MIT Open Access Articles

Optimal bounds for ancient caloric functions

> The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Colding, Tobias Holck and Minicozzi II, William P. 2021. "Optimal bounds for ancient caloric functions." Duke Mathematical Journal, 170 (18).

As Published: 10.1215/00127094-2021-0015
Publisher: Duke University Press
Persistent URL: https://hdl.handle.net/1721.1/145624
Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

OPTIMAL BOUNDS FOR ANCIENT CALORIC FUNCTIONS

TOBIAS HOLCK COLDING AND WILLIAM P. MINICOZZI II

Abstract

For any manifold with polynomial volume growth, we show: The dimension of the space of ancient caloric functions with polynomial growth is bounded by the degree of growth times the dimension of harmonic functions with the same growth. As a consequence, we get a sharp bound for the dimension of ancient caloric functions on any space where Yau's 1974 conjecture about polynomial growth harmonic functions holds.

0. Introduction

Given a complete manifold M and a constant $d, \mathcal{H}_{d}(M)$ is the linear space of harmonic functions of polynomial growth at most d. Namely, $u \in \mathcal{H}_{d}(M)$ if $\Delta u=0$ and for some $p \in M$ and a constant C_{u} depending on u

$$
\begin{equation*}
\sup _{B_{R}(p)}|u| \leq C_{u}(1+R)^{d} \text { for all } R \tag{0.1}
\end{equation*}
$$

In 1974, S.T. Yau conjectured that $\mathcal{H}_{d}(M)$ is finite dimensional for each d when $\operatorname{Ric}_{M} \geq 0$. The conjecture was settled in CM2]; see [CM1]-CM5] for more results.] In fact, [CM2]CM4 proved finite dimensionality under much weaker assumptions of:
(1) A volume doubling bound.
(2) A scale-invariant Poincaré inequality or meanvalue inequality.

The natural parabolic generalization is a polynomial growth ancient solution of the heat equation. A solution of the heat equation is often called a caloric function. Ancient solutions are ones that are defined for all negative t - these are the solutions that arise in a blow up analysis. Given $d>0, u \in \mathcal{P}_{d}(M)$ if u is ancient, $\partial_{t} u=\Delta u$ and for some $p \in M$ and a constant C_{u}

$$
\begin{equation*}
\sup _{B_{R}(p) \times\left[-R^{2}, 0\right]}|u| \leq C_{u}(1+R)^{d} \text { for all } R . \tag{0.2}
\end{equation*}
$$

On $\mathbf{R}^{n}, \mathcal{P}_{d}$ is the classical space of caloric polynomials that generalize the Hermite polynomials; see [N], E1], E2]. More generally, the spaces $\mathcal{P}_{d}(M)$ play a fundamental role in geometric flows, see [CM6]-CM8]. They were studied by Calle in her 2006 thesis, [Ca1], [Ca2], in the context of mean curvature flow.

A manifold has polynomial volume growth if there are constants C and d_{V} so that $\operatorname{Vol}\left(B_{R}(p)\right) \leq C(1+R)^{d_{V}}$ for some $p \in M$, all $R>0.2$ Our main result is the following sharp inequality:

[^0]Theorem 0.3. If M has polynomial volume growth and k is a nonnegative integer, then

$$
\begin{equation*}
\operatorname{dim} \mathcal{P}_{2 k}(M) \leq \sum_{i=0}^{k} \operatorname{dim} \mathcal{H}_{2 i}(M) \tag{0.4}
\end{equation*}
$$

The inequality (0.4) is an equality on \mathbf{R}^{n} (see Corollary 2.18 below). Since $\mathcal{H}_{d_{1}} \subset \mathcal{H}_{d_{2}}$ for $d_{1} \leq d_{2}$, Theorem 0.3 implies:

Corollary 0.5. If M has polynomial volume growth, then for all $k \geq 1$

$$
\begin{equation*}
\operatorname{dim} \mathcal{P}_{2 k}(M) \leq(k+1) \operatorname{dim} \mathcal{H}_{2 k}(M) \tag{0.6}
\end{equation*}
$$

Combining this with the bound $\operatorname{dim} \mathcal{H}_{d}(M) \leq C d^{n-1}$ when $\operatorname{Ric}_{M^{n}} \geq 0$ from [CM3] gives:
Corollary 0.7. There exists $C=C(n)$ so that if $\operatorname{Ric}_{M^{n}} \geq 0$, then for $d \geq 1$

$$
\begin{equation*}
\operatorname{dim} \mathcal{P}_{d}(M) \leq C d^{n} \tag{0.8}
\end{equation*}
$$

The exponent n in (0.8) is sharp: There is a constant c depending on n so that for $d \geq 1$

$$
\begin{equation*}
c^{-1} d^{n} \leq \operatorname{dim} \mathcal{P}_{d}\left(\mathbf{R}^{n}\right) \leq c d^{n} \tag{0.9}
\end{equation*}
$$

Recently, Lin and Zhang, [Z], proved very interesting related results, adapting the methods of [CM2]-CM4] to get the bound d^{n+1}.

