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Efficiency and Fairness in
Unmanned Air Traffic Flow Management

Christopher Chin, Karthik Gopalakrishnan, Maxim Egorov, Antony Evans,
and Hamsa Balakrishnan, Member, IEEE

Abstract—As the demand for Unmanned Aircraft Systems
(UAS) operations increases, UAS Traffic Flow Management
(UTFM) initiatives are needed to mitigate congestion, and to en-
sure safety and efficiency. Congestion mitigation can be achieved
by assigning airborne delays (through speed changes or path
stretches) or ground delays (holds relative to the desired takeoff
times) to aircraft.

While the assignment of such delays may increase system
efficiency, individual aircraft operators may be unfairly im-
pacted. Dynamic traffic demand, variability in aircraft operator
preferences, and differences in the market share of operators
complicate the issue of fairness in UTFM. Our work considers
the fairness of delay assignment in the context of UTFM.
To this end, we formulate the UTFM problem with fairness
and show through computational experiments that significant
improvements in fairness can be attained at little cost to system
efficiency. We demonstrate that when operators are not aligned
in how they perceive or value fairness, there is a decrease in the
overall fairness of the solution. We find that fairness decreases
as the air-ground delay cost ratio increases and that it improves
when the operator with dominant market share has a weak
preference for the fairness of its allocated delays. Finally, we
implemented UTFM in a rolling-horizon setting with dynamic
traffic demand, and find that efficiency is adversely impacted.
However, the impact on fairness is varied and depends on the
metric used.

Index Terms—Air transportation; Unmanned Aircraft Systems
(UAS); UAS Traffic Management (UTM); Traffic Flow Manage-
ment; fairness; efficiency

I. INTRODUCTION

THE potential of Unmanned Aircraft Systems (UAS) to
dramatically transform societal applications (including

infrastructure and environment monitoring, agricultural sur-
veys, communication services, cargo delivery, and even pas-
senger mobility) is expected to lead to a significant increase
in autonomous aircraft operations. It has been estimated that
by the year 2035, Paris may see as many as 2,500 Urban
Air Mobility (UAM) flights, 16,000 delivery drones, and 60
inspection drones flying each hour of the day [1]. Other
urban areas are projected to see a 200-fold increase in the
number of flights due to Unmanned Aircraft Systems (UAS)
operations (autonomous drones for package delivery, sensor
measurements, surveillance, tracking, etc.), and a 30-fold in-
crease from UAM operations (autonomous, semi-autonomous,
or piloted air taxis) [1], [2]. These operations will be largely
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concentrated around dense urban regions, in the proximity of
existing airports, and will involve significant investments in
technology and infrastructure [3].

The increase in UAS traffic demand will inevitably result
in congestion in the air as well as at vertiports (low footprint
airports in urban areas designed to support vertical takeoffs
and landings). The entire US National Airspace System (NAS)
currently handles about 90,000 flights a day, whereas UAS
traffic operations are projected to exceed 2.5 million flights per
day in the US [4]. The resultant strain on the air transportation
infrastructure, if not managed, could result in decreased levels
of safety, and increased economic losses and emissions. The
increase in vehicle- and system-level autonomy will enable
the better utilization of limited resources, but the need for a
UAS traffic management system will remain, especially for
low-altitude operations. The development of a UAS Traffic
Management (UTM) architecture, and the associated proto-
cols, strategies, and infrastructure, is essential for the safe and
efficient operations of autonomous aircraft.

Despite the excitement surrounding UAS/UAM operations,
several questions regarding UTM architectures remain unan-
swered. These open problems include the choice between a
centralized and a more federated or distributed architecture,
the role of a UAS Service Supplier (USS) in managing traffic
and interfacing with air traffic controllers, assurances on the
quality of service provided to users of the airspace, and
the possible timelines for the deployment of UTM solutions
[1]. The focus of this paper is the development of strategic
traffic flow management techniques for UAS/UAM operations.
Prior work has shown that tactical and decentralized conflict
resolution protocols are effective at low traffic volumes [5]–
[7]; however, they are likely to be less efficient as traffic levels
increase. Our work is motivated by the recognition that in
high-demand scenarios, centralized resource allocation has the
potential to increase overall efficiency and safety. Furthermore,
by strategically planning ground holds and airborne trajectory
modifications, we can reduce the amount of tactical coor-
dination required of UAS, remote pilots, and USS, thereby
improving predictability.

A. Motivation for UAS Traffic Flow Management (UTFM)

Our approach to UTFM is primarily motivated by four
observations. Firstly, in order to scale UAS/UTM operations
to meet the increasing demand, it is important to operate
efficiently and minimize delays (in this context, delay can
be defined as the difference between the desired and actual
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times of operation). Secondly, the equitable and fair allocation
of airspace resources is important, especially in the presence
of a large number of aircraft operators; yet, fairness is often
the first casualty in the quest for efficiency [8], [9]. Thirdly,
UAS operations are likely to result in competing interests
and strategic behavior on the part of the various participants,
including first-mover advantages and attempts to monopolize
the airspace by aircraft operators. It is essential that the
airspace, as a public good, remains accessible to all. Finally,
the lessons learned from conventional traffic management
should be leveraged in the design of a flexible, future-proof
next generation aviation infrastructure.

The overarching goals of our approach to UTFM are to:
1) Explicitly incorporate fairness into traffic flow man-

agement decisions while accommodating user-specific
fairness requirements.

2) Support a range of aircraft operator preferences and
vehicle capabilities, as reflected in their delay sensitivity,
mission requirements, and operator utility functions.

3) Support dynamic traffic demand, thereby enabling novel
applications such as on-demand mobility, exploration,
quick package delivery, etc.

B. Prior work
The UTFM problem is an extension of the conventional

Air Traffic Flow Management (ATFM) problem, which can
be used to assign ground delays and speed restrictions to
scheduled flights, in order to mitigate congestion [10]–[12].
The optimal assignment of ground delays and airborne delays
to flights can be formulated as a large-scale optimization
problem. Recent efforts have resulted in tractable approaches
to this classical problem [13], [14].

Fairness in allocating scarce airport resources has been
explored in prior work [15], [16]. With regard to jointly
allocating airport and airspace resources (as in ATFM), three
notions of fairness have been defined: reversals [17], over-
takings [17], and time-order deviation [18]. Related work
in ensuring fair trajectory-based operations has considered
max-min fairness [19], cost-penalty formulations [20], as well
as notions of accrued delay [21]. This extensive body of
work emphasizes the importance that the aviation community
has placed on fairness and the wide range of meaningful
definitions of fairness in this context. Our work considers
these different notions of fairness in the context of UTFM
and highlights the differences between them.

