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Abstract—Search and rescue with a team of heterogeneous
mobile robots in unknown and large-scale underground envi-
ronments requires high-precision localization and mapping. This
crucial requirement is faced with many challenges in complex
and perceptually-degraded subterranean environments, as the
onboard perception system is required to operate in off-nominal
conditions (poor visibility due to darkness and dust, rugged and
muddy terrain, and the presence of self-similar and ambiguous
scenes). In a disaster response scenario and in the absence of
prior information about the environment, robots must rely on
noisy sensor data and perform Simultaneous Localization and
Mapping (SLAM) to build a 3D map of the environment and
localize themselves and potential survivors. To that end, this
paper reports on a multi-robot SLAM system developed by team
CoSTAR in the context of the DARPA Subterranean Challenge.
We extend our previous work, LAMP, by incorporating a single-
robot front-end interface that is adaptable to different odometry
sources and lidar configurations, a scalable multi-robot front-end
to support inter- and intra-robot loop closure detection for large
scale environments and multi-robot teams, and a robust back-end
equipped with an outlier-resilient pose graph optimization based
on Graduated Non-Convexity. We provide a detailed ablation
study on the multi-robot front-end and back-end, and assess the
overall system performance in challenging real-world datasets
collected across mines, power plants, and caves in the United
States. We also release our multi-robot back-end datasets (and
the corresponding ground truth), which can serve as challenging
benchmarks for large-scale underground SLAM.

Index Terms—Multi-Robot SLAM, SLAM, Multi-Robot Sys-
tems, Field Robots

I. INTRODUCTION

This work was supported by the Jet Propulsion Laboratory – California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration. This work was partially funded by the Defense
Advanced Research Projects Agency (DARPA). ©2022 All rights reserved.

∗Equal contribution. Corresponding Authors: yunchang@mit.edu, ka-
mak.ebadi@jpl.nasa.gov

1Y. Chang, A. Rosinol, J. Shi, L. Carlone are with the Dept. of Aeronautics
and Astronautics, Massachusetts Institute of Technology, United States.

2K. Ebadi, M. Ginting, B. Morrell, A. Agha-mohammadi are with the NASA
Jet Propulsion Laboratory – California Institute of Technology, United States.

3C. E. Denniston is with Robotic Embedded Systems Laboratory, University
of Southern California, United States.

4A. Reinke is with the University of Bonn, Germany.
5M. Palieri is with the Dept. of Electrical And Information Engineering,

Polytechnic University of Bari, Italy.
6A. Chatterjee is with Dept. of Mechanical Engineering, Bangladesh Uni-

versity of Engineering and Technology, Bangladesh.
Digital Object Identifier (DOI): see top of this page.

Fig. 1: (a) A heterogeneous team of robots undergoing initial cali-
bration; (b) Kentucky Underground dataset: 4 robots traversing over
6 km (combined) in the Kentucky Underground Storage, Wilmore,
Kentucky; (c) Tunnel dataset: 2 robots covering 2.5 km in the NIOSH
safety research mine, Pittsburgh, Pennsylvania; (d) Urban dataset:
3 robots covering a multi-floor environment in the Satsop nuclear
power plant, Elma, Washington; (e) Finals dataset: 4 robots mapping
a heterogeneous course during the DARPA Subterranean Challenge
finals in the Louisville Mega Cavern, Kentucky.

S IMULTANEOUS Localization And Mapping (SLAM) is
a mature field of research, and there is a substantial

body of literature dedicated to advancing SLAM algorithms
and systems [1]. While there has been great progress in
SLAM in urban and structured environments, localization
and mapping in extreme underground scenarios has recently
received increasing attention. In particular, the recent DARPA
Subterranean Challenge [2] had the goal of developing robotic
systems capable of exploring and mapping complex under-
ground environments, to support high-precision localization
of elements of interest (e.g., survivors). This paper presents
the design and implementation of a multi-robot lidar-centric
SLAM system, as an enabling factor for autonomous explo-
ration of challenging underground environments.

