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Abstract
A significant fraction of communications between air traffic controllers and pilots is through speech, via radio channels.
Automatic transcription of air traffic control (ATC) communications has the potential to improve system safety, operational
performance, conformance monitoring, and to enhance air traffic controller training. We present an automatic speech
recognition model tailored to the ATC domain that can transcribe ATC voice to text. The transcribed text is used to extract
operational information such as call-sign and runway number. The models are based on recent improvements in machine
learning techniques for speech recognition and natural language processing. We evaluate the performance of the model
on diverse datasets.

Introduction
Air traffic controllers play a critical role in ensuring safe
separation of aircraft in the airspace as well as on the
airport surface. Despite the increasing deployment of datalink
technologies, a significant fraction of communications
between air traffic controllers and pilots is through
speech, via radio channels. The automatic transcription
of air traffic control (ATC) communications has many
potential applications such as improving system safety,
operational performance, conformance monitoring, and
enhancing controller training (1). However, automatic speech
recognition (ASR) systems proposed to date for the ATC
applications have not yet demonstrated the levels of accuracy
needed for practical deployment (2).

Factors such as noisy radio channels, high speech rates,
and diverse accents pose challenges to the development
of ASR systems for ATC. On the other hand, ATC
communications contain domain-specific vocabulary and
standard phraseology that can be leveraged to tailor
algorithms. Recent developments in machine learning such
as deep neural networks have led to more accurate speech
recognition algorithms (3), and suggest the possibility of
better ASR algorithms for ATC communications.

Related work
ASR techniques have several potential applications in the
ATC domain, including safety monitoring of live opera-
tions (4–6) and identification of anomalous aircraft trajec-
tories (4). In another example of safety monitoring, Chen
et al. (5) developed a framework to automatically flag pilot-
controller miscommunications (read back error detection) to

prevent untoward incidents. With the introduction of elec-
tronic flight strips in ATC towers, speech assistants have
been shown to reduce air traffic controller workload in early
demonstrations (7). ASR systems can also be used instead of
pseudopilots for training air traffic controllers (8, 9), and for
human-in-the-loop simulations and workload measurements
in air traffic management research (10, 11). Additionally, the
increasing demand for unmanned aerial vehicle operations
has stimulated the need for ASR systems (12). However, the
lack of sufficiently accurate ASR models for the ATC domain
has remained a significant barrier to its deployment in these
applications.

The earliest automatic speech recognition models for large
vocabularies used Hidden Markov Models (HMM) (13).
Later approaches used hybrid models – a mixture of
HMMs with Gaussian Mixture Models (GMM) or Deep
Neural Networks (DNN) (14, 15). Recently, end-to-
end speech recognition using deep neural networks have
yielded significant improvements in accuracy for regular
conversational speech (3). A key benefit of the end-to-end
speech recognition model over classical approaches such as
HMM-based models is the ease of training, since they do not
require complicated pipelines with extensively engineered
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processing stages. There are several open source ASR
toolkits that allow researchers to adapt various models to a
domain of interest: Bavieca (16), CMU Sphinx (17), HMM
toolkit (18) and Kaldi (19) for HMM-based ASR models,
and Deep Speech (20), wav2letter++ (21) and Jasper (22) for
deep-learning based end-to-end speech recognition models.

ATC applications of ASR have traditionally used HMM-
based approaches, with limited consideration of end-end
speech recognition approaches (6). In the recently-concluded
Airbus ATC speech recognition challenge, the top performing
team used a HMM-based hybrid model that yielded a word
error rate (WER) of 7.6% on the Airbus test data (23),
with the second ranking team using an end-to-end speech
recognition architecture that yielded a WER of 8.4% (24).
In another recent study, a comparison of hybrid model
(HMM/DNN in Kaldi) and end-to-end speech recognition for
ATC voice in English and Chinese was evaluated by Lin et
al. (6). For English ATC voice, they found that the end-to-end
speech recognition model yielded a WER of 6%, performing
better than the hybrid model that yielded a WER of 9%. One
needs to note that the performance of the models, in terms
of the WER, also depends on the quality of test data. If the
test data is more representative of the training data and is
less noisy, one expects better performance from the speech
recognition model. Therefore, one cannot compare models
based on WER if they are reported on different test sets.

The accuracy of a speech recognition model depends on
the amount of labelled training data available. The amount
of publicly available transcribed ATC voice data is relatively
small compared to thousands of hours of transcriptions
available for regular conversational speech (used for training
commercial speech recognition models). To tackle the issue
of limited data availability, Srinivasamurthy et al. (25)
proposed using semi-supervised learning, in which new
transcripts generated from a preliminary trained model were
used to retrain the model, resulting in a 25% reduction
in the word error rate. Researchers have also used flight
trajectories in order to add context to a speech recognition
model (for example, flagging a flight as about to land) to
improve its accuracy. Such a context-aware ASR model has
shown to reduce the command error rate (a measure of
extracting commands from the transcripts) by 50%, although
there were no significant improvements in the WER (26).
Prior work has also leveraged the smaller vocabulary and
standard phraseology of ATC communications in order to
develop better language models, thereby achieving up to
20% improvement in the accuracy of the speech recognition
model (27).