Using parabolic gradient estimates of Li-Yau, [LiY], and Souplet-Zhang, [SoZ], one can show that if $d<2$ and Ric ≥ 0, then $\mathcal{P}_{d}(M)=\mathcal{H}_{d}(M)$ consists only of harmonic functions of polynomial growth. In particular, $\mathcal{P}_{d}(M)=\{$ Constant functions $\}$ for $d<1$ and, moreover, $\operatorname{dim} \mathcal{P}_{1}(M) \leq n+1$, by Li and Tam, [LiTa, with equality if and only if $M=\mathbf{R}^{n}$ by [ChCM.

The exponent $n-1$ is also sharp in the bound for $\operatorname{dim} \mathcal{H}_{d}$ when $\operatorname{Ric}_{M^{n}} \geq 0$. However, as in Weyl's asymptotic formula, the coefficient of d^{n-1} can be related to the volume, [CM3:

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{d}(M) \leq C_{n} \mathrm{~V}_{M} d^{n-1}+o\left(d^{n-1}\right) \tag{0.10}
\end{equation*}
$$

- V_{M} is the "asymptotic volume ratio" $\lim _{r \rightarrow \infty} \operatorname{Vol}\left(B_{r}\right) / r^{n}$.
- $o\left(d^{n-1}\right)$ is a function of d with $\lim _{d \rightarrow \infty} o\left(d^{n-1}\right) / d^{n-1}=0$.

Combining (0.10) with Corollary 0.5 gives $\operatorname{dim} \mathcal{P}_{d}(M) \leq C_{n} \mathrm{~V}_{M} d^{n}+o\left(d^{n}\right)$ when $\operatorname{Ric}_{M^{n}} \geq 0$.
An interesting feature of these dimension estimates is that they follow from "rough" properties of M and are therefore surprisingly stable under perturbation. For instance, [CM4] proves finite dimensionality of \mathcal{H}_{d} for manifolds with a volume doubling and a Poincaré inequality, so we also get finite dimensionality for \mathcal{P}_{d} on these spaces. Unlike a Ricci curvature bound, these properties are stable under bi-Lipschitz transformations (cf. MS). Moreover, these properties make sense also for discrete spaces, vastly extending the theory and methods out of the continuous world. Recently Kleiner, [K], (see also Shalom-Tao, [ST], T1], [T2]) used, in part, this in his new proof of an important and foundational result in geometric group theory, originally due to Gromov, [G]. We expect that the proof of Theorem 0.3 extends to many discrete spaces, allowing a wide range of applications.

1. Ancient solutions of the heat equation

The next lemma gives a reverse Poincaré inequality for the heat equation (cf. M]).

Lemma 1.1. There is a universal constant c so that if $u_{t}=\Delta u$, then

$$
\begin{equation*}
r^{2} \int_{B_{\frac{r}{10} \times\left[-\frac{r^{2}}{100}, 0\right]}|\nabla u|^{2}+r^{4} \int_{B_{\frac{r}{10} \times\left[-\frac{r^{2}}{100}, 0\right]}} u_{t}^{2} \leq c \int_{B_{r} \times\left[-r^{2}, 0\right]} u^{2} . . . ~} . \tag{1.2}
\end{equation*}
$$

Proof. Let Q_{R} denote $B_{R} \times\left[-R^{2}, 0\right]$ and ψ be a cutoff function on M. Since $u_{t}=\Delta u$, integration by parts and the absorbing inequality $4 a b \leq a^{2}+4 b^{2}$ give

$$
\begin{align*}
\partial_{t} \int u^{2} \psi^{2} & =2 \int u \psi^{2} \Delta u=-2 \int|\nabla u|^{2} \psi^{2}-4 \int u \psi\langle\nabla \psi, \nabla u\rangle \\
& \leq-\int|\nabla u|^{2} \psi^{2}+4 \int u^{2}|\nabla \psi|^{2} . \tag{1.3}
\end{align*}
$$

Integrating this in time from $-R^{2}$ to 0 gives

$$
\begin{equation*}
\int_{t=0} u^{2} \psi^{2}-\int_{t=-R^{2}} u^{2} \psi^{2} \leq \int_{-R^{2}}^{0}\left(-\int|\nabla u|^{2} \psi^{2}+4 \int u^{2}|\nabla \psi|^{2}\right) d t \tag{1.4}
\end{equation*}
$$