The UTFM problem has been the topic of recent research
[6], [14]. While [6] addresses the problem by assigning flights
to different “layers” of the airspace, [14] proposes a distributed
solution approach based on column generation. Although
fairness has been widely recognized as an important criterion
[1], [9], it has only recently been explored in the context
of UTM and, even then, only for decentralized operating
paradigms [5], [22]. The limited work on addressing fairness
in strategic UTFM has involved monetary transactions, which
raises other practical challenges [23]. Furthermore, challenges
such as individual vehicle or aircraft operator preferences
over delays, fairness, and the lead-time for filing preferred
trajectories, have not been previously explored.

C. Contributions and main findings

This paper makes two key contributions to UTM research.
Firstly, we develop a UTFM framework that incorporates
fairness, user preferences, and dynamic trajectory requests
into the decision-making process. Secondly, we evaluate our
UTFM formulation using UAS/UTM demand generated from
an industry-developed simulator, identify appropriate metrics
for fairness, and quantify the efficiency-fairness tradeoffs, in
the presence of operator preference variability and dynamic
traffic demand.

Our main insights on the interplay between fairness and
efficiency in UTFM can be summarized as follows:

1) Although several reasonable notions of fairness can be
proposed in a networked setting, they are not all equally
easy to achieve in practice. More precisely, we show that
some of the metrics may be orthogonal to each other and
that optimizing for one may adversely affect another.

2) The preferences of different operators can vary in a
range of ways (e.g., their preferences may be aligned
but differ in magnitude, or they may be misaligned), and
the resulting impacts on system efficiency and fairness
can differ. More specifically, for the case of two aircraft
operators, we find that:
• As the ratio of the airborne holding cost to the

ground holding cost increases, the fairness of the
UTFM solutions decreases.

• The greater the divergence between the fairness
preferences of the two operators (both in terms of
the fairness metrics and the weights given to them),
the greater is the loss in both system efficiency and
fairness.

• When the operator with a weak preference for
fairness has a high market share, the fairness of
the resulting solution improves for both operators,
relative to the solution where both operators have
even market share.

3) UTFM with a rolling horizon framework leads to lower
efficiency and higher time-order deviation; however, the
number of reversals is similar.

D. Outline

In Section II, we define candidate notions of fairness in the
context of UTFM and identify the challenges that need to be
addressed. Section III presents the mathematical formulation
of the resulting optimization problem. In Section IV, we
describe the setup for the simulations, while in Section V,
we discuss the results and findings. Finally, our conclusions
and proposals for future work are discussed in Section VII.

II. UAS/UAM TRAFFIC FLOW MANAGEMENT (UTFM)

In this section, we highlight the three main features of
our proposed UTFM framework: the consideration of fairness,
variable aircraft operator preferences and vehicle capabilities,
and dynamic traffic demand.
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A. Fairness considerations

The revision of trajectories to mitigate congestion re-
quires assigning delays to each flight (i.e. the aircraft takes
off/lands/accesses a region of airspace at a different time than
is desired by its operator). Depending on the desired trajectory
of a flight and the capacities of the airspace sectors it traverses,
the amount of delay assigned to each flight can be different.
Consequently, the objective of maximizing system efficiency
is equivalent to minimizing the sum of delay costs for all the
flights. The resulting solution, although efficient, could have
an uneven distribution of delays across flights and aircraft op-
erators, raising questions of fairness. Additional considerations
include ensuring fairness across flights of differing durations,
flights traversing different regions of the airspace, and flights
with varying performance capabilities.

When there is only one constrained resource (airspace sector
or vertiport), First-Come-First-Served (FCFS) at that resource
is a reasonable definition of fairness. However, when a single
flight traverses multiple congested resources and FCFS is
enforced at each of them, the flight may get excessively
penalized as delays from the first resource get compounded
further downstream in the trajectory (see example in Fig. 1).

Fig. 1. The purple drone joins the end of the queue at every constrained
resource, following a First-Come-First-Serve policy. The dotted purple line
denotes the desired trajectory, while the solid purple line denotes the realized
one.

Other notions of fairness may be preferable in this net-
worked resource allocation setting. A few examples, which
we will describe in greater detail later are:

1) As much as possible, maintain the scheduled arrival
order of flights at each resource. In other words, if flight
f1 was scheduled to arrive at a resource before another
flight f2, then we prefer that it does so in the revised
schedule. In this case, a reversal is when f2 arrives at
this resource before f1. We will formalize this metric
of fairness as minimizing the total number of flight-
reversals across all resources.

2) Find the most constrained resource in a flight’s tra-
jectory. This resource would introduce the maximum
FCFS delay if it were the only constrained resource
present in the trajectory. One could argue that this is the
minimum delay that a flight on this trajectory ought to
endure, and the optimization should try to minimize, or

at least equalize any delay beyond this minimum value
across flights. We will formalize this notion of fairness
as minimizing the time-order deviation (TOD) for all
flights in the schedule.

Several nuances need to be addressed when incorporating
fairness into UTFM. A direct consequence of having multiple
candidate metrics of fairness is that it is not apparent which
one is better, or more widely acceptable to UAS operators.
Although intuition would suggest that enforcing some degree
of fairness would result in a loss in system efficiency (i.e., the
sum of flight delay costs will increase), the nature of this trade-
off is not well understood. Furthermore, higher traffic demand,
especially in urban areas, would result in a larger number of
congestion points (airspace sectors or vertiports) for each flight
trajectory. Without explicit planning, the presence of multiple
congested resources can significantly decrease the fairness of
the UTFM solution (e.g., Figure 1). It is therefore imperative
that we incorporate fairness at an early stage of system design,
as concerns of unfairness will only grow with traffic volume.

Fairness in the networked setting has been studied in the
context of air traffic control flow management [17], [18]. In
ATFM, airports typically remain the primary choke points,
and the FCFS schedule emerging from a congested airport
is usually prioritized over other constraints. However, such a
practical approach cannot be translated to UTFM, since there
are multiple choke points.