Contributions of this paper
In this paper, we develop an automatic speech recognition
(ASR) model that transcribes ATC voice communications
to text. The proposed model is based on an end-to-
end speech recognition architecture with a deep neural

network, which offers several advantages over traditional
HMM-based approaches that have been typically used for
the ATC domain. HMM-based models typically contain
multiple modules (acoustic model, pronunciation model,
etc.), with each module being independently optimized with
their own objective function which does not guarantee
optimality across modules (28). By contrast, an end-to-
end model replaces multiple modules with a single deep
neural network that enables direct mapping of the acoustic
signals to a sequence of characters, without hand-engineered
intermediate states. As a result, one could attain optimality
over the entire pipeline with end-to-end models by merging
multiple modules into one optimized deep neural network,
and designing objective functions that truly reflect the
final evaluation criterion. Moreover, an end-to-end modeling
approach is easier to train, and has been shown to yield a
better accuracy than traditional methods for conversational
speech (3). In addition to training the model with ATC voice
transcripts, we compare the model accuracy with transfer
learning and parameter fine tuning using a model that is pre-
trained on regular conversational speech. Since the accuracy
of the speech recognition model depends significantly on the
amount of training data, we have compiled an extensive ATC
speech corpus from various sources to understand the impact
of using diverse ATC voice datasets for training the model.

Most applications require the extraction of information
from the transcripts once the ATC voice data has been
transcribed. For this purpose, we present a methodology to
accurately extract operational information such as aircraft
call signs and runway assignments from transcripts, using
state-of-the-art techniques from natural language processing.
We also propose a performance metric called normalized
uncertainty score to evaluate the accuracy of transcription in
the absence of ground truth, a necessity for making decisions
using transcribed ATC voice data.

Automatic speech recognition model
The automatic speech recognition model is based on Deep
Speech (20), an end-to-end speech recognition model. We
use Mozilla’s implementation of Deep Speech for our
analysis (29). We briefly describe the model in this section;
more detailed information can be found in the original papers
(20, 29).

Model overview
Figure 1 illustrates the model architecture of the speech
recognition system. The main components are the feature
extraction module, acoustic model, language model, and
decoding module. The feature extraction module takes the
ATC audio signal as input, and outputs coefficients associated
with its frequency spectrum as follows: the entire time
series of the audio signal is divided into smaller (32 ms)
time-windows with a 20 ms overlap; each time-window is
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Figure 1. Model architecture for the ASR system.

associated with a feature vector that corresponds to its Mel
Frequency Cepstral Coefficients (MFCCs) (29). The MFCCs
of each time-window constitute the feature vector that serves
as the input to the acoustic model. The acoustic model
is a recurrent neural network that is trained to output a
sequence of character probabilities based on the sequence
of input feature vectors. The characters here correspond to
letters of the English alphabet, apostrophe, space, blank,
and additional identifiers corresponding to foreign words
or unintelligible words. The language model outputs the
probability of a sequence of characters based on the training
text data, independent of the audio signal. In the decoding
module, the output of the acoustic model is integrated with
that of the language model to determine the transcribed text.

Acoustic model
The acoustic model is a recurrent neural network composed
of five hidden layers, the first three of which are non-
recurrent. The first layer takes the MFCC input for a
particular time-window as well as a few (9, in our case)
context frames on either side of the window. A clipped
rectified-linear unit (ReLU) activation function is used for
all the layers, except the last one. The model architecture
of Mozilla’s implementation differs slightly from the original
Deep Speech paper (20, 29). Here, the fourth layer is a feed
forward recurrent layer instead of a bidirectional recurrent
layer, to reduce computational time during inference. The last
layer is a non-recurrent output layer that yields the character
probabilities based on a Softmax function. A Connectionist
Temporal Classification (CTC) loss function is used to
compute the prediction error during training (30). We use
an adaptive learning rate (Adam method) for updating the

model parameters through stochastic gradient descent during
training, and a dropout rate of 5% for regularization.

