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Sparse High-Dimensional Linear Regression.

Algorithmic Barriers and a Local Search Algorithm.

David Gamarnik
∗

Ilias Zadik
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Abstract

We consider a sparse high dimensional regression model where the goal is to recover a k-
sparse unknown vector β∗ from n noisy linear observations of the form Y = Xβ∗+W ∈ R

n

where X ∈ R
n×p has iid N(0, 1) entries and W ∈ R

n has iid N(0, σ2) entries. Under
certain assumptions on the parameters, an intriguing assymptotic gap appears between the
minimum value of n, call it n∗, for which the recovery is information theoretically possible,
and the minimum value of n, call it nalg, for which an efficient algorithm is known to
provably recover β∗. In [26] it was conjectured that the gap is not artificial, in the sense
that for sample sizes n ∈ [n∗, nalg] the problem is algorithmically hard.

We support this conjecture in two ways. Firstly, we show that the optimal solution of
the LASSO provably fails to ℓ2-stably recover the unknown vector β∗ when n ∈ [n∗, cnalg],
for some sufficiently small constant c > 0. Secondly, we establish that nalg, up to a multi-
plicative constant factor, is a phase transition point for the appearance of a certain Overlap
Gap Property (OGP) over the space of k-sparse vectors. The presence of such an Overlap
Gap Property phase transition, which originates in statistical physics, is known to provide
evidence of an algorithmic hardness. Finally we show that if n > Cnalg for some large
enough constant C > 0, a very simple algorithm based on a local search improvement
rule is able both to ℓ2-stably recover the unknown vector β∗ and to infer correctly its sup-
port, adding it to the list of provably successful algorithms for the high dimensional linear
regression problem.

1 Introduction

We consider the following high-dimensional regression model. n noisy linear observations of a
vector β∗ ∈ R

p of the form Y = Xβ∗+W are observed, for some X ∈ R
n×p and W ∈ R

n. Given
these observations, and the knowledge of X , but not of W , the vector β∗ needs to be inferred.
The goal is to infer β∗ with the minimum number of observations n. Throughout the paper we
call X the measurement matrix and W the noise vector.

We are interested in the high dimensional setting where n is order of magnitude less than
p, and they both diverge to infinity. High-dimensionality is motivated by various statistical
applications over the last decade for example in the field of radiology and biomedical imaging
(see e.g. [34] and references therein) and in the field of genomics [7], [16] and it has been
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very common in the literature during the past decade [46],[6],[31]. This, in principle makes
the recovery problem impossible even if W = 0, as in this case the underlying linear system is
underdetermined. This difficulty is commonly adressed by imposing a sparsity assumption on the
vector β∗. More specifically, we say that the unknown vector β∗ is k-sparse (exactly k-sparse) if it
has at most k non-zero coordinates (exactly k-nonzero coordinates). The sparsity is a very useful
assumption in applications, for example in compressed sensing [15], [20] , biomedical imaging
[10], [34] and sensor networks [40], [39], but also in theory [20]. For our purposes we assume that
the value of k is known for all the results. Furthermore, we are interested in both the case that
β∗ is generally k-sparse and also β∗ is exactly k-sparse, and we make clear on the statement of
each result which assumption we are making on β∗.

We also make probabilistic assumptions on X and W . we assume that each row of X is
generated as an iid sample from an isotropic N (0,Σ) , where we take Σ = Ip. Note that the
Gaussianity of the data rows is, in a standard way, justified from the Central Limit theorem
and is very common in the literature [22], [30], [37], [12], [47], [46],[48]. Furthermore, the case
Σ = Ip, which can be considered unrealistic from an applied point of view, has been considered
broadly in the literature as an idealized assumption which allows broader technical development
which can usually be generalized [22], [30], [47], [46], [48]. We assume also that W consists of iid
N(0, σ2) entries for some σ2 > 0, which is a standard assumption in the statistics literature [46],
[48] and [21].

In this paper, we focus on two notions of recovery for the unknown vector β∗. Firstly, we
consider the notion of support recovery [17],[46],[11] the task of finding an estimator vector β̂ with
support approximately equal to the support of β∗, where the Hamming distance is the underlying
metric. support recovery is also known in the literature as sparsity pattern recovery task [43],
variable selection (see [27] and references therein) or model selection [49], [35]. Secondly, we
consider the notion of ℓ2 stable recovery [14],[9] the task of finding an estimator vector β̂ such
that ‖β̂ − β∗‖2 ≤ Cσ, for some C > 0. In words, the estimator vector is close to the unknown
vector in the ℓ2 distance up to the level of noise. Because of our probabilistic assumptions on
X,W both recoveries are desired to occur with high probability (w.h.p.) with respect to the
randomness of X,W , that is with probability tending to one, as n, p, k → +∞. Here the limit is
taken under certain assumptions on the relation between the parameters n, p, k, σ2 that will be
stated explicitly in the next sections. Finally, it is important to point out that, similarly with
[26], we generally think of the case of small enough sparsity so that the logarithm of k is much
smaller than log p, and hence the sparsity level is sublinear in the feature size p. On the other
hand, some of our results, such as the ones described in subsection 2.2. below, apply under the
more general condition k ≤ p/3.

Various efficient algorithms have been proven to recover w.h.p. the vector β∗ in the two
notions of recovery we mention above, but always under the assumption that n ≥ Ck log p for
some universal constant C > 0. For this reason we define nalg := k log p. Specifically, with
respect to support recovery, if n ≥ (1 + ǫ)2nalg = (1 + ǫ)2k log p, for some ǫ > 0 it is proven by
Wainwright and Cai et al in [47] and [11] respectively that the optimal solution of an associated
ℓ1-constrained quadratic optimization formulation called LASSO

LASSOλ : min
β∈Rp

n−1‖Y −Xβ‖22 + λ‖β‖1 (1)

for appropriately chosen tuning parameter λ > 0, and that the output of a simple greedy algo-
rithm called Orthogonal Matching Pursuit, both recover exactly the support of β∗ w.h.p. With
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respect to ℓ2 stable recovery, the tighter results known are for the performance of LASSO and
of a linear program called the Dantzig selector [13, 8], both of which requires n ≥ Cnalg. More
specifically, an easy corollary of the seminar work by Bickel, Ritov and Tsybakov [8] applied to X
with Gaussian iid entries implies that as long as n ≥ Cnalg = Ck log p for some sufficiently large

constant C > 0 if λ = Aσ
√

log p/n the optimal solution β̂LASSO,λ of LASSOλ satisfies for some

constant c > 0, ‖β̂ − β∗‖2 ≤ cσ w.h.p., i.e. it ℓ2-stably recovers the vector β∗, w.h.p. Tighter
results for the performance on LASSO and the constants c, C are established in the literature (see
[38] and references therein), yet they do not apply in the regime where the sparsity is sublinear
to the feature size p, which as it is explained above, is the main focus of this work.

However, in the case n ≤ cnalg = ck log p where c > 0 is a small constant, fewer results are
known. In the context of support recovery when n ≤ cnalg = ck log p where c > 0 is a small
constant, it is established in [48] that if n ≤ cnalg for some constant c > 0, it becomes information
theoretic impossible to recover the support of any k-sparse vector β∗. In their setting, however,
the entries of β∗ are allowed to take arbitrary small non-zero values. Specifically the absolute
values of the non-zero entries are allowed to be of the same order as 1√

k
. This small magnitude of

the non-zero entries naturally leads to larger sample complexity. The situation changes though
if the non-zero entries of β∗ are, in absolute values, bounded away from zero by a constant. For
example assuming β∗ is binary, that is β∗ ∈ {0, 1}p, if we have also k ≤ min{1, σ2} exp

(
C
√
log p

)

for some C > 0 and σ2 is much smaller than k, the tight information theoretic limit for recovering
all but a negligible fraction of the support of β∗ is known to be equal to n∗ := 2k log p/ log

(
2k
σ2 + 1

)

w.h.p. which is asymptotically less than k log p, as established by Gamarnik and Zadik in the
conference paper [26]. The techniques of this paper are expected to generalize from the binary
case to the case where β∗ is arbitrary with |β∗|min , min{|β∗

i |
∣
∣β∗

i 6= 0} ≥ 1. Here 1 can be replaced
with an arbitrary constant that does depends on n, p, k, σ2. Rad in [41] has independently
partially proven a similar positive part of this result; he established that for some large enough
constant C > 0, if n > Cn∗ then one can recover exactly the support of β∗ and under the general
condition |β∗|min ≥ 1. To the best of our knowledge, no computationally efficient estimator is
known to accurately recovering the support of β∗ for this number of samples. The main technical
reason is that most of the results in the literature usually require a structural property to hold
for X , such as the Restricted Isometry Property (RIP), Restricted Eigenvalue Property (RE) or
Uniform Uncertainty Property (UUP) (see e.g. [45], [29, Chapter 11] and references therein),
which is not known to hold for a matrix X with iid standard Gaussian entries with less than
k log p rows. This abscence of computationally efficient results for support recovery naturally
brings the question of whether, under the assumption |β∗|min ≥ 1, efficient algorithms can be
proven to recover the support of β∗ when n∗ ≤ n ≤ cnalg for some small constant c > 0. This
question is the main focus of this paper.

In the case n ≤ cnalg = ck log p where c > 0 is a small constant, even fewer results are known
for ℓ2-stably recovery. In the case β∗ is binary, the result of Rad [41] implies that exact recovery
of β∗ is possible with order n∗ samples. Hence, as the vector can be recovered exactly, it can be
also trivially ℓ2-stably recovered, granting order n∗ samples sufficient for recovery. To the best
of our knowledge, no general information-theoretic result is known in the case |β∗|min ≥ 1. For
computationally efficient recovery, the most relevant result for our setting and ℓ2-stable recovery
when n ≤ cnalg = ck log p , appears in [38] and establishes that LASSO fails to ℓ2-stably recover
β∗ in this regime. Yet, the analysis in [38] trivializes the moment we assume that the sparsity
level is sublinear to the feature size, i.e. k/p → 0. This makes the study of ℓ2 stably recovery
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when k/p → 0a wide open research direction. In particular, it leaves open the question of whether
LASSO or any other efficient estimator work well in this regime. In this paper, we present the
first, to the best of our knowledge, (negative) result on LASSO in the regime n∗ ≤ n ≤ cnalg and
when the sparsity level k is sublinear in p.

It should be noted that in the more restrictive case that either the k-sparse vector β∗ is
known to satisfy a structural ordering property called power allocation, or the matrix X is
assumed to be spatially coupled - a statistical physics notion-, variants of a computationally
efficient scheme called Approximate Message Passing have been proven to succesfully work in
the regime n∗ ≤ n ≤ cnalg. [32, 33, 44, 4, 19]. Nevertheless, we are interested here in the general
case for k-sparse β∗ where either the β∗ is binary or it satisfies |β∗|min ≥ 1, where no ordering
is assumed to be known a priori to the statistician, and the case where X has i.i.d. Gaussian
entries where spatial coupling does not hold. In this general case, to the best of our knowledge,
no results establishes that Approximate Message Passing works when n∗ ≤ n ≤ cnalg and there is
a strong belief that any computationally efficient scheme fails [26], as we describe in the following
paragraph.

In [26] the authors conjecture that in the regime n∗ ≤ n ≤ cnalg the support recovery
problem with a general k-sparse β∗ with |β∗|min ≥ 1 is algorithmically hard, in the sense that
there is no efficient (poynomial time) algorithm that succeeds in recovering the support of β∗

w.h.p. Evidence for this conjecture comes from the provable failure of several known efficient
algorithms in this regime. Specifically in [47] it is shown that LASSO provably fails to recover
the support of β∗ w.h.p. when n < (1 − ǫ)2nalg for any ǫ > 0, in the sense that for any β∗ the
optimal solution of LASSO will not have the same signed support as β∗ w.h.p. Furthermore,
via a combinatorial geometric argument the authors in [21] show that if n < (1− ǫ)2nalg for any
ǫ > 0, then the optimal solutions of another estimator, similar to LASSO, called Basis Pursuit,
also fails to recover the unknown the support of the unknown vector β∗ w.h.p. in the special
case σ2 = 0.