Related work. We review related work on SLAM systems,
and particularly lidar-based SLAM systems for subterranean
and perceptually degraded environments, and refer the reader
to [1] for a broader survey on SLAM. Early efforts on
SLAM in subterranean environments can be traced back
to the works of Thrun et al. [3] and Nuchter et al. [4],
which highlighted the importance of underground mapping
and introduced early solutions involving a cart pushed by a
human operator, or teleoperated robots equipped with laser
range finders to acquire volumetric maps of underground
mines. Tardioli et al. [5], [6] presented a SLAM system for
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exploration of underground tunnels using a team of robots.
Zlot et al. [7] presented a 3D SLAM system using a spinning
2D lidar and an industrial-grade MEMS IMU to map over
17 kilometers of an underground mine. The three-year-long
DARPA Subterranean (SubT) challenge, which began in 2018,
aimed at developing innovative approaches to rapidly map,
navigate, and search underground environments with a team
of autonomous robots. This worldwide competition has led
to developing breakthrough technologies and capabilities for
underground robotic operation [8]–[30]. Roucek et al. [11]
present a multi-robot heterogeneous system for robotic ex-
ploration of hazardous subterranean environments; the aerial
platforms rely on Hector SLAM [31], and the ground robots
use an ICP-based SLAM system [32]. Similarly, Petrlik et
al. [12] present a system intended for aerial Search and
Rescue (SAR) operations in underground settings. Kramer
et al. [15] present a sparse pose graph-based visual-inertial
SLAM system that relies on onboard lighting for exploration
of the subterranean environments; the system uses multiple
cameras, with significant overlap between their fields of view.
The system’s front-end detects visual features and matches
them to previously seen landmarks using BRISK features [33],
and it uses IMU measurements to propagate the camera pose
from the last optimized pose to the current frame time and
predicts where matched landmarks should be observed in the
new pose. The back-end uses batch optimization over a sliding
window of recent camera frames and IMU measurements to
estimate the system’s state.

Azpurua et al. [19] present a pipeline for semi-autonomous
exploration of confined environments (e.g., pipes, underground
tunnel systems) that includes both offline photogrammetry
for photorealistic map construction, and two parallel SLAM
methods, a vision-based system based on RTAB-Map [34],
and a lidar-based system based on LeGO-LOAM [35] for
localization and mapping. Dang et al. [20], [22] present a
loosely-coupled multi-modal SLAM system based on fusion
of LiDAR, visual, thermal, and inertial data to provide robust
and resilient localization in underground environments. In a
similar study, Wisth et al. [21] present a graph-based odometry
system for mobile robotic platforms based on integration of
lidar features with standard visual features and IMU data.
The system is able to handle under-constrained geometry that
affects lidar, or textureless areas that affects vision by using the
best information available from each sensor modality without
any hard switches. Lajoie et al. present DOOR-SLAM [36],
a fully distributed SLAM system which consists of two key
modules, a pose graph optimizer combined with a distributed
pairwise consistent measurement set maximization algorithm
to reject spurious inter-robot loop closures, and a distributed
SLAM front-end that detects inter-robot loop closures without
exchanging raw sensor data. Chang et al., present Kimera-
Multi [37], a fully distributed multi-robot system for dense
metric-semantic SLAM. Each robot builds a local trajectory
estimate and a local mesh. When two robots are within com-
munication range, they initiate a distributed place recognition
and robust pose graph optimization protocol.

In our previous work [8], we presented Large-scale Au-
tonomous Mapping and Positioning (LAMP), a pose-graph-

based SLAM system developed in the context of the SubT
Challenge. LAMP consisted of a front-end that performs lidar
scan matching to obtain odometric estimates, and a back-
end that performs pose graph optimization to obtain the
best estimate of the robots’ trajectories given odometry and
loop closure measurements. However, LAMP struggled with
larger-scale long-duration operation in unknown subterranean
environments subject to perceptual aliasing.

Contribution. This paper presents LAMP 2.0, a field-tested
SLAM system for cooperative localization and mapping in
unknown subterranean environments with a heterogeneous
multi-robot team. The key contributions are:
1) A computationally efficient and outlier-resilient centralized

multi-robot SLAM system that is adaptable to different
input odometry sources, developed in the context of the
DARPA Subterranean Challenge for operation in large-
scale underground environments. The system includes the
following improved modules:

a) A robust and scalable loop closure detection module
that is able to handle and prioritize a rapidly growing
number of loop closure candidates and includes modern
3D registration techniques to improve the accuracy and
robustness of the detected loop closures.

b) An outlier-robust back-end based on Graduated Non-
Convexity [38] for pose graph optimization.