Language model
Training the acoustic model for the ATC domain to pro-
duce accurate character level transcription is challenging
due to the limited availability of transcribed ATC audio.
Furthermore, the neural network can output phonetically
similar word renderings which can be incorrect (e.g., ”bostin”
instead of ”boston”). These issues can be addressed us-
ing a language model that is tailored to the ATC domain.
The language model is a probability distribution over a
sequence of words, which is used in the decoding stage.
We choose an N-gram language model because it can be
trained using existing libraries (KenLM (31)) and yields
good performance. In this language model, the probabil-
ity of the kth word is assumed to depend only on the
N − 1 preceding words, i.e., P (wk|wk−1, wk−2, .., w1) =
P (wk|wk−1, wk−2, .., wk−(N−1)). Consequently, the prob-
ability of a sequence of words, P (w1, w2, ...wm), can be
expressed as a product of conditional probabilities.

The conditional probabilities required for the model are
determined from the ATC audio transcripts in the training
data. Although a higher value of N will lead to better
predictions, there may not be sufficient data to obtain
consistent statistics for a larger N . An optimal value of N is
determined using a parametric analysis to yield a lower word
error rate on the validation set.

Decoding step
The decoding step determines the most probable sequence
of characters given the output probabilities from the acoustic
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model and language model. Let PA(c|x) represent the
probability of a sequence of characters, c = {c1, c2, c3..},
obtained from the acoustic model for a given input audio
(x). Similarly, let PLM (c) represent the probability of a
sequence of characters obtained from the language model.
The objective of the decoding step is to obtain a sequence
of characters that maximizes the confidence score (Q(c)):

Q(c) = PA(c|x) + αPLM (c) + β word count(c). (1)

Here, α and β are weights to balance the influence of the
acoustic model, the language model, and the word count of
the utterance. The last term is used because shorter sentences
inherently have a higher probability in the N-gram language
model. The output sequence of characters that maximizes the
confidence score, Q(), is determined using a beam search
algorithm (20). Optimal values of α, β and beam width are
determined using a parametric analysis such that the average
WER over a validation set is minimized.

Model for ATC communications

Data sources
Training an automatic speech recognition model requires
large amounts of transcribed audio data. The datasets used
in our study are shown in Table 1, and include transcripts of
ATC communications from the US and Europe, with varied
accents and audio quality. Most of the data corresponds to
approach and tower control segments. The European datasets
also contain utterances that are partially non-English. Those
parts, as well as non-intelligible parts of the audio, are
encoded with a unique identifier in the transcripts. The total
number of hours of audio transcription is approximately 140
hours, yielding 84 hours after removing outliers and silent
portions of audio. To the best of our knowledge, this is the
first study that combines these four diverse datasets.

Performance metrics
The Word Error Rate (WER) is a widely-used measure of
ASR model accuracy. It is defined as the sum of the number
of words in the transcribed text that are either substituted
(S), deleted (D), or inserted (I) relative to the reference text,
divided by the number of words in the reference (Nr):

WER =
S +D + I

Nr
. (2)

The WER includes errors arising from filler words or
other words that are not relevant in a particular context.
The Concept-Error-Rate (CER) is an alternative metric that
reflects the accuracy of domain-specific ASR systems. The
CER is given by number of misrecognized concepts divided

by the total number of concepts. This study focuses on the
WER primarily because the number of concepts in the speech
that one would be interested in (for evaluating the CER)
depends on the application area. Additionally, one needs the
labels of the concepts in the training data to evaluate the CER,
which is not available in our dataset.

The speed of transcription is also an important quantity. It
is measured in terms of the real-time factor (RTF), namely,
the duration of input audio divided by the required time
to process the input. Lower RTF, which implies faster
transcription speed, is preferred. However, RTF might not be
significantly important for off-line applications that involve
accurately transcribing recorded voice datasets. On the other
hand, if one is interested in transcribing the speech in real
time (in applications such as safety monitoring), then one
needs to have RTF lesser than one. The real-time factor for
our models is around 0.3, implying that they can be deployed
in live operations.

Model Variants
We consider the following four model variants in our study:

Model-1: Only an acoustic model and no language model
Here, the transcription is based only on the acoustic model,
and the language model weights (α, β) are set to zero.
This variant serves as a baseline to assess the benefit of
including a language model. The number of neurons in each
hidden layer of the neural network was fine-tuned based on
a parametric analysis that involved varying its value in the
range (500,1024) and picking the optimal value that yielded
the lowest average WER on the validation set. The optimal
number was found to be 650 neurons in each hidden layer.
We note that the original Deep Speech model (20) had a
significantly higher number of neurons in each hidden layer
(2,048 neurons). However, we found that a fewer number
of neurons was optimal because of the smaller amount of
training data available relative to conversational speech. In
addition to English characters, some of the datasets use
special characters to represent foreign words (@), non-
intelligible words ( ), breaks (/) and noise (#). We include
these special characters in our training data.