An attempt to explain the apparent algorithmic hardness in the general case when n∗ ≤ n ≤
cnalg is made in [26], under the additional assumption that β∗ is exactly k-sparse, that is it has
exactly k non-zero coordinates, and binary (though the technique is expected to generalize from
the binary case to the general case where |β∗|min ≥ 1). The authors focus on the problem

(Φ2) min ‖Y −Xβ‖2
s.t. β ∈ {0, 1}p, ‖β‖0 = k,

and they prove that the optimal solution of this problem has approximately the same support
as β∗ w.h.p., when n > n∗. Here and eslewhere ‖β‖0 is the number of non-zero coordinates
of the vector β. Note that ‖β‖0 = k is not a convex constraint and thus Φ2 is not a priori
an algorithmically tractable problem. The author study the geometry of the solutions space of
(Φ2) and show that when n∗ = 2k log p/ log

(
2k
σ2 + 1

)
< n < ck log p = cnalg for some sufficiently

small c > 0, a geometrical property called Overlap Gap Property (OGP) holds w.h.p. The
OGP for this problem is the property that the exactly k-sparse βs that achieve near optimal
cost for Φ2 split into two non-empty “well-separated” categories; the ones whose support is close
with the support of β∗ in the Hamming distance, and the ones whose support is far from the
support of β∗ in the Hamming distance, creating a “gap” for the vectors with supports in a
“intermediate” Hamming distance from the support of β∗. Similar forms of OGP are known
in various random constraint satisfaction problems and statistical physics models such as the
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random k-SAT problem, proper coloring of a sparse random graph, the problem of finding a
largest independent set of a random graph and many others. [2],[1],[36],[18],[24],[25],[42],[23].
For example, in a sparse random graph it has been proven that any two independent sets with
size near optimality either have intersection at least of size τ1 > 0 or have intersection at most
of size τ2 < τ1, thus leading to a gap for the intermediate intersection sizes. The OGP for
independent sets was used to establish fundamentals barriers for the so-called local algorithms
for finding nearly largest independent sets in sparse random graphs [24],[25],[42]. Furthermore,
it is a common feature of most of these problems that when the OGP ceases to hold, even very
simple algorithms are able to succeed [2]. Motivated by these results the authors in [26] suggest
the presence of OGP is the source of an algorithmic hardness for this high dimensional linear
regression model in n∗ ≤ n ≤ cnalg.

Results

In this paper, we prove two sets of results supporting the conjecture that the OGP is the source
of an algorithmic hardness in the regime n∗ ≤ n ≤ cnalg.

(a) Our first set of results discusses the performance of the LASSOλ for a wide range of tuning
parameters λ. We establish that if n∗ ≤ n < cnalg for small enough c > 0 and β∗ exactly k-sparse
and binary, then for any

λ ≥ σ

√

1

k
exp

(

−k log p

5n

)

the optimal solution of LASSOλ fails to ℓ2-stable recover β∗ w.h.p. Albeit our result does not
apply for any arbitrarily small value of λ > 0 our result covers certain arguably important choices
of λ in the literature of LASSO. More precisely, our results covers the theoretically successful
choice of the tuning parameter λ for LASSO when n ≥ Cnalg in [8] which, as explained in the
Introduction, shows that LASSOλ with

λ = λ∗ := Aσ
√

log p/n

for constant A > 2
√
2, ℓ2-stably recovers β∗ (see [29, Chapter 11] for a simpler exposition).

Indeed, since in our case n < k log p this choice of λ satisfies trivially

λ = λ∗ ≥ Aσ
√

1/k > σ
√

1/k

and therefore λ = λ∗ ≥ σ
√

1
k
exp

(
−k log p

5n

)
.

An important feature of our result is that it is quantitative, in the sense that it gives a lower
bound of how far the optimal solution of LASSOλ is from β∗ in the ℓ2 norm. In particular, we
show that this lower bound depends exponentially on the ratio k log p/n. Moreover, given the
existing positive result of [8] for LASSO, our result confirms that nalg = k log p is the exact order
of necessary number of samples for LASSOλ to ℓ2-stably recover the ground truth vector β∗,
when λ ≥ σ

√

1/k exp (−k log p/5n). Our result is therefore closed in spirit with the literature
on LASSO for its performance for support recovery where the similar phase transition results
are established by Wainwright in [47].

In the specific case β∗ is binary a natural modification of LASSO it is to add the box constraint
β ∈ [0, 1]p to the LASSO formulation. Such box constraints have been proven to improve the
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performance of LASSO in many cases, such as in signal processing applications [5]. We show
that in our case, our negative result for LASSO remains valid even with the box constraint.
Specifically, let us focus for any λ > 0 on

LASSO(box)λ : min
β∈[0,1]p

n−1‖Y −Xβ‖22 + λ‖β‖1. (2)

We show that if n∗ ≤ n < cnalg for small enough c > 0 and β∗ is an exactly k-sparse binary

vector, for any λ ≥ σ
√

1
k
exp

(
−k log p

5n

)
the optimal solution of LASSO(box)λ also fails to ℓ2-stably

recover β∗ w.h.p.
(b) Our second set of results concerns the Overlap Gap Property (OGP) and its implications.

We first establish that if n ≥ Cnalg for some sufficiently large constant C > 0, OGP indeed
ceases to hold, proving the complementary part of a conjecture from the conference paper [26].
Furthermore, we prove that for these values of n a very simple Local Search Algorithm exploits
the “smooth” geometrical structure of the solutions space which also leads to the absence of
OGP and provably succeeds in both recovering both the support of β∗ and ℓ2 stable recovering
vector of β∗. Notably this set of results applies for all sparsity levels k ≤ p

3
and any k-sparse β

with |β|min ≥ 1.

Beyond the Gaussian Assumption on X

Our results on high-dimensional linear regression when n ≥ Cnalg are established under the
idealized assumption on X having iid N (0, 1) entries. Such an assumption allows a broader
technical development and the establishment of tight statistical guarantees. Yet, naturally, the
question is whether our structural results generalize beyond the present setting.

Regarding our first set of results on the performance of LASSOλ, the core technical tool used
is the probabilistic result [26, Theorem 3.1]. The result is established for X having iid N (0, 1)
entries, but is expected to a setting where X has iid rows but with non-Gaussian and weakly
dependent entries (see the Introduction of [26]).

Regarding our second set of results on the absence of OGP and analysis of the performance
of LSA, we expect our results to generalize in a straightforward way to the case where X with iid
subGaussian entries (that is iid entries with bounded subGaussian norm), potentially tolerating
on top of this weak dependence between the row entries. The reason is that our proof techniques
are based on two key results; that Restricted Isometry Property (RIP) holds for the matrix X
and that the Hanson-Wright concentration inequality can be applied for quadratic forms defined
by arbitrary matrix A and random vectors of the form Xv for v ∈ R

p with ‖v‖2 = 1. Both these
results are known to hold under the assumption of arbitrary iid subGaussian entries of X and
W [28, 3]. For this reason we consider our second set of result to generalize in a straightforward
manner to the case of iid subGaussian entries. Furthermore, we consider the generalization to row
entries that are weakly dependent potentially true for both RIP and Hanson-Wright inequality,
yet we are not aware of such a result and such a pursuit would requires further technical work;
we leave this as a interesting direction of future work.
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Notation

For a matrix A ∈ R
n×n we use its operator norm ‖A‖ := maxx 6=0

‖Ax‖2
‖x‖2 , and its Frobenius norm

‖A‖F :=
(
∑

i,j |ai,j|2
) 1

2

. If n, d ∈ N and A ∈ R
d×p by Ai, i = 1, 2, . . . , p we refer to the p columns

of A. For p ∈ (0,∞), d ∈ N and a vector x ∈ R
d we use its Lp-norm, ‖x‖p := (

∑p

i=1 |xi|p)
1
p . For

p = ∞ we use its infinity norm ‖x‖∞ := maxi=1,...,d |xi| and for p = 0, its 0-norm ‖x‖0 = |{i ∈
{1, 2, . . . , d}|xi 6= 0}|. We say that x is k-sparse if ‖x‖0 ≤ k and exactly k-sparse if ‖x‖0 = k. We
also define the support of x, Support (x) := {i ∈ {1, 2, . . . , d}|xi 6= 0}. For k ∈ Z>0 we adopt the
notation [k] := {1, 2, . . . , k}. Finally with the real function log : R>0 → R we refer everywhere
to the natural logarithm.

Structure of the Paper

The remained of the paper is structured as follows. The description of the model, assumptions
and main results are found in the next section. Section 3 is devoted to the proof of the failure
of the LASSO in the regime n∗ ≤ n ≤ cnalg. Section 4 is devoted to the proof of the results
related to the Overlap Gap Property and the success of the local search algorithm in the regime
n ≥ Cnalg.

2 Main Results and Proof Ideas

We remind our model for convenience. Let n, p, k ∈ N>0 and σ2 > 0. Let also X ∈ R
n×p be

an n × p matrix with i.i.d. N(0, 1) entries and W ∈ R
n be an n × 1 vector with i.i.d. N(0, σ2)

entries. We assume that X,W are mutually independent. Let β∗ be a p × 1 exactly k-sparse
vector in R

p, that is a p-dimensional vector with exactly k-non zero coordinates, and let Y ∈ R
n

be an n× 1 vector given by Y = Xβ∗+W . Assuming the knowledge of (Y,X) and of the values
of the parameters n, p, k, σ2, we study the question of efficiently recovering the ground truth β∗

either by approximating its support or by ℓ2-stable recovering the vector itself or both.
We are interested in the high dimensional regime where p, the number of features, exceeds

n, the sample size, and both diverge to infinity. Various assumptions on n, p, k, σ2 are required
for technical reasons and some of the assumptions may vary from theorem to theorem, but they
are always explicitly stated in the statements. Everywhere we assume that k < n, that is the
number of samples is strictly larger than the sparsity level. The results hold in the “with high
probability” (w.h.p.) sense as k, n, p diverge to infinity, but for concreteness we will usually
explicitly say that k diverges to infinity. This automatically implies the same for p and n since
our assumptions always imply k < n and clearly k < p.

2.1 Below nalg samples: Failure of the LASSO

For this subsection we focus on the case where β∗ is exactly k-sparse and binary. In that case
as stated in the introduction, if k ≤ exp

(
C
√
log p

)
for some C > 0, then β∗ can be exactly

recovered with order n∗ = 2k log p/ log
(
2k
σ2 + 1

)
. In particular as k/σ2 grows it implies an ℓ2-

stable recovery guarantee with n ≪ nalg samples. In this subsection we discuss the performance
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of LASSO in this regime. We show that when n/nalg is sufficiently small, for a wide range of
tuning parameters λ LASSOλ, fails to ℓ2-stably recover the ground truth vector β∗. Our result
applies for LASSOλ with and without box constraints.

Furthermore, our result applies for arbitrary choice of the tuning parameter λ as long as

λ ≥ σ√
k
exp

(

−k log p

5n

)

. (3)

Note that this range of possible λ’s include the standard optimal choice in the literature of the
tuning parameter λ = Aσ

√

log p/n for constant A > 2
√
2 [8], [29, Chapter 11] as in our regime

we assume n ≤ k log p, hence for this choice of λ, it holds λ ≥ σ
√

1/k and in particular (3) is
satisfied.