2) The open-source release of LAMP 2.01 and a multi-robot
dataset2 of subterranean environments, including the pose
graph and point clouds of caves, mines, and abandoned
power plants (Fig. 1), along with ground truth trajectories
and maps based on professionally surveyed data that can
be used by the SLAM community for evaluation of novel
multi-robot localization and mapping solutions.

II. LAMP 2.0

This section introduces LAMP 2.0, the SLAM system we
developed in the context of the SubT Challenge for robust
and scalable multi-robot SLAM in subterranean environments.
Fig. 2 provides an overview of our system architecture.

The system consists of (i) a single-robot front-end interface
on each robot that takes in an odometry and point cloud
stream and send to the centralized base station pose graph
segments, which consists of odometry edges and nodes, and
keyed scans, which are point clouds associated to odometry
nodes, (ii) a multi-robot front-end, running on a centralized
base station, which receives the robots’ local odometry and
maps and performs multi-robot loop closure detection, and (iii)
a multi-robot back-end, that uses odometry (from all robots)
and intra- and inter-robot loop closures from the front-end to
perform a joint pose graph optimization; the multi-robot back-
end is also executed at the central station and simultaneously
optimizes all the robot trajectories. In the rest of this section,
we highlight the core components of LAMP 2.0 that enable
large-scale and robust, multi-robot localization and mapping
in challenging underground environments.

1https://github.com/NeBula-Autonomy/LAMP
2https://github.com/NeBula-Autonomy/nebula-multirobot-dataset
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Fig. 2: Architecture of LAMP 2.0, our multi-robot localization and mapping system, which consists of a single-robot front-end interface to
produce pose graph and keyed scans input (adaptable to different odometry sources and lidar configurations) on each robot, a multi-robot
front-end for loop closure detection, and a multi-robot back-end for outlier-resilient pose graph optimization and map generation.

A. Initial Pose Calibration

The sensors onboard each robot are assumed to be calibrated
before operation (both intrinsic and extrinsic calibration).
Then, the initial pose calibration has the goal of establishing
a common reference frame for all robots in the team. We
achieve this by placing three reflective plates (fiducial markers)
with known 3D coordinates on a gate at the entrance of the
subterranean environment, and placing the robots in front of
the gate. The robots then begin scanning the environment using
the onboard lidar scanners. The lidar points corresponding
to the three reflective plates are then segmented into three
clusters using Euclidean clustering. The lidar pose can then be
computed by finding the centroids of the point clusters, and
solving for the lidar pose that minimizes the distance between
all triplets of cluster centroids, and the triplet of known fiducial
markers’ positions.

This gate calibration method is employed for compatibility
with the SubT Challenge, but alternatives —such as the
method in [39]— can be also implemented to establish a
common reference frame without initial pose calibration.

B. Adaptable Single-robot Front-end Interface

The single-robot front-end interface allows LAMP 2.0 to
interface with single-robot front-ends with different odom-
etry sources and different lidar configurations. As we will
demonstrate in the experiments section, LAMP 2.0 is able
to support in the same experiment, robots with different
number and configuration of lidar sensors and possibly using
different odometry front-ends, including LOCUS [40] and
Hovermap [41]. In the following sections we detail how the
interface processes the point-cloud and odometry inputs.

Point cloud pre-processing. The front-end interface starts
with a pre-processing step. First, any distortions in lidar
scans caused by the robot motion are corrected using our
Heterogeneous Robust Odometry (HeRO) [42] system; HeRO
computes a local state estimate, and the relative motion during

the acquisition of a lidar scan is then corrected using the local
state estimate. Next, given the extrinsic calibration between
lidar scanners mounted on the robot, the undistorted point
clouds are merged together into a single point cloud. To
remove redundant and noisy points in the unified point cloud
and to ensure that we retain a constant number of points
regardless of environment geometry, point cloud density, and
number of onboard lidar scanners, we apply an adaptive
voxelization filter [40]. The adaptive voxelization filter ensures
that point clouds received from different lidar configurations
are comparable in terms of size and density. This improves the
performance of the loop closure detection module by reducing
the computational load associated with loop closure transform
estimation, and also reduces the computation and memory
usage of the mapper on the centralized base station.

