operational phase of the mission.

Research objectives, in summary:

1. Develop a statistical performance metric and compare it to previous custom

performance metrics to evaluate the proportion of cases where reconfigurable

designs outperform static constellations.

2. Use the statistical performance metric to establish the level of confidence that

reconfigurable designs outperform comparable static designs and quantify by
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how much.

3. Improve simulation efficiency with the application of uncertainty quantification,

stratified sampling and importance sampling techniques to the model.

4. Identify decisions options during the operational phase and characterize how

much these satellite operator decisions can significantly affect constellation per-

formance.

1.3 Thesis roadmap

The rest of this thesis is organized in the following order. Chapter 2 reviews the exist-

ing literature on satellite constellations, focusing in particular on the areas of constel-

lation design and reconfiguration, as well as the topic of multi-objective constellation

optimization. Other work examined in the same chapter includes uncertainty analysis

and designing for flexibility, especially where it has been applied to space systems,

and the analysis of performance metrics as statistical ranges. Chapter 3 reviews the

methodology of this work, providing an overview of the existing simulation model and

custom performance metric inherited from Robert Legge and modified by the author,

as well as details of the scenario modelling inputs, and resources used on the MIT

Supercloud. Chapter 4 discusses statistical performance metrics and their applica-

tion to confidence calculations to compare the utility of reconfigurable constellations

against more traditional static designs. Chapter 5 applies uncertainty quantification

techniques to the reconfigurable design optimization for the improvement of input

sampling efficiency. Chapter 6 introduces the topic of operational decision options,

considering how a reconfigurable constellation would actually be operated once de-

signed and launched, and presenting the effects of several types of operator decisions

on constellation performance. Finally, Chapter 7 discusses the conclusions of this

work, and presents suggestions for future work in this area of research.
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Chapter 2

Literature Review

This chapter presents a review of relevant previous work in fields related to the current

research. Literature is reviewed here relating to the areas of constellation design,

reconfiguration and optimization; design for flexibility/real options; multi-objective

optimization; uncertainty quantification; and probabilistic approaches to performance

metrics. The following sections summarize the state-of-the-art in pertinent research

areas, identify research gaps, and highlight work that contributed to the research

covered within this thesis.

2.1 Satellite constellations

2.1.1 Constellation design

Satellites are typically launched into static orbits, where the only maneuvering that

occurs is that required for initial deployment into the desired orbit, and for station-

keeping and drag makeup. While the concept of operations for a mission is being

designed, it must be decided whether the project’s objectives can be achieved by a

single satellite (with the benefit of lower cost) versus a constellation (bringing benefits

of coverage and reliability).

Historically, many applications have used constellations of satellites, which act in
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concert to achieve a shared objective, dating back as far as the Transit constellation

for the US Navy’s NAVSAT (Navy Navigation Satellite System), which began launch-

ing in 1959 and provided a continuous satellite navigation system for Navy ships and

submarines from 1964.[12] Other constellations followed, such as the Global Posi-

tioning System (GPS) and Global Navigation Satellite System (GLONASS), with a

significant global impact for military and later civilian navigation. Satellite commu-

nications systems were initially located in higher geostationary orbits for the most

part, due to advantages in the number of satellites required to achieve global cover-

age, but transmission time delays and power requirements led to greater interest in

Low Earth orbit (LEO) constellations over time, especially for communications and

data applications.[13]

There are many possible constellation geometries which may be appropriate for

achieving a given mission objective. One of the best known is Walker Delta pattern

constellations, consisting of a set of circular orbits which ensure global coverage with

a minimum specified elevation angle,[14] with the geometry later expanded for larger

patterns of satellites with up to seven-fold continuous satellite coverage of any ground

point.[15] Walker introduced a ‘pattern unit’ ensuring minimum satellite separation

between adjacent planes, allowing for the constellation geometry to be uniquely de-

scribed using only a small number of parameters (total number of satellites, number

of orbital planes, relative spacing between planes and orbital inclination).[16] Other

authors recognize the inherent difficulty of arriving at an optimal constellation design

due to the sheer quantity of parameter combinations, but criticize the narrowness

of the restrictions adopted by researchers such as Walker, often offering alternative

approaches such as evaluating parameter sensitivity in order to determine significant

effects on potential architectures.[17]

A more recent constellation geometry of interest are the Flower constellations,

which are described in the literature as similar to Walker constellations with some

constraints removed to lead to greater efficiency for certain applications.[18] Satellites
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in a Flower constellation are not limited to circular orbits as Walker patterns are, but

will all show an identical repeating ground track (RGT).[19] In these constellations,

satellites follow the same track with respect to a rotating reference frame, with orbits

described by a set of five parameters determining synchronization and phasing.[20]

Optimizing the constellation design for a particular application is recognized to be

a complex task, but published research comparing the performance of a Flower con-

stellation with a Walker pattern found that the Flower constellation provided better

performance due to optimizing against a higher number of possible configurations, and

also showed lower costs for deployment and station-keeping.[21] More recent work on

Lattice Flower constellations expanded the design space further to include constella-

tions that did not have identical repeating ground tracks, providing an expansion of

potential designs for future optimization of constellations.[22]

Other researchers have adopted different approaches to constellation design de-

pending on the application of interest, with examples including designing constel-

lations based on the resulting ground tracks without constraining the uniformity of

the orbital parameters,[23] selecting LEO designs for regional positioning applica-

tions that prioritize long local coverage durations and a minimized Geometric Di-

lution of Precision (to characterize positioning accuracy),[24] or introducing other

application-based constraints such as achieving repeating sun-synchronous orbits us-

ing single or multi-plane constellations.[25] Paek developed several variants upon the

sun-synchronous RGT orbits useful for remote sensing applications. These include

sun-synchronous orbits with drifting ground tracks at a predefined speed; ‘multi-

sun-synchronous’ orbits with RGTs that supply identical solar angles at multi-day

intervals, relaxing the requirement upon sun-synchronous orbits to achieve these ev-

ery day; and a combined multi-sun-synchronous orbit with drifting ground tracks.[26]
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2.1.2 Constellation reconfiguration

Early work on constellation reconfiguration appears to originate in the idea of plan-

ning for a staged deployment, where an existing constellation can be expanded on

orbit by adding capacity and reconfiguring the satellites on orbit to accommodate

the newly launched additions to the constellation.[27, 28, 29] Chaize identified ar-

chitectural paths that may be built up as additional capacity is added, calculating

the value of flexibility compared to the cost of incorporating real options into the

system design.[27] Scialom considered planning of the necessary launches and orbital

transfers required to transition from an initial lower-capacity constellation to a new

higher-capacity constellation, while simulating reconfiguration time and calculating

cost and coverage during the orbital transfer phase.[28] Appel carried out a simple

modelling of the same problem, transferring newly launched satellites into an existing

constellation and establishing equal spacing.[30] Siddiqi also examined the problem

of staging satellite deployment, determining the optimal initial constellation design

for later reconfiguration into a higher-capacity system, while balancing initial costs

against later reconfigurability and overall lifecycle costs,[31] with additional research

carried out with de Weck and Scialom on developing a framework for orbital recon-

figuration using the auction algorithm to assign satellites to vacant ‘slots’ in a new

constellation while minimizing ∆𝑉 usage.[32] Davis focused on analyzing constella-

tion designs using a new method of orbit propagation, addressing the need to optimize

transfers of satellites from their initial orbit to slots in the final desired orbit, also

using the auction algorithm to assign satellites once transfers are computed.[33]

Other research focuses on reconstitution of a constellation after the loss of one

or more satellites, and which maneuvers may be undertaken to restore performance.

Ferringer developed a framework for constellations which have lost capacity, in order

to determine what trade-offs may be made to arrive at acceptable performance after

a catastrophic event.[34] Additional work in this area involved the use of a multi-

objective evolutionary algorithm to explore multiple loss scenarios where a future
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constellation must be assembled from remaining assets; this led to conclusions re-

garding the need to avoid unnecessary constraints upon the design space due to the

discovery of multiple non-intuitive architectures.[35] Ferringer’s thesis work highlights

that the future state of the reconfigured constellation is not assumed, but arrived at

based on an optimization of the remaining assets and propellant using objectives of

performance, cost and risk.[36]

Moving towards focus on responsive space-based architectures rather than only

considering orbital transfers between an earlier and later constellation design, Paek

introduced the concept of using reconfiguration to enable rapid coverage of targets

of interest, as well as the ability to switch between supplying wider global coverage

and more frequent regional coverage. The feasibility of such constellations is estab-

lished, and optimal reconfigurable designs are identified for some example cases, as

well as initial work being carried out on the ReCon framework with Robert Legge.[37]

Co also examined the idea of maneuvering satellites to manipulate the ground

track, developing a methodology for overflights of desired target locations using ei-

ther chemical or electric propulsion.[38] With similar interest in responsive orbits,

Ingraham assessed the feasibility of maneuvering between circular and eccentric or-

bits to achieve high resolution coverage, while considering the necessary ∆𝑉 budget

for such a mission.[39] Due to high costs for responsively launched satellites, as well as

higher costs for chemical propulsion than for electric propulsion (EP), Co argues for

the use of EP in reconfigurable systems, exploring optimal solutions to attain desired

coverage,[40] and developing the necessary algorithm and tools to demonstrate the

achievability of timely maneuvering to overfly desired targets using EP, while allowing

for over five times as much maneuvering as a chemical system.[41]

McGrath described a fully analytical method for reconfiguration, making use of

the Earth’s J2 effect to reduce the ∆𝑉 cost of maneuvering, at the cost of a longer re-

configuration duration but enabling the use of low-thrust propulsion.[42] Other work
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describes a fully analytical solution for a low-thrust in-plane maneuver with the ob-

jective of reducing revisit time over a specific ground location, while acknowledging

the complexity of the solution space and the fact that increasing ∆𝑉 usage does not

automatically equate to a reduced revisit time.[43] McGrath published more recent

research on using low-thrust EP for reconfiguration, demonstrating that reconfiguring

a single satellite can more than double the available flyovers of a desired region.[44]

Later publications show improved coverage of more than ten times compared to a

static constellation using only 35% of the available propellant,[45] and developing a

fully analytical solution that allows for solutions to be rapidly found for the maneuver

optimization problem.[11]

Morgan and McGrath addressed the issue of mobile target tracking using a recon-

figurable constellation, optimizing a design to track moving targets of interest such

as oil spills, hurricanes, and other weather events. Trade-offs must be made between

metrics such as reduced distances to targets during satellite passes, total access time

to the mobile target, and total ∆𝑉 usage. An optimizer is applied to explore possible

responsive maneuver options in a continuous design space, rather than using graph

theoretical techniques to evaluate discrete possibilities, as is carried out in McGrath’s

other work.[46] Morgan also independently validated and extended McGrath’s work,

exploring trade-offs between ∆𝑉 usage and pass distances for low-thrust maneuver

options, as well as outlining a proposed ReCon demonstrator mission.[47]

Straub explored additional trade-offs for reconfigurable constellations, examining

the effect on performance and cost scores when electric propulsion is used for recon-

figuration instead of chemical propulsion. Staged and responsive launch options are

also considered to take advantage of changing launch costs and adapt to variation in

constellation demand over time. Straub also expands image scheduling for ReCon to

consider off-nadir imaging targets, for which slewing is required to expand the cover-

age footprint of each satellite.[48] Gentgen extended some of the propulsion focus of

Straub’s work, evaluating the performance and feasibility of using hybrid chemical-
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electric propulsion systems for reconfigurable constellations, and concurrently opti-

mizing chemical and electric systems to arrive at improved hybrid architectures.[49]

The current project builds upon past work by Robert Legge, who developed a

framework for the concurrent design optimization of reconfigurable constellations un-

der uncertain future operating conditions.[8] The simulation model concurrently op-

timizes individual satellite design, overall constellation pattern, and aspects of the

operations design, and is described in more detail in Section 3.2.

Further publications of Paek’s describe the development of an optimization tool

for both individual satellite design and constellation geometry, as well as the use of a

genetic algorithm to identify optimal solutions in the tradespace, relating these along

potential deployment paths that could be used to expand a constellation over time

and thereby relating back to earlier reconfigurability research.[50] The performance

of simulated annealing and a genetic algorithm in concurrently optimizing the design

is compared in recent research, as well as results similar to Legge’s[8] showing that re-

configurable constellations outperform static constellations under uncertain operating

conditions.[51]

2.1.3 Multi-objective constellation optimization

Multi-attribute tradespace exploration has been proposed as a crucial stage in effective

space system design, in order to better resolve ambiguity and capture decision maker

preferences.[52] La Tour investigated a merger of tradespace exploration with system

dynamics modelling in order to simulate the effect of changing design variables and

policy choices and incorporate learning effects, enabling the examination of perfor-

mance against possible futures.[53] Uebelhart also proposed model-based analysis in

order to take uncertainty into account in investigating design options, assessing both

performance and robustness across multiple uncertain operating conditions while also

taking into account critical uncertainty parameters.[54]
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A common problem in constellation design is that the tradespace for distributed

satellite systems or constellations is frequently too large to analyze and compare all

possible candidate architectures. Jilla outlined a seven-step methodology using multi-

disciplinary design optimization techniques to find Pareto-optimal architectures, pro-

viding an integrated assessment of performance, reliability and cost models.[55, 56]

For simple mission types, Paek proposed an algorithm using a semi-analytical ap-

proach to determine an optimal design, which allows for trade-offs between per-

formance and deployment cost to be examined, providing additional insight for a

decision-maker in selecting a constellation design.[57]

The discontinuous, nondifferentiable or nonlinear characteristics of the metrics

used to evaluate potential architectures can introduce difficulty in arriving at a con-

stellation design, as traditional optimization methods may fail.[58] However, the use

of genetic algorithms (GAs) or multi-objective evolutionary algorithms (MOEAs) has

demonstrated the ability to generate optimal solutions under these circumstances,

while balancing multiple objectives and saving on computational resources required.[58,

59] Using GAs with parallel computing resources allows for highly effective searching

within the tradespace of constellation design and performs well in finding Pareto-

optimal solutions.[59] A study using MOEAs to maximize successful search specif-

ically examining a constellation design coverage problem also found that simple

worker-leader arrangements often outperform more complex schemes using multiple

populations.[60]

2.1.4 Research gaps

Although there is considerable literature examining reconfiguration of satellite con-

stellations, much of this is focused on staging system deployment or reconstituting

a useful constellation after loss of one or more satellites. Due to the complexity of

optimizing large amounts of design variables, many constellation designs are selected

from a simplified tradespace, or multiple assumptions are made in the course of ar-

chitecture selection in order to reduce the complexity of the available options. This
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results in a gap in the literature where certain complex mission types cannot be sim-

ulated by existing models, due to dynamic aspects of the targets of interest, such as

moving or expanding locations.

There is some focus on the added utility gained by using reconfigurable systems,

but in most cases maneuvering is assigned without attention to the trade-offs between

parameters that may be of varying importance to the satellite operator for different

applications. The opportunity costs of reconfiguration decisions are not presented

to operators, although the relative prioritization of different elements could usefully

be presented to decision makers when considering operational options for responsive

maneuvering. Some maneuvering options may have significantly higher ∆𝑉 costs be-

yond those considered reasonable under normal circumstances, but present desirable

performance gains under conditions featuring extremely high-value targets. There is

also a research gap when it comes to the investigation of time elements related to the

decision to reconfigure (or not reconfigure).

2.2 Uncertainty analysis/designing for flexibility

2.2.1 Flexibility and real options

Engineering systems are commonly designed in the context of uncertainty, as require-

ments, environments or technologies change over time,[61] but despite this, standard

design methods often rely on static requirements which take an entirely determin-

istic view of the future operating conditions.[62, 63] Complex projects may need to

consider sociological or technical changes over time as well as uncertainty over the

course of the deployment and operation of the systems they are designing.[63] De-

signing changeability or flexibility into a system may be motivated by the admission

of uncertainty in future operating conditions and the desire for system flexibility in

such an environment. As the mission lifetime progresses, estimated qualities can be

updated in response to more accurate information, and system response calibrated
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accordingly.[64, 65]

In many contexts, uncertainty is perceived as risk, despite the fact that uncer-

tainty may offer opportunities which can be leveraged, as well as downsides to be

mitigated.[61, 62, 63, 66, 67] Tradespace exploration may aid in assessing design per-

formance across a varied environment, as flexibility under uncertain conditions is hard

to assess when considering only one or a few potential operating environments out

of many future possibilities.[61, 66] Uncertainty may actually increase performance

where system flexibility is able to take advantage of potential benefits offered by new

opportunities, while also mitigating potential losses.[62, 63, 67, 68, 69]

Definitions of system changeability incorporate aspects of flexibility, adaptabil-

ity, scalability and robustness, as well as the ability of a system to be modified.

[61, 64, 65] Robust systems should possess adaptability to changes in the operating

environment or mission, be scalable to accommodate new capability, and modifiable

in order to take advantage of new technological developments.[64, 65, 70] The ad-

vantage of robustness is in the ability to sustain a system’s value when inevitably,

change occurs over time. This can be demonstrated by designs that retain high value

for a variety of prospective future scenarios.[61, 64, 65] Flexibility in design may be

defined simply as the ability to change under uncertainty,[63] or as a system quality

that characterizes the feasibility of implementing multiple alternative behaviors un-

der different conditions,[70] or as an externally initiated possibility for change in a

system[61, 64, 65] such as the option presented by a reconfigurable constellation.

Real options analysis is one widely used way of assessing the value of poten-

tial changes to a system under some specified future uncertainty about its operating

environment.[61, 67, 68, 71, 72] “Real options” are the possibility of taking some

physical action for a system (without the obligation of doing so), which may be

used to ease the transition when a system undergoes changes, thereby improving its

flexibility.[61, 63, 68, 69] Reconfigurable constellations provide an example of an en-
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gineering system where real options may be applied “in” the system, meaning that

the option is internal to the physical design of the system considered, and analysis

may be used to aid in determining whether exercising the option is valuable or not

under some condition of future uncertainty.[69, 71, 72] However, real options analy-

sis focuses more on ascribing a monetary value to flexibility, rather than specifically

quantifying the extent of the available flexibility in a system.[66, 68]

Real options literature contains examples of the use of Monte Carlo or other

large-scale simulations for evaluating system value under a variety of potential future

circumstances,[67, 68, 72] in much the same method as adopted by Robert Legge in

his work on the ReCon framework.[8] De Neufville states that estimating the value of

flexibility requires estimating the risks to an inflexible version of the project, calculat-

ing the additional value provided by including options to the system, and identifying

strategies for exploiting the new flexibility of the system, and discusses using simula-

tions on the scale of thousands of run to assess the results of deploying real options

within a system.[68]

2.2.2 Uncertainty analysis for space systems

Literature on flexible design suggests that notable cost improvements may be made

across a range of engineering projects, from a flexible concept of the Iridium constel-

lation design that would have saved up to 20% in development costs,[73] to Robert

Legge’s findings of a 20 to 70% cost saving for reconfigurable satellite constellations

compared to similarly performing static architectures,[8] to de Neufville’s work indi-

cating that design flexibility can improve performance by 10 to 30%.[6]

Uncertainty analysis has been applied to small models for space systems applica-

tions previously, such as in Hassan’s work comparing static and flexible designs for a

satellite fleet to quantify the value of flexibility, in this case by assuming the ability to

provide a variety of communications capabilities to disparate potential markets dur-
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ing the mission lifetime. A model was developed to simulate uncertainty in market

demand and generate several simple constellation architectures that met the require-

ments of the project. Using real options analysis, Hassan found that making different

changes in the architecture supplied the ability to alternately reduce the maximum

possible financial loss, increase the maximum possible financial gain, or reduce the

standard deviation in the assessed value, according to what might be prioritized by

the operator.[74]

Uebelhart used uncertainty analysis and design of experiments techniques to deter-

mine critical design parameters within the tradespace (for optical structures designs),

using a model-based analysis to assess designs under uncertain conditions. Uncer-

tainty bounding techniques were used to correlate specific design variables with the

ability to move along the Pareto front of non-dominated designs.[54]

Walton studied tradespace management for satellite system architectures by ap-

plying uncertainty analysis, developing a framework for analyzing the uncertainty of

each candidate architecture. By simulating vectors of design variables and design con-

stants, output measures were modelled for thousands of designs, including generating

cost and performance metrics. Sources of uncertainty were categorized according to

relevance to the model, including the difficulty of simulation and the impact on the

design, so that output distributions could be generated for the designs over a variety

of potential scenarios.[75] Walton’s model appears to possess similarities to Robert

Legge’s simulation work, though at a simplified level in order to be applied to a range

of applications. However, more detailed uncertainty quantification could be applied

to the design parameters determined to have the most significant effects on the output

distribution.
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2.2.3 Research gaps

Although uncertainty analysis has previously been applied to smaller simulation mod-

els for comparing the performance of constellation designs, such models were heav-

ily simplified for the purposes of reducing the computational intensity required and

keeping the investigated design space tractable. Previous research reviewed did not

use complex design optimization models for constellations while applying uncertainty

quantification techniques in order to improve the sampling efficiency from realistic pa-

rameter distributions. These techniques could be combined with the flexible decision

options presented by reconfigurable satellite constellations. Uebelhart’s research on

optical structures may supply useful examples of the application of uncertainty quan-

tification and bounding techniques. Although the literature on real options analysis

is mostly regarding how to generate ideas for where flexible options might be added

within engineering systems and assessing them in monetary terms, its techniques

could potentially be applied in providing metrics for evaluating the relative value of

reconfiguration options for presentation to satellite operators.

2.3 Probabilistic metrics for system design optimiza-

tion

Yao presented a comprehensive overview of uncertainty-based multidisciplinary de-

sign optimization (UMDO) for aerospace vehicles, reviewing existing approaches and

challenges and including details on optimization under uncertainty as well as mod-

elling, propagation, and analysis of uncertainty. This recognizes the sheer volume of

potential uncertain variables for any system under consideration, including the envi-

ronment, operating conditions, and even the vehicle system itself. These uncertainties

may cause minor variations in system performance, severe deviations from predicted

performance, or even mission failure. This review paper emphasizes how crucial it is

to include consideration of uncertainty at all stages of system design.[76]

51



Traditional system design methods consolidate an assortment of potential uncer-

tainties by assigning a single safety factor to the system.[77] However, imposing a

large safety factor results in conservative designs with excessive redundancy, while

imposing a small safety factor may result in a design for which the level of reliability

is unsatisfactory. Advanced analytical approaches with greater accuracy are needed,

enabling the consideration of uncertainty in a systematic manner during the design

phase. Yao divides such approaches into two major categories: robust design opti-

mization and reliability-based design optimization. Robust design optimization aims

to increase system robustness, decreasing sensitivity to variation in inputs and im-

proving performance stability under uncertainty. This approach primarily considers

events occurring around the mean of the probability density function (PDF) of con-

ditions, and the response observed to such fluctuations around the nominal status of

the system. Reliability-based design optimization aims to improve system reliability

and reduce the probability of failure under extreme conditions, assigning a required

level of probability for the system to maintain a normal operating state even under

critical conditions. This approach primarily considers events occurring in the tails

of the PDF of conditions, and the response observed to such extreme events in the

operating environment.[76]

An assortment of research focuses on reducing the variation in predicted perfor-

mance for various applications, adopting the robust design optimization approach

to UMDO. Sondecker focused on ‘stochastic process decision methods’, identifying

uncertainty as the largest cause of cost and schedule overruns for complex engineer-

ing systems, and aiming to determine and measure the largest sources of uncertainty

and strategically reduce them during system design.[78] Stout aimed to improve the

validation of spacecraft thermal models using rigorous uncertainty quantification and

propagation through models to determine the ultimate effect on outputs of interest.

This is used to reduce the variance in the estimated performance with the goal of

improved accuracy in assigning adequate system margin, reducing mass and cost by

improving overly conservative design modelling.[79] Sankararaman developed a com-
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putational framework for robust design optimization of engineering systems, charac-

terizing and propagating uncertainty. The model focuses particularly on sensitivity

analysis with the objective of reducing uncertainty in the predicted system perfor-

mance, refining the effect of significant variables sequentially in order to decouple

covariance within their impact upon model output.[80]

The reliability-based approach to design optimization was defined by Yao as “A

methodology to optimize design which is reliable with small chance of failure under

predefined acceptable level.”[76] Such an approach is adopted in the work of Shaw,

propagating input statistical distributions to assess sensitivity and capability of the

resulting system as a probabilistic measure. Shaw states that “To be unambiguous

and quantifiable, performance should represent the likelihood that the system can

satisfy the functional requirements.” An acceptable minimum standard of availability

is specified for the system, and the optimization is carried out with the objective of

maximizing the probability of the system being in an operational state according to

the specified standard.[81, 82]

Input probability distributions have been applied in evaluations of lasercom de-

signs, such as Biswas’s work assessing link performance for a deep-space optical com-

munications downlink from Mars to Earth while incorporating pointing losses, re-

ceiver losses, space loss, background-noise estimation and atmospheric attenuation.

This project estimated the best, worst and nominal data rates for the mission, while

posing the question of what fraction of the time such data rates might be achiev-

able, leaving the development of a fully probabilistic performance metric for future

work.[83]

Clements extended research on the use of probabilistic metrics to estimate the

distribution of performance for additional lasercom missions, predicting the volume

of data delivered during a specified time interval to reframe the performance metric

and arrive at a fully probabilistic metric. The probabilistic case with the objective of
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minimizing the probability of failing to meet the data requirements was compared to a

deterministic optimization case with the objective of maximizing average data volume

per day. Optimization results are compared using the worst-case input conditions,

full input distributions, and the probabilistic metric. The usefulness of a probabilistic

design approach for complex missions is emphasized, while acknowledging the chal-

lenges of implementing sufficiency levels of accuracy in the input distributions and

models. Clements added a statistical component to the systems engineering process

for nanosatellite lasercom systems, optimizing designs by prioritizing a high prob-

ability of meeting mission requirements under uncertainty. The project found that

using probabilistic metrics for design optimization resulted in designs with similar

performance at lower cost and improved manufacturability.[84]

2.3.1 Research gaps

Both the robust design optimization and reliability-based design optimization ap-

proaches within uncertainty-based multidisciplinary design optimization have a his-

tory of application to other areas within aerospace research. Robust design opti-

mization has been successfully demonstrated to lead to reduced variance in estimated

performance, as well as reductions in mass and cost for aerospace systems when

improved accuracy in modelling allows for the reduction of margins in overly conser-

vative designs. Reliability-based design optimization has been demonstrated to result

in designs for lasercom nanosatellite systems with similar performance to those pro-

duced by deterministic approaches to design optimization, while lowering costs and

improving manufacturability.

Reconfigurable satellite constellations present a new application for robust de-

sign optimization and reliability-based design optimization, while being extremely

well-suited to UMDO due to the objective of designing a constellation which can flex-

ibly initiate responsive maneuvers following an unplanned event of interest. Robust

design optimization may be used to improve the robustness of reconfigurable con-

stellation designs, reducing the variation in performance achieved under a range of
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unpredictable mission scenarios. Reliability-based design optimization may be used

to evaluate reconfigurable design performance in probabilistic terms rather than the

single performance scores given by Legge, acknowledging the statistical distribution

of the range of performances that will be attained in widely-varying operating condi-

tions. This would allow for the coverage achieved to be compared to a pre-specified

minimum standard of persistence, or for evaluation of the margin by which reconfig-

urable designs outperform traditional static alternatives from the same region of the

design space.
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Chapter 3

Methodology

Past research on reconfigurability has demonstrated that the use of maneuverable

satellites can provide on-demand regional coverage with greater persistence and lower

cost than traditional static constellations. However, providing a very high level of

persistent coverage over unpredictable ground locations of interest would require a

static constellation to launch so many satellites that the costs would be unreasonably

high for many potential applications. As reconfigurable constellations can change the

orbits of their satellites in response to demand, they are able to improve the amount

of utility provided by each satellite in the constellation, rather than relying on being

able to acquire static coverage from a much higher number of satellites, most of which

will not be providing coverage of the area of interest.

The advantage afforded by reconfigurable constellations is the ability to flexibly

respond to uncertain future operating conditions, because reconfiguration grants the

ability to change orbital coverage after the constellation is launched. With static

constellation designs, achievable ground coverage is decided by the choice of design

variables, and can no longer be altered after launch. If the locations of desired cover-

age are not known in advance, any attempt to optimize a static constellation design

to achieve a desired minimum level of coverage over a broad range of potential ground

locations will result in the selection of architectures that attempt to achieve global

coverage at all times, resulting in more costly designs. In comparison, a reconfigurable
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constellation can repeatedly maneuver its satellites into repeating ground tracks to

obtain persistent coverage of the desired location, regardless of where that location

happens to be.

3.1 Existing simulation model

Robert Legge developed a detailed optimization and valuation model for reconfig-

urable satellite constellations (ReCon) as part of his PhD work in the MIT Space

Systems Laboratory (SSL).[8] The ReCon framework concurrently optimizes the in-

dividual satellite design, overall constellation architecture, and aspects of the recon-

figuration maneuvering, as well as explicitly considering uncertainty in the future

operating conditions that such a constellation will encounter. The simulation is writ-

ten in MATLAB, and the orbital propagation was validated by Legge using Systems

Tool Kit. This codebase was inherited by other graduate students in the SSL and

used to further additional research on the ReCon project, with upgrades, modifica-

tions, and extra capabilities added as described within this thesis and others.[48, 47]

The structure of Legge’s original model is described here to provide context on the

unmodified original framework, with modifications and contributions of the current

author described in later chapters.

Legge’s framework generates a range of constellation designs and evaluates these

in a campaign-based model, optimizing performance over the full mission lifetime

rather than attempting to perfect the utility gained during each individual event

of interest. The structure of the ReCon mission lifetime assumes an initial launch

and deployment of the satellites into a Global Observation Mode (GOM), where the

constellation supplies global coverage (within the latitude bands determined by the

orbital inclination of the selected design) at a low level of persistence. Once an event

of interest occurs, the satellites maneuver into intermediate drift orbits to achieve

the correct phasing prior to maneuvering again to reach their specific orbital slots

within the desired repeating ground track. Placing the satellites within the RGT is
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used to achieve persistent coverage over the target location of interest, at the cost of

losing global coverage of areas which are not relevant to the mission objective. This

RGT mode is referred to as the Regional Observation Mode (ROM). After the period

of interest in a target location ends, the constellation maneuvers back into GOM.

This return to GOM is necessary for several reasons: to re-acquire global coverage

while waiting for the next unpredictable target location to be determined (as it is

very unlikely that the next target will coincidentally occur along the same RGT), to

avoid large relative drift in the right ascension of the ascending node (Ω) across the

constellation, and to ensure that the satellites within the constellation do not end up

clustering within their orbital planes and degrading the pass time options for future

events of interest.

Figure 3-1: Comparison of satellite revisit times and ground coverage achieved in
Global Observation Mode (left) versus Regional Observation Mode (right). Image
credit: Robert Legge[8]

As shown on the left in Figure 3-1, a satellite constellation in GOM provides

partial global coverage (within the latitude bands imposed by the orbital altitude of

the constellation) but with considerably worse revisit times of any particular location

that is selected within the coverage area. Maneuvering into ROM as shown on the

right of Figure 3-1 allows for a drastic improvement in the revisit time (and therefore

achievable level of persistence) at a specific location along the RGTs, at the cost of

degrading the global coverage so that some locations now receive no satellite passes

at all. Once an event of interest has been selected, this is considered to be an accept-

able tradeoff, as the target location has now been determined and all other locations
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become irrelevant for the purposes of gathering observations.

Legge’s goal in developing this codebase for satellite constellation design and op-

timization was to avoid many of the artificial limitations and arbitrary constraints

placed on the design space by assumptions made in previous research. The frame-

work was created in order to find globally efficient constellation designs, by using the

explicit consideration of uncertainty in the constellation’s operating conditions, and

the application of comprehensive and multidisciplinary modelling to accurately repre-

sent subsystem interconnections, in order to avoid many common past simplifications.

The basic structure of Legge’s framework requires the selection of several inputs:

a constellation architecture (choosing from static, reconfigurable, sun-synchronous,

or rapid launch options); some fixed design parameters (such as propulsion system

specific impulse or propellant module structural mass fraction) which are not changed

during the design optimization; and system constraints (such as minimum orbital al-

titude or maximum mass fraction of the propulsion system) used to place bounds

on the design optimization process. The model takes these specifications from the

operator and uses them to generate a set of optimized designs which are assessed

along a cost/performance curve, with the objective of maximizing performance while

minimizing cost. This is referred to as a Pareto curve, an example of which is shown

in Figure 3-2.

The cost model is based on a combination of payload cost, spacecraft cost, launch

cost, and quantities of scale effects, but excludes operations costs.[8] For modelling

payload costs, Legge combined the NASA Instrument Cost Model (NICM) with an

optical telescope assembly cost model developed by Stahl[85] to arrive at an estimated

payload cost based on aperture diameter. Spacecraft cost was estimated using a com-

bination of the Small Satellite Cost Model (SSCM) and the Unmanned Spacecraft

Cost Model, version 8 (USCM8).[86] Launch costs are based on a database Legge

compiled of existing US launch vehicles available at the time of writing in 2014. Fi-
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nally, Legge’s cost modelling incorporates amortization of non-recurring engineering

costs, and learning curve effects that represent a fractional reduction in cost per satel-

lite for each doubling in the number of satellites produced.

All of the cost values are presented in US dollars for FY2010 for consistency of

comparison with Legge’s past results, meaning that if inflation alone is taken into

account, realistic 2022 cost values would be 32.6% higher. Straub modelled updated

launch costs for the ReCon model in 2020,[48] but these are not incorporated here

as this work was already underway at the time of Straub’s findings, although this

would be a highly useful addition to future work using the ReCon codebase. Other

future work should consider updating the cost modelling, quantifying the amount of

variation in constellation costs rather than predicting a single value, and incorporating

operations costs into the overall cost estimates.

Figure 3-2: Example of a Pareto chart, showing a range of constellation designs
plotted by normalized performance against cost
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The Pareto chart in Figure 3-2 shows sample output from a single run of the Re-

Con codebase. All of the generated constellation designs are plotted as black dots,

compared along the axes of constellation cost and normalized performance (where 1.0

is the maximum achievable ideal performance, if every single desired satellite pass of

the location of interest was achieved at exactly the desired time and at the desired

resolution). The blue star in the upper left of the figure represents the ideal point,

delineating an imaginary theoretical best design which would achieve perfect perfor-

mance at zero cost. The Pareto front in Figure 3-2 consists of the designs on the

left highlighted by red circles, which are the set of designs which fall closest to the

ideal point. These designs are ‘Pareto optimal’ or ‘non-dominated’, meaning that an

improvement in one metric can only be achieved by a reduction in the other metric.

Taking any one of these highlighted non-dominated designs as a starting point, an-

other design that gives higher performance must cost more, or an alternate lower cost

design will perform more poorly in comparison to the original. The designs shown by

plain black dots are ‘Pareto dominated’, meaning that they have been outperformed

on both metrics of interest by some alternative option, and are therefore judged to

be non-optimal. The set of optimal non-dominated designs are saved as the output

of Legge’s framework, and the non-optimal designs are discarded.

Thoroughly detailed descriptions of the various layers of the simulation model

may be found in Robert Legge’s PhD thesis,[8] but a useful summary is shown in

Figure 3-3, consisting of three main layers. The first layer (shown in blue) is a

multidisciplinary simulation model which outputs performance and cost figures for

the mission lifetime of a satellite constellation design. The second layer (shown in

red) incorporates Monte Carlo sampling of various uncertain parameters, using an

input parameter distribution for uncertain event locations and timings to arrive at a

performance and cost distribution from the simulation model layer. The third layer

(shown in green) is a multi-objective optimization used to find a performance/cost

Pareto front of potential constellation architectures satisfying the specified set of

objectives and constraints.
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Figure 3-3: Structure of Legge’s ReCon framework for constellation design and opti-
mization. Image credit: Robert Legge[8]

3.1.1 Simulation layer

The ReCon simulation model is by far the most detailed of the three layers described

above, using a set of inputs that includes the choice of constellation architecture,

a vector of design variables, and various system parameters that are assigned fixed

values rather than being varied during the design optimization process. This model

layer can be envisioned as the simulation of a single constellation design over the en-

tire course of a single possible mission lifetime scenario. The simulation model takes

in the selected constellation architecture, any fixed system parameters or constraints

that must be fulfilled in order for the design to be feasible, and a vector of design vari-

ables that specifies the individual design under consideration. The simulation output

consists of the performance and cost for this individual design under one scenario,

as well as highlighting any constraint violations that may affect how realistically the

design could actually be used.
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The design vector includes variables such as the repeating ground track (RGT)

from which the constellation will make observations, the variation in altitude between

ROM and GOM orbits, the number of orbital planes, the number of satellites per or-

bital plane, the orbital inclination, the ∆𝑉 budget for all reconfiguration maneuvers

over the mission lifetime, the aperture diameter for optical imaging, a parameter to

determine satellite phasing between orbital planes, and a decision weighting variable.

This weight-based decision model is used to simulate the balancing of resources dur-

ing the mission lifetime, between the competing objectives of achieving coverage as

quickly as possible versus conserving propellant for use later in the mission. Legge

chose to include this variable in the design optimization to allow for variation in pref-

erences over the duration of the mission as propellant use becomes known, rather

than assigning a single fixed value at the start of the mission. Designating a fixed

value might result in the system running out of propellant early and being unable

to react to events of interest at the end of the constellation lifetime, or conversely

over-emphasizing the conservation of propellant and failing to generate what could

have been useful coverage by leaving extra unused propellant leftover at the end of

the mission.

The structure of the simulation model is shown in Figure 3-4, consisting of five

distinct modules. The simulation setup module takes the input given for the constel-

lation architecture, the ranges for design variables, and the fixed system constraints.

These are used to generate a constellation pattern and set of design variables that

define a single potential constellation design. For symmetric architectures, these de-

signs consist of Walker Delta pattern constellations (as discussed in Section 2.1.1),

with asymmetric architectures derived from restricted asymmetric and asymmetric

Walker patterns.

This design and pattern is passed to the spacecraft module, which sizes the satel-

lite dry mass and launch volume as a function of the aperture diameter (one of the

initialized design variables), using curve-fitting based on data from past Earth obser-
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Figure 3-4: The five modules that make up the simulation model layer of the ReCon
codebase. Image credit: Robert Legge[8]

vation satellites. The vector of design variables is used to model and appropriately

size the satellite bus and payload. The propulsion system is sized based on the ∆𝑉

requirements for initial constellation deployment and phasing, station-keeping and

drag makeup, the ∆𝑉 budget for reconfigurations over the whole mission lifetime

(another of the initialized design variables), and satellite disposal at the end of the

mission lifetime. The total ∆𝑉 budget is used to calculate the propellant mass and

total propulsion system mass, and then spacecraft dry mass can be estimated.

The cost module combines optical payload, spacecraft and launch costs, and ap-

plies effects for economies of scale, although operations costs are excluded. The

economies of scale are implemented by amortizing non-recurring engineering (NRE)

costs over the whole constellation and applying a learning curve effect to the per-

satellite costs, for efficiency gained in producing more units of the same satellites.

The optical payload and spacecraft costs are estimated based on a comparison of sev-

eral existing models, with launch costs calculated using a customized model assigning

satellites to specific launch vehicles and carrying out a launch cost optimization pro-

cess in conjunction with the spacecraft module (shown in Figure 3-4 as the one upward
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link between modules). This optimization is carried out to examine the tradeoff be-

tween increasing the onboard ∆𝑉 budget (thereby increasing spacecraft costs) and

decreasing launch costs. Minimizing overall costs requires finding the balance be-

tween these factors, as increasing the amount of propellant available for constellation

deployment can reduce launch costs by imposing less stringent requirements on the

initial orbit into which the satellites are launched. The launch assignment process

in the cost module is iterated using a range of values for the initial deployment ∆𝑉

budget in order to find the global minimum for overall constellation cost.

The astrodynamics module uses the constellation pattern and design vector to

calculate ground coverage in GOM. This module uses a single target deck of events of

interest to supply the scenario for the constellation’s mission lifetime, modelling the

constellation response to each event of interest as a sequential campaign, propagat-

ing the satellite orbits and optimizing propellant usage over time. For reconfigurable

designs, a process of maneuver selection is carried out to move satellites into ROM

and achieve more persistent coverage over the target location during the period of in-

terest. For static designs, the achievable event coverage in GOM is calculated for this

same period. A satellite assignment optimization is carried out within this module,

determining how many satellites will be maneuvered for an event response, which in-

dividual satellites will be maneuvered, which drift orbits will be used for phasing, and

which RGT each satellite will be placed into, which determines whether ascending or

descending passes will occur over the target location. A dynamic programming opti-

mization is carried out to determine optimum satellite assignment, using the decision

weighting variable from the design vector that was previously described in this section.

In an operational reconfigurable system, satellite operators could use the output of

this optimization to make decisions on the prioritization of achieving coverage of the

current event of interest as quickly as possible versus conserving propellant for later

reconfigurations, but here the decision model is used for the purposes of automating

this factor to enable full design optimization. This optimization process also applies

a penalty for maneuvering any satellites that have a lower than average amount of
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remaining propellant, in order to balance propellant use across the constellation as a

whole and avoid situations in which some satellites prematurely deplete their entire

∆𝑉 budget before the end of the mission lifetime is reached.

The fifth and final module within the simulation layer is the performance module,

which takes in all of the information from the previous modules on constellation

design and pattern, mass and cost calculations and event response and calculates the

overall lifetime performance of the system. This is computed as the mean performance

generated over all events of interest during the mission lifetime scenario. A custom

performance metric is used to assess how well the persistence and resolution of the

satellite coverage achieved by the constellation matches the desired levels of temporal

and spatial event coverage, and this is described in more detail in Section 3.1.1.1

below.

3.1.1.1 Performance module and custom performance metric

Satellite constellation performance is commonly evaluated using metrics such as av-

erage revisit time and maximum revisit time over the location of interest. However,

Legge and other previous literature[8, 58, 87, 88, 89] has demonstrated that optimiz-

ing for one of these metrics often worsens the other, despite the fact that they are

usually used together as a pairing to assess the performance of satellite ground cover-

age. Average revisit time is improved by merely increasing the number of observations

within the specified time window, with no attention paid to when they occur or the

spacing of observations within this window. Maximum revisit time is improved by

simply reducing the duration of the single longest gap in coverage. Neither of these

metrics account for whether a desired level of persistence is achieved. An alternate

metric of response time, which is defined as the mean time to coverage in a given

time window, allows for comparisons to be made with a desired persistence level, but

due to its statistical nature, it cannot take other factors into account such as varying

spatial resolution across different satellite passes.
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Legge defined a custom ‘persistence metric’ by combining two utility functions, as-

sessing whether the desired levels of persistence and spatial resolution are achieved, as

well as incorporating illumination constraints for optical imaging applications which

require daylight passes over the location of interest to gather useful imagery. Persis-

tence is defined as sustained coverage of a target location during a period of interest,

achieving a stated and consistent frequency of observations, and so the persistence

metric is designed to assess how well the constellation performance matches this de-

sired frequency.

The first utility function incorporated into the persistence metric is a temporal

utility function derived from the amount of time elapsed since the last observation

was made. This is used to assign a utility value based on whether the time at which

passes occur matches up well with the desired cadence of observations. The temporal

function starts at a value of zero when the time since last observation is zero, and

increases at a constant rate, reaching a maximum value of 1 once the time since last

observation reaches the desired observation cadence. For example, for a desired re-

visit cadence of one hour, the temporal utility function would start at zero after zero

minutes, climb to 0.5 after 30 minutes, and reach a value of 1 after one hour. This

means that if the target location was recently observed, the utility of an additional

observation is low. The temporal utility does not increase beyond its maximum value

after the desired revisit time is surpassed, so as not to reward undersampling and

missed observations.

The second utility function integrated into the persistence metric is based on

whether the desired spatial resolution, or ground sample distance (GSD), is being

achieved by the constellation observations that occur. Rather than imposing a fixed

minimum requirement for useful GSD, Legge observed that a reconfigurable constella-

tion may be spread across a range of orbital altitudes, where different satellite passes

would provide imagery at varying levels of spatial resolution. Incorporating a spatial

resolution utility function allows for the utility supplied by each pass to be scaled
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to the gradual degradation of optical information as this resolution declines, rather

than selecting an arbitrary cutoff limit beyond which no value is gained from the

imagery. This function gives a utility of zero for cases where the achieved GSD is

four or more times greater than the desired GSD, and a utility of 1 where the desired

GSD level is met or improved upon, again with no increase in utility given above

the target value, to avoid rewarding oversampling in this case. Between the maxi-

mum utility value of 1× the desired GSD and the minimum utility value of 4× the

desired GSD, Legge used a scaling parameter to give a curve that matches the level

of degradation in utility to the National Imagery Interpretability Rating Scale.[90, 91]

These two utility functions were combined to create a two-dimensional utility sur-

face, and a dynamic correction term was added to ensure symmetry of the surface.

This addition was made to account for cases where later observations may be occur-

ring too soon to provide significant temporal utility, but are supplying significantly

improved spatial resolution above that acquired by previous passes that did not meet

the desired GSD value. Finally, Legge applied a rectangular window function for

daylight hours, specifying that only daylight observations are able to provide utility

for a mission application that requires optical imaging.

3.1.2 Monte Carlo layer

While the simulation layer of the ReCon codebase can be envisioned as modelling a

single constellation design over one possible mission lifetime, the Monte Carlo layer

is then used to iterate that simulation layer to assess how the constellation design

performs over a range of possible scenarios for its operating lifetime. Rather than

providing a performance score for a single scenario, the Monte Carlo layer uses the

uncertain factors of where and when events of interest will occur (in the form of

randomized target decks, described in more detail in Section 3.1.2.1) to estimate

a distribution of constellation performance. This can be used to make predictions

about the expected performance the constellation will achieve under uncertain oper-

ating conditions.
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Due to the fact that the simulation model is non-linear, simply using expected

values of the uncertain factors as inputs will not give a correct expected value of

system performance.

𝐹 (𝐸(𝑥)) ̸= 𝐸(𝐹 (𝑥)) (3.1)

The inequality shown in Equation 3.1 can be illustrated by considering any non-

linear function; Legge gives the example of 𝑓(𝑥) = 𝑥2 for a uniform distribution on

the interval 0 ≤ 𝑥 ≤ 1.

This means 𝐸(𝑥) = 0.5, which gives the result 𝐹 (𝐸(𝑥)) = 0.25. However, finding the

value for 𝐸(𝐹 (𝑥)) by integrating over the specified interval gives the result:

𝐸(𝐹 (𝑥)) =

∫︁ 1

0

𝑥2𝑑𝑥 =
1

3
(3.2)

The discrepancy between these two results demonstrates how using expected val-

ues for the inputs to model a non-linear system will not give the correct expected

values of system output; the distribution of uncertain parameters must be modelled

sufficiently to give an accurate estimation of the resulting non-linear system response.