Model-2: Acoustic model and language model The
language model weights (α, β) are chosen by sweeping
through different values of (α, β), and choosing the set of
parameters that yields the lowest WER over a validation
set. Figure 2 shows the computed WER on the validation
set for different values of (α, β). Using this, we determined
the parameters that yield the lowest WER. A similar
parametric analysis resulted in a choice of N = 4 for
the N-gram language model. Ideally, one should search
for the optimal set of parameters over the joint-space
of the hyperparameters. However, to limit the number of
computations, we individually optimized the beam width, N-
value of the language model and the number of neurons,
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Table 1. Available transcribed ATC voice datasets
Corpus name Duration Comments
AIRBUS-ATC (23) 40 hours French-accent speech; approach and tower control, ATIS
ATCOSIM Corpus (32) 10 hours German-Swiss-French accent; en-route controllers speech recorded in a

studio environment
ATC Communication (33) 20 hours Ground control, tower control, approach control, and area control.

Primary data source from Czech Republic’s ANSP, with small amounts
from Lithuania and Philippines.

NIST ATC Complete
(LDC94S14A) (34)

70 hours ATC data for approach control from 3 US airports (BOS, DCA, DFW)

Figure 2. WER of validation set for various language model
weights (α, β).

while keeping the other parameters fixed at their nominal
values.

Model-3: Refining parameters of a pre-trained model
We used an acoustic model that was trained for regular
conversational speech, and refined the neural network
parameters using the ATC speech corpus. The pre-trained
model is a much larger neural network with 2,048 neurons
within each layer. The pre-trained acoustic model was
developed using multiple speech corpora ( 3,250 hours with
Fisher, LibriSpeech and Switchboard datasets) and achieves
a WER of 0.08 on conversational speech (LibriSpeech clean
test corpus) (29). The neural network parameters of the pre-
trained model were optimized by re-training the model using
the ATC speech corpus. The optimization was conducted
over four epochs using a small learning rate (10−5) for the
gradient descent. The choice of four epochs was based on
common practice, and can be further revised considering the
performance over the validation set. As before, we used a
language model that was trained using the ATC corpus.

Model-4: Transfer learning with a pre-trained model
Transfer learning has shown promise in machine learning
applications where there is limited domain-specific labelled
training data available (35). The idea is to adapt a pre-
existing trained model to the domain of interest. In our case,
we adapted a pre-existing acoustic model that is trained for

regular conversational speech (the same baseline model used
for Model-3) to the case of ATC communications. The most
common approach to transfer learning with neural networks
is to ”freeze” the parameter values of a few layers of a trained
neural network, and to retrain the parameters of the other
layers using domain-specific data. For ASR, the parameters
of the first few layers are frozen from the pre-trained model,
and parameters of the remaining layers are trained using the
ATC speech corpus. The rationale for such an approach is
that the first few layers represent some form of filtering or
feature extraction that might be common across different
application domains. This methodology has been used to
train ASR models for different languages using a pre-trained
model for the English language (36). In our study, we froze
the parameters of the first three layers of a pre-trained ASR
model for conversational speech (from the previous variant),
and retrained the parameters of the last two layers using the
ATC speech corpus.

Model performance
We first trained and tested the different model variants with
just one of the datasets (AIRBUS-ATC), and then included
the other datasets. The initial analysis with a single dataset
allowed us to test different model variants without significant
computational effort. We used approximately 36 hours of the
40-hour AIRBUS-ATC dataset for training the model, 2 hours
for validation, and 2 hours for testing.

A summary of the WERs of the four models (on a 2-hour
test dataset with 1,500 utterances) is shown in Table 2. The
acoustic model integrated with the language model (Model-
2) performs the best among the four approaches with an
average word error rate of 0.22. This is followed by the model
obtained by fine-tuning a pre-trained ASR model (Model-
3). By comparing results from Model-2 and Model-1, we
notice that integrating the language model with the acoustic
model improves the speech recognition accuracy by about
18%. Transfer learning yields the lowest accuracy among
the different approaches, possibly because the higher speech
rates and noise of ATC audio require significantly different
parameter values in the first few layers of the neural network
compared to a model trained on conversational speech.

Figure 3(a) shows a box-plot of the average WER as a
function of the word count in the utterance. The WER is
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seen to be higher for utterances with a lower word count,
and is nearly constant for word counts greater than six. The
reason for this behavior is that missing one or two words
(even filler words, e.g., ‘um’ or ‘ah’) would lead to a higher
WER for smaller sentences. Figure 3(b) shows the histogram
of the word count of utterances in the test set. The average
word count is 12 words, and utterances with fewer than six
words represent 7% of the test set. Additionally, 10.3% of
the utterances in the test set have a foreign word or non-
intelligible word in the transcription. We therefore compute
the WER after excluding utterances with fewer than six words
and the ones having foreign words or non-intelligible words,
and denote it by WER. One needs to note that shorter
sentences might be important depending on the application
(such as detecting acknowledgements or readback errors).
For applications such as extracting operational information,
the newly defined performance metric, WER, might be of
interest because such information is primarily contained in
longer sentences. The WER of the four model variants is
shown in Table 2. We note thatWER is 8-25% lower than the
WER. Overall, Model-2, wherein the acoustic and language
models are trained using only ATC domain-specific speech
data, performs the best among these approaches, with WER
equal to 0.17.