Pose graph and keyed scans generation. To represent
the estimated robot trajectory, LAMP uses a pose graph
formulation [1] where each node in the graph corresponds to
an estimated pose (i.e., robot pose, or position of objects of
interest in the scene), while each edge connecting two nodes in
the graph encodes the relative motion or position measurement
between the pair of nodes. It is crucial to prevent the pose
graph from growing too large due to limited computation and
memory available onboard each robot. Thus, we use a sparse
pose graph with new nodes only added after the robot exceeds
a motion threshold (e.g., 2 m in translation and 30 degrees of
rotation). We refer to these robot pose nodes as the key nodes.
Each key node is associated with a keyed scan, which is the
pre-processed point cloud obtained at the corresponding time.
The pose graph and the keyed scans are sent to the multi-robot
front-end for loop closure detection, and to the back-end for
pose graph optimization and 3D map generation. When a robot
moves out of communication range, the pose graph and keyed
scans are queued up and are then sent as a batch to the base-
station when the communication is re-established. We refer the
reader to [43] for additional details on the networking setup.
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C. Scalable Multi-robot Front-end

In our SLAM architecture, the multi-robot front-end is in
charge of intra- and inter-robot loop closure detection. The
ability to assert that a robot has returned to a previously visited
location (i.e., a loop closure) is a crucial capability to reduce
the accumulated error in the estimated robot trajectory. More-
over, loop closures are essential in detecting overlapping parts
between local maps created by robots in the team, in order to
fuse them into a geometrically consistent global map. Our loop
closure detection module consists of three steps: Loop closure
generation, prioritization, and computation. In the rest of this
section, we describe the main components of LAMP 2.0’s
multi-robot front-end and highlight prioritization techniques
that allow our system to scale to large-scale environments and
large teams of robots.

Loop closure generation. In the generation step, loop
closure candidates are generated from nodes that lie within
a certain Euclidean distance dmax from the current node
in our pose-graph representation; dmax is adaptive and is
defined as dmax = α|ncurr − ncand| based on the relative
traversal between two nodes for the single-robot case, and
dmax = αncurr based on the absolute traversal for the multi-
robot case, where ncurr and ncand denote the sequentially
assigned index of the current node and the index of the
candidate node respectively, and α is a fixed constant that
decides the magnitude of dmax with respect to the traversed
distance (0.2 m in our experiments). The design of the loop
closure module is modular, such that other methods and
environment representations (i.e., Bag-of-visual-words [44],
junctions extracted from 2D occupancy grid maps [10]) can
also be used for candidate generation.

Loop closure prioritization. The prioritization step in-
spects and adds the candidates to the queue for the computa-
tion step in an order based on how likely they are to improve
the trajectory estimate.

Subterranean environments contain many self-similar and
ambiguous scenes. While loop closure is crucial for map
merging and drift reduction in the estimated robot trajectory,
it is equally crucial to avoid closing loops in ambiguous areas
with high degree of geometric degeneracy [10], as it could lead
to spurious loop closure detections, or inaccurate estimation of
rigid-transformation between two corresponding nodes due to
a lack of observability. Furthermore, loop closure detection in
large-scale environments, and with multiple robots, becomes
increasingly more challenging as the density of nodes in the
pose graph, and subsequently the number of loop closure
candidates, increases. To overcome these challenges, our loop
closure prioritization step includes three independent modules:

The Observability Prioritization module prioritizes feature-
rich areas, as they are more likely to produce more accurate
loop closures. To identify feature-rich scenes, similar to the
works presented in [10], [45], [46], we rely on eigenvalue
analysis of the information matrix of the pose estimate pro-
duced by point-to-plane ICP.

The Graph Information Prioritization module prioritizes
loop closures that can lead to a more substantial reduction of
the trajectory error, given the structure of the graph. We use a

Graph Neural Network (GNN) [47] to predict the outcome of
a pose graph optimization triggered by a new loop closure.