We present now the result.

Theorem 2.1. Suppose that Ĉσ2 ≤ k ≤ min{1, σ2} exp
(
C
√
log p

)
for some constants C, Ĉ > 0.

Then, there exists a constant c > 0 such that the following holds. If n∗ ≤ n ≤ cnalg, β
∗ ∈ R

p is

an exactly k-sparse binary vector, arbitrary choice of λ satisfying (3) and β̂LASSO,λ, β̂LASSO(box),λ

are the optimal solutions of the formulations LASSOλ and LASSO(box)λ respectively, then

min
(

‖β̂LASSO,λ − β∗‖2, ‖β̂LASSO(box),λ − β∗‖2
)

≥ exp

(
k log p

5n

)

σ,

w.h.p. as k → +∞.

Note that ℓ2 stable recovery means finding a vector β such that ‖β − β∗‖2 ≤ C ′σ for some
constant C ′ > 0. The above theorem establishes that in the case of an exactly k-sparse and
binary β∗, when the samples size is less than k log p both the optimal solutions of LASSOλ and
LASSO(box)λ for any λ satisfying (3) fails to ℓ2-stable recover the ground truth vector β∗ by
a multiplicative factor which is exponential on the ratio k log p

n
. In particular, coupled with the

result from [8] this shows that k log p is the necessary and sufficient order of samples for which
LASSO can ℓ2-stable recover β∗ for some λ > 0 satisfying (3).

2.2 Above nalg samples: The Absence of OGP and the success of the
Local Search Algorithm

In this setting we assume that β is k-sparse, but not necessarily exaclty k-sparse. We establish
the absence of the OGP in the case n ≥ Cnalg = Ck log p for sufficiently large C > 0, w.h.p. For
the same values of n we also propose a very simple Local Search Algorithm (LSA) for recovering
the k-sparse β∗ which provably succeeds w.h.p. In fact our results for OGP is an easy consequence
of the success of LSA.

The Absence of OGP

We now state the definition of Overlap Gap Property (OGP) which generalizes the definition
used in [26] where it focuses on the binary case for β∗.

Definition 2.2. Fix an instance of X,W . The regression problem defined by (X,W, β∗) where
a vector β∗ is an exactly k-sparse vector with |β∗|min ≥ 1 satisfies the Overlap Gap Property
(OGP) if there exists r = rn,p,k,σ2 > 0 and constants 0 < ζ1 < ζ2 < 1 such that

8



(1) ‖Y −Xβ∗‖2 < r,

(2) There exists a k-sparse vector β with Support(β) ∩ Support(β∗) = ∅ and ‖Y −Xβ‖2 < r,
and

(3) If a k-sparse vector β satisfies ‖Y −Xβ‖2 < r then either

|Support(β) ∩ Support(β∗)| < ζ1k

or
|Support(β) ∩ Support(β∗)| > ζ2k.

The OGP has a natural interpretation. It states that the k-sparse βs which achieve near
optimal cost for the objective value ‖Y −Xβ‖2 split into two non-empty “well-separated” regions;
the ones whose support is close with the support of β∗ in the Hamming distance sense, and the
ones whose support is far from the support of β∗ in the Hamming distance sense, creating a
“gap” for the vectors with supports in a “intermediate” Hamming distance.

In [26] the authors prove that under the assumption 1
5
σ2 ≤ k ≤ min{1, σ2} exp

(
C
√
log p

)

for some constant C > 0 if n satisfies n∗ < n ≤ ck log p, for some sufficiently small constant
c > 0, then the OGP restricted for binary vectors holds for some r > 0 and ζ1 =

1
5
and ζ2 =

1
4
.

Details can be found in the paper. As mentioned though in the introduction, it is conjectured
in [26] that OGP will not hold when n ≥ Ck log p for some constant C > 0, which is the regime
for n where efficient algorithms, such as LASSO, have been proven to work. We confirm this
conjecture in the theorem below.

Theorem 2.3. There exists c, C > 0 such that if σ2 ≤ cmin{k, log p
log log p

}, n ≥ Cnalg the following

holds. If the β∗ is exactly k-sparse and satisfies |β∗|min ≥ 1 then the regression problem (X,W, β∗)
does not satisfy the OGP w.h.p. as k → +∞.

We now give some intuition of how this result is derived. The proof is based on a lemma on
the “local” behavior of the k-sparse βs with respect to the optimization problem

(Φ̃2) min ‖Y −Xβ‖2
s.t. ‖β‖0 ≤ k.

We first give a natural definition of what a non-trivial local minimum is for Φ̃2.

Definition 2.4. We define a k-sparse β to be a non-trivial local minimum for Φ̃2 if

• Support (β) 6= Support (β∗), and

• if a k-sparse β1 satisfies

max{|Support (β) \ Support (β1) |, |Support (β1) \ Support (β) |} ≤ 1,

it must also satisfy
‖Y −Xβ1‖2 ≥ ‖Y −Xβ‖2.

We continue with the observation that the presence of OGP deterministicaly implies the
existence of a non-trivial local minimum for the problem Φ̃2.

9



Proposition 2.5. Assume for some instance of X,W the regression problem (X,W, β∗) satisfies
the Overlap Gap Property. Then for this instance of X,W there exists at least one non-trivial
local minimum for Φ̃2.

Proof. Assume that OGP holds for some values r, ζ1, ζ2. We choose β1 the k-sparse vector β that
minimizes ‖Y −Xβ‖2 under the condition |Support(β) ∩ Support(β∗)| ≤ ζ1k. The existence of
β1 is guaranteed as the space of k-sparse vectors with |Support(β)∩Support(β∗)| ≤ ζ1k is closed
under the Euclidean metric.

We claim this is a non-trivial local minimum. Notice that it suffices to prove that β1 minimizes
also ‖Y − Xβ‖2 under the more relaxed condition |Support(β) ∩ Support(β∗)| < ζ2k. Indeed
then since ζ1k < ζ2k, β1 will be the minimum over a region that contains its 2-neighborhood
in the Hamming distance and as clearly the support of β1 is not equal to the support of β∗ we
would be done.

Now to prove the claim consider a β with ζ1k < |Support(β) ∩ Support(β∗)| < ζ2k. By the
Overlap Gap Property we know that it must hold ‖Y − Xβ‖2 > r. Furthermore again by the
Overlap Gap Property we know there is a β ′ with |Support(β ′) ∩ Support(β∗)| = 0 < ζ1k for
which it holds ‖Y − Xβ ′‖2 < r. But by the definition of β1 it must also hold ‖Y − Xβ1‖2 ≤
‖Y −Xβ ′‖2 < r which combined with ‖Y −Xβ‖2 > r implies ‖Y −Xβ1‖2 < ‖Y −Xβ‖2. Since
the β was arbitrary with ζ1k < |Support(β)∩ Support(β∗)| < ζ2k the proof of the Proposition is
complete.

Now in light of the Proposition above, we know that a way to negate OGP is to prove the
absence of non-trivial local minima for Φ̃2. We prove that indeed if n ≥ Ck log p for some
universal C > 0 our regression model does not have non-trivial local minima for Φ̃2 w.h.p. and
in particular OGP does not hold in this regime w.h.p., as claimed. We state this as a separate
result as it could be of independent interest.

Theorem 2.6. There exists c, C > 0 such that if σ2 ≤ cmin{k, log p
log log p

}, n ≥ Cnalg such that

the following is true. If the β∗ is exactly k-sparse and satisfies |β∗|min ≥ 1 then the optimization
problem (Φ̃2) has no non-trivial local minima w.h.p. as k → +∞.

The complete proofs of both Theorem 2.3 and Theorem 2.6 are presented in Section 4.

Success of Local Search

As stated in the introduction, in parallel to many results for random constrained satisfaction
problems, the disappearance of OGP suggests the existence of a very simple algorithm succeeding
in recovering β∗, usually exploiting the smooth local structure. Here, we present a result that
reveals a similar picture. A natural implication of the absence of non-trivial local minima property
is the success w.h.p. of the following very simple local search algorithm. Start with any vector β0

which is k-sparse and then iteratively conduct “local” minimization among all β’s with support
of Hamming distance at most two away from the support of our current vector.

We now state this algorithm formally. Let ei ∈ R
p, i = 1, 2, . . . , p be the standard basis

vectors of Rp.
Local Search Algorithm (LSA)

0. Input: A k-sparse vector β with support S.
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1. For all i ∈ S and j ∈ [p] compute erri (j) = minq ‖Y −Xβ + βiXi − qXj‖2.

2. Find (i1, j1) = argmini∈S,j∈[p]erri (j) and q1 := argminq∈R‖Y −Xβ + βi1Xi1 − qXj1‖2.

3. If ‖Y −Xβ + βi1Xi1 − q1Xj1‖2 < ‖Y −Xβ‖2, update the vector β to β − βi1ei1 + qej1, the
set S to the support of the new β and go to step 1. Otherwise terminate and output β.

For the performance of the algorithm we establish the following result.

Theorem 2.7. There exist c, C > 0 so that if β∗ ∈ R
p is an exactly k-sparse vector, n ≥ Cnalg

and σ2 ≤ c|β∗|2
min

min{ log p
log log p

, k} then the algorithm LSA with an arbitrary k-sparse vector β0 as

input terminates in at most
4k‖Y−Xβ0‖22

σ2n
iterations with a vector β̂ such that

(1) Support
(

β̂
)

= Support (β∗) and

(2) ‖β̂ − β∗‖2 ≤ σ,

w.h.p. as k → +∞.

The complete proof of Theorem 2.7 requires some care and is approximately 16 pages long.
It is fully presented in Section 4.

3 Proof of Theorem 2.1

3.1 Auxilary Lemmata

Lemma 3.1. Fix any C1 > 0. Any vector β that satisfies ‖β‖1 ≤ k − C1σ
√
k also satisfies

‖β − β∗‖2 ≥ C1σ.

Proof. Assume β satisfies ‖β − β∗‖2 ≤ C1σ. We let S denote the support of β∗, and let βS ∈ R
p

be the vector which equals to β in the coordinates that correspond to S and is zero otherwise.
We have by the triangle inequality and the Cauchy Schwartz inequality,

k − ‖βS‖1 = ‖β∗
S‖1 − ‖βS‖1 ≤ ‖βS − β∗

S‖1 ≤
√
k‖ (β − β∗)S ‖2 ≤

√
k‖β − β∗‖2 ≤ C1σ

√
k,

which gives k − C1σ
√
k ≤ ‖βS‖1 ≤ ‖β‖1.

We also need the Theorem 3.1. from [26], which we re-state here for convenience.

Theorem 3.2 ([26]). Let Y ′ ∈ R
n be a vector with i.i.d. normal entries with mean zero and

abritrary variance Var(Y1) and X ∈ R
n×p be a matrix with iid standard Gaussian entries. Then

for every C > 0 there exists c0 > 0 such that if c < c0 and for some integer k′ it holds k′ log k′ ≤
Cn, k′ ≤ Var (Y ′

1) ≤ 3k′, and n ≤ ck′ log p, then there exists an exactly k′-sparse binary β such
that

n− 1
2‖Y −Xβ‖2 ≤ exp

(
1

2c

)
√

k′ +Var (Y ′
1) exp

(

−k′ log p

n

)

w.h.p. as k′ → ∞.
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Finally, we establish the following Lemma.

Lemma 3.3. Under the assumptions of Theorem 2.1 there exists universal constants c > 0 such
that the following holds. If n∗ ≤ n ≤ ck log p then there exists α ∈ [0, 1]p with

(1) n− 1
2‖Y −Xα‖2 ≤ σ

(2) ‖α‖1 = k − 2C1σ
√
k,

w.h.p. as k → +∞.