Intuitively this makes sense, as thinking about trying to find the ‘average location’

on the Earth’s surface and use it as a simulation input is a nonsensical endeavor. If

a set of completely random locations are defined in terms of latitude and longitude

and then averaged, the result is likely to be the intersection of the equator and the

prime meridian due to the co-ordinate system used. If the averaging was carried out

in three dimensions, the mean location would be the center of the Earth. Neither of

these results will supply a useful input for optimizing constellation design, nor reflect

the full variation in system performance under uncertainty.

The objective of using Monte Carlo simulation is to find the distribution of constel-

lation performance that occurs against the distribution of uncertain event locations

and event timings. This is then presented by Legge as a single statistical performance
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measure of the fitness of the resulting constellation designs. Legge uses median per-

formance as the condensed performance metric for optimized designs, while observing

that average or percentile values could be used based on stakeholder needs. Using

the median performance will display the center point of the distribution, while us-

ing percentile values can show some information about the spread of the distribution

itself. However, any single value taken alone can only present limited information

about how a design may perform against a range of unknown operating scenarios.

3.1.2.1 Target decks for Monte Carlo simulations

If operating conditions are unknown, the question then arises as to how a constella-

tion may be designed for them. For the ReCon project, a set of target decks are used,

presenting different theoretical 5-year scenarios for the mission lifetime. A target deck

is an array containing a single 5-year timeline with a set of randomized locations of

interest, that are also randomly spaced in time, though not occurring simultaneously.

Time between events is modelled as a normal distribution with a mean of 3 months

and standard deviation of 1 month. As the default event duration is set to 14 days,

the minimum time between events is set to 2.5 weeks to avoid the occurrence of any

overlap. This randomized temporal spacing results in sets of 14–26 events of interest

over a 5-year mission lifetime (mean: 19.5 events, median: 19 events, standard devi-

ation: 1.5 events).

Events of interest are distributed within a set latitude range (minimum: 44°S,

maximum: 65°N) and were generated by Legge based on data from a World Bank

global risk analysis of natural disaster hotspots with effects weighted by economic

impact.[92] This results in a probability density function (PDF) with clear global

emphasis on areas of both high population (because disasters in uninhabited regions

will have very little economic impact) and high natural disaster risk (because highly

populated areas with few or no disasters will also suffer little economic impact). This

is illustrated in Figure 3-5 by plotting 1000 random locations generated from the

PDF, showing clear trends for densely populated regions of the world with increased
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risks of natural disaster occurrence. Legge’s research also compared this PDF to a

uniform distribution of random locations between the latitudes of 40°S and 60°N, an

area selected to include over 99.6% of the global population.

Figure 3-5: Probability density function of natural disaster risk weighted by economic
impact, represented here by 1000 locations randomly generated using the PDF from
the World Bank analysis of natural disaster hotspots[92]

Other latitudinal distributions may be used, but the specification must be jus-

tified due to the obvious effect on inclination selection for the constellation. Aside

from locations of interest specified by latitude and longitude co-ordinates and event

timing, these arrays also include the duration of interest (default is 14 days), desired

ground sample distance (default is 1 m), daylight hours during which imagery will be

captured (default is 6am–6pm local time), and desired revisit frequency (default is 1

hour). Target decks are used to evaluate performance, cost and constraint fulfilment

for different constellation designs in an assortment of theoretical scenarios. If a design

performs satisfactorily under a range of different operating scenarios, it is concluded

that that design is well-suited to flexibility in its operating context.

The decision to use target decks rather than individual target locations may not

be immediately clear, however it is operationally correct to optimize constellation

designs based on a sequence of events rather than individual occurrences. Target
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events cannot be treated as single stand-alone incidents due to the fact that each

maneuver affects the future fuel availability and orbital position for each satellite.

Balancing fuel consumption across the constellation forms part of the overall opti-

mization strategy for the mission lifetime, meaning that the optimal reconfiguration

may not be selected for each individual event in order to prioritize preserving a func-

tional level of maneuverability until the mission duration is complete. Maneuvering

between Global Observation Mode and Regional Observation Mode repeatedly over

the course of multiple events also causes a drift in RAAN for each group of satellites

that is moved, meaning that it is necessary to balance reconfiguration maneuvers

across the constellation over time in order to maintain spacing between the orbital

planes occupied by the satellites. Multiple operating scenarios must be used so as to

avoid the aforementioned ‘flaw of averages’; using a single ‘average’ 5-year mission to

assess constellation performance will fail under almost every single scenario where the

design is then exposed to real uncertainty, as it will result in a design optimized only

for the exact mean of the distribution rather than incorporating responsive flexibility

that can succeed under the variance found in real-world scenarios.

An important question that arises is how many target decks must be used to reach

the conclusion that a design has been assessed against an adequate range of scenarios.

Legge considers the level of Monte Carlo sampling error introduced by a given number

of target decks by assessing the sampling error of the mean, median and lower 20th

percentile values for constellation performance against the number of target decks

the design is evaluated upon and including 68% and 95% confidence intervals for each

of these three metrics. The confidence interval size is expressed using a percentage

variation from the median, and it is concluded that using 24 target decks results in

a 68% confidence level of 3% of the median value. This means that there is a 68%

confidence level that the actual median value for constellation performance will fall

within ±1.5% of the median performance value predicted by the model (the value

that was used to evaluate the design during the process of determining “population

fitness”, as part of the design optimization process).
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For the purposes of comparing Legge’s confidence levels to those calculated in

later chapters of this work for updated sampling alternatives, the use of 24 decks is

treated as the pre-existing standard for an acceptable level of sampling error. How-

ever, as the updated calculations do not seem to exactly replicate the standard error

levels calculated in Legge’s work, the question of what constitutes an appropriate

confidence level is considered in Chapter 5 alongside the results for this area of work.

If the number of target decks used for performance evaluation is altered, a bal-

ance must be struck between considering how much time and computational resources

may be saved by using a smaller number of decks versus what effect a reduction in

decks may have on the confidence level of the optimization results. It is also neces-

sary to compare the performance confidence levels between reconfigurable and static

constellation designs. The overlap in distribution between the two confidence curves

represents the region for which it cannot be stated with confidence that reconfigurable

designs will outperform static designs.

This is highlighted in Figure 3-6, showing a comparison of performance for a single

reconfigurable design (on the right, in blue) against performance for a single static de-

sign (left, in orange) over 500 randomized scenarios. These designs were selected as an

iso-cost pairing for this performance comparison and compared for their performance

under uncertainty. Although the reconfigurable design achieves a mean normalized

performance of 0.4 to the static design mean performance of 0.25 and both have com-

parable standard deviations of 0.04, there remains a region where it cannot be stated

with 100% confidence that reconfigurable designs will outperform static designs, and

this area is highlighted by the red box in Figure 3-6. Characterizing these regions

and assessing confidence levels that reconfigurable designs will outperform static de-

signs of comparable cost is an important question with this research, and this topic

is covered in extensive detail in Chapter 4.
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Figure 3-6: Overlapping histograms showing normalized performance for a pair of
iso-cost designs (one static, one reconfigurable) over 500 random scenarios, with high-
lighted region of uncertainty for which it cannot be stated with confidence that the
reconfigurable design will outperform the static design

3.1.2.2 Optimization versus re-evaluation decks

Target decks are used in the Monte Carlo layer of the framework as explained in the

previous section, with each deck representing one possible mission lifetime for the

constellation. For a five-year mission lifetime, the target deck consists of a list of

event locations (specified in latitude and longitude) along with a sequence of timings

for each event that are randomly distributed throughout the five-year period. In this

work, overlapping events are not considered due to the additional complexity of di-

viding resource allocation between simultaneous targets, but this is recognized to be

an important area for future work on reconfigurable constellations.

There are two different areas within the ReCon model where target decks are used,

and it is important to distinguish between them. During the process of optimizing

75



the constellation design, the performance of each design is iteratively assessed during

the Monte Carlo layer of the framework in order to calculate a distribution of cost

and performance values across a range of scenarios. This step is carried out to ex-

amine the consistency of system performance under uncertain conditions, as part of

the objective of designing for flexibility. Design fitness is assessed against 24 random

target decks, and the performance against these scenarios provides the basis on which

constellation designs are optimized during each code run. Legge uses the cost and

performance scores from this output as the final scores upon which to judge the utility

of a set of optimized, non-dominated designs that are provided as the output from a

ReCon code run.

In contrast to Legge, the current work presented here chose to draw a distinction

between the target decks used for assessment during the optimization stage of the

framework (referred to hereafter as the ‘optimization decks’) and the target decks

used to calculate a final performance score for the selected set of non-dominated de-

signs (referred to hereafter as the ‘re-evaluation decks’). An extra script was created

and integrated with the inherited ReCon codebase to select a new set of target decks

to use for re-evaluating the performance scores of the output set of optimized, non-

dominated designs and comparing these scores to the original utility scores assigned

during the design optimization. This change was made to build in an extra layer

of randomized assessment in the constellation design scoring, to ensure that selected

designs did not only perform well against the target decks against which the design

was optimized. As the optimization decks are used to drive the development of the

design, a different set of re-evaluation decks are used as a form of validation for the

performance scoring.

As an example, a theoretical scenario may be envisioned where the constellation

design was optimized against a set of target decks, in which due to some quirk of

randomization all the locations of interest were close to the equator. In this situa-

tion, the optimal designs selected are likely to be those at a low orbital inclination,
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which will spend a greater amount of time passing over low latitudes compared to

orbits at a higher inclination. If the designs are then scored only against this set of

near-equatorial targets for which the constellation was optimized, they will naturally

perform well. However, if the design performance is re-evaluated against a differ-

ent set of target decks which include a much broader range of target latitudes, the

performance score will naturally drop considerably once it becomes clear that the

designs were only optimized for a narrow set of scenarios and not over the full range

of desired flexibility in the operating conditions. This provides the motivation for the

use of separate re-evaluation decks as an extra final stage in the framework scoring,

which costs little in terms of computational resources while placing a check upon the

design scoring to ensure that it is validated across a wider range of potential mission

scenarios than just the set used for the initial optimization process.

3.1.3 Multi-objective optimization layer

For a satellite constellation with several competing objectives, there is no way to

find a single ‘globally optimal’ design, which excludes the use of traditional optimiza-

tion techniques focused on achieving a single objective. Multi-objective optimiza-

tion techniques must be used instead, winnowing down the design space of potential

constellations to arrive at the subset of non-dominated designs where one objective

cannot be improved without another objective performing more poorly. The ReCon

codebase sets dual objectives of simultaneously maximizing the median system per-

formance and minimizing the total system cost, and potential constellation designs

are assessed on these fronts.

The multi-objective optimization layer is the third and outermost layer of the

ReCon codebase, wrapping around the previous two layers to iterate potential design

variables against constellation objectives in an attempt to determine an optimal set

of designs. The optimization layer calls upon the other code layers many times, iter-

ating the simulation of individual constellation designs against many different mission

lifetime scenarios, to assess performance and cost distribution under uncertain con-
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ditions and discard any non-optimal designs.

Legge considered a range of multi-objective evolutionary algorithms (MOEAs)

for use in the ReCon codebase, eventually opting to combine features from mul-

tiple MOEAs to customize the algorithm for this application. Early approaches to

MOEA optimization converted multi-objective problems into a weighted set of single-

objective problems which could then be solved using more traditional optimization

methods. This approach is computationally inefficient and ineffective for non-linear

or computationally intensive models, and therefore poorly suited to the ReCon opti-

mization.

Developments in the second generation of MOEAs attempted instead to approxi-

mate the entire Pareto front of non-dominated designs, simultaneously improving this

front towards the ideal point and spreading out the designs along it to reflect the full

breadth of the non-dominated design space. These methods improved computational

efficiency but required additional parameters to avoid becoming trapped in locally

optimal solutions.[93] The two conflicting goals of achieving convergence of the opti-

mization alongside maintaining diversity of the non-dominated solution set are often

in tension, with the improvement of one leading to a deterioration in the other. Fixed

population size can eventually lead to the algorithm having to discard non-dominated

designs and ultimately sacrifice convergence for the preservation of diversity in the

results. However, Ferringer’s past work using the NSGA-II (Non-dominated Sorting

Genetic Algorithm II) for a satellite constellation optimization found that the results

were still stagnating prematurely in locally optimal solutions, rather than finding the

true Pareto front.[58]

Work on the third generation of MOEAs led to a range of modifications to attempt

to solve the issues of premature stagnation in local optima and deterioration where

non-dominated designs are discarded. Legge’s implemented solution combines fea-

tures of several of these third-generation algorithms, taking features from the 𝜖-MOEA
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and Borg-MOEA algorithms and incorporating these into the 𝜖-NGSA-II algorithm.

These attributes were selected to avoid deterioration and premature stagnation, im-

prove convergence, measure and improve convergence speed, reduce computational

intensity, and account for complex interactions between interrelated or correlated de-

sign variables. More detail on the implementation of 𝜖-NSGA-II and other features

can be found in Chapter 5 of Legge’s thesis, as well as an extensive comparison of the

advantages and disadvantages of a range of multi-objective evolutionary algorithms.[8]

Finally, it was necessary for Legge to modify 𝜖-NSGA-II to implement parallel

computation in the optimization layer of the ReCon codebase. Due to the large

amount of time devoted to functional evaluations in order to arrive at an optimized

set of designs, it was decided to structure the code to use multiple processors in

parallel, thereby providing the option to divide the computational demands across a

number of cores and reduce the overall running time of the code.

Legge implemented a version of the simplest form of parallelization, using a leader-

worker structure (formerly referred to as a “master-slave” structure, under deprecated

terminology). This method designates a leader processor to implement the optimiza-

tion functions that make up the modified 𝜖-NSGA-II technique and send out assign-

ments of functional evaluations to be carried out on the worker processors. The results

of these evaluations are returned to the leader processor once completed, where they

are compiled into the overall optimization output in an iterative process, with new

evaluation tasks assigned to the worker processors to continue the cycle until the

termination criterion of the optimization is reached and the code run ends. This

termination criterion was chosen based on the rate of improvement within the con-

stellation design population and averaged over a number of evaluations to smooth out

convergence spikes. The rate of improvement is calculated as the percentage of the

population archive that has been improved per 100 functional evaluations, averaged

over the most recent 2500 functional evaluations. The optimization is terminated

once the improvement rate drops below 2.5, meaning that over the last 2500 func-
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tional evaluations, the algorithm is now improving less than 2.5% of the archive for

every 100 evaluations it carries out.

Under ideal circumstances, parallelizing the processing would lead to a speedup

factor that increases linearly with the number of processors used, but in practice this

level of efficiency is rarely achieved. Limitations occur due to communication time

taken to pass assigned tasks from leader to worker and to pass back output data from

worker to leader, and due to idle time where workers must wait for a new task to be

assigned by the leader processor due to computational bottlenecking.

Idle time may also occur due to generational synchronization, where all the func-

tional evaluations for the current optimization generation must be completed before

the leader processor can move on to assigning tasks for the next generation. Legge

considered and rejected an asynchronous execution method for the ReCon codebase

due to the large difference in duration taken to evaluate different constellation sizes,

with a 9× increase constellation size found to result in a 16× increase in functional

evaluation time. Such a large duration increase would lead to an asynchronous method

carrying out many more evaluations for smaller constellation sizes, leading to their

overrepresentation in the optimized output design set. Legge instead chose a batch

processing approach to divide up the computational burden for each population gen-

eration and divide it into pieces that can be discretely evaluated. These are sorted by

estimated evaluation time based on the constellation design size, and then the blocks

are assigned to worker processors starting with the largest processing times. This

synchronous method allows for smaller job blocks to be assigned to worker processors

that have already completed their initial evaluation, thereby reducing idle time due

to generational synchronization.

Parallelized optimization runs were carried out by Legge in 2014 on MIT Lincoln

Laboratory’s LLGrid computing cluster, described in more detail alongside its exter-

nal equivalent in Section 3.2. Legge had access to a total of 1024 processors on LLGrid,
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using these to carry out four simultaneous ReCon runs that were each allocated 256

processors. Over a period of three months, Legge completed 85 optimization runs,

comprising a total of almost 40 million functional evaluations, equivalent to over 150

years of computation time on a single processor: thoroughly proving the necessity of

parallelization for the ReCon codebase.

3.2 MIT Supercloud

MIT Lincoln Laboratory runs an internal-use computing cluster called LLGrid for

use by its staff and affiliates, and an externally accessible version called the MIT

Supercloud for use in research collaborations between Lincoln Laboratory and MIT

and other academic institutions. This resource is provided to facilitate research with

intensive computing, memory or data requirements. In 2019, the Supercloud cluster

provided 1000 CPU cores and 10 GPUs across approximately 50 nodes for research

purposes, with a per-user limit of 64 cores at any one time. By the end of 2021,

following a series of upgrades, the Supercloud provided 32,000 CPU cores and 448

GPUs across 704 nodes, with the per-user limit upgraded to 1152 cores.[94, 95]

The facility is part of the larger MIT Lincoln Laboratory Supercomputing Center

(LLSC), which had 40,000 cores as of 2018[94] and has been through several significant

upgrades since then, making it the most powerful supercomputer in New England, and

the third most powerful university supercomputing resource in the United States.[96]

LLSC is connected to the Massachusetts Green High Performance Computing Center

in Holyoke, Massachusetts, which is a renewable-energy collaboration between MIT,

Harvard, Boston University, Northeastern, and the University of Massachusetts that

provides hundreds of thousands of cores for academic research.

The work carried out in this thesis made use of MIT Supercloud resources to run

the ReCon codebase, working in MATLAB and pMATLAB to carry out parallelized

tasks across a series of cores. pMATLAB was developed at MIT Lincoln Laboratory
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to remove standard obstacles preventing broader uptake of high-performance parallel

computing, and enable straightforward access to this using the MATLAB language

by interfacing with the libraries needed to distribute computational tasks in parallel

at a large scale. Optimization runs were carried out between 2018 and 2022, with

various upgrades made to the inherited codebase to bring it up to date with current

versions of MATLAB and pMATLAB as the Supercloud went through upgrades over

time. Other upgrades and modifications were made to improve sampling and other

metrics within the ReCon codebase, as well as investigating how a range of design and

operation decisions affect the performance of reconfigurable satellite constellations,

and these are described in the following chapters.

82



Chapter 4

Probabilistic metrics for statistical

distribution of performance

As the ReCon codebase is designed to optimize reconfigurable constellation designs

to perform well under uncertain conditions, the performance metric of a constellation

must be considered in statistical terms. Unless the exact location and timing for

every event of interest can be determined ahead of time, the performance for any

reconfigurable constellation will always be a probability distribution that must be an-

alyzed statistically, rather than a deterministic score that can be predicted precisely

for each design. In circumstances where the exact coverage requirements are known

ahead of time, a static constellation may be designed to achieve such coverage with-

out the need for reconfiguration or its attendant fuel and propulsion system costs, as

the advantages of reconfigurable architectures lie instead in their ability to respond

to unpredictable operating circumstances.

In summarizing a set of performance scores obtained against a range of possible

scenarios that results in a distribution of outcomes rather than a single value, it is

common to use multiple metrics to communicate a simple description of the data

with more detail than any single metric can provide alone. In addition to a metric

of central tendency (such as the mean or median), a metric of statistical dispersion

around the central tendency (such as standard deviation, variance, or range) is fre-
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quently used to give an idea of how the results are spread out around the average

value. For non-Gaussian distributions, an additional metric to describe the shape of

the distribution (such as skewness or kurtosis) may be added. If multiple variables are

considered together in the output, a metric to describe the extent of any statistical

dependence between these variables may be useful (such as a correlation coefficient).

There are many existing metrics for analyzing satellite ground coverage, each with

their own advantages and disadvantages in visualizing the performance of a constella-

tion. Some of these are more suited to evaluations of a single scenario, such as ground

track plots or analytic coverage functions for a single orbit. Numerical simulations

are generally necessary to establish statistical data and determine coverage figures of

merit over a wider area. Satellite coverage is not a randomly distributed parameter; it

tends to be achieved in clusters, as consecutive passes of the same satellite or adjacent

passes of satellites in neighboring orbital planes are more likely to occur within range

of the same ground location. It is necessary both to conduct analyses that assess

patterns in coverage over time and to establish a qualitative physical sense of how

coverage is provided by a particular orbit.

Figure 4-1 shows two examples of a ground trace plot for a 15/1 repeating ground

track orbit (which completes 15 orbits of the Earth in 1 day), with Figure 4-1a

showing this orbit in a spherical 3D representation and Figure 4-1b showing the same

orbit in a flat map projection with longitude and latitude co-ordinates labelled along

the axes. Advantages of ground track plots include their simplicity and usefulness

in physical insight into the nature of the coverage supplied by a particular orbit.

Comparing Figures 4-1a and 4-1b also illustrates the distortions introduced by using

a rectangular map projection, which minimizes the proximity of the ground tracks

towards the upper and lower latitude limits of the orbit. The disadvantage of ground

track plots is the lack of ability to compare quantitative results between different orbit

options; although they supply a useful illustration of the ground coverage achieved

by a given orbit, they do not provide any metric of performance that can be easily
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(a) Globe projection of the Earth (b) Flat latitude/longitude map projection

Figure 4-1: Ground track plots shown for a single satellite in a 15/1 repeating ground
track (RGT) orbit on two different projections

evaluated against the results for other alternative orbit options.

Coverage may be examined as a function of latitude by creating a coverage his-

togram as shown in Figure 4-2. This shows what percentage of the coverage over

the course of one day occurs within each 10° latitude band. The symmetry of the

coverage north and south of the equator can be observed in this histogram, as well

as the concentration of passes that occur at the upper and lower limits of the orbit’s

inclination just below 60°. This may be explained by visual comparison with the high

proportion of crossovers seen between 50 and 60° latitude (and symmetrically between

-50 and -60° of latitude) on the ground track plots shown in Figures 4-1a and 4-1b.

Similarly to ground track plots, coverage histograms are straightforward to calculate

and provide useful physical insight into the ground regions receiving coverage from a

specified orbit, but suffer equally from difficulty in comparing multiple orbit options

and the lack of a single numerical metric to enable comparisons to be drawn on quan-

titative terms.

Although visual representations of coverage such as those shown in Figures 4-1

and 4-2 are simple to generate and useful in supplying physical understanding of the

coverage achieved by particular orbits, the lack of a quantitative metric that can eas-
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Figure 4-2: Histogram of coverage over the course of one day, as a function of latitude

ily be compared between different constellations or orbits means that they are poorly

suited to evaluating the quality of ground coverage that is provided. Running numer-

ical simulations allows for statistics on coverage to be gathered so that quantitative

metrics may be calculated and compared across different design options.

Common standard coverage metrics include mean coverage gap, maximum cover-

age gap, mean response time, and percentage of time that coverage is achieved, as

well as different visual formats for presenting coverage figures of merit. It is generally

recommended to compare multiple figures of merit rather than relying on the results

given by a single metric. Points of interest must be simulated on the ground as the

orbits are propagated, so that coverage statistics may be collected and analyzed over

time for specific locations.

Mean coverage gap refers to the mean length of gaps where no coverage is occurring

over the location of interest. This is calculated by dividing the total length of time

without coverage by the number of discrete gaps that occur over the period of interest.
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Maximum coverage gap is the longest coverage gap encountered during the period

of interest. This metric provides information on the worst-case coverage, though as

the value depends entirely on a single coverage gap over the period simulated, this

metric is not especially useful in ranking constellations without being able to compare

performance across other coverage variables.

Mean response time is the mean length of time taken from receiving a demand

for imagery of the location of interest to the next period of coverage over that point.

A response time of zero corresponds to already having coverage of the point of in-

terest at the time it is requested. If there is currently no satellite coverage of the

target location, the response time is the length of time until the end of the coverage

gap, when the next period of coverage of this location begins. Mean response time

is averaged over all response times calculated for all time steps during the period of

coverage simulation. This is one of the most useful coverage metrics for comparing

responsiveness between different system options.

Percentage of coverage is calculated from the total amount of coverage time over

the point of interest divided by the total time duration of the simulated coverage

period of interest. This metric assesses how much of the time the point of interest is

within coverage view of the simulated system. Although useful in supplying a figure

for how much of the orbital period a particular location can be imaged, this metric

does not supply any information about the coverage distribution, or how periods of

coverage and gaps may be spaced out over the period of interest.

Figure 4-3 shows three simulated coverage plots along a nondimensional timeline

for sample constellations labelled A, B and C. Constellation A (shown in blue) has 5

evenly spaced observations over the simulated time period, with equal gaps between

each observation, and a proportion of one-third coverage time to two-thirds coverage

gaps. Constellation B (shown in orange) has 4 observations, with the same total

amount of coverage time as constellation A but with a larger gap between the first
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two coverage periods. Constellation C (shown in yellow) has the largest proportion

of coverage over the period of interest but divided across only 3 observations, with a

very large gap between the second and third observation periods.

Figure 4-3: Three sample coverage charts comparing observations and coverage gaps
for designs A, B and C

Table 4.1 shows several coverage figures of merit, which are calculated based on

the sample coverage charts shown in Figure 4-3 and presented for each of the three

constellations. This table shows how constellation A has the best performance for the

metrics of mean coverage gap, maximum coverage gap and mean response time. Al-

though constellation C has the best percentage of coverage overall, it performs worse

than constellations A and B on all other metrics, due to the clustering of coverage

into a very long second observation, followed by a very large observation gap between

the second and third coverage periods, resulting in extremely inconsistent coverage.

This highlights the need for consideration of gap statistics when ranking coverage

performance, rather than relying solely on the total amount of coverage achieved.

Mean response time is one of the most useful figures of merit for comparing different

constellation options, due to the overall assessment view it provides of system per-

formance averaged over every point in the simulated time period. As every figure of

merit evaluates a different characteristic of the coverage that is achieved, the recom-
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mendation is to combine two or three metrics in order to arrive at a comprehensive

comparison of different constellation options.

Table 4.1: Figures of merit for the coverage shown in Figure 4-3 for sample constel-
lation designs A, B and C

Rather than using a standard coverage figure of merit, Robert Legge developed his

own custom persistence metric (described in Section 3.1.1.1) to compare the achieved

coverage to the desired levels of persistence and spatial resolution for each event

of interest. This is presented as “a single statistical performance measure” used to

express the distribution of design performance, for which Legge selects the median

value as the center of the performance distribution. The mean value could also be

used (although it is more susceptible to being skewed by outliers in the results set),

or a desired percentile value within the performance range.

Figure 4-4 shows Legge’s comparison of this persistence metric with other tradi-

tional coverage figures of merit. The first of these is average revisit time, which is

calculated simply by dividing the time period of interest by the number of observa-

tions that occur during this time. This is analogous to the mean coverage gap metric

explained above; average revisit time differs in that the revisit time is calculated from

the entire period of constellation simulation, rather than only from the average of the

gaps in coverage as was used to arrive at the mean coverage gap metric. Maximum

revisit time similarly corresponds to maximum coverage gap, representing the longest

time period between the start of two observations, rather than the longest time period

between coverage as was used to calculate the maximum coverage gap metric. Mean

response time is the third and final coverage metric used for comparison, and this

89



does not differ from the definition given previously.

Figure 4-4: Comparison of Legge’s persistence metric with traditional coverage met-
rics of average revisit time, maximum revisit time and mean response time. Image
credit: Robert Legge[8]

Figure 4-4 compares these four metrics for six different coverage scenarios shown

against a nondimensional timeline, where the desired coverage is shown in Figure 4-

4a), with observations occurring at exactly regular intervals over the entire simulated

period. In this subfigure, all four metrics are identical due to the completely regular

nature of the coverage shown, with the same value calculated for average revisit time,

maximum revisit time, mean response time and persistence. These values are used as

the baseline to normalize the rest of the coverage metrics calculated for the following

five scenarios.

Figure 4-4b) shows an undersampled scenario, where the observations occur at

half the desired frequency. This corresponds to coverage performance of roughly half

of the ideal performance for all four of the metrics shown. Maximum revisit time and

90



mean response time give values of 50% of the ideal performance, and average revisit

time and persistence perform slightly better than 50% of ideal due to the lack of end

gaps in the timeline period shown (with the first observation occurring immediately

at the start and with no further gap in coverage after the last observation).

Figure 4-4c) shows an oversampled scenario, where the observations occur at twice

the desired frequency. This corresponds to coverage performance of roughly double

the ideal performance for the three traditional coverage metrics shown. Maximum

revisit time and mean response give values of 200% of the ideal performance. Average

revisit time performs slightly less than 200% of ideal, again due to the lack of end

gaps, as the oversampled case equates to 2𝑛−1 observations, compared to n observa-

tions for the ideal sampling case. The persistence metric has an upper limit placed on

it to prevent rewarding oversampling, resulting in a performance score equal to the

ideal sampling scenario. Such a constraint could also be applied to the other tradi-

tional coverage metrics if desired, to avoid allocating a higher score for oversampling

than for the ideal sampling cadence.

Figure 4-4d) shows a scenario which almost matches the ideal sampling scenario

in Figure 4-4a) except for a single missed pass. This is reflected by a slight reduction

from the ideal performance value for average revisit time, mean response time and

persistence. However, this subfigure highlights the weakness of the maximum revisit

time metric, which drops to 50% of the ideal performance value. This is due to the

fact that this metric relies solely on the single largest coverage gap during the period

of interest, and does not reflect performance achieved more broadly across the entire

time period simulated.

Figure 4-4e) shows the same number of observations as in the ideal sampling case,

but randomly scattered through the time period of interest. This highlights the weak-

ness of the average revisit time metric, which gives an ideal performance value for

this scenario despite the irregular nature of the coverage Figure 4-4f) similarly shows

91



the same number of observations but in an even more clustered random distribution,

again highlighting the weakness of using only the average revisit time metric as it

does not reflect the temporal spacing of the coverage that is achieved.

Comparing the four coverage metrics plotted in Figure 4-4 shows the weakness of

using average revisit time or maximum revisit time alone as the basis of a comparison

between the coverage supplied by different systems. Mean response time performs

somewhat better in most scenarios, with the exception of the oversampling plot shown

in Figure 4-4c). However, this could be remedied by applying an upper limit to the

metric to avoid rewarding oversampling, similarly to the constraint that is applied

to Legge’s persistence metric. Based on a comparison of the current forms of the

four metrics shown, the persistence metric gives the most consistent quantitative

evaluation of the provided coverage, as it does not reward oversampling, does not drop

sharply due to a single missed pass, and provides a performance score that rewards a

regular temporal cadence of sampling over irregularly clustered observations.

4.1 Probabilistic versus deterministic coverage met-

rics

It is a severely limiting restriction to attempt to use any single coverage metric to

represent the range of performance scores that will result from evaluating a constel-

lation design against multiple possible five-year mission scenarios. Using the mean or

median performance value from a variety of scenarios will simply provide a central

value for this performance range. The average performance score will not provide

details as to the consistency of the utility that is achieved against an unpredictable

set of ground locations of interest for which coverage is desired. By the very defini-

tion of the median performance, the constellation design will have achieved a worse

performance 50% of the time even when only the initial evaluations carried out as

part of the optimization are considered. When performances are re-evaluated against
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a different set of scenarios, even the average performance is then usually found to be

a slightly lower value than the initial performance prediction that was generated as

part of the optimization results.

Figure 4-5 shows the results of an optimization run of the ReCon code, which

generates a set of reconfigurable constellation designs. These designs are plotted by

their cost against the mean normalized performance achieved when the simulated de-

sign is evaluated against 24 different target decks; 5-year mission scenarios consisting

of a set of 14–26 locations of interest. The non-dominated designs are circled in red;

these represent the designs for which no alternative scores more highly in performance

without also costing a higher amount (or alternatively: designs for which there is no

lower-cost substitute without also sacrificing some amount of performance). The un-

circled black dots represent dominated designs; these are designs for which at least

one objectively better alternative exists, which simultaneously surpasses this design

in both performance and cost. A total of 4772 constellation designs were generated

by this optimization run, of which 182 are non-dominated.

Figure 4-5: Pareto chart showing the output from a ReCon design optimization run:
a range of constellation designs plotted by cost against normalized performance
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After completing the initial optimization run, the set of 182 non-dominated de-

signs along the Pareto front (circled in red in Figure 4-5) were re-evaluated against a

completely different set of 24 target decks, to assess how much the performance scores

varied from the initial optimization estimate. The upper and lower limits of the range

of performances observed when the designs are re-evaluated against 24 different 5-

year scenarios are delineated in bright green in Figure 4-5, to show the amount of

variation around the value of the single performance prediction made by the origi-

nal optimization score. It must be observed that this band is broad enough that it

overlaps with many of the dominated designs from the original optimization output,

which may outperform the ‘optimal’ set of non-dominated designs under some of the

possible operating conditions. One area of interest for future work would be to take

the subset of the dominated designs that fall within the range outlined in green in

Figure 4-5 and re-evaluate their performance, to determine the extent of the overlap

in performance ranges and establish whether any of these designs might exhibit more

reliable performance than the supposedly non-dominated candidates highlighted in

red in the same figure.

Figure 4-6 shows the percentage change in the mean performance for each of the

non-dominated designs, compared to the original mean performance predicted as part

of the optimization output. The mean change in performance is a decrease of 1.22%

from the original score. The largest decrease is a drop of 7.87% compared to the

original score, occurring for a constellation design with a cost of $327M. The largest

gain in performance is an increase of 2.85%, occurring for a constellation design with

a cost of $122M. Only 16.5% of the constellation designs (30 out of 182 designs)

achieved an increase in the predicted performance. The designs with an increase in

the mean performance score are almost entirely within the low-cost low-performance

region of the Pareto curve, falling between costs of $93M and $221M. The only notable

exceptions to this trend are two designs occurring at costs of $298M (which makes a

gain of 0.17%) and $879M (which makes a gain of 0.13%), and these are both small

enough increases to fall within the amount of expected error about the mean, given
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the sample size of 24 target decks.

Figure 4-6: Percentage change from original optimization performance score for 182
non-dominated designs, when re-evaluated against 24 different target decks

The amount of variation seen in the predicted performance scores from the output

of the ReCon model design optimization highlights the problems in relying on a single

value for performance to represent an entire statistical distribution of results. Each

point in Figure 4-5 represents a single design, but the performance of these designs

cannot be accurately represented as a single point. One way of including more infor-

mation in such a plot could be to add error bars showing either the full range of the

data, 95% confidence brackets, or interquartile ranges to highlight the variability of

the performance achieved under a range of different operating scenarios.

An area for future work is to consider the propagation of uncertainty in the cost

models used in the ReCon codebase. Straub explored cost and performance trades

between the use of chemical vs electric propulsion for reconfigurable constellations,

and also investigated updates to available launch providers in the ReCon model.[48]

This is an area of cost modelling that continues to evolve from year to year due to

commercial pressures, particularly as vehicles are developed or taken out of service.
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In addition, operations costs were not modelled in the original ReCon cost model, due

to the lack of available data but also with the assumption that these costs would be

similar between static and reconfigurable constellations. If this assumption is false and

operations costs are found to be significantly higher for reconfigurable architectures,

this may result in a reduction in the utility of reconfigurability across some of the

constellation design space. This area of future work would allow for the consideration

of uncertainty in two dimensions and the addition of error bars or confidence brackets

to Pareto charts such as those shown in Figure 4-5. Each constellation design might

be represented by a + shape showing the error bars in both dimensions, or by an oval

showing the area of 95% confidence in the scores assigned by the optimization.

4.1.1 Re-evaluated performance scores

When optimized designs are re-evaluated against a new set of target decks, the per-

formance score assigned by the optimization output is usually found to be an over-

estimate by a small amount. This is explained by a tendency for the optimization

process to select designs that are well-suited to the initial set of target deck scenarios

used to evaluate performance, rather than being suited to the full distribution of all

possible scenarios. This tendency diminishes as an increasing number of target decks

are used in the initial optimization process, but does not disappear entirely within the

range of decks used within this work. The number of decks used could be increased

further, but this would result in runtime increases beyond an amount which was con-

sidered tenable for the optimization sizes carried out within this research, whereas

performance re-evaluation can be carried out separately from the design optimization,

making it a much less computationally-intensive solution.

The reassessment of design performance was carried out as part of this work as

described in Section 3.1.2.2, to build in an extra stage of performance evaluation for

the output set of constellation designs. This step was added to ensure that the set of

non-dominated designs resulting from an optimization run do not only perform well

against the target decks that were used during the optimization, but exhibit consistent
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performance against a wide range of possible scenarios. Rather than scoring designs

only against the scenarios which were initially used to drive the optimization process,

constellation designs are re-evaluated against a completely different set of scenarios,

to ensure a consistent level of performance against unpredictable operating conditions.

When re-evaluation was carried out upon the non-dominated designs resulting

from an optimization using 24 target decks to evaluate design performance, the mean

change in performance was found to be a drop of 1.22% compared to the original score.

Figure 4-6 showed the changed performance values resulting from a re-evaluation car-

ried out upon this 24-deck optimization output, with 83.5% of the designs showing a

drop in performance score compared to the optimization results.

Figure 4-7 extends this analysis of re-evaluation results for sets of non-dominated

designs generated by optimization runs using 2–24 target decks. Each set of recon-

figurable designs is re-evaluated against 500 different target decks, and plotted by its

constellation cost on the x-axis and the mean percentage change in the performance

score from the original optimization output value on the y-axis. Darker purple and

blue lines show the smaller optimization sizes where designs are optimized against

only 2–8 target decks, with mid-range optimization sizes shown in aqua and green,

and the largest optimization sizes using 20–24 target decks shown in shades of orange

and yellow. The smaller optimization sizes show the least amount of reliability in the

performance scores, with the magnitude of variation from the original score reach-

ing as high as 14% below the original value. Larger optimization sizes show greater

reliability, with the magnitude of variation from the original score generally staying

within 5%. Re-evaluated performance scores were found to decrease compared to the

original prediction for 83.1%–92.5% of the designs from each optimization set.

Figure 4-8 shows the same re-evaluation analysis for sets of static constellation

designs generated by optimization runs using 2–24 target decks. Each set of static de-

signs is re-evaluated against 500 different target decks, and plotted by its constellation
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Figure 4-7: Change in performance score for re-evaluated reconfigurable designs
compared to optimization performance values, for 12 different optimization sizes re-
evaluated against 500 target decks

cost on the x-axis and the mean percentage change in the performance score from the

original optimization output value on the y-axis. This figure shows the same trend

as Figure 4-7, with smaller optimization sizes showing the least amount of reliability

in the performance scores, with the magnitude of variation from the original score

reaching as high as 16% below the original value. The largest optimization sizes show

greater reliability, with the magnitude of variation from the original score generally

staying within 4%. Re-evaluated performance scores were found to decrease compared

to the original prediction for 69.2%–88.2% of the designs from each optimization set.

Figure 4-9 shows the mean change in performance score for each optimization size

from 2–24 target decks, for re-evaluations of both reconfigurable and static designs.

Static designs (plotted in orange in Figure 4-9) show less change in performance score

than reconfigurable designs. For the smallest optimization size using only 2 target

decks to optimize constellation designs, the static performance score dropped by an
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Figure 4-8: Change in performance score for re-evaluated static designs compared to
optimization performance values, for 12 different optimization sizes

average of 4% when re-evaluation was carried out against 500 different target decks.

This change dropped to less than 1% for optimization sizes of 16, 20, 22 and 24 target

decks, with the smallest change of -0.51% seen for an optimization using 22 target

decks. The lower amount of variation for static design scores is theorized to be due

to the lack of reconfigurability of these designs; performance is predicted to be more

consistent across a range of scenarios due to the use of passive coverage by the static

constellation designs for all scenarios. As reconfigurable designs make use of respon-

sive maneuvering, this creates a greater amount of variation in the event response to

different target scenarios.

For reconfigurable designs (plotted in blue in Figure 4-9), the smallest optimiza-

tion size using only 2 target decks to optimize constellation designs had an average

performance decrease of 5.85% compared to the original score from the optimization

output. The change in performance steadily decreases as optimization size increases,

showing improvements in the amount of overestimation made by the original perfor-
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mance score. The change in performance dropped to less than 2% for optimization

sizes of 18–24 target decks, with the smallest change of -1.53% seen for the largest

optimization size using 24 target decks.

Figure 4-9: Mean percentage change in re-evaluated performance score compared to
original optimization score for different optimization sizes

Figure 4-9 highlights the importance of carrying out design optimization using a

sufficient number of target decks to evaluate and optimize the performance of con-

stellation designs. For smaller optimization sizes, the overestimation of performance

scores in the optimization output is sufficiently large that designs which were initially

dismissed as dominated may actually provide preferable candidates when performance

re-evaluation is carried out. The most significant drops in performance score reliabil-

ity are seen when optimization sizes are reduced below 16 target decks, with relatively

consistent amounts of prediction error seen for optimizations using 20–24 target decks.
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The conclusion drawn from this analysis is that the use of separate re-evaluation

decks provides a useful check upon the performance scores provided by the initial op-

timization output, while separating this function from the computationally-intensive

optimization code run avoids adding to the runtime, which is already of significant

duration. Although re-evaluation can be used to provide a more accurate perfor-

mance score than the initial optimization, achieving a reasonable level of accuracy

in the optimization score is desirable to ensure that the non-dominated designs have

been correctly identified by the optimization run. This avoids the requirement to re-

evaluate the entire output of several thousand dominated and non-dominated designs,

which would present a much more computationally-intensive task than the current

re-evaluation script focusing on only the non-dominated design set. To achieve this

end, it is concluded that the minimum optimization size should not fall below 20

target decks, to maintain the level of performance overestimation error within 1% for

static constellation designs and 2% for reconfigurable constellation designs.

4.1.2 Iso-performance versus iso-cost metrics

Legge establishes the Value of Reconfigurability (VoR) as a useful metric for compar-

ing iso-performance reconfigurable and static designs. This is defined as “the reduction

in total system cost for the same performance level by incorporating reconfigurability

into the system”. Non-dominated designs from the reconfigurable and static Pareto

fronts are selected with approximately identical performance scores and compared on

the basis of total constellation cost. The difference in cost is used to show a quantifi-

able scoring of the advantages provided by using a reconfigurable architecture. The

improved utilization of each satellite in a reconfigurable constellation results in the

ability to match static constellation performance using fewer satellites. Although the

additional maneuvering capability required for reconfiguration will add to propulsion

system costs, these are far exceeded by the cost savings achieved by launching a

smaller constellation.[8]
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Figure 4-10 compares the Pareto fronts generated by two different optimization

runs of the ReCon code. The first non-dominated set of designs is for reconfigurable

satellite constellations, and these are plotted as solid black dots in the figure. The

second non-dominated set of designs is for static satellite constellations, and these

are shown as white dots in the figure. Between the two Pareto fronts, the VoR is

highlighted in blue at three different points, showing how the amount of benefit to be

gained from reconfigurability varies throughout the design space.

Figure 4-10: Pareto chart comparing cost and performance for two sets of non-
dominated designs: one for reconfigurable constellations and another for static con-
stellations. The Value of Reconfigurability (VoR) is highlighted in blue. Image credit:
Robert Legge[8]

One weakness with analyzing the VoR in terms of cost savings is that this re-

quires matching up pairs of reconfigurable and static designs for comparison on an

iso-performance basis. However, the performance achieved by a constellation design

can vary significantly when evaluated against different operating scenarios. This was

highlighted in Figure 4-5 when the set of non-dominated reconfigurable designs along
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the Pareto front were re-evaluated against a different set of 24 target decks, with the

worst-case performance for some designs dropping by as much as 25% from the initial

score predicted as part of the optimization output.

As described in the opening of this chapter, the performance of a reconfigurable

constellation against a range of possible mission scenarios must be considered as a

statistical distribution, especially as one of the motivations for using reconfigurability

is the ability to achieve consistent performance under unpredictable operating condi-

tions. Unless the exact locations where imaging is desired are known ahead of time,

constellation performance must be analyzed in statistical terms, and is not guar-

anteed to reach a certain value under all mission conditions. Due to the amount of

variation in performance achieved under different circumstances, the choice was made

to switch from an iso-performance analysis of cost savings to an iso-cost analysis of

the performance differential between reconfigurable and static constellation designs.

This change is additionally justified by the fact that constellation costs are set by

the initial choice of design and do not vary between different evaluation scenarios.

For example, even though different amounts of propellant are used in responding to

different scenarios, the propulsion system costs are set by the propellant budget that

was selected at the point the design was finalized, and therefore these do not vary

when repeatedly evaluating the same design against a range of operating conditions.

Figure 4-11 shows a Pareto chart with cost and performance plotted for non-

dominated sets of reconfigurable (in blue) and static (in red) constellation designs.

The Pareto fronts in this figure were created by combining the sets of non-dominated

designs from four separate optimization runs carried out to generate reconfigurable

designs, and another four optimization runs carried out to generate static designs.

Each of these optimization runs was carried out using a different set of 24 target

decks to represent a range of unpredictable operating scenarios for the constella-

tion. Designs that were previously non-dominated but now became dominated due

to the combination of multiple sets were discarded, leaving only the best-optimized
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candidates from all four reconfigurable runs as a single super-set of reconfigurable

constellation designs, and the best-optimized candidates from all four static runs as

a single super-set of static constellation designs.

These super-sets of reconfigurable and static designs were then compared along

the cost axis. A script was written to evaluate the relative costs of constellations from

each set and find iso-cost pairings of reconfigurable and static designs. Any designs

that did not have a pairing from the opposite set within 3% of the same cost were

discarded. Finally, any designs that showed up as duplicate pairings (e.g. three adja-

cent static designs might all most closely match on cost with the same reconfigurable

design) were matched with the closest candidate from the opposite set, and the other

less-close pairings were eliminated.

Figure 4-12 shows a Pareto chart comparing cost and performance for these iso-

cost sets of reconfigurable and static designs. Each reconfigurable design (shown in

blue) in the figure has a corresponding iso-cost static design pairing (shown in red),

with a cost difference no larger than 3% (and in many cases lower than 0.1%, with

the closest pair only separated in cost by 0.005%). Between the two Pareto fronts,

the difference in performance (∆𝑃 ) is highlighted at three points, showing how the

amount of performance to be gained from reconfigurability varies throughout the

design space.

The metric of ∆𝑃 is directly equivalent to Legge’s Value of Reconfigurability as

a single-axis comparison, but rather than focusing on the cost savings to be made

by switching between iso-performance static and reconfigurable designs, this metric

focuses on the amount of performance that could be gained by adopting reconfigura-

bility at iso-cost points in the design space. Instead of assuming that performance

stays constant across all possible scenarios, ∆𝑃 allows for statistical analysis to be

factored into the comparison of distributions of performance from static and recon-

figurable designs. This iso-cost metric is also consistent with the assumption made in
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Figure 4-11: Pareto chart showing cost
and performance for two distinct Pareto
fronts, for a non-dominated set of recon-
figurable constellation designs (plotted in
blue) and a non-dominated set of static
constellation designs (plotted in red)

Figure 4-12: Pareto chart for an iso-cost
subset of the two sets of designs shown in
Figure 4-11, with each reconfigurable de-
sign (plotted in blue) paired with a static
design (plotted in red) with a cost differ-
ence of less than ±3%

the ReCon codebase that constellation cost is fixed once design parameters have been

fixed. In fact, as long as cost variation between scenarios is limited to less than 25%,

assessing the relative value of reconfigurable and static designs along an iso-cost axis

will exhibit greater reliability and lower variation along the ‘fixed’ axis than the dis-

tribution of performance values seen when constellation performance is re-evaluated

against a new set of target decks, as was highlighted in Figure 4-5.