B. Aircraft operator preferences and vehicle capabilities

While implementing UTFM in practice, one must be cog-
nizant of significant differences that may exist amongst differ-
ent users of the system. Potential aspects of variability include:
• Mission requirements. The file-ahead time is how far in

advance an operator files a flight plan before the sched-
uled departure time. UTFM should support on-demand
operations with short file-ahead times (e.g., package-
delivery or UAM) as well as scheduled operations with
long file-ahead times (e.g., planned video inspections or
fixed-schedule air taxis). Similarly, some missions such
as UAM or package delivery could require flying the
shortest path to a destination, while others (e.g., plume
tracking or traffic surveillance) could involve hovering or
actively sensing and exploring a region.

• Vehicle capabilities. Some vehicles may have a wider
range of feasible speeds, resulting in a larger potential for
airborne holding. Fixed-wing vehicles may not be able
to reduce their speed below a certain critical threshold
without the risk of stalling, whereas rotary-wing vehicles
(like quadcopters) may be able to hover at a particular
location and reduce their lateral speed to zero if needed.
Vehicles may also have different endurance times and
abilities to operate safely when subject to delays.

• Preferred metrics of fairness. Certain aircraft operators,
such as those running supply and logistics missions,
may have coordinated flight operations. For instance, one
vehicle may bring a certain package to a warehouse and
a drone scheduled for later may transport that package
to a customer. For such an operator, reversals in the
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order of arrivals may be of significant consequence, and
they may wish to minimize the number of reversals in
the UTFM solution. On the other hand, a point-to-point
UAM operator may only be concerned about their on-time
performance relative to competitors. A fair allocation
would then be one that results in an equitable distribution
of delays for any two flights that use the same set of
resources. In such cases, minimizing the TOD might be
the preferred metric of fairness, rather than minimizing
the reversals.

• Aircraft operator cost/utility functions. An operator trans-
porting packages might be more sensitive to delays than
a leisure drone photographer. Even among the flights
managed by the package delivery operator, an aircraft
carrying perishable goods may be more delay-sensitive
than one carrying non-perishable goods.

Different operator preferences and vehicle capabilities may
affect the tradeoffs between fairness and efficiency. Further-
more, the notion of what is considered fair for a pair of
operators may be the same (i.e. aligned) or different (i.e.
misaligned). This can affect not only the system efficiency,
but also determine the extent to which efficiency must be
compromised to satisfy fairness preferences of the operators.
The challenge lies in developing a UTFM framework that can
not only support diverse user preferences and constraints, but
also equitably allocate resources. Such a framework would be
a significant departure from ATFM, where the vehicle capabil-
ities are relatively homogeneous, and the limited variability in
delay costs due to airline-specific factors (such as connecting
passengers, crew time-outs, etc.) are handled post hoc via the
Collaborative Decision Making (CDM) process [15].

In a marked departure from traditional ATFM research, our
work quantifies the loss in efficiency and fairness for different
operator traffic volumes and preferences (delay sensitivity and
fairness requirements) using a UAS/UAM demand simulator
developed by Airbus.

C. Strategic planning with dynamic traffic demand

The last feature of our UTFM framework that we wish to
highlight is its ability to adapt to temporally dynamic traffic
demand. In particular, we note that the file-ahead times for an
aircraft operator (or vehicle) to convey its demand for airspace
or airport resources may be very short. Low traffic demand
predictability could correspond to two scenarios: missions may
be initiated with short lead times (e.g., on-demand UAM or
package delivery), or they could be inherently uncertain due
to a reactive sensing control loop (e.g., a car chase using a
drone, air pollution monitoring, traffic surveillance, etc.). In
other words, the file-ahead times could range from a few weeks
for scheduled services, to a few seconds for reactive sensing
missions.

Unfortunately, strategic planning requires some look-ahead
and visibility into future demand. It is challenging to efficiently
manage a mix of scheduled as well as dynamic traffic demand.
Furthermore, the UTFM problem needs to be solved frequently
at scale, in near-real-time, owing to the high volume of
UAS/UTM traffic and dynamically changing flight plans. We

address this concern by implementing the UTFM solution
iteratively with a receding horizon to account for dynamic
demand and variable file-ahead times.

III. MATHEMATICAL FORMULATION

In this section, we present the main formulation for the
UTFM problem. We describe two metrics to measure fairness
and show how they can be incorporated in the optimization.
We first build off of the classical traffic flow management
problem (TFMP) formulation [11].

A. Setup and Notations

We consider a discrete-time traffic flow management prob-
lem. The mathematical notations used in the formulation are
described below.

T : Set of time periods {1, . . . , T} of length ∆T
A : Set of all airports
S : Set of all airspace sectors
F : Set of all flights
O : Set of all operators
Fo : Set of all flights by operator o ∈ O

C(s, t) : Capacity of sector s ∈ S at time t
A(a, t) : Arrival capacity of airport a ∈ A at time t
D(a, t) : Departure capacity of airport a ∈ A at time t

af : Scheduled arrival time for flight f ∈ F
df : Scheduled departure time for flight f ∈ F
Sf : Sequence of sectors in flight f ’s schedule
Sfj : Next sector after j in flight f ’s trajectory
Pfj : Sector preceding j in flight f ’s trajectory

origf : Origin airport for flight f
destf : Destination airport for flight f
lf,s : Minimum time spent by flight f in sector s
M : Maximum delay for each flight
T fj : Set of feasible time periods for flight f to arrive

at resource j ∈ A ∪ S (airport or sector)
T̄ fj : Latest time in the set T fj
Tfj : Earliest time in the set T fj
wfj,t : A binary variable that is 1 when flight f ∈ F

has arrived at resource j ∈ A ∪ S at or before
time t

B. Baseline TFMP

The objective function minimizes total delay cost (TDC).
The expression for total delay cost (TDC) is assumed to be of
the form TDC = β(GD1+ε+αAD1+ε), where GD is ground
delay, AD is airborne delay, β is delay to cost scale factor,
and α ≥ 1 is the ratio of airborne delay cost to ground delay
cost. Note that ε makes these costs super-linear in the delay
duration, as we prefer even distribution of delays across flights
over skewed delay distributions. For example, setting ε to be a
small positive number (≤ 0.05) guides the optimization solver
to allocate 2 minutes of delay each for two flights rather than 4
minutes of delay to a single flight, even though the total delay
would be the same for both solutions. In other words, this
super-linear cost structure helps break ties between multiple
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solutions that result in the same total system delay. Without
loss of generality, we set β = 1.