Proof. Let

λ := 1− 4C1

√

σ2

k

and

AC1 = {λβ∗ + (1− λ)β|β ∈ {0, 1}p, ‖β‖0 = k/2, Support (β) ∩ Support (β∗) = ∅}.

AC1 is the set of vectors of the form α := λβ∗+(1−λ)β where β is exactly k
2
-sparse binary with

support disjoint from the support of β∗. Since by our assumption n > n∗ or equivalently

k log p

5n
<

1

10
log

(

1 +
2k

σ2

)

we conlude that for some C ′ > 0 large enough, if C ′σ2 ≤ k then

4C1

√

σ2

k
= 4 exp

(
k log p

5n

)√

σ2

k
< 4

(

1 +
2k

σ2

) 1
10

√

σ2

k
< 1.

In particular λ > 0 and thus λ ∈ [0, 1]. Therefore AC1 ⊂ [0, 1]p. It is straightforward to see also
that all these vectors have ℓ1 norm equal to kλ+ k(1− λ)/2 = k(λ+ 1)/2. But for our choice of
λ we have

k(λ+ 1)/2 = k − 2C1σ
√
k

Therefore for all α ∈ AC1 it holds ‖α‖1 = k − 2C1σ
√
k and α ∈ [0, 1]p. In particular, in order to

prove our claim it is enough to find α ∈ AC1 with n− 1
2‖Y −Xα‖2 ≤ σ.

We need to show that for some c > 0, there exists w.h.p. a binary vector β which is exactly
k/2 sparse, has disjoint support with β∗ and also satisfies that

n− 1
2‖Y −X(λβ∗ + (1− λ)β)‖2 ≤ σ.

We notice the following equalities:

‖Y −X(λβ∗ + (1− λ)β)‖2 = ‖Xβ∗ +W − λXβ∗ − (1− λ)Xβ‖2
= (1− λ)‖Xβ∗ + (1− λ)−1W −Xβ‖2.

Hence the condition we need to satisfy can be written equivalently as

n− 1
2‖Xβ∗ + (1− λ)−1W −Xβ‖2 ≤ (1− λ)−1 σ,
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or equivalently

n− 1
2‖Y ′ −Xβ‖2 ≤

1

4

√
k exp

(

−k log p

5n

)

,

where for the last equivalence we set Y ′ := Xβ∗ + (1 − λ)−1W and used the definition of λ for
the right hand side.

Now we apply Theorem 3.2 for Y ′ X ′ ∈ R
n×(p−k), which is X after we deleted the k columns

corresponding to the support of β∗, and k′ = k/2. We first check that the assumptions of the
Theorem are satisfied. For all i, Y ′

i are iid zero mean Gaussian with

Var (Y ′
i ) = k + σ2 (1− λ)−2 = k(1 +

1

16
exp

(

−2k log p

5n

)

).

In particular for some constant c0 > 0 if n ≤ c0k log p it holds

k′ =
k

2
≤ Var (Y ′

i ) ≤ 3k/2 = 3k′.

Finally we need k′ log k′ ≤ C ′n for some C ′ > 0. For k′ = k
2
it holds k′ log k′ ≤ k log k and also

as Ĉσ2 ≤ k ≤ min{1, σ2} exp
(
C
√
log p

)
it can be easily checked that for some constant C ′ > 0

it holds k log k ≤ C ′ 2k log p

log( 2k
σ2+1)

= C ′n∗. As we assume n ≥ n∗ we get k′ log k′ ≤ C ′n∗ ≤ Cn as

needed. Therefore all the conditions are satisfied.
Applying Theorem 3.2 we obtain that for some constant c1 > 0 there exists w.h.p. an exactly

k/2 sparse vector β with disjoint support with β∗ and

n− 1
2‖Y ′ −Xβ‖2 ≤ exp

(
1

2c1

)
√

k′ +Var (Y ′
i ) exp

(

−k′ log(p− k)

n

)

.

Plugging in the value for k′ and using Var (Y ′
i ) ≤ 3

2
k we conclude the w.h.p. existence of a binary

k/2-sparse vector β with disjoint support with β∗ and

n− 1
2‖Y ′ −Xβ‖2 ≤ exp

(
1

2c1

)√
2k exp

(

−k log(p− k)

2n

)

.

Finally we need to verify

exp

(
1

2c1

)√
2k exp

(

−k log(p− k)

2n

)

≤ 1

4

√
k exp

(

−k log p

5n

)

.

We notice that as k/
√
p → 0 as k, p → +∞, which is true since we assume k ≤ exp

(
C
√
log p

)
,

we have

exp

(
1

2c1

)√
2k exp

(

−k log(p− k)

2n

)

≤ exp

(
1

2c1

)√
2k exp

(

−k log p

3n

)

, for large enough k, p.

Hence we need to show

exp

(
1

2c1

)√
2k exp

(

−k log p

3n

)

≤ 1

4

√
k exp

(

−k log p

5n

)

.
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or equivalently

exp

(
1

2c1

)√
2 ≤ 1

4
exp

(
2k log p

15n

)

which is clearly satisfied if n ≤ c3k log p for some constant c3 > 0. Therefore choosing c =
min{c1, c3} the proof of the claim and of the theorem is complete.

3.2 Proofs of Theorem 2.1

In this subsection we use the Lemmata from the previous subsections and prove the Theorem
2.1.

Proof of Theorem 2.1. Let

C1 := exp

(
k log p

5n

)

. (4)

According the Lemma 3.1 it suffices to show that for C1 given by (4),

max{‖βLASSO,λ‖1, ‖βLASSO(box),λ‖1 ≤ k − C1σ
√
k, (5)

w.h.p. as k → +∞.
To show this, we notice that since βLASSO,λ and βLASSO(box),λ are the optimal solution to

LASSOλ and LASSO(box)λ respectively, they obtains objective value smaller then any other
feasible solution. Note that α given in Lemma 3.3 is feasible for both quadratic optimization
problems. Hence it holds almost surely,

max
v∈{βLASSO,λ,βLASSO(box),λ}

{ 1
n
‖Y −Xv‖22 + λp‖v‖1} ≤ 1

n
‖Y −Xα‖22 + λp‖α‖1 (6)

Hence we conclude that w.h.p. as k → +∞,

λpmax{‖βLASSO,λ‖1, ‖βLASSO(box),λ‖1 ≤ max
v∈{βLASSO,λ,βLASSO(box),λ}

{ 1
n
‖Y −Xv‖22 + λp‖v‖1}

≤ 1

n
‖Y −Xα‖22 + λp‖α‖1 , using (6)

≤ σ2 + λp

(

k − 2C1

√
kσ

)

, using Lemma 3.3

or by rearranging,

λp

(

k − C1σ
√
k −max{‖βLASSO,λ‖1, ‖βLASSO(box),λ‖1

)

≥
(

λpC1

√
k − σ

)

σ. (7)

By assumption on λp satisfying (3) we conclude from (4) that

λpC1

√
k ≥ σ.

Combining the last inequality we have that the right hand side of (7) is nonnegative, and therefore
(7) implies that (5) holds w.h.p. as k → +∞. This completes the proof of the Theorem 2.1.
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4 LSA Algorithm and the Absence of the OGP

4.1 Preliminaries

We introduce the notion of a super-support of a finite dimensional real vector.

Definition 4.1. Let d ∈ N. We call a set ∅ 6= S ⊆ [d] a super-support of a vector x ∈ R
d if

Support (x) ⊆ S.

We also need the definition and some basic properties of the Restricted Isometry Property
(RIP).

Definition 4.2. Let n, k, p ∈ N with k ≤ p. We say that a matrix X ∈ R
n×p satisfies the

k-Restricted Isometry Property (k-RIP) with restricted isometric constant δk ∈ (0, 1) if
for every vector β ∈ R

p which is k-sparse it holds

(1− δk)‖β‖22n ≤ ‖Xβ‖22 ≤ (1 + δk)‖β‖22n.

A proof of the following theorem can be found in [3].

Theorem 4.3. [3] Let n, k, p ∈ N with k ≤ p. Suppose X ∈ R
n×p has i.i.d. standard Gaussian

entries. Then for every δ > 0 there exists a constant C = Cδ > 0 such that if n ≥ Ck log p then
X satisfies the k-RIP with restricted isometric constant δk < δ w.h.p.

We need the following properties of RIP.

Proposition 4.4. Let n, k, p ∈ N with k ≤ p. Suppose X ∈ R
n×p satisfies the k-RIP with

restricted isometric constant δk ∈ (0, 1). Then for any v, w ∈ R
p which are k-sparse,

(1)
|(Xv)T (Xw)| ≤ (1 + δk)‖v‖2‖w‖2n ≤ 2‖v‖2‖w‖2n.

(2) If v, w have a common super-support of size k then

‖Xw‖22 + 4‖v − w‖2‖w‖2n+ 2‖v − w‖22n ≥ ‖Xv‖2 ≥ ‖Xw‖22 − 4‖v − w‖2‖w‖2n.

(3) If v, w have disjoint supports and a common super-support of size k then

|(Xv)T (Xw)| ≤ δk
(
‖v‖22 + ‖w‖22

)
n.

Proof. The first part follows from the Cauchy-Schwarz inequality and the definiton of k-RIP
applied to the vectors v, w. For the second part we write Xv = X(w + (v − w)), and we have

‖Xv‖22 = ‖Xw‖22 + 2 (X(v − w))T (Xw) + ‖X(v − w)‖22.

Since v, w have a common super-support of size k, the vectors v − w,w are k-sparse vectors.
Hence from the first part we have

−2‖v − w‖2‖w‖2n ≤ |X(v − w)TXw| ≤ 2‖v − w‖2‖w‖2n
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0 ≤ ‖X(v − w)‖22 ≤ 2‖v − w‖22n.
Applying these inequalities to the last equality, the proof follows.

For the third part since v, w are k-sparse and have a common super-support of size k the
vectors v+w and v−w are k-sparse vectors. Hence by k-RIP and that v, w have disjoint supports
we obtain

‖X(v + w)‖22 ≤ (1 + δk)‖v + w‖22n = (1 + δk)
(
‖v‖22 + ‖w‖22

)
n

and similarly
‖X(v − w)‖22 ≥ (1− δk)

(
‖v‖22 + ‖w‖22

)
n.

Hence

|(Xv)T (Xw)| = |1
4

[
‖X(v + w)‖22 − ‖X(v − w)‖22

]
|

≤ 1

4
|(1 + δk)

(
‖v‖22 + ‖w‖22

)
n− (1− δk)

(
‖v‖22 + ‖w‖22

)
n|

≤ δk
(
‖v‖22 + ‖w‖22

)
n,

as required.

Finally, we need the so-called Hanson-Wright inequality.

Theorem 4.5 (Hanson-Wright inequality, [28]). There exists a constant d > 0 such that the
following holds. Let n ∈ N, A ∈ R

n×n and t ≥ 0. Then for a vector X ∈ R
n with i.i.d. standard

Gaussian components

P
(
|X tAX − E

[
X tAX

]
| > t

)
≤ 2 exp

[

−dmin

(
t2

‖A‖2
F

,
t

‖A‖

)]

.

4.2 Key Propositions on the Local Structure of (Φ̃2)

To establish the Theorems 2.3, 2.6 and 2.7 we need to obtain certain structural results on the
local minima of (Φ̃2).

The central object of interest is what we name as a α-deviating local minimum (α-DLM).

Definition 4.6. Let n, p ∈ N,α ∈ (0, 1), X ∈ R
n×p and ∅ 6= S1, S2, S3 ⊆ [p]. A triplet of vectors

(a, b, c) with a, b, c ∈ R
p is called an α-deviating local minimum (α-D.L.M.) with respect

to S1, S2, S3 and to the matrix X if the following are satisfied:

• The sets S1, S2, S3 are pairwise disjoint and the vectors a, b, c have super-supports S1, S2, S3

respectively.