An area of interest for future work is to add the simulation of operating costs

for different mission scenarios to the ReCon cost model, as these are not currently

included and may not be identical across different mission lifetimes, even when re-

evaluating the same constellation design. Adding operating costs to the model will

reduce uncertainty in the total system cost and enable a statistical comparison of the

distributions of cost and performance scores simulated for different scenarios. This

would allow for more thorough evaluation of the relative benefits of scoring constel-

lations on iso-performance and iso-cost metrics.

A useful comparison in evaluating operating costs may be to compare the perfor-
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mance of a constellation against target decks that feature the minimum number of

14 events of interest over a 5-year period against decks that feature the maximum

number of 26 events of interest in the same period of time, as these represent the

extremes of the temporal spacing between desired coverage that are modelled in the

ReCon codebase. A thorough characterization of the uncertainties in cost modelling

would allow for assessment of the dispersion of scores about the mean cost. This

could result in an additional useful scoring metric for non-dominated constellation

designs, as some candidates may have more consistent costs across many different

scenarios while others may vary significantly if the operating costs fluctuate by a

larger quantity between target decks.

4.2 Calculating statistical dispersion of performance

The statistical dispersion around the average score for a metric may be represented

in various ways. These include standard deviation, variance, full range, interquartile

range, or other percentile values designed to illustrate the spread of the distribution.

Even if a particular metric is preferred for evaluating the statistical distribution of

the data, there are many possible ways in which this may then be presented usefully

for decision makers.

Figure 4-13a shows a recreation of the Pareto chart previously shown in Figure 4-

12, with iso-cost pairs of reconfigurable and static designs generated by a combination

of eight optimization runs. A sample pair of designs is highlighted, and these are

re-evaluated against 500 different scenarios. The distribution of the re-evaluated

performance scores is shown on the right in Figure 4-13b for the paired designs,

with the range of reconfigurable performances shown in blue and the range of static

performances shown in red.

The selected reconfigurable design features 11 satellites in 11 planes, with an

orbital inclination of 86.6°. This constellation has a total cost of $766.75M, with
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Figure 4-13: a) Left-hand plot shows a recreation of the Pareto chart from Figure
4-12, with iso-cost pairs of reconfigurable (in blue) and static (in red) constellation
designs
b) Right-hand plot takes a sample iso-cost pairing with a 1.14% cost difference and
shows histograms of the distribution of performance scores from 500 re-evaluations of
these two designs

an initial performance score from the optimization of 0.6394 (equating to 63.94% of

the ideally-desired persistence). When re-evaluated against 500 different scenarios as

shown in Figure 4-13b (in blue), the mean performance of the design was found to

be 0.6205: a drop of 2.9% compared to that predicted by the optimization. The re-

evaluated scores varied from a minimum of 0.4662 to a maximum of 0.6829, giving a

range of 0.2167. The standard deviation for the performance distribution was 0.0352,

and the median performance was 0.6285.

The selected static design features 16 satellites in 16 planes, with an orbital in-

clination of 121.4°. This constellation has a total cost of $775.57M, with an initial

performance score from the optimization of 0.3212 (equating to 32.12% of the ideally-

desired persistence). When re-evaluated against 500 different scenarios as shown in

Figure 4-13b (in red), the mean performance of the design was found to be 0.3136,

a drop of 2.4% compared to that predicted by the optimization. The re-evaluated

scores varied from a minimum of 0.2635 to a maximum of 0.3841, giving a range of

0.1206. The standard deviation for the performance distribution was 0.0213, and the

median performance was 0.3126.

107



The standard error of the mean, 𝜎�̄�, may be calculated in order to place confi-

dence intervals on the data obtained from these distributions of n samples. As the

actual standard deviation, 𝜎, is unknown, the standard error of the mean may be

approximated using the sample standard deviation, 𝜎𝑥, as follows:

𝜎�̄� ≈ 𝜎𝑥√
𝑛

(4.1)

Using Equation 4.1 results in a standard error of mean performance of 1.57×10−3 for

the reconfigurable design and 9.52 × 10−4 for the iso-cost static design. Confidence

intervals can then be estimated using the sample mean �̄� and a standard statisti-

cal table of z-values, assuming a normal distribution of performance values. These

z-values are often referred to using the shorthand of the ‘68-95-99.7 rule’, where a

z-value of 1 corresponds to an interval estimate covering 68.3% of a normal distribu-

tion, a z-value of 2 corresponds to an interval estimate covering 95.4% of a normal

distribution, and a z-value of 3 corresponds to an interval estimate covering 99.7% of

a normal distribution. A z-value of 1.96 corresponds to a confidence interval of 95%

for a normally-distributed parameter, meaning that upper and lower bounds for a

confidence interval of 95% (𝐶𝐼0.95) on the mean are given by the following equation:

𝐶𝐼0.95 = �̄�± 1.96𝜎�̄� (4.2)

For the iso-cost pair of designs described above, if a normal distribution of per-

formance is assumed and the approximated standard error of mean performance falls

within an acceptable error range, the mean performance can be calculated and could

be presented with a confidence interval in the following ways:

• 95% confidence that the mean performance of the reconfigurable design falls

within the interval 0.6175–0.6236, or equivalently, 95% confidence that the mean

performance of the reconfigurable design is 0.6205 ± 0.00309

• 95% confidence that the mean performance of the static design falls within the
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interval 0.3118–0.3155, or equivalently, 95% confidence that the mean perfor-

mance of the static design is 0.3136 ± 0.00187

It is possible to assess whether the assumption of a normal distribution is reason-

able for these two performance distributions, based on the sample size of conduct-

ing re-evaluations against 500 scenarios. The Shapiro-Wilk test is a statistical test

of normality, which assesses the probability of whether a sample originated from a

normally-distributed population to a desired level of significance. Monte Carlo simu-

lations are used to calculate the expected values for the order statistics of independent

random samples from a normal distribution, with the test statistic used to compare

the probability of the sampled data occurring from such a distribution. The signifi-

cance level is usually set at a p-value of 0.05 for the null hypothesis that the data is

normally distributed, meaning that there is a 5% probability of obtaining sampling

results at least as extreme as the observed results if the data is actually from a nor-

mal distribution. If there is less than a 5% chance of obtaining the observed results

from a normal distribution, the hypothesis is rejected, and the original distribution

cannot be assumed to be normal.[97] This test was implemented in MATLAB and

used to assess the normality of the performance distributions obtained by repeatedly

re-evaluating different designs.

When the normality of the performance distributions was evaluated for the sample

iso-cost pairing considered here, both distributions scored a p-value of <0.01 on the

Shapiro-Wilk test. This means that there is less than a 1% probability of observing

these results by chance from a normal distribution, and so neither set of performance

scores can be assumed to be normally distributed. Examining the histograms shown

in Figure 4-13b, it may be observed that the reconfigurable performance distribution

appears to be visibly skewed towards higher performance values, and the static per-

formance distribution appears to be visibly skewed towards lower performance values,

and so the rejection of the null hypothesis of normality is unsurprising for both of

these cases.

109



Fortunately, there are alternative methods of evaluating standard error for var-

ious statistical parameters which are not dependent on assumptions of normality.

Bootstrapping is a statistical resampling technique which can be used to calculate

standard error or confidence intervals for almost any desired test statistic, without

making assumptions about the underlying distribution. The bootstrap method in-

volves taking the existing set of sample data and resampling this with replacement to

create additional, identically-sized sample sets from the same approximated distribu-

tion. This is combined with a Monte Carlo algorithm to independently and randomly

resample the original data set many times, calculate the test statistic of interest for

each new data set, and then find the sample standard deviation of the test statistic.

As the number of resampled data sets increases, the sample standard deviation of the

test statistic approaches the standard error for that statistic. This procedure may

be summarized as calculating an estimation of the standard deviation using Monte

Carlo sampling.[98, 99, 100, 101]

Bootstrapping is considered to be the benchmark against which other approxima-

tion formulae for standard error and confidence intervals are measured. An additional

benefit of bootstrapping is that it can be applied to any test statistic of interest. Stan-

dard error of the mean and confidence intervals are simple enough to calculate with

the assumption of normality, as described by Equations 4.1 and 4.2, but this result

may now be compared with the non-parametric bootstrapped estimate to see the ef-

fect on accuracy of the assumptions made in this calculation. Other test statistics do

not have similarly simple standard error formulae, such as median or percentile val-

ues of interest, but bootstrapping allows for reliable estimates of standard error to be

calculated just as easily for these metrics. This enables the application of confidence

intervals to metrics other than the mean performance.[98]

Bootstrapping was applied to the reconfigurable and static designs chosen as a

sample iso-cost pairing and described in detail above. The 500 performance scores

that were generated by re-evaluating each design against 500 target decks were resam-
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pled using replacement with a Monte Carlo algorithm, to create 1000 resampled data

sets (each containing 500 scores) for the bootstrap analysis. The standard deviation

of the 1000 means calculated from these data sets was found to be 1.52 × 10−3 for

the reconfigurable design, or about 3.2% lower than the standard error of the mean

calculated using Equation 4.1. For the static design, the standard deviation of the

1000 means from resampled data sets was found to be 9.75 × 10−4, or about 2.4%

higher than the standard error of the mean calculated using Equation 4.1. The con-

clusion drawn from comparing these values to the benchmark set by the bootstrapped

values is that the assumptions made in using Equation 4.1 were an acceptable ap-

proximation, resulting in only a small error rate when compared to the bootstrapped

standard error of the mean. However, if especially precise estimates are required for

a particular application, bootstrapping may be used in place of this approximation.

Confidence intervals may be applied to the mean using the bootstrapped standard

error values. These confidence intervals will be applicable to the distribution of the

sample means due to a combination of the Central Limit Theorem with the bootstrap

method. The Central Limit Theorem states that when sample sets are obtained from

a population by randomly sampling many times, as the number of sample sets ob-

tained is increased, the distribution of the sample means will approximate more and

more closely to a normal distribution. This theorem holds true even if the distribution

from which the data sets are sampled is not normally distributed.[102, 103]

The Central Limit Theorem is an extremely important concept in probability, as

it enables the use of statistical methods based on normality to be applied to calcula-

tions involving the mean and standard deviation of non-normal distributions.[102, 103]

In order to validate the applicability of the Central Limit Theorem with the boot-

strapped performance data sets, the normality of the distribution of sample means for

the reconfigurable and static designs was checked using the Shapiro-Wilk test. Even

though the original re-evaluated performance data sets were not normally distributed

and failed the Shapiro-Wilk test of normality, it was found that the distribution of
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sample means from the bootstrapped data sets passes the Shapiro-Wilk test. The

resampled data sets are therefore confirmed to approximate a normal distribution,

validating the use of the Central Limit Theorem for applying confidence intervals to

the mean performance.

The bootstrapped standard error of the mean was used to recalculate 95% con-

fidence intervals for the mean performance so that these could be compared to the

previously calculated values. This resulted in the following results:

• 95% confidence that the mean performance of the reconfigurable design falls

within the interval 0.6176–0.6235, or equivalently, 95% confidence that the mean

performance of the reconfigurable design is 0.6206 ± 0.00299

• 95% confidence that the mean performance of the static design falls within the

interval 0.3117–0.3155, or equivalently, 95% confidence that the mean perfor-

mance of the static design is 0.3136 ± 0.00191

These results fall within 3.2% and 2.4% of the previously calculated confidence brack-

ets for the reconfigurable and static designs respectively, as would be expected based

on the amount of change in the calculated standard error values. These low error

rates are acceptable for the present applications of the performance estimation, and

validate the assumptions made in the original calculation of the standard error of

mean performance.

After validating the original calculation of standard error for the mean perfor-

mance values and the 95% confidence intervals for mean performance that were esti-

mated based on these figures, these confidence intervals were plotted onto a Pareto

chart, shown in Figure 4-14. These intervals are plotted as areas covering the full

width of the confidence interval, with a solid color area filled in between the up-

per and lower bounds of this interval. It can be seen from this figure that the 95%

confidence interval for mean performance is very narrow compared to the overall per-

formance score, varying by around ±0.5 − 0.6% of the mean. This interval region
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resembles a single thick line within the figure, due to the narrowness of the 95%

confidence interval that is achieved. There is some overlap in the mean performance

scores for reconfigurable and static designs in the low-cost area of the design space, up

to a constellation cost of approximately $220M. Above this region, there is a signif-

icant amount of separation for the performance scores of iso-cost reconfigurable and

static designs, and especially above constellation costs of $300M, this gap becomes

extremely large.

Figure 4-14: 95% confidence interval for the mean performance of iso-cost pairs of
reconfigurable and static designs, plotted onto a Pareto chart showing cost against
normalized performance

The resampled data sets were then used to calculate the bootstrapped standard

error of the median for the iso-cost pair of designs. The standard error of median

performance was found to be 1.26×10−3 for the reconfigurable design and 1.35×10−3

for the static design. Although a widely-cited formula for estimating the standard

error of the median states that it is generally equivalent to around 1.253 times the

standard error of the mean, the accuracy of this approximation is heavily reliant on

the assumption of a normal distribution in the data set under consideration.[104]

The amount of kurtosis in a distribution is a parameter that describes the degree to
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which data is clustered in the peak(s) or tail(s); a mesokurtic (moderate breadth and

medium peak height) distribution with a kurtosis value of 3 is a normal distribution,

considered to set a baseline level compared to other distributions.[105] For leptokurtic

distributions (which possess a higher kurtosis value) where the data is more heavily

concentrated about the mean, the median is likely to have lower error than the mean,

due to being less affected by sampling variance.[104]

Examining the heights of the peaks in Figure 4-13b, it appears that both perfor-

mance distributions shown are leptokurtic. When the value of kurtosis was calculated

for these performance data sets, it was found to be 4.66 for the reconfigurable design

(significantly leptokurtic) and 3.10 for the static design (mildly leptokurtic; not far

from a normal distribution). This correlates with what would be expected of the

relative values of the standard error of mean and median performance for the two dis-

tributions; for the reconfigurable design, the standard error of the median was found

to be 17.3% smaller compared to the standard error of the mean, suggesting that

this distribution is significantly leptokurtic enough that the median is a more reliable

measure of central tendency than the mean, therefore having a lower standard error

for this case. For the static design, the standard error of the median was found to be

38.0% larger compared to the standard error of the mean, suggesting that this distri-

bution is close enough in kurtosis to a normal distribution (i.e. more mesokurtic in

nature) that the mean is a more reliable metric of central tendency than the median

for this case.

Although the standard error of the median may be bootstrapped as described

above, the distribution of the sampling medians from the resampled data sets is not

normally distributed. The Central Limit Theorem does not apply to the median of

the sampling distribution, and so alternative methods of applying confidence inter-

vals must be adopted for this metric. Literature on estimating the standard error

and confidence intervals of percentiles[106, 107] supplied the following equation for

calculating the upper and lower bounds on a 95% confidence interval for the quantile
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q, using n samples:

𝐶𝐼0.95 = 𝑛𝑞 ± 1.96
√︀

𝑛𝑞(1 − 𝑞) (4.3)

The output of Equation 4.3 is the sample numbers within the sorted original data

set that correspond to the limits of the confidence interval. For example, calculat-

ing the 95% confidence interval of the median performance based on the set of 500

re-evaluated performance scores would set the inputs for Equation Z as 𝑛 = 500 and

𝑞 = 0.5. This gives a result of 228.1 and 271.9, meaning that the 95% confidence

interval for the median is estimated by the range set by taking the 228th and 272nd

performance results from the sorted data set of 500 performances.

Equation 4.3 uses the same z-value of 1.96 for a 95% interval as would be applied

with the assumption of normality, and this is justified in the literature as a reason-

able approximation for the median of non-normal distributions. The error introduced

by this approximation remains small, as long as the estimation is made for a large

number of samples n and not applied to “extreme percentiles” of the distribution.[106]

Applying Equation 4.3 to the performance medians for the iso-cost design pair

resulted in the following confidence intervals:

• 95% confidence that the median performance of the reconfigurable design falls

within the interval 0.6251 – 0.6306

• 95% confidence that the median performance of the static design falls within

the interval 0.3096 – 0.3144

Rather than automatically assuming the validity of the approximation supplied

by Equation 4.3, an additional validation was carried out using bootstrapping to

provide another standard for benchmarking. The median performance was calculated

for each of 1000 resampled data sets, and these 1000 medians were sorted in numerical

order. The bounds of a (1−𝛼) confidence interval using n bootstrapped samples are

calculated as follows:

𝐶𝐼1−𝛼 =
𝛼

2
𝑛,

(︁
1 − 𝛼

2

)︁
𝑛 (4.4)
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Using Equation 4.4, the bounds of a 95% confidence interval using 1000 boot-

strapped medians were found to be the 26th and 975th samples in the list of sorted

medians.[103] Applying Equation 4.4 to the bootstrapped medians for the iso-cost

design pair resulted in the following confidence intervals:

• 95% confidence that the median performance of the reconfigurable design falls

within the interval 0.6254 – 0.6306

• 95% confidence that the median performance of the static design falls within

the interval 0.3097 – 0.3144

Comparing the bootstrapped 95% confidence intervals for the median with the esti-

mated confidence intervals using techniques from literature,[106, 107] less than 0.05%

discrepancy was found in any of the 95% confidence interval bounds. The conclusion

drawn from the extremely small observed error level is that the assumptions made in

approximating confidence intervals for the median using Equation 4.3 are justified,

resulting in a highly accurate estimate.

After validating the estimated calculation of 95% confidence intervals for the me-

dian performance values against the bootstrapped confidence intervals, the estimated

intervals calculated using Equation 4.3 were plotted onto the Pareto chart shown

in Figure 4-15. Comparing this to Figure 4-14, it was found that the median per-

formance is very slightly higher than the mean performance values, with a slightly

broader 95% confidence for the median compared to the mean. This can be seen in

the figure as a slightly thicker confidence region for each set of designs, though still

strongly resembling a single line rather than a broad interval. This is due to the nar-

rowness of the achieved 95% confidence interval, which varies by about ±0.4 − 0.8%

of the median in Figure 4-15. This means that the median performance can be very

reliably predicted to fall within a narrow range. Once again, there is some overlap in

the confidence intervals for reconfigurable and static designs up to a cost of around

$220M, though the scores begin to separate above this region and show significant

differences for all designs costing $300M or higher.
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Figure 4-15: 95% confidence interval for the median performance of iso-cost pairs of
reconfigurable and static designs, plotted onto a Pareto chart showing cost against
normalized performance

Percentiles may also be calculated for these performance distributions, to supply a

broader impression of the distribution of performance scores achieved by the designs

against a range of scenarios. 25th percentile scores were calculated for the iso-cost

design pair based on the original set of 500 re-evaluated performance scores, giving

a result of 0.6043 for the reconfigurable design and 0.2984 for the static design. 75th

percentile scores were calculated as 0.6451 for the reconfigurable design and 0.3267

for the static design.

Confidence intervals may also be placed on these percentile scores, and these were

calculated using both the estimation given by Equation 4.3 and the bootstrapped

standard given by Equation 4.4, resulting in the values given in Tables 4.2 (for the

reconfigurable design) and 4.3 (for the static design). The amount of error between

the two techniques is again extremely small, with less than 0.1% discrepancy between

any of the bounds calculated.

After validating the estimated calculation of 95% confidence intervals (using Equa-
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Table 4.2: Comparison of estimated and bootstrapped 95% confidence intervals for
25th and 75th percentile reconfigurable design performance

Percentile of
performance
distribution

Estimated 95%
confidence interval

Bootstrapped 95%
confidence interval

25 0.5971 – 0.6090 0.5975 – 0.6092
75 0.6416 – 0.6478 0.6417 – 0.6480

Table 4.3: Comparison of estimated and bootstrapped 95% confidence intervals for
25th and 75th percentile static design performance

Percentile of
performance
distribution

Estimated 95%
confidence interval

Bootstrapped 95%
confidence interval

25 0.2953 – 0.3012 0.2955 – 0.3013
75 0.3237 – 0.3292 0.3234 – 0.3292

tion 4.3) for the 25th and 75th percentile performance values against the bootstrapped

confidence intervals (calculated using Equation 4.4), the estimated confidence inter-

vals for all iso-cost design pairs were plotted on Pareto charts. The 95% confidence

interval for the 25th percentile performance values (i.e. halfway between the mini-

mum score and the median) is shown in Figure 4-16, and the 95% confidence interval

for the 75th percentile performance values (i.e. halfway between the median and the

maximum score) is shown in Figure 4-17. Once again, these are plotted as full con-

fidence intervals where a solid color region is filled in between the upper and lower

limits of the 95% confidence region, but it may be observed that these intervals are

narrow enough in width to resemble single thick lines within these plots.

The breadth of the 75th percentile confidence interval in Figure 4-17 is comparable

to the median confidence interval shown in Figure 4-15 for both reconfigurable and

static designs. The breadth of the 25th percentile confidence interval in Figure 4-16

is comparable to the width of the median confidence interval for the static curve, but

slightly wider for the reconfigurable curve. This suggests a greater variation within

the lower-performance group of scores and a narrower range in the higher-performance

score quantiles for the reconfigurable designs, which corresponds to the broader tail

in the lower-performance half of the reconfigurable performance distribution shown
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in Figure 4-13b.

Figure 4-16: 95% confidence interval for
the 25th percentile performance of iso-
cost pairs of reconfigurable and static de-
signs, plotted onto a Pareto chart showing
cost against normalized performance

Figure 4-17: 95% confidence interval for
the 75th percentile performance of iso-
cost pairs of reconfigurable and static de-
signs, plotted onto a Pareto chart showing
cost against normalized performance

A variety of estimation techniques and bootstrapped metrics were compared in

order to establish confidence intervals for measures of statistical dispersion in the

performance distributions for iso-cost reconfigurable and static constellation designs.

These metrics of dispersion include the mean, median, 25th percentile and 75th per-

centile of performance. 95% confidence intervals were placed upon these metrics to

assess the amount of variation in performance when the constellation designs are eval-

uated against a range of operating scenarios, varying about the estimated metrics by

less than ±1%. The width of these confidence levels establish that the distribution of

performance scores can be predicted with high reliability over a range of target decks.

4.3 Calculating confidence that ReCon outperforms

static designs

The confidence intervals shown in the previous section establish a narrow range within

which some of the metrics of central tendency (such as mean and median performance)
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are expected to fall. 95% confidence intervals for the 25th percentile and 75th per-

centile of performance are also calculated in order to provide more information about

the distribution of performances that are achieved in different scenarios, and how far

these may differ from the median value for different constellation designs. However,

all of these confidence intervals only place a range upon a single measure of constel-

lation performance, representing some part of the distribution.

Figure 4-18 shows the full range of performances achieved by iso-cost pairs of re-

configurable (in blue) and static (in orange) designs when re-evaluated against 500

different operating scenarios. Although the reconfigurable designs consistently out-

perform iso-cost static designs with a constellation cost of around $400M and above,

there is some overlap in the performance distributions below this point, and almost

total overlap in performance for the lowest cost constellation designs (below $220M).

Figure 4-19 shows a magnified view of this region, highlighting the $100M–400M re-

gion of the design space to show the overlapping range of performance more clearly.

From the lowest cost pair at around $113M to around $220M, there is almost total

overlap in the performance ranges for reconfigurable and static designs, and then de-

creasing amounts of overlap up to around $380M.

The distinct cost regions within Figures 4-18 and 4-19 may be compared to the

design variables generated for constellations within these regions. Where there is

almost total overlap in performance for a constellation cost below $220M, there is

also almost total overlap in design variables, suggesting little difference in the ar-

chitectures generated at this cost point. The ∆𝑉 budget for reconfiguration at this

cost point is also extremely inconsistent, varying between 0 and 290 m/s. Where the

two distributions begin to separate in performance between a constellation cost of

$220M to $400M but still exhibit some overlap, the largest change in design variables

is that the ∆𝑉 budget for reconfiguration increases to a range of 170 to 450 m/s.

Above a constellation cost of $400M, the number of satellites increases steadily for

reconfigurable designs, the number of satellites per plane drops to 1, the optimiza-
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Figure 4-18: A Pareto chart of iso-cost
sets of reconfigurable and static designs,
showing the full range of performance
scores from 500 re-evaluations

Figure 4-19: A magnified view of the low-
cost region in Figure 4-18 where perfor-
mance distributions overlap for reconfig-
urable and static designs

tion consistently adopts a near-polar orbit with an inclination of around 87°, and the

GOM altitude increases to approximately 540 km.

The strongest correlation between improved performance and a single design vari-

able is still that of the ∆𝑉 budget for reconfiguration. Reconfigurable designs con-

sistently outperform static designs once the ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget exceeds 200 m/s. This

makes sense as the largest distinction between the reconfigurable and static designs

generated is that one set of constellations can maneuver while the other cannot. The

minimum value of 200 m/s to achieve consistent performance may be explained by

the fact that below this budget, reconfigurable constellations cannot consistently ma-

neuver to respond to every event of interest over the mission lifetime, and so this es-

tablishes a minimum standard at which responsive reconfigurability may be achieved.

The confidence intervals described in Section 4.2 help to establish specific and

predictable ranges for average constellation performance. However, the particular

numerical value of mean performance is of limited use in establishing the benefits of

reconfigurability over static designs. In Figure 4-19, a reconfigurable constellation

costing $400M achieves a range of normalized performance values between 0.24 –
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0.33, meaning that it achieves 24 to 33% of the ideally desired level of persistence;

this is not a particularly high-performing constellation when compared to the ideal

coverage score. A static constellation of the same cost achieves a range of normal-

ized performance values between 0.17 and 0.22, meaning that this design achieves

only 17 to 22% of the ideal amount of coverage. Even if the minimum reconfigurable

performance of 0.24 happened to occur for the same scenario as the maximum static

performance of 0.22, this would equate to an iso-cost improvement in performance of

9% due to reconfigurability.

Having established confidence intervals for the mean and median performance

values when averaged over a range of scenarios, it was concluded that a more use-

ful confidence metric in demonstrating the benefits of reconfigurability to satellite

operators would be to establish confidence intervals for reconfigurable designs out-

performing iso-cost static designs. Rather than establishing confidence in predicting

specific performance values, it should be predicted at what point in the design space

reconfigurable designs can consistently outperform iso-cost static alternatives. The

first step was to establish confidence that reconfigurable designs outperform static

designs by any amount. Additional utility could be gained by then extending this

analysis to find the confidence level that reconfigurable designs outperform iso-cost

static designs by a set margin, for example by 10 or 20% higher performance.

4.3.1 Confidence metrics for comparing ReCon and static de-

signs

Several methods of calculating confidence were considered for comparing the per-

formance distributions of reconfigurable and static designs at the same cost points.

Confidence levels in the performance difference observed between iso-cost design pairs

was calculated using five different methods in order to enable comparisons between

the results and cross-validate these techniques to assess whether the assumptions

made were reasonable. Although confidence intervals were calculated within Section
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4.2, these are only appropriate for use with single-value parameters, and other types

of interval estimation must be carried out for parameter ranges. It is appropriate to

place a confidence level upon an interval, but not to use a confidence interval

upon the population of performances. To explain the distinction between interval

types, some definitions are included here in order to clarify several different terms

within the field of interval estimation.

A confidence interval provides bounds on a single chosen population parameter,

such as the mean, median, or a quantile point in the distribution, as calculated in

the previous section. The size of a confidence interval is entirely due to sampling

error, rather than actual variation in the population. If the sample size approaches

the population size, the population parameter will approach its true value. At this

point the sampling error approaches zero and the width of the confidence interval will

also approach zero. A confidence interval is not an appropriate estimate of the full

range of future sampling.

A prediction interval provides bounds for a single future sample from the popu-

lation. It predicts the distribution of individual future samples from the population,

based on the past sample observations. These are also sometimes referred to as ‘pre-

dictive confidence intervals’, specifying bounds within which a specific proportion of

the population will fall on average, based on knowledge of the distribution of past

sampling.

A tolerance interval provides bounds for the data range that includes a specific

chosen proportion of the population. This is equivalent to constructing a set of pre-

diction intervals: a tolerance interval places bounds on the whole population, while a

prediction interval places bounds only upon a single future sample from this popula-

tion. The size of a tolerance interval is partly due to sampling error and partly due to

the actual variation in the population being sampled. If the sample size approaches

the population size, the width of the tolerance interval will approach the probability
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interval of the underlying population as the sampling error approaches zero. The

bounds of a tolerance interval specify not only a range within which a specific pro-

portion of the population will fall, but also a confidence level upon that range (not

merely ‘on average’ as in the case of a prediction interval).

In the case of comparing the performance of reconfigurable and static designs, a

tolerance interval may be calculated with the parameters p for the desired propor-

tion of the population and c for a desired confidence level. For example, a tolerance

interval might be constructed to include 50% of the population with a confidence

of 95%. A lower tolerance limit refers to the confidence limit at the 0th percentile

of the population, and an upper tolerance limit refers to the confidence limit at the

100th percentile of the population, effectively placing bounds on the minimum and

maximum population limits at the desired level of confidence.

4.3.1.1 Independent hypothesis test

The first method of calculating a confidence metric for constellation performance

is an independent hypothesis test, assuming that the distributions of reconfigurable

and static designs are independent, i.e. the paired performances are not correlated

across target decks. This technique involves comparing the overlap between the two

distributions of reconfigurable and static design performances, and quantifying the

confidence level that reconfigurable performance is higher than static. This overlap

in distributions can be thought of as the distribution of ∆𝑃 .

Figure 4-20 shows two histograms of the distributions of normalized performance

for a pair of iso-cost designs, with scores for the reconfigurable design shown in blue

and scores for the static design shown in orange. A different sample pair of iso-cost

designs is shown for this example, in order to highlight a pair of designs that have some

overlap in the performance scores achieved. The reconfigurable constellation design

has a cost of $253.8M and the static design has a cost of $253.7M, with a difference
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in cost of 0.05% between the two designs. The performance distributions shown in

Figure 4-20 are the results from re-evaluating the two designs against 500 different

target locations. The area of overlap between the two distributions is highlighted

by a red box, and this is the area that will be characterized using the independent

hypothesis test.

Figure 4-20: Histograms of normalized performance distributions over 500 scenarios
for an iso-cost pair of designs, with the overlap in performance scores highlighted in
red

The mean of the difference in performance, written here as the expected value of

the overlap, 𝐸[𝑜𝑣𝑒𝑟𝑙𝑎𝑝], is given by subtracting the mean of the static distribution,

𝐸[𝑠𝑡𝑎𝑡𝑖𝑐], from the mean of the reconfigurable distribution, 𝐸[𝑅𝑒𝐶𝑜𝑛], as follows:

𝐸[𝑜𝑣𝑒𝑟𝑙𝑎𝑝] = 𝐸[𝑅𝑒𝐶𝑜𝑛− 𝑠𝑡𝑎𝑡𝑖𝑐] = 𝐸[𝑅𝑒𝐶𝑜𝑛] − 𝐸[𝑠𝑡𝑎𝑡𝑖𝑐] (4.5)

The variance of the distribution for the difference in performance may be calculated

from the variances of the two distributions, assuming they are independent of one
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another:

𝑉 𝑎𝑟[𝑅𝑒𝐶𝑜𝑛− 𝑠𝑡𝑎𝑡𝑖𝑐] = 𝑉 𝑎𝑟[𝑅𝑒𝐶𝑜𝑛] + 𝑉 𝑎𝑟[𝑠𝑡𝑎𝑡𝑖𝑐] (4.6)

and the square root of Equation 4.6 may also be used to find the standard deviation

of the difference in performance:

𝜎𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
√︀

𝜎𝑅𝑒𝐶𝑜𝑛
2 + 𝜎𝑠𝑡𝑎𝑡𝑖𝑐

2 (4.7)

After using equations 4.5–4.7 to characterize the distribution of the overlap, a one-

tailed hypothesis test is used to determine what proportion of the distribution meets

the failure criterion. In this case, the failure criterion is met for scenarios where the

static performance exceeds the reconfigurable performance, meaning that ∆𝑃 gives a

negative result. To estimate what proportion of the distribution falls in this region,

the following equation is used:

𝐴 =
𝐸[𝑜𝑣𝑒𝑟𝑙𝑎𝑝] − 𝑥𝑑𝑖𝑓𝑓

𝜎𝑜𝑣𝑒𝑟𝑙𝑎𝑝

(4.8)

In Equation 4.8, 𝐴 is the number of standard deviations away from the mean that the

failure boundary is located, and 𝑥𝑑𝑖𝑓𝑓 is the desired amount by which the reconfig-

urable design outperforms the static design. For this calculation 𝑥𝑑𝑖𝑓𝑓 = 0 was used

to find the confidence that reconfigurable designs outperform static designs by any

amount, but a different value may be used for calculation of confidence that recon-

figuration designs outperform static alternatives by a specific desired amount.

The percentage confidence that reconfigurable designs outperform static is given

by the following equation, using the quantity 𝐴 from Equation 4.8:

Probability(𝑅 > 𝑆) =
1 + erf( 𝐴√

2
)

2
(4.9)

The result from Equation 4.9 may also be found by consulting a standard statistical

table of z-values, as long as the one-sided failure criterion is factored into the result.
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For example, a value of 𝐴 = 1.96 equates to a 95% probability of success for a

two-sided failure criterion, but a 97.5% probability of success for a one-sided failure

criterion. This is due to the fact that the failure probability is only occurring for one

tail of the distribution.

4.3.1.2 Hypothesis test with covariance

The second method of calculating confidence is a hypothesis test factoring in covari-

ance between the two performance distributions, rather than assuming independent

performances for reconfigurable and static designs when evaluated against the same

target deck. This technique also involves comparing the overlap between two perfor-

mance distributions for the two iso-cost sets of designs, but in this case the covariance

of the distributions is factored into the calculation. A confidence level is placed upon

the probability that reconfigurable designs outperform iso-cost static designs, account-

ing for the correlation coefficient between the two distributions.

For a continuous random variable 𝑋, the expected value 𝐸[𝑋] (equivalent to the

mean) is given by the following equation:

𝐸[𝑋] =

∫︁ ∞

−∞
𝑥𝑓𝑥(𝑥) 𝑑𝑥 (4.10)

and the variance for 𝑋 is given by:

𝑉 𝑎𝑟[𝑋] = 𝐸[𝑋 − 𝐸[𝑋]2] = 𝐸[𝑋2] − 𝐸[𝑋]2 (4.11)

The covariance between two distributions of variables 𝑋 and 𝑌 is calculated as follows:

𝐶𝑜𝑣𝑎𝑟[𝑋, 𝑌 ] = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌 ])] = 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ] (4.12)

If 𝑋 and 𝑌 are independent variables, then:

𝐸[𝑋𝑌 ] = 𝐸[𝑋]𝐸[𝑌 ] (4.13)
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so for the case shown in Equation 4.13, the calculation of covariance in Equation 4.12

cancels to zero.

Equation 4.11 may be used to calculate the variance for the overlap of the two

distributions, 𝑉 𝑎𝑟[𝑋 − 𝑌 ], as follows:

𝑉 𝑎𝑟[𝑋 − 𝑌 ] = 𝐸[(𝑋 − 𝑌 )2] − (𝐸[𝑋 − 𝑌 ])2

= 𝐸[𝑋2 − 2𝑋𝑌 + 𝑌 2] − (𝐸[𝑋]2 − 2𝐸[𝑋]𝐸[𝑌 ] + 𝐸[𝑌 ]2)

= 𝐸[𝑋2] − 𝐸[𝑋]2 + 𝐸[𝑌 2] − 𝐸[𝑌 ]2 − 2(𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ])

= 𝑉 𝑎𝑟[𝑋] + 𝑉 𝑎𝑟[𝑌 ] − 2(𝐶𝑜𝑣𝑎𝑟[𝑋, 𝑌 ])

(4.14)

If 𝑋 and 𝑌 are independent variables with zero covariance, the covariance term equals

zero and the result from Equation 4.14 is identical to Equation 4.6.

Equation 4.12 is used to calculate the covariance for all iso-cost design pairs. The

covariance result for each pair may then be used with Equation 4.14 to calculate new

values of variance for each iso-cost pair. In situations where these pairs of designs

have extremely low correlation coefficients, the correction factor added to the vari-

ance calculation by using Equation 4.14 will simply be extremely tiny. A correlation

coefficient of +1 equates to a perfect positive correlation, -1 means a perfect negative

correlation, and 0 means there is no correlation between variables. Calculating the

correlation coefficients for all 62 iso-cost design pairs, it was found that the perfor-

mance distributions for 24 pairs (38.7%) were correlated at a p-value of 0.05. The

calculated correlation coefficients varied in magnitude from 5.7 × 10−4 up to 0.98,

with both positive and negative correlations found in the range of design pairs.

4.3.1.3 Monte Carlo tally of ∆𝑃 results

The third calculation of confidence is a Monte Carlo method based on the re-evaluation

of each iso-cost pair of designs against 500 different target locations. 62,000 perfor-

mance scores were produced by evaluating 62 reconfigurable designs and 62 iso-cost
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static designs against 500 scenarios. The difference in performance, ∆𝑃 , is calculated

for each individual scenario, providing a dataset of 500 ∆𝑃 results for each of the

62 iso-cost design pairings. This sample set of 31,000 ∆𝑃 values is used to calculate

a straightforward confidence value for the frequency at which reconfigurable designs

outperform iso-cost static designs.

4.3.1.4 Statistical properties of ∆𝑃 distribution

The fourth calculation of confidence uses the same set of 31,000 ∆𝑃 values as the

previous method. Instead of simply tallying the percentage of scenarios where recon-

figurable designs outperformed iso-cost static alternatives, the set of sample results

is used to estimate properties of the ∆𝑃 distribution and model the probability that

reconfigurable designs show higher performance. This method is expected to have a

high degree of agreement with the previous method, due to the use of the same data

set with a slightly different technique.

Figure 4-21 shows two histograms of normalized performance evaluated over 500

scenarios for the same sample pair of iso-cost designs previously used to provide an

applicable example for the calculation of various metrics in Section 4.2. Figure 4-22

shows a histogram of ∆𝑃 between the reconfigurable and static design, calculated

for each of these 500 scenarios to show the distribution. The distribution shown in

Figure 4-22 represents the difference between the two distributions shown in Figure

4-21; for each of the 500 scenarios, the static performance was subtracted from the

reconfigurable performance achieved against the same target location. This ∆𝑃 value

represents the amount by which the reconfigurable design outperformed the iso-cost

static design. All of the ∆𝑃 values shown in Figure 4-22 are positive, meaning that

the reconfigurable design outperform the static design in all 500 scenarios for this

specific design pair. A negative ∆𝑃 value would denote a scenario in which the static

design outperformed its reconfigurable alternative.

To clarify the difference in techniques used, the methods described in Sections

129



Figure 4-21: Histograms of normalized
performance distributions over 500 sce-
narios for an iso-cost pair of designs

Figure 4-22: Histogram of ∆𝑃 evaluated
for the same pair of designs and over the
same 500 scenarios shown in Figure 4-21

4.3.1.1 and 4.3.1.2 are based on comparing the two distributions shown in Figure

4-21 for all iso-cost sets of designs. The method described in Section 4.3.1.3 involves

a straightforward count of how many times the ∆𝑃 value shown in Figure 4-22 is

above zero. The method used in the present section is to characterize the mean and

standard deviation of the distribution shown in Figure 4-22, and calculate the confi-

dence level for ∆𝑃 being greater than zero.

It must be acknowledged that the ∆𝑃 distribution shown in Figure 4-22 is clearly

skewed, and the Shapiro-Wilk test confirms that this distribution of values does not

approximate a normal distribution (failing the Shapiro-Wilk test when evaluated for

a p-value of 0.05). Although confidence calculations will be made based on the as-

sumption that z-values are applicable to this distribution, the results will be compared

to the other techniques used in order to assess the level of error introduced by this

approximation.

However, when the improvement in performance is instead evaluated as a per-

centage improvement of the static constellation performance score ( Δ𝑃
𝑃𝑠𝑡𝑎𝑡𝑖𝑐

× 100) as

shown in Figure 4-23, the distribution visibly appears much closer to normality. Re-

evaluating this distribution with the Shapiro-Wilk test confirms that it now approx-
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imates a normal distribution, passing the test when applied with a p-value of 0.05.

Figure 4-23: Histogram of improvement in performance due to reconfigurability, cal-
culated as percentage improvement from the static performance score

The confidence calculation for this method will be carried out using the ∆𝑃 distri-

bution shown in Figure 4-22 and compared to the other confidence metrics to evaluate

the level of error resulting from this technique. If the error level is unacceptably high,

the percentage improvement metric used in Figure 4-23 will be used as an alterna-

tive for calculating confidence in the improved performance as a percentage instead.

In this case, the test method will require some modifications to find results in the

appropriate units (as a percentage improvement over static performance).

4.3.1.5 Bootstrap method

The fifth and final method of calculating confidence levels is the bootstrap method.

The 500 re-evaluated performance scores for each one of the iso-cost pairs are re-

peatedly resampled with replacement to create 1000 bootstrapped data sets, each

consisting of 500 resampled performance scores. These sets are used to calculate con-

fidence levels for tolerance intervals to be placed upon the performance ranges for
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each iso-cost design pair.

These confidence levels may be applied as previously discussed in Section 4.2, us-

ing Equation 4.4 to calculate and apply the bounds of a 95% confidence level (or any

other percentage level) to the desired metric of performance. The first application

of this technique is to calculate the level of confidence that reconfigurable designs

outperform static by any amount. Bootstrapping the original set of 500 ∆𝑃 scores

into 1000 resampled data sets (each containing 500 ∆𝑃 scores) gives a large number

of sample sets from which to calculate the probability that ∆𝑃>0.

Beyond calculating the probability of a ∆𝑃 that is greater than zero, the con-

fidence level may also be calculated for outperforming static designs by a specified

proportion (e.g. reconfigurable designs must outperform static designs by at least

10%, or 20%, or X%). Some options for applying confidence levels to other perfor-

mance metrics that may be useful to satellite operators include the minimum ∆𝑃

value for each design pairing; a two-sided quantile that includes a specific propor-

tion of the population, e.g. bounds within which 90% of the ∆𝑃 values occur with

95% confidence; or a one-sided quantile that includes a specific proportion of the

population, e.g. a lower bound above which 90% of the ∆𝑃 values occur with 95%

confidence.

4.3.2 Results for confidence level that ReCon outperforms iso-

cost static designs

The first two methods used to calculate the confidence level that reconfigurable de-

signs outperform iso-cost static designs were the hypothesis testing techniques (de-

scribed in detail in Sections 4.3.1.1 and 4.3.1.2). The first of these methods assumes

that the performance distributions for reconfigurable and static designs are indepen-

dent and uncorrelated, and the second method calculates the covariance between the

two distributions and factors this into the calculation of confidence.
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Figure 4-24 shows the calculated confidence that reconfigurable designs outper-

form static designs across a range of constellation costs from around $113M to $1352M.

The independent hypothesis test method results are shown in blue, and the hypothe-

sis test method results with covariance are shown in red. For every design with a cost

greater than $223M, the confidence that ReCon outperforms static is over 97.5% ac-

cording to the independent method and over 97% according to the covariance method.

There is one exception to this result, which is a single iso-cost pair of designs at a

cost of $298M. For this pair, there is a confidence level of 93.3% that the reconfig-

urable design outperforms the iso-cost static alternative according to the independent

hypothesis testing method, and 93.1% according to the covariance hypothesis testing

method.

Figure 4-25 shows a magnified view of the confidence results for constellation

design pairs with costs between $100M and $350M. This figure highlights the variation

in the confidence curve in the lower-cost design space, as well as the difference in

results between the two confidence calculation methods. The largest differences in the

predicted confidence levels are seen for designs with a cost between $140M and $156M,

and between $181M and $204M. For designs with a total constellation cost between

$127M and $211M, the confidence that ReCon outperforms static is predominantly

below 50%, meaning that in this region the static designs are likely to outperform

the reconfigurable alternatives. These confidence curves will be compared to later

methods of calculating confidence levels in order to assess which of the two hypothesis

testing methods gave a more accurate result.

The next two methods used to calculate the confidence level that reconfigurable

designs outperform iso-cost static designs were the Monte Carlo tally of ∆𝑃 scores

and modelling the statistical properties of the ∆𝑃 distribution (described in detail

in Sections 4.3.1.3 and 4.3.1.4). Figure 4-26 shows the calculated confidence levels

from these two methods, with the Monte Carlo method results shown in blue and the
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Figure 4-24: Two plots showing the level
of confidence that ReCon outperforms
static, with independent hypothesis test
results plotted in blue and covariance hy-
pothesis test results plotted in red

Figure 4-25: A magnified view of the con-
fidence levels from Figure 4-24 showing
differences between the two methods for
the predicted confidence within the cost
region from $100M–350M

statistical distribution results shown in red.

Using the Monte Carlo method, the confidence level that ReCon outperforms

static is over 97.6% for every design with a cost greater than $223M. Using the statis-

tical distribution method, the confidence that ReCon outperforms static is over 97%

for every design with a cost greater than $223M. These are both very similar results

to the previous predictions of 97.5% and 97% from the hypothesis testing methods.

Once again, there is a single exception to this result: the same single design pair at

$298M, this time with ReCon predicted to outperform static with 93.1% confidence

for the statistical distribution method and 93.6% for the Monte Carlo method, com-

pared to 93.3% and 93.1% from the previous hypothesis testing methods.

Figure 4-27 shows a magnified view of the lower-cost design region from Figure

4-26, highlighting the area with the lowest confidence level in reconfigurable designs

outperforming static alternatives. The confidence levels calculated for ReCon out-

performing static are in greater agreement between these two methods than between

the two hypothesis testing methods shown in Figures 4-24 and 4-25, though a small
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amount of variation between the predicted confidence values can be seen in Figure

4-27.

Figure 4-26: Two plots showing the con-
fidence level that ReCon outperforms
static, with the Monte Carlo tally of ∆𝑃
plotted in blue and results using the sta-
tistical distribution of ∆𝑃 plotted in red

Figure 4-27: A magnified view of the con-
fidence levels from Figure 4-26 showing
differences between the two methods for
the predicted confidence within the cost
region from $100M–350M

The fifth and final method used to calculate the confidence level that reconfig-

urable designs outperform static iso-cost alternatives was the bootstrap method (de-

scribed in Section 4.3.1.5). Figure 4-28 shows the bootstrapped confidence level that

ReCon outperforms static, with an extremely similar confidence curve shown com-

pared to all four of the previous methods plotted in Figures 4-24 and 4-26. The

confidence that reconfigurable designs outperform the iso-cost paired static designs is

over 97.6% for all designs with a cost greater than $223M, aside from the design pair

at $298M which has a confidence level of 93.6%.