Since, TD = AD +GD, we have

TDC = αTD1+ε + (1− α)GD1+ε (1)

If the flight departs at time t, then the ground delay is GD =
(t − df ). Also, if the flight lands at time t, the total delay is
TD = (t− af ). Thus, TDC can be re-written in terms of the
decision variables w as

TDC =
∑
f∈F

(
∑

t∈T f
destf

α(t− af )1+ε(wfdestf ,t − w
f
destf ,t−1)

−
∑

t∈T f
origf

(α− 1)(t− df )1+ε(wforigf ,t − w
f
origf ,t−1)) (2)

The key aspect of the formulation that lends computational
tractability to larger-scale problems is the choice of the de-
cision variable wfj,t, which is a binary variable that is non-
decreasing in time (Constraints (3g) and (3h)). Flight f is said
to enter a resource i (which could be an airport or a sector)
at time t if (wfi,t − w

f
i,t−1) = 1.

The following constraints must be satisfied:∑
f∈F : origf=k

(wfk,t − w
f
k,t−1) ≤ D(k, t), ∀k ∈ A, t ∈ T

(3a)∑
f∈F : destf=k

(wfk,t − w
f
k,t−1) ≤ A(k, t), ∀k ∈ A, t ∈ T

(3b)∑
f∈F : i∈Sf ,j=Sf

i

(wfi,t − w
f
j,t−1) ≤ C(j, t), ∀t ∈ T (3c)

wfi,t = 0, ∀f ∈ F , t = Tfj−1, i = S ∪ A (3d)

wfi,t = 1, ∀f ∈ F , t = T̄ fj , i = S ∪ A (3e)

wfi,t − w
f
j,t−lf,j ≤ 0, ∀f ∈ F , t ∈ T fi ,

i ∈ Sf : i 6= origf , j = Pfj
(3f)

wfi,t−1 − w
f
i,t ≤ 0 ∀f ∈ F , i ∈ Sf , t ∈ T fi (3g)

wfi,t ∈ {0, 1} ∀f ∈ F , i ∈ S
f , t ∈ T fi (3h)

Constraints (3a), (3b), and (3c) enforce departure, arrival,
and sector capacities, respectively. Constraint (3d) ensures that
a flight does not reach a sector before the earliest feasible time.
Analogously, constraint (3e) enforces that a flight must arrive
at a sector before the latest feasible time. The minimum time
to be spent in each sector is described in Constraint (3f).

C. Fairness Metrics

We focus on two candidate notions of fairness, which we
describe qualitatively below. We then incorporate them into
the baseline TFMP formulation.

1) Reversals [17]: According to this notion, a fair solution
is one in which the relative ordering of arrivals at any resource
is preserved according to published schedules. We want to
minimize reversals in the ordering of flight arrivals at a sector
or an airport relative to the originally scheduled ordering.

A few additional variables for incorporating reversals are
defined below.

Rj : Pairs of reversible flights
T rf,f ′,j : Set of time periods common for flights f and

f ′ where a reversal could occur at resource j
λor : Penalty factor for reversals for operator o

We define a new variable sf,f ′,j which is 1 if flight f ′

arrives before flight f at resource j, where f was scheduled
to arrive before f ′, and 0 otherwise. Thus, flight f suffers from
the reversal, but flight f ′ benefits. In the objective function,
we sum the previously defined TDC with the total number of
reversals suffered by an operator multiplied by a weight λor.

min TDC +
∑
o∈O

λor
∑

j∈S,(f,f ′)∈Rj ,f∈Fo

sf,f ′,j (4)

The following constraint must be satisfied:

sf,f ′,j = max (0, wf
′

j,t − w
f
j,t) ∀t ∈ T

r
f,f ′,j (5)

2) Time-order deviation [18]: In this section, we describe
the time-order deviation metric used to quantify fairness.
We calculate the first-come-first-serve (FCFS) arrival time
FCFSfi for each flight f at resource i that it goes through,
assuming that i was the only constrained resource. With
FCFS, arrival slots are assigned to flights according to the
original schedule ordering. For each flight, we then calculate
the maximum FCFS delay dFCFSf .

FCFSfi : First-come-first-serve arrival time for
flight f at resource i assuming that i was
the only constrained resource (i ∈ S ∪A)

dFCFSf : Maximum FCFS delay for flight f
cfTOD(t) : Additional delay cost when flight f is

delayed for time t
λot : Penalty factor for time-order deviation for

operator o
Just as with the penalty factor for reversals, λot is opera-

tor specific. The intuition behind time-order deviation is as
follows. When there are multiple constrained resources, each
flight should not expect to incur any less delay than it would
incur as a result of only the most constrained resource along
its route. In other words, there is a notion of expected delay,
that every flight is inherently entitled to be assigned, and
only delays beyond this expected delay should be equalized
among the multiple flights. Thus, for every flight f ∈ F , the
maximum delay that it would have been assigned as a result
of only the most constraining resource is

dFCFSf max
i∈S∪A

FCFSfi (6)

Thus, the modified optimization problem is

min TDC +
∑
o∈O

λot
∑
f

T∑
t=af

cfTOD(t)(wfdestf ,t−w
f
destf ,t−1),

where cfTOD(t) = (max{0, t−af−dFCFSf })1+ε. (7)



IEEE-ITS, SPECIAL ISSUE ON UNMANNED AIRCRAFT SYSTEM TRAFFIC MANAGEMENT 6

Fig. 2. Example of a four-operator scenario in a 16 km × 14 km region, with
flight trajectories showing the operations flown, the colors denoting different
operators, and axis ticks along the border denoting 1km sector boundaries.

IV. EXPERIMENTAL SETUP

A. Scenario generation

We use a package delivery scenario created by Airbus
where four operators in Toulouse, France have warehouses
on the outskirts of the city and make deliveries in locations
randomly distributed around the city [24]. The demand is
generated using a Poisson process. Each flight has a desired
4D trajectory (three spatial dimensions with time as the fourth
dimension). For simplicity, only the outbound flight segments,
from the warehouse to the delivery site, are considered. We
used two demand scenarios: 50 flights/hour and 25 flights/hour
per vertiport. Fig. 2 shows the scenario with 50 flights/hour.
For some experiments, we use a two-operator scenario, which
is generated by combining the black and green operations into
one operator and the red and blue operations into another
operator.

One of the key requirements of the UTFM formulation is
that time is discretized into timesteps. We rounded sector entry
and exit times to the nearest 60 s (the timestep size) while
ensuring that each flight spent at least one timestep in each
sector. We set a sector time discretization threshold of 3 s
and skip a sector if a flight spent less than 3 s in it. Another
requirement of the UTFM formulation is that a flight may only
traverse through a sector once. There were 8 instances where
a flight entered a sector multiple times; for example, it was
initially in sector A then briefly left to sector B then reentered
A. We eliminated repeated sectors by smoothing the trajectory
and forcing the flight to stay in one sector the whole time.