The Receiver Signal Strength Indication (RSSI) Prioritiza-
tion module prioritizes loop closures based on known locations
indicated by RSSI beacons. We refer the reader to [48] for
a more in-depth discussion and analysis of the prioritization
module.

Loop closure computation. The computation step calcu-
lates the relative transform for each candidate loop closure in
the queue; for each loop closure candidate, we implemented
a two-stage pipeline to first find an initial alignment for
the relative transform estimate using TEASER++ [49] or
SAmple Consensus Initial Alignment (SAC-IA) [50]), then
use the initial alignment to start the Generalized Iterative
Closest Point (GICP) algorithm [51] to obtain the refined
relative transform and filter out matches that correspond to
poor alignments (i.e., have a larger accumulated error than
the threshold after the initial alignment or after GICP). As
presented in the experimental section, this two-stage pipeline
significantly improves the accuracy and quality of loop closure
detections, particularly because the GICP algorithm is prone
to local minima.

D. Robust Multi-robot Back-end

In our SLAM architecture, the multi-robot back-end per-
forms pose graph optimization to generate a globally con-
sistent and drift-free 3D map of the environment. We adopt
a centralized multi-robot architecture, where a central base
station receives the odometry measurements and keyed scans
from each robot, along with loop closures from the multi-robot
front-end, and performs pose graph optimization to obtain the
optimized trajectory. The optimized map is then generated by
transforming the keyed scans to the global frame using the
optimized trajectory.

Outlier-robust pose graph optimization. The robust multi-
robot back-end that receives odometry measurements from all
robots in the form of odometry edges created by the single-
robot front-end interface modules and inter- and intra-robot
loop closures from the multi-robot front-end, and performs
pose graph optimization to compute a globally consistent
trajectory estimate for all robots in the team.

To safeguard against erroneous loop closures, our multi-
robot back-end includes two outlier rejection options: Incre-
mental Consistency Maximization (ICM) [8], which checks
detected loop closures for consistency with each other and
the odometry before they are added to the pose graph, and
Graduated Non-Convexity (GNC) [38], which is used in
conjunction with Levenberg-Marquardt to perform an outlier-
robust pose graph optimization to obtain both the trajectory
estimates and inlier/outlier decisions on the loop closure not
discarded by ICM. Pose Graph Optimization and GNC are
implemented using the Georgia Tech Smoothing and Mapping
library (GTSAM) [52]. Table I, provides a summary of new
capabilities and features implemented in LAMP 2.0, which
extends our previous work [8].
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TABLE I: LAMP vs. LAMP 2.0 capabilities by front-end (FE), back-
end (BE) and overall system (Sys)

Capability LAMP LAMP 2.0

FE

Proximity-based loop closure generation X X
Adaptive Proximity-based loop gen X

Loop closure prioritization X
GICP loop closure pose estimation X X

Two stage loop closure pose estimation X

B
E

LM / GN pose graph optimization X X
ICM outlier rejection X X

GNC in conjunction with LM / GN X

Sy
s Adaptable to different lidar configs X

Adaptable to different odometry input X

III. EXPERIMENTS

This section showcases the performance of LAMP 2.0 and
provides experimental results to highlight the new features and
improvements from the previous version [8]. Section III-A
describes our hardware setup. Section III-B describes the
dataset we collected, open-sourced, and used for evaluation.
Section III-C evaluates and discusses the performances of
selected components in the LAMP 2.0 multi-robot front-end
and back-end. Section III-D reports on the performance of the
overall LAMP 2.0 system, including its performance in the
three events of the SubT challenge.

A. Hardware Setup

Robots. In the experiments we present in this paper, the
datasets are collected with two types of robots: Husky and Spot
robots. The Husky is a wheeled platform and is equipped with
three Velodyne lidars and a Hovermap [41]. The odometry
input to LAMP 2.0 is either provided by LOCUS [40] or
the Hovermap [41]. The Spot robot is a quadruped platform
equipped with either a single lidar or a Hovermap. Similarly
to the Husky, the odometry input to LAMP is either provided
by the Hovermap or LOCUS [40]. Note that not only do the
odometry inputs to the single-robot front-end interface vary
(between Hovermap and LOCUS), but also the point cloud
inputs vary in size and density between the Spot robots with a
single lidar, Spot robots with a Hovermap, Husky robots with
three lidars, and Husky robots with a Hovermap.