As one might expect, it takes more time to train a neural
network model from scratch (Models-1,2) than it takes for
parameter fine tuning (Model-3), where the optimization is
conducted over a smaller number of epochs (four in our
case), or even transfer learning (Model-4) where only the last
two layers of the neutral network are re-trained. However,
we use fewer neurons for training the model from scratch
compared to the pre-trained model, which slightly reduces
the computational time (however, it is still higher than the
other two methods).

Training with additional datasets
To understand the benefit of additional training data, we
added utterances from the three other corpora (ATCOSIM
Corpus, ATC Communication, and NIST ATC Complete) to
the AIRBUS-ATC data, and re-trained the acoustic model.
The training set comprised of about 65,500 utterances (80 hrs
of non-silenced audio) of ATC conversations. A comparison
between the WER computed using the newly trained model
with additional data and the earlier model, evaluated on the
AIRBUS-ATC and NIST ATC Complete (100 utterances)
testsets, is shown in Table 3. The WER on the AIRBUS-
ATC test set increases from 0.17 to 0.29 with additional
data. A possible reason for this increase is the fact that the
datasets are diverse with regards to the accents, audio quality,
and navigational information. However, WER evaluated on
the NIST ATC complete dataset reduces from 0.75 to 0.32,
illustrating that training with additional data increases the
generalizability of the model. These comparisons use the
same language model (trained using AIRBUS-ATC data)

(a) WER for different word counts

(b) Histogram of word count

Figure 3. Statistics of word counts and WERs computed for the
test set using Model-2.

even for the evaluation with the NIST ATC data, which
contributes to the lower accuracy on that test set. We also
retrained the model that was initially trained with all the
four datasets by parameter fine-tuning with the AIRBUS-
ATC training set (similar to the approach explained in the
previous section). The results indicate that parameter fine-
tuning reduces the WER on the AIRBUS-ATC test set
(Table 3) compared to case without fine-tuning, but still
yields lower accuracy than when the sources of the training
and test sets are the same (i.e., AIRBUS-ATC).

Extracting operational information

ATC communications contain extensive operational informa-
tion (e.g., runway assignment, heading, flight level) that are
of value in decision-making. In this section, we present a
methodology to automatically extract operational informa-
tion from ATC communication transcripts. Natural language
processing (NLP) techniques for extracting information from
unstructured text can be broadly classified into statistical
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Table 2. WERs and WERs on the AIRBUS-ATC test set for different model variants.

Variant Model type WER WER
Model-1 Acoustic model without language model 0.27 0.23
Model-2 Acoustic model integrated with language model 0.22 0.17
Model-3 Parameter fine-tuning with pre-trained model 0.25 0.23
Model-4 Transfer learning with pre-trained model 0.54 0.52

Table 3. Effects of using additional training data sources.

Training data source WER on test set
AIRBUS-ATC NIST ATC Complete

AIRBUS-ATC training set 0.17 0.75
All data sources 0.29 0.32
All data sources + fine-tuning with AIRBUS-ATC training set 0.19 0.45

models and rule-based grammar. Statistical models are ob-
tained using machine learning algorithms on the text data. On
the other hand, rule-based grammar techniques are based on a
collection of hand-engineered rules to perform the NLP task.
We employ both the methodologies in this paper: a statistical
model is used for call-sign extraction, and a rule-based
grammar approach is used to extract runway information.

Call-sign extraction
The utterances of the air traffic controllers and the pilots
often contain the aircraft call-sign, which serves as a unique
identifier for a flight receiving or sending the information.
The call-sign typically comprises of the airline telephony
designation (such as ”American” for ”American Airlines”;
”Speedbird” for ”British Airways”), followed by the flight
ID, which comprises of 2-4 digits, with an optional suffix
of 2-3 letters. A few examples of ATC utterances are shown
below, with the aircraft call-sign highlighted:

• air nostrum eight seven six one contact bordeaux one
three three decimal seven seven five goodbye

• five thousand feet one zero one zero easy six eight four
romeo

• lufthansa zero one charlie reduce speed two two zero
knots

To associate a flight with the instruction or command given
by the air traffic controller or pilot, one must be able
to accurately extract call-signs from the transcript. There
are multiple challenges to accurate call-sign extraction: (a)
controllers could use multiple airline identifiers for the
same airline; (b) the number of words following the airline
identifier (corresponding to the numerals/NATO phonetics)
can vary; and (c) there could be call-signs with just the flight
number without the airline identifier. Although the digits
are expected to be pronounced as separate numbers as per
ICAO nomenclature, the convention can vary in different
regions (for example, in the US, ”2020” is often spoken as
”twenty twenty” instead of ”two zero two zero”). One could
also have non-standard pronunciation: for example, “0” could

be pronounced as ‘oh’, “9” could be pronounced as ‘nine’
instead of ‘niner’, and “F” could be pronounced as ‘fox’
instead of ‘foxtrot’.