An additional factor that we accounted for was that flights
had limited battery capacity, which we assumed to be 20 min.
Thus, we used the remaining battery life and the unimpeded
time-to-destination to calculate the maximum time duration
that a given flight could hold at its current sector at any point
in time. This gave a useful upper-bound on airborne delay for
each flight at each sector. Table I lists additional parameters.

TABLE I
LIST OF PARAMETERS

Parameter Value
Timestep Size 60 s

Sector X-Y Dimensions 1 km × 1 km
Sector Z Dimension (Height) 65 m

Sector Capacity 1 per sector
Departure Capacity 2 per timestep

Sector Discretization Threshold 3 s
Maximum Battery Life 20 min

Airborne Delay Cost to Ground Delay Cost Ratio α = 3

B. Fairness-efficiency tradeoffs
We seek to evaluate the fairness-efficiency tradeoff when

incorporating one of two fairness metrics: reversals or time-
order deviation. We assume that all four operators’ notions
of fairness are aligned and penalized the same (effectively
equivalent to having one operator). Recall that the weight that
a fairness metric is given is represented by λor or λot . We vary
these values to generate fairness-efficiency curves. We use total
delay cost as the efficiency metric, as shown in (2). Note that
total delay cost is distinct from total delay, as it penalizes
airborne delay α times more than ground delay.

C. Ratio of airborne to ground delay costs
One of the key parameters in the UTFM formulation is the

airborne to ground delay cost ratio, α. When α > 1, ground
delay is preferred over airborne delay. The assumption is that
airborne delay is more costly than ground delay because of
higher fuel/energy costs. In practice, α could vary and have
a significant impact on not only the split between airborne
and ground delay, but also notions of fairness. We evaluate
the impact of α on the baseline UTFM and UTFM when
incorporating reversals and time-order deviation.

D. Alignment of notions of fairness
We expect that operators will often have not only different λ

weights of fairness, but also different notions of fairness. For
example, an operator conducting deliveries where the order of
operations is very important may care about reversals much
more than time-order deviation. The effect of a reversal may
propagate downstream to the operators’ later operations. On
the other hand, an operator passing through multiple con-
strained resources may care more about time-order deviation
(additional delay beyond expected delay) than reversals. We
consider a case with two operators where one operator’s notion
of fairness associated penalty factor is fixed and the other
operator’s notion of fairness and penalty factor are variable.

E. Effect of market share
There is concern that the market share of operators may

lead to unfair allocations of delay. Smaller operators may be
effectively crowded out by larger operators. As an initial step,
we evaluate the effect of market share on system and per-
operator efficiency and fairness in a case with two operators.
We keep the total number of flights constant and randomly
select the appropriate number of flights to switch operators.
We test several market share splits in a two operator scenario.
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F. Rolling horizon implementation

The standard UTFM formulation assumes that the demand
is not only deterministic, but also known well in advance.
Given the on-demand nature of many UTM applications, this
is not a safe assumption. One way around this challenge is
to implement a rolling horizon version of the UTFM. With
a rolling horizon of length n minutes long, we propose to
solve the UTFM once for every time-interval of that length
(i.e., every n minutes). Each flight must file their flight plan
before the start of the time-interval that contains its scheduled
departure time. For example, if n = 5 min, we solve the UTFM
at 6:00, 6:05, 6:10, and so on. Flights departing between 6:05
and 6:10 must file before 6:05. At 6:05, all flights scheduled
to depart between 6:05 and 6:10 are considered for planning
(from takeoff to landing), and their revised schedule constrains
flights and resource capacities in subsequent time-intervals.
For comparison, we also solve the baseline UTFM in an on-
demand fashion such that one flight is scheduled at a time,
in order of their scheduled departure time. We use a scenario
with four operators in this case.

V. RESULTS

A. Fairness-efficiency tradeoffs

In the baseline formulation, the objective function consists
solely of the total delay cost. When incorporating reversals
or time-order deviation in the objective function, we expect
a trade-off between fairness and efficiency (measured with
total delay cost). The total delay cost should either remain
unchanged or increase as the fairness terms are added to the
objective and drive the solution away from the optimal total
delay cost. In return, we expect fairness to increase.

The following figures evaluate two different fairness metrics
and two different demand scenarios. Results are shown for a
high demand scenario (vertiport demand of 50 flights/hour)
and a low demand scenario (25 flights/hour). For each sce-
nario, there is one data point in black for the baseline case,
but several data points for reversals and TOD, corresponding
to different λr and λt values, respectively. For this section, we
assume that all operators have the same notion of fairness and
degree of preference. To conserve space, specific λ values are
only shown for one curve in Fig. 3, but the arrow shows the
direction in which λ increases.

Fig. 3 plots the average number of reversals and average
total delay cost per flight when solving the baseline UTFM
(“Baseline”) and when incorporating reversals or time-order
deviation (“Reversals” or “TOD”). Two baselines are shown,
corresponding to the low demand (black square) and high de-
mand scenario (black circle). We first look at the low demand
scenario. The blue curve shows the results of incorporating
fairness to varying degrees, with the corresponding λr value
shown next to each point. As λr increases, the number of
reversals decreases and the total delay cost increases relative
to baseline. For small λr values, it is possible to reduce the
number of reversals with no increase in total delay cost. For
example, when λr = 0.4, the number of reversals per flight
decreases to 0.23 (compared to 0.54 in the baseline) with
no increase in total delay cost. With further increases in λr,

Fig. 3. Reversals vs. Total Delay Cost (TDC) when incorporating different
fairness metrics. (The hourly demand level is shown in parentheses.)

decreases in reversals are smaller and become increasingly
expensive in terms of the total delay cost. At λr = 10, the
optimal solution has only 3 reversals (equivalent to an average
of 0.03 reversals per flight) but an average delay cost per flight
of 1.86 (a 19% increase compared to 1.56 in the baseline).
Overall, the average number of reversals decays exponentially
with increasing total delay cost. This is because to prevent a
pair of flights from being reversed, it may be necessary for
one flight to incur excess delay. In the absence of limitations
on the maximum delay that a flight can endure, the number
of reversals could be driven to zero at the cost of very high
total delay.

