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OPTIMAL BOUNDS FOR ANCIENT CALORIC FUNCTIONS

TOBIAS HOLCK COLDING AND WILLIAM P. MINICOZZI II

Abstract. For any manifold with polynomial volume growth, we show: The dimension of
the space of ancient caloric functions with polynomial growth is bounded by the degree of
growth times the dimension of harmonic functions with the same growth. As a consequence,
we get a sharp bound for the dimension of ancient caloric functions on any space where Yau’s
1974 conjecture about polynomial growth harmonic functions holds.

0. Introduction

Given a complete manifold M and a constant d, Hd(M) is the linear space of harmonic
functions of polynomial growth at most d. Namely, u ∈ Hd(M) if ∆u = 0 and for some
p ∈M and a constant Cu depending on u

sup
BR(p)

|u| ≤ Cu (1 +R)d for all R .(0.1)

In 1974, S.T. Yau conjectured that Hd(M) is finite dimensional for each d when RicM ≥ 0.
The conjecture was settled in [CM2]; see [CM1]–[CM5] for more results.1 In fact, [CM2]–
[CM4] proved finite dimensionality under much weaker assumptions of:

(1) A volume doubling bound.
(2) A scale-invariant Poincaré inequality or meanvalue inequality.

The natural parabolic generalization is a polynomial growth ancient solution of the heat
equation. A solution of the heat equation is often called a caloric function. Ancient solutions
are ones that are defined for all negative t - these are the solutions that arise in a blow up
analysis. Given d > 0, u ∈ Pd(M) if u is ancient, ∂tu = ∆ u and for some p ∈ M and a
constant Cu

sup
BR(p)×[−R2,0]

|u| ≤ Cu (1 +R)d for all R .(0.2)

On Rn, Pd is the classical space of caloric polynomials that generalize the Hermite poly-
nomials; see [N], [E1], [E2]. More generally, the spaces Pd(M) play a fundamental role in
geometric flows, see [CM6]–[CM8]. They were studied by Calle in her 2006 thesis, [Ca1],
[Ca2], in the context of mean curvature flow.

A manifold has polynomial volume growth if there are constants C and dV so that
Vol(BR(p)) ≤ C (1 + R)dV for some p ∈ M , all R > 0.2 Our main result is the follow-
ing sharp inequality:

The authors were partially supported by NSF Grants DMS 1812142 and DMS 1707270.
1For Yau’s 1974 conjecture see: page 117 in [Ya2], problem 48 in [Ya3], Conjecture 2.5 in [Sc], [Ka], [Kz],

[DF], Conjecture 1 in [Li1], and problem (1) in [LiTa], amongst others.
2A volume doubling space with doubling constant CD has polynomial volume growth of degree log

2
CD.
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Theorem 0.3. If M has polynomial volume growth and k is a nonnegative integer, then

dimP2k(M) ≤

k
∑

i=0

dimH2i(M) .(0.4)

The inequality (0.4) is an equality on Rn (see Corollary 2.18 below). Since Hd1 ⊂ Hd2 for
d1 ≤ d2, Theorem 0.3 implies:

Corollary 0.5. If M has polynomial volume growth, then for all k ≥ 1

dimP2k(M) ≤ (k + 1) dimH2k(M) .(0.6)

Combining this with the bound dimHd(M) ≤ C dn−1 when RicMn ≥ 0 from [CM3] gives:

Corollary 0.7. There exists C = C(n) so that if RicMn ≥ 0, then for d ≥ 1

dim Pd(M) ≤ C dn .(0.8)

The exponent n in (0.8) is sharp: There is a constant c depending on n so that for d ≥ 1

c−1 dn ≤ dimPd(R
n) ≤ c dn .(0.9)

Recently, Lin and Zhang, [LZ], proved very interesting related results, adapting the methods
of [CM2]–[CM4] to get the bound dn+1.

Using parabolic gradient estimates of Li-Yau, [LiY], and Souplet-Zhang, [SoZ], one can
show that if d < 2 and Ric ≥ 0, then Pd(M) = Hd(M) consists only of harmonic functions of
polynomial growth. In particular, Pd(M) = {Constant functions} for d < 1 and, moreover,
dimP1(M) ≤ n+1, by Li and Tam, [LiTa], with equality if and only ifM = Rn by [ChCM].

The exponent n− 1 is also sharp in the bound for dimHd when RicMn ≥ 0. However, as
in Weyl’s asymptotic formula, the coefficient of dn−1 can be related to the volume, [CM3]:

(0.10) dimHd(M) ≤ CnVM dn−1 + o(dn−1) .

• VM is the “asymptotic volume ratio” limr→∞ Vol(Br)/r
n.

• o(dn−1) is a function of d with limd→∞ o(dn−1)/dn−1 = 0.