In particular, we get

$$
\begin{equation*}
\int_{-R^{2}}^{0} \int|\nabla u|^{2} \psi^{2} d t \leq \int_{t=-R^{2}} u^{2} \psi^{2}+4 \int_{-R^{2}}^{0} \int u^{2}|\nabla \psi|^{2} d t \tag{1.5}
\end{equation*}
$$

Let $|\psi| \leq 1$ be one on $B_{R / 2}$, have support in B_{R}, and satisfy $|\nabla \psi| \leq 2 / R$, so we get

$$
\begin{equation*}
\int_{Q_{R / 2}}|\nabla u|^{2} \leq \int_{B_{R} \times\left\{t=-R^{2}\right\}} u^{2}+\frac{16}{R^{2}} \int_{Q_{R}} u^{2} . \tag{1.6}
\end{equation*}
$$

Next, we argue similarly to get a bound on u_{t}^{2}. Namely, differentiating, then integrating by parts and using that $u_{t}=\Delta u$ gives

$$
\begin{align*}
\partial_{t} \int|\nabla u|^{2} \psi^{2} & =2 \int\left\langle\nabla u, \nabla u_{t}\right\rangle \psi^{2}=-2 \int u_{t}^{2} \psi^{2}-4 \int u_{t} \psi\langle\nabla u, \nabla \psi\rangle \\
& \leq-\int u_{t}^{2} \psi^{2}+4 \int|\nabla u|^{2}|\nabla \psi|^{2} \tag{1.7}
\end{align*}
$$

Integrating (1.7) in time from $-R^{2}$ to 0 gives

$$
\begin{equation*}
\int_{t=0}|\nabla u|^{2} \psi^{2}-\int_{t=-R^{2}}|\nabla u|^{2} \psi^{2} \leq \int_{-R^{2}}^{0}\left(-\int u_{t}^{2} \psi^{2}+4 \int|\nabla u|^{2}|\nabla \psi|^{2}\right) d t \tag{1.8}
\end{equation*}
$$

Letting ψ be as above, we conclude that

$$
\begin{equation*}
\int_{Q_{R / 2}} u_{t}^{2} \leq \frac{16}{R^{2}} \int_{Q_{R}}|\nabla u|^{2}+\int_{B_{R} \times\left\{t=-R^{2}\right\}}|\nabla u|^{2} \tag{1.9}
\end{equation*}
$$

Next, choose some $r_{1} \in[4 r / 5, r]$ with

$$
\begin{equation*}
\int_{B_{r} \times\left\{t=-r_{1}^{2}\right\}} u^{2} \leq \frac{25}{9 r^{2}} \int_{-r^{2}}^{0}\left(\int_{B_{r}} u^{2}\right) d t=\frac{25}{9 r^{2}} \int_{Q_{r}} u^{2} \tag{1.10}
\end{equation*}
$$

Applying (1.6) with $R=r_{1}$ and using the bound (1.10) at r_{1} gives

$$
\begin{equation*}
\int_{Q_{\frac{2 r}{5}}}|\nabla u|^{2} \leq \int_{Q_{\frac{r_{1}}{2}}}|\nabla u|^{2} \leq \int_{B_{r_{1}} \times\left\{t=-r_{1}^{2}\right\}} u^{2}+\frac{16}{r_{1}^{2}} \int_{Q_{r_{1}}} u^{2} \leq \frac{20}{r_{1}^{2}} \int_{Q_{r}} u^{2} . \tag{1.11}
\end{equation*}
$$

For simplicity, c is a constant independent of everything that can change from line to line. It follows from (1.11) that there must exist some $\rho \in[r / 5,2 r / 5]$ so that

$$
\begin{equation*}
\int_{B_{\frac{2 r}{5}}^{5} \times\left\{t=-\rho^{2}\right\}}|\nabla u|^{2} \leq \frac{25}{3 r^{2}} \int_{-\frac{4 r^{2}}{25}}^{0}\left(\int_{B_{\frac{2 r}{5}}}|\nabla u|^{2}\right) d t=\frac{25}{3 r^{2}} \int_{Q_{\frac{2 r}{5}}}|\nabla u|^{2} \leq \frac{c}{r^{4}} \int_{Q_{r}} u^{2} . \tag{1.12}
\end{equation*}
$$

Now applying (1.9) with $R=\rho$ and using (1.11) and (1.12) gives

$$
\begin{equation*}
\int_{Q_{\rho / 2}} u_{t}^{2} \leq \frac{16}{\rho^{2}} \int_{Q_{\rho}}|\nabla u|^{2}+\int_{B_{\rho} \times\left\{t=-\rho^{2}\right\}}|\nabla u|^{2} \leq \frac{c}{r^{4}} \int_{Q_{r}} u^{2} . \tag{1.13}
\end{equation*}
$$