For small λt, incorporating time-order deviation can lead
to a decrease in the average number of reversals with little
to no increase in the total delay cost, especially for the high
demand scenario. However, incorporating time-order deviation
does not decrease the average number of reversals as much as
explicitly incorporating reversals. For larger λt, the optimal
solution does not change and no further reductions in reversals
are apparent.

In the high demand scenario, the new baseline (shown as
a black circle) has a higher average number of reversals and
average total delay cost than the previous baseline correspond-
ing to a demand of 25 flights/hour. This is expected, as more
congestion leads to more flight interactions and potential for
reversals. Incorporating reversals in the objective has a similar
effect as doing so with lower demand. The tradeoff curve has
a similar shape, and for very high λr, the average number of
reversals approaches zero while the average total delay cost
increases substantially.

Fig. 4 is similar to Fig. 3 but shows the effect on time-
order deviation. While penalizing reversals can drive its value
to zero, it is not possible to drive the average time-order
deviation to zero when minimizing time-order deviation, no
matter how large λt gets. Recall that time-order deviation is
defined as assigned delay minus maximum expected delay (7).
There are two ways to reduce system time-order deviation: 1)
reduce system total delay or 2) shift delay from flights with
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Fig. 4. Time-Order Deviation vs. Total Delay Cost (TDC).

positive time-order deviation to flights with delay less than
their maximum expected delay. Thus, when the total delay
has been minimized and all flights have delay assigned that
is greater than or equal to their maximum expected delay, the
time-order deviation has been minimized. This appears to be
the case here, as minimizing only the total delay rather than
total delay cost in the objective function in the high demand
scenario leads to an optimal solution with the same 201 min
of total delay seen with λt = 2. Whereas incorporating time-
order deviation can slightly decrease reversals, incorporating
reversals results in up to a 17% increase in average time-order
deviation in the low demand scenario and up to a 13% increase
in the high demand scenario.

While the improvement in the average time-order deviation
when penalizing time-order deviation may appear modest,
there is another benefit. Since the cost coefficient for time-
order deviation is a super-linear function, evenly distributed
time-order deviation is preferred over lopsided distributions.
As such, incorporating time-order deviation also reduces the
standard deviation of time-order deviation across flights. As λt
increases, the standard deviation decreases; λt = 2 results in a
27% decrease in the standard deviation of time-order deviation
relative to the baseline. As mentioned above, incorporating
time-order deviation bounds the loss in efficiency (i.e., increase
in total delay cost) while remaining robust to the choice of
λt. Note how much more total delay cost increases when
minimizing reversals compared to when minimizing time-
order deviation in Fig. 3 and Fig. 4. These observations suggest
that time-order deviation may be a suitable fairness metric in
practice.

B. Effect of the airborne to ground delay cost ratio, α

Total Delay Cost (TDC) contains the parameter α, which
is the airborne to ground delay cost ratio. As α increases,
airborne delay gets even more costly relative to ground delay,
so ground delay is preferred over airborne delay. This can lead
to an increase in total delay minutes, as one minute of airborne
delay may be replaced with two minutes of ground delay. We

confirmed this expected behavior. Less obvious is the impact
of α on fairness.

Fig. 5. Impact of the airborne to ground delay cost ratio, α, on fairness when
λr = λt = 1.

Fig. 5 shows fairness/time-order deviation across different
α values when prioritizing different notions of fairness. λr
and λt are both fixed to 1. For all prioritizations, increasing α
generally leads to an increase in reversals and time-order de-
viation. As delay is shifted from the air to the ground, ground
delays are assigned based on the most congested resource
in the trajectory. This conservative approach exacerbates the
unfairness (e.g. reversals) for all the resources in the trajectory
rather than just remaining localized to the congested resource.
Thus, when the system can afford airborne delays, there is
significant flexibility in assigning delays only when vehicles
interact with congested resources. This helps improve the
system fairness.

A UTFM solution prioritizing a particular fairness metric
will naturally perform the best with respect to that metric. This
is highlighted in both the subfigures, where the fairest solution
(lowest values) are for UTFM solutions incorporating reversals
(top) and TOD (bottom), in terms of reversals and time-
order deviation, respectively. Prioritizing time-order deviation
performs better (in terms of number of reversals) than the
baseline for α < 5 and slightly worse for α ≥ 5. But
prioritizing reversals performs worse than the baseline in terms
of time-order deviation for all values of α.

C. Misaligned and imbalanced notions of fairness

The previous section described results when all operators
have aligned notions of fairness and the same λ weight of
fairness. We refer to this scenario as a perfect alignment
of fairness. However, operators can have different efficiency-
fairness trade-off preferences, as reflected by the λ value
or different notions of fairness itself (e.g. reversals or time-
ordered-deviation). Whenever two operators have the same
notion of fairness, they are said to be aligned. Whenever two
operators have different notions of fairness (e.g., one prefers
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Fig. 6. Operator efficiency and fairness with varying λ1t or λ1r , with fixed
λ2t = 3. Operator 1 and 2 are misaligned when operator 1 prioritizes reversals,
aligned when operator 1 prioritizes time-order deviation, and perfectly aligned
when λ1t = λ2t = 3.

to minimize reversals while the other prefers to minimize
TOD), they are said to be misaligned. In this experiment,
Operator 2 has the same λ weight of fairness for time-order
deviation (λ2

t = 3), while Operator 1’s notion of fairness and
λ weight vary, as shown in Fig. 6. Three subplots show the
change in total delay cost, number of reversals, and time-order
deviation for each operator relative to a perfect alignment of
λ1
t = λ2

t = 3. In this section, we refer to increases/decreases
relative to perfect alignment as “increases” and “decreases”,
respectively. Starting with the top subplot, we observe that
efficiency decreases in two cases: in the misaligned region
with the operators having different notions of fairness and
in the aligned region with λ1

t much higher than λ2
t . In the

misaligned region, for λ1
r ≤ 5 the decrease in total delay

cost from prioritizing time-order deviation for Operator 2
is overridden by the worsening of total delay cost due to
minimizing reversals for Operator 1. For λ1

r > 5, total delay
cost increases for both operators. In the region near λ1 = 0,
delay cost increases for Operator 1 and decreases for Operator
2, but these mostly balance each other out. In the aligned
region where Operator 1 has a stronger fairness preference
than Operator 2, Operator 1’s decrease in total delay cost is
outweighed by Operator 2’s increase.