Figure 4-29 shows a comparison of the calculated confidence levels from all five

methods, with the independent hypothesis test method plotted in blue, the hypothesis

test with covariance plotted in red, the Monte Carlo method plotted in yellow, the

statistical distribution of ∆𝑃 method plotted in purple, and the bootstrap method

plotted in green. Figure 4-30 shows a magnified view of Figure 4-29, focusing on the
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Figure 4-28: Bootstrapped confidence level that ReCon outperforms static

confidence levels for designs with a cost between $100M and $350M to show the area

of greatest variation.

Figure 4-29: Comparison of results for the
confidence level that reconfigurable de-
signs outperform static, calculated from
all 5 methods

Figure 4-30: Magnified view of the con-
fidence levels from Figure 4-29 showing
differences in the predicted confidence
within the cost region from $100M–350M

From these figures it may be observed that the independent hypothesis method

has the largest amount of error, with large deviations in the predicted confidence
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in the cost regions between $140M–156M and $181M–204M when compared to the

results from the other four methods. It is concluded from the large amount of error

introduced by this method for certain design pairings that the distributions of per-

formance were not independent, and so more accurate confidence calculations were

obtained from the hypothesis method accounting for covariance in the performances

between the paired designs.

The other four methods all show low amounts of variation in the predicted confi-

dence values, with a maximum discrepancy of 3% between the results obtained using

different techniques. The Monte Carlo method shows the greatest correlation with

the bootstrap method, and the hypothesis test with covariance shows the greatest

correlation with the statistical distribution method. This may be due to the fact that

the Monte Carlo method and the bootstrap method are both iterative techniques

where the probabilities are modelled based on repeated large data sets, while the

covariance hypothesis test method and statistical distribution method are both tech-

niques based on calculating statistical properties of the available data and modelling

the underlying distribution.

Using the bootstrap method on available sets of performance data from re-evaluating

optimized constellation designs against a larger set of target scenarios is concluded

to provide the lowest amount of error in calculating the confidence level that recon-

figurable designs outperform iso-cost static designs. However, this technique may be

computationally intensive, depending on the number of designs under consideration,

the number of target scenarios used for re-evaluation, and the number of resam-

pled data sets used for the bootstrapping technique. If computational resources are

limited, the covariance hypothesis test method is proposed for use as an acceptable

alternative, with error levels of less than 2% when compared to the bootstrapping

method that is considered to provide a benchmark for confidence level calculations.

Comparing all of the five methods of confidence level calculation for the 62 iso-
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cost pairs of designs, it was found that reconfigurable designs outperformed static

designs with a confidence level of more than 93% for all design pairs with a cost

greater than $223M, and a confidence level of more than 97% for all design pairs in

this region barring one. There were also four design pairs in the lowest-cost region

of designs between $113M and $124M where the reconfigurable design outperformed

the static design with a confidence of at least 92.3%. However, the cost region from

$116M to $223M does not have a strong confidence level that reconfigurable designs

outperform static alternatives, with 50% of the design pairs in this region having a

higher confidence level that static designs will outperform reconfigurable alternatives.

4.3.3 Results for confidence level that ReCon outperforms static

designs by a specified margin

After comparing the amount of error from several techniques, levels of confidence

that reconfigurable designs outperformed iso-cost static designs at various constella-

tion cost were established. This completed the first objective in this area of work,

showing the confidence levels that ReCon designs outperform static designs by any

amount, even if the difference is infinitesimal. The next goal was to extend these

calculations to find the confidence level that reconfigurable designs outperform static

designs by a specified margin of performance.

Due to the range of normalized performance values through the design space, it

was decided to apply performance margins as percentages of the static performance.

For example, for a reconfigurable design to outperform an iso-cost static design with

a normalized performance of 0.220 (achieving 22% of the ideal coverage performance)

by a margin of 10%, it would have to achieve a normalized performance score of

at least 0.242 (achieving 24.2% of the ideal coverage performance). This decision

was made to keep margins as a consistent percentage across the wide range of static

performance values, rather than applying performance margins as a proportion of

normalized performance.

138



If a flat performance margin was applied, e.g. a margin of 0.10 normalized per-

formance between the static and reconfigurable designs, this would represent a huge

relative increase for designs in the low-performance region. Compared to a static de-

sign with a normalized performance score of 0.080 (achieving 8% of the ideal coverage

performance), imposing a margin of 0.10 normalized performance so that the recon-

figurable iso-cost alternative has to achieve a performance of 0.180 would represent a

performance increase of 125% over the static score. In contrast, for a high-performing

static design with a normalized performance score of 0.550 (achieving 55% of the ideal

coverage performance), imposing a 0.10 normalized performance margin so that the

reconfigurable iso-cost alternative has to achieve a performance of 0.650 would only

represent a performance increase of 18.2% over the static score.

The margins that were applied were set at levels of 10%, 20%, 30%, 40% and

50% above static performance. This means that for a static design achieving 0.30

normalized performance (30% of ideal coverage), the iso-cost reconfigurable design

would have to achieve a normalized performance score of at least 0.33, 0.36, 0.39,

0.42 and 0.45 respectively to meet these desired margins. For the previous confidence

calculations, the reconfigurable design would only have had to achieve at least 0.30

to match or exceed the static performance, and this 0% margin is presented alongside

the other results for comparison.

Figure 4-31 shows a set of subplots for all of the specified performance margins,

with the 0% margin plotted in purple in Figure 4-31a (equivalent to the confidence

levels shown in Section 4.3.2), the 10% margin plotted in dark blue in Figure 4-31b,

the 20% margin plotted in aqua in Figure 4-31c, the 30% margin plotted in green in

Figure 4-31d, the 40% margin plotted in amber in Figure 4-31e, and the 50% margin

plotted in red in Figure 4-31f. The expected result was that each confidence curve

would drop as increasingly stringent performance margins were imposed upon the

reconfigurable designs, and this was observed to be the case in the results shown by
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this series of figures.

For a 0% performance margin as shown in Figure 4-31a, it was found that all re-

configurable designs above a constellation cost of $223M outperformed iso-cost static

designs with at least 90% confidence. There were also four designs in the lower-cost

region of $113M–124M that outperformed static alternatives with at least 90% con-

fidence. Of the remaining 16 design pairs, reconfigurable designs were predicted to

have higher performance in 43.75% of the iso-cost pairs, and static designs were pre-

dicted to have higher performance in the remaining 56.25% of pairs, but with levels

of confidence that were lower than 90% in both directions of prediction. Across the

entire design space, it was found that for 74.2% of iso-cost pairings there was more

than 90% confidence that the reconfigurable design would outperform the static alter-

native. Including lower levels of confidence, the reconfigurable designs were predicted

to outperform the static pairing in 85.5% of cases, with static designs outperforming

reconfigurable in only 14.5% of cases.

For a 10% performance margin as shown in Figure 4-31b, it was found that all but

one pair of reconfigurable designs above a constellation cost of $223M outperformed

static designs by this amount with at least 90% confidence. The single exception is a

design pair at a cost of $298M, which dropped to a confidence level of only 52.5% that

ReCon would outperform static by a minimum margin of 10%. Two of the four lower-

cost designs (at constellation costs of $113M and $115M) retained confidence levels

above 90% with the increased performance margin. Across the entire design space, it

was found that for 66.1% of iso-cost pairings there was more than 90% confidence that

the reconfigurable design would outperform the static alternative by a performance

margin of at least 10%. Including lower levels of confidence, the reconfigurable de-

signs were predicted to outperform the static pairing by at least 10% in 74.2% of cases.

For a 20% performance margin as shown in Figure 4-31c, it was found that all re-

configurable designs above a constellation cost of $298M outperformed static designs
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(a) Δ𝑃 ≥ 0% (b) Δ𝑃 ≥ 10%

(c) Δ𝑃 ≥ 20% (d) Δ𝑃 ≥ 30%

(e) Δ𝑃 ≥ 40% (f) Δ𝑃 ≥ 50%

Figure 4-31: Bootstrapped confidence levels that ReCon outperforms static by a
specific performance percentage of at least a) 0% b) 10% c) 20% d) 30% e) 40% and
f) 50%
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by this amount with at least 90% confidence, as well as a pair of designs at costs of

$235M and $243M, and the same pair of lower-cost designs at $113M and $115M.

Across the entire design space, it was found that for 61.3% of iso-cost pairings there

was more than 90% confidence that the reconfigurable design would outperform the

static alternative by a performance margin of at least 20%. Including lower levels of

confidence, the reconfigurable designs were predicted to outperform the static pairing

by at least 20% in 67.7% of cases.

For a 30% performance margin as shown in Figure 4-31d, it was found that all

reconfigurable designs above a constellation cost of $313M outperformed static de-

signs by this amount with at least 90% confidence, except for a single design pair

at $364M which dropped to a confidence level of only 86.7% that ReCon would out-

perform static by a minimum margin of 30%. Other designs at $313M and $243M

achieved confidence levels of 87.3% and 89.3%, also narrowly missing the 90% con-

fidence mark. A single lower-cost design at $113M retained over 90% confidence in

outperforming static by at least 30% margin. Across the entire design space, it was

found that for 53.2% of iso-cost pairings there was more than 90% confidence that

the reconfigurable design would outperform the static alternative by a performance

margin of at least 30%. Including lower levels of confidence, the reconfigurable de-

signs were predicted to outperform the static pairing by at least 30% in 61.3% of cases.

For a 40% performance margin as shown in Figure 4-31e, it was found that all re-

configurable designs between a constellation cost of $455M and $1326M outperformed

static designs by this amount with at least 90% confidence, with other designs cost-

ing $113M, between $313M and $340M, and between $345 and $444M (excluding one

design pair at $364M) also achieving this confidence level. Across the entire design

space, it was found that for 41.9% of iso-cost pairings there was more than 90% con-

fidence that the reconfigurable design would outperform the static alternative by a

performance margin of at least 40%. Including lower levels of confidence, the recon-

figurable designs were predicted to outperform the static pairing by at least 40% in

142



58.1% of cases.

For a 50% performance margin as shown in Figure 4-31f, it was found that all re-

configurable designs between a constellation cost of $515M and $1173M outperformed

static designs by this amount with at least 90% confidence, with other designs cost-

ing $113M, $393M and $404M also achieving this confidence level. Across the entire

design space, it was found that for 19.4% of iso-cost pairings there was more than

90% confidence that the reconfigurable design would outperform the static alternative

by a performance margin of at least 50%. Including lower levels of confidence, the

reconfigurable designs were predicted to outperform the static pairing by at least 50%

in 43.5% of cases.

Figure 4-32 shows all of the subplots from Figure 4-31 overlaid onto a single

diagram, illustrating how the confidence level drops in stages for individual design

pairings as more stringent performance margins are imposed. The constellation cost

region between $515M and $1173M retains a high level of confidence, even for a

required margin of 50% higher performance for reconfigurable designs compared to

iso-cost static constellations, suggesting a very large ∆𝑃 for designs in this region.

The cost region between $223M and $515M shows a much greater amount of variation,

with the confidence dropping rapidly for some designs as more stringent margins are

imposed, while for others the level decreases much more gradually.

Figure 4-33 shows the minimum ∆𝑃 values for each design pairing in units of nor-

malized performance, estimated with a confidence level of 95% using the bootstrap

method. These units are equivalent to the subtracting the normalized performance

score of each static design from the normalized performance score of its iso-cost re-

configurable paired design. Figure 4-34 shows the same bootstrapped minimum ∆𝑃

values with 95% confidence, but with ∆𝑃 expressed as a percentage of the static

design performance. A 10% minimum ∆𝑃 on this chart equates to a reconfigurable

design achieving 10% higher normalized performance than its static equivalent, for
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Figure 4-32: Bootstrapped confidence levels that ReCon outperforms static by a spe-
cific margin of performance, expressed as a percentage of the static design performance
between 0–50%

example with a normalized performance score of 0.44 for ReCon relative to a score of

0.40 for static at the same cost point. Rather than expressing the full 95% confidence

range for the interval within which the minimum ∆𝑃 may occur, both of these figures

simply show the lower bound, as for a one-sided metric such as minimum ∆𝑃 , this

represents the boundary above which 95% of minimum performance results will lie.

These figures explain some of the variation in confidence levels seen in Figures

4-31 and 4-32 across different regions of the design space. When assessed against 500

different target scenarios of interest, the worst-case performance for reconfigurable de-

signs costing approximately $500M to $1250M still achieved 20% higher performance

than iso-cost static designs, with a 95% confidence level in this result. For designs

costing between $113M and $300M, the worst-case scenarios are often negative ∆𝑃
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Figure 4-33: Bootstrapped minimum ∆𝑃
values (with 95% confidence) for each de-
sign pairing, expressed in terms of nor-
malized performance

Figure 4-34: Bootstrapped minimum ∆𝑃
values (with 95% confidence) for each de-
sign pairing, expressed as a percentage of
static performance

values, meaning that these are situations in which the static design outperformed the

reconfigurable design. Although this may happen with varying levels of frequency

depending on the design, this explains the lower levels of confidence in reconfigurable

designs outperforming static designs within this cost range.

Pearson correlation coefficients were calculated for the confidence level of ReCon

outperforming static against the design variables used to define the reconfigurable

and static constellations under consideration. A correlation coefficient of 1 equates

to a perfect positive correlation between variables, a coefficient of -1 equates to a

perfect negative correlation, and a coefficient of 0 represents no correlation between

the variables. The static variables were found to be only weakly correlated with the

confidence level, but the correlation was much more significant for the reconfigurable

design variables.

Table 4.4 shows the correlation coefficients between the level of confidence that

ReCon outperforms static and six variables from the set used to define the reconfig-

urable design. All of these variables have a positive correlation with the confidence

level, meaning that an increase in GOM altitude, orbital inclination, number of satel-
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lite planes, aperture diameter, ∆𝑉 budget for reconfiguration, or total number of

satellites is correlated with an increase in confidence that ReCon outperforms static.

The variables are ordered by the strength of the correlation, meaning that the GOM

altitude is the most strongly correlated variable with the confidence level, and the

total number of satellites demonstrates the weakest (though still positive) correla-

tion. The p-value of each result is shown, representing the probability of obtaining

such a result by chance if the variables were not actually correlated. The significance

level was set to 0.05 for this calculation, meaning that any correlation with a p-value

greater than 0.05 was dismissed as insignificant, due to the possibility of obtaining

such a result by chance.

Table 4.4: Correlation coefficients and p-values for six reconfigurable design variables
against confidence level that ReCon outperforms static

Design variable Correlation coefficient p-value of result
GOM altitude 0.8372 2.29e-17

Inclination 0.7308 1.56e-11
Number of satellite planes 0.5259 1.14e-5

Aperture diameter 0.4725 1.05e-4
Reconfiguration ∆𝑉 0.4711 1.11e-4

Total number of satellites 0.2817 2.65e-2

The results in Table 4.4 show that the confidence value in the performance gained

due to reconfigurability cannot be correlated with any single design variable, but

that many aspects of the optimized designs contribute to ∆𝑃 with varying amounts

of influence. Often these design variables are interrelated, and trade-offs must be

made between different aspects of the design to balance cost, performance, and other

constraints placed upon the design space to ensure that selected designs are feasible

for real-world operations. These include limitations on variables such as minimum

orbital altitude, maximum constellation size, or propulsion system mass fraction.

Although performance benefits may be positively correlated with specific design vari-

ables, increasing the values for these variables may have other negative effects on the

constellation in terms of cost, feasibility, or interactions with other aspects of the
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design.

4.4 Conclusions

Using iso-performance comparisons of prospective designs such as Legge’s Value of

Reconfigurability does not account for the amount of variation that occurs in per-

formance scores when constellations are evaluated against a range of different target

scenarios. Due to the fact that the ReCon model does not account for operating costs,

constellation cost is a fixed number for each design regardless of evaluation against

different operating scenarios or locations. A new iso-cost comparison metric of ∆𝑃

is presented as an alternative to Legge’s VoR metric.

∆𝑃 is the difference in performance between iso-cost reconfigurable and static

constellation designs, calculated by subtracting the static performance from the re-

configurable performance. A positive ∆𝑃 value represents a situation in which the

reconfigurable design outperforms the static design, and a negative ∆𝑃 value repre-

sents a situation in which the static design outperforms the reconfigurable design. A

∆𝑃 value of zero represents a situation in which the paired designs achieve exactly

the same performance. ∆𝑃 may be considered as a simple difference expressed in

terms of the normalized performance (based on Legge’s custom persistence metric

described in 3.1.1.1, and calculated as a fraction of the ideal performance when the

desired revisit cadence and ground sample distance are perfectly matched).

∆𝑃 may alternatively be expressed as an improvement in performance in terms

of a percentage of the static design performance; for example, if a reconfigurable and

static iso-cost pair achieve normalized performance scores of 0.5 and 0.4 respectively,

∆𝑃 expressed as a simple difference would be +0.1 in terms of normalized perfor-

mance, or a +25% improvement over the static performance due to the incorporation

of reconfigurability in the iso-cost design.
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Figure 4-35 shows 95% confidence intervals for two useful ∆𝑃 metrics in evaluat-

ing the relative merits of different constellation design options. The mean ∆𝑃 (as a

percentage improvement over the static design performance) is plotted in dark blue,

and the minimum ∆𝑃 (expressed in the same terms) is plotted in lilac. Considering

these metrics in tandem supplies greater information than a single estimated perfor-

mance value, providing a sense of the overall distribution of performances in different

coverage scenarios. The mean ∆𝑃 provides an estimate of the average performance

improvement to be gained over a static design at the same constellation cost, with a

95% confidence level that the actual mean achieved will fall within the specified range.

The confidence interval on this metric is relatively narrow, due to the averaging effect

of comparing a large number of means calculated using the bootstrap method. The

minimum ∆𝑃 provides an estimate of the worst-case performance improvement to be

gained over a static design at the same cost, with negative values representing cases

where the static design outperformed its reconfigurable alternative. The 95% confi-

dence interval on this metric is somewhat wider than for the mean, due to minimum

performance calculations relying on a single value in the distribution rather than the

average of many values.

64.5% of the design pairs shown in Figure 4-35 have a mean ∆𝑃 of 25% or higher,

and 74.2% have a mean ∆𝑃 of 10% or higher. 61.3% of the design pairs have a

minimum ∆𝑃 that is greater than 0. The highest values of ∆𝑃 are seen for iso-cost

design pairs in the $750M–800M region of Figure 4-35, where the mean ∆𝑃 shows

a 95–100% improvement for the reconfigurable design performance compared to the

score of the static alternative. For these pairs, the reconfigurable design achieves a

45–60% improvement above the static design even in the worst-case scenario repre-

sented by the minimum ∆𝑃 range.

The type of trends in performance data shown for designs in the $220M–300M

range may be of particular interest in developing methods of selecting a constella-

tion design. Although the mean ∆𝑃 varies between 0 and 38% in this region, the
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Figure 4-35: 95% confidence intervals for mean and minimum values of ∆𝑃 , expressed
as a percentage of the static constellation design performance

worst-case minimum ∆𝑃 shows that for some scenarios, the ∆𝑃 that is actually

achieved by these designs will be in the range of -18% to +18%. This demonstrates

the need to consider the range of performance data and how it is dispersed, rather

than assessing only the mean value in evaluating and comparing constellation designs.

Figure 4-35 illustrates how stakeholders who are considering adopting reconfigura-

bility in designing and launching satellite constellations must ensure that the selected

designs achieve a reliable level of performance, as well as an improvement in mean

performance. In quantifying the benefits of reconfigurability, it must be acknowl-

edged that for some areas of the design space there is a large amount of overlap in the

expected range of performance when compared to iso-cost static alternatives. This

occurs particularly in the lower-cost, lower-performance region of the design space,
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where lower constellation budgets mean that reconfigurable architectures may not

possess sufficient satellites or ∆𝑉 for fully responsive maneuvering. At these levels,

the performance of reconfigurable designs is comparable to that of iso-cost static de-

signs.

Examining the subset of the 14.5% of static designs in Figure 4-31a that were not

predicted to outperform reconfigurable designs at the same cost, there is not a high

level of confidence in any of this set of results, with confidence levels varying from

56 to 82% in the prediction that static designs would have the better performance in

these cases. All of these designs are also within the cost region from $130M to $214M,

where mean ∆𝑃 has a range within ±5% of static performance. These results demon-

strate that for the worst-performing reconfigurable designs, the mean performance is

at least on par with the performance of static constellations. Observing the amount

of variation in performance over different scenarios shown by the minimum ∆𝑃 inter-

val, these reconfigurable designs are likely to be significantly worse in some scenarios

and significantly better in others, averaging out to similar mean performance when

compared to static designs.

∆𝑃 was modelled using confidence levels and interval estimation rather than ap-

proximating a single performance score, in order to properly represent the range of

performance results that are achieved when a design is re-evaluated against different

target decks. Several methods of calculating confidence levels were compared, and

it was established that bootstrapping or Monte Carlo methods provided the highest

accuracy in results, although these techniques required the most computational re-

sources to execute. Hypothesis testing with covariance or modelling the statistical

distribution of ∆𝑃 were also found to supply low error rates in their estimates, and

would supply acceptable alternative methods where computational resources are lim-

ited or a large number of iterations of the calculations must be carried out.

While VoR assumes that performance can be approximated as a single constant
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score across all possible operating scenarios, ∆𝑃 is an equivalent single-axis compar-

ison that focuses on the amount of performance to be gained from reconfigurability,

evaluated at iso-cost points in the design space of possible constellation designs. ∆𝑃

also has the benefit of factoring in statistical dispersion of the constellation perfor-

mance, acknowledging that different performance scores will be achieved in different

target scenarios and presenting this information to decision-makers as an additional

data available to evaluate and rank constellation design candidates.

Adopting an iso-cost metric such as ∆𝑃 accounts for the lack of variation in es-

timated constellation costs when evaluated against different scenarios in the ReCon

model, and the presence of a large amount of variation in the estimated performance

scores. Once design parameters are fixed in the model, the cost estimate is also

fixed, regardless of changes in the target locations and timings used for performance

re-evaluation. If future work focuses on modelling operational costs as part of the

ReCon model and introducing cost variability for different scenarios, comparing the

relative value supplied by reconfigurable and static designs on an iso-cost basis will still

supply greater reliability and lower variance than comparisons on an iso-performance

basis as long as the constellation cost variation between scenarios is found to be less

than 25% of the existing cost estimates.

An interesting area for future work in the area of reliability-based design opti-

mization would be to implement use of the confidence metric in the actual process

of optimizing the designs generated by the ReCon codebase. This would allow for a

probabilistic approach to be taken to the optimization, maximizing the chance of Re-

Con outperforming static along the Pareto front of non-dominated design candidates.

However, this would be a complex task due to the fact that the ∆𝑃 metric is based

upon a comparison between reconfigurable and static designs at the same cost point

in the architecture tradespace. A useful step in investigating this implementation

might be to first run the optimization to generate a set of static designs, and then

use these as the basis for a second design optimization incorporating reconfigurability
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to improve upon the initial performance scores. The optimization objective would

be targeted towards achieving the greatest percentage improvement in score at each

cost point. Enacting repeatability in the target decks used to evaluate the relative

performance of both sets of designs would be beneficial to ensure that ∆𝑃 is actu-

ally evaluated from the comparison in performance achieved in response to identical

target events of interest.
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Chapter 5

Sampling improvements and

uncertainty quantification for design

optimization

With the development of increasingly advanced computer hardware over time, the

ability to computationally simulate complex real-world processes has become an im-

portant tool across every STEM field. These improvements in simulation capabilities

have enabled the study and analysis of phenomena that it was previously impossible

to research, or that could only be investigated through highly resource-intensive ex-

perimentation. Such simulations are developed through several stages of modelling:

first, a real-world, physical system must be represented by a mathematical model that

captures the quantities of interest, which must be validated as sufficiently accurate for

the intended uses, although it is rarely a perfect representation of the physical reality.

Next, the mathematical model is approximated into a computational model which can

be solved algorithmically to find an approximate solution. This must be verified by

comparing the approximated computational solutions with the mathematical model

to determine the level of accuracy, taking into account truncation errors, finite differ-

ence approximations, and other errors introduced by the use of numerical methods

to solve the model. Finally, the computational model must be verified against the

original real-world process, comparing outputs computed by the simulation for quan-
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tities of interest against real, physical data from observations or experiments.[108] In

cases where this is prohibitively difficult or expensive, newer computational models

are often compared against other pre-existing computational models which have al-

ready been verified against real-world data.

Although computational models of this kind have led to many scientific and tech-

nological advances, the ability to quantify uncertainty in such models and the predic-

tions made from their outputs is much less well-developed than the process of creating

these approximate simulations.[109] Computational simulations diverge from reality

in a variety of ways, which must be acknowledged in assessing how useful the simula-

tion output may be. Often there may be inadequate data, a lack of precise detail, or

uncertainty in the knowledge of essential inputs supplied to the model such as initial

conditions, boundary conditions, constraints on certain parameters, or even values

for variables of interest that have been shown to have a significant effect on model

output. Discrepancies between the mathematical and computational models also add

a degree of uncertainty, due to the error introduced by the necessary approximations

that must be made to numerically solve the real-world system, such as representing

physical spaces with a finite element structure, or modelling a continuous span of

time using an approximation with discrete timesteps. On a basic level, simulations

must omit or simplify certain aspects of reality in order to focus on the quantities of

interest and avoid becoming so complex as to be computationally intractable.[108]

As stated by George Box, “All models are wrong, but some may be useful”; it

is only by quantifying exactly how wrong the model predictions are (and in what

ways) that it can be decided what use may be made of the results.[110] Understand-

ing the limitations, flaws, assumptions and uncertainties built into the computational

model is crucial to arriving at an appropriate level of confidence in the simulation

result. Comparing the computed output for a quantity of interest and a value for

its real-world physical equivalent, the uncertainty in value between the two must be

quantifiable for the simulation output to be of any practical use; “The uncertainty
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is as important a part of the result as the estimate itself. . . An estimate without a

standard error is practically meaningless.”[111]

Due to the fact that uncertainty is omnipresent in any computational model’s

approximation of reality, the necessity arises for quantifying these uncertainties, by

assessing how the model-based estimation of the output variables of interest is af-

fected by errors and uncertainties of numerous origin.[108] The field of uncertainty

quantification occurs where probability and statistics must intersect with physical

reality, recognizing the ubiquity of uncertainty and therefore the necessity of identify-

ing its sources and quantifying the relative amounts of their contributions to overall

uncertainty, in order to assess the validity of a given model.[112]

The US Department of Energy gives the definition as follows:

"Uncertainty quantification (UQ) studies all sources of error and un-

certainty, including the following: systematic and stochastic measurement

error; ignorance; limitations of theoretical models; limitations of numerical

representations of those models; limitations of the accuracy and reliabil-

ity of computations, approximations, and algorithms; and human error.

A more precise definition is UQ is the end-to-end study of the reliability

of scientific inferences."[109]

The field of uncertainty analysis is strongly tied to that of sensitivity analysis.

While UQ has a greater focus on quantifying and propagating uncertainty, sensitivity

analysis may also involve identifying sources of uncertainty in a model and quantify-

ing the degree of their impact on system output, and so the two analyses are often

carried out together. Sensitivity analysis may also involve modelling the relationships

between model inputs and outputs, identifying errors, and attempting to reduce un-

certainty, though it differs from UQ in its focus on other objectives such as model

simplification, redundancy reduction and optimization of model parameters.[113]
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Many of the recurring limitations and issues that arise across a wide range of

simulation applications should be considered as part of the processes of validation,

verification and uncertainty quantification of the model. The amount or relevance

of the empirical data used to verify the model may be limited, or the computational

model may aim to extrapolate well beyond the physical conditions available for val-

idating its output, going as far as to simulate untested or unobservable scenarios.

Computational models cannot provide perfectly accurate representations of the real

world, and the more complex the actual physical system is, the more approximations,

inadequate estimations, simplifications or omissions are likely to be made to arrive

at a computational representation. Such approximations also typically feature un-

known parameters and boundary conditions which must be estimated for the desired

application.[108, 109]

The starting point for UQ is the quantification of uncertainty in such inputs to

the model, which may be subject to factors such as random variability in operating

circumstances, a lack of knowledge about the exact parameter values, or unknown

boundary conditions. These uncertainties are most commonly quantified using prob-

ability distributions or by defining ranges within which a given variable may fall.[112]

These inputs may be situation-invariant, such as gravitational acceleration or other

physical constants, or entirely dependent on the situation under consideration and its

associated initial conditions or parameter constraints.[108]

The computational model must then be used to propagate these uncertainties in

input through the simulation to quantify the effect on the computed output variables

of interest and understand the mapping between model inputs and outputs. As an

‘end-to-end’ reliability study, UQ focuses on the relationships between pieces of infor-

mation in the model, taking into account the assumptions and approximations made

along the way. Rather than aiming to state that a given model is exactly ‘true’ (which

would be in any case an impossibility), UQ quantifies the validity of the model to a

specified degree, leading to the logical conclusion that the validity of the simulated
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output may also be quantified and accepted to a specified degree.[112]

The process of UQ must aggregate uncertainties from a variety of different sources

within the model, including uncertainty in the model inputs, real-world physical vari-

ability of an unpredictable nature, numerical error, and error from the computational

model itself. After identifying and quantifying sources of error and uncertainty in

both the inferences and predictions that went into constructing the model and its

inputs, and identifying the assumptions made in creating the uncertainty quantifica-

tion itself, UQ results in a summary of these sources and a final combined metric for

uncertainty. All of the uncertainties determined in this process are incorporated into

this overall quantitative assessment of the uncertainty in the simulated prediction of

the quantity of interest.[108, 109]

In order to design for the uncertain operating circumstances for the proposed

reconfigurable constellations of the ReCon model, uncertainty propagation is used.

For this case, designing for uncertainty requires quantifying it and propagating the

effects of locational uncertainties through the ReCon model, to characterize the effects

of uncertainty on the computed performance. As the model is highly non-linear and

non-deterministic, a probabilistic forward uncertainty propagation approach is taken

to arrive at an accurate estimation of system performance. The use of Monte Carlo

methods and other techniques for model uncertainty propagation is described in more

detail in Section 5.1.

5.1 Designing for flexibility using Monte-Carlo-based

model propagation

Using forward uncertainty propagation involves observing the uncertainty in the in-

puts to be propagated through the full model to estimate overall uncertainty in the

system response. This can be used to find the mean and standard deviation of the
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output data, the reliability of the output response, or to evaluate the full probabil-

ity distribution of the output information. Where model inputs are uncertain and

treated as random variables, an appropriate input distribution may be used based on

whatever data is available. For the ReCon model, locations of interest are generated

using the World Bank natural disaster PDF; Legge generates target decks using sim-

ple random sampling from this distribution.

A key aspect of UQ is the propagation of input uncertainties through the full

set of calculations in order to quantify the overall effect of uncertainty on the final

output of interest. Mapping input distribution to output distribution improves the

understanding of model behavior needed to assess uncertainty in the final prediction

made by the simulation. The simplest method of gathering information on the output

distribution is to use Monte Carlo sampling, generating a large number of samples

directly from the probability distribution of the model inputs, carrying out the for-

ward propagation of this input uncertainty through the simulation, and assessing the

output data based on each input. Once an output distribution is obtained for the

quantity of interest, other relevant metrics may be calculated from it such as mean,

median, confidence intervals, or percentile values of interest.

As Monte Carlo sampling does not depend on the model having a particular de-

gree of complexity, linearity, or dimensionality of the inputs, it provides a flexible

method of propagation usable by most simulation models. However, the speed of the

computer model can impose a limit on the usefulness of Monte Carlo techniques, as

this method can involve repeating hundreds or thousands of functional evaluations to

arrive at a sufficient level of accuracy in estimating the output distribution. In these

cases, the computational demands of the simulation will determine the number of

times it can reasonably be iterated to gather data, particularly limiting the number

of simulation runs that may be carried out for models that incur a high processing

time for each individual input. Characterizing events with a low probability of occur-

rence but with high impact on output results is also difficult using standard Monte
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Carlo methods, as such events are rarely generated in the course of simple random

sampling but will have considerable consequences for system performance when they

do occur.

The issue of runtime arose in Legge’s work developing the ReCon framework, with

acknowledgement made in his thesis[8] that the achievable confidence level (calculated

as standard error of mean performance and standard error of median performance)

was limited by a maximum of 24 Monte Carlo samples based on the available com-

putational resources. This means that at most, each optimized constellation design

could be assessed against 24 randomly sampled five-year operating scenarios. Legge’s

selection of the numerical time step for use in the simulation model was also motivated

by balancing model runtime against modelling error, with error of 0.144% quantified

for GOM propagation based on a 30-second timestep and error of 0.76% quantified

for ROM propagation based on a 20-second timestep.

Although the number of Monte Carlo samples that can be carried out may be

drastically limited depending on the complexity of the problem and the available

computing resources, the embarrassingly parallel nature of the repetition (i.e. with no

dependencies at all between the parallel iterations of the simulation model) lends itself

extremely well to parallelization of the Monte Carlo method. For the ReCon model,

this parallelization was implemented by Legge for the multi-objective optimization

stage of the model described in Section 3.1.3, rather than more simply applying it only

to the Monte Carlo layer described in Section 3.1.2. Legge separated the functional

evaluations (one constellation design evaluated against 24 scenarios) down to the level

of code executions (one constellation design evaluated against one scenario) in order to

use a batch processing technique for parallelization. An illustration of how these two

terms differ is shown in Figure 5-1 below: code executions consisting of the evaluation

of a single constellation design against a single target are shown in the left-hand chart,

e.g. evaluating the performance of design #4 against target deck C is carried out by

the single code execution 4C. Functional evaluations are shown on the right-hand
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side of Figure 5-1, consisting of one constellation design getting evaluated against

a full set of target deck scenarios to arrive at an averaged performance value, e.g.

evaluating the performance of design #3 against 24 target decks A–X (a total of 24

code executions) to arrive at an averaged performance value 𝑃3 for the constellation.

Figure 5-1: Visual comparison of code executions (left) consisting of one constella-
tion design evaluated against one target deck, against functional evaluations (right)
consisting of one constellation design evaluated against 24 target decks to arrive at
an averaged performance value

These code executions were sorted by estimated runtime in order to balance the

computational load more evenly across processors, with the highest runtime tasks

assigned first and the lower runtime tasks used to supply new tasks for processors

that finished their initial allocation. This approach was used due to greater run-

time savings in parallelizing at the level of code executions rather than functional

evaluations, which allows for large constellation designs with a higher runtime to be

distributed more evenly across the available processors. If parallelization was carried

out at the level of functional evaluations, tasks consisting of large designs being eval-

uated against 24 potential scenarios would be extremely hard to balance with small

constellations evaluated against the same number of target decks, with some proces-

sors taking orders of magnitude longer runtimes to complete their tasks and return

output to the leader processor for collation. Depending on the number of available

processors, code executions can be combined into evaluation blocks, reducing com-

munication time with the leader processor.
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Aside from implementing simple parallel processing, Monte Carlo approaches are

not well-suited to take advantage of any physical or mathematical structure in the

model that could otherwise be used to speed up the calculations, due to the objective

of retaining the functional dependence of output distribution on input distribution

rather than a simple averaged result. However, depending on the degree of input vari-

ability and model linearity, alternative probabilistic approaches exist for uncertainty

propagation that may be better suited to improving runtime, with some limitations

that are contingent on the output data of interest.

The lack of dependence of Monte Carlo sampling on input dimensionality or model

complexity means it is an extremely versatile technique, as long as the computational

model is sufficiently fast that runtime does not pose a problem in executing the num-

ber of iterations required to arrive at the desired level of confidence in the model

output. Where issues of high runtime start to become an issue for achieving suffi-

cient functional evaluations of the simulation, variance reduction techniques can be

used to improve the precision (as the name suggests, reducing the variance) of the

estimated output distribution without increasing the level of computational resources

needed. A range of methods may be employed to improve the statistical efficiency

of the output data, increasing precision and reducing the size of confidence intervals

for the estimated output variable of interest. Two of the most commonly used vari-

ance reduction techniques are importance sampling and stratified sampling, and these

were selected for implementation in this work as part of efforts to improve the ReCon

model by increasing simulation efficiency. The specifics of introducing importance

sampling for the ReCon target decks are described in Section 5.2, and a comparison

of several stratified sampling techniques for the model is given in Section 5.4.

The objective in this area of work was to retain the existing level of quantified

uncertainty in the simulation results established in Robert Legge’s past work, while

reducing the amount of samples needed to achieve this confidence, thereby achieving

savings in computational runtime. Several new methods of sampling from the World
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Bank PDF of natural disaster locations are proposed for the generation of new target

decks. The level of confidence in the estimated constellation performance is compared

using different sampling methods, with conclusions drawn from the results about the

reduction that could be made in number of target decks used. This possibility of using

fewer scenarios for design optimization is then compared to the potential savings to

be made in model runtime, based on runtime data collected from a series of ReCon

model runs on the MIT Supercloud.

5.2 Importance sampling

Importance sampling is one of the most common variance reduction techniques that

can be applied to Monte Carlo sampling of a simulation. Statistical sampling such as

Monte Carlo is an effective technique for quantifying uncertainty in input and how it

maps to uncertainty in the output parameters generated by a computational model.

However, assessing this mapping shows that certain values of the input distribution

have a greater impact on the output estimation than others. It is possible to reduce

the variance in the estimated output by sampling these ‘important’ values at a higher

frequency. The use of an input distribution that is deliberately biased in this fashion

may lead to a bias in the estimated results, depending on if it is directly implemented

upon the simulation input and by what method, but where this occurs it can be

remedied by applying a corrective weighting to the results of the model.

For the ReCon model, the Monte Carlo layer of the simulation (described in Sec-

tion 3.1.2) takes an individual constellation design and iterates the simulation of its

mission lifetime to assess its performance against a range of potential operating sce-

narios. A single ‘functional evaluation’ is defined by Legge as the evaluation of one

constellation design against a range of target decks to arrive at an averaged perfor-

mance value, therefore involving an even greater number of ‘code executions’ (defined

as the single execution of a code function that is iterated during a Monte Carlo
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process[108]). A visual illustration of the distinction between these terms was shown

previously in Figure 5-1.

Many thousands of code executions at this level of the model are carried out

during each simulation run, evaluating the generated constellation designs against a

number of target decks. By default 24 target decks are used, meaning that each single

functional evaluation is itself made up of 24 code executions. These target decks each

outline one possible five-year mission lifetime, and so one code execution scores the

utility provided by one constellation design in one potential scenario. In contrast,

one functional evaluation scores the average utility provided by one constellation

design across all 24 potential scenarios used to supply a range of different operating

conditions for the design optimization process.

To arrive at an optimized set of non-dominated designs, hundreds of possible con-

stellation designs are evaluated in each simulation run. ReCon simulation output

logs show that a range of 5,000–20,000 functional evaluations must be carried out

to reach the optimization termination criterion, and as each of these thousands of

evaluations is carried out against multiple target decks in the Monte Carlo layer, this

equates to a total of 120,000 to 480,000 code executions. This high number of iter-

ations means that any small decrease in the runtime of this layer of the simulation

model would result in a huge decrease in overall runtime, and reducing the number

of iterations itself is one way to achieve this effect. Legge’s previous work on the

ReCon model established a standard error based on the use of 24 target decks for

design optimization, and therefore even a small reduction in the number of target

decks that are needed to establish the same level of error will lead to a significant

decrease in the number of code executions carried out and a corresponding decrease

in computational runtime to complete the code run. In the example given, achieving

the smallest possible reduction in target decks from 24 to 23 scenarios would allow for

a reduction of 4.2% in the number of code executions (5,000–20,000 code executions

for the scenario described).
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In order to reduce the number of target decks used to optimize reconfigurable

constellation designs in the ReCon model, the process of generating these decks was

examined. These operating scenarios are pre-generated and saved to a large array

consisting of 10,000 different 5-year scenarios, made up of a total of 195,301 individ-

ual events of interest. Pre-generating this array avoids the addition of an extra script

within the ReCon model, which would increase the overall runtime due to the high

number of times the model is iterated, even if the script itself runs relatively fast. A

large number of scenarios are generated to supply an extensive array of target decks

which can then be called upon by the ReCon model. Saving the entire array in this

manner also means that the same decks can be called multiple times to compare the

results of different optimization settings using identical inputs, or target decks can be

sampled randomly from within the array in cases where randomization is desirable.

The use of this data array also allows for side-by-side comparison of optimization

results obtained using different techniques for target deck generation.

Many of the parameters specified in each target deck can be set to constant val-

ues for a standard design optimization run, such as the event duration (14 days by

default), desired ground sample distance (1 m by default), daylight hours for optical

imaging (6am–6pm local time), and desired temporal resolution of imaging (1 hour

by default, i.e. the desired revisit frequency is once per hour). However, the other pa-

rameters used to define the events of interest will necessarily be changing constantly,

due to the entire concept of a reconfigurable constellation providing the capability

of responding to events with unpredictable locations and timings. These are defined

using latitude and longitude co-ordinates for the event location, and time (in years)

since the start of the mission lifetime. An example 5-year target deck is shown in

Table 5.1, listing 20 events of interest that are spaced out in both the location and

the time of occurrence. Table 5.1 shows how many of the parameters remain constant

between events, specifying the desired satellite imagery to be collected at a revisit

frequency of 1 hour, a ground sample distance of 1 m resolution, over a period of 14
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days, between the hours of 6am and 6pm local time. These parameters may be al-

tered as desired for more specific mission applications, but will not have a significant

effect on the constellation design or reconfiguring decisions that are investigated in

this work.

Table 5.1: An example target deck, consisting of the desired observation parameters
for 20 events of interest occurring over a 5-year period

In order to apply importance sampling to the use of target decks for designing un-

der uncertain conditions, and to improve model efficiency by reducing computational

runtime, sampling resources must be prioritized to those inputs with the greatest

effect on output variance. The process of uncertainty quantification demonstrates a

drastically different impact of latitude variation vs longitude variation on constella-

tion performance estimates from the ReCon model, and these effects are described at

length in Section 5.2.1.
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5.2.1 Latitude versus longitude importance sampling

It is important to accurately model the desired latitude distribution for target loca-

tions of interest for a variety of reasons, such as supplying realistic input scenarios

for the design optimization process in order to ensure that design variables are being

optimized for operating scenarios that are authentic and representative. The most

crucial reason is that there is a strong coupling of latitude distribution to inclination

selection for the constellation, due to the orbital inclination constraining what cover-

age is achievable, especially at very high and low latitudes towards the limits of the

coverage range. It requires a large amount of ∆𝑉 to change the orbital inclination in

order to pass over latitudes outside of the designed range, therefore the constellation

should be designed with the intention that such a maneuver will not be required, as

it is highly likely to fall outside the limits of a reasonable ∆𝑉 budget. It is neces-

sary to ensure that an appropriate inclination is selected for the constellation at the

design stage, so that all potential latitudes of interest are included in the range of

coverage. This will avoid cases where a decision would have to be made whether to

ignore a location of interest due to it falling outside of the coverage range (resulting in

a significant drop in constellation performance when no orbital coverage occurs over

a high-value target), or to maneuver despite the fact that the location is outside of

planned-for parameters, resulting in unexpectedly high ∆𝑉 usage during the mission

lifetime, which would have a significant negative effect on the remaining ∆𝑉 budget

for future reconfigurations.

Accurately modelling the desired longitudinal distribution for target locations is

less important, as longitude does not have a similarly strong coupled effect to orbital

parameters (and therefore achievable coverage) as latitude does. Any desired longi-

tude will eventually be achieved simply by waiting, but the length of time required

to get there is a combined effect of the randomized target longitude, the random tim-

ing of each event occurrence, and the constellation phasing (changing ground tracks

throughout the day). These factors combine to result in an essentially randomized
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length of time taken to achieve longitude coverage at the start of an event of interest.

This results in an operator choice as to how to balance length of time to achieve

coverage against ∆𝑉 usage. Any desired longitude can be passed over either by using

more time (with the consequence of a delay in achieving imagery, but at the benefit

of lower ∆𝑉 use to do so) or more propellant (with the consequence of using some

∆𝑉 to conduct a maneuver, but with the benefit of passing over the desired longitude

sooner).

Although accurate modelling of the longitudinal distribution is less important,

the target distribution cannot be simply collapsed to latitude-only (creating a one-

dimensional distribution) as information about the constellation performance is lost

by not considering how coverage is achieved over two dimensions. This would lead to

a supposedly optimal constellation design that may then supply completely different

coverage than that simulated, once placed in a real-world target scenario. Using a

single dimension to try to model ground coverage fails to reflect the reality of many

orbits, including cases of polar and equatorial orbits, as well as the highly unlikely

but theoretically possible scenario where every desired target lines up perfectly along

the course of a potential repeating ground track orbit.

An example target deck (19 locations of interest for a 5-year mission lifetime)

is shown in Figure 5-2, with the upper plot showing these locations plotted as red

circles and overlaid onto a world map to illustrate the actual geographic distribution

of these targets. The lower plot shows the locations of interest plotted as blue circles

on a plain background, separating out the distribution from the map so that it can be

considered alone without the distraction of continental features underneath. These

same locations are plotted again in Figure 5-3, with the left-hand plot showing only

the distribution in longitude and the right-hand plot showing only the distribution

in latitude. These plots highlight the pathological cases mentioned above, where no

distinction can be made between an equatorial orbit and the longitude-only data

shown in Figure 5-3a, or between a polar orbit and the latitude-only data shown in

167



Figure 5-2: 19 target locations taken from a single example target deck, overlaid onto
a world map (upper plot, targets shown as red circles) and shown separately against
a plain background (lower plot, targets shown as blue circles)

Figure 5-3b.

The latitude and longitude data for the 19 example target locations was separated

into latitude-only and longitude-only data and each of these data sets was sorted in

ascending order, before being re-plotted in Figure 5-4. This figure illustrates how in-

formation is lost when only one dimension of the locational information is considered.

Sorting the data in this fashion also shows how the locational data can be shaped into
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(a) Longitude-only location distribution (b) Latitude-only location distribution

Figure 5-3: The same 19 target locations illustrated in Figure 5-2 are plotted as a
longitude-only distribution (left plot (a)) and a latitude-only distribution (right plot
(b)) to highlight the loss of information in only considering a single dimension of the
location PDF

a curve that may start to resemble a satellite ground track, providing an additional

pathological case that must be avoided during the course of the constellation design

optimization.

Figure 5-4: The location data from Figure 5-2 is replotted with the latitude and
longitude co-ordinates now separately sorted in ascending order
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Figure 5-5 shows the wide range of possible target locations that could be recon-

structed from the disconnected latitudes and longitudes taken from the original set

of target decks that was plotted in Figure 5-2. In Figure 5-5, the latitude of each

location is plotted as a distinct color, showing a horizontal line of the scattered pos-

sibilities for the associated longitude co-ordinate, starting with light green circles for

the northernmost target location (at 55.4°N) and continuing all the way down to blue

circles for the southernmost target location (at 20.4°S). The associated longitude data

for the 19 locations shown in the figure ranges from 100.8°W to 120°E.

Figure 5-5: The location data from Figure 5-2 is replotted to show the range of possible
target locations that may be recreated once the latitude and longitude distributions
have been disconnected

These figures are used to illustrate the need to include associated longitude data

alongside the latitude data, in order to avoid the loss of information necessary to

determine the constellation’s ground coverage performance in multiple dimensions.