Corollary 1.14. If $\operatorname{Vol}\left(B_{R}\right) \leq C(1+R)^{d_{V}}$ and $u \in \mathcal{P}_{d}(M)$, then $\partial_{t}^{k} u \equiv 0$ for $4 k>2 d+d_{V}+2$.
Proof. Since the metric on M is constant in time, $\partial_{t}-\Delta$ commutes with ∂_{t} and, thus, $\left(\partial_{t}-\Delta\right) \partial_{t}^{j} u=0$ for every j. Let Q_{R} denote $B_{R} \times\left[-R^{2}, 0\right]$. Applying Lemma 1.1 to u on Q_{r} for some r, then to u_{t} on $Q_{\frac{r}{10}}$, etc., we get a constant c_{k} depending just on k so that

$$
\begin{equation*}
\int_{Q_{\frac{r}{1}}^{10^{k}}}\left|\partial_{t}^{k} u\right|^{2} \leq \frac{c_{k}}{r^{4 k}} \int_{Q_{r}} u^{2} \leq \frac{c_{k}}{r^{4 k}} r^{2} \operatorname{Vol}\left(B_{r}\right) \sup _{Q_{r}} u^{2} \leq C c_{k} r^{2-4 k}(1+r)^{2 d+d_{V}} \tag{1.15}
\end{equation*}
$$

Since $4 k>2 d+d_{V}+2$, the right-hand side goes to zero as $r \rightarrow \infty$, giving the corollary.
We will prove Corollary 0.5 next, though it will eventually be a corollary of Theorem 0.3 .
Proof of Corollary 0.5. Choose an integer m with $4 m>2 k+d_{V}+2$. Corollary 1.14 gives that $\partial_{t}^{m} u=0$ for any $u \in \mathcal{P}_{2 k}(M)$. Thus, any $u \in \mathcal{P}_{2 k}(M)$ can be written as

$$
\begin{equation*}
u=p_{0}+t p_{1}+\cdots+t^{m-1} p_{m-1} \tag{1.16}
\end{equation*}
$$

where each p_{j} is a function on M. Moreover, using the growth bound $u \in \mathcal{P}_{2 k}(M)$ for t large and x fixed, we see that $p_{j} \equiv 0$ for any $j>k$. (See theorem 1.2 in [LZ] for a similar decomposition under more restrictive hypotheses and [KoT] for a splitting result for ancient positive solutions on homogeneous spaces.)

We will show next that the functions p_{j} grow at most polynomially of degree d. Fix distinct values $-1<t_{1}<t_{2}<\cdots<t_{k}<t_{k+1}=0$. We claim that the $k+1$-vectors

$$
\begin{equation*}
\left(1, t_{i}, t_{i}^{2}, \ldots, t_{i}^{k}\right) \tag{1.17}
\end{equation*}
$$

are linearly independent in \mathbf{R}^{k+1} for $i=1, \ldots, k+1$. If this was not the case, then there would be some (non-trivial) $\left(a_{0}, \ldots, a_{k}\right) \in \mathbf{R}^{k+1}$ that is orthogonal to all of them. But this means that there would be $k+1$ distinct roots to the degree k polynomial

$$
\begin{equation*}
a_{0}+a_{1} t+\cdots+a_{k} t^{k} \tag{1.18}
\end{equation*}
$$

which is impossible, and the claim follows. Let $e_{j} \in \mathbf{R}^{k+1}$ be the standard unit vectors. Since the $\left(1, t_{i}, t_{i}^{2}, \ldots, t_{i}^{k}\right.$)'s span \mathbf{R}^{k+1}, we can choose coefficients b_{i}^{j} so that for each j

$$
\begin{equation*}
e_{j}=\sum_{i} b_{i}^{j}\left(1, t_{i}, t_{i}^{2}, \ldots, t_{i}^{k}\right) \tag{1.19}
\end{equation*}
$$

It follows from (1.16) and (1.19) that

$$
\begin{equation*}
p_{j}(x)=\sum_{i} b_{i}^{j} u\left(x, t_{i}\right) . \tag{1.20}
\end{equation*}
$$

Since $u \in \mathcal{P}_{2 k}(M)$, (1.28) implies that each p_{j} is a linear combination of functions that grow polynomially of degree at most $2 k$ and, thus, p_{j} grows polynomially of degree at most $2 k$.