• |S1| = |S2| and |S1|+ |S2|+ |S3| ≤ 3k.

• For all i ∈ S1 and j ∈ S2

‖ (Xa− aiXi) + (Xb− bjXj) +Xc‖22 ≥ ‖Xa+Xb+Xc‖22 − α

(‖a‖22
|S1|

+
‖b‖22
|S2|

)

n. (8)
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Remark 4.7. In several cases in what follows we call a triplet (a, b, c) an α-DLM with respect
to a matrix X without explicitly referring to their corresponding super-sets S1, S2, S3 but we do
always assume their existence.

We establish several results on α-DLMs. We start with the following algebraic claim for the
DLM property.

Claim 4.8. Let n, p, k ∈ N with k ≤ 1
3
p. Suppose a matrix X ∈ R

n×p satisfies the 3k-RIP for
some isometric constant δ3k ∈ (0, 1) and that for some α ∈ (0, 1) a triplet (a, b, c) is an α-D.L.M.
with respect to X. Then

‖X (a+ b) ‖22 + 2(Xc)T (X(a+ b)) ≤ (α + 4δ3k)
(
‖a‖22 + ‖b‖22

)
n.

Proof. Let S1, S2, S3 the super-sets of the vectors a, b, c with respect to which the triplet (a, b, c)
is an α-DLM. Set m := |S1| = |S2|. Based on the definition of an α-DLM by expanding the
squared norm in the left hand side of (8) we have that ∀i ∈ S1, j ∈ S2 it holds

a2i ‖Xi‖22 + b2j‖Xj‖22 + 2aibjX
T
i Xj − 2 (Xa+Xb+Xc)T (aiXi + bjXj) ≥ −α

(‖a‖22
m

+
‖b‖22
m

)

n.

Summing over all i ∈ S1, j ∈ S2 we obtain

∑

i∈S1,j∈S2

[

a2i ‖Xi‖22 + b2j‖Xj‖22 + 2aibjX
T
i Xj − 2 (Xa+Xb+Xc)T (aiXi + bjXj)

]

≥ −mα
(
‖a‖22 + ‖b‖22

)
n

which equivalently gives

m
∑

i∈S1

a2i ‖Xi‖22+m
∑

j∈S2

b2j‖Xj‖22+2(Xa)T (Xb)−2m (Xa+Xb+Xc)T (Xa +Xb) ≥ −mα
(
‖a‖22 + ‖b‖22

)
n

which after rearranging and multiplying with − 1
m

implies that the quantity

‖X (a+ b) ‖22 + 2(Xc)T (X(a+ b)) + 2

(

1− 1

m

)

(Xa)T (Xb)

︸ ︷︷ ︸

S

+

[

‖Xa‖22 −
∑

i∈S1

a2i ‖Xi‖22

]

+

[

‖Xb‖22 −
∑

j∈S2

b2j‖Xj‖22

]

︸ ︷︷ ︸

T

is at most α (‖a‖22 + ‖b‖22)n. To finish the proof it suffices to establish that S, T are both bounded
from below by −2δ3k (‖a‖22 + ‖b‖22)n. We start with bounding S. The vectors a, b have disjoint
supports which sizes sum up to at most 3k. In particular, the union of their supports is a common
super-support of them of size at most 3k. Hence we can apply part (3) of Proposition 4.4 to get

S = 2

(

1− 1

m

)

(Xa)T (Xb) ≥ −2δ3k

(

1− 1

m

)
(
‖a‖22 + ‖b‖22

)
n ≥ −2δ3k

(
‖a‖22 + ‖b‖22

)
n.
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For T it suffices to prove that
[
‖Xa‖22 −

∑

i∈S1
a2i ‖Xi‖22

]
≥ −2δ3k‖a‖22n and since the same

will hold for b by symmetry, by summing the inequalities we will be done. Note that as a and all
the standard basis vectors are 3k-sparse vectors by 3k-RIP forX we have ‖Xa‖22 ≥ (1−δ3k)‖a‖22n
and secondly ‖Xi‖22 ≤ (1 + δ3k)n, for all i ∈ [p]. Combining we obtain

[

‖Xa‖22 −
∑

i∈S1

a2i ‖Xi‖22

]

≥
[

(1− δ3k)‖a‖22n− (1 + δ3k)
∑

i∈S1

a2in

]

= −2δ3k‖a‖22n.

The proof is complete.

We now state two key properties for D.L.M. triplets. We present the proof of the first
Proposition here, as it is rather short. We defer the proof of the second Proposition to Subection
4.4 because of its length.

Proposition 4.9. Let n, p, k ∈ N with k ≤ 1
3
p. Suppose that X ∈ R

n×p satisfies the 3k-RIP with
restricted isometric constant δ3k < 1

12
. Then there is no 1

4
-D.L.M. triplet (a, b, c) with respect to

the matrix X with ‖a‖22 + ‖b‖22 ≥ 1
4
‖c‖22.

Proof. By Lemma 4.8 any 1
4
-D.L.M. triplet satisfies

‖X (a + b) ‖22 + 2(Xc)T (X(a+ b)) ≤
(
1

4
+ 4δ3k

)
(
‖a‖22 + ‖b‖22

)
n.

But using the 3k-R.I.P. for X and that a, b, c have disjoint supports with sizes summing up to
at most 3k we get the following two inequalities from Proposition (4.4);

• ‖X(a+ b)‖22 ≥ (1− δ3k) (‖a + b‖22)n = (1− δ3k) (‖a‖22 + ‖b‖22)n, since a+ b is 3k-sparse and
a, b have disjoint supports.

• (Xc)T (X(a+ b)) ≥ −δ3k (‖c‖22 + ‖a‖22 + ‖b‖22), from Proposition 4.4 (3).

We obtain
(1− δ3k)

(
‖a‖22 + ‖b‖22

)
− 2δ3k

(
‖c‖22 + ‖a‖22 + ‖b‖22

)

is at most
(
1
4
+ 4δ3k

)
(‖a‖22 + ‖b‖22) . But now, this inequality can be equivalently written as

(
3

4
− 7δ3k

)
(
‖a‖22 + ‖b‖22

)
≤ δ3k‖c‖22. (9)

Now we use that for δ3k < 1
12

it holds 3
4
− 7δ3k > 2δ3k. Using this in (9) we conclude that

√

‖a‖22 + ‖b‖22 < 1
2
‖c‖2 and the proof of the proposition is complete.

The second property of D.L.M. triplets we want is the following.

Proposition 4.10. Let n, p, k ∈ N with k ≤ 1
3
p. Suppose X ∈ R

n×p has i.i.d. N(0, 1) entries.
There exists constants c1, C1 > 0 such that if n ≥ C1k log p then w.h.p. there is no 1

4
-D.L.M.

triplet (a, b, c) with respect to the some sets ∅ 6= S1, S2, S3 ⊂ [p] and the matrix X such that the
following conditions are satisfied.
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(1) |a|min := min{|ai| : ai 6= 0} ≥ 1.

(2) S1 ∪ S3 = [k] ∪ {p}, p ∈ S3 and S1 = Support(a).

(3) ‖a‖22 + ‖b‖22 + ‖c‖22 ≤ c1min{ log p
log(log p)

, k}.

The proof is deferred to Subection 4.4.

4.3 Proof of Theorems 2.3, 2.6 and 2.7

We first prove Theorem 2.7 and then we show how it implies Theorems 2.3 and 2.6.

Proof of Theorem 2.7. Let X ′ be an n× (p + 1) matrix such that for all i ∈ [n], j ∈ [p] it holds
X ′

i,j = Xi,j and for i ∈ [n], j = p + 1, X ′
i,p+1 :=

1
σ
Wi. In words, we create X ′ by augmenting X

with the rescaled 1
σ
W as an extra column. Note that X ′ has iid standard Gaussian entries and

furthermore Y = Xβ∗ +W = X ′
[
β∗

σ

]

.

Notice that the performance of our algorithm is invariant with respect to rescaling of the
quantities Y, β∗, σ, β0 by a scalar. In particular by rescaling Y = Xβ∗ + W with 1

|β∗|min
we

can replace Y by Y
|β∗|min

, β∗ with β∗

|β∗|min
, σ2 by σ2

|β∗|2min
and finally β0 by β0

|β∗|2min
and thus we may

assume for our proof that |β∗|min = 1. Notice that in this case our desired upper bound on the

running time remains 4k
‖Y−Xβ0‖22

σ2n
and our assumptions on the variance of the noise is now simply

σ2 ≤ cmin{ log p
log log p

, k} for some c > 0.

Recall that the desired output of the algorithm are vectors β̂ satisfying the following termi-
nation conditions.

Termination Conditions:

(TC1) Support
(

β̂
)

= Support (β∗) and,

(TC2) ‖β̂ − β∗‖2 ≤ σ.

We start with the following deterministic claim.

Claim 4.11. Assume that the algorithm LSA has the following property. For any k-sparse β
which violates at least one of (TC1),(TC2) we have ‖Y − Xβ ′‖22 ≤ ‖Y − Xβ‖22 − σ2

4k
n, where

β ′ is obtained from β in one iteration of the LSA. Then the algorithm LSA terminates for any

k-sparse vector β0 as input in at most 4k
‖Y−Xβ0‖22

σ2n
iterations with an output vector β satisfying

both conditions (TC1), (TC2).

Proof. The property clearly implies that for the algorithm to terminate it needs to satisfy both
conditions (TC1), (TC2). Hence we need to bound only the termination time appropriately. But
since at every iteration that the algorithm does not terminate the quantity ‖Y −Xβ‖22 decreases
by at least σ2

4k
n, the result follows.
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For any vector v ∈ R
p and ∅ 6= A ⊆ [p] we denote by vA ∈ R

p the p-dimensional real vector
such that (vA)i = vi for i ∈ A and (vA)i = 0 for i 6∈ A. Furthermore we set v∅ = 0p×1 for any
vector v. Without the loss of generality from now on we assume Support (β∗) = [k]. Following
the Claim 4.11 and our discussion, in order to prove Theorem 2.7 it suffices to prove that there
exists c, C > 0 such that w.h.p. there is no k-sparse β that violates at least one of (TC1),(TC2)
and furthermore satisfies that ‖Y −Xβ ′‖22 ≥ ‖Y −Xβ‖22 − σ2

4k
n, where β ′ is obtained from β in

one iteration of the LSA.
Suppose the existence of such a β. We first choose C > 0 large enough so that X ′ satisfies

the 3k-RIP with δ3k < 1
12
. The existence of this C > 0 is guaranteed by Theorem 4.3. Denote by

T a super support of β, that satisfies |T | = k and T ∩ [k] = Support (β)∩ [k]. The existence of T
is guaranteed as |Support (β) | ≤ k and k ≤ p

3
. Note that in particular (TC1) is satisfied if and

only if Support (β) = [k] if and only if T = [k]. We know that for all i ∈ [p], j ∈ T and q ∈ R,

‖Y −Xβ + βjXj − qXi‖22 ≥ ‖Y −Xβ‖2 −
σ2

4k
n

or equivalently,

‖Xβ∗ +W −Xβ + βjXj − qXi‖22 ≥ ‖Xβ∗ +W −Xβ‖2 −
σ2

4k
n, ∀i ∈ [p], j ∈ T, q ∈ R. (10)

Consider the triplets (a, b, c), (d, e, g) ∈ R
p+1 × R

p+1 × R
p+1, where

a :=

[
β∗
[k]\T
0

]

, b :=

[
−βT\[k]

0

]

, c :=

[
(β∗ − β)[k]∩T

σ

]

and

d :=

[
(β∗ − β)[k]∩T

0

]

, f :=

[
0p×1

0

]

, g :=

[
(β∗)[k]\T − (β)T\[k]

σ

]

.