It is more important to prioritize accuracy in the modelling of the latitude distribu-

tion as this will have a much greater effect on constellation performance due to the

strong coupling between orbital inclination and the bounds of latitude coverage, but

associated longitude data must still be included in the target locations used to opti-

170



mize the constellation design. However, due to the lack of coupling between longitude

coverage and constellation design parameters, employing a simple uniform longitude

distribution in the location sampling is sufficient to avoid the pathological cases that

occur with the use of latitude-only location data. Implementing the simplest possible

representation of the longitudinal distribution avoids the need to use additional com-

putational resources in modelling longitude when generating the target decks used

with the ReCon model, instead devoting the available resources to improve accuracy

in the latitudinal modelling. As long as the longitude distribution is randomly sam-

pled in order to generate co-ordinates to pair with each sampled latitude co-ordinate

and these co-ordinates are not numerically sorted, the probability of randomly gen-

erating a target deck that matches a possible repeating ground track orbit has an

insignificant likelihood of occurring. This probability is then reduced even further

by the use of multiple target decks to optimize the constellation design, avoiding the

potential pathological cases highlighted here.

5.3 Non-parametric statistics

Non-parametric statistics is the branch of statistics which is not based on parameter-

ized families of probability distributions (i.e. defined by known parameters such as

mean and variance).[114, 115] It may be defined instead as a function of sampling,

using distribution-free methods that make no assumptions about the probability dis-

tribution necessarily conforming to a specific template (such as a Gaussian or uniform

distribution).[114] With a non-parametric model, the probability structure is not de-

termined in advance but is instead established from the data.[116, 117]

For an application such as natural disaster monitoring, it is possible to approxi-

mate a probability distribution for certain kinds of events when these are separated

out by type, such as earthquakes (mostly commonly found along tectonic plate edges

or fault lines) or hurricanes (generally found within certain latitude bands and tem-

porally associated with ‘hurricane season’). However, when more general disaster
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monitoring of multiple types is combined, it becomes difficult to mathematically es-

timate an appropriate distribution based on any specific pattern, other than simply

using historical data. Using datasets derived from the locations of past disasters will

be sufficient to supply a general overview, but with changes in climate over time and

increasing incidences of extreme weather events, historical information is unlikely to

provide a full picture of future event distribution. When human-made disasters are

included (such as oil spills, building collapses, some wildfires, and even some earth-

quakes in areas where hydraulic fracturing or mining are carried out), the distribution

becomes even less easy to predict.

However, under these circumstances, using historical data on disaster types of

interest is likely to provide the most accurate information available compared to any

other form of estimated distribution. Using historical data on natural disasters as

the input for the model, a non-parametric estimate may be made to approximate

the underlying distribution, without the need for assumptions to be made to arrive

at an advance definition of parameters such as mean or variance from the location

data. Histograms are one example of a simple non-parametric estimate of a distri-

bution; kernel density estimation (KDE, described in more detail in Section 5.3.1) is

another related method of estimating the PDF of a variable of interest, functioning

similarly to histograms but converging much more quickly to the underlying proba-

bility density.[114, 115, 116, 117]

Using the aforementioned World Bank data[92] on natural disaster hotspots around

the world, a KDE can be calculated to supply a considerably less discretized approx-

imation of location data when compared to histograms created from the same data

array.[115] The objective of using non-parametric statistical methods to characterize

the PDF of this natural disaster location data is to arrive at the most accurate and

undiscretized representation of the underlying distribution, to supply an accurate ba-

sis for the sampling that must then be carried out in order to generate target decks.

Achieving a high degree of accuracy in how well these target decks represent the un-
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derlying data is crucial, as the target locations of interest provide the input against

which reconfigurable constellation performance is judged. This can be thought of as

another area of focus within the UQ process carried out in this work; locating sources

of uncertainty in the inputs to the ReCon model and working to improve these wher-

ever possible.

Modelling assumptions could be made about the potential PDF of future events

in various ways, for example by incorporating simulations of future changes in climate

or increases in extreme weather in certain areas. Data for disasters with changing

incidences over time (such as wildfires in areas suffering from drought, or flooding in

areas with rising sea levels) could be weighted to more heavily emphasize datasets from

recent years over historical data that may no longer accurately represent the current

disaster distribution. The PDF of other disaster types such as (natural) earthquakes

will change on longer geological timescales, and for these cases, historical data will

remain a more accurate predictor for event modelling. In this thesis, historical disaster

data from the World Bank is used (following the work carried out by Robert Legge)

to create the PDF for randomly generated future events of interest, but the question

of how to model changing future disaster probabilities could be an entire thesis in

itself.

5.3.1 Histograms and kernel density estimations

Density estimation is the process of approximating a PDF which cannot be directly

observed. The sample provided by the available observed data (usually assumed to

be a random sample from the larger unobservable population) is used to construct an

estimate of the underlying distribution. One straightforward and widely-used type

of density estimator is a histogram, which makes no assumptions about the underly-

ing distribution (therefore providing a non-parametric estimate, as discussed in the

previous section) but simply divides the data range into an appropriate number of

discrete bins, counts the datapoints that fall within each bin, and provides a simple

visualization of the spread and shape of sample data. Basic histograms often supply a
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Figure 5-6: Two normalized histograms plotted using the same data set of 5 points
but different bin widths and locations, to illustrate the contrasting impressions that
are given of the underlying PDF

simple count of datapoints per bin on the y-axis, though this may also be normalized

by relative probability so that the area of each bar equates to the relative proportion

of observed data points. This supplies a somewhat discretized (due to the selection

of uniform bin widths) form of PDF estimate, where the sum of all bar areas equals 1.

One issue with using histograms to estimate the underlying PDF is that the se-

lection of bin size or the location of bin edges can lead to drastically different ap-

proximations made from the same data set. A very simple set of five data points

was generated with values 1.90, 2.15, 2.24, 3.57 and 4.78. This data was plotted as

a histogram in MATLAB twice, as shown in Figure 5-6. The histogram on the left

in Figure 5-6 was generated by assigning the number of bins to 5 and allowing the

MATLAB function to automatically select the bin width, and the histogram on the

right was generated by assigning the bin width to 1.0 and allowing the MATLAB

function to automatically select the number of bins. Without seeing the individual

data points, it is not immediately clear to the observer that these histograms are

visualizing the same data, and the underlying PDFs do not appear to be following

the same shape.

A kernel density estimation is another non-parametric method of estimating the
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probability density function of a random variable of interest. They are related to

histograms in that both provide a way to visualize the spread of sample data and the

shape of its underlying distribution without relying on advance assumptions about

the character of that distribution. KDEs use a kernel function (frequently a standard

normal density function, although other functions may be used if they are deemed

more appropriate) and a bandwidth/smoothing parameter to improve the smoothness

and continuity of the resulting estimation in comparison to the discrete nature of a

histogram. This bandwidth parameter specifies the width of the kernel functions used

to build the KDE, with larger bandwidths resulting in a smoother overall curve and

smaller bandwidths resulting in a larger number of oscillations in the resulting KDE.

Some pre-programmed KDE functions implement automatic bandwidth selection to

avoid issues of under- or over-smoothing, although these are often based on rules of

thumb that rely on assumptions about the underlying PDF, making them incompat-

ible with attempts to approximate non-parametric density estimations. Without the

use of such assumptions, any selected bandwidth value must be validated against the

data set under consideration, to ensure that the generated KDE is not over-smoothed

(losing features that are present in the actual distribution) or under-smoothed (cre-

ating additional curves in the estimate that are not present in the underlying PDF,

as an artifact of the kernel functions used to arrive at the KDE).[118]

A comparison of the two histograms shown in Figure 5-6 above with a KDE

generated from the same five data points is shown in Figure 5-7 below. The process

of creating the KDE (shown as the blue line in the right hand plot in Figure 5-7) is

illustrated here, with kernel functions (shown in red) placed centered at each of the

five data points from the sample. These five red kernel functions are summed to arrive

at the kernel density estimation shown in blue, which supplies an approximation of

the underlying PDF. The KDE shape can be compared to the two histograms on the

left to observe a more accurate reflection of the distribution shape, with much less

variance occurring due to differences in sampling or binning.
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Figure 5-7: Comparison of the two histograms previously shown in Figure 5-6 (left)
with a KDE (right) created using the same data set

As Figure 5-7 shows, KDEs are able to supply a much smoother estimate of the

underlying PDF for continuous random variables than histograms can, converging

much faster to the actual density of the distribution even using only a few samples.

Due to the data binning that must occur to create a histogram, discretization issues

with the PDF estimated using a histogram are much harder to avoid without modify-

ing the technique itself into something inherently different. Using KDEs to estimate

the underlying latitude distribution for events of interest will avoid these discretiza-

tion issues and provide a more accurate probability estimation to sample for event

locations of interest.

5.3.2 Kernel density estimation implementation

In-built MATLAB functions for generating KDEs are available, but these include au-

tomatic bandwidth selection by default, based on commonly-used rules of thumb that

make assumptions about the underlying distribution and are therefore not useful for

the present case of estimating a PDF non-parametrically. These functions also gen-

erate only the overall curve of the KDE, and do not include details of the individual
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Gaussian kernel functions used to build it. Parameters and placement of these kernel

functions are of interest in this work, due to the investigation of alternative sam-

pling methods with the objective of reducing computational runtime for the ReCon

model. Due to the need for additional information, a custom function was created in

MATLAB to generate KDEs while providing more control over the parameters and

retaining finer detail in the results of the estimation.

(a) KDE with automatic bandwidth (b) Custom KDE with a range of bandwidths

Figure 5-8: Comparison of two KDEs generated from natural disaster latitude data,
with (a) the left-hand plot created using a built-in MATLAB KDE function featuring
automatic bandwidth selection, and (b) the right-hand plot created using custom
code and featuring a range of possible bandwidth values

Figure 5-8 shows a comparison of two KDEs generated from the natural disaster

PDF latitude data, both using Gaussian kernel functions. An existing MATLAB

function using automatic bandwidth selection was used to generate the left-hand plot

Figure 5-8a, and this was found to select a bandwidth value of 7.0. The right-hand

plot Figure 5-8b was generated by the custom KDE function written as part of this

work, showing the effect of different bandwidth values on the resulting KDE curve.

The green curve for a bandwidth of 7 in the right-hand plot can be compared to

the left-hand plot, validating the custom KDE code against the existing MATLAB

function by replicating the same results for this case.
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The effects of under-smoothing can be seen in the custom KDE plot in Figure 5-8b

where some of the plotted bandwidth values are too low to be useful; for bandwidths

of 3–5, additional curves are present in the estimated PDF that do not exist in the

underlying latitude distribution data, because the shape of the individual kernels

is narrow enough to start becoming visible even in the stacked overall curve. The

effects of over-smoothing can also be observed in Figure 5-8b, where some of the

plotted bandwidth values are too high to provide a useful estimate; for bandwidths of

9–10, the second lower peak at the left side of the bimodal distribution is smoothed

out to the point where this second mode is lost from the shape of the estimated PDF,

due to the extremely wide overlap between the individual kernels that are summed

to arrive at the KDE.

Figure 5-9 shows the breakdown of the latitude KDE into the individual Gaussian

kernels that are stacked to arrive at the overall estimation curve, which is enabled

by use of the custom KDE MATLAB function that was created for this work. The

overall probability density function on the y-axis is defined to give an area of 1 under

the entire KDE curve. This KDE was generated using a bandwidth of 7.0, which

means that each individual Gaussian kernel is generated as a normal distribution

using a standard deviation of 7.0. As 20 kernels are used to arrive at this KDE,

each individual kernel accounts for 5% of the latitude distribution. The centerpoints

of each kernel (the mean of each normal distribution curve) are placed at the mean

latitude values from each of these 5% bins of latitude.

To give an example: the southernmost 5% of the latitude distribution falls between

43.7°S and 25.4°S, with the probability distribution skewed towards the northern end

of this range, resulting in a mean value of 32.3°S and a median value of 31.2°S. This

results in the leftmost kernel function in Figure 5-9 being generated using a mean

of -32.3° latitude and a standard deviation of 7°, and with the amplitude selected to

give a total area under the curve of 0.05 (5% of the total probability).
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Figure 5-9: KDE of latitude data (plotted as the thicker black line) generated using
a custom-built MATLAB function, also illustrating the 20 constituent kernels (plot-
ted as the smaller red curves) that were stacked to build up this estimation of the
underlying latitude PDF

For comparison to the KDEs shown previously, Figure 5-10 shows four histograms

created from Legge’s entire original target deck array of natural disaster location lat-

itude data used as input for the ReCon codebase, plotted using a range of bin widths

from 1–10° of latitude. The y-axis shows the number of occurrences of each location

within the target deck array of 195,301 locations. The histograms created using 1

and 2° latitude bins show jagged estimations of the underlying PDF, highlighting the

histogram discretization issues that were previously described, where artifacts of the

binning process create visible spikes in the estimation that are not present in the un-

derlying distribution. In these cases, the choice of bin width and the placement of bin

boundaries can have a significant effect on the visualization of the estimated latitude

PDF. The 5 and 10° latitude bins are noticeably less discretized, but it can be seen
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Figure 5-10: Four histograms of latitude data plotted using various bin widths
(1/2/5/10° of latitude), illustrating the discretization issues inherent to histograms
and the difficulty of converging to a smooth and accurate estimation of the underlying
PDF

from the lower two plots in Figure 5-10 that finer details of the estimated distribution

shape are gradually lost as the histogram moves towards wider binning, for example

the way that the smaller left-hand peak is gradually beginning to merge into the slope

of the larger right-hand peak in the distribution as the bin width increases.

Figure 5-11 shows a three-dimensional histogram generated from the World Bank

natural disaster location data used by Robert Legge to generate 195,301 target lo-

cations, with the y-axis showing the frequency of events out of this total. A 3D

histogram is used to represent both dimensions of the original data, showing both
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Figure 5-11: 3D histogram of natural disaster location data (weighted by economic
impact) generated using Legge’s original array of target decks

latitude and longitude data; parts of the landmasses on this diagram are recognizable

as a world map (e.g. North and South America on the left side of the plot, and Asia

in the top right) although some continents are under-represented compared to the

geographical reality, either due to lower economic activity or lower instances of nat-

ural disaster occurrence in these regions. The background grid is removed from this

figure to leave only more widely spaced grid lines, due to difficulty in distinguishing

the details of the data when a higher resolution background grid is used.

This 3D histogram can be panned and rotated in its original interactive form on

a computer, but due to the impossibility of presenting such a figure in a written

document, an isometric view is selected for Figure 5-11 to present an overview of the

information, as well as three orthographic views in the following Figures 5-12 and

5-13. The longitude-only and latitude-only axis views are shown in Figures 5-12a

and 5-12b, although for clarity it must be observed that these are only single-axis

orthographic views of the 3D histogram, where several vertical bins along the same
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(a) Front-on view of the longitude axis (b) End-on view of the latitude axis

Figure 5-12: Orthographic views of the 3D histogram shown previously in Figure
5-11, with a front-on view of the longitude axis shown on the left in Figure 5-12a and
a end-on view of the latitude axis shown on the right in Figure 5-12b

axis may obscure one another. These views are not one-dimensional histograms of the

latitude and longitude data, as the bins along the front-on axis in the view are simply

lined up, rather than being combined into a single bin of data points as would occur

in a one-dimensional histogram. Figure 5-13 shows a top-down orthographic view

where the difference in disaster frequency is no longer visible, simply highlighting all

locations with any occurrence whatsoever of natural disasters. Once again, the world

map is partially recognizable in this figure, with the North and South American con-

tinents visible on the left of the plot, the Eurasian landmass visible in the top right,

and parts of Africa visible in the center.
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Figure 5-13: A top-down flattened orthographic view of the 3D histogram from Figure
5-11, showing all geographic locations with any level of natural disaster activity

In order to enable a more complete comparison between the use of histograms

and KDEs as non-parametric methods of PDF estimation, a two-dimensional KDE

was generated from the natural disaster location data. This was used to generate

a three-dimensional surface plot, shown in Figure 5-14, with the vertical axis rep-

resenting the probability density function (i.e. the total area under the plot equals

1). Although heatmap coloring is used in this surface plot, the high resolution of the

plotted data means that this is hard to observe other than at the very highest peaks

of the PDF (located in East Asia), shown on the right hand side of the plot. In the

third orthographic view of this 2D KDE shown in Figure 5-16, magnified insets are

used to highlight areas of this heatmap.

Similarly to the previous 3D histogram shown in Figure 5-11, the 3D surface plot

was generated as an interactive graphic that can be panned or rotated on a computer,
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Figure 5-14: A 3D surface plot generated from a 2D KDE of natural disaster location
data

but an isometric view was selected to provide the overview shown here in Figure 5-

14. Once again, details of the continents are somewhat recognizable in this plot,

with the American landmasses shown towards the left, parts of Africa shown in the

center, and Eurasia in the upper right sector. Orthographic views are presented in

the following figures, with Figure 5-15 showing longitude-only (on the left in Figure

5-15a) and latitude-only (on the right in Figure 5-15b) axis views. As was previously

observed for the orthographic views of the 3D histogram, it must again be highlighted

that these are only single-axis orthographic views of the KDE, where a series of spikes

along the same latitude or longitude line may obscure one another. The plots shown in

Figure 5-15 are not equivalent to one-dimensional KDEs, as the peaks of the estimated

distribution are simply lined up along one axis, rather than being combined into a

single curve as would occur in generating a one-dimensional KDE along the same axis.

Figure 5-16 shows a top-down orthographic view with heatmap coloring designed to

highlight the difference in disaster frequency across the map, although this is difficult

to observe at the data resolution available in this written document, and therefore two

inset boxes on the right-hand side of Figure 5-16 are used to highlight two geographic

locations at a higher magnification level as examples, so that the color map can be
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(a) Front-on view of the longitude axis (b) End-on view of the latitude axis

Figure 5-15: Orthographic views of the 3D surface plot generated from the 2D KDE
shown above in Figure 5-14, with a front-on view of the longitude axis shown on the
left in Figure 5-15a and a end-on view of the latitude axis shown on the right in
Figure 5-15b

distinguished in finer detail. These example location insets are used to show the

natural disaster economic impact distribution heatmap for a major part of Asia (top

right inset box) and the Caribbean (lower right inset box).

Due to the large number of kernels required to generate an accurate two-dimensional

KDE of the location data, discretization issues were experienced with the process of

sampling from this PDF. Where a relatively small number of samples are desired

(e.g. a mean of 20 locations for a standard 5-year target deck) compared to the

number of kernel functions used to generate the estimate, large rounding errors must

be introduced in order to arrive at the number of samples desired. This resulted in

sampling from a two-dimensional KDE of the natural disaster location distribution

failing to improve the accuracy level in modelling the latitude data. The objective

of these sampling improvements was to improve the accuracy of the latitude PDF in

order to improve the efficiency of the design optimization process, and therefore it

was concluded from the implementation issues of the 2D KDE that this technique

was not suited to making such an improvement in the optimization code.
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Figure 5-16: A top-down flattened orthographic view of the 3D surface plot generated
from a 2D KDE that was shown in Figure 5-14, showing all geographic locations with
any level of natural disaster activity. The inset boxes show magnified views of two
locations in more detail, allowing for the detail of the heatmap color scheme to be
observed at this enlarged scale

It was decided to prioritize the accuracy of locational sampling towards the lat-

itude distribution, due to the previous conclusion drawn in Section 5.2.1 that the

target latitude distribution has a strongly coupled effect on constellation optimiza-

tion and resulting performance, while the target longitude distribution displays no

such coupling. Modelling the longitude distribution as a uniform PDF and sampling

it at random to generate longitude co-ordinates to pair with more accurately sam-

pled latitude co-ordinates was concluded to be sufficient for avoiding pathological

cases that would give highly inaccurate estimates for the constellation performance.

Pairing a uniform longitude distribution with a one-dimensional KDE for the latitude

distribution allows for sampling resources to be prioritized towards modelling latitude

as this is the input parameter which results in the greatest effect on the simulation

output. Due to the limitations imposed by the available computational resources and

the intensive requirements of the ReCon model, making these changes to the sampling

process for locations of interest allowed for the investigation of alternative sampling
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methods and the comparison of confidence levels in the constellation performance es-

timates generated using different techniques. This created the possibility of achieving

significant runtime improvements for the ReCon codebase while retaining the same

level of confidence in the performance results predicted by the model.

5.4 Stratified sampling

Using simple Monte Carlo methods may require hundreds or thousands of functional

evaluations of the computational model to achieve the desired level of accuracy in

the estimated output (as described in Section 5.1). Using variance reduction tech-

niques for Monte Carlo methods can lead to a significant reduction in the number

of code executions required to arrive at a specified confidence level, when compared

to the number required by the straightforward Monte Carlo method to reach the

same level. Quasi-Monte Carlo techniques reduce the number of input configurations

needed to gather adequate output data while more specifically directing input sam-

pling to recreate representative properties of the full distribution. Some quasi-Monte

Carlo techniques include the use of low-discrepancy sequences for sampling, where a

deterministic set of quasi-random numbers are used to generate a more evenly dis-

tributed set of samples than would occur using uniformly random sampling. However

this results in a derandomized algorithm which may not be suited to cases where the

objective involves carrying out a less deterministic form of sampling.

Stratified sampling is one example of a variance reduction technique for Monte

Carlo methods, which may be carried out across one dimension or several depending

on the application. For two-dimensional distributions, Latin square sampling consists

of dividing each axis into X equiprobable intervals, and then collecting X samples

such that only one sample is taken from each row and column; this is essentially two-

dimensional stratified sampling. Latin hypercube sampling is the extension of this

technique for distributions with any desired number of dimensions, where each dimen-

sion is once again divided into a set of X equiprobable intervals, and X samples are
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taken while ensuring that each equiprobable interval along each dimension of interest

is represented only once in the sample space. Latin hypercube sampling methods are

a way of ensuring that the sample set is representative of the actual variability of

the underlying distribution, as opposed to random sampling which supplies only a

sample set of random numbers with no guarantee of reflecting the actual variance of

the distribution from which they were sampled.

Stratified sampling is a method of reducing variance in sampling; the precision is

improved by reducing the amount of sampling error (where the selected samples are

not representative of the entire population of data). After arriving at a PDF estimate

for the variable of interest, this distribution must be ‘stratified’: the data is divided

into subgroups (or ‘strata’) using one of the various techniques described in Section

5.4.1. These subgroups must usually be collectively exhaustive, to cover the en-

tire range of the distribution of interest, and mutually exclusive, so that the same

datapoint cannot be sampled from within multiple strata. Random sampling is then

applied within each stratum, with the proportion of samples taken from each stratum

determined by the stratification technique that was used. Stratified sampling is used

to force the sampling distribution to cover the full range of the overall data distri-

bution, reducing sampling error when compared to random sampling, which always

has the chance of resulting in an unrepresentative sample that is poorly balanced

compared to the underlying PDF of interest.

5.4.1 Stratified sampling techniques

There are a range of strategies for stratifying the overall population of data to be

sampled. Several different techniques were considered for the process of stratifica-

tion, and the details of these are described in the following sections. The benefits and

limitations of each method are also considered, especially where these may result in

problems with applying the technique to the specific application of latitude sampling

in the ReCon model. These stratified sampling techniques are compared to Legge’s

original target decks, which were created using the PDF of natural disaster likelihood
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weighted by economic impact published by the World Bank, which was then sampled

using simple uniform random sampling to create individual five-year mission scenarios

for assessment in the ReCon model.

The sampling methods under consideration are summarized in the following list

(with greater detail and examples given for each technique in the following subsec-

tions):

1. Legge’s original target decks (random sampling, not stratified)

2. Proportionate allocation (equal sized bins, sampled proportionally to their share

of the overall distribution)

3. Disproportionate allocation, or optimum allocation (equal sized bins, sampled

proportionally to the standard deviation of each bin)

4. Proportionate definition (bins of equal probability, sampled equally)

5. Kernel function sampling (use kernel functions as data bins, sampled equally)

5.4.1.1 Proportionate allocation

In comparison to the original random sampling technique used by Legge, the first

proposed method of stratified sampling is proportionate allocation, the most com-

monly used method of stratification.[115] For this method, the data is grouped into

equally-sized strata, and then a sampling fraction is taken from each subgroup in

proportion to its fraction of the overall distribution. First, the latitude data is di-

vided into a number of strata, each of which is the same width in degrees of latitude

and contains a different frequency of events according to the overall PDF. Then the

desired number of samples is apportioned across each bin according to its frequency,

and sampled randomly from within that stretch of the latitude range.

For example, considering the full latitude range used to generate target decks

(minimum 43.72°S, maximum 64.61°N, full data range of 108.33° of latitude) and
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(a) 5-bin latitude histogram (b) 10-bin latitude histogram (c) 20-bin latitude histogram

Figure 5-17: Histograms showing the PDF of natural disaster data by latitude, strat-
ified into (a) 5 subgroups (b) 10 subgroups and (c) 20 subgroups

using proportionate allocation to select 20 samples (the number of events of interest

in an average-sized five-year target deck):

• Dividing the data into 5 strata as shown in Figure 5-17a results in a width for

each latitude bin of 21.67°. Moving left to right across these strata, the number

of random samples taken from each bin is 2, 2, 4, 10 and 2 respectively.

• Dividing the data into 10 strata as shown in Figure 5-17b results in a width

for each latitude bin of 10.83°. Moving left to right across these strata, the

number of random samples taken from each bin is 0, 1, 1, 1, 2, 3, 5, 5, 2 and 0

respectively.

• Dividing the data into 20 strata as shown in Figure 5-17c results in a width for

each latitude bin of 5.42°. Moving left to right across these strata, the number

of random samples taken from each bin is 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 3, 3,

3, 2, 1, 1, 0 and 0 respectively.

Although the use of stratified sampling forces the sampling distribution to cover

the full range of the overall data distribution, it can be seen from comparing the

allocation of samples to each stratum that this technique suffers somewhat from dis-

cretization effects. Some rounding is frequently required to arrive at the exact number

of samples desired. This also introduces a tendency for the lowest-probability latitude

bins to be ignored entirely, meaning that no samples at all will be taken from certain

latitude ranges. In cases where the selected numbers of strata and samples result in
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bins from which zero samples are taken, this may introduce problems for the design

optimization process.

For example, in the 20-strata case shown in Figure 5-17c, no samples are taken

from 7 of the 20 latitude bins, resulting in zero sampling of more than a third of the

latitude range. This includes zero sampling of 5 bins at the edge of the latitude range

under consideration, artificially constraining event latitudes between a new minimum

of 27.47°S and a new maximum of 53.78°N, thereby reducing the range of latitudes

considered from 108.33° to only 81.25° and resulting in the loss of 25% of the original

latitude span. Due to the effect of latitude selection on constellation inclination de-

scribed in Section 5.2.1, this may result in the selection of an inclination at which the

constellation cannot provide coverage of a large amount of the desired global range.

Although proportionate allocation is the most commonly used method of stratifica-

tion for this type of sampling, these discretization issues and the resulting effects on

latitudinal sampling are significant enough to conclude that this technique is poorly

suited to the present application, and after initial investigation into applying this

method of stratification to the ReCon model, it was eliminated from consideration.

Optimum allocation (also known as ‘disproportionate allocation’) is another re-

lated method of stratification. In this technique, the strata for sampling are de-

termined in the same way as for proportionate allocation, with subgroups defined

of equal width (in this case, the same width in degrees of latitude). However, the

sampling proportions are not determined by the proportion of the population that

falls within each stratum, but instead by the standard deviation of the data in each

subgroup. Higher proportions of samples are taken from the strata with the greatest

variability, with the objective of minimizing the overall sampling variance even further

than is achieved by proportionate allocation. However, upon further investigation,

this technique was found to suffer from the same discretization issues as proportionate

allocation, and so was not pursued as a viable method for use in this work.

191



5.4.1.2 Proportionate definition

The next proposed method of stratified sampling is proportionate definition. For this

technique, instead of creating strata of equal latitude width, the strata are defined

using divisions of equal probability. These are known as equiprobable bins, which

results in data groups with widely different boundary ranges, but which each contain

an equal proportion of the PDF. This means that the sampling fraction taken from

each bin will be equal.

For example, again considering the full latitude range used to generate target

decks and using proportionate definition to select 20 samples for an average-sized

target deck:

• Dividing the data into 10 equiprobable strata as shown in Figure 5-18a, it is

straightforward to take 2 random samples from within the latitude range as-

signed to each bin. The bin widths vary from a minimum of 4.17° to a maximum

of 27.5° (a factor of 6.6× between the most and least densely populated bins),

but each stratum contains 10% of the overall latitude PDF.

• Dividing the data into 20 equiprobable strata as shown in Figure 5-18b, 1 ran-

dom sample is taken from within the latitude range assigned to each bin. The

bin widths vary even more widely, from a minimum of 1.67° to a maximum of

18.33° (a factor of 11× between the most and least densely populated bins), but

each stratum contains 5% of the overall latitude PDF.

Using proportionate definition once again forces the sampling distribution to cover

the full range of the latitude distribution, but in this case there are no lowest prob-

ability bins which end up unsampled (as occurred using the proportionate allocation

technique), as each stratum is defined to contain the same proportion of the distribu-

tion. Concentration of the stratification around the most densely populated areas of

the distribution results in definite sampling occurring within the highest probability

ranges due to the narrow binning in these areas, whereas the least densely populated
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(a) 10 equiprobable latitude bins (b) 20 equiprobable latitude bins

Figure 5-18: Histograms of natural disaster data by latitude divided into equiprobable
bins, using (a) 10 bins each containing 10% of the distribution and (b) 20 bins each
containing 5% of the distribution

latitude areas still have some probability of being sampled and no latitude ranges are

entirely excluded, as occurred using proportionate allocation.

Discretization issues may still be introduced depending on the selected number of

bins and samples, e.g. if 17 samples are required from 13 bins, there is no method to

assign where the sampling should be carried out without rounding, which results in

discretization. However, this situation can be avoided by modifying the proportionate

definition technique to define the number of strata as equal to the desired number

of samples. One caveat must be noted here, which is that if a very large number

of samples is desired, using this modification of the technique will result in over-

constraining the sampling. For examples, if hundreds of samples are desired and

all of the bins are defined with extremely narrow ranges, the random element of

the sampling will approach zero as such a high level of stratification will result in

essentially one pre-defined latitude value for each bin.
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5.4.1.3 Kernel function sampling

The third and final proposed method of stratified sampling is kernel function sam-

pling. As described in more detail in Section 5.3.1, a kernel density estimation is a

non-parametric estimation of the PDF of a random variable of interest. Although

somewhat similar to histograms, rather than binning the data, a KDE is created by

stacking kernel functions to arrive at a less discretized estimate of the PDF. For this

technique, it is proposed to use these individual kernels as strata. The most obvious

downside to such an approach is that it contravenes the usual rule for stratification

highlighted at the start of Section 5.4: strata should be collectively exhaustive and

mutually exclusive.

In this case, the kernel function strata are collectively exhaustive, because they are

allocated across the entire variable range of interest according to probability density

and stacked to arrive at the estimate of the full distribution. However, the standard

normal density functions used as kernels are overlapped across the distribution, then

summed to arrive at the KDE. Therefore, the strata would not be mutually exclu-

sive, although the probability of samples being taken from the centers of the kernels

is much higher than from the overlapping tails of the kernel functions.

The general concern expressed in literature for the idea of using overlapping strata

is that individual datapoints which fall within the overlapping region would have a

higher chance of being sampled compared to datapoints that only fall within a single

region.[114, 115] This issue is solved by the structure of kernel sampling: samples are

not taken by simple random sampling over the full width of the strata, but weighted

by the shape of the Gaussian distribution in each kernel, meaning that datapoints

falling within the tails of the kernel functions have a much lower chance of being

selected from within the data range of that stratum. When the kernel functions are

summed, an accurate estimation is made of the overall latitude PDF, illustrating how

stacking multiple smaller probability curves does not result in inaccurate probabilities
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of sampling the overlap. Instead, this cumulative probability weighting results in a

sampling distribution that accurately reflects the underlying distribution, rather than

providing a skewed likelihood of particular datapoints being selected, as would occur

if random uniform sampling was carried out on these strata.

The argument made here to justify the inclusion of this sampling approach is based

on how a KDE is created. Given that the estimate of the PDF under consideration

was created by stacking multiple Gaussian distributions, the set of kernel functions

must by definition represent the entire range of the data distribution, with each

individual Gaussian PDF in turn representing an appropriate probability range for

its area within the overall distribution. Therefore in this method, the existing kernel

functions will be used to supply pre-defined strata for sampling, and upon reviewing

literature, it was discovered that this technique is proposed elsewhere as a sampling

method.[118, 119]

As shown in Figure 5-19, each kernel function is a small normal distribution PDF

plotted along the latitude axis. For an example case where 20 samples are desired, a

KDE is used made up of 20 kernel functions, to avoid discretization issues that occur

where there is a mismatch between the number of strata and the number of stratified

samples to be generated. A single sample is randomly selected from within each of

these 20 strata kernel functions, and although the strata do overlap, the entire data

range is covered. The centerpoints of each kernel distribution (highlighted with black

arrows in Figure 5-19) are placed at the median latitude value for each 5% of the

latitude range, and it can be seen how the kernel functions are unevenly spaced along

the latitude axis to accurately approximate the probability density across the entire

latitude distribution, meaning that sampling is still forced to cover the full range of

latitudes by the use of these non-exclusive strata, with samples concentrated in the

area of greatest frequency.
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Figure 5-19: Natural disaster data by latitude KDE generated using a custom MAT-
LAB function, showing the individual kernel functions (in a variety of colors) that
were stacked to arrive at the PDF estimation, and highlighting the placements of each
Gaussian kernel with black arrows at the centerpoints

5.4.2 Stratified sampling comparison and results

After initial investigation and testing within MATLAB, the discretization issues that

were encountered with both the proportionate allocation and disproportionate alloca-

tion methods (and described in Section 5.4.1.1) led to the exclusion of these stratifica-

tion techniques from implementation with the ReCon model. This left a comparison

of Legge’s original (unstratified) random sampling method with two methods of strat-

ified sampling: proportionate definition and kernel function sampling.

The two new sampling methods were used to generate new target decks for use

with the ReCon model. The evaluation code was repeatedly run using each of the
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three target decks as inputs, in order to compare the effect on the performance data

output from the model. Statistical analysis was carried out on the resulting per-

formance estimates to assess the standard error of mean performance that occurred

when using each of the three types of target decks.

The standard error of the mean is the standard deviation of the mean’s sampling

distribution, over a number of samples. It is a measure of how the mean value of a

sampled parameter of interest is dispersed around the underlying population mean.

The distribution of the sampled parameter mean is obtained by repeated sampling

from the same population and calculation of the mean values from these samples.

As the number of samples is increased, the sample means will move closer to the

population mean. The exact standard error of the mean is calculated as shown in

Equation 5.1:

𝜎�̄� =
𝜎√
𝑛

(5.1)

Where 𝜎 is the standard deviation of the population and n is the number of samples.

However, the standard deviation of the underlying population is usually unknowable

when only sampled data is available. In order to estimate the standard error of the

mean, the population standard deviation can instead be replaced with the sample

standard deviation, 𝜎𝑥, as shown in Equation 5.2:

𝜎�̄� ≈ 𝜎𝑥√
𝑛

(5.2)

The accuracy of the estimated standard error varies depending on how many samples

are used in the calculation. For a small number of samples, the standard error is typ-

ically underestimated, due to the sample standard deviation tending to give a lower

value than the actual population standard deviation. However, statistical quality

control literature has established a bias correction factor 𝑐4(𝑛) that can be applied

to give a more accurate estimation for the standard deviation.[120] This factor shows

that using a very small sample size of 2 supplies a result that is underestimated by

more than 25%, while a sample size of 5 gives an underestimate by about 6.4%, and
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a sample size of 10 underestimates by about 2.8%. The sampling range of interest for

the ReCon Monte Carlo simulation layer is around 20–24 target decks, for which the

error is underestimated by around 1.0%, so a correction factor can be applied to give

an unbiased estimate for the standard error, dividing by 0.987–0.989 (depending on

the exact number of samples used).

Standard error of the mean performance was used to assess how the sample mean

moved closer to the underlying population mean as the sample size increased. If

the number of target decks used to evaluate constellation performance is increased,

assessing the average performance against a greater number of potential mission sce-

narios, the standard error of the mean performance decreases, with the estimated

mean performance for the constellation stabilizing as it is assessed against a higher

number of target decks.

For an initial evaluation and comparison of the three sampling methods, a single

optimized constellation design was selected with the parameters shown in Table 5.2.

The decision was made to carry out a smaller initial comparison in order to validate

the sampling approaches with a smaller amount of data, and troubleshoot the sta-

tistical analysis code on a single design before expanding the comparison to a larger

area of the constellation design space.

Table 5.2: Design parameters for the sample constellation used for an initial compar-
ison of the three different sampling methods under investigation

Design parameter Value
Number of satellites 18

Number of orbital planes 18 (1 satellite per plane)
Orbital inclination 61.26°

Repeating ground track 15/1 (15 orbits per 1 day)
Reconfiguration ∆𝑉 lifetime budget 290.01 m/s

Aperture diameter 0.2945 m
Cost $878M

The selected constellation design was used as the input for a series of evaluation
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runs. These runs were carried out 10 times for each of the three sampling methods,

using 50 different target decks for the performance evaluation each time. Standard

error of the mean was calculated as a percentage of the mean performance value,

and plotted against the number of target decks used to evaluate the constellation

performance. The results for all three methods are shown in Figure 5-20, with the 10

evaluations using Legge’s original method for target deck sampling shown in Figure

5-20a, the evaluations using decks generated using proportionate definition shown in

Figure 5-20b, and the evaluations using decks generated using the kernel sampling

technique shown in Figure 5-20c. Finally, Figure 5-20d shows a more direct compar-

ison of the three methods, plotting the values for standard error averaged over all 10

evaluation runs for each of the three techniques, with the curve for Legge’s original

sampling shown in blue, proportionate definition shown in red, and kernel sampling

shown in yellow.

The preliminary result shows a great deal of variation in standard error for indi-

vidual evaluation runs, though this is adequately smoothed out by averaging over 10

evaluation runs as shown in Figure 5-20d. The comparison of sampling methods using

a single example constellation design suggests that proportionate definition outper-

forms the other two methods by a small amount, at least for this individual satellite

constellation design. As Legge conducted his calculations of confidence metrics using

20 non-dominated constellation designs to provide a broader basis upon which the

results could be averaged, the decision was made to proceed to the next stage of ex-

panding the evaluation and comparison from a single design to 20 optimized designs.

This required an increase from 30 to 600 evaluation runs of the ReCon code, each

carried out against 50 target decks for a total of 30,000 performance evaluations. This

was carried out on the Supercloud cluster to enable parallelization of the evaluations

against multiple target decks at a time.

For the expanded comparison of sampling techniques, 20 optimized designs for

reconfigurable constellation were selected, with a broad range of design variables
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(a) Legge’s original sampling (b) Proportionate definition

(c) Kernel sampling (d) Mean error for the three methods

Figure 5-20: Comparison of standard error of mean performance calculated using
three different methods of location sampling in the ReCon code for 10 optimization
runs each, with (a) showing results using Legge’s original sampling; (b) showing re-
sults using proportionate definition; (c) showing results using kernel sampling; and (d)
showing a direct comparison of the standard error for the three techniques, averaged
across the 10 runs that were carried out for each method

to represent a wide swath of the non-dominated design space. The size of these

constellations ranged from 12 to 24 satellites, with variable numbers of satellites per

plane, a range of repeating ground tracks with intervals between 13 orbits per 1 day

and 31 orbits per 2 days, estimated constellation costs from $500M–1500M, aperture

diameters ranging from 0.10–0.62 m, and a range of inclinations clustered in two

bands (all falling within ±3° of either 60° or 120°).

The results for this extended comparison of all three methods are shown in Figure
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(a) Legge’s original sampling (b) Proportionate definition

(c) Kernel sampling (d) Mean error for the three methods

Figure 5-21: Comparison of standard error of mean performance calculated using
three different methods of location sampling in the ReCon code and averaged from
10 runs for each plotted line, with (a) showing results for 20 designs using Legge’s
original sampling; (b) showing results for 20 designs using proportionate definition;
(c) showing results for 20 designs using kernel sampling; and (d) showing a direct
comparison of the standard error for the three techniques, averaged across the 20
designs and 10 runs that were carried out for each method

5-21. Figure 5-21a shows the results for 20 designs evaluated using Legge’s original

method for target deck sampling, with the plotted result for each design averaged

from 10 optimization runs. Figures 5-21b and 5-21c show results for the same 20 de-

signs, evaluated using target decks generated with proportionate definition and kernel

sampling respectively, and again averaged for each design from 10 optimization runs.

Finally, Figure 5-21d shows a direct comparison of the three methods on the same

axes, plotting the values for standard error averaged over all 20 constellation designs
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and 10 evaluation runs (i.e. averaged from a total of 200 runs) for each of the three

techniques. The standard error resulting from Legge’s original sampling is shown in

blue, the results using proportionate definition are shown in red, and kernel sampling

is shown in yellow.

The expanded comparison in Figure 5-21 once again shows a large amount of

variation in standard error, this time between the different designs. The error curves

for each design in these figures are smoothed out by averaging each over 10 evaluations

runs. The direct comparison of the three sampling methods in Figure 5-21d shows

that when the results are averaged over a number of different satellite designs, kernel

sampling now outperforms Legge’s original sampling, which gives the highest error of

the three techniques compared here. Proportionate definition outperforms both other

sampling methods, giving the lowest standard error across the entire curve from 1–50

target decks.

Figure 5-22 shows a magnified version of Figure 5-21d where the separation of the

three error curves can be seen more clearly. Legge’s original selection of 24 target

decks is taken as the baseline for standard error level, and this is highlighted on Figure

5-22 using black crosshairs. Averaged across 20 designs and 10 optimization runs for

each design, the standard error of the mean performance for 24 target decks using

Legge’s sampling is 4.95% of the mean performance. In comparison, proportionate

definition gives a standard error of 4.70% and kernel sampling gives a standard error of

4.85% using the same number of target decks. Standard error values for the sampling

range of interest are highlighted in Table 5.3, in order to supply more specific figures

for comparison of the three techniques.

Examining Figure 5-22 and Table 5.3, it can be seen that the same level of stan-

dard error established as the standard for the ReCon code in Legge’s work can be

maintained while using a lower number of target decks generated using the other

techniques investigated here. Using kernel sampling would allow for the number of
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Figure 5-22: A zoomed-in version of Figure 5-21d, magnified to give a clearer view
of the relative standard error obtained using the three sampling techniques. Black
crosshairs are used to highlight Legge’s original use of 24 decks and the associated
standard error of mean performance at this sample size.

Table 5.3: Comparison of standard error of the mean performance values calculated
using the three sampling techniques

Number of
target decks

Legge’s
sampling

Proportionate
definition

Kernel
sampling

24 4.946% 4.697% 4.846%
23 5.046% 4.800% 4.948%
22 5.150% 4.902% 5.055%
21 5.271% 5.022% 5.170%

target decks to be reduced from 24 to 23 while retaining the same amount of standard

error of mean performance. However, proportionate definition allows for even more

of an improvement, with the ability to reduce the number of target decks used from

24 to 22 while still achieving a standard error that slightly outperforms the original

standard (4.902% compared to 4.946%, a marginal 1% improvement).
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The conclusion drawn from the extended comparison of sampling techniques is

that proportionate definition is the superior method to employ for sampling the lo-

cation PDF to generate representative target decks. Using this technique instead of

Legge’s original random sampling, the number of target decks used can be reduced

from 24 to 22, a reduction of over 8% in the number of code iterations. This achieves

a significant improvement in efficiency of the ReCon code. How this sampling im-

provement may translate into runtime savings is investigated in the following section.

5.4.3 Runtime results

An extensive archive of runtime data was collected throughout multiple years of run-

ning the ReCon model on the MIT Supercloud HPC cluster. This data was recorded

for many different model settings as a variety of research questions were investigated

over the course of this thesis work. Significant upgrades were made to the MIT Su-

percloud over time, and these must be factored in to any comparisons made between

different lengths of ReCon optimization runs over any extended period of time.

Upgrades carried out include changes in the type of CPU and GPU nodes avail-

able to users, with Xeon-E5, Xeon-G6 and Xeon-P8 processors available as the default

option for running jobs on the cluster at different points between 2018 and 2022. The

user allocation limit for resources in simultaneous use (which may be employed to run

a single job or several in parallel) was raised from 64 cores in 2018 through several

intermediate levels during the following four years, increasing to 24 CPU nodes (a

total of 1152 cores) and 8 GPU nodes (a total of 320 cores and 16 GPUs) at the

present time.

The largest change made to the MIT Supercloud during the time period over

which this research was conducted was the introduction of ‘Triples Mode’ in 2021.

This provides a method of launching pMATLAB computing jobs with more flexibil-

ity and greater control over managing the specific amounts of memory and threads
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allocated to a task, rather than using default parameters that may not be well-suited

to a specific simulation model. The eponymous ‘triples’ are a set of three parameters

used to specify the resources requested for the job at initiation: number of compute

nodes, number of processes per node, and number of threads per process. These

parameters must be calibrated to the specific application, requiring some initial time

spent in assessing the optimal settings for the codebase, but after this step has been

completed the expected efficiency improvement for most users is around double their

previous standard using the cluster. This process was carried out for the ReCon code

in early 2021, and Appendix A supplies more information on collected runtimes and

the details of tuning each of these parameters.

Due to these significant changes over time to the MIT Supercloud, the runtime

data has been divided into two sets, which will be referred to as Early Phase data and

Triples Mode data from this point onwards. The introduction of Triples Mode led to

significant drops in runtime, especially when paired with the increased allocation of

cores per user, allowing for ReCon optimization runs to be carried out on a higher

number of processors at once. Early Phase data is presented for a broader range of

maximum constellation sizes (from 12 to 36 satellites) and numbers of target decks

used to optimize the design (from 2 to 36 target decks). More recent Triples Mode

results are presented using a set constellation maximum size of 18 satellites and a

narrower range of target decks (from 2 to 24 target decks). These results focus on the

potential improvements in runtime to be gained from reducing the number of target

decks used for design optimization from 24 to 22 decks, as described previously in

Section 5.4.2. For both sets of runtime data, possible improvements will be described

in terms of percentage as well as the decrease in the time taken to reach the model

termination criterion, to enable comparison across data sets.