Since u satisfies the heat equation, it follows that $\Delta p_{k}=0$ and

$$
\begin{equation*}
\Delta p_{j}=(j+1) p_{j+1} \tag{1.21}
\end{equation*}
$$

Thus, we get a linear map $\Psi_{0}: \mathcal{P}_{2 k}(M) \rightarrow \mathcal{H}_{2 k}(M)$ given by $\Psi_{0}(u)=p_{k}$. Let $\mathcal{K}_{0}=\operatorname{Ker}\left(\Psi_{0}\right)$. It follows from this that

$$
\begin{equation*}
\operatorname{dim} \mathcal{P}_{2 k}(M) \leq \operatorname{dim} \mathcal{K}_{0}+\operatorname{dim} \mathcal{H}_{2 k}(M) \tag{1.22}
\end{equation*}
$$

If $u \in \mathcal{K}_{0}$, then $p_{k}=0$ and $\Delta p_{k-1}=0$, so we get a linear map $\Psi_{1}: \mathcal{K}_{0} \rightarrow \mathcal{H}_{2 k}(M)$ given by $\Psi_{1}(u)=p_{k-1}$. Let \mathcal{K}_{1} be the kernel of Ψ_{1} on \mathcal{K}_{0}. It follows as above that

$$
\begin{equation*}
\operatorname{dim} \mathcal{K}_{0} \leq \operatorname{dim} \mathcal{K}_{1}+\operatorname{dim} \mathcal{H}_{2 k}(M) \tag{1.23}
\end{equation*}
$$

Repeating this $k+1$ times gives the theorem.
Lemma 1.24. If $u \in \mathcal{P}_{2 k}(M)$ can be written as $u=p_{0}(x)+t p_{1}(x)+\cdots+t^{k} p_{k}(x)$, then

$$
\begin{equation*}
\left|p_{j}(x)\right| \leq C_{j}\left(1+|x|^{2(k-j)}\right) \tag{1.25}
\end{equation*}
$$

Proof. By assumption, there is a constant C so that

$$
\begin{equation*}
|u(x, t)| \leq C\left(1+|t|^{k}+|x|^{2 k}\right) \tag{1.26}
\end{equation*}
$$

Following the proof of Corollary 0.5, fix $-1<t_{1}<t_{2}<\cdots<t_{k}<t_{k+1}=-\frac{1}{2}$ and coefficients b_{i}^{j} so that (1.19) holds for each j. Observe that (1.19) gives for each j

$$
\begin{equation*}
\sum_{i} b_{i}^{j} u\left(x, R^{2} t_{i}\right)=\sum_{i} \sum_{\ell} b_{i}^{j} p_{\ell}(x) R^{2 j} t_{i}^{\ell}=\sum_{\ell} \sum_{i} b_{i}^{j} p_{\ell}(x) R^{2 j} t_{i}^{\ell}=R^{2 j} p_{j}(x) \tag{1.27}
\end{equation*}
$$

Thus, given $R>2$ and $x \in B_{R}$, we get that

$$
\begin{align*}
\left|R^{2 j} p_{j}(x)\right| & =\left|\sum_{i} b_{i}^{j} u\left(x, R^{2} t_{i}\right)\right| \leq \max _{i, j}\left|b_{i}^{j}\right| \sum_{i}\left|u\left(x, R^{2} t_{i}\right)\right| \\
& \leq \tilde{C}\left(1+|x|^{2 k}+\max _{i}\left|R^{2} t_{i}\right|^{k}\right) \leq 3 \tilde{C} R^{2 k} \tag{1.28}
\end{align*}
$$

From this, we conclude that $\sup _{B_{R}}\left|p_{j}\right| \leq 3 \tilde{C} R^{2 k-2 j}$.
Proof. (of Theorem 0.3). Following the proof Corollary 0.5, each $u \in \mathcal{P}_{2 k}(M)$, can be expanded as $u=p_{0}(x)+t p_{1}(x)+\cdots+t^{k} p_{k}(x)$. By Lemma 1.24, the linear map Ψ_{0} : $\mathcal{P}_{2 k}(M) \rightarrow \mathcal{H}_{2 k}(M)$ given by $\Psi_{0}(u)=p_{k}$ actually maps into $\mathcal{H}_{0}(M)$ and, thus,

$$
\begin{equation*}
\operatorname{dim} \mathcal{P}_{2 k}(M) \leq \operatorname{dim} \mathcal{H}_{0}(M)+\operatorname{dim} \operatorname{Ker}\left(\Psi_{0}\right) \tag{1.29}
\end{equation*}
$$

Similary, Lemma 1.24 implies that the map Ψ_{1} maps the kernel of Ψ_{0} to $\mathcal{H}_{2}(M)$. Applying this repeatedly gives the theorem.