Lemma 4.12. Assume that ‖(β − β∗)[k]∩T‖22 ≥ σ2. Then the inequalities (10) imply that the
triplet (d, f, g) is 1

4
-DLM with respect to the matrix X ′.

Proof. We use the relation (10) and we choose i = j ∈ [k] ∩ T , and q = β∗
i to get that

‖Xβ∗ +W −Xβ + (βi − β∗
i )Xi‖22 ≥ ‖Xβ∗ +W −Xβ‖2 −

σ2

4k
n, for all i ∈ [k] ∩ T.

But now notice that with respect to X ′ ∈ R
n×(p+1) and the vectors d, f, g defined above this

condition can be written as

‖X ′d+X ′f +X ′g − diX
′
i‖22 ≥ ‖X ′ (d+ f + g) ‖22 −

σ2

4k
n, for all i ∈ [k] ∩ T. (11)

But based on our assumptions we have

‖d‖22 + ‖f‖22
|[k] ∩ T | =

‖(β − β∗)[k]∩T‖22
|[k] ∩ T | ≥ σ2

|[k] ∩ T | ≥
σ2

k
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which combined with the inequality above gives,

‖ (X ′d− diX
′
i) +X ′f +X ′g‖22 ≥ ‖X ′d+X ′f +X ′g‖22 −

1

4

‖d‖22 + ‖f‖22
|[k] ∩ T | n, for all i ∈ [k] ∩ T,

(12)

which by definition since f = 0 says that (d, f, g) is a 1
4
-DLM triplet with respect to [k] ∩ T , U

and Support(g), where U is an arbitrary set of cardinality |[k]∩ T | which is disjoint from [k]∩ T
and Support(g).

Recall that β does not satisfy at least one of (TC1) and (TC2). We now consider different
cases with respect to that.

Case 1: T = [k] but ‖β − β∗‖22 > σ2.
In that case ‖(β − β∗)[k]∩T‖22 ≥ σ2, because T = [k]. In particular, from Claim 4.12 we know

that (d, f, g) is a 1
4
-DLM triplet with respect to the matrix X ′. From Lemma 4.9 since we assume

that X ′ satisfies the 3k-RIP with δ3k <
1
12

w.h.p. we know that for (d, f, g) to be a 1
4
-DLM triplet

it needs to satisfy

‖d‖22 + ‖f‖22 <
1

4
‖g‖22, w.h.p.

which equivalently means

‖ (β − β∗)[k]∩T ‖22 <
1

4

(
‖β∗

[k]\T‖22 + ‖βT\[k]‖22 + σ2
)
w.h.p.

or equivalently as T = [k]

‖β − β∗‖22 <
σ2

4
w.h.p.

This is a contradiction with our assumption on β that ‖β − β∗‖22 > σ2. Therefore indeed this
case leads w.h.p. to a contradiction and the proof in this case is complete.

Case 2: T 6= [k].
We start by proving that in this case if we choose c < 1 then the inequalities (10) imply

deterministically that (a, b, c) is an 1
4
-DLM triplet with respect to [k] \ T , T \ [k] and ([k] ∩ T )∪

{p+ 1} and the matrix X ′. For i ∈ [k] \ T , j ∈ T \ [k] and q = β∗
j (10) implies

‖Xβ∗ +W −Xβ + βjXj − β∗
i Xi‖22 ≥ ‖Xβ∗ +W −Xβ‖2 −

σ2

4k
n, for all i ∈ [k] \ T, j ∈ T \ [k].

But now notice that with respect to X ′ ∈ R
n×(p+1), and the vectors a, b, c defined above, this

condition can be written as

‖X ′a+X ′b+X ′c− aiX
′
i − bjX

′
j‖22 ≥ ‖X ′ (a+ b+ c) ‖22 −

σ2n

4k
, (13)

for all i ∈ [k] \ T, j ∈ T \ [k] (14)

Furthermore since the non-zero elements of a are non-zero elements of β∗ we know |a|min ≥ 1.

In particular for all i ∈ [k] \ T it holds a2i ≥ 1 and therefore for m = |[k] \ T | it holds ‖a‖22+‖b‖22
m

≥
|a|min ≥ 1. Therefore the inequality above implies

‖X ′a+X ′b+X ′c− aiX
′
i − bjX

′
j‖22 ≥ ‖X ′a+X ′b+X ′c‖22 −

σ2n

4k

(‖a‖22 + ‖b‖22
m

)

, (15)

for all i ∈ [k] \ T, j ∈ T \ [k] (16)
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Finally, since we are assuming c < 1 we have σ2 ≤ k and therefore

‖ (X ′a− aiX
′
i) +

(
X ′b− bjX

′
j

)
+X ′c‖22 ≥ ‖X ′a+X ′b+X ′c‖22 −

n

4

(‖a‖22 + ‖b‖22
m

)

, (17)

for all i ∈ [k] \ T, j ∈ T \ [k] (18)

which since m = k − |[k] ∩ T | = |[k] \ T | = |T \ [k]| is exactly the property that (a, b, c) is
1
4
-DLM with respect to the sets [k] \ T , T \ [k] and ([k] ∩ T ) ∩ {p+ 1} and the matrix X ′. Since

we assume that X ′ satisfies the 3k-RIP with δ3k < 1
12

we conclude from Proposition 4.9 that
‖a‖22 + ‖b‖22 ≤ 1

4
‖c‖22 or equivalently,

‖β∗
[k]\T‖22 + ‖βT\[k]‖22 ≤

1

4

(
‖(β − β∗)[k]∩T‖22 + σ2

)
. (19)

Now we apply Proposition 4.10 for the 1
4
-DLM triplet (a, b, c) with respect to S1 := [k] \ T ,

S2 := T \ [k] and S3 := ([k] ∩ T ) ∪ {p + 1}. Let c1, C1 > 0 the corresponding constants of the
proposition. We choose our C to satisfy C > C1 so that the hypothesis of the Proposition 4.10
applies for any 1

4
-DLM triplet with respect to our matrix X ′. In particular since (a, b, c) is a

1
4
-DLM triplet we know that it should not satisfy one of the conditions w.h.p. We have that

|a|min ≥ 1 and it is easy to check that S1 ∪ S3 = [k] ∪ {p + 1}, p + 1 ∈ S3 and S1 = Support(a).
Therefore from the conclusion of Proposition 4.10 it must be true that the triplet (a, b, c) must
violate the third condition, that is

c1min{ log p

log log p
, k} ≤ ‖a‖22 + ‖b‖22 + ‖c‖22, w.h.p.

or equivalently

c1min{ log p

log log p
, k} ≤ ‖β∗

[k]\T‖22 + ‖βT\[k]‖22 + ‖(β − β∗)T∩[k]‖22 + σ2,

Applying inequality (19) with the last inequality we conclude

c1min{ log p

log log p
, k} ≤ 1

4
(‖(β − β∗)[k]∩T‖22 + σ2) + ‖(β − β∗)T∩[k]‖22 + σ2,

or equivalently

4

5
c1min{ log p

log log p
, k} − σ2 ≤ ‖(β − β∗)[k]∩T‖22,

Choosing our constant c > 0 to satisfy c < 2
5
c1, we can assume 2σ2 < 4

5
c1min{ log p

log log p
, k} and

therefore the last inequality implies

σ2 ≤ ‖ (β − β∗)[k]∩T ‖22, (20)

This by Lemma 4.12 implies that (d, f, g) is also an 1
4
-DLM triplet. In particular from

Proposition 4.9 we have

‖d‖22 + ‖f‖22 <
1

4
‖g‖22,
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which equivalently means

‖ (β − β∗)[k]∩T ‖22 <
1

4

(
‖β∗

[k]\T‖22 + ‖βT\[k]‖22 + σ2
)
.

Using (19) the above inequality implies w.h.p.

‖ (β − β∗)[k]∩T ‖22 <
1

4

(
1/4(‖(β − β∗)[k]∩T‖22 + σ2) + σ2

)

which implies

‖ (β − β∗)[k]∩T ‖22 <
1

3
σ2,

a contradiction with the inequality (20).

Proof of Theorem 2.3 and Theorem 2.6. Given Proposition 2.5 we only need to establish The-
orem 2.6 to establish both of the Theorems, that is we only need to prove that there is no
non-trivial local minimum for (Φ̃2) w.h.p. We choose constants c, C > 0 so that the conclusion
of Theorem 2.7 is valid. Suppose the existence of a k-sparse vector β which is a non-trivial local
minimum for (Φ̃2), that is it satisfies the following conditions (a),(b);

(a) Support (β) 6= Support (β∗), and

(b) if a k-sparse β1 satisfies

max{|Support (β) \ Support (β1) |, |Support (β1) \ Support (β) |} ≤ 1,

it must also satisfy
‖Y −Xβ1‖2 ≥ ‖Y −Xβ‖2.

We feed now β as an input for the algorithm (LSA). From condition (b) we know that
the algorithm will terminate immediately without updating the vector. But from Theorem 2.7
we know that the output of LSA with arbitrary k-sparse vector as input will output a vector
satisfying conditions (1), (2) of Theorem 2.7 w.h.p. In particular, since β was the output of LSA
with input itself, it should satisfy condition (1) w.h.p., that is Support (β) = Support (β∗), w.h.p.
which contradicts the definition of β (condition (a)). Therefore w.h.p. there does not exist a
non-trivial local minimum for (Φ̃2). This completes the proof.

4.4 Proof of Proposition 4.10

Here we present the deferred proof of Proposition 4.10.

Proof of Proposition 4.10. We first choose C1 > 0 large enough based on Theorem 4.3 so that
n ≥ C1k log p implies that X satisfies the 3k-RIP with δ3k < 1

16
w.h.p. In particular all the

probability calculations below will be conditioned on this high-probability event.
We start with a lemma for bounding the probability that a specific triplet (a, b, c) is an

1
2
-D.L.M. triplet with respect to X .
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Lemma 4.13. There exists a c0 > 0 such that for any fixed triplet (a, b, c) with a 6= 0,

P

(

(a, b, c) is a
1

2
-D.L.M. triplet

)

≤ 2 exp

(

−c0nmin{1, ‖a‖
2
2 + ‖b‖22
‖c‖22

}
)

,

where for the case c = 0 we abuse the notation by defining 1
0
:= +∞.

Proof. We prove only the case c 6= 0. The case c = 0 is similar. Assume a fixed triplet (a, b, c)
is an 1

2
-DLM. Using Claim 4.8 we have that it holds

‖X (a + b) ‖22 + 2(Xc)T (X(a+ b)) ≤
(
1

2
+ 4δ3k

)
(
‖a‖22 + ‖b‖22

)
n.

We set X1 = X

(

a+b√
‖a‖22+‖b‖22

)

and W1 = X
(

c
‖c‖2

)

and notice that X1,W1 have independent

N(0, 1) entries because a, b, c have disjoint supports. The last inequality can be expressed with
respect to X1,W1 as,

‖X1‖22 + 2
‖c‖2

√

‖a‖22 + ‖b‖22
W1X1 ≤

(
1

2
+ 4δ3k

)

n.

Now we introduce matrix notation. For In the n× n identity matrix we set

A :=





In
‖c‖2√

‖a‖22+‖b‖22
In

‖c‖2√
‖a‖22+‖b‖22

In 0n





and V be the 2n vector obtained by concatenating X1,W1, that is V := (X1,W1)
t. Then the last

inequality can be rewritten with respect to the matrix notation as

V tAV ≤
(
1

2
+ 4δ3k

)

n.