Figure 5-23 shows runtime data collected during the Early Phase, collated from 35

optimization runs with the plotted model runtimes (shown as blue circles) averaged

from 3–4 runs per number of target decks used. For this set of data, the maximum

205



Figure 5-23: Early Phase runtime data shown in blue circles for optimization runs
with a maximum of 18 satellites per constellation and a range of 4–36 target decks,
with the line of best fit shown in yellow to highlight the trend of the data

constellation size was set to 18 satellites, with the number of target decks used for de-

sign optimization ranging from 4 to 36, increasing in increments of 4. Due to the use

of the 𝜖-NSGA-II algorithm to randomly mutate potential constellation designs dur-

ing the optimization process in order to generate more candidate designs, individual

optimization runtimes may only be described stochastically rather than determinis-

tically. Excluding occasional anomalous cases where the optimization has stagnated

and must be restarted, the runtime for each model run falls unpredictably but within

an expected distribution. This can be seen in the amount of variation around the

runtime trendline (shown in yellow on Figure 5-23), with the plotted points converg-

ing towards the linear line of best fit as the runtimes are averaged from increasing

numbers of individual ReCon optimization runs.
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The trendline in Figure 5-23 ranges from a predicted runtime of 2.19 hours using

4 target decks up to a predicted runtime of 11.22 hours using 36 target decks. It

has a gradient of around 0.282, meaning that for every increase of 1 additional target

deck used in the optimization, the runtime increases by around 0.282 hours, or 16.9

minutes. Each incremental increase of 4 additional target decks shown in the figure

increases runtime by 1.13 hours, or 67.7 minutes. If the number of target decks

required for an acceptable standard error value may be reduced from 24 to 22 as

described in Section 5.4.2, this equates to a decrease in the predicted runtime from

7.84 hours to 7.27 hours. This reduction of 0.564 hours (or just under 34 minutes) is

equivalent to a runtime decrease of 7.20%.

Figure 5-24: Early Phase runtime data shown for optimization runs with 3 different
maximum constellation sizes (12/24/36 satellites) and a range of 20–24 target decks,
with trendlines plotted in matching colors for each data set

Figure 5-24 shows additional Early Phase runtime data, collated from 27 opti-
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mization runs with the plotted model runtimes each averaged from 3 runs. This data

can be divided into 3 sets with different maximum constellation sizes, with optimiza-

tion runs carried out for constellation designs up to 12 satellites (plotted in blue), 24

satellites (plotted in red) and 36 satellites (plotted in green). These runtimes were

collected for comparison across different constellation sizes in order to verify that the

general trends seen for constellation designs up to a maximum of 18 satellites (as

shown in Figure 5-23) hold true for other maximum constellation sizes. The runtimes

are only assessed for optimizations using a smaller range of 20–24 target decks, due to

the conclusions drawn in Section 5.4.2 about the possibility of reducing the necessary

number of target decks for design optimization to within this range.

The trendline for optimization runs using a 12-satellite maximum in Figure 5-24

(plotted in blue) varies from a predicted runtime of 4.12 hours using 20 target decks

to 7.73 hours using 24 target decks. For each increase of 2 in the number of target

decks used to optimize the design, the predicted runtime increases by 1.80 hours, or

just over 108 minutes. If the number of target decks required for an acceptable stan-

dard error value may be reduced from 24 to 22 decks, this equates to a decrease in

the predicted runtime from 7.73 hours to 5.92 hours. The reduction of 108.3 minutes

is equivalent to a runtime decrease of 23.4%.

The trendline for optimization runs using a 24-satellite maximum in Figure 5-24

(plotted in red) varies from a predicted runtime of 8.59 hours using 20 target decks to

10.35 hours using 24 target decks. For each increase of 2 in the number of target decks

used to optimize the design, the predicted runtime increases by 0.88 hours, or just

under 53 minutes. If the number of target decks required for an acceptable standard

error value may be reduced from 24 to 22 decks, this equates to a decrease in the

predicted runtime from 10.35 hours to 9.47 hours. The reduction of 52.9 minutes is

equivalent to a runtime decrease of 8.51%.

The trendline for optimization runs using a 36-satellite maximum in Figure 5-24
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(plotted in green) varies from a predicted runtime of 15.83 hours using 20 target decks

to 22.86 hours using 24 target decks. For each increase of 2 in the number of target

decks used to optimize the design, the predicted runtime increases by 3.51 hours, or

over 210 minutes. If the number of target decks required for an acceptable standard

error value may be reduced from 24 to 22 decks, this equates to a decrease in the

predicted runtime from 22.86 hours to 19.34 hours. The reduction of 210.6 minutes

is equivalent to a runtime decrease of 15.4%.

Although the runtime data for all three maximum constellation sizes shows the

same general trend, there is a large variation in the percentage of runtime saved by

reducing the number of target decks used to optimize constellation designs from 24

to 22 decks. Each point in Figure 5-24 was averaged from the runtimes recorded for

3 optimization runs using these settings, but it may be the case that larger numbers

of model runs are needed to adequately average this data. This is due to the large

variation seen between individual optimization runs in the amount of runtime needed

to reach the optimization termination criterion, and the stochastic nature of the 𝜖-

NSGA-II algorithm used to generate new potential constellation designs. However,

due to upgrades to the MIT Supercloud, it is no longer possible to collect additional

Early Phase data to increase the size of this data set, and therefore these runtime fig-

ures are presented as-is, with some preliminary conclusions drawn here before moving

on to consider more recent Triples Mode data.

Figure 5-25 shows runtime data collected during the more recent Triples Mode

phase of Supercloud operations, collated from 76 optimizations. The plotted model

runtimes in Figure 5-25a (shown as blue circles) are each averaged from 6–8 runs

carried out for each number of target decks used for design optimization, with a full

scatter plot of all 76 of these optimization runtimes shown on the right hand side in

Figure 5-25b. All of this runtime data was collected with the maximum constellation

size set to 18 satellites, and the number of target decks used ranges from 2 to 24,

increasing in increments of 2.
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(a) Mean runtime data (b) All runtime data

Figure 5-25: Triples Mode runtime data shown in blue circles for optimization runs
with a maximum of 18 satellites per constellation and a range of 2–24 target decks,
with the line of best fit shown in yellow to highlight the trend of the data. Figure
5-25a shows mean runtime data for each target deck value; and Figure 5-25b shows
a scatter plot of runtime for all 76 optimization runs to illustrate the amount of
variation around the trendline

The trendline in Figure 5-25 ranges from a predicted runtime of 2.19 hours using

2 target decks up to a predicted runtime of 4.23 hours using 24 target decks. It has

a gradient of around 0.0927, meaning that for every increase of 1 additional target

decks used in the optimization, the runtime increases by 0.0927 hours, or 5.56 minutes.

Each incremental increase of 2 additional target decks shown in the figure increases

runtime by 0.185 hours, or 11.1 minutes. If the number of target decks required for

an acceptable standard error value may be reduced from 24 to 22 as described in

Section 5.4.2, this equates to a decrease in the predicted runtime from 4.23 hours to

4.04 hours. This reduction of 0.185 hours is equivalent to a runtime decrease of 4.38%.

The significant decrease in overall model runtime is immediately clear when com-

paring Figure 5-25 to Figure 5-23, corresponding to the aforementioned upgrades to

the MIT Supercloud and increased model efficiency due to the adoption of Triples

Mode resource allocation. Both figures are created from runtime data for a maxi-

mum constellation size of 18 satellites, but where the predicted optimization runtime
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Figure 5-26: Mean number of functional
evaluations required to reach the termina-
tion criterion for optimization runs using
2–24 target decks

Figure 5-27: Mean time per functional
evaluation for optimization runs using
2–24 target decks

in Figure 5-23 (Early Phase runtime data) varies from 2.19 hours using 4 target decks

or 7.84 hours using 24 target deck, in Figure 5-25 (Triples Mode runtime data) the

predicted runtime using 4 target decks is 2.37 hours and using 24 target decks is

4.23 hours. It must be observed that predicted runtimes for small numbers of target

decks (1–4) using Triples Mode data are slightly higher than those predicted by the

Early Phase data, which may reflect some inefficiency in the selected Triples Mode

parameters when applied to much smaller ReCon optimization runs than those used

in the Triples Mode tuning process on the MIT Supercloud. However, for any opti-

mization run using 5 or more target decks, the Triples Mode runtimes are lower, with

increasing improvements in runtime observed as higher numbers of target decks are

used to optimize the designs.

Figure 5-26 shows how the mean number of functional evaluations needed to reach

the optimization termination criterion has a positive correlation with the number of

target decks used to optimize constellation designs. As the performance of each po-

tential design is assessed against an increasing number of possible mission scenarios,

the number of evaluations required to arrive at an optimized set of non-dominated

constellation designs also increases, reflecting the increased complexity of optimizing

designs to perform consistently well under a broad range of potential operating con-
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ditions. Figure 5-27 shows how the time to carry out each functional evaluation also

correlates positively with the number of target decks used to optimize constellation

designs. This result is expected, as one functional evaluation is defined as the as-

sessment of a single constellation design against all target decks used (as described

in Section 5.1); by default, one functional evaluation of a constellation design will

consist of 24 code iterations against 24 different target decks. It follows logically that

larger functional evaluations carried out against a higher number of target decks will

take a longer time to reach completion, due to the number of code iterations within

this functional evaluation being directly equivalent to the number of target decks used

in the optimization run.

The combination of stochasticity in both the number of functional evaluations

required to reach the termination condition for the design optimization (shown in

Figure 5-26) and in the time taken per functional evaluation (shown in Figure 5-

27) both account for part of the large variation in overall model runtime (shown in

Figure 5-25). The runtime for any individual optimization run varies significantly as

shown in Figure 5-25b, but as mean runtimes are averaged from increasing numbers

of individual model runs, the line of best fit across a range of different optimization

sizes smooths out towards a linear trend, as shown in Figure 5-25a.

5.5 Conclusions

The nature of applying Monte Carlo based model propagation to optimize satellite

constellation designs for uncertain operating circumstances means that a range of

different scenarios and system responses must be simulated. Due to the variety of

maneuvers and drift orbits that may be selected as the optimal response under dif-

ferent operational conditions, computational runtime would vary even if identical

constellation designs were modelled each time the simulation was run. As the 𝜖-

NSGA-II algorithm is used to randomly mutate constellation design variables during

each optimization run in order to generate new candidate designs for assessment, the
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designs under investigation will also vary with each model run, and different runtimes

will be required to reach the optimization termination criterion according to how the

population of designs progresses over several generations of the optimization process.

The choice was made to simplify the modelling of the longitude distribution in

order to focus sampling resources on the latitude distribution, due to the strong cou-

pling between achievable latitude coverage and constellation orbital inclination and

the lack of coupling between longitude coverage and constellation performance. Pri-

oritizing the latitude modelling in this fashion allowed for the investigation of two

new methods of sampling for generating target decks: proportionate definition and

kernel function sampling. Results from these techniques are covered in Section 5.4.2,

and after comparison with standard error of mean performance values from Legge’s

original sampling method for the ReCon codebase, it was concluded that the same

baseline level of standard error could be maintained or improved upon while reducing

the number of target decks used to optimize potential constellation designs from 24 to

22. This would result in a reduction in the number of code iterations of more than 8%.

Early Phase runtime data gathered before upgrades were made to the MIT Super-

cloud cluster showed that reducing the number of target decks from 24 to 22 for an

optimization run with a maximum constellation size of 18 satellites led to a decrease

in the predicted runtime from 7.84 hours to 7.27 hours, a saving of 7.20%. When

this was expanded to different maximum constellation sizes of 12, 24, or 36 satellites,

mean runtime reductions of between 8.51% and 23.4% were observed, although these

were based on smaller numbers of optimization runs and therefore mean values that

may be less reliable. Due to setup changes carried out on the MIT Supercloud cluster,

it was not possible to gather additional runtimes using the same settings to expand

this data set and attempt to stabilize these mean values further.

After Triples Mode upgrades to the MIT Supercloud, there was a mean runtime

reduction of 31.1% in model runtime for the ReCon codebase after tuning of the three
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resource allocation parameters was carried out, with improvements as high as 46.1%

for the largest numbers of target decks used. The greatest efficiency improvements

were seen for optimization runs using 24 target decks, as might be expected after

the tuning process was carried out on the cluster while using this number of target

decks. Control of these parameters for parallelized code runs on the cluster resulted

in greater runtime improvements than any of the sampling changes made here, and

the tuning process for these is described in Appendix A.

Applying the latitude sampling improvements to generate new target decks and

using these to carry out Triples Mode runs of the ReCon code resulted in smaller

but still significant runtime improvements when the number of target decks used in

the optimization process was reduced while retaining the same level of standard error

of mean performance. Using the proportionate definition method of stratified sam-

pling to model the latitude PDF was found to result in the greatest improvement,

reducing the number of target decks from 24 to 22 decks while improving upon the

baseline standard error value of 4.95% set by Robert Legge’s work, achieving a level

of 4.90% using the improved sampling technique. This resulted in mean runtime im-

provements of 4.38%, equating to a decrease in the predicted runtime from 4.23 hours

to 4.04 hours. A smaller improvement was seen when kernel function sampling was

applied to the model, allowing for the number of target decks to be reduced from 24

to 23 while retaining the same level of standard error (4.95% in both cases), resulting

in a runtime decrease from 4.23 hours to 4.13 hours (a saving of 2.19%).

The use of variance reduction techniques was adopted with input distributions

used to model uncertain target locations for future coverage by reconfigurable con-

stellations. Input modelling was prioritized for variables to which the system output

was more sensitive, with the objective of reducing the standard error of mean perfor-

mance for output designs. Modified approaches to stratified sampling were compared

and two methods were implemented with the aim of achieving a reduction in error

while using the same number of scenarios to optimize design candidates. This objec-
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tive was achieved, reducing standard error from 4.95% using Legge’s original location

sampling to 4.85% for kernel function sampling and 4.70% for proportionate definition.

These reductions in standard error may be applied to reduce the runtime require-

ments for the ReCon codebase. The number of target decks used for design optimiza-

tion may be reduced while maintaining the original benchmark set for standard error.

Legge’s original sampling achieved 4.95% standard error of mean performance with

the use of 24 target decks, while kernel function sampling achieves 4.95% standard

error at 23 target decks and proportionate definition achieves 4.90% standard error

at 22 target decks. Reducing the number of target decks used from 24 to 22 results in

a reduction of 8.3% in the number of code iterations required to evaluate candidate

designs. This reduction corresponded to runtime savings of between 7.20–23.4% on

the Supercloud with the settings used prior to 2021, and mean runtime improvements

of 4.4% on the Supercloud with upgraded ‘Triples Mode’ settings.

Triples Mode upgrades to the MIT Supercloud required code tuning to be carried

out (as described in Appendix A), but following this process mean runtime reductions

of 31.1% were achieved for the ReCon code, with improvements as high as 46.1% ob-

served for the largest optimization sizes carried out. This improved efficiency due

to greater control over resource allocation parameters on the Supercloud cluster is

theorized to be part of the reason for the reduced runtime improvements observed

after these upgrades were made. These combined runtime improvements are signifi-

cant, and may be used to enable the investigation of larger or more complex design

optimizations in future work.
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Chapter 6

Operational decision options for

responsive maneuvering

Past work on reconfigurable satellite constellations has demonstrated the Value of

Reconfigurability (VoR) when compared to traditional static constellations. Where

constellation designs are considered on an iso-performance basis, reconfigurable de-

signs are 20–70% cheaper than their identically-performing static equivalents. Where

designs are considered on an iso-cost basis and compared on the metric of ∆𝑃 , recon-

figurable designs outperform static equivalents by average increases in performance

of up to 98%. Over 74% of iso-cost design pairs were found to have a reconfigurable

performance that exceeded static design performance by a margin of 10% or higher.

Even the worst-performing reconfigurable designs were found to provide comparable

performance to iso-cost static designs. However, no reconfigurable constellations have

been launched to date, despite the fact that many operational constellations already

possess some minimal maneuvering ability used for station-keeping, drag makeup,

and even collision avoidance.

Previous research on reconfigurable constellations has focused primarily on aspects

of designing the constellations and satellites to perform well under unpredictable cir-

cumstances. Less work has been devoted to operational decisions once such a con-

stellation is launched, other than the obvious necessity of simulating reconfiguration

217



maneuvers. Investigating decision options during the operational phase of the mis-

sion requires simulation of the constellation’s activities over time, due to the lack of

ability to validate such options against actual operating data in the absence of ex-

isting reconfigurable constellations. Robert Legge conducted research in this area on

satellite assignment options, considering how human decision makers might use the

ReCon model output to decide how many satellites should be reconfigured in response

to an event of interest, and how this could be implemented as a computer decision

model that balances the competing objectives of obtaining coverage over an area of

interest as soon as possible and conserving propellant for responses to later events of

interest. A penalty function was also incorporated into the model to motivate the

conservation of propellant in satellites which possess a less-than-average quantity of

remaining fuel, balancing ∆𝑉 use across the constellation as a whole to ensure its

continued functioning until the end of the mission lifetime.

The effects of propulsion and propellant system constraints on the performance

of a reconfigurable constellation are considered in Section 6.1. Depending on the

∆𝑉 budget available for reconfiguration maneuvers, more drastic altitude changes

may become an option for satellite operators. Where extremely high-value events

of interest occur, the possibility arises of maneuvering not only between GOM and

ROM into a single RGT orbit, but maneuvering between multiple RGT orbit options.

The feasibility of introducing reconfiguration between different RGTs (depending on

available quantities of ∆𝑉 ) and the potential benefits of doing so are considered in

Section 6.2.

Other areas of interest in how a reconfigurable constellation might be operated in-

clude the possibility of delaying reconfiguration maneuvers where the time to achieve

the first satellite coverage is less urgent, and this is briefly considered in Section 6.3.

Under circumstances where persistent coverage over multiple days or weeks is desired

but a delay of a few hours to the first pass time is inconsequential, it may be possible

to make significant propellant savings by delaying the start of reconfiguration maneu-
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vers until the most favorable drift orbit options are available to enter the desired RGT.

6.1 Effect of propulsion constraints

There are two interrelated constraints of interest placed on the propulsion system

and its capabilities within the ReCon model. These are the upper limits imposed

on the propulsion system mass fraction (PSMF) and the added propulsion module

∆𝑉 . Propulsion system mass fraction is defined as the total propulsion system mass

including propellant, divided by the total spacecraft wet mass. Added propulsion

module ∆𝑉 is also known as ∆𝑉𝑟𝑒𝑐𝑜𝑛, and is the amount of ∆𝑉 budgeted specifically

for reconfiguration maneuvers. ∆𝑉𝑟𝑒𝑐𝑜𝑛 makes up the largest fraction of ∆𝑉𝑇 , the

total ∆𝑉 budget for the spacecraft, which also includes quantities of ∆𝑉 that are as-

signed for initial deployment from the launch vehicle into the desired orbit, correction

of any errors in the launch vehicle orbital injection, stationkeeping and drag makeup

over the mission lifetime, and deorbiting at the end of the mission by reducing the

perigee of the satellites’ orbits to 50 km.

The choice of the total ∆𝑉 budget, ∆𝑉𝑇 , and specific impulse, 𝐼𝑠𝑝, both have an

effect on the overall size of the propulsion system. Legge’s past work on the ReCon

model used only chemical propulsion systems with monopropellant, setting an 𝐼𝑠𝑝

range between 220 s for hydrazine and 260 s for novel green monopropellants, and

using 240 s as a typical 𝐼𝑠𝑝 for this type of system. A constraint was also imposed

on the propulsion system mass fraction, limiting this value to a maximum of 0.42 in

order to ensure that only realistic constellation designs are generated by the ReCon

codebase. Consulting literature, a propulsion system mass fraction of approximately

24% was cited as an average value for a LEO spacecraft with propulsion, though this

was not specific to monopropellant systems.[86] Other sources suggested a typical

propulsion system mass fraction of ≤ 0.3 while confirming the primacy of monopro-

pellant hydrazine systems for use in this region of the design space, due to meeting

219



∆𝑉 requirements with high reliability and low cost.[121]

Legge and other sources show that propulsion system mass fraction is a function of

total ∆𝑉 and 𝐼𝑠𝑝, which may be plotted for different propulsion system options.[8, 121]

Legge shows that the specific impulse range under consideration equates to a range

for ∆𝑉𝑇 of 930 – 1100 m/s.[8] Other research covering this area confirms that a hy-

drazine monopropellant system with a nominal specific impulse of 220 s and a ∆𝑉

budget of 1000 m/s will require a propulsion system mass fraction of just over 0.4.[121]

Legge elected to limit the ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget to a maximum of 1000 m/s. Non-

reconfiguration ∆𝑉 allocations for reconfigurable designs consistently add up to at

least 150 m/s, and in some cases as much as 300 m/s. Combined with the ∆𝑉𝑟𝑒𝑐𝑜𝑛

budget, this results in maximum ∆𝑉𝑇 values as high as 1200–1300 m/s for some de-

signs generated by the optimization.

Reducing the ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget reduces the ∆𝑉𝑇 , meaning that a smaller propulsion

system mass fraction is needed for the satellite design. Alternatively, if the allowable

propulsion system mass fraction is increased or decreased, the total ∆𝑉 budget also

increases or decreases accordingly. Optimization runs were carried out for a range of

altered values for these constraints, to assess the effects on the resulting designs for

reconfigurable constellations. The upper constraint upon the propulsion system mass

fraction was varied between 0.1 and 0.6, and the maximum ∆𝑉 budget assigned for

reconfiguration was set to values of 150, 250 and 500 m/s, as well as the original limit

of 1000 m/s.

Figure 6-1 shows Pareto curves depicting the sets of non-dominated reconfigurable

designs generated by a series of optimization runs using different values for the up-

per constraints placed upon propulsion system mass fraction and ∆𝑉𝑟𝑒𝑐𝑜𝑛. Each set

of designs is represented by the constellation cost on the x-axis and the normalized

performance score on the y-axis.
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Figure 6-1a shows a series of curves depicting six different maximum propulsion

system mass fractions between 0.1 and 0.6, and a ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget of 1000 m/s. The

propulsion system mass fractions of 0.4–0.6 result in very similar design sets, depicted

by green, yellow and orange curves. The mass fraction of 0.3 (shown in aqua) reaches

a lower knee in the curve at a constellation cost of approximately $950M, and per-

formance starts to plateau from this point. The mass fraction of 0.2 (shown in blue)

follows a more diagonal shape than the other curves with lower performance for the

same costs compared to the higher mass fractions. The mass fraction of 0.1 (shown in

purple) results in an extremely limited design set with much lower performance, with

the optimization stalling out and generating no designs above a constellation cost of

$950M.

Figure 6-1b shows a series of curves depicting six different maximum propulsion

system mass fractions between 0.1 and 0.6, and a ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget of 500 m/s. The

Pareto fronts generated for each propulsion system mass fraction follow very similar

curve shapes to Figure 6-1a, although with fewer designs generated in the high-cost

region of the design area.

Figure 6-1c shows a series of curves depicting six different maximum propulsion

system mass fractions between 0.1 and 0.6, and a ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget of 250 m/s. The

knee in the curve for the highest mass fractions between 0.4 and 0.6 drops in perfor-

mance when compared to the higher ∆𝑉𝑟𝑒𝑐𝑜𝑛 values of 500 or 1000 m/s, dropping in

performance towards the curve for a mass fraction of 0.3, though remaining slightly

above it. The 0.2 mass fraction design front also moves up in performance compared

to the previous plots, resulting in a curve that more closely follows the 0.3 mass

fraction plot. The lowest 0.1 mass fraction curve also plateaus at a slightly lower

performance value for this reduced ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget.

Figure 6-1d shows a series of curves depicting six different maximum propulsion
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system mass fractions between 0.2 and 0.6, and a ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget of 150 m/s. The

propulsion system mass fraction of 0.1 is not included in this plot, as the combination

of an extremely constrained propulsion system size and an extremely constrained

∆𝑉𝑟𝑒𝑐𝑜𝑛 budget resulted in a failure to generate any designs within the specified limits.

The 0.2 mass fraction plot retains the same position of the knee in the curve, and the

0.3 curve drops in performance to follow the same abrupt plateau. The curves for the

higher mass fractions between 0.4 and 0.6 still outperform the lower mass fractions

in the highest and lowest cost regions, but drop below the knee in the curve for the

central region, exhibiting much less of a knee and much more of a gradual slope. It

is theorized that this result is due to the interaction of the two constraints; the lower

propulsion system mass fraction designs are primarily constrained by the size of the

propulsion system and so exhibit more consistent performance as the ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget

is reduced, while the higher propulsion system mass fraction designs are able to size

up their propulsion systems, but can make little use of a larger system for generating

higher performance once the ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget is reduced this far.

Figure 6-2 shows Pareto curves depicting the sets of non-dominated reconfigurable

designs generated by a series of optimization runs using values of 0.1 to 0.6 for the up-

per constraints placed upon propulsion system mass fraction, and values of 150–1000

m/s for the ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget. Each set of designs is represented by the constellation

cost on the x-axis and the normalized performance score on the y-axis. This data is

the same output data that was presented in Figure 6-1, but rearranged to focus on

the effect of ∆𝑉𝑟𝑒𝑐𝑜𝑛 in each subplot as opposed to propulsion system mass fraction

as was previously presented.

Figure 6-2a shows three very low, flat Pareto curves, depicting the non-dominated

designs generated under constraints of 250, 500 and 1000 m/s maximum ∆𝑉𝑟𝑒𝑐𝑜𝑛 bud-

get for a maximum propulsion system mass fraction of 0.1. The curves for a maximum

of 500 and 1000 m/s ∆𝑉𝑟𝑒𝑐𝑜𝑛 slightly outperform the 250 m/s curve, but all of the

designs in this subplot are extremely constrained by the stringent propulsion system
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(a) Δ𝑉𝑟𝑒𝑐𝑜𝑛 = 1000 m/s (b) Δ𝑉𝑟𝑒𝑐𝑜𝑛 = 500 m/s

(c) Δ𝑉𝑟𝑒𝑐𝑜𝑛 = 250 m/s (d) Δ𝑉𝑟𝑒𝑐𝑜𝑛 = 150 m/s

Figure 6-1: Pareto curves of constellation cost against normalized performance, show-
ing non-dominated design fronts for six different upper limits placed on propulsion
system mass fraction, for ∆𝑉𝑟𝑒𝑐𝑜𝑛 budgets of a) 1000 m/s b) 500 m/s c) 250 m/s and
d) 150 m/s

size limit, and the highest-performing designs achieve less than half of the normalized

performance values seen in all the other subplots of Figure 6-2 for larger propulsion

system limits.

Figure 6-2b shows four curves representing designs with maximum ∆𝑉𝑟𝑒𝑐𝑜𝑛 bud-

gets of 150, 250, 500 and 1000 m/s for a maximum propulsion system mass fraction of

0.2. All of the designs shown here easily outperform the designs from Figure 6-2a at

the same cost. The two highest curves shown (in red and green) are for the 150 m/s

and 250 m/s ∆𝑉𝑟𝑒𝑐𝑜𝑛 budgets. The 500 m/s and 1000 m/s ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget designs
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show lower normalized performance scores for the same constellation costs, suggesting

that the propellant budget may be taking up an impractical proportion of the total

propulsion system wet mass for these systems, resulting in inadequate mass devoted

to sizing the propulsion system itself.

Figure 6-2c shows four curves representing designs with maximum ∆𝑉𝑟𝑒𝑐𝑜𝑛 bud-

gets of 150, 250, 500 and 1000 m/s for a maximum propulsion system mass fraction

of 0.3. The knee in the Pareto front curve increases slightly from Figure 6-2b, and all

four ∆𝑉𝑟𝑒𝑐𝑜𝑛 outputs follow essentially the same curve. It is theorized that this is due

to the propulsion system mass fraction consistently presenting the largest constraint

upon all the design sets in this subplot, regardless of the allocated ∆𝑉𝑟𝑒𝑐𝑜𝑛 maximum

value.

Figure 6-2d shows four curves representing designs with maximum ∆𝑉𝑟𝑒𝑐𝑜𝑛 bud-

gets of 150, 250, 500 and 1000 m/s for a maximum propulsion system mass fraction

of 0.4. The knee in the Pareto front curve increases slightly from Figure 6-2c for

∆𝑉𝑟𝑒𝑐𝑜𝑛 budgets of 250, 500 and 1000 m/s, but the 150 m/s ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget is now

outperformed, showing that the propellant budget now imposes more of a significant

constraint upon this curve (shown in red) compared to the other three. The designs

for 250 and 500 m/s ∆𝑉𝑟𝑒𝑐𝑜𝑛 budgets follow very similar lines, with the 1000 m/s

curve slightly outperforming these and plateauing at a higher performance by a small

margin.

Figure 6-2e shows four curves representing designs with maximum ∆𝑉𝑟𝑒𝑐𝑜𝑛 bud-

gets of 150, 250, 500 and 1000 m/s for a maximum propulsion system mass fraction

of 0.5. The 150 m/s curve follows essentially the same line as in the previous subplot,

showing that the propellant budget continues to impose the major constraint upon

this optimization run, which gains no additional performance from the increase in

the limit upon the propulsion system mass fraction. The 250 m/s curve increases in

performance by a small amount compared to Figure 6-2d, but plateaus relatively close
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to the 150 m/s curve. The 500 and 1000 m/s curves increase further in performance,

gaining additional utility from the possibility of increasing the size of the propulsion

system with the increased maximum limit.

Figure 6-2f shows four curves representing designs with maximum ∆𝑉𝑟𝑒𝑐𝑜𝑛 budgets

of 150, 250, 500 and 1000 m/s for a maximum propulsion system mass fraction of 0.6.

The curves follow similar lines to the previous subplots, suggesting that at this point,

other constraints are taking effect upon the system. No real gains in performance are

observed from further increasing the propulsion system mass fraction.

Figures 6-1 and 6-2 show the interrelation of the two propulsion constraints in the

ReCon model. The maximum ∆𝑉 budget for reconfiguration can be varied within a

range of 0–1000 m/s, where 0 is equivalent to a static constellation design. Imposing

a maximum propulsion system mass fraction of 0.42 results in a ∆𝑉𝑇 limit of around

1100 m/s, depending on the specific impulse of the selected propellant. Reducing the

∆𝑉𝑟𝑒𝑐𝑜𝑛 limit from 1000 to 500 m/s was observed to have little effect on constellation

performance. Reducing the limit below 500 m/s lowers the cost/performance curve

for the optimal set of designs generated by the ReCon model; lower performance

is achieved for the same cost as the ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget is decreased. The threshold of

this effect appears to be in the range of 300–400 m/s ∆𝑉 assigned for reconfiguration.

The limits on propulsion system mass fraction may also be varied within a 0–1

range, where 0 is equivalent to no propulsion system on the spacecraft and 1 is equiv-

alent to a spacecraft that consists of a propulsion system and nothing else. Legge

assigned 0.42 as a realistic maximum value, and this is borne out by results in other

literature. A reasonable mass fraction must be selected to ensure that designs gener-

ated by the optimization model are constrained within the values that are achievable

by real satellites.

As the mass fraction limit is reduced, the cost/performance curves shown in Fig-
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(a) Maximum PSMF=0.1 (b) Maximum PSMF=0.2

(c) Maximum PSMF=0.3 (d) Maximum PSMF=0.4

(e) Maximum PSMF=0.5 (f) Maximum PSMF=0.6

Figure 6-2: Pareto curves of constellation cost against normalized performance, show-
ing non-dominated design fronts for four different upper limits placed on the ∆𝑉
budget for reconfiguration, for maximum propulsion system mass fractions of a) 0.1
b) 0.2 c) 0.3 d) 0.4 e) 0.5 and f) 0.6
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ures 6-1 and 6-2 are lowered, meaning that lower performance is achieved for the same

constellation cost, due to the more constrained design space. This effect is less pro-

nounced in the low cost/low performance region of the design space, which are already

somewhat constrained by budget, and more pronounced for higher cost/higher per-

formance constellation designs. The areas within which the two constraints overlap

in their effect upon the resulting designs can be observed in Figures 6-1 and 6-2. For

example, at a ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget of 500 m/s, there is a significant drop in performance

when the propulsion system mass fraction is reduced from 0.3 to 0.2. However, for

a ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget of 250 m/s, the performance for the mass fractions of 0.3 and 0.2

is much more similar, where the ∆𝑉 constraint begins to have the greater impact of

the two limits placed upon the design space.

This conclusion is corroborated by Figure 6-3, showing the breakdown of ∆𝑉

used for reconfiguration maneuvers over a 5-year mission lifetime. This data is shown

for a sample 18-satellite constellation evaluated against a target deck of 19 locations

of interest, randomly distributed in both temporal and regional spacing. Although

this constellation design was generated using the original constraints of a maximum

propulsion system mass fraction of 0.42 and maximum ∆𝑉𝑟𝑒𝑐𝑜𝑛 of 1000 m/s, no indi-

vidual satellite uses more than 300 m/s ∆𝑉 for responsive maneuvering. No individual

event of interest uses more than 30 m/s ∆𝑉 from any satellite for reconfiguration into

a RGT that provides persistent coverage.

The ∆𝑉𝑟𝑒𝑐𝑜𝑛 and propulsion system mass fraction constraints place significant lim-

itations on constellation performance once reduced below certain thresholds, though

the interplay between the two limits must also be considered. Examining the perfor-

mance of non-dominated designs for reconfigurable satellite constellations against a

range of randomized target decks, it was observed that the majority of systems fall

within a maximum of around 350 m/s ∆𝑉 used for reconfiguration maneuvers. Even

where constellations use 150–250 m/s of additional ∆𝑉 for non-reconfiguration ma-

neuvering (such as initial deployment and orbital injection corrections, drag makeup
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Figure 6-3: Breakdown of ∆𝑉 used for reconfiguration by an 18-satellite constellation
over a sample 5-year mission consisting of 19 target locations of interest

and stationkeeping, and ∆𝑉 budgeted for end-of-life deorbiting maneuvers), this re-

sults in total ∆𝑉 usage that rarely exceeds 600 m/s.

Other design variables were examined for noticeable effects of the variations in

imposed constraints. Decreasing PSMF from 0.4 to 0.3 resulted in a reduction in

the number of satellite planes and a lower ∆𝑉 budget, theorized to be due to the

propulsion system mass allocation having less capacity for propellant under the in-

creased constraint. Decreasing PSMF again to 0.2 resulted in another drop in satellite

planes and ∆𝑉 budget, confirming the trend observed for the previous constraint. For

PSMF= 0.2, an increase was also observed in the selected GOM altitude of designs,

and a corresponding increase in aperture diameter for imaging. This was theorized

to be motivated by the increased coverage footprint from a higher orbit while less

reconfiguration was possible due to the constrained ∆𝑉 budget.
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The discrepancy between the amount of ∆𝑉 actually used and the limits imposed

upon the design optimization suggest that the best-performing reconfigurable con-

stellations are frequently found to be those with ∆𝑉 budgets that remain somewhat

lower than the maximum that they could be allocated within the design constraints.

This may be due to cost savings from reducing the size of the propulsion system or

mass allocated for propellant. Many constellations also have remaining propellant

in their reconfiguration budget at the end of the mission lifetime, due to the opti-

mization process rewarding a cautious approach to propellant budgeting, to ensure

that early obsolescence does not occur due to a loss of maneuverability. This could

potentially allow for small extensions to be made to the mission lifetime.

Satellite operators could make use of a comparison between the expected use

rate of propellant and the recorded use rate throughout the constellation lifetime.

This would allow for assessment of when to adopt more conservative maneuvering

strategies, and when faster reconfiguration strategies might be pursued, prioritizing

earlier coverage over the conservation of propellant in situations where a large margin

of ∆𝑉 is available. Other uses could be made of a bigger reconfiguration budget or

large surplus of unused ∆𝑉 , including making more extensive changes to the orbital

altitude in order to achieve greater improvements in coverage performance, and this

subject is covered more extensively in the following section.

6.2 Crossover latitudes

The constellation designs generated for reconfigurable and static constellations as part

of this work are constrained to certain options for their choice of orbit. Only circular

orbits and symmetric constellation designs are considered, and the RGT selection for

ROM is made from a list of six candidate orbits. The ReCon model optimizes con-

stellation designs based on these six orbits, which range between mean altitudes of

approximately 409.7 and 1253.7 km (with considerable variation around these num-

bers depending on the selected orbital inclination). Some of the parameters of these
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six orbits are shown in Table 6.1, including mean, minimum and maximum values for

the range of orbital altitudes associated with each candidate orbit.

Three of these candidate RGT orbits are n/1 orbits, meaning that they return to

pass over the same point on the ground after 1 day and n orbits of the Earth. For

example, a 13/1 orbit completes 13 orbits of the Earth in 1 day before passing back

over the same point on the ground and continuing back along the same repeating

ground track. The other three orbits are n/2 orbits, meaning that they do not pass

back over the same point on the ground until two full days and n orbits have passed.

For example, a 31/2 orbit completes 31 orbits of the Earth in 2 days before passing

back over the same point on the ground.

Table 6.1: Orbital parameters for the six candidate RGT orbits used in the ReCon
model

Orbits/days
for selected

RGT

Period
[s]

Mean
altitude [km]

Minimum
altitude

(at i=0°) [km]

Maximum
altitude (at
i=180°) [km]

31/2 5559.0 409.75 320.89 520.00
15/1 5744.3 559.71 476.04 664.61
29/2 5942.3 718.21 639.60 817.86
14/1 6154.6 886.07 812.38 980.57
27/2 6382.5 1064.2 995.30 1153.7
13/1 6628.0 1253.7 1189.4 1338.2

The large difference between minimum and maximum altitude figures to achieve

each RGT is due to the need to account for the oblateness of the Earth and the

perturbing rotation it induces in the desired orbit, creating rotation in the right as-

cension of the ascending node, argument of perigee and mean anomaly. Due to the

fact that the orbit perturbations caused by oblateness are a function of orbital alti-

tude, calculating these altitudes for each RGT requires solving the following set of

equations iteratively until an appropriate estimate for the RGT altitude is found.[86]

This was carried out in MATLAB using the ‘fminbnd’ function, an algorithm based

on golden section search and parabolic interpolation.[122]
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First, a specific RGT orbit is selected, with an integer number of orbits, j, taking

place in an integer number of days, k. For example, when considering a 31/2 RGT

orbit, j=31 and k=2. An initial estimate is made for the orbital altitude, 𝐻0, by

calculating the repeating ground track altitude without any oblateness effects, using

the following equation:

𝐻0 = 𝜇1/3

(︂
2𝜋𝑗

𝐷*𝑘

)︂−2/3

−𝑅𝐸 (6.1)

where 𝜇 is the Earth’s gravitational constant (398600.44 km3/s2), 𝐷* is the length of a

sidereal day (86164.1 seconds), and 𝑅𝐸 is the Earth’s radius (the equatorial radius of

6378.1 km is used for the initial estimation, with the assumption of a spherical Earth).

Equation 6.1 may be further simplified with the use of the following constant:

𝑘1 = 𝜇1/3

(︂
2𝜋

𝐷*

)︂−2/3

≈ 42164.2 km (6.2)

Combining Equations 6.1 and 6.2 gives:

𝐻0 = 𝑘1

(︂
𝑗

𝑘

)︂−2/3

−𝑅𝐸 (6.3)

Another useful constant 𝑘2 is defined as follows:

𝑘2 = 0.75

(︂
360

2𝜋

)︂
𝜇1/2𝑅2

𝐸𝐽2 ≈ 1.02955 × 1014 km3.5 deg/sidereal day (6.4)

where 𝐽2 is the factor representing the Earth’s oblateness. Defining the rotation rate

of the Earth, �̇�, as 360 deg/sidereal day, Equation 6.4 is used to determine the rate

of change of the ascending node, Ω̇, the rate of change of the perigee, �̇�, and the rate

of change of the mean anomaly, �̇� , which are all calculated in units of deg/sidereal

day using the following equations:

Ω̇ = −2𝑘2𝑎
−7/2 cos 𝑖(1 − 𝑒2)−2 (6.5)
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�̇� = 𝑘2𝑎
−7/2(5 cos2 𝑖− 1)(1 − 𝑒2)−2 (6.6)

�̇� = 𝑘2𝑎
−7/2(3 cos2 𝑖− 1)(1 − 𝑒2)−3/2 (6.7)

where e is the eccentricity of the orbit, i is the orbital inclination, and a is the

estimated semi-major axis (𝑅𝐸 + 𝐻0). The mean angular motion for the repeating

ground track, n, is estimated using:

𝑛 =
𝑗

𝑘
(�̇�− Ω̇) − (�̇� + �̇�) (6.8)

and finally, the estimated repeating ground track altitude, H, is revised using the

following equation:

𝐻 = 𝜇1/3

(︂
180

𝑛𝜋

)︂2/3

−𝑅𝐸 (6.9)

The estimated semi-major axis, a, may be recomputed using 𝑎 = 𝑅𝐸 + 𝐻, and used

to iterate through Equations 6.5–6.9 until an acceptable estimate of the RGT altitude

is reached.

Figure 6-4 shows the range of orbital altitudes associated with inclinations between

0 and 180°; as the inclination is increased from an equatorial orbit at 0°, the orbital

altitude must be increased in order to maintain the desired repeating ground track

of the same ground pass cadence. The 31/2 candidate orbit has the lowest orbital

altitude; to achieve the desired cadence of 31 orbits in 2 days before passing over the

same ground location and beginning to repeat its ground track, its altitude ranges

from a minimum of 320.89 km (at 0° inclination) up to a maximum of 520.00 km (to

achieve the same cadence at 180° inclination). The highest altitude orbit considered

as a candidate is the 13/1 RGT orbit; to achieve the desired cadence of 13 orbits

in 1 day before passing over the same point and repeating the same ground track,

its altitude ranges from a minimum of 1189.4 km altitude (at 0° inclination) up to a

maximum of 1338.2 km (at 180° inclination).

Orbits with an inclination between 0 and 90° are classed as prograde orbits, mean-

ing they are orbiting in the same direction as the rotation of the Earth. Orbits with
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Figure 6-4: Impact of inclination on orbital altitudes for 6 different candidate RGT
orbits

an inclination between 90 and 180° are classed as retrograde orbits, meaning they

are travelling in a direction opposite to the rotation of the Earth. The majority of

Earth-orbiting satellites are launched in prograde orbits, as less propellant is required

to reach orbit due to moving with the Earth’s rotation rather than against it. A polar

orbit with an inclination of exactly 90° is classed as a perpendicular orbit, meaning it

is neither prograde nor retrograde, but perpendicular to the direction of the Earth’s

rotation. A prograde equatorial orbit (with the direction of the planet’s rotation) has

an inclination of 0°, and a retrograde equatorial orbit (against the direction of the

planet’s rotation) has an inclination of 180°.

When satellite ground tracks are plotted on a flat latitude/longitude map pro-
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jection for the candidate RGT orbits, similar sinusoidal patterns are seen for each

prograde inclined orbit between 0 and 90°, with the upper and lower limits of lati-

tude coverage dictated by the choice of orbital inclination. Figure 6-5 shows ground

tracks plotted for a single orbit of a 15/1 RGT and how the shape of this ground

track changes as the orbital inclination is increased from 10° up to 80°. These ground

tracks change shape from a shallow curve at the lowest inclination up to a more elon-

gated curve at the highest inclination, with an appearance closer to a square wave

at the highest and lowest latitudes on the plot due to the fact that the rectangular

map projection does not account for the closer spacing of the longitude lines at higher

latitudes.

Figure 6-5: Ground tracks plotted in latitude/longitude for a single prograde orbit
of a 15/1 RGT, showing the variation in shape that occurs for a range of orbital
inclinations between 10–80°

For a prograde RGT orbit, each full orbit around the Earth (from ascending node
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to ascending node) is a little less than 360° in longitude, due to the amount of the

Earth’s rotation that occurs in the same direction during the time period of the orbit.

The Earth will complete one full rotation in one day, so for a 15/1 RGT orbit, each

satellite will complete 14 full circumnavigations of the Earth in 15 orbits. The 15/1

RGT satellite ground track completes an ascending pass over the equator every 336°

of longitude, which is 14/15 of the Earth’s circumference around the equator, and

this westward drift can be seen in the prograde orbits plotted in Figure 6-5.

Figure 6-6 shows satellite ground tracks plotted for the same 15/1 RGT orbit as

in Figure 6-5, but this time featuring retrograde inclined orbits between 100° and

170°, which demonstrate similar sinusoidal patterns to the prograde orbits shown in

the previous figure. The upper and lower limits of latitude coverage are similarly

dictated by the choice of orbital inclination, but with the extent of coverage inversely

correlated with the increasing inclination values in this case. A retrograde orbit with

100° inclination provides comparable coverage limits (at around ±80° of latitude) to a

prograde orbit with 80° inclination, a retrograde orbit with 120° inclination provides

comparable limits (at around ±60° of latitude) to a prograde orbit of 60° inclination,

and so forth.

For a retrograde RGT orbit, each full orbit around the Earth (from ascending

node to ascending node) is a little greater than 360° in longitude, due to the amount

of the Earth’s rotation that occurs in the opposite direction during the time period

of the orbit. The Earth will complete one full rotation in one day, so for a 15/1

RGT orbit, each satellite will complete 16 full circumnavigations of the Earth in 15

orbits. The 15/1 RGT satellite ground track completes an ascending pass over the

equator every 384° of longitude, which is 16/15 of the Earth’s circumference around

the equator, and this westward precession can be seen in the prograde orbits plotted

in Figure 6-6.

As discussed in Section 5.2.1, the choice of inclination for a constellation design
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Figure 6-6: Ground tracks plotted in latitude/longitude for a single retrograde orbit
of a 15/1 RGT, showing the variation in shape that occurs for a range of orbital
inclinations between 100–170°

dictates the upper and lower limits of latitude coverage that can be achieved by the

constellation’s satellite passes. The exact limits of coverage for a particular choice

of inclination will be dependent upon the minimum elevation angle requirements for

usable coverage for the desired application, which will determine the swath width of

satellite coverage for a given pass. This swath width determines the off-ground-track

angle at which coverage can be achieved on either side of the ground track dictated by

the selected inclination. Due to the extremely high ∆𝑉 costs associated with chang-

ing orbital inclination once the constellation is launched, it is important to select an

appropriate inclination at the design phase to ensure that all potential latitudes of

interest will be included within the coverage range.

Figure 6-7 shows a histogram of the selected constellation inclinations for a set of
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5049 non-dominated designs. This set was generated by combining the output of 36

optimization runs of the ReCon code, which were carried out on the MIT Supercloud

over the course of several weeks. The histogram is normalized so that the y-axis values

are presented by probability, meaning that the sum of the bar heights is equal to 1. By

default, the ReCon code implements constraints on the possible orbital inclinations

selected by the model, limiting these to a range of 50° to 130°, which is reflected in

the distribution shown here. This ensures that the constellation designs generated by

the ReCon code will always supply coverage over a minimum latitude range of 50°N

to 50°S, which accounts for the latitudes of around 96.9% of the generated target

locations used to optimize and evaluate designs.

Figure 6-7: Histogram of the selected orbital inclinations for 5049 non-dominated
constellation designs collated from 36 optimization runs of the ReCon code

It can be seen from Figure 6-7 that the selected orbital inclinations of this set
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of 5049 optimized constellation designs fall in three clusters. The largest cluster is

around an inclination of 60°, meaning that these constellations are in prograde orbits

supplying ground coverage between latitude limits of approximately 60°N and 60°S.