Base station. During the SubT Challenge, the base was a
portable workstation with an AMD Ryzen Threadripper 3990x
processor with 64 cores. The experiments in this paper ran on
a laptop with Intel i7-8750H processor with 12 cores.

B. Datasets

We evaluate LAMP 2.0 on four datasets collected by Team
CoSTAR. The first dataset is the Tunnel Dataset, which
was collected in the NIOSH Safety Research Coal Mine in
Pittsburgh, PA, and includes two Huskies traversing up to 2.5
km combined, in a coal mine that consists of mostly featureless
narrow tunnels. The second dataset is the Urban Dataset,
which was collected in the Satsop abandoned nuclear power
plant in Elma, WA, and includes two Huskies and a Spot
traversing up to 1.5 km combined in an abandoned nuclear
power plant consisting of a two-floor environment with open
areas, small rooms, narrow passageways, and stairs. The third
dataset is the Finals Dataset, which was collected during the
second preliminary run of the SubT finals and includes three

Spots and a Husky traversing up to 1.2 km combined in the
DARPA-built course including tunnel, cave, and urban-like
environments. The last dataset is the Kentucky Underground
Dataset (KU), which was collected by Team CoSTAR in the
Kentucky Underground Storage in Wilmore, KY, and includes
four Huskies traversing up to 6 km combined in a limestone
mine, which consists of large 10-20 m wide tunnels. The maps
and sample scenes from the four datasets are shown in Fig. 1.

For each dataset, we used a surveyed global map to gen-
erate an odometry ground-truth through scan-to-map localiza-
tion [40]. To test the performance of multi-robot loop clo-
sure detection, we generate sets of ground-truth loop closure
pairs from the ground-truth trajectory, including the correct
transform, and also a set of false loop closures to stress the
robustness of the system.

We have prepared these datasets, in the format of pose
graphs and keyed scans, and released them open-source to
promote further research on multi-robot loop closure detection
and robust pose graph optimization.

C. Component Evaluation

This section focuses on the evaluation of the multi-robot
front-end and the multi-robot back-end, and highlights the new
features in these two modules compared to our previous system
in [8], in order to assess their impact on our new LAMP 2.0
system.

We will first demonstrate the improvements to loop closure
detection accuracy with the two-stage loop closure computa-
tion module. Then, we will present an ablation study with
different outlier rejection configurations and highlight the
performance of GNC. Lastly, we will evaluate the multi-robot
front-end and back-end in conjunction, and show that with
the new features in the front-end and the back-end, we are
able to include more accurate loop closures in our pose graph
and obtain a better trajectory and map estimate. We refer the
reader to [48] for detailed experiments and analysis of the loop
closure prioritization module.

Two-stage loop closure computation. We evaluate the re-
sults from the loop closure computation step for different types
of initializations for ICP. Previously, LAMP used an odometric
initialization approach [8]; on the other hand, LAMP 2.0 uses a
two-stage approach and uses TEASER++ [49] or SAC-IA [50]
for initial alignment (stage 1) and ICP for final refinement
(stage 2). Table II shows the recall and false-positive rate,
along with the mean translation and rotation error of the
different initialization methods for ICP. In our experiments,
we set the SAC cumulative error threshold to 32 m, the max
number of iterations of SAC to 500, the ICP cumulative error
threshold to 0.9 m, and the max number of ICP iterations
to 200. The recall is the percentage of correct loop closures
that passed SAC and ICP (i.e. had a lower SAC error than
the threshold after initial alignment and had a lower ICP error
than the threshold after ICP registration) and the false positive
rate is the percentage of false loop closures that passed SAC
and ICP. The mean and translation errors are computed using
the correct loop closures that passed SAC and ICP against the
ground truth trajectory. The odometry initialization typically



6

TABLE II: Comparison of different initialization methods for ICP-
based loop closure relative pose estimation

Initialization Methods

GT OdomRot [8] TEASER++ SAC-IA

↑ Recall (%)

Tunnel 90.8 93.9 76.6 81.9
Urban 90.5 78.2 78.2 79.6
Final 89.2 83.4 68.4 57.0
KU 29.0 11.3 18.5 17.7