Given these variations, a rule-based grammar approach
for call-sign extraction might not be feasible. We instead
use a statistical approach to train a model to identify call-
signs using transcripts of ATC communications. In order to
extract call-signs, we use Named Entity Recognition (NER),
a standard NLP technique, to classify information within
unstructured text into predefined categories. For the call-sign
extraction problem, the objective is to identify a sequence of
words in each utterance, and to categorize it as the call-sign,
if it exists. We use a Python library called Spacy, which is one
of many standard libraries for NER (37). The NER model in
Spacy is based on a deep convolution neural network and uses
sub-word features. To categorize a particular word, the model
accounts for the neighbouring three words on either side. A
key advantage of the sub-word feature is that it can identify
call-signs even if there are spelling errors in the transcripts, a
particularly useful property for ASR-generated transcripts.

Performance metrics The accuracy of the model is
evaluated using three performance measures: precision,
recall, and F-1 score. We introduce some notation to define
these performance measures: Let A be the number of
instances in the test set when there is no call-sign in the
reference text, and the model also detects no call-sign.
Similarly, let B be the number of instances when there is
a call-sign in the reference text, but the model does not
detect a call-sign. Let C be the number of instances when
there is no call-sign in the reference text, but the model
erroneously detects a call-sign. LetD andE be the number of
instances when the detected call-sign is correct and incorrect,
respectively, among the instances when the reference text has
a call-sign. The mathematical expressions for precision (P ),
recall (R), and F-1 score are as follows:

P =
D

C +D + E
; R =

D

B +D + E
; F − 1 =

2PR

P +R
.

(3)
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Precision is the fraction of instances for which the call-sign
is correctly extracted from among the instances when a call-
sign is extracted. Recall is the fraction of instances for which
the correct call-sign is extracted from among the instances
when the call-sign is present in the reference text. The F-1
score is the harmonic mean of precision and recall.

Results The model was trained using 25,000 samples of
labelled data, which contained the transcript of the utterance,
and the corresponding call-sign in the utterance (if present).
The independent test data set contained approximately
3,000 utterances. For the call-sign extraction task from the
reference transcript, the precision was 0.97, the recall was
0.93, and the F-1 score was 0.95. In other words, 97% of
the call-signs that were extracted matched the reference call-
sign, and 93% of the call-signs in the reference text were
extracted correctly. Table 4 shows a few example transcripts
of the utterances in the test set, along with the reference
call-sign contained within the transcript, and the extracted
call-sign from the model. The first three rows in the table
are instances in which the call-sign was correctly extracted.
The next three rows illustrate cases wherein the call-sign
present in the text was not extracted, which would impact
the recall score. In these cases, the primary reason for the
error was that either the airline identifier in the test set was
very different from those seen in the training set, or that the
call-sign did not follow the usual convention. The last row
in the table shows a case in which the model incorrectly
extracted a call-sign when there was none in the reference
transcript, which would impact the precision score. Overall,
a F-1 score of 0.95 is a good initial step, and can be improved
by increasing the amount of training data. One needs to note
that even if the call-sign was not seen in the training data, the
model is capable of correctly identifying the call-sign based
on neighboring words that gives it context. Table 5 shows the
performance measures for the call-sign extraction task on the
test set for different amounts of data in the training set. The
performance of the model improves as the amount of training
data increases, but with diminishing marginal returns, as one
would expect.

Next, we look at the performance of the call-sign extraction
task on the transcribed voice data that is output from the
speech recognition model. These results are based on the
transcripts generated from an ASR model with a WER of
0.17. For the call-sign extraction task from the transcribed
voice data, the precision is 0.81, recall is 0.57, and the F-1
score is 0.67, on an independent test set. The performance
here is worse than in the case where we had the actual
transcripts, because of inaccuracies in the voice transcription.
It is worth noting that even when the transcription of voice is
not completely accurate (as reflected by the word error rate),
it may be possible to accurately extract the call-sign from the

transcript if the call-sign part of the utterance is transcribed
correctly.

Some limitations of this statistical approach to call-sign
extraction must be noted: (a) detecting airlines unseen in the
training set can be challenging, even though the approach
considers neighboring words for context; (b) call-sign digits
are pronounced differently in the US and in Europe. These
limitations can be overcome by including more diverse data
sources for training.