As the northernmost target in the decks used to optimize constellation designs is

located at 60.44°N and the southernmost target is located at 43.72°S, these orbits

are expected to provide full coverage of the latitude range of interest. The second

largest cluster of designs is around an inclination of 120°, meaning that these con-

stellations are in retrograde orbits, also supplying ground coverage between latitude

limits of approximately 60°N and 60°S and therefore covering the full latitude range

of interest. Although these two clusters supply similar ranges of ground coverage,

it is unsurprising that the 120° inclination is selected less frequently out of the two

options, due to the greater ∆𝑉 costs of launching into a retrograde orbit. The third

cluster of designs is around 85–90° inclination, meaning that these are near-polar or-

bits which will supply coverage of all or almost all latitudes. Although this might be

beneficial if unexpected events occurred outside of the latitude range for which the

constellation coverage was designed, if all events occur within the expected latitude

range, this means that some time is wasted in orbiting near the poles over regions for

which no coverage is desired.

Figure 6-8 shows the orbital altitudes for the set of six candidate RGT orbits,

plotted for 60° and 120° inclinations: the two most common clusters of non-dominated

designs from Figure 6-7. The n/2 ground tracks are plotted by the number of orbits

per day in this figure, so a 27/2 RGT is equivalent to 13.5 orbits per day, a 29/2 RGT

is equivalent to 14.5 orbits per day, and a 31/2 RGT is equivalent to 15.5 orbits per

day. Figure 6-8 illustrates how the number of orbits per day decreases as the semi-

major axis of the orbit (and therefore the orbital altitude) is increased. To achieve a

higher number of orbits per day, a lower orbital altitude must be selected.

Examining specific numbers from Figure 6-8, it can be observed that 13 orbits

per day occurs for an orbit at an altitude of 1210 km for 60° inclination and 1285 km
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Figure 6-8: Six candidate RGT orbits plotted at a prograde inclination of 60° (in
blue) and a retrograde inclination of 120° (in red), showing the increase in orbits per
day with decreasing orbital altitude

for 120° inclination. To move to the next RGT and increase the number of orbits to

13.5 per day (a 27/2 RGT) would require a decrease in altitude to 1018 km for 60°

inclination and 1098 km for 120° inclination. To increase the number of orbits all the

way to 15.5 per day (a 31/2 RGT, at the other extreme of the RGT candidate list)

would require a decrease in altitude to 353 km for 60° inclination and 454 km for 120°

inclination.

To evaluate how the performance of reconfigurable constellation designs varies

against a range of events of interest, an example constellation design was selected

from the non-dominated set of optimized designs. This design consisted of 18 satel-

lites in 18 orbital planes, with an inclination of 61.26°, a GOM altitude of 505.17

km and a RGT of 15/1. These parameters were selected as broadly representative
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Figure 6-9: A scatter plot showing the
normalized performance values achieved
by a sample constellation against 9765
events of interest from 500 target decks

Figure 6-10: An averaged plot of the val-
ues from Figure 6-9, showing the mean
normalized performance by latitude for
the sample constellation

of the largest cluster of designs around 60° inclination. In examining the set of 5049

non-dominated optimized reconfigurable constellation designs collated from multiple

optimization runs on the MIT Supercloud, it was discovered that the 15/1 RGT was

selected in around 81% of cases, and so this was also considered to be the most rep-

resentative RGT orbit when making the selection of an example design for initial

evaluation.

The constellation was evaluated against 500 target decks consisting of 9765 indi-

vidual events of interest. The resulting normalized performance values (where 0 =

no utility gained and 1 = coverage that perfectly matches the desired revisit cadence

and resolution for the entire period of interest) are shown as a scatter plot in Figure

6-9.

Examining Figure 6-9, it can be seen that the performance values appear to follow

a roughly symmetric distribution about 0° of latitude. Fewer events of interest occur

in the southern hemisphere (due to the lower population of this hemisphere, there is

a proportional lower economic impact of disasters), but symmetric peaks in perfor-

mance can be seen at approximately ±7°, ±25° and ±35° before the southern latitude

distribution peters out. After detecting this pattern in Figure 6-9, the performance
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values were averaged by latitude to arrive at the distribution of the mean normalized

values shown in Figure 6-10. The distribution of the performance by latitude is much

more apparent in this figure, and the symmetric peaks and troughs in performance

values are clearly visible. The mean normalized performance also increases to its

highest point at the right-hand side of Figure 6-10 as the target latitudes occur in

closer proximity to the orbital inclination, following the predicted result from the

geometry of the orbit.

Upon considering the symmetric nature of the peaks seen in the normalized per-

formance when it was plotted against latitude, it was hypothesized that this might

relate in some way to the positioning of the satellite ground tracks of the constella-

tion. Ground tracks of the subsatellite point (the ground location directly below the

satellite’s position) are shown in Figure 6-11, for the example design using a 15/1

RGT orbit at 61.26° inclination.

Figure 6-11a shows a plot (in red) of the ground track for a single satellite in the

18-satellite constellation, completing 15 orbits over the course of one day. This figure

shows the pattern of where an individual satellite crosses its own previous ground

track traces, over the course of one day.

Figure 6-11b shows a plot (in blue) of the ground track for a single orbit of all 18

satellites in the constellation, occurring over a time period of around 95.7 minutes.

This figure shows the pattern of where each satellite crosses the ground track traces

of the other satellites in the constellation, over the course of a single orbit.

Both Figures 6-11a and 6-11b show a characteristic ‘mesh’ ground track pattern,

where the geographical area over which the satellites pass is divided by the ground

track lines into a series of approximately diamond-shaped areas. Each corner of these

diamonds is defined by ‘crossover’ points, where two adjacent ground tracks cross one

another’s path. Figure 6-12 shows a magnified view from Figure 6-11a, labelling an
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(a) One-day ground track of a single satellite (b) One-orbit ground track of 18 satellites

Figure 6-11: Satellite ground tracks for a 18-satellite constellation in a 15/1 RGT
orbit at 61.26° inclination

ascending pass (where the satellite is passing from south to north) and an adjacent

descending pass (where the satellite is passing from north to south) and the crossover

point where these two paths intersect.

These crossover points are seen both where a satellite crosses its own ground

track (which will be referred to as an ‘individual satellite crossover point’ from here

onwards) and where a satellite crosses the ground tracks of other satellites in the

constellation (which will be referred to as a ‘multi-satellite crossover point’ from here

onwards), and these both occur at symmetric latitudes north and south of the equa-

tor. The geometry of these ground track plots and the symmetry of the latitudes at

which crossovers occur led to the theory that the improved mean performance values

seen in Figure 6-10 might be found at latitudes where both ascending and descending

passes cross above the same locations. The improvement in coverage performance

would be explained by the opportunity of acquiring twice as many satellite passes of

targets of interest that are located at these latitudes

In order to test the theory that the peaks in normalized performance are occurring

at crossover latitudes, Figure 6-13 was created to show an overlay of the crossover

latitudes of the ground tracks of the 18-satellite constellation in a 15/1 RGT (shown
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Figure 6-12: Zoomed-in view of ground tracks from the upper-right quadrant of Figure
6-11a, highlighting a ‘crossover’ point over which both ascending and descending
satellite passes occur

in Figures 6-11a and 6-11b) onto the plot showing normalized performance against

latitude (from Figure 6-10). Examining the performance peaks in Figure 6-13a, it

can be observed that the individual satellite crossover latitudes (shown in red) where

a satellite passes over its own ground track traces over the course of a day intersect

with almost every peak on the plot, except for the broadest lowest pair of peaks seen

at approximately ±6–10° of latitude. However, the peaks seen at around ±24°, ±40°,

+49°, +55° and +60° all correlate strongly with the positions of crossover latitudes

from Figure 6-11a. Examining the performance of targets located within ±1° of the

individual satellite crossover latitudes plotted in red, it was found that these areas

have a mean performance that is 15.1% higher than that achieved across all other
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latitudes.

(a) Individual satellite crossover latitudes (b) Multi-satellite crossover latitudes

Figure 6-13: The latitudes of the crossover points shown in Figure 6-11 are overlaid
onto the mean normalized performance by latitude shown in Figure 6-10

Examining the performance peaks in Figure 6-13b, it can be observed that the

multi-satellite crossover latitudes (shown in blue) where a satellite crosses the ground

track traces of other satellites in the constellation over the course of a single orbit

intersect with some but not all of the peaks on the plot. Unlike Figure 6-13a, in

Figure 6-13b there is a crossover within the broadest lowest peak around ±8°, and

there is also a reasonable correlation between performance peaks and crossover lat-

itudes at around ±40° and +60°. However, the crossover points in Figure 6-13b do

not correlate well with the performance peaks seen at approximately ±24°, +49° and

+55°. Examining the performance of targets located within ±1° of the multi-satellite

crossover latitudes plotted in blue, it was found that these areas have a mean perfor-

mance that is 7.98% higher than that achieved across all other latitudes.

The conclusion drawn from the two plots shown in Figures 6-13a and 6-13b is that

the combination of both types of crossover points can explain the improved perfor-

mance, but neither type of crossover can explain the discrepancy alone. In order to

verify the existence of this correlation with an additional case, an alternative constel-

lation design was selected for assessment. This design also consists of an 18-satellite
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constellation with 18 orbital planes, but differs from the previous example design with

a retrograde inclination of 122.89°, a GOM altitude of 912.85 km and a RGT of 14/1.

These design parameters were chosen to provide a different set of both individual

and multi-satellite crossover points, and the performance of this constellation design

was assessed against a different set of 500 target decks (containing 9773 individual

events), in order to assess whether the same improved mean performance is seen with

a new and distinct set of both types of crossover latitudes.

Figure 6-14 was created to show an overlay of the crossover latitudes of the ground

tracks of the selected 18-satellite constellation design in a 14/1 RGT and at a 122.89°

retrograde inclination onto the mean normalized performance of this constellation

by latitude. This provides a comparison to the plots shown in Figure 6-13 for the

previously-assessed 15/1 RGT constellation design at a 61.26° prograde inclination.

(a) Individual satellite crossover latitudes (b) Multi-satellite crossover latitudes

Figure 6-14: The latitudes of 14/1 RGT crossover points overlaid onto the mean
normalized performance by latitude achieved by the second sample constellation

Examining the performance peaks in Figure 6-14a, it can be observed that the in-

dividual satellite crossover latitudes where a satellite passes over its own ground track

(shown in red) intersect with almost every peak on the plot, except for one minor

peak seen at around -40° latitude. The peaks seen at around ±9°, ±25°, ±37°, +45°

and +51–57° all correlate strongly with the positions of crossover latitudes shown.
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Examining the performance of targets located within ±1° of the individual satellite

crossover latitudes plotted in red, it was found that these areas have a mean perfor-

mance that is 10.2% higher than that achieved across all other latitudes.

Examining the performance peaks in Figure 6-14b, it can be observed that the

multi-satellite crossover latitudes where a satellite crosses the ground tracks of other

satellites in the constellation (shown in blue) also intersect with almost every peak

on the plot, except for the peaks seen at around ±37° latitude. The peaks seen at

around ±9°, ±25°, -40°, +46° and +51–57° all correlate strongly with the positions of

crossover latitudes shown. In some cases the crossover latitudes shown in Figure 6-14b

fall extremely close to the crossover points highlighted in Figure 6-14a, which may

account for the breadth of some of the performance peaks, where the actual tip of the

peak falls between two different lines. Examining the performance of targets located

within ±1° of the multi-satellite crossover latitudes plotted in blue, it was found that

these areas have a mean performance that is 6.91% higher than that achieved across

all other latitudes.

The conclusion drawn from the two plots shown in Figures 6-14a and 6-14b is that

once again, the combination of both types of crossover points (a satellite crossing its

own ground track and a satellite crossing the ground tracks of other satellites in the

constellation) occurring at certain latitudes correlates strongly with the position of

all of the peaks where higher performance is observed. However, as was also seen

in Figures 6-13a and 6-13b, neither type of crossover can account for the full set of

performance peaks. Both crossover types must be considered together to account for

the correlation between higher performance and the latitudes at which ascending and

descending passes occur over the same ground location.

The same conclusions were drawn from the evaluation of a 15/1 RGT orbit with a

prograde inclination of 61.26° and a 14/1 RGT orbit with a retrograde inclination of

122.89°. When assessing the individual satellite crossover latitudes, a higher perfor-
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mance improvement was seen (15.1% improvement for the 15/1 prograde RGT and

10.2% for the 14/1 retrograde RGT) compared to the multi-satellite crossover lati-

tudes (7.98% for the 15/1 prograde RGT and 6.91% for the 14/1 retrograde RGT).

The need to account for both types of crossover latitudes at which the improved per-

formance is observed means that the number and location of crossover points will

be determined by a range of different design parameters for the constellation under

consideration. Although fixed values for all or most of these parameters are likely to

be selected at the point where the constellation design is finalized prior to launch, the

costs and ability to alter each value during the operational phase of the mission will

vary widely according to the nature of the variable, but any capability of deliberately

altering these latitudes could be extremely beneficial to constellation performance.

6.2.1 Adjustment of crossover latitudes

The locations at which crossover points occur are defined by a number of the constella-

tion design parameters. These include the orbital inclination (as shown in Figures 6-5

and 6-6), which affects the upper and lower limits of latitude coverage as previously

described, and also whether it is a prograde or retrograde inclination, which affects

the width (in terms of longitude) of the ground track for each orbit depending on

whether the orbit is moving in the same direction as the Earth’s rotation or against it.

The total number of satellites in the constellation, how many orbital planes they are

launched into, and the spacing in RAAN between these planes are additional factors

that affect these latitudes, determining how many other ground traces each satellite

will cross during each orbit and how far apart they are spaced, primarily affecting the

multi-satellite crossover points (as shown in Figure 6-11b). The choice of RGT orbit

is another important factor, determining how many orbits per day each satellite will

complete before beginning to repeat the same ground track, and therefore how many

times per day each satellite will cross its own ground trace and with what spacing,

primarily affecting the individual satellite crossover points (as shown in Figure 6-11a).

In past work using the ReCon codebase, all of these parameters are set during
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the design phase of the mission, and none of the values can be changed during the

operational lifetime of the satellites. Launching new satellites to augment the con-

stellation would be possible after the start of the mission, but would entail extremely

high monetary costs to build and launch additional satellites, especially if this was

not a planned option factored in during the initial manufacturing of the constellation.

If augmenting the size of the constellation entailed changing the spacing of the orbital

planes, this would also require additional ∆𝑉 usage, curtailing the budget available

for reconfiguration and likely diminishing future performance due to the reduction

in maneuvering options. Changing the orbital inclination during operations is also

theoretically possible but would result in extremely high ∆𝑉 costs, likely consum-

ing all or most of the ∆𝑉 budget assigned for satellite reconfiguration in response

to events. The most feasible parameter to change during the operational lifetime of

a reconfigurable constellation is the choice of RGT orbit used to achieve persistent

coverage over areas of interest. Changing RGT would require a change in orbital

altitude, making this another parameter change which would necessitate use of the

∆𝑉 budget, but this would be less costly than other maneuvers that involve the need

to change orbital planes. Changing the orbital altitude will also have the benefit of

primarily affecting the individual satellite crossover latitudes, which showed greater

performance improvements than the multi-satellite crossover latitudes in the two cases

evaluated in Section 6.3 and plotted in Figures 6-13 and 6-14.

To examine the feasibility of changing between different RGT options after the

launch of the constellation, the six RGT orbits used in the existing ReCon codebase

were adopted as the candidate orbits between which maneuvers could be carried out

during the operational phase of the mission. These orbits were previously outlined

in Table 6.1, consisting of three n/1 orbits that orbit n times in a single day before

beginning to repeat the same ground track (15/1, 14/1, and 13/1 RGTs), and three

n/2 orbits that orbit n times over 2 days before repeating the same ground track

(31/2, 29/2, and 27/2 RGTs). This set of orbits limits the range of ROM altitudes

to between 320.89 km (for a 31/2 orbit at 0° inclination) and 1338.2 km (for a 13/1
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orbit at 180° inclination), providing candidates across the spectrum of LEO options.

(a) 31 orbits in 2 days (b) 15 orbits in 1 day

(c) 29 orbits in 2 days (d) 14 orbits in 1 day

(e) 27 orbits in 2 days (f) 13 orbits in 1 day

Figure 6-15: Repeating ground tracks plotted for a single satellite in each of the six
RGT candidate orbits, assuming a 60° prograde orbital inclination
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Figure 6-15 shows plots of the repeating ground tracks for an individual satellite

in each of these six orbits, in order of altitude from lowest (31/2, shown in Figure

6-15a) to highest (13/1, shown in Figure 6-15f). A prograde orbital inclination of

60° was selected for the creation of these plots, due to the prevalence of inclination

values around this number in non-dominated constellation designs, and the fact that

this inclination provides coverage of essentially the full range of target latitudes of

interest. Figures 6-15a, 6-15c and 6-15e show the n/2 RGTs of 31/2, 29/2 and 27/2

respectively, and are plotted over a period of 2 days to show the full ground track.

Figures 6-15b, 6-15d and 6-15f show the n/1 RGTs of 15/1, 14/1 and 13/1 respec-

tively, and are plotted over a period of 1 day, again showing the full extent of the

repeating ground track.

It is immediately clear from examining Figure 6-15 that n/2 RGT orbits feature

a greater number of crossover points than the n/1 RGT orbits. This is due to the

difference in ground tracks between the first and second day for the n/2 RGT or-

bits; although there are a greater number of crossover points, each of these points

is only revisited every two days, rather than every day as in the n/1 RGTs. The

number of crossover points declines as the orbital altitude increases, with 28, 26 and

24 crossover latitudes seen for the 31/2, 29/2 and 27/2 orbits respectively, and 13,

12 and 11 crossover latitudes seen for the 15/1, 14/1 and 13/1 orbits respectively, for

the set of prograde orbits (at 60° inclination) plotted in Figure 6-15.

After comparing ground tracks for different orbital inclinations, it was discovered

that the number of crossover latitudes for retrograde orbits is slightly higher than the

number achieved during prograde orbits, due to the additional circumnavigation of

the Earth achieved each day. A comparison of the number of crossover latitudes that

occur during each RGT period and per day for each RGT orbit is presented in Table

6.2, showing values for both prograde and retrograde inclinations.

As mentioned in the discussion of Figures 6-5 and 6-6, prograde and retrograde
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Table 6.2: Number of individual satellite crossover latitudes that occur per RGT
period and per day, for prograde vs retrograde orbits

RGT

Prograde
crossovers

during RGT
period

Prograde
crossovers
per day

Retrograde
crossovers

during RGT
period

Retrograde
crossovers
per day

31/2 28 14 32 16
15/1 13 13 15 15
29/2 26 13 30 15
14/1 12 12 14 14
27/2 24 12 28 14
13/1 11 11 13 13

orbits complete a different number of circumnavigations compared to the number of

orbits per day. For prograde orbits, as the Earth completes one full rotation per day

in the same direction as the orbits, each satellite completes one less circumnavigation

per day compared to its number of orbits during that time. For example, a satellite

in a prograde 15/1 RGT will complete 14 full circumnavigations of the Earth during

15 orbits over the course of one day, as each complete orbit passes over only 336° of

longitude. For retrograde orbits, as the Earth is rotating in the opposite direction to

the one in which the orbits are travelling, each satellite completes one more circum-

navigation per day compared to its number of orbits during that time. For example,

a satellite in a retrograde 15/1 orbit will complete 16 full circumnavigations of the

Earth during 15 orbits over the course of one day, as each complete orbit passes over

384° of longitude.

Due to this additional circumnavigation, the number of crossover latitudes for

retrograde orbits was found to be slightly higher compared to the number observed

for prograde orbits. This increase can be seen by comparing the listed number of

crossovers for each RGT in Table 6.2. The number of crossover latitudes seen for

retrograde n/2 orbits increased to 32, 30 and 28 for the 31/2, 29/2 and 27/2 RGTs

respectively, and to 15, 14 and 13 for the 15/1, 14/1 and 13/1 orbits respectively:

a consistent increase for all six RGTs of 2 additional crossover latitudes per day for

retrograde vs prograde orbits.
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(a) Day 1 of 2-day RGT (b) Day 2 of 2-day RGT

Figure 6-16: Ground tracks for a 60° inclination 31/2 RGT orbit, divided into the
first and second days of the 2-day repeating ground track

Figure 6-16 shows the ground tracks for the 31/2 RGT (as shown in Figure 6-15a),

separated out into the first day of the orbit in Figure 6-16a and the second day of the

orbit in Figure 6-16b. This illustrates how the frequency of crossover points is very

similar to the n/1 plots when considered on a daily basis. It can also be observed

that the crossover points are not symmetric in latitude or longitude for the n/2 RGT

when separated out by individual days, though they are approximately rotationally

symmetric. Although there is an overall higher number of crossover latitudes for n/2

orbits, the lower revisit cadence for this orbit may not lead to performance gains

that are as consistent as the n/1 orbits in achieving coverage with a high level of

persistence over a specific ground location.

Figure 6-17 separates out the individual satellite crossover latitudes from the full

repeating ground tracks shown in Figure 6-15, illustrating the number and distribution

of these crossover points for each RGT orbit by orbital altitude (at a 60° inclination).

This illustrates which regions possess the possibility of improved crossover latitude

performance for each RGT candidate, and how these locations vary between the

different orbit options. For example, the 15/1 (plotted in orange) and 13/1 (plotted

in pale blue) RGTs both have a crossover latitude at the equator, but the 14/1
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(plotted in purple) RGT has the largest gap between crossover points around this

area, with the nearest pair of crossovers occurring at ±12.75° latitude. A satellite

operator who wanted to ensure improved crossover coverage over equatorial locations

might take these crossover points into consideration when making the initial selection

of which RGT to use for the constellation. This principle can be applied to any

crossover latitude of potential higher value to the operator. Although a reconfigurable

constellation can maneuver to achieve persistent coverage over any desired location

(within the latitude limits determined by the orbital inclination) by aligning its RGT

over the point in question, if a constellation operator wants to ensure the availability

of improved crossover coverage over specific latitudes of particular interest, this could

motivate the selection of certain RGT candidates over others, as long as there is a

crossover available in the desired region.

The difference in altitude between RGT candidates must be considered to assess

the feasibility of maneuvering between different RGT orbits during a constellation’s

operational phase. Figure 6-17 shows the crossover latitudes for each RGT on the

y-axis, with the orbital altitudes for each candidate plotted along the x-axis, giving

an initial idea of the approximate altitude changes required to switch between these

six orbits at a 60° inclination.

Table 6.3 shows the required altitude changes in more detail, listing the altitude

differences between all of the six candidate RGT orbits (given in this table as the mean

altitude change averaged across all orbital inclinations from 0–180°). Altitude changes

between adjacent pairs of orbits vary from a minimum of 149.96 km difference between

the 31/2 and 15/1 RGTs (the lowest two RGT candidates in terms of altitude) up to

189.47 km between the 27/2 and 13/1 RGTs (the highest altitude RGT candidates

considered in this work). For the sake of completeness, the altitude changes required

to move between any of the six orbits are included in this table, up to a difference

of 842.92 km that would be needed to move from the lowest 31/2 RGT all the way

up to the highest 13/1 RGT orbit. These larger altitude changes are not expected to
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Figure 6-17: Individual satellite crossover latitudes plotted by orbital altitude for all
six candidate RGT orbits at 60° inclination

be feasible within the ∆𝑉 budget assigned to any of the reconfigurable constellation

designs generated by the present version of the ReCon code, although future work

could consider some of these more extensive transfers if less strict constraints on the

design are found to be a realistic possibility.

Table 6.3: Mean altitude changes that would be required to move between any of the
six candidate RGT orbits
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Table 6.4 shows the ∆𝑉 amounts that would be required to achieve the altitude

changes needed to move between different RGT orbits. These ∆𝑉 values are calcu-

lated for the average altitude changes shown in Table 6.3, and will vary by up to ±5%

depending on the selected orbital inclination. ∆𝑉 amounts to move between adja-

cent pairs of orbits vary from a minimum of 83.32 m/s to move between the 31/2 and

15/1 RGTs up to a maximum of 91.44 m/s to move between the 27/2 and 13/1 RGTs.

For the sake of completeness, ∆𝑉 amounts to move between any of the six RGT

orbits are included in Table 6.4, but it is clear from the values shown that larger

transfers across several orbits will not be feasible within the current ∆𝑉 budget allo-

cated for constellation reconfiguration. In continuing to investigate the opportunity

presented by the improved performance seen at crossover latitudes, the option of ma-

neuvering will be limited to considering transfers only between adjacent RGT orbits.

Table 6.4: Mean ∆𝑉 changes that would be required to move between any of the six
candidate RGT orbits

The upper limit on the ∆𝑉 budget that can be assigned for reconfiguration in the

ReCon code is 1000 m/s, which would mean that moving between two adjacent RGTs

uses a minimum of 8–9% of this resource for a single transfer. Many non-dominated

constellation designs are optimized with even lower values than this limit, due to

potential cost savings in allotting a lower ∆𝑉 budget to the satellites. The mean

number of events expected over a 5-year mission lifetime is around 20, so using 8–9%

or more of the ∆𝑉 budget to respond to a single event will not be possible for every

location of interest. However, maneuvering between RGTs may still present a useful
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option for satellite operators to appraise in cases where achieving coverage of certain

targets is considered to be of extremely elevated value above the baseline level of

desired coverage.

Table 6.5 shows mean altitude changes (averaged across all inclinations) to the

adjacent orbits above and below each candidate. This table combines data from

Tables 6.3 and 6.4 to highlight the two maneuvering options left under consideration

for each RGT, either moving up or down the list by one candidate.

Table 6.5: Mean altitude changes and ∆𝑉 required to change between adjacent RGT
orbits

For the lowest-altitude orbit of a 31/2 RGT, the only option presented in Table

6.5 is to increase altitude to a 15/1 RGT, to avoid adding additional candidate orbits

to the list at this stage. In addition, the lower orbit altitude required to enter a 16/1

RGT would potentially (depending on the orbital inclination for the constellation in

question) contravene the minimum altitude constraint of 300 km imposed in the Re-

Con codebase. This means that even if extra RGT candidate orbits are considered for

investigation in future work to expand the options available to satellite operators, the

31/2 RGT is the lowest-altitude option that does not violate the design constraints

at some of the possible orbital inclination values, and so expansion to higher-altitude

orbits should instead be considered, or investigation of other RGT cadences such as

n/3 orbits.
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For the highest-altitude orbit of a 13/1 RGT, the only option presented in Table

6.5 is to decrease altitude to a 27/2 RGT, again avoiding the addition of extra candi-

dates at this stage, and recognizing that a cutoff must be imposed at some point in the

list of maneuvering options. It can also be observed from Table 6.5 that the ∆𝑉 re-

quired to change to an adjacent RGT increases as the altitudes of the orbits increase,

and so adding additional higher-altitude RGT options would require higher quantities

of ∆𝑉 to maneuver into these orbits. As the listed ∆𝑉 quantities of 83.32–91.44 m/s

are already impractically high for universal application in response to every event of

interest while staying within the available ∆𝑉 budget for constellation reconfigura-

tion, this set of six orbits is considered to provide a reasonable feasibility study on

the option of maneuvering between RGTs for a high-value subset of targets during

the operational phase of the mission. If changing RGTs proves to be of sufficient ben-

efit for adoption as a decision option for satellite operators, future work may choose

to expand this list of options as far as the ∆𝑉 requirements may be deemed attainable.

Figure 6-18 shows the effect of different orbital inclinations on the change in alti-

tude that is required to transition between adjacent pairs of RGT orbits. As shown

in the legend of this figure, the differences in altitude are unaffected by the direction

of the transfer: moving from a 31/2 to a 15/1 RGT requires the same altitude change

as moving from a 15/1 to a 31/2 RGT. The largest altitude changes are required at

the lowest orbital inclination; for example, moving from a 31/2 RGT to a 15/1 RGT

at 0° inclination requires an altitude change of 155.2 km, but transferring between

the same two orbits at 180° inclination requires an altitude change of only 144.6 km.

Figure 6-19 shows the effect of different orbital inclinations on the amount of ∆𝑉

required to transition between adjacent pairs of RGT orbits. These ∆𝑉 values are

based on carrying out a Hohmann transfer between the two circular orbits, which will

provide a lower bound on the amount of ∆𝑉 required. If a drift orbit is required as

part of the transfer to change the phasing of the RGT over a specific ground location

of interest, the ∆𝑉 required will be higher. As shown in the legend of Figure 6-19, the
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amount of ∆𝑉 required for a straightforward transfer between two RGTs is unaffected

by the direction of the transfer: a Hohmann transfer from a 31/2 to a 15/1 RGT uses

the same amount of ∆𝑉 as a transfer from a 15/1 to a 31/2 RGT.

Figure 6-18: Effect of inclination on al-
titude change required to transition be-
tween adjacent pairs of RGT orbits

Figure 6-19: Effect of inclination on ∆𝑉
required to transition between adjacent
pairs of RGT orbits

The largest ∆𝑉 requirements to change RGTs occur at the lowest orbital incli-

nations, where the largest altitude changes are required to move between adjacent

candidate orbits. For example, moving from a 31/2 RGT to a 15/1 RGT at 0° in-

clination (requiring an altitude change of 155.2 km) takes a ∆𝑉 of 87.8 m/s, but a

transfer between the same two orbits at 180° inclination (with an altitude change of

144.6 km) takes a ∆𝑉 of 78.4 m/s. The impact of inclination is slightly greater for

lower orbits, with a larger ∆𝑉 difference of 9.4 m/s observed between the highest

and lowest ∆𝑉 requirements for the 31/2 ↔ 15/1 transfer (plotted in dark blue in

Figure 6-19), and a smaller ∆𝑉 difference of 7.4 m/s observed between the highest

and lowest ∆𝑉 requirements for the 27/2 ↔ 13/1 transfer (plotted in orange in Figure

6-19).

In summary, the location of crossover latitudes is affected by multiple interacting

design variables, including the total number of satellites in the constellation, the num-

ber of orbital planes and the RAAN spacing between them, the orbital inclination
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(and whether it is a prograde or retrograde orbit), and the choice of RGT orbit. Of

these, the most feasible variable to adjust once the constellation is already launched

and operational is the choice of RGT orbit.

With the current constraints imposed for the optimization of reconfigurable con-

stellation designs, the largest possible realistic ∆𝑉 budget for reconfiguration is 1000

m/s. To stay within this maneuvering budget, the achievable RGT changes are limited

to switching between adjacent pairs of RGT orbits. The mean ∆𝑉 (averaged across

all orbital inclinations) for these transfers between neighboring RGTs varies between

83.32 and 91.44 m/s, with the higher-cost transfers occurring at the higher-altitude

pairs of orbits. Considering ∆𝑉 costs across all orbital inclinations, the lowest-∆𝑉

transfer occurs for the highest-inclination lowest-altitude pairing, requiring 78.44 m/s

to transfer between 31/2 and 15/1 RGTs at 180° inclination. The highest-∆𝑉 trans-

fer between adjacent RGTs occurs for the lowest-inclination highest-altitude pairing,

requiring 94.91 m/s to transfer between 27/2 and 13/1 RGTs at 0° inclination.

Even with the highest available maneuvering budget of 1000 m/s, each transfer

between adjacent RGTs will use up at least 7.8–9.5% of the constellation’s ∆𝑉 . For

constellation with smaller amounts of ∆𝑉 allocated for reconfiguration, this percent-

age will be even higher. The mean number of events of interest over a 5-year mission

lifetime is 20, with a range of 14–26 events modelled within the array of 5-year target

decks generated for use in optimizing constellation designs and assessing performance

against a range of possible scenarios. This makes it clear that maneuvering between

RGTs is not a feasible option in response to every event of interest during the mission

lifetime. However, the cost of such a transfer is not so high as to entirely eliminate

it from consideration for use in a subset of targets. Adding this maneuver as an

available decision option for satellite operators in the case of occasional high-value

targets provides the possibility of increasing constellation performance by a significant

amount in extraordinary circumstances. This would allow for constellation operators

to assess the desired prioritization between the additional ∆𝑉 costs as a proportion

259



of the remaining reconfiguration budget and the expected performance improvement

of 10–15% in situations where exceptional coverage is required.

6.2.2 Effect of elevation angle on crossover latitude coverage

The selection of the minimum elevation angle 𝜖𝑚𝑖𝑛 has a significant effect on the

ground coverage achieved by a constellation. The spacecraft elevation angle 𝜖 is the

angle between the local horizontal plane at a ground location and the elevation at

which the spacecraft is observed in the sky, where 90° would be a direct overhead pass.

For optical imaging applications, a minimum elevation angle of 45–60° is generally

required to acquire clear ground imagery that is not obscured by topographic features

or heavily built-up areas.

Figure 6-20 illustrates the geometry of the angular relationships between a satel-

lite, the subsatellite point (SSP) on the Earth’s surface, a target location of interest

on the Earth’s surface, and the Earth’s center. The satellite is shown at the right of

the figure, with an orbital altitude of h above the SSP, and maximum slant range of

𝐷𝑚𝑎𝑥 to the outer or true horizon. A target location is shown on the Earth’s surface,

with a slant range D to the satellite, and an elevation angle of 𝜖 measured at the

target between the local horizontal plane and the satellite. 𝑅𝐸 is the radius of the

Earth, and the Earth central angle 𝜆 is measured at the Earth’s center between the

SSP and the target. The nadir angle 𝜂 is measured at the satellite between the SSP

(in the nadir direction from the spacecraft) and the target. The maximum Earth

central angle 𝜆𝑚𝑎𝑥 is also shown, measured at the Earth’s center between the SSP

and the outer horizon, and the angular radius of the Earth 𝜌, measured at the satellite

between the Earth’s center and the outer horizon.

The angular radius of the Earth, 𝜌, and the maximum Earth central angle, 𝜆𝑚𝑎𝑥,

can be calculated from the Earth’s radius 𝑅𝐸 and the satellite altitude h as follows:

sin 𝜌 = cos𝜆𝑚𝑎𝑥 =
𝑅𝐸

𝑅𝐸 + ℎ
(6.10)
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Figure 6-20: Diagram of the angular relationships between a satellite, a target location
on the Earth’s surface, and the Earth’s center

The slant range distance to the outer horizon, 𝐷𝑚𝑎𝑥, may then be calculated using

𝑅𝐸 and the value calculated for 𝜌:

𝐷𝑚𝑎𝑥 =
𝑅𝐸

tan 𝜌
(6.11)

Depending on whether the Earth central angle 𝜆, the elevation angle 𝜖 or the nadir

angle 𝜂 is known, the unknown angles may be calculated using a combination of the

following equations:

If 𝜂 is known, find 𝜖 using: cos 𝜖 =
sin 𝜂

sin 𝜌
(6.12)

If 𝜖 is known, find 𝜂 using: sin 𝜂 = cos 𝜖 sin 𝜌 (6.13)

If 𝜆 is known, find 𝜂 using: tan 𝜂 =
sin 𝜌 sin𝜆

1 − sin 𝜌 cos𝜆
(6.14)

The remaining angle may be calculated using: 𝜂 + 𝜖 + 𝜆 = 90∘ (6.15)

Once the Earth central angle 𝜆 and the nadir angle 𝜂 are both known, the slant range
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D between the satellite and the target can be calculated as follows:

𝐷 = 𝑅𝐸
sin𝜆

sin 𝜂
(6.16)

If a particular minimum elevation angle 𝜖𝑚𝑖𝑛 is selected for the desired satellite cover-

age and used to find the Earth central angle 𝜆, this can be used to estimate the swath

width 𝑤𝑠𝑤𝑎𝑡ℎ of satellite coverage (the distance between the SSP and target location)

that will be achieved with the specified parameters as follows:

𝑤𝑠𝑤𝑎𝑡ℎ = 2𝜋𝑅𝐸
𝜆

360
(6.17)

Equation 6.17 assumes that 𝜆 is calculated in degrees; if it calculated in radians, the

swath width may be calculated even more simply by multiplying 𝜆 by 𝑅𝐸.

Legge compared the Value of Reconfigurability (VoR, which he defined as the sav-

ing in system cost for a reconfigurable constellation compared to an iso-performance

static constellation) at a minimum elevation angle of 45° and 60°, finding that VoR

was around twice as high for an increased 𝜖𝑚𝑖𝑛 value of 60°. Reconfigurability was

found to provide a significantly higher benefit when a higher 𝜖𝑚𝑖𝑛 constraint is applied,

as this reduces the usable ground footprint of each satellite, worsening the coverage

that can be provided by static constellation designs. Legge carried out a sensitivity

analysis of eight design parameters and constraints and found that the VoR was most

sensitive to changes in the minimum elevation angle. He adopted a minimum eleva-

tion angle of 60° with the justification that this would ensure high-quality satellite

coverage even in areas with tall buildings or drastic variations in terrain elevation,

but hypothesized that further increasing 𝜖𝑚𝑖𝑛 above 60° would lead to even greater

increases in VoR.

Decreases in the requirement for 𝜖𝑚𝑖𝑛 lead to significant increases in the satellite

ground footprint within which usable coverage is achieved. This leads to substan-

tial improvements in coverage and therefore constellation performance, especially for
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static designs, which have no way of maneuvering to improve coverage outside of the

static ground footprint for the chosen orbit. Reconfigurable constellation designs are

less affected by the choice of 𝜖𝑚𝑖𝑛, due to the fact that most of the satellite passes over

areas of interest are achieved by maneuvering into RGTs, which ensure that the SSP

intersects directly with the target location (where 𝜖 is 90°, and 𝜆 and 𝜂 are both 0°).

However, reconfigurable constellation performance still sees some improvement when

minimum elevation angle is reduced, as some coverage is achieved for each event by

satellites which do not reconfigure into RGTs and remain in GOM throughout the

event period of interest, and the performance of these satellites will be improved by

increasing the footprint of usable coverage.

Considering the possibility of maneuvering between adjacent RGT orbits as de-

scribed in Section 6.3.1, it was decided to conduct an evaluation of the extent of

crossover latitude coverage that can be achieved when different levels of constraint

are placed upon the minimum elevation angle for usable satellite coverage. A 60°

orbital inclination was assumed for all RGT orbits, using the set of six ground tracks

shown in Figure 6-15. The method of swath width estimation presented in Equation

6.17 was incorporated into approximating the extent of the latitudinal coverage that

can be achieved at each crossover point. Coverage was assessed for latitudes between

60°N and 60°S; these were chosen as appropriate limits based on the latitudinal dis-

tribution used to generate target decks. The limits were also validated by assessment

of the distribution of global population in order to evaluate likely disaster impact on

populated areas; 99.54% of the world population lives within this latitude range, with

0.46% of the population located north of 60°N, and 0% below 60°S.[123]

Figure 6-21 shows a comparison of the extent of crossover latitude coverage that

can be achieved for each of the six RGT candidates. The swath width for each RGT

is estimated based on the Earth central angle 𝜆 for each of four possible minimum

elevation angle requirements: 45° (shown in Figure 6-21a), 60° (shown in Figure 6-

21b), 75° (shown in Figure 6-21c) and 89° (shown in Figure 6-21d, and used as an
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approximate stand-in for direct overhead coverage).

(a) 𝜖𝑚𝑖𝑛=45° (b) 𝜖𝑚𝑖𝑛=60°

(c) 𝜖𝑚𝑖𝑛=75° (d) 𝜖𝑚𝑖𝑛=89°

Figure 6-21: Comparison of the extent of possible crossover latitude coverage (shown
as shaded areas of color) achievable for each of the six RGTs at four different minimum
elevation angle requirements

With a minimum elevation angle of 45° as shown in Figure 6-21a, crossover lat-

itude coverage can be achieved for between 64% (for the 15/1 RGT) and 100% (for

the 27/2 RGT) of the latitude range between 60°N and 60°S. These crossovers will

still occur at distinct points spaced in longitude, so this is not equivalent to improved

performance at 64–100% of all locations, as the crossovers may occur at the desired

latitude but some distance away in longitude. For a reconfigurable constellation where

drift orbits can be used to maneuver a RGT to the desired coordinates in longitude,

this does enable the possibility of maneuvering the crossover points over any desired
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location. For a static RGT, this means that improved coverage incorporating both

ascending and descending passes is possible over the entire latitude range of interest

for a 27/2 RGT, but it is unlikely to also occur at the exact longitudinal coordinates

of interest, and maneuvering the orbit to intersect with this point is not possible

without reconfigurability. However, the drastic improvements in swath width due to

a lower minimum elevation angle lead to a significant improvement in usable satel-

lite footprint even without maneuverability, and static constellations see a greater

performance improvement than reconfigurable designs with the lowered constraint on

achievable footage. The swath width increases with increased orbital altitude, rang-

ing from a minimum of ±3.3° of the latitude for the lowest-altitude 31/2 RGT up to

a maximum of ±8.7° of latitude for the highest-altitude 13/1 RGT.

With a minimum elevation angle of 60° as shown in Figure 6-21b, crossover lati-

tude coverage can be achieved for between 45% (for the 15/1 RGT) and 89% (for the

27/2 RGT) of the latitude range between 60°N and 60°S. As the number of overlaps

in crossover coverage decrease compared to Figure 6-21a, the correlation between in-

creased achievable swath width and increased orbital altitude (moving left to right

across the plot from lower to higher altitude orbits) can be seen more clearly. The

narrowest swath width of ±2.0° of latitude is seen for the 31/2 RGT coverage with

the lowest altitude (plotted in dark blue on the left side of the figure), and the widest

swath width of ±5.3° of latitude is seen for the 13/1 RGT coverage with the highest

altitude (plotted in pale blue on the right side of the figure).

With a minimum elevation angle of 75° as shown in Figure 6-21c, crossover lati-

tude coverage can be achieved for between 25% (for the 15/1 RGT) and 59% (for the

27/2 RGT) of the latitude range between 60°N and 60°S. Most of the coverage swaths

are well-spaced for this minimum elevation angle, with the only remaining overlaps

between coverage boxes occurring towards the limits of coverage, outside the coordi-

nates of ±50° latitude. The crossover coverage swath widths continue to narrow with

the increasingly stringent elevation requirements, ranging from a minimum of ±0.91°
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of latitude for the lowest-altitude 31/2 RGT up to a maximum of ±2.5° of latitude

for the highest-altitude 13/1 RGT.

A minimum elevation angle of 89° is shown in Figure 6-21d, and this is used

as the closest available approximation for direct overhead coverage. A direct nadir

pass would have an elevation angle of 90°, but using this angle resulted in coverage

calculations of zero width over a point location, so an offset of 1° was implemented

to give a narrow acceptable swath width. The areas of crossover latitude coverage

now appear as lines of color in the plot rather than outlined boxes, due to the much

narrower swath widths achievable with such a high minimum elevation requirement.

Crossover latitude coverage can be achieved for between 1.7% (for the 15/1 RGT)

and 5/7% (for the 27/2 RGT) of the latitude range between 60°N and 60°S. These

swath widths vary from a minimum of ±0.06° of latitude for the lowest-altitude 31/2

RGT (resulting in a coverage band of approximately ±6.6 km from the SSP) up to

a maximum of ±0.16° of latitude for the highest-altitude 13/1 RGT (resulting in a

coverage band of approximately ±18.2 km from the SSP).

As expected, Figure 6-21 illustrates that imposing stricter minimum elevation

angle constraints on the constellation results in more limited coverage, due to the

reduction in the size of the usable ground footprint for each satellite. Figure 6-

22 shows a comparison of the usable ground coverage for the same four minimum

elevation angles shown in Figure 6-21, illustrating the effect of elevation angle on

swath width using plots showing a one-day ground track for a 15/1 RGT. These

ground tracks correspond to the orange coverage boxes shown in Figure 6-21 (plotted

second from the left in each subplot), with the four coverage subplots i–iv in Figure

6-21 corresponding to the same order of elevation angle for the four ground track

subplots i–iv shown in Figure 6-22.

The largest estimated swath width occurs for the lowest minimum elevation angle

of 45° (shown in Figure 6-22a), resulting in a usable coverage band of ±492 km on
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(a) 𝜖𝑚𝑖𝑛=45° (b) 𝜖𝑚𝑖𝑛=60°

(c) 𝜖𝑚𝑖𝑛=75° (d) 𝜖𝑚𝑖𝑛=89°

Figure 6-22: Comparison of usable ground coverage for a 15/1 RGT (plotted for a
single satellite over one day) based on four different minimum elevation angle require-
ments

either side of the SSP. This corresponds to achievable crossover coverage in 64.1% of

the latitude range between 60°N and 60°S. Examining Figure 6-22a illustrates how

this does not equate to crossover coverage over 64.1% of all locations, but shows that

latitude bands where crossovers exist occur in horizontal stripes around 0°, ±22°,

±38°, and so on in increasingly close bands approaching the outer limit of latitudinal

coverage around ±60°. For reconfigurable constellations, the crossover points within

these bands of potential coverage can be moved in longitude using drift orbits. For

static constellations, Figure 6-22a shows the extent of achievable coverage for a 15/1

RGT at 60° inclination with 45° minimum elevation angle required.
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For the 15/1 repeating ground track using a 60° minimum elevation angle (shown

in Figure 6-22b), crossover coverage is achievable over 44.9% of the latitude range.

Using this value of 𝜖𝑚𝑖𝑛, the width of the ground coverage band is reduced to ±291 km.

For the 15/1 RGT using a 75° minimum elevation angle (shown in Figure 6-22c),

crossover coverage is achievable over 24.5% of the latitude range. Using this value of

𝜖𝑚𝑖𝑛, the width of the ground coverage band is reduced to ±136 km.

For the 15/1 RGT using a 89° minimum elevation angle to approximate a require-

ment for direct nadir passes (shown in Figure 6-22d), crossover coverage is achievable

over 1.73% of the latitude range. Using this value of 𝜖𝑚𝑖𝑛, the width of the ground

coverage band is reduced to ±8.9 km.

The subplots shown in Figure 6-22 illustrate the drastic reduction in usable ground

footprint for each satellite as the minimum elevation angle requirements are increased

from 45°, through 60° and 75°, and up to a maximum of 89°. For static constellation

designs, this results in considerably worse coverage throughout the mission lifetime,

due to the small amount of coverage that can be supplied along an unchanging ground

track. For reconfigurable constellations, the satellites are able to maneuver to achieve

coverage over any desired ground location (within the latitude limits imposed by the

choice of orbital inclination), and so the impact of elevation angle on performance is

much less significant.

It is theorized that additional performance benefits could be gained for reconfig-

urable architectures by adding a decision option for constellation operators to ma-

neuver between adjacent RGTs. This would be advantageous in circumstances where

changing the RGT would allow for crossover points (where both an ascending and

descending pass occur over the same ground location) to be maneuvered to inter-

sect with a high-value target location of interest. The increased ∆𝑉 cost of such a

maneuver would need to be balanced against the remaining ∆𝑉 budget available for
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constellation reconfiguration, as it is not feasible to change RGTs in response to every

single event of interest over the course of the mission lifetime with the current maneu-

vering budget. This option is therefore only proposed for use in a subset of especially

high-value targets, at the discretion of the satellite operator and their relative level

of priority for achieving coverage of different locations.

Figure 6-23 shows the percentage of the latitude range (again assessed between

limits of 60°N and 60°S) where crossover coverage can be achieved for each of the six

RGT orbits, comparing the extent of potential crossover point coverage for a single

unchanging choice of RGT (plotted in blue) and the coverage that can be achieved if

maneuvering between pairs of adjacent RGTs is an option (plotted in orange).