We now bound the probability of this inequality. First note that since V is a vector with iid
standard Gaussian elements it holds that E[V tAV ] = trace (A) = n. Hence,

P

(

V tAV ≤
(
1

2
+ 4δ3k

)

n

)

≤ P

(

|V tAV − E
[
V tAV

]
| ≥ (

1

2
− 4δ3k)n

)

, using E
[
V tAV

]
= n,

≤ P

(

|V tAV − E
[
V tAV

]
| ≥ n

4

)

, using that δ3k <
1

16
implies

1

2
− 4δ3k >

1

4
.

Now we apply Hanson-Wright inequality, so we need to estimate the Frobenious norm and the
spectral norm of the matrix A. We have

‖A‖2F ≤ 3n‖A‖2∞ ≤ 3max{1, ‖c‖22
‖a‖22 + ‖b‖22

}n. (21)
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Now using that A can be represented as the Kronecker product

A =





1 ‖c‖2√
‖a‖22+‖b‖22

‖c‖2√
‖a‖22+‖b‖22

0



⊗ In

we obtain that the maximal eigenavalue of A is the maximal eigenvalue of the 2×2 first product
term of the Kronecker product. In particular from this it can be easily checked that,

‖A‖ ≤ 2max{1,
√

‖c‖22
‖a‖22 + ‖b‖22

}. (22)

Now from Hanson-Wright inequality we have for some constant d > 0,

P

(

|V tAV − E
[
V tAV

]
| ≥ 1

4
n

)

≤ 2 exp

[

−dmin

( 1
16
n2

‖A‖2F
,

1
4
n

‖A‖

)]

(23)

Using (21), (22) and noticing that max{1,
√

‖c‖22
‖a‖22+‖b‖22

} ≤ max{1, ‖c‖22
‖a‖22+‖b‖22

} we obtain that for

the constant c0 :=
1
48
d it holds

dmin

( 1
16
n2

‖A‖2F
,

1
4
n

‖A‖

)

≥ c0nmin{1, ‖a‖
2
2 + ‖b‖22
‖c‖22

}

and therefore using (23) the proof is complete in this case.

Now we proceed with the proof of the proposition. We define the following sets parametrized
by r, c̃ > 0 and α ∈ (0, 1)

Br,c̃ := {(a, b, c)
∣
∣a, b, c ∈ R

p, ‖a‖0 + ‖b‖0 + ‖c‖0 ≤ 2k + 1, ‖a‖22 + ‖b‖22 + ‖c‖22 ≤ r2, |a|min ≥ c̃}

and

Dα,r,c̃ equal to

{(a, b, c) ∈ Br,c̃

∣
∣(a, b, c) is α-D.L.M. with correspondning super-supports satisfying

the assumption (2) of the Proposition 4.10 }

We call a triplet of sets ∅ 6= S1, S2, S3 ⊆ [p] good if

• S1, S2, S3 are pair-wise disjoint

• |S1| = |S2|, p ∈ S3 and S1 ∪ S3 = [k] ∪ {p}
For α ∈ R and S ⊆ R we define the set

S − α := {s− α|s ∈ S}.

For i = 1, 2, 3 we set Pi := {(i − 1)p + 1, (i − 1)p + 2, . . . , ip}. Notice that the sets P1, P2, P3

partition [3p]. We define the following family of subsets of [3p],

T := {T ⊂ [3p]| the triplet T ∩ P1, T ∩ P2 − p, T ∩ P3 − 2p is good}.
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It is easy to see that T ⊂ {T ⊂ [3p]||T | ≤ 2k + 1}. Furthermore for any T ∈ T we define

Br,c̃(T ) := {(a, b, c) ∈ Br,c̃

∣
∣Support ((a, b, c)) ⊆ T, T ∩ P1 = Support (a)}

and

Dα,r,c̃(T ) equal to

{(a, b, c) ∈ Br,c̃(T )
∣
∣(a, b, c) is α-D.L.M. with respect to T ∩ P1, T ∩ P2 − p, T ∩ P3 − 2p}.

We claim that

D 1
4
,r,1 =

⋃

T∈T
D 1

4
,r,1 (T ) . (24)

For the one direction, if A = (a, b, c) ∈ D 1
4
,r,1 (T ) for some T ∈ T then (a, b, c) is α-DLM with

corresponding super-supports T ∩ P1, T ∩ P2 − p, T ∩ P3 − 2p which can be easily checked that
they satisfy assumption (2) of the Proposition 4.10 based on our assumptions. For the other
direction if A ∈ D 1

4
,r,1 is an α-DLM with respect to S1, S2, S3 satisfying the assumption (2) of

the Proposition, it can be easily verified that for the set T = S1 ∪ (S2 + p) ∪ (S3 + 2p) it holds
T ∈ T and furthermore A ∈ D 1

4
,r,1 (T ).

Now to prove the proposition it suffices to prove that there exists c1, C1 > 0 such that if

n ≥ C1k log p and r =
√

c1min{ log p
log log p

, k} then

lim
k→+∞

P

(

D 1
4
,r,1 6= ∅

)

= 0.

Using the equation (24) for α = 1
4
and c̃ = 1 and the union bound it suffices to be shown that

for some c1, C1 > 0 if n ≥ C1k log p and r =
√

c1min{ log p
log log p

, k} then

lim
k→+∞

∑

T∈T
P

(

D 1
4
,r,1 (T ) 6= ∅

)

= 0.

We now state and prove the following packing lemma.

Lemma 4.14. There exists C2 > 0 such that for any r > 0, δ ∈ (0, 1) and T ∈ T we can find
Qr,1−δ(T ) ⊆ Br,1−δ(T ) with the following two properties

• |Qr,1−δ(T )| ≤ C2

(
12r
δ

)2k+1
.

• For any p ∈ Br,1(T ) there exists q ∈ Qr,1−δ(T ) with ‖p− q‖2 ≤ δ.

Proof. Fix r > 0, δ ∈ (0, 1) and T ∈ T . Since T ⊂ [3p] and |T | ≤ 2k + 1 using standard packing
arguments (see for example [3]) there exists universal constant C2 > 0 and a set

Q′
r,1−δ(T ) ⊂ Br(T ) := {(a, b, c)

∣
∣a, b, c ∈ R

p, Support ((a, b, c)) ⊆ T, ‖a‖22 + ‖b‖22 + ‖c‖22 ≤ r2}

with the properties that |Q′
r,1−δ(T )| ≤ C2

(
12r
δ

)2k+1
and that for any p ∈ Br(T ) there exists

q ∈ Q′
r,1−δ(T ) with ‖p− q‖2 ≤ δ.
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To complete the proof we define

Qr,1−δ (T ) = Q′
r,1−δ(T ) ∩ Br,1−δ(T ).

As Qr,1−δ(T ) ⊆ Q′
r,1−δ(T ) it also holds

|Qr,1−δ(T )| ≤ |Q′
r,1−δ(T )| ≤ C2

(
12r

δ

)2k+1

.

For the other property let p = (a, b, c) ∈ Br,1(T ). Since Br,1(T ) ⊆ Br(T ) there exist q =
(l, m, n) ∈ Q′

r,1−δ(T ) with ‖p− q‖2 ≤ δ. We claim that q ∈ Br,1−δ(T ) which completes the proof.
It suffices to establish |l|min ≥ 1−δ and that Support (l) = T∩P1. We know ‖a−l‖∞ ≤ ‖a−l‖2 ≤
‖p− q‖2 ≤ δ. Therefore since for al i ∈ T ∩P1, |ai| ≥ 1 we get that for all i ∈ T ∩P1, |li| ≥ 1− δ.
Since T ∩ P1 was assumed to be a super-support of l this implies both Support (l) = T ∩ P1 and
|l|min ≥ 1− δ.

Claim 4.15. Consider the sets {Qr,1−δ(T )}T∈T from Lemma (4.14) defined for some r > 0 and
0 < δ ≤ min{ 1

50r
, 1
5
}. If X satisfies the 3k-RIP with δ3k ∈ (0, 1) then for any T ∈ T such that

D 1
4
,r,1(T ) 6= ∅, we have Qr,1−δ(T ) ∩D 1

2
,r, 1

2
(T ) 6= ∅.

Proof. To prove the claim, we consider an element A = (a, b, c) ∈ D 1
4
,r,1(T ). Note that since

A ∈ D 1
4
,r,1(T ) ⊆ Br,1(T ) ⊂ Br,1−δ(T ) the definition of Qr,1−δ(T ) implies that for some L =

(l, m, g) ∈ Qr,1−δ(T ) it holds ‖A− L‖2 ≤ δ. To complete the proof we show that L ∈ D 1
2
,r, 1

2
(T ).

Notice that from the definition of the sets Qr,1−δ(T ), D 1
4
,r,1(T ), the vectors a, l share the

set S1 = T ∩ P1 as a common super-support and furthermore the vectors b,m share the set
S2 = T ∩ P2 as a common super-support. Since A ∈ D 1

4
,r,1(T ) we know firstly S1 = Support(a),

secondly for any i ∈ S1 = Support(a), |ai| ≥ 1 and finally that for any i ∈ S1 and j ∈ S2

‖ (Xa− aiXi +Xb− bjXj) +Xc‖22 ≥ ‖X(a+ b+ c)‖22 −
1

4

(‖a‖22
|S1|

+
‖b‖22
|S2|

)

n. (25)

To prove L ∈ D 1
2
,r, 1

2
(T ) it suffices to prove now firstly that S1 = Support(l), secondly for any

i ∈ Support(l), |li| ≥ 1
2
and finally that for every i ∈ S1 and j ∈ S2

‖ (Xl − liXi +Xm−mjXj) +Xg‖22 ≥ ‖X(l +m+ g)‖22 −
1

2

(‖l‖22
|S1|

+
‖m‖22
|S2|

)

n. (26)

We start with the first two properties. This is a similar calculation as in the proof of Lemma
4.14. We know ‖a − l‖2 ≤ ‖A − L‖2 ≤ δ < 1

2
. In particular, ‖a − l‖∞ ≤ 1

2
. But we know that

S1 = Support(a) and |a|min ≥ 1. These together imply that for all i ∈ S1, |li| ≥ 1
2
. Since S1 is

a super-support of l we conclude that indeed S1 = Support(l) and that for any i ∈ Support(l),
|li| ≥ 1

2
as required. Now we prove the third property and use Proposition 4.4. By part (2) of

this proposition we know that since X satisfies the 3k-RIP for some restricted isometric constant
δ3k < 1, any two vectors v, w which share a common super-support of size at most 3k satisfy

‖Xw‖22 + 4‖v − w‖2‖w‖2n+ 2‖v − w‖22n ≥ ‖Xv‖2 ≥ ‖Xw‖22 − 4‖v − w‖2‖w‖2n (27)
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For our convenience for the calculations that follow we set for all i ∈ S1 and j ∈ S2, Ai,j :=
A − aiei − bjej and Li,j := L − liei − mjej , where by {ei}i∈[3p] we denote the standard basis
vectors of R3p. In words for all i ∈ S1 and j ∈ S2 we set Ai,j the vector A after we set zero its i
and j coordinates and similarly we define Li,j. Now fix i ∈ S1, j ∈ S2. Then we have by directly
applying (27) for the two pairs v = Li,j and w = Ai,j and v = L,w = A that

‖X(Ai,j)‖22 ≤ ‖X(Li,j)‖22 + 4‖Li,j − Ai,j‖2‖Ai,j‖2n+ 2‖Li,j −Ai,j‖22n

and
‖X(A)‖22 ≥ ‖X(L)‖22 − 4‖A− L‖2‖L‖2n,

Hence ‖X(Ai,j)‖22 − ‖X(A)‖22 is at most

‖X(Li,j)‖22 + 4‖Li,j − Ai,j‖2‖Ai,j‖2n+ 2‖Li,j − Ai,j‖22n− ‖X(L)‖22 + 4‖A− L‖2‖A‖2n.