↓ F/P (%)

Tunnel 2.0 2.4 1.2 1.4
Urban 0.8 1.6 0.6 1.0
Final 1.2 7.4 0.6 1.0
KU 0.4 0.0 0.2 0.0

↓ Mn Err. (m/deg)

Tunnel 0.09/0.86 0.86/8.02 0.71/10.82 0.67/9.63
Urban 0.44/1.47 1.89/1.98 0.38/1.36 0.52/1.6
Final 0.06/1.11 1.65/6.43 0.32/2.39 0.6/2.99
KU 0.26/0.96 0.82/1.34 0.29/1.45 0.29/1.48

(a) Inliers translation error (b) Inliers rotation error

Fig. 3: Pose error of the loop closure inliers from LAMP 1.0 (Old
Loop Closure module + ICM) compared to LAMP 2.0 (New Loop
Closure module + GNC) for the Finals dataset.

has a better recall (i.e., more loop closures are found) in
narrower environments, while TEASER++ and SAC-IA have
better recall in wider environments (e.g., Urban and KU).
More importantly, the newly available TEASER++ and SAC-
IA initializations lead to a significant decrease in false-positive
rate and mean translation and rotation error. The lower false-
positive rate when using TEASER++ or SAC-IA is largely due
to the additional filtering of poor alignments that do not have
a sufficient number of inliers. LAMP 2.0 shows a decrease
in the number of incorrect loop closures and increased pose
accuracy for the correct loop closures.

Outlier-robust pose graph optimization. We demonstrate
the capabilities of our outlier-robust pose graph optimization
module with an ablation study, especially focusing on the
performance of the newly added GNC option as compared to
ICM in [8]. In Fig. 5 we compare the average final trajectory
error with GNC or ICM as an outlier rejection method; we also
report trajectory errors for the case when no outlier rejection
is performed (“No Rej”) and when no loop closure is detected
(“Odom”). While both GNC and ICM largely improve the
trajectory estimate relative to the no loop closure or no outlier
rejection case, GNC in general is more robust to outliers and
gives better trajectory estimates, as especially evident in the
longer Tunnel and Kentucky Underground datasets where ICM
failed to reject some of the outliers in the first and was too
conservative in the other.

Table III shows the number of loop closure candidates
generated (”Generated”), the number of loop closures that
passed ICP (”Verified”), and the number of ICM or GNC
inliers (”Inliers”). Recall that LAMP 1.0 [8] has only a fixed

TABLE III: Amount of loop closures at the different stages in the
multi-robot frontend and backend.

# Generated # Verified # Inliers

Tunnel LAMP 1.0 22206 3032 52
LAMP 2.0 9755 5656 1645

Urban LAMP 1.0 17742 497 237
LAMP 2.0 5356 1505 284

Final LAMP 1.0 12559 681 6
LAMP 2.0 3856 1484 393

KU LAMP 1.0 22616 14 11
LAMP 2.0 22344 885 197

radius for candidate generation, no prioritization step, and
uses an odometric ICP initialization for loop closure pose
estimation and ICM as the outlier rejection method; on the
other hand, the proposed LAMP 2.0 system includes candidate
generated with an adaptive radius, the prioritization step, and
uses SAC-IA/TEASER++ for ICP initialization and GNC as
an outlier rejection method. With the new loop closure module
and prioritization, even though we generate fewer candidates,
we are able to find a larger number of verified and inlier loop
closures, showing the validity of the adaptive radius, and that
prioritization does prioritize loop closures of higher “quality”.
Notice also that GNC is able to perform well with more
than 80% outlier loop closures detected. Fig. 3 compares the
translation and rotation errors (with respect to ground truth) of
loop closures considered inliers by LAMP 1.0 [8] and LAMP
2.0. The figure shows how LAMP 2.0 not only produces a
significantly larger number of inlier loop closures but also
that the detected inliers are better biased towards lower errors
compared to LAMP 1.0, confirming that the prioritization and
initial alignment (Table II), together with the outlier rejection
(Fig. 5) lead to an increased number of more accurate loop
closures.