Extracting runway information
A rule-based grammar was used for extracting runway
information from the transcript. Reasons for employing
a rule-based grammar approach rather than a statistical
approach for runway extraction include: (a) the datasets do
not contain the labelled runway information needed to build
a statistical model; and (b) relatively few runway numbers
are uttered in the datasets (because the voice recordings are
from a small number of airports), which is not sufficient to
obtain a statistical model that generalizes well. Furthermore,
the utterances of runway numbers are highly structured,
motivating the use of rule-based grammar. Runway numbers
are uttered in the following manner: one or two digits
followed by ‘left’, ‘right’ or ‘center’. The transcript is
searched for such patterns to obtain the runway information
for extraction. We hand-labelled about 200 utterances to
test the performance of a rule-based grammar approach for
extracting runway information. The precision, recall and
F-1 score is 1 on the reference transcript, indicating that
the rule-based approach is perfectly accurate in extracting
runway information. Runway information extraction using
the transcribed text (from the ASR model with WER of
0.17) shows very good performance, achieving a precision
of 0.97, recall of 0.93 and F-1 score of 0.95. Note that for
airports with a single runway (which were not present in
the data used for this analysis), runway numbers might not
include ‘left’, ‘right’, or ‘center’ modifiers. In such cases,
one needs to appropriately modify the rule-based grammar
by including ’runway’ followed by a digit as a keyword
identifier.

Extensions and opportunities for further
research
In this section, we briefly discuss some promising extensions
and directions for further investigation.

Evaluating transcription accuracy in the
absence of ground truth data
Calculation of the word error rate requires the availability of
ground truth data (i.e., the actual transcript). However, the
practical deployment of decision-making using ASR requires
an estimate of the likely accuracy of the transcription, even
in the absence of ground truth data. In other words, it
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Table 4. Extracting call-signs from reference transcripts.

Reference call-sign Reference Transcript Extracted call-sign
easy four seven tango lima roger we call you huh short final easy four

seven tango lima
easy four seven tango lima

beeline four papa golf report huh short final maximum one sixty
beeline four papa golf

beeline four papa golf

swiss one juliet bravo keep rolling and vacating via mike eight
swiss one juliet bravo

swiss one juliet bravo

easy whiskey toulouse tower @ easy whiskey estab-
lished on the ils three two right

airbus delta sierra airbus delta sierra after takeoff you will
maintain runway axis

binair seven alpha # huh good huh @ huh binair seven alpha
approaching november eight
we leave via sierra three huh india lima sierra three huh india lima

Table 5. Call-sign extraction performance for different amounts of training data.

Training dataset size (# of utterances) Precision Recall F-1 score
100 0.91 0.34 0.50
500 0.95 0.49 0.65

5,000 0.99 0.90 0.94
25,000 0.97 0.93 0.95

is valuable to know when the ASR models are expected
to be accurate, and when they are not. To this end, we
propose to use the uncertainty score, defined as the negative
logarithm of the confidence score (Q(c)), as a surrogate for
the word error rate. The confidence score of an utterance,
and therefore its uncertainty score, depends on the character
probabilities of the transcribed text, as determined by the
acoustic model and language model of the ASR system.
Figure 4(a) shows a scatter plot of the uncertainty score and
word error rate, for each utterance in the test set. For the
purpose of illustration, the uncertainty score was computed
using only the acoustic model. The figure shows a clear
correlation between the uncertainty score and the word error
rate. This correlation increases further when one considers
the normalized uncertainty score, defined as the uncertainty
score divided by the number of characters in the transcription
of the utterance. Figure 4(b) shows a scatter plot of the
normalized uncertainty score and the word error rate, for the
utterances in the test set. The normalized uncertainty score
increases with the word error rate, and can be used to identify
instances in which one would expect a high WER (i.e., low
accuracy of the ASR model).

For applications in which the ASR model is used
as part of a decision-support tool, one could flag, or
even exclude, transcriptions that have a higher-than-average
normalized uncertainty score. The uncertainty score can also
be evaluated at the word-level, when the accuracy of the
extracted operational information is a quantity of interest.
The uncertainty score can also be used to identify off-
nominal events during which we expect the performance

of the speech recognition model to degrade (for example,
because the speech-rate or the phraseology are significantly
different from the nominal periods over which the model was
trained).

Figure 4(c) shows the distribution of the normalized
uncertainty score computed over two test datasets: (a) one
that is similar to the dataset used for training the ASR
model (shown in blue, and representative of conversations
during nominal events); (b) a test dataset that is significantly
different (in terms of accent and speech rate) from the training
data set (shown in red, and representative of conversations
during off-nominal events). We observe that the distribution
of the normalized uncertainty score for the off-nominal data
is significantly different (with a higher mean value, indicative
of higher WERs) from the distribution obtained for the test
dataset that is similar to the training data. Hypothesis testing
techniques can be used to determine if an utterance (or a
series of utterances) lies outside the nominal distribution in
a statistical sense, and to flag those periods as off-nominal
events.