2. Caloric polynomials

It is a classical fact that $\mathcal{P}_{d}\left(\mathbf{R}^{n}\right)$ consists of caloric polynomials, i.e., polynomials in x, t that satisfy the heat equation ([E1], [E2], [N]). We compute the dimensions of these spaces.

Given a polynomial in x and t, define its parabolic degree by considering t to have degree two. Thus, $x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{0}}$ has parabolic degree $m_{1}+m_{2}+2 m_{0}$. A polynomial in x, t is homogeneous if each monomial has the same parabolic degree. Let A_{p}^{n} denote the homogeneous degree p polynomials on \mathbf{R}^{n}. The parabolic homogeneous degree p polynomials \mathcal{A}_{p}^{n} are

$$
\begin{equation*}
\mathcal{A}_{p}^{n}=A_{p}^{n} \oplus t A_{p-2}^{n} \oplus t^{2} A_{p-4}^{n} \oplus \ldots \tag{2.1}
\end{equation*}
$$

Lemma 2.2. For each positive integer p, we have $\operatorname{dim}\left(\mathcal{P}_{p}\left(\mathbf{R}^{n}\right) \cap \mathcal{A}_{p}^{n}\right)=\operatorname{dim} A_{p}^{n}$ and

$$
\begin{equation*}
\operatorname{dim} \mathcal{P}_{p}\left(\mathbf{R}^{n}\right)=\sum_{j=0}^{p} \operatorname{dim} A_{j}^{n} \tag{2.3}
\end{equation*}
$$

Proof. Observe that ∂_{t} and $\Delta \operatorname{map} \mathcal{A}_{p}^{n}$ to \mathcal{A}_{p-2}^{n}. Moreover, given any $u \in \mathcal{A}_{p-2}^{n}$, we have

$$
\begin{equation*}
\left(\partial_{t}-\Delta\right)\left[t u-\frac{1}{2} t^{2}\left(\partial_{t}-\Delta\right) u+\frac{1}{6} t^{3}\left(\partial_{t}-\Delta\right)^{2} u-\ldots\right]=u \tag{2.4}
\end{equation*}
$$

Therefore, the map $\left(\partial_{t}-\Delta\right): \mathcal{A}_{p}^{n} \rightarrow \mathcal{A}_{p-2}^{n}$ is onto. Since the kernel of this map is $\mathcal{P}_{p}\left(\mathbf{R}^{n}\right) \cap \mathcal{A}_{p}^{n}$, we conclude that

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{P}_{p}\left(\mathbf{R}^{n}\right) \cap \mathcal{A}_{p}^{n}\right)=\operatorname{dim} \mathcal{A}_{p}^{n}-\operatorname{dim} \mathcal{A}_{p-2}^{n}=\operatorname{dim} A_{p}^{n} \tag{2.5}
\end{equation*}
$$

This gives both claims.
Lemma 2.6. If $p \geq n$, then

$$
\begin{equation*}
\frac{1}{(n-1)!} p^{n-1} \leq \operatorname{dim} A_{p}^{n} \leq \frac{2^{n-1}}{(n-1)!} p^{n-1} \tag{2.7}
\end{equation*}
$$

Proof. To get the upper bound, we use that $p \geq n$ to get

$$
\begin{equation*}
\operatorname{dim} A_{p}^{n}=\frac{(p+n-1)!}{p!(n-1)!} \leq \frac{(p+n-1)^{n-1}}{(n-1)!} \leq \frac{(2 p)^{n-1}}{(n-1)!}=\frac{2^{n-1}}{(n-1)!} p^{n-1} \tag{2.8}
\end{equation*}
$$

The lower bound follows similarly since $\frac{(p+n-1)!}{p!(n-1)!} \geq \frac{p^{n-1}}{(n-1)!}$.
The dimension bounds for $\mathcal{P}_{d}\left(\mathbf{R}^{n}\right)$ in (0.9) follow by combining Lemmas 2.2 and 2.6.
2.1. Harmonic polynomials. For each j, the Laplacian gives a linear map $\Delta: A_{j}^{n} \rightarrow A_{j-2}^{n}$. The kernel $H_{j}^{n} \subset A_{j}^{n}$ of this map is the linear space of homogeneous harmonic polynomials of degree j on \mathbf{R}^{n}. The next lemma shows that this map is onto:
Lemma 2.9. For each d, the map $\Delta: A_{d+2}^{n} \rightarrow A_{d}^{n}$ is onto.
Proof. Take an arbitrary $u \in A_{d}^{n}$. For each nonnegative $\ell \leq d / 2$, define u_{ℓ} and v_{ℓ} by

$$
\begin{align*}
u_{\ell} & =|x|^{2 \ell} \Delta^{\ell} u \tag{2.10}\\
v_{\ell} & =|x|^{2} u_{\ell}=|x|^{2 \ell+2} \Delta^{\ell} u \tag{2.11}
\end{align*}
$$