D. System Evaluation

In this section, we provide end-to-end results of the full
LAMP 2.0 system. We play back the data in real-time to the
base-station; the data is processed in the same order and rate
as it was generated in the field and the results are collected at
the end of data-stream (∼ 1 hr). The odometry input is also
consistent across the tests for fair comparison. In Table IV, we
show the improvement in average trajectory error of LAMP
2.0 compared to LAMP 1.0 and LAMP 2.0 without inter-robot
loop closures for each robot on the four datasets. LAMP 2.0
achieves minimal errors (below 2 m) with trajectory lengths of
up to 2.2 km. Fig. 6 illustrates the impact of inter- and intra-
robot loop closures. Finally, we present the full multi-robot
mapping results by showing the LAMP 2.0 point cloud map
colored by the cloud-to-cloud error against the ground truth
map for the four datasets in Fig. 4. We are able to achieve map
errors below 4 m in these different large-scale and challenging
environments.

IV. CONCLUSION

In this paper we presented LAMP 2.0, a centralized multi-
robot SLAM system, developed in the context of the DARPA
Subterranean Challenge, which provides a robust estimate of
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Fig. 4: Final map error in meters of the DARPA Subterranean Challenge finals course for the Tunnel, Urban, Finals, and Kentucky
Underground (KU) datasets.

(a) Tunnel ATE (b) Urban ATE

(c) Finals ATE (d) KU ATE

Fig. 5: Comparison of trajectory ATE (across the multi-robot trajec-
tory) for ICM and GNC compared to the cases with no loop closure
or no outlier rejection.

(a) KU single robot input (b) KU LAMP 2.0 output

Fig. 6: Single-robot map (no loop closures) compared with LAMP
2.0 map (with inter- and intra- robot loop closures).

the trajectories of multiple robots and constructs a point cloud
map using 3D lidar data. LAMP 2.0 includes a single-robot
front-end interface that is adaptable to different odometry
inputs and robots with different lidar configurations. The
multi-robot back-end is based on a modular ICP initialization
framework to improve the convergence of the algorithm in
ambiguous settings, and uses a loop closure prioritization
module to deal with the growing number of loop closure
candidates in large-scale environments. Then the multi-robot
back-end runs an outlier-robust pose graph optimization to
estimate the trajectories of all robots in the team. While LAMP
2.0 performed well in our experiments with up to four robots,
its centralized architecture may not scale to large robot teams.

TABLE IV: Comparison of LAMP 2.0 against LAMP 1.0

Robot Traversed LAMP 2.0 Single Robot LAMP 1.0
[m] ATE [m] ATE [m] ATE[m]

Tunnel husky3 1194 0.65 0.83 1.07
husky4 1362 0.72 0.63 1.44

Urban
husky1 612 0.79 0.87 0.95
husky4 416 0.76 0.79 0.78
spot1 502 1.31 1.46 0.99

KU

husky1 2204 1.01 0.9 5.34
husky2 1526 0.71 0.75 2.85
husky3 1678 1.31 1.33 2.11
husky4 896 0.69 0.86 5.49

Final

husky3 72 0.16 0.16 0.56
spot1 430 0.2 0.37 0.37
spot3 484 0.21 0.38 0.55
spot4 238 0.15 0.23 0.62

Extending LAMP to a fully distributed system in underground
domains with intermittent inter-robot communications is an
interesting direction for future work.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[2] “Darpa subteranean (subt) challenge.” [Online]. Available: https:
//www.subtchallenge.com/

[3] S. Thrun, D. Hahnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Bur-
gard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker, “A
system for volumetric robotic mapping of abandoned mines,” in 2003
IEEE International Conference on Robotics and Automation (Cat.
No.03CH37422), vol. 3, 2003, pp. 4270–4275 vol.3.

[4] A. Nuchter, H. Surmann, K. Lingemann, J. Hertzberg, and S. Thrun, “6d
slam with an application in autonomous mine mapping,” in IEEE Inter-
national Conference on Robotics and Automation, 2004. Proceedings.
ICRA ’04. 2004, vol. 2, 2004, pp. 1998–2003 Vol.2.

[5] D. Tardioli, L. Sicignano, J. Riazuelo, L. Villarroel, and L. Montano,
“Robot teams for exploration in underground environments,” Workshop
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