Alternative language models

In this paper, we used a standard word N-gram language
model for simplicity, and focused primarily on the acoustic
model and the extraction of operational information.
However, prior studies have shown that more sophisticated
language models such as the class N-gram or RNN-
based language models can improve the accuracy of ASR
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(a) Uncertainty score

(b) Normalized uncertainty score

(c) Distribution of normalized uncertainty score

Figure 4. Uncertainty score of the transcription

systems (6, 27). Another potential benefit of the class N-
gram model is that one can efficiently incorporate out-of-
vocabulary data, such as new airlines or navigational aids
that are specific to a particular region, by updating the class
definition file.

Semi-supervised learning
The availability of sufficient amounts of high-quality data
is a key factor in improving the performance of ASR
models. Our experiments have shown that the use of diverse
datasets for model training results in more general models.
However, there are not many openly-available corpora for
ATC communications, and the manual transcription of ATC
conversations requires significant effort. A different direction
is to use semi-supervised learning, namely, to utilize widely-
available but untranscribed ATC audio data (38) to improve
the accuracy of the ASR model. The proposed approach
would be as follows: (a) train a preliminary model with the
existing ATC speech corpora; (b) use this preliminary model
to transcribe utterances of ATC voice communications that
does not have transcripts; (c) evaluate the accuracy of each
of the utterances using the uncertainty score as a metric;
and (d) re-train the ASR model by including the utterances
that yielded a low uncertainty score in the training data.
Although semi-supervised learning for ATC applications has
been previously attempted (25), we believe that the use of
the normalized uncertainty score to select data for retraining
models is a promising direction for further investigation.
Semi-supervised learning techniques (39) have been recently
shown to perform well for regular conversational speech even
with small amounts of labelled training data; these techniques
could be extended to the ATC domain.

Acoustic model
In this paper, we have used Mozilla’s implementation of
DeepSpeech model that considered MFCC as the input
feature. One could explore other alternative input features.
For example, filter bank energy is an attractive alternate
option given that there have been studies that have shown
that they perform better than MFCCs for robust speech
recognition (40). Further, recent studies have shown that
Transformer-based architecture for the acoustic model yields
better performance compared to conventional RNN, even for
low resource languages (41). This makes Transformer-based
model an attractive alternative for the ATC domain.

Another important aspect that one might have to consider
is constraints on the model inference time depending on
the application of interest. A larger neural network model
(number of hidden layers and neurons in each layer) for
the speech recognition system typically requires higher
computational time for inference, resulting in higher RTF. On
the other hand, a larger model might yield better accuracy.
For a practitioner, it might be of interest to quantify this trade-
off between RTF and accuracy, which is a potential direction
for future research.

Conclusions
This paper investigated the use of an automatic speech
recognition model for ATC voice communications data,
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and for the extraction of operational information from the
same. The model followed an end-to-end speech recognition
architecture, and was based on a recent machine learning
model that involves recurrent neural network (Deep Speech).
We were able to obtain a word error rate of 0.17 with our
speech recognition model, on an independent test set of ATC
communications data. The analysis revealed that including
an N-gram language model in addition to the acoustic
model improved the accuracy by 26%, and that transfer
learning and parameter fine-tuning with a model pre-trained
on conversational speech did not improve the accuracy.
The results illustrated that as expected, the use of diverse
data sources during training resulted in more generalizable
models, i.e., models with better accuracy on test datasets
from different sources. Recent ASR models (6, 24) have
reported better performance in terms of WER compared to
our proposed model. However, the intent of our research was
to understand the impacts of the language model, parameter
fine tuning, transfer learning, and training with additional
data, and to consider the potential to extract operational
information using natural language processing techniques.

To this end, we illustrated a call-sign extraction method
using Named Entity Recognition, which yielded an F-1
score of 0.95 on the actual transcript, and an F-1 score
of 0.69 on the transcript generated by the ASR model.
The runway information was extracted using a rule-based
grammar, resulting in an F-1 score of 1 (perfect transcription)
on the actual transcript, and 0.95 on the transcript generated
by the ASR model. We believe that the accuracy of call-
sign extraction would further improve with more training
data and better ASR accuracy. Further, we identified
opportunities to improve the accuracy of ASR models
for the ATC domain, including employing better language
models, semi-supervised learning, incorporating better priors
or context, and training the model with larger quantities
of transcribed ATC speech data. These enhancements could
potentially improve transcription accuracy, enabling practical
applications ranging from real-time safety monitoring to
speech assistants for air traffic controllers.
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