Note that $u_{0}=u$. We will use repeatedly that if $v \in A_{k}^{n}$, then homogeneity gives

$$
\begin{equation*}
\langle x, \nabla v\rangle=k v . \tag{2.12}
\end{equation*}
$$

Using this and $\Delta|x|^{2}=2 n$, we get for each ℓ that

$$
\begin{align*}
\Delta v_{\ell} & \left.=(\ell+1)(2 n+4 \ell)|x|^{2 \ell} \Delta^{\ell} u+\left.2\langle\nabla| x\right|^{2(\ell+1)}, \nabla \Delta^{\ell} u\right\rangle+|x|^{2(\ell+1)} \Delta^{\ell+1} u \\
& =(\ell+1)(2 n+4 \ell)|x|^{2 \ell} \Delta^{\ell} u+4(\ell+1)(d-2 \ell)|x|^{2 \ell} \Delta^{\ell} u+|x|^{2(\ell+1)} \Delta^{\ell+1} u \tag{2.13}\\
& =(\ell+1)(2 n+4 d-4 \ell) u_{\ell}+u_{\ell+1}
\end{align*}
$$

Thus, if we define positive constants $c_{\ell}=(\ell+1)(2 n+4 d-4 \ell)$, then we have that

$$
\begin{equation*}
\Delta v_{\ell}=c_{\ell} u_{\ell}+u_{\ell+1} \tag{2.14}
\end{equation*}
$$

Let k be the greatest integer less than or equal to $\frac{d}{2}$. Note that $u_{k+1}=v_{k+1} \equiv 0$. It follows from this and (2.14) that

$$
\begin{equation*}
\Delta\left(v_{k}-c_{k} v_{k-1}+c_{k} c_{k-1} v_{k-2}-c_{k} c_{k-1} c_{k-2} v_{k-3}+\ldots\right) \tag{2.15}
\end{equation*}
$$

is a nonzero multiple of $u_{0}=u$, giving the lemma.
Corollary 2.16. For each positive integer k, we have $\operatorname{dim} H_{k}^{n}=\operatorname{dim} A_{k}^{n}-\operatorname{dim} A_{k-2}^{n}$ and

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{k}\left(\mathbf{R}^{n}\right)=\operatorname{dim} A_{k}^{n}+\operatorname{dim} A_{k-1}^{n} \tag{2.17}
\end{equation*}
$$

Proof. Note that $\Delta: A_{j}^{n} \rightarrow A_{j-2}^{n}$ gives a linear map with kernel equal to H_{j}^{n}. The map is onto by Lemma 2.9, giving the first claim. Summing the first claim gives (2.17).

Corollary 2.18. For each k, (0.4) is an equality on \mathbf{R}^{n}.
Proof. Corollary 2.16 and Lemma 2.2 give

$$
\begin{equation*}
\sum_{j=0}^{k} \operatorname{dim} \mathcal{H}_{2 j}\left(\mathbf{R}^{n}\right)=\sum_{j=0}^{k}\left(\operatorname{dim} A_{2 j}^{n}+\operatorname{dim} A_{2 j-1}^{n}\right)=\sum_{i=0}^{2 k} \operatorname{dim} A_{i}^{n}=\operatorname{dim} \mathcal{P}_{2 k}\left(\mathbf{R}^{n}\right) \tag{2.19}
\end{equation*}
$$