As with efficiency, fairness decreases when one operator has
a much stronger notion of fairness than the other operator,
in both the misaligned and aligned case. Looking at the
middle subplot of Fig. 6, for all misaligned cases, Operator
1’s reversals naturally decrease since they are the only one
minimizing reversals, and Operator 2’s reversals increase. For
λ1
r ≥ 10, the increase in Operator 2’s reversals outweighs

Operator 1’s decrease leading to an overall increase in number
of reversals, but for smaller λ1

r the total number of reversals
decreases. The increase in Operator 1’s (and the system)
number of reversals peaks around λ1 = 0. This is because
Operator 1 has weak fairness preferences for either reversals
or time-order deviation, and minimizing either could reduce
the number of reversals. Moving onto the bottom subplot of
Fig. 6, in the misaligned region, Operator 1’s preference of
minimizing reversals increases time-order for both operators.
In the aligned region, Operator 1’s time-order deviation in-
creases if its fairness weight is lower than Operator 2’s but
decreases if its fairness weight is higher.

D. Effect of market share

Fig. 7. Effect of market share on Time-Order Deviation, with fixed λ1t = 0.5,
λ2t = 1.0.

To test the effect of market share on fairness, we fix the
fairness parameters in a two-operator setting. In this scenario,
both operators care about time-order deviation, but Operator 1
has a weaker preference for fairness than Operator 2 (λ1

t = 0.5
and λ2

t = 1). We then vary the market share of Operator 1
from 0.2 to 0.8 in increments of 0.1, as seen on the x-axis of
Fig. 7. We switch the designated operator of an appropriate
number of random operations to create a scenario with any
given market share split. We run 50 experiments for each
market share split, with each experiment having the same
number of flights per operator, but different flights belonging
to each operator. The y-axis of Fig. 7 shows the change in
average time-order deviation relative to average time-order
deviation with equal market share on the y-axis. Fairness
improves for both operators when the operator with weak
fairness preference (Operator 1) has a higher market share
and the operator with strong fairness preference (Operator 2)
has a low market share. In contrast, the fairness of Operator
1 deteriorates if its market share is reduced.

One way to rationalize this is as follows. If an operator has
a very high λ (e.g., Operator 2) but a low market share, it
will be relatively easy to accommodate their requests without
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penalizing other operators. On the other hand, if the market
share of this operator was high, then the overall solution would
preferentially satisfy the fairness requirements of this operator
and might have to impose excessive penalties (in terms of
efficiency and fairness) on others.

E. Rolling horizon implementation

In this section, we discuss the results when using a rolling
horizon of varying size for the high demand scenario (50
flights/hour). In Fig. 8, the total number of reversals vs.
the total delay cost is shown for the case with no rolling
horizon (“Deterministic”), identical to the previous section,
and cases with 15-minute and 5-minute rolling horizons. Note
that fairness is only incorporated among the flights that are
planned in a given horizon. We also show the result for solving
the UTFM such that one flight is scheduled at a time in order
of their scheduled departure time (“Myopic UTFM”).

We first look at the impact of the rolling horizon in the
baseline case (no fairness metric incorporated). Recall that
in our implementation of the rolling horizon, flights from
the previous time step cannot be changed, eliminating the
ability to shuffle those flights with flights from the current
time step. While this lowers the number of reversals, it comes
at the expense of total delay cost. Thus, compared to the
deterministic baseline, both of the rolling horizon baselines
(15-minute and 5-minute horizons) have a lower number of
reversals and a higher total delay cost. Flights are planned for
the 5-minute rolling horizon with even less information than
with the 15-minute rolling horizon; thus, it is not surprising
that the total delay cost for the 5-minute rolling horizon is
greater than that of the 15-minute rolling horizon. The on-
demand case has, by far, the highest total delay cost, which
makes sense given that UTFM is only solved for one flight
at a time. The solution results in 67 reversals, higher than the
15-minute rolling horizon but lower than the 5-minute rolling
horizon.

Fig. 8. Reversals vs. Total Delay Cost (TDC), by length of rolling horizon.
“Myopic” is when flights are planned one-by-one in order of scheduled time
of departure.

The 15-minute rolling horizon (depicted with orange
hexagon points) is similar to the deterministic case, except
the decrease in fairness (reversals) is not exponential but

Fig. 9. Time-Order Deviation vs. Total Delay Cost (TDC), by length of rolling
horizon.

close to a linear decrease. Incorporating time-order deviation
generally increases the number of reversals. With the 5-minute
rolling horizon, incorporating reversals (green hexagon points)
follows the expected behavior: decreasing number of reversals
for increasing total delay cost. Also, the number of reversals
plateaus after very little increase in total delay cost. This is
likely since fewer flights in each time step results in less
leeway to adjust schedules to untangle reversals. The myopic
case again has the highest total delay cost but also has much
higher time-order deviation than all other results.

Fig. 9 is similar to Fig. 8 but shows time-order deviation
instead of reversals on the y-axis. When comparing the base-
line points (in black), time-order deviation increases as the
horizon size decreases. As seen before, incorporating reversals
increases time-order deviation, and this trend is seen across
all horizon sizes tested. On the other hand, incorporating
time-order deviation decreases time-order deviation in the
deterministic case and has more mixed results with the 5-
minute and 15-minute rolling horizons.

An important consideration of the rolling horizon imple-
mentation is the runtime, which we define as the computational
time to optimize all the traffic demand (flights). As the horizon
size increases, more flights are included in each time-interval,
adding additional variables to the TFMP formulation and
leading to a longer runtime. On the other hand, a larger horizon
size means that fewer subproblems need to be solved. For
example, the simulation lasts 87 min, so with a horizon size
of 45 min, just two horizons (with several flights) are needed.
In contrast, with a horizon size of 5 min, 18 horizons (each
with fewer flights) are needed.

Fig. 10 shows how runtime varies for different horizon sizes
when incorporating either reversals or time-order deviation
(TOD). The runtime for the deterministic solution (i.e., all
flights are known in advance) is also shown. With time-order
deviation, total runtime decreases exponentially as horizon
size increases. With reversals, runtime decreases as horizon
size increases from 5 to 25 min, but increases thereafter. The
TFMP formulation with reversals requires more variables than
the formulation with time-order deviation, and therefore takes
longer to solve for a larger number of flights. For all scenarios
tested, the total runtime is reasonable (at most about 5 min)
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considering that the simulation spans nearly 90 min.

Fig. 10. Runtimes for different rolling horizon sizes.