But using the easy observations

‖Ai,j − Li,j‖2 ≤ ‖A− L‖2 ≤ δ

and
‖Ai,j‖2 ≤ ‖A‖2 ≤ r

we get that the last quantity can be upper bounded by ‖XLi,j‖22−‖XL‖22+(8δr+2δ2)n. Therefore
combining the last steps we have established

‖X(Ai,j)‖22 − ‖X(A)‖22 ≤ ‖XLi,j‖22 − ‖XL‖22 + (8δr + 2δ2)n.

But we know that by our assumptions ‖X(Ai,j)‖22−‖X(A)‖22 ≥ −1
4

(
‖a‖22
|S1| +

‖b‖22
|S2|

)

n. Therefore

‖XLi,j‖22 − ‖XL‖22 ≥ −1

4

(‖a‖22
|S1|

+
‖b‖22
|S2|

)

n− (8δr + 2δ2)n.

So to prove (26) it suffices to be proven that

−1

4

(‖a‖22
|S1|

+
‖b‖22
|S2|

)

n− (8δr + 2δ2)n ≥ −1

2

(‖l‖22
|S1|

+
‖m‖22
|S2|

)

n. (28)

Note that ‖A‖2 ≤ r, ‖L‖2 ≤ r, ‖A− L‖2 ≤ δ implies ‖a‖22 − ‖l‖22 ≤ 2δr and ‖b‖22 − ‖m‖22 ≤ 2δr.
Hence from the definition of A,L and since |S1| = |S2| ≥ 1 it holds,

1

2

(‖a‖22
|S1|

+
‖b‖22
|S2|

)

n− 1

2

(‖l‖22
|S1|

+
‖m‖22
|S2|

)

n ≤ 2δrn.

In particular it holds

−1

2

(‖a‖22
|S1|

+
‖b‖22
|S2|

)

n ≥ −1

2

(‖l‖22
|S1|

+
‖m‖22
|S2|

)

n− 2δrn.

Hence using the last inequality we can immediately derive (28) provided that

1

4

(‖a‖22
|S1|

+
‖b‖22
|S2|

)

n ≥ 2δrn+ (8δr + 2δ2)n = (10δr + 2δ2)n.
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But now since a2i ≥ 1 for all i ∈ S1,
‖a‖22
|S1| ≥ 1 and therefore

1

4

(‖a‖22
|S1|

+
‖b‖22
|S2|

)

n ≥ 1

4
n.

so it suffices that 2δ2 + 10δr ≤ 1
4
. It can be easily checked to be true if δ ≤ min{ 1

50r
, 1
5
}. The

proof of the claim is complete.

To prove the proposition we need to show that for some c1, C1 > 0 if n ≥ C1k log p, r =
√

c1min{ log p
log log p

, k} and δ = 1
60r

then for the appropriately defined sets {Qr,1−δ(T )}T∈T it holds

lim
k→+∞

∑

T∈T
P

(

|Qr,1−δ(T ) ∩D 1
2
,r, 1

2
(T )| ≥ 1

)

= 0.

But by Markov inequality for all such T ∈ T ,

P

(

|Qr,1−δ(T ) ∩D 1
2
,r, 1

2
| ≥ 1

)

≤ E

[

|Qr,1−δ(T ) ∩D 1
2
,r, 1

2
|
]

.

Furthermore for all T ∈ T , 1 ≤ |T ∩ P2| ≤ k. By the Markov inequality and summing over the
possible values of |T ∩P2| for T ∈ T , it suffices to show that for some c1, C1 > 0 if n ≥ C1k log p

and r =
√

c1min{ log p
log log p

, k} then,

lim
k→+∞

k∑

m=1

∑

T∈T ,|T∩P2|=m

E

(

|Qr,1−δ(T ) ∩D 1
2
,r, 1

2
(T )|

)

= 0 (29)

Fix m ∈ [k] and a set T ∈ T with |T ∩ P2| = m. Then for any A = (a, b, c) ∈ Qr,1−δ(T ) ∩
D 1

2
,r, 1

2
(T ), since D 1

2
,r, 1

2
(T ) ⊆ Br, 1

2
(T ), we have |a|min ≥ 1

2
and ‖a‖22 + ‖b‖22 + ‖c‖22 ≤ r2. Based

on the definition of D 1
2
,r, 1

2
(T ), we also have |Support(a)| = |S1| = |S2| = |T ∩ P2| = m. Hence,

‖a‖22 ≥ |a|2minm ≥ 1
4
m and ‖c‖22 ≤ ‖a‖22+ ‖b‖22+ ‖c‖22 ≤ r2. By Lemma 4.13 we know that for any

triplet A = (a, b, c), P
(

A ∈ D 1
2
,r, 1

2
(T )

)

≤ exp
(

−c0nmin{1, ‖a‖22+‖b‖22
‖c‖22

}
)

. Hence using the above

inequalities we can conclude that for any such A = (a, b, c) ∈ Qr,1−δ(T ) it holds

P

(

A ∈ D 1
2
,r, 1

2
(T )

)

≤ 2 exp

(

−1

4
c0nmin{1, m

r2
}
)

(30)

Linearity of expectation, the above bound and the cardinality assumption on Qr,1−δ(T ) imply

E

[

|Qr,1−δ(T ) ∩D 1
2
,r, 1

2
(T )|

]

≤ 2|Qr,1−δ(T )| exp
(

−1

4
c0nmin{1, m

r2
}
)

(31)

≤ 2C2

(
12r

δ

)2k+1

exp

(

−1

4
c0nmin{1, m

r2
}
)

. (32)

We now count the number of possible T ∈ T with |T ∩ P2| = m. Recall that any T ⊆ [3p]
satisfies T ∈ T if and only if the triplet of sets T ∩ P1, T ∩ P2 − p, T ∩ P3 − 2p is a good triplet.
That is if and only if
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(1) T∩P1, T∩P2−p, T∩P3−2p are pairwise disjoint sets and |T∩P1| = |T∩P2−p| = |T∩P2| = m

(2) p ∈ T ∩ P3 − 2p

(3) (T ∩ P1) ∪ (T ∩ P3 − 2p) = [k] ∪ {p}
Since a set T ⊆ [3p] is completely characterized by the intersections with P1, P2, P3, it suffices
to count the number of triplets of sets T ∩ Pi, i = 1, 2, 3 satisfying the three above conditions.
Now conditions (1),(3) imply that T ∩ P3 is completely characterized by T ∩ P1. Furthermore
by checking conditions (1), (2), (3) we know that T ∩ P1 is an arbitrary subset of [k] of size m.
Hence we have

(
k

m

)
choices for both the sets T ∩ P1 and T ∩ P3. Finally for the set T ∩ P2 we

only have that it needs to satisfy |T ∩ P2| = m. Hence for T ∩ P2 we have
(
p

m

)
choices, giving in

total that the number of sets T ∈ T with |T ∩ P2| = m equals to
(
k

m

)(
p

m

)
. Hence,

∑

T∈T ,|T∩P2|=m

E

(

|Qr,1−δ(T ) ∩D 1
2
(T )|

)

≤ 2

(
k

m

)(
p

m

)

C2

(
12r

δ

)2k+1

exp

(

−1

4
c0nmin{1, m

r2
}
)

.

Summing over all m = 1, 2, . . . , k and using the bounds
(
k

m

)
≤ 2k,

(
p

m

)
≤ pm we conclude that

k∑

m=1

∑

T∈T ,|T∩P |=m

E

(

|Qr,1−δ(T ) ∩D 1
2
,r, 1

2
(T )|

)

is at most

2C3k2
k max
m=1,...,k

[

pm
(
12r

δ

)2k+1

exp

(

−1

4
c0nmin{1, m

r2
}
)]

.

Therefore it suffices to show that for some c1, C1 > 0 if n ≥ C1k log p, r =
√

c1min{ log p
log log p

, k}
and δ = 1

60r
then

lim
k→∞

k2k max
m=1,...,k

[

pm
(
12r

δ

)2k+1

exp

(

−1

4
c0nmin{1, m

r2
}
)]

= 0.

Since this is an increasing quantity in n and in 1
δ
we plug in n = 4

c0
C1k log p and δ = 1

60r
(since

r → +∞) and after taking logarithms it suffices to be proven that for C1 large enough but

constant and c1 > 0 small enough but constant, if r =
√

c1min{ log p
log log p

, k} then

max
m=1,...,k

[

m log p + (2k + 1) log
(
1000r2

)
− C1k log pmin{1, m

r2
}
]

+ k log 2 + log k → −∞.

We consider the two cases: when m ≤ r2 and when m ≥ r2. Suppose m ≥ r2, that is
min{1, m

r2
} = 1. We choose c1 small enough so that 1000r2 ≤ k ≤ p and therefore

max
k≥m≥r2

[

m log p+ (2k + 1) log
(
1000r2

)
− C1k log pmin{1, m

r2
}
]

+ k log 2 + log k

= max
k≥m≥r2

[
m log p+ (2k + 1) log

(
1000r2

)
− C1k log p

]
+ k log 2 + log k

≤ −(C1 − 4)k log p+ k log 2 + log k, since m log p+ (2k + 1) log
(
1000r2

)
≤ 4k log p,

≤ −(C1 − 5)k log p,
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which if C1 > 6 clearly diverges to −∞ as k → +∞.
Now suppose m ≤ r2, that is when min{1, m

r2
} = m

r2
. We have

max
1≤m≤r2

[

m log p+ (2k + 1) log
(
1000r2

)
− C1k log pmin{1, m

r2
}
]

+ k log 2 + log k

= max
1≤m≤r2

[

m log p+ (2k + 1) log
(
1000r2

)
− C1k log p

m

r2

]

+ k log 2 + log k.

We write

m log p+ (2k + 1) log
(
1000r2

)
− C1k log p

m

r2

= m log p− C1

2
k log p · m

r2
+ (2k + 1) log

(
1000r2

)
− C1

2
k log p · m

r2
.

But now for c1 < 1 we have r2 ≤ k and therefore

m log p− C1

2
k log p · 1

4

m

r2
≤ (1− C1

2
)m log p ≤ −2 log p (33)

for C1 ≥ 6. Now we will bound the second summand. Again assuming C1 > 6 and using that
m ≥ 1 we have

(2k + 1) log
(
1000r2

)
− C1

2
k log p · m

r2
≤ 3k

(

log
(
1000r2

)
− 1

4r2
log p

)

(34)

Now we claim that the right hand side of the above inequalty is at most −3k, given c1 small

enough, as k → +∞. It suffices to prove that if r ≤
√

c1
log p

log log p
for some c1 > 0 small enough

then log (1000r2)− 1
4r2

log p ≤ −1 or equivalently r2 log (1000r2) + r2 ≤ 1
4
log p. But notice that

the left hand side of the last inequality is increasing in r and it can be easily checked that if

r2 = 1
5

log p
log log p

then
r2 log(1000r2)+r2

log p
tends in the limit (as p grows to infinity) to 1

5
which is less than

1
4
. Therefore if c1 <

1
5
the inequality becomes true for large enough p for this value of r and my

monotonicity for all smaller values of r as well. Now combining (33) and (34) we conclude that
for small enough c1 > 0 and large enough C1 > 0 that

max
1≤m≤4r2

[

m log p+ (2k + 1) log
(
1000r2

)
− C1k log p

1

4

m

r2

]

+ k log 2 + log k

≤ −2 log p− 3k + k log 2 + log k

≤ −(3− 2 log 2)k + log k → −∞, as n, p, k → +∞

which completes the proof.
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