References

[Ca1] M. Calle, Bounding dimension of ambient space by density for mean curvature flow. Math. Z. 252 (2006), no. 3, 655-668.
[Ca2] M. Calle, Mean curvature flow and minimal surfaces. Thesis (Ph.D.)-New York University. 2007.
[ChCM] J. Cheeger, T.H. Colding, and W.P. Minicozzi II, Linear growth harmonic functions on complete manifolds with nonnegative Ricci curvature, Geom. Funct. Anal. 5 (1995), no. 6, 948-954.
[CgYa] S.Y. Cheng and S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333-354.
[CM1] T.H. Colding and W.P. Minicozzi II, Harmonic functions with polynomial growth, J. Diff. Geom., v. 46, no. 1 (1997) 1-77.
[CM2] T.H. Colding and W.P. Minicozzi II, Harmonic functions on manifolds, Ann. of Math. (2), 146, no. 3 (1997) 725-747.
[CM3] T.H. Colding and W.P. Minicozzi II, Weyl type bounds for harmonic functions, Inventiones Math., 131 (1998) 257-298.
[CM4] T.H. Colding and W.P. Minicozzi II, Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math., 52 (1998) 113-138.
[CM5] T.H. Colding and W.P. Minicozzi II, Minimal surfaces, Courant Lecture Notes in Mathematics, 4. New York University, Courant Institute of Mathematical Sciences, New York, 1999.
[CM6] T.H. Colding and W.P. Minicozzi II, Complexity of parabolic systems, Publ. Math. Inst. Hautes Études Sci. 132 (2020), 83-135.
[CM7] T.H. Colding and W.P. Minicozzi II, Liouville properties, ICCM Not. 7 (2019), no. 1, 16-26.
[CM8] T.H. Colding and W.P. Minicozzi II, In search of stable geometric structures, Notices of the AMS, December (2019), 1785-1791.
[DF] H. Donnelly and C. Fefferman, Nodal domains and growth of harmonic functions on noncompact manifolds, J. Geom. Anal. 2 (1992) 79-93.
[E1] S.D. Eidelman, Estimates of solutions of parabolic systems and some of their applications. Math. Sbornik 33, 359-382 (1953).
[E2] S.D. Eidelman, Liouville-type theorems for parabolic and elliptic systems. Doklady AN SSSR 99, 681-684 (1954).
[G] M. Gromov, Groups of polynomial growth and expanding maps. IHES Publ. Math. No. 53 (1981), 53-73.
[Ka] A. Kasue, Harmonic functions of polynomial growth on complete manifolds. Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), 281-290, Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993.
[Kz] J. Kazdan, Parabolicity and the Liouville property on complete Riemannian manifolds, Aspects of Math. Vieweg: Braunschweig (1987), 153-166.
[K] B. Kleiner, A new proof of Gromov's theorem on groups of polynomial growth. J. Amer. Math. Soc. 23 (2010), no. 3, 815-829.
[KoT] A. Korányi and J. C. Taylor, Minimal solutions of the heat equation and uniqueness of the positive Cauchy problem on homogeneous spaces, Proc. Amer. Math. Soc. 94 (1985), no. 2, 273-278.
[Li1] P. Li, The theory of harmonic functions and its relation to geometry, Proceedings of Symposia in Pure Mathematics Vol 54, Part 1, Ed. R. Greene and S.T. Yau.
[Li2] P. Li, Linear growth harmonic functions on Kähler manifolds with non-negative Ricci curvature, Math. Res. Lett. 2 (1995) 79-94.
[LiTa] P. Li and L.F. Tam, Linear growth harmonic functions on a complete manifold, J. Diff. Geom. 29 (1989) 421-425.
[LiY] P. Li and S.T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986), no. 3-4, 153-201.
[LZ] F.H. Lin and Q.S. Zhang, On ancient solutions of the heat equation, CPAM, (2019) Vol. LXXII, 20062028.
[M] J. Moser, A Harnack inequality for parabolic differential equations. CPAM 17 (1964), 101-134.
[MS] J. Moser and M. Struwe, On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus, Bol. Soc. Bra. Mat. 23 (1992) 1-20.
[N] M. Nicolescu, Sur le équation de la Chaleur. Commen. Math. Helvetici 10 (1937), 3-17.
[Sc] R. Schoen, The effect of curvature on the behavior of harmonic functions and mappings. Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), 127-184, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI, 1996.
[ST] Y. Shalom and T. Tao, A finitary version of Gromov's polynomial growth theorem. Geom. Funct. Anal. 20 (2010), no. 6, 1502-1547.
[SoZ] P. Souplet and Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006), no. 6, 1045-1053.
[T1] T. Tao, Kleiner's proof of Gromov's theorem, terrytao.wordpress.com/2008/02/14/kleiners-proof-of-gromovs-theorem/
[T2] T. Tao, A proof of Gromov's theorem, terrytao.wordpress.com/2010/02/18/a-proof-of-gromovstheorem/
[Ya1] S.T. Yau, Harmonic functions on complete Riemannian manifolds, CPAM 28 (1975) 201-228.
[Ya2] S.T. Yau, Nonlinear analysis in geometry, L'Eseignement Mathematique (2) 33 (1987) 109-158.
[Ya3] S.T. Yau, Open problems in geometry, Proc. Sympos. Pure Math., 54, Part 1, AMS, 1993.
Mit, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307.
Email address: colding@math.mit.edu and minicozz@math.mit.edu

[^0]: The authors were partially supported by NSF Grants DMS 1812142 and DMS 1707270.
 ${ }^{1}$ For Yau's 1974 conjecture see: page 117 in Ya2, problem 48 in Ya3, Conjecture 2.5 in Sc , Ka , Kz , DF, Conjecture 1 in Li1, and problem (1) in LiTa, amongst others.
 ${ }^{2} \mathrm{~A}$ volume doubling space with doubling constant C_{D} has polynomial volume growth of degree $\log _{2} C_{D}$.