Figure 6-23a shows the potential crossover coverage at a minimum elevation angle

of 45°. The achievable crossover coverage for a single unchanged RGT varies between

64% (for a 15/1 RGT) and 100% (for a 27/2 RGT) of the latitude range, but this

increases to a range of 91% (for a 31/2 RGT) to 100% (for a 29/2, 14/1, 27/2 or 13/1

RGT) when maneuvering to adjacent RGTs is allowed. The percentage improvement

in available crossover coverage varies from 0% for the 27/2 RGT (as this orbit already

achieved 100% crossover coverage for the latitude range) to 54% for the 15/1 RGT.

Figure 6-23b shows the potential crossover coverage at a minimum elevation angle

of 60°. The achievable crossover coverage for a single unchanged RGT varies between

45% (for a 15/1 RGT) and 89% (for a 27/2 RGT) of the latitude range. This increases

to a range of 76% (for a 31/2 RGT) to 100% (for a 27/2 RGT) when maneuvering to

adjacent RGTs is allowed. The percentage improvement in available crossover cover-

age varies from 13% for the 27/2 RGT to 99% for the 15/1 RGT.

Figure 6-23c shows the potential crossover coverage at a minimum elevation angle

of 75°. The achievable crossover coverage for a single unchanged RGT varies between

25% (for a 15/1 RGT) and 59% (for a 27/2 RGT) of the latitude range. This increases
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(a) 𝜖𝑚𝑖𝑛=45° (b) 𝜖𝑚𝑖𝑛=60°

(c) 𝜖𝑚𝑖𝑛=75° (d) 𝜖𝑚𝑖𝑛=89°

Figure 6-23: Percentage of latitude range where crossover coverage is achievable for
each RGT orbit, compared between static choice of a single RGT (in blue) vs recon-
figuring between adjacent RGTs (in orange), compared for four different minimum
elevation angle requirements

to a range of 48% (for a 31/2 RGT) to 85% (for a 27/2 RGT) when maneuvering to

adjacent RGTs is allowed. The percentage improvement in available crossover cover-

age varies from 37% for the 31/2 RGT to 177% for the 15/1 RGT.

Figure 6-23d shows the potential crossover coverage at a minimum elevation an-

gle of 89°. The achievable crossover coverage for a single unchanged RGT varies

between 1.7% (for a 15/1 RGT) and 5.7% (for a 27/2 RGT) of the latitude range.

This increases to a range of 4.4% (for a 31/2 RGT) to 12.1% (for a 14/1 RGT) when

maneuvering to adjacent RGTs is allowed. The percentage improvement in available
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crossover coverage varies from 59% for the 31/2 RGT to 401% for the 15/1 RGT.

Figure 6-24 summarizes the improvements in crossover coverage seen in Figure

6-23 when maneuvering between adjacent RGTs is added as a reconfiguration option

for the constellation. The largest improvements in the amount of crossover latitude

coverage are seen for n/1 orbits, as the available maneuvering options for these orbits

are to move up or down by one RGT to an n/2 orbit. This introduces a higher number

of crossover points, though these are each revisited at a lower frequency. Smaller

improvements are seen for the n/2 orbits, which have the option to maneuver up or

down by one RGT to an n/1 orbit.

Figure 6-24: The effect of minimum elevation angle requirements on percentage im-
provement in the amount of achievable crossover latitude coverage when maneuvering
between adjacent RGTs is implemented

The greatest improvements in availability of crossover coverage from maneuvering
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between RGTs are seen with the most stringent requirements for minimum eleva-

tion angle. At 𝜖𝑚𝑖𝑛=45°, switching RGTs offers 0–54% improvement depending on

the initial RGT selection, and this minimal improvement can be attributed to the

wide satellite footprint already available at this elevation angle without the need

for changing orbits. At 𝜖𝑚𝑖𝑛=60°, the improvement in possible crossover latitudes

when maneuvering is implemented increases to 13–99%, suggesting that at Legge’s

original elevation angle requirements, changing RGTs offers a useful option for satel-

lite operators to improve performance. At 𝜖𝑚𝑖𝑛=75°, changing RGTs offers 37–177%

improvement in the latitudes where crossovers can be achieved, and at 𝜖𝑚𝑖𝑛=89°,

59–401% improvement in crossover range is seen, reflecting the extremely narrow

coverage bands available when direct nadir passes are required.

Maneuvering between RGTs is an expensive option for satellite operators, using

at least 7.8–9.5% of the constellation’s lifetime ∆𝑉 budget for a single transfer, and

potentially significantly higher percentages for some constellation designs where a

lower ∆𝑉 quantity is allocated for maneuvering. These high costs make it clear that

changing RGTs in response to every event of interest over the course of the mission

lifetime is not a feasible reconfiguration option. However, the ∆𝑉 costs are within a

range where this maneuver is considered to be practical in occasional extraordinary

circumstances, given sufficient benefits to be gained in increased performance.

Reconfigurable constellations already make use of drift orbits to precess repeating

ground tracks in longitude and align satellite coverage with the ground location of in-

terest. However, if crossover points (where ascending and descending satellite passes

intersect over the same ground location) do not occur at the desired latitude, there

is currently no way to align these points with the target location. Changing between

adjacent RGT orbits supplies the additional option of altering the crossover locations

in latitude, providing the possibility of increasing constellation performance by an

average of 10–15%. Adding such a maneuver as an option for constellation operators

to employ in response to extremely high-value targets allows for responsiveness in the
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prioritization of constellation resources. The opportunity costs of using additional

∆𝑉 and reducing the remaining budget for future reconfiguration maneuvers must

be weighed against the improved performance to be gained when crossover points

are aligned over a ground location of interest to give exceptional coverage using both

ascending and descending satellite passes.

The extent to which these crossover points can be aligned as desired depends heav-

ily on the initial choice of RGT and the minimum elevation angle requirements for

coverage, and so the specific decision options under consideration should be modelled

based on a finalized constellation architecture. When satellite coverage is subject to

stricter constraints on elevation angle, the usable ground footprint is decreased, with

the most significant reduction in performance seen for static constellations, due to

the lack of maneuverability from a narrow ground track. Reconfigurable constellation

designs gain the most benefit from their reconfigurability under these circumstances,

with the largest improvement in achievable coverage seen for extremely high eleva-

tion angle requirements, due to the low probability of being able to achieve such

constrained coverage from a static orbit.

6.3 Delaying reconfiguration maneuvers

This section considers possible effects of delaying reconfiguration, and how satellite

operators must assign relative weighting to the competing priorities of conserving

propellant for future reconfigurations and achieving the fastest coverage of a location

of interest. This section is primarily left as an area for future work, due to the need

for additional design optimization runs to establish whether the preliminary results

demonstrate a genuine effect or a model discretization error.

Tradeoffs must be made between time taken to reconfigure versus the amount of

∆𝑉 used; this is not a linear relation, but different maneuvering options are better

suited to one objective or the other. Choosing between different reconfiguration op-
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tions at different delay points offers the possibility of saving either time or fuel during

the maneuver, by waiting to initiate reconfiguration at a different starting point. This

also alters the availability of which drift orbits are feasible options at a given time.

The existing ReCon model carries out an optimization process to select from the

possible options for responsive maneuvering to achieve coverage of a given target

event. This means that the maneuvers selected at the time an event of interest is

flagged for coverage should provide the best available option for reconfiguration. How-

ever, when delays of 1–24 hours were imposed before the constellation could initiate

maneuvering, cases were found where savings in ∆𝑉 appear to be made. Further

work is required to establish whether this is an accurate result or an artifact of the

model structure, but preliminary results are presented here to inform future work in

this area.

Figure 6-25 shows the variation in the number of satellites that are reconfigured

in response to a single event of interest. The variable of design number shown on

the x-axis corresponds to simple indices for the entire set of non-dominated designs

generated by one optimization run, ordered by constellation cost. It may be observed

from this figure that there is a large amount of variation in the number of reconfigured

satellites between design numbers 55 and 80, suggesting some distinguishing factor

in the architecture of these designs. Additional research is needed to determine if

a specific design variable or family of architectures is correlated with this result, as

initial analysis was unable to determine any particular factor causing this effect.

Figure 6-26 shows the variation in the total amount of ∆𝑉 used across the whole

constellation in response to a single event of interest. This figure shows a much greater

amount of variation throughout its range compared to Figure 6-25. This is explained

by the slightly different drift orbits and maneuver starting points that result from the

different delay lengths imposed upon beginning to reconfigure the constellation.
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Figure 6-25: Variation of the number
of satellites that are reconfigured in re-
sponse to one event, for different constel-
lation designs and delay lengths

Figure 6-26: Variation of the total ∆𝑉
used across the whole constellation to re-
spond to one event, for different constel-
lation designs and delay lengths

Figure 6-27 shows the variation in the number of satellites that are reconfigured

in response to a single event of interest for a second separate set of non-dominated

designs, generated by a different ReCon optimization run. This figure shows a much

larger amount of variation in the number of reconfigured satellites for almost the entire

design space. This suggests specific design variables or architectures must indeed be

linked to the amount of variation in this results, but again further analysis is needed

to determine what these might be.

Figure 6-28 shows the variation in the total amount of ∆𝑉 used across the whole

constellation in response to a single event of interest, for the second set of designs

shown in Figure 6-27. This figure also shows a much greater amount of variation in the

results compared to the first set of designs shown in Figure 6-26, which is explained

by the total ∆𝑉 used being drastically different when a significantly different number

of satellites are maneuvered.
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Figure 6-27: Variation of the number
of satellites that are reconfigured in re-
sponse to one event, for different constel-
lation designs and delay lengths and a
second set of designs

Figure 6-28: Variation of the total ∆𝑉
used across the whole constellation to re-
spond to one event, for different constella-
tion designs and delay lengths and a sec-
ond set of designs

A magnified version of the total ∆𝑉 used by a small subset of designs from Figure

6-28 is shown in Figure 6-29, limiting the delay duration to a maximum of 6 hours.

As designs that are very close in design number tend to also be very closely related

in terms of design variables, this figure highlights the significant differences that

are found between results for constellation designs that are extremely similar. For

example, design 87 shows almost no variation in the amount of ∆𝑉 used for delay

lengths between 0 (i.e. no delay at all) and 6 hours, while design 85 shows ∆𝑉 usage

between 73 and 117 m/s depending on delay length.

Figure 6-30 shows the effect of different delay lengths on the total ∆𝑉 used by

a small subset of 6 designs. This highlights how different the effect of delaying re-

configuration can be on different constellation designs. Designs 4 and 6 show much

greater variation in the total ∆𝑉 used, varying between usage of 12–45 m/s and 11–54

m/s respectively depending on delay length. The other four designs show much less

extensive variation, generally within ∆𝑉 usage of 11–23 m/s.
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Figure 6-29: Zoomed-in view of total ∆𝑉 used for designs 80–90 shown in Figure
6-28

Figure 6-30: Impact of delay length of total ∆𝑉 used for six sample constellation
designs
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Preliminary results on the effect of delays to reconfiguration maneuvers are in-

cluded here to present information for future researchers. Although the amount of

variability in number of satellites maneuvered and total ∆𝑉 used could not be linked

to specific design variables or families of constellation architectures, it is theorized

that such a link exists and could usefully be identified within future work. This may

lead to the development of useful future decision options, or modifications to the

maneuver selection process for reconfiguration.

6.4 Conclusions

The effects of different constraints upon the ∆𝑉 budget or propulsion system mass

fraction were considered. Limits of 150–1000 m/s were applied to the ∆𝑉 budget,

and limits of 0.1–0.6 were applied to the propulsion system mass fraction. The com-

bination of these two constraints was used to explore interactions between the two

limits, and the resulting effect on performance and selected design variables.

Constraining propulsion system mass fraction to lower values was found to result

in a reduction in the number of satellite planes and the ∆𝑉 budget, which is theo-

rized to occur due to the propulsion system having less capacity for propellant within

a more constrained mass budget. Reductions in the ∆𝑉 budget for reconfiguration

from 1000 to 500 m/s were found to have less effect on system performance, but these

began to affect constellation performance when constrained to the level of 250 m/s.

The ∆𝑉 budget for reconfiguration allocated for non-dominated constellation de-

signs was found to generally lie within a maximum value of 350 m/s, significantly

below the default maximum value of 1000 m/s. This could be explained by cost sav-

ings from selecting a smaller propulsion system for a constellation, or by launching

a lower overall satellite mass due to reduced propellant mass. When constellations

are evaluated against different 5-year operating scenarios, they are frequently found

to retain some margin of ∆𝑉 in the reconfiguration budget at the end of the mis-
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sion lifetime. This is theorized to be due to the maneuver selection process favoring

a conservative approach to propellant usage, ensuring that it is balanced across the

constellation and that the full mission duration will be achieved, without loss of recon-

figurability due to premature usage of the entire ∆𝑉 budget. This maneuver selection

is automated in the ReCon codebase due to the lack of an actual satellite operator to

make decisions about the relative priority of rapid reconfiguration and conservative

fuel use. Future satellite operators may take a more active role in managing maneuver

prioritization based on target value, adopting more aggressive approaches to achiev-

ing coverage for a high-value target of interest or when ∆𝑉 reserves are high, and

adjusting to a more cautious approach when ∆𝑉 reserves are depleted or achieving

rapid coverage is not a high priority.

Any extra margin of ∆𝑉 may be used to gain other benefits, such as maneuvering

between RGT orbits to gain improvements in performance. Higher performance scores

were observed at specific latitudes and these were linked to the locations of crossover

latitudes, where both ascending and descending satellite passes occur over the same

ground location. Individual satellite crossover points are defined as the points at

which a satellite crosses its own ground trace, and multi-satellite crossover points are

defined as the locations where a satellite crosses the ground traces of other satellites

in the constellation. Improvements of 10.2–15.1% in performance were observed for

individual satellite crossovers, and improvements of 6.91–7.98% in performance were

observed for multi-satellite crossovers.

These crossover points naturally shift in longitude if the constellation is not in a

RGT orbit, as the ground tracks precess over time. They may also be shifted in lon-

gitude by using intermediate drift orbits for phasing, and this is the current approach

to changing the coverage locations for ReCon. However, adjustments in latitude do

not occur naturally and must be carried out deliberately, requiring significant ∆𝑉

usage to achieve. The amount of ∆𝑉 necessary to move between adjacent RGTs and

adjust the latitude was calculated, varying between 83.3 m/s for the lowest RGT pair
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and 91.4 m/s for the highest pair.

The upper limit assigned for the ∆𝑉 budget for reconfiguration is 1000 m/s for

a five-year mission lifetime, meaning that carrying out such a maneuver would use

a minimum of 7.8–9.5% of the ∆𝑉𝑟𝑒𝑐𝑜𝑛 budget for a single transfer. This propor-

tion would be even higher for many constellation designs with lower ∆𝑉 budgets.

It was concluded that this maneuvering strategy is evidently not feasible for use in

responding to every single target location of interest. However, maneuvering between

RGTs presents a useful option for satellite operators to consider in cases where targets

have an extraordinarily elevated value beyond the standard level of utility gained by

achieving desired coverage for locations of interest.

The initial selection of RGT orbit for the constellation design was demonstrated

to have a significant effect upon the extent to which crossover locations can be ma-

neuvered to a desired location. The specificity of this type of maneuvering render it

best-suited to modelling based on a finalized constellation architecture, rather than

attempting to extrapolate the best decision options for every possible optimized de-

sign. The minimum elevation angle requirements that are assigned for usable ground

coverage also affect the improvements in performance that may be achieved with

this maneuvering strategy. The higher the constraint placed upon elevation angle,

the larger the performance reduction seen for static constellations, due to the inabil-

ity to move from a predetermined ground track to improve coverage of the desired

area. The greatest benefits can be demonstrated for reconfigurability under these

conditions, where the largest percentage improvements in coverage may be made rel-

ative to extremely constrained coverage angles. This is due to the low probability

of static architectures achieving the desired coverage from an extremely narrow and

fixed ground track.
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Chapter 7

Conclusions and future work

7.1 Thesis summary

This work is motivated by the benefits that reconfigurable satellite constellations can

offer in achieving persistent satellite coverage of unfolding events at unpredictable

locations. Reconfigurability reduces the number of satellites needed to achieve a de-

sired persistence level, by improving the utilization of each individual satellite when

compared to a traditional static constellation architecture. Achieving comparable per-

formance with fewer satellites reduces constellation costs, and presents an alternate

option to the frequent proposal of achieving extensive global coverage by deploying

mega-constellations in an increasingly-congested space environment.

Chapter 4 of this thesis presents an uncertainty-based design optimization ap-

proach for reconfigurable satellite constellations. Reliability-based design optimiza-

tion is used to inform the development of a probabilistic performance metric, compar-

ing ReCon design candidates on the probability of success in outperforming iso-cost

static constellations over a range of operating scenarios, rather than endeavoring sim-

ply to achieve the highest mean performance at any cost point. The margin by which

reconfigurable designs outperform iso-cost static costs is also quantified probabilisti-

cally, and both the mean and minimum ∆𝑃 cases are examined.
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In Chapter 5, variance reduction techniques are applied to the ReCon code model

to reduce the standard error of mean performance estimated by the simulation. This

allows for a reduction in the number of scenarios that are used to optimize constella-

tion designs while maintaining the existing benchmark for error in the results. This

decrease in the number of code executions carried out for each functional evaluation

of a candidate constellation design achieves runtime savings when simulations are car-

ried out using the same maximum constellation size. The reduction in runtime will

also enable the design optimization to be carried out for larger constellations or de-

signs with increased complexity, due to the improvement in computational tractability

additionally reducing runtimes for cases that may previously have been too compu-

tationally intensive to run.

Many of the research areas related to reconfigurable constellations (in both this

and other work) are related to the design phase of such systems. Justifications for

the creation and launch of reconfigurable satellite constellations cite the improved

performance, the reduced cost, the ability to flexibly respond to a changing opera-

tional environment, or the sustainability gained when comparable performance may

be achieved by launching fewer satellites and contributing less to space traffic man-

agement issues. However, if reconfigurable constellations are to escape the drawing

board and make their way into widespread use alongside existing static constellations,

future work must consider how such systems may actually be operated by decision-

makers. Chapter 6 of this work considers possible effects of delaying reconfiguration,

and how satellite operators must assign relative weighting to the competing priorities

of conserving propellant for future reconfigurations and achieving the fastest cover-

age of a location of interest. The effects of different constraints placed upon the ∆𝑉

budget or propulsion system mass fraction are considered, and linked with the ability

to conduct occasional large orbital adjustments at increased ∆𝑉 cost, in situations

where such a cost is deemed worthwhile in order to gain significant improvements in

coverage of especially high-value targets.
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7.2 Thesis contributions

This thesis:

1. Develops a probabilistic figure of merit which evaluates the level of confidence

that one performance distribution outperforms a second distribution (and by

what margin of performance). This acknowledges the role of the statistical

distribution of performance for a system designed to respond flexibly to a range

of uncertain operating conditions, and avoids the reliability issues created by

using the non-fixed metric of average performance as the fixed axis upon which

to compare ‘iso-performance’ pairs of designs on a cost basis.

2. Applies this probabilistic figure of merit to reconfigurable constellation perfor-

mance to evaluate the level of confidence that ReCon outperforms iso-cost static

designs (and by what margin of performance) in a range of possible mission sce-

narios.

3. Finds that 74.2% of reconfigurable designs outperform iso-cost static designs

with a confidence level of 90% or higher, and that all reconfigurable designs

above a constellation cost of $223M surpass iso-cost static performance with a

confidence level of 93% or higher. Finds that 19.4% of reconfigurable designs

outperform iso-cost static designs by a margin of at least 50% higher perfor-

mance, with a confidence level of 90% or higher.

4. Adapts variance reduction techniques for use with input distributions modelling

uncertain parameters for the ReCon codebase, and prioritizes input modelling

for variables to which the system output has greater sensitivity, resulting in a

reduction in standard error in the model output that improves computational

efficiency of the design optimization.

5. Demonstrates the feasibility of switching between adjacent RGT orbits to alter

crossover latitude locations, and presents this as an available decision option for

satellite operators to prioritize exceptional coverage over ∆𝑉 conservation for

high-value targets.
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7.3 Conclusions

7.3.1 Probabilistic metrics for system performance

This thesis presents a probabilistic approach to performance evaluation for reconfig-

urable satellite constellations, comparing this metric to past work by Robert Legge

using the Value of Reconfigurability metric. Legge found that reconfigurable constel-

lations cost 20–70% less than iso-performance static constellations evaluated against

the same set of mission scenarios, but treated this mean performance as a point met-

ric, rather than a statistical distribution of coverage.

Uncertainty-based multidisciplinary design optimization is reviewed, falling into

two main approaches of robust design optimization and reliability-based design op-

timization. Robust design optimization seeks to increase design robustness by de-

creasing sensitivity to input variations, resulting in improved stability of performance

under uncertain conditions. Reliability-based design optimization seeks to improve

design reliability by reducing the probability of failure conditions; in this case, the

failure condition is assigned as situations for which static designs outperform iso-cost

reconfigurable designs, and the design evaluation is carried out with the objective of

reducing the probability of this state as far as possible. Recognizing the statistical

nature of performance achieved by ReCon against unknown and unpredictable op-

erating scenarios requires the use of a probabilistic metric, which can quantify the

likelihood of success; in this case, outperforming an iso-cost static constellation design.

Re-evaluating the performance score of optimized designs against alternate sets

of target decks shows that the optimization model overpredicts future performance

under uncertain conditions. This effect becomes more pronounced the smaller the

optimization size is. If designs are optimized against only 2 possible target decks of

scenarios, the performance is overestimated by approximately 4% for static designs

and 6% for reconfigurable designs. Optimizing designs against 10 target decks gives

an overestimate of approximately 2% for static designs and 3% for reconfigurable de-
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signs, and optimizing against 20 target decks gives an overestimate of approximately

0.75% for static designs and 1.75% for reconfigurable designs. From this result, it is

concluded that the minimum design optimization size should not fall below 20 target

decks, to maintain the level of performance overestimation error within 1% for static

designs and 2% for reconfigurable designs.

The VoR metric is an iso-performance metric, meaning that the cost scores of

candidate designs are compared on an iso-performance basis. However, in the output

from the ReCon model, performance scores vary from scenario to scenario, while cost

scores stay constant once a design is fixed, as operational costs (that might vary)

are not included in the cost modelling. Evaluating on a static axis results in a more

reliable basis of comparison for paired designs, and so the decision is made to switch

from an iso-performance to an iso-cost figure of merit for comparison. Even if op-

erations costs are added to the model as a useful area of future work, resulting in

variations in constellation cost between different mission scenarios, assessing designs

on an iso-cost basis will still be a more reliable axis for comparisons as long as the

maximum amount of cost variation remains within 25%.

∆𝑃 is developed as a figure of merit that provides a directly equivalent alter-

native to Legge’s Value of Reconfigurability as a single-axis comparison. Instead of

describing the cost savings to be gained by adopting reconfigurability at the same

performance level, this metric focuses on the performance gains to be made by adopt-

ing reconfigurability at the same constellation cost. By acknowledging variations in

performance as part of the creation of this metric, ∆𝑃 allows for statistical compar-

isons to be drawn between the distributions of performance observed against a range

of possible scenarios.

Chapter 4 shows 95% confidence intervals calculated for the mean and median

performance values from a re-evaluation of optimized designs against 500 different

scenarios, as well as the same confidence intervals for 25th and 75th percentiles of
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the full distribution of performance scores. Almost complete overlap is observed in

the performance distributions for designs in the low-cost low-performance region of

the design space, up to a constellation cost of approximately $220M. There is a dwin-

dling amount of overlap in the tails of these distributions up to a constellation cost

of around $380M.

Confidence that reconfigurable designs outperform iso-cost static designs is cal-

culated, comparing five different methods to assess the level of error introduced by

different approaches, and determining that only the independent hypothesis testing

method resulted in an unacceptable level of error in the results. The confidence that

ReCon outperforms static is at least 97% for all iso-cost design pairs above a con-

stellation cost of $223M, with the exception of one design with a confidence level

of 93%. In addition, 4 designs in the low-cost region of $113M–124M outperformed

static alternatives with a confidence level of 92.3% or higher. However, designs in the

$116M–223M region performed less consistently, with a 50-50 split in this area as to

whether reconfigurable or static designs performed best.

Evaluating the performance margins by which ReCon outperforms static, it is

shown using mean ∆𝑃 that 85.5% of ReCon designs outperform static by any amount,

74.2% outperform static by a margin of at least 10% improvement in performance,

and 64.5% outperform static by a mean margin of 25% or higher. The highest mean

∆𝑃 is observed in the $750M–800M region, where reconfigurable designs achieve a

95–100% improvement over iso-cost static constellations. The minimum ∆𝑃 observed

for the worst-case scenario in this region shows a 45–60% improvement over the static

alternative.

Evaluating the minimum ∆𝑃 worst-case scenarios across the design space, the

minimum value is above zero in 61.3% of cases, meaning that performance still sur-

passes the static case for these scenarios. For the cost region of $500M–1250M,

reconfigurable designs outperform static by at least a 20% margin with 95% confi-
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dence in the worst-case value. For all designs above a cost of $300M, and the region

between $223M–260M, minimum ∆𝑃 is above zero with 95% confidence, meaning

that reconfigurable designs are still showing higher performance. However, the cost

regions below $223M and between $260M–300M predict a negative ∆𝑃 for the worst-

case scenario, meaning that static designs demonstrate superior performance in these

cases.

The mean ∆𝑃 in the cost region between $223M–300M varies between 0–38%,

meaning that on average the reconfigurable designs will meet or surpass the static

performance. However, the minimum ∆𝑃 worst-case scenarios in this region vary

between -18% and +18%, highlighting the need to consider the distribution of po-

tential performances in planning for unknown future operating contexts. This region

fails on the probabilistic metric of success, meaning that reconfigurable designs at

these cost levels cannot outperform iso-cost static designs with a 95% level of con-

fidence. However, the worst-performing designs in this region have confidence levels

of 56–82% that static designs outperform ReCon, and these all fall within the cost

region of $130M–214M, where mean ∆𝑃 is ±5% of static performance. Although

reconfigurable designs cannot be shown to reliably outperform static designs in this

cost region of the design space, when considered on average performance terms, they

are at least shown to perform on par with static alternatives.

7.3.2 Uncertainty analysis and variance reduction

This work aims to optimize the designs of reconfigurable constellations to perform

consistently well under uncertain operating conditions. A range of different operating

scenarios must be simulated in order to design for uncertainty, and this is carried

out using Monte Carlo based model propagation, resulting in a high number of code

executions to evaluate candidate designs against many different mission scenarios.

Combined with the complexity of the possible solution space, the computational re-

sources needed to complete the optimization are intensive for constellations of any

significant size.
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Due to the significant sensitivity of the design to the latitude distribution of the

input scenarios, and the lack of coupling of the longitude distribution to particular

design effects, the decision was made to simplify the longitudinal distribution as far as

possible and devote sampling resources to the latitudinal distribution. This allows for

the investigation of two new methods of sampling for generating input target decks for

use with the ReCon model. In Chapter 5, Legge’s original sampling is found to result

in a standard error of mean performance of 4.95% using 24 target decks, and the two

new sampling methods are compared to this standard. It is found that using kernel

function sampling allows for the number of target decks to be reduced to 23 while

maintaining a standard error of 4.95%, and using proportionate definition allows for

the number of target decks to be reduced to 22 while slightly reducing the standard

error to 4.90%.

This reduction in the number of target decks reduces the number of code iterations

by more than 8% for each optimization. Early Phase runtime data (gathered before

upgrades were made to the MIT Supercloud in 2021) shows that such a decrease

reduces predicted runtime by amounts between 7.20–23.4%, depending on maximum

constellation size. More recent Triples Mode runtime data for the ReCon code on

the MIT Supercloud results in a predicted runtime decrease of 4.4%. In addition to

directly saving computational time for optimization runs of the sizes that may already

be carried out, these runtime savings may be used to enable the investigation of larger

or more complex design optimizations.

7.3.3 Operational decision options

Although past work on reconfigurable constellations has explored aspects of designing

constellations and satellites to perform well under unpredictable circumstances, less

research has considered operational decisions during the lifetime of such a constella-

tion, aside from the simulation of reconfiguration maneuvers.
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The effects of different constraints upon the ∆𝑉 budget or propulsion system

mass fraction are considered in Chapter 6, showing interactions between the two and

their effect on design variables. Reducing propulsion system mass fraction is found

to result in a reduction in the number of satellite planes and the ∆𝑉 budget, which

is theorized to be due to the propulsion system having less capacity for propellant

within its allocated mass budget. Reductions in the ∆𝑉 budget for reconfiguration

from 1000 to 500 m/s are found to have less effect, but start to affect constellation

performance when constrained to the level of 250 m/s.

Non-dominated constellation designs are found to generally allocate a maximum

of 350 m/s for the ∆𝑉 budget for reconfiguration: considerably lower than the default

constraint of 1000 m/s. This is theorized to be due to cost savings from a smaller

propulsion system or from launching a lower mass of propellant. In addition, when

constellations are evaluated against different operating scenarios, they are often found

to have remaining propellant in their reconfiguration budget at the end of the mis-

sion lifetime. This is explained by the optimization process used to select maneuvers,

which favors a cautious approach to propellant budgeting to ensure that the constel-

lation does not fail prematurely due to a sudden loss of maneuverability. Satellite

operators could take a more active role in managing constellation maneuvers, electing

to adopt more aggressive maneuvering strategies to achieve faster coverage when fuel

reserves are high and adjusting to a more conservative approach when reserves are

lower or targets are considered to be of lower priority.

Other benefits could be gained by making use of surplus ∆𝑉 , such as maneuvering

between adjacent RGT orbits. Improved performance is observed at specific latitudes,

and after evaluation of the parameters of the constellation RGT, these are linked to the

locations of crossover latitudes. Individual satellite crossover points are defined as the

points at which a satellite crosses its own ground trace, and multi-satellite crossover

points are defined as the locations where a satellite crosses the ground traces of other

satellites in the constellation. The increased performance observed at these locations
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is explained by the presence of both ascending and descending satellite passes over the

same point. Improvements of 10.2–15.1% in performance are observed for individual

satellite crossovers, and improvements of 6.91–7.98% in performance are observed for

multi-satellite crossovers.

These crossover points may easily be shifted in longitude by using drift orbits,

or by simply waiting if the constellation is not in a RGT orbit and ground tracks

are naturally precessing. However, adjustments in latitude do not occur naturally

and must be carried out deliberately. The amount of ∆𝑉 necessary to move between

adjacent RGTs and adjust the latitude is calculated, varying between 83.3 m/s for

the lowest RGT pair and 91.4 m/s for the highest pair.

As the upper limit assigned for the ∆𝑉 budget for reconfiguration is 1000 m/s for

a five-year mission lifetime, such a maneuver would use a minimum of 7.8–9.5% of

the total for a single transfer, and a much higher proportion for many constellations

with lower ∆𝑉 budgets. It is clear that such a maneuvering strategy is not feasible

for use in responding to every target location of interest. However, such a maneuver

may present a useful option for satellite operators to consider in cases where targets

have an extremely elevated value beyond that assigned to the standard level of desired

coverage for locations of interest.

The extent to which crossover locations can be maneuvered to a desired location

is shown to depend strongly on the initial choice of RGT orbit for the constellation

and the minimum elevation angle requirements for useful ground coverage. The speci-

ficity of this strategy means that it is best-suited for modelling based on a finalized

constellation architecture. Imposing more stringent elevation angle constraints on

coverage decreases the usable ground footprint of the satellite, resulting in a larger

performance reduction for static constellations compared to ReCon, due to their lack

of maneuverability from a pre-defined ground track. The most benefit can be gained

by the use of reconfigurability in these circumstances, with the largest improvements
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in coverage availability seen relative to extremely high elevation angle requirements,

due to the low probability of achieving such coverage from a static orbit with an

extremely narrow and fixed ground track.

7.4 Future work

After developing a probabilistic performance metric to evaluate reconfigurable de-

signs against iso-cost static designs, an interesting future application of this metric

would be to incorporate it into the design optimization process. This would allow

for reconfigurable designs to be optimized with the objective of achieving the highest

confidence in outperforming static options at the same total constellation cost, rather

than simply optimizing designs with the goal of achieving the highest mean perfor-

mance at each cost point. Using a probabilistic figure of merit means that designs can

be optimized to give the most reliable performance, selecting design variables that

achieve the most consistent probability of mission chance, rather than relying on an

averaged metric that can be skewed by outlying values and which gives very little

information about the nature of the statistical distribution of performance.

The process of implementing a probabilistic metric as part of the design optimiza-

tion would add complexity to the codebase, due to the fact that the ∆𝑃 metric is

calculated from a comparison of reconfigurable and static design performance at the

same cost point. One suggested approach for this area would be to conduct an initial

optimization run to generate a set of non-dominated static constellation designs, and

then use these as part of the input for a second optimization run used to generate

a set of reconfigurable constellation designs. The design optimization objective for

this second run would be targeted to select those design candidates which show the

greatest percentage improvement over the static performance score at each cost point.

Target decks would also need to be selected in a replicable fashion rather than chosen

randomly for each set of optimizations, in order to ensure that ∆𝑃 is being calculated

as the difference in performance achieved against the same scenario by the paired re-
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configurable and static designs.

An interesting expansion for future research would be to expand the uncertainty

in the target deck scenarios to the temporal distribution of events. In the present

version of these five-year mission scenarios, all events are generated with a minimum

separation in the time of occurrence, which is used to avoid overlapping or simulta-

neous events of interest. Generating temporal overlaps between the end of one event

of interest and the beginning of another or creating entirely simultaneous events in

different locations would introduce an entire new range of research questions as to

how the constellation resources should be divided up for allocation between multiple

targets. This could provide a topic for future work on generating useful decision op-

tions and questions of resource prioritization to be offered for consideration by the

satellite operators of a reconfigurable constellation.

Following on from Straub’s work in evaluating the use of slewing to achieve

broader coverage across a region that lies within a reconfigurable constellation’s field

of regard,[48] an additional area of expansion for uncertainty in the regions of interest

would be to incorporate maneuvering options to achieve coverage of larger regions.

This could include areas of interest even larger than an individual satellite’s field of

regard, meaning that even when slewing is used to expand the range of achievable

coverage, no single satellite is able to cover the entire desired coverage area. This

would require a considerable expansion of the tradespace of potential maneuvering

options, and could result in the development of entirely new approaches to achieving

the desired coverage.

Straub also considered the use of drifting ground tracks over time to follow mobile

events (i.e. not fixed in one location over time), and this work was continued by Mor-

gan, who considered the possibility of aligning the rate of a drifting orbit with the

speed of a mobile event of interest, applying this specifically to hurricane tracks.[47]

Paek developed variants upon sun-synchronous RGTs with ground tracks that drift
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at a predetermined rate, ‘multi-sun-synchronous’ orbits that provide identical solar

angles at multi-day intervals (i.e. the sun-synchronous equivalent of a n/2 or n/3

RGT), and a combined multi-sun-synchronous orbit with drifting ground tracks.[26]

Implementing such orbits as part of the ReCon model would broaden the range of

applications for which the benefits of reconfigurability may be demonstrated and use-

fully applied.

An alternate expansion for generating target areas of interest could be to consider

a requirement to maneuver to specific orbital locations, rather than maneuvering to

achieve coverage over a ground location. This could be used to optimize reconfig-

uration options for reconstitution of a damaged satellite constellation. This might

be an especially complex decision space if a small number of reconfigurable satellites

were used as support for a much larger mega-constellation, temporarily filling gaps in

each orbital plane where units have been lost during launch or due to later failures.

Once additional static satellites can be launched to permanently replace these losses,

the support satellites could then return to a neutral mode awaiting the next need

for reconstitution in a different location. This would provide an application in which

reconfiguration may be used to support a larger static constellation, rather than com-

peting to fulfil the same objectives.

Another useful area for future work would be to propagate uncertainty in the cost

models used in the ReCon codebase, and to update the unit of the cost estimates from

FY2010 US dollars to the present day, taking into account both inflation and chang-

ing prices for launch options. Straub explored cost and performance trades between

chemical and electric propulsion for reconfigurable constellations, and investigated

updates to available launch providers as of 2020 for the ReCon model.[48] Launch

vehicle options will continue to evolve over time due to commercial pressures and

the availability of different vehicles over time, and so this area of the model requires

consistent updates to be made to reflect real-world options.
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Adding the simulation of operating costs would provide a useful update to the

ReCon model, enabling the determination of whether these remain relatively con-

sistent or show large variation between different scenarios. If operations costs are

significantly higher for reconfigurable constellations due to the increased need for op-

erator decisions during the mission lifetime compared to static constellations, this

may reduce the calculated benefits of reconfigurability across the design space. Mod-

elling operational costs would reduce uncertainty in the total system cost and allow

for statistical comparisons to be made for the distributions of cost and performance

scores against different unpredictable scenarios. This would allow for more thorough

evaluation of the relative benefits of scoring constellations on iso-performance and

iso-cost metrics. Comparing the relative value supplied by reconfigurable and static

designs on an iso-cost basis is still expected to supply greater reliability and lower vari-

ance than comparisons on an iso-performance basis, as long as the constellation cost

variation between scenarios is found to be less than 25% of the existing cost estimates.

Applying variance reduction techniques to the ReCon model achieved a reduction

in standard error of mean performance, which is the current metric used for design

optimization. If an alternative probabilistic metric is applied to the optimization in

future work, the standard error of this metric should also be evaluated in order to as-

sess whether further improvements in efficiency can be made. This reduced error was

used to enable reductions in runtime for the ReCon code when optimizing constella-

tion designs of comparable size to past work. Runtime savings for the ReCon model

were achieved by a combination of variance reduction techniques and resource alloca-

tion parameter tuning, following upgrades to the MIT Supercloud. These efficiency

improvements and runtime savings may be used to enable the future investigation of

larger constellation sizes, or increased complexity in potential designs.

An area of interest for future work that could be enabled by these efficiency

improvements is that of overlaps in the temporal distribution of events of interest.

Investigations could be carried out into how satellite operators might react to simul-
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taneous events of interest, or to overlaps between the end of the period of interest in

one location and the start of interest in another location. This would involve simu-

lating additional decision options for operators, adding to the body of work on how

to actually operate a reconfigurable constellation. Modelling such temporal overlaps

would better reflect the complexity of real-world decision-making, improving the au-

thenticity of the ReCon model.

The final section of Chapter 6 considers possible effects of delaying reconfiguration,

and how satellite operators must assign relative weighting to the competing priorities

of conserving propellant for future reconfigurations and achieving the fastest coverage

of a location of interest. This section is primarily left as an area for future work, due to

the need for additional design optimization runs to establish whether the preliminary

results demonstrate a genuine effect or a model discretization error.
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Appendix A

MIT Supercloud code tuning

In 2021, upgrades were carried out to the MIT Supercloud to introduce a new ‘Triples

Mode’ to the HPC cluster. Triples Mode is named for the three resource parameters

that must be specified as part of job submission when using this mode: the number

of nodes on the cluster that are used to run the code, the number of processes that

should run per node, and the number of threads that should run per process. This

supplies a mode of submitting pMATLAB jobs to the Supercloud cluster with ac-

tive resource allocation management by the user, resulting in flexible control over the

memory and threads assigned to the task. Use of this mode improves performance

when compared to the use of default resource settings that may not be optimized for

a specific simulation of interest.

Triples Mode schedules whole nodes exclusively for individual submitted tasks.

This has the benefit of ensuring that no other users are sharing the node, as this shar-

ing of resources can impact code performance. When multiple users submit memory-

intensive jobs that are assigned to the same compute node, this has a particularly

detrimental effect on the runtime of these competing tasks.

The benefits of Triples Mode arise from its improved efficiency due to calibrating

resource requests to the specific application. This requires an initial time investment

in carrying out a tuning process to determine the optimal settings for the three job
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submission parameters. However, the Supercloud website cites expected improve-

ments of “a ∼ 2× increase [in] efficiency for many users”, and highlights that once the

best settings have been found for a specific codebase, these parameter values may be

reused as long as significant changes have not been introduced within the code.[124]

A.1 Tuning process

The first step of the tuning process is to develop a metric for the rate at which the

codebase is running. Establishing a rate for work done over time allows for compar-

isons to be drawn for the speed of different settings. For the ReCon model, the first

set of output is saved to a .mat MATLAB data file when 100 functional evaluations

have been carried out. The amount of time taken to complete and save this initial

set of 100 functional evaluations was used to supply a runtime metric for comparing

the Triples Mode parameters being tuned.

The ReCon model is memory-intensive, falling close to the limits of the amount of

RAM allocated per core on the Supercloud. This results in the submitted HPC jobs

being ‘memory bound’, meaning that the limiting factor for the amount of time taken

to complete the task is the amount of memory needed to hold the working data. The

overall runtime is dominated by the amount of available memory and the speed of

access to it. The opposite of this is a job that is ‘compute bound’, where the number

of steps in the computation or the speed of the central processor is the determining

factor that affects the overall runtime.

For memory bound tasks, the recommendation is to tune the number of processes

per node first. The three parameters are included as an input in the job submission

function in a triplet form written as [NN NPPN NTPP ], where NN is the number

of nodes, NPPN is the number of processes per node, and NTPP is the number of

threads per process. The recommended values used for NPPN and NTPP with the

Xeon-G6 nodes on the Supercloud are 1, 2, 4, 8, 16, 20, 32 and 40, due to the fact
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that each one of these nodes is made up of 40 cores. The maximum user allocation

of Xeon-G6 nodes per user is 8, so the recommended values for NN are 1, 2, 4 and 8.

Figure A-1 shows the tuning process carried out for the number of processes per

node. The submitted job was set to use one node (NN=1) and one thread per process

(NTPP=1), while NPPN was increased from 1 to 40. This means that for this step

of the tuning, the triplet settings were entered in the form of [1 NPPN 1], with

a gradually increasing value of NPPN. NPPN values of 1 and 2 did not generate

any output, and the ReCon codebase stalled without producing any results at this

low level of resource allocation. This was theorized to be due to the leader-worker

setup used for the optimization, with all of the small amount of resources available in

this job submission devoted to allocating tasks with no workers available to actually

complete these tasks.

Figure A-1: Effect of the assigned number of processes per node on length of runtime
to achieve 100 functional evaluations when using 1 node and 1 thread per process

Significant improvements in runtime to carry out 100 functional evaluations may

be observed for the increase in NPPN from 4 to 16, dropping from 33.1 min for 4 pro-

cesses per node to 6.7 min for 16 processes per node. However, there is a diminishing

rate of returns for increases in NPPN above this point, with runtime only dropping
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to 4.3 min when 40 processes per node are assigned.

The second step of tuning is to freeze NPPN at the optimal value found from

the first step, and compare runtime results while varying the value of NTPP. As 40

processes per node gave the lowest runtime, this value was assigned (NPPN=40),

and the triplet settings were entered as [1 40 NTPP ] while the number of threads per

process was gradually increased.

The third step of tuning is to compare performance for different numbers of nodes

(NN ). However, the ability to vary the number of nodes was somewhat limited by

the availability of resources on the MIT Supercloud at any given time, due to high

user demand. Due to the need to carry out tuning runs whenever the appropriate

number of nodes was available, this stage was conducted somewhat in parallel with

the second stage.

Figure A-2 shows combined results for the tuning of NTPP and NN, highlighting

that the optimal setting for NTPP actually varies depending on the number of nodes

assigned to the job. When using 1 or 2 nodes and 40 processes per node, the optimal

number of threads per process is found to be 1. This results in a runtime of 4.27 min

using 1 node, and 3.04 min using 2 nodes. When using 4 nodes, the optimal number

of threads per process is 2, resulting in a runtime of 2.91 min. When using 8 nodes,

the optimal number of threads per process is 20, resulting in a runtime of 2.81 min.

Due to the amount of variation in runtime results and optimal values found for

NTPP depending on the number of nodes used, tuning was repeated for NPPN, using

fixed values of 8 nodes and 20 threads per process to assess whether 40 processes per

node was still found to result in the lowest runtime. Figure A-3 shows the runtime

results for this round of tuning. Output was obtained for NPPN values between 2

and 40, once again showing that NPPN=40 resulted in the lowest runtime, taking

2.81 min to complete 100 functional evaluations.
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Figure A-2: Effect of number of threads per process on runtime, shown for four
different number of nodes and 40 processes per node

Figure A-3: Effect of number of processes per node on runtime, when using 8 nodes
and 20 threads per process

Due to the results in Figure A-2 showing that 1 thread per process gave the lowest

runtime for code runs using 1 or 2 nodes, a separate tuning check was carried out

to compare runtimes for 40 processes per node and 1 thread per process against

different numbers of nodes. The runtimes obtained when 1, 2, 4 and 8 nodes are used
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to carry out the submitted job are shown in Figure A-4. The greatest improvement

in runtime is observed when increasing NN from 1 to 2, with a drop from 4.27 min

to 3.04 min. Increasing the number of nodes to 4 or 8 shows considerably diminished

improvements, with runtime decreasing only to 2.95 min and 2.87 min respectively.

Figure A-4: Effect of number of nodes on runtime, when using 40 processes per node
and 1 thread per process

A.2 Tuning conclusions

A series of 51 code tuning runs of the ReCon codebase were carried out on the MIT

Supercloud in 2021. 48 of these runs generated output, consisting of the data from

100 functional evaluations and the length of time taken to carry out these evaluations

and save the output to a MATLAB data file. The remaining 3 runs used extremely

constrained resource allocation parameters and failed to complete 100 functional eval-

uations or generate and save any output.

The Triples Mode tuning process showed that the lowest runtimes were consis-
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tently obtained using 40 processes per node. For code runs using 1 or 2 nodes and 40

processes per node, the lowest runtimes were obtained using 1 thread per process. For

code runs using 4 nodes and 40 processes per node, the lowest runtime was obtained

using 2 threads per process. For code runs using 8 nodes and 40 processes per node,

the lowest runtime was obtained using 20 threads per process. However, for runs

using 4 or 8 nodes with 40 processes per node, all runtimes fell within a narrow band

(2.91–3.06 min for 4 nodes and 2.81–2.94 min for 8 nodes).

There was found to be a lack of consistent availability of nodes on the MIT Su-

percloud due to high user demand, and so most runs of the ReCon code were carried

out using 1–2 nodes depending on resource availability. For this number of nodes, the

settings of 40 processes per node and 1 thread per process were used to run design

optimizations.

Using the tuned Triples Mode job submission parameters, there was a mean run-

time reduction of 31.1% for the ReCon codebase when compared to previous design

optimization runs carried out on the MIT Supercloud. The highest runtime improve-

ment recorded was 46.1% for optimization runs carried out using 24 target decks, with

slightly lower efficiency improvements recorded for optimization runs using fewer tar-

get decks. This was theorized to be due to the tuning process being carried out on

the HPC cluster specifically using 24 target decks. After the sampling improvements

and reduction to 22 target decks described in Chapter 5 were implemented, future

work could reverify the Triples Mode tuning process described here to assess whether

these settings are still the optimal values for use with the updated ReCon model.
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