VI. DISCUSSION OF RESULTS

A. Other metrics of fairness

A metric of fairness closely related to reversals is overtak-
ings [17]. It quantifies the magnitude of reversals, i.e. measures
the minutes by which a flight f1 arrives before an earlier
scheduled flight f2 at a particular airspace sector or vertiport.
Qualitatively, minimizing the total overtakings in the system
is very similar to minimizing reversals; this is backed up with
experimental evidence, but is not shown in this paper for
brevity (see [25]). A consequence of these two metrics being
closely related is that individually optimizing for either one
results in improvements in the other metric also. Essentially,
paying a price in efficiency for either of the metrics gets you
the other for “free”.

Reversals and overtakings are two fairness metrics that have
the potential to be achieved in an absolute sense. By that, we
mean that the total number of system reversals or overtaking
minutes can be driven to zero, if there were no constraints on
the maximum delay for each vehicle. This is in contrast with a
metric like TOD, where even a massive loss in efficiency may
not result in a TOD value of zero. Thus, one could present the
case for using metrics similar to TOD in practice, since they
are more resilient to poor design choices of λ, and enable a
framework that limits inefficiency while incorporating fairness.

Another approach is to perform a First-Scheduled-First-
Served allocation for each flight arriving at a constrained
resource. Under this approach, when a flight is excessively
delayed at its first constrained resource and reaches the second
resource, it does not simply join the end of the queue; instead,
the scheduled time of arrival at that resource determines the
priority ordering at the queue. This reduces the occurrence of
“double penalties” where flights are delayed at one sector and
then further delayed at downstream sectors.

Lastly, we would like to highlight another natural definition
of fairness, the minimization of the variance in delays across
flights. This can be achieved by penalizing total delays expo-
nentially by setting a high ε in the baseline UTFM formulation.
When ε is high, the optimal solution will tend to achieve a min-
max fair solution, where it attempts to minimize the maximum

delay. The key takeaway from this discussion is that while
there are several reasonable notions of fairness, they can be
easily incorporated in the UTFM formulation.

B. Implementing UTFM in a receding horizon framework

There are several nuances to implementing UTFM in a
dynamic traffic demand scenario, as each trajectory request
can come with a different file-ahead time. Such scenarios can
lead to interesting questions regarding the extent to which
UTFM should aggregate the demand to improve efficiency and
fairness, while at the same time not being too aggressive in
the aggregation such that it induces artificial inefficiencies.

One possible implementation framework would be to ag-
gregate all requests within a fixed time interval, say Tplan,
and solve the UTFM problem. However, in the extreme case
that a vehicle files a request right after an interval is planned,
it would have to endure an artificial delay of Tplan even
before it is assigned a revised trajectory. However, if a vehicle
always files ahead, with at least Tplan buffer, then it requested
schedule is guaranteed to be considered by the UTFM as
filed (an assumption we make when presenting our results in
Section V-E).

A possible modification to the above strategy to eliminate
the artificial delays would be to solve the aggregate UTFM
problem for flights that file sufficiently ahead, but then follow
a Myopic UTFM strategy for flights with low file-ahead times.
While this sacrifices fairness and does not help capitalize
on the efficiency gain due to coordinated planning, it would
eliminate adding artificial delays.

In our current implementation, once a flight is scheduled,
its schedule is fixed and it acts as a constraint to subse-
quent flights. If we allow flights to be re-planned (potentially
changing delay assignments), we may be able to improve
efficiency and fairness. In ATFM there are practical human
factors limitations to how often flights can be re-planned;
the increased autonomy of UAS is likely to eliminate these
concerns.

C. Varying aircraft operator delay utility functions

Our method is also adaptable and can minimize any utility
function that represents flight delay costs. We have also shown
in our experiments that it is easy to incorporate operator- or
even flight-specific utility functions for the delays. In Section
V, we used a marginally super-linear delay cost function (to
break ties and prefer a delay of 3 min each to two flights over
a delay of 6 min to a single flight), but that need not be the
most representative for all operators.

One reasonable utility function Ui that an operator i with
delay Di would like to minimize is [22]:

Ui(Di) =


β1

√
Di, if Di < Dindifferent

β2Di, if Dindifferent ≤ Di < Dintolerable

β3D
2
i , if Di ≥ Dintolerable

where β1, β2 and β3 are constants that ensure continuity of the
utility function. Other possible options involve step functions
(representing a sharp increase beyond a threshold which can
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happen due to cancellations), constant utility function (repre-
senting irrelevance of delays for applications such as aerial
photography), or exponential functions (for extremely time-
sensitive missions).

The utility function is incorporated into the formulation by
specifying the total delay cost as cftotal(t) = Ui(t), α = 1 and
eliminating the ground hold reduction cfg = 0. Although not
highlighted in our examples, the delay utility function can also
depend on both the ground and the air delay. An interesting
consequence of this formulation is that the complexity of
solving the optimization does not change depending on the
nature (e.g. linear, non-linear, convex, non-convex etc.) of the
utility function.

VII. CONCLUSIONS

This paper explored the UAS/UTM traffic flow management
problem with a special emphasis on the efficiency and fairness
of the resultant solution. In particular, we focused on the
impact of aircraft operators’ preferences, airborne to ground
delay cost ratios, and market shares on fairness. We considered
two metrics of fairness: the number of reversals and time-
order deviation. We found that it is possible to improve
either of these fairness metrics at little cost to efficiency
(i.e. little increase in total delay cost). We also found that
while minimizing reversals, time-order deviation increases, but
when minimizing time-order deviation, the number of reversals
could also decrease.

We also evaluated the impact of aircraft operator preferences
on fairness and showed that as the airborne to ground delay
cost ratio increases, fairness decreases. In a two-operator
setting, system efficiency and fairness are both at their best
when the two operators have the same notion of fairness and
value them to similar degrees. Additionally, fairness improves
when the operator with dominant market share has a weak
preference for fairness. Finally, we considered UTFM in a
rolling horizon setting with dynamic traffic demand, and found
that efficiency and time-order deviation worsen at shorter
horizons, while the number of reversals is unaffected.

We are currently pursuing several extensions of this re-
search. We are looking at how operator delay cost functions
impact efficiency and fairness, particularly when operators
have different delay costs. We are also adapting the rolling
horizon framework to include the re-planning of airborne
flights that have already been scheduled. This approach would
be useful in scenarios where flights do not comply with their
assigned 4-D trajectories. We also intend to test scenarios with
heterogeneous operators (e.g., simultaneous urban air mobility
and package delivery operations). Finally, we are interested in
investigating the impacts of strategic (gaming) behavior on the
part of the aircraft operators on fairness.
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