Combining (0.10) with Corollary 0.5 gives dim Pd(M) ≤ CnVM dn+ o(dn) when RicMn ≥ 0.
An interesting feature of these dimension estimates is that they follow from “rough” prop-

erties of M and are therefore surprisingly stable under perturbation. For instance, [CM4]
proves finite dimensionality of Hd for manifolds with a volume doubling and a Poincaré in-
equality, so we also get finite dimensionality for Pd on these spaces. Unlike a Ricci curvature
bound, these properties are stable under bi–Lipschitz transformations (cf. [MS]). Moreover,
these properties make sense also for discrete spaces, vastly extending the theory and methods
out of the continuous world. Recently Kleiner, [K], (see also Shalom-Tao, [ST], [T1], [T2])
used, in part, this in his new proof of an important and foundational result in geometric
group theory, originally due to Gromov, [G]. We expect that the proof of Theorem 0.3
extends to many discrete spaces, allowing a wide range of applications.

1. Ancient solutions of the heat equation

The next lemma gives a reverse Poincaré inequality for the heat equation (cf. [M]).
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Lemma 1.1. There is a universal constant c so that if ut = ∆ u, then

r2
∫

B r
10

×[− r2

100
,0]

|∇u|2 + r4
∫

B r
10

×[− r2

100
,0]

u2t ≤ c

∫

Br×[−r2,0]

u2 .(1.2)

Proof. Let QR denote BR × [−R2, 0] and ψ be a cutoff function on M . Since ut = ∆ u,
integration by parts and the absorbing inequality 4ab ≤ a2 + 4b2 give

∂t

∫

u2 ψ2 = 2

∫

uψ2∆u = −2

∫

|∇u|2ψ2 − 4

∫

uψ 〈∇ψ,∇u〉

≤ −

∫

|∇u|2 ψ2 + 4

∫

u2 |∇ψ|2 .(1.3)

Integrating this in time from −R2 to 0 gives
∫

t=0

u2 ψ2 −

∫

t=−R2

u2 ψ2 ≤

∫ 0

−R2

(

−

∫

|∇u|2 ψ2 + 4

∫

u2 |∇ψ|2
)

dt .(1.4)

In particular, we get
∫ 0

−R2

∫

|∇u|2 ψ2 dt ≤

∫

t=−R2

u2 ψ2 + 4

∫ 0

−R2

∫

u2 |∇ψ|2 dt .(1.5)

Let |ψ| ≤ 1 be one on BR/2, have support in BR, and satisfy |∇ψ| ≤ 2/R, so we get
∫

QR/2

|∇u|2 ≤

∫

BR×{t=−R2}

u2 +
16

R2

∫

QR

u2 .(1.6)

Next, we argue similarly to get a bound on u2t . Namely, differentiating, then integrating by
parts and using that ut = ∆ u gives

∂t

∫

|∇u|2 ψ2 = 2

∫

〈∇u,∇ut〉ψ
2 = −2

∫

u2t ψ
2 − 4

∫

ut ψ 〈∇u,∇ψ〉

≤ −

∫

u2t ψ
2 + 4

∫

|∇u|2 |∇ψ|2 .(1.7)

Integrating (1.7) in time from −R2 to 0 gives
∫

t=0

|∇u|2 ψ2 −

∫

t=−R2

|∇u|2 ψ2 ≤

∫ 0

−R2

(

−

∫

u2t ψ
2 + 4

∫

|∇u|2 |∇ψ|2
)

dt .(1.8)

Letting ψ be as above, we conclude that
∫

QR/2

u2t ≤
16

R2

∫

QR

|∇u|2 +

∫

BR×{t=−R2}

|∇u|2 .(1.9)

Next, choose some r1 ∈ [4r/5, r] with
∫

Br×{t=−r2
1
}

u2 ≤
25

9 r2

∫ 0

−r2

(
∫

Br

u2
)

dt =
25

9 r2

∫

Qr

u2 .(1.10)

Applying (1.6) with R = r1 and using the bound (1.10) at r1 gives
∫

Q 2 r
5

|∇u|2 ≤

∫

Q r1
2

|∇u|2 ≤

∫

Br1×{t=−r2
1
}

u2 +
16

r21

∫

Qr1

u2 ≤
20

r21

∫

Qr

u2 .(1.11)
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For simplicity, c is a constant independent of everything that can change from line to line.
It follows from (1.11) that there must exist some ρ ∈ [r/5, 2r/5] so that

∫

B 2 r
5

×{t=−ρ2}

|∇u|2 ≤
25

3r2

∫ 0

− 4 r2

25





∫

B 2 r
5

|∇u|2



 dt =
25

3r2

∫

Q 2 r
5

|∇u|2 ≤
c

r4

∫

Qr

u2 .(1.12)

Now applying (1.9) with R = ρ and using (1.11) and (1.12) gives
∫

Qρ/2

u2t ≤
16

ρ2

∫

Qρ

|∇u|2 +

∫

Bρ×{t=−ρ2}

|∇u|2 ≤
c

r4

∫

Qr

u2 .(1.13)

�

Corollary 1.14. If Vol(BR) ≤ C (1+R)dV and u ∈ Pd(M), then ∂kt u ≡ 0 for 4k > 2d+dV+2.

Proof. Since the metric on M is constant in time, ∂t − ∆ commutes with ∂t and, thus,
(∂t −∆)∂jt u = 0 for every j. Let QR denote BR × [−R2, 0]. Applying Lemma 1.1 to u on Qr

for some r, then to ut on Q r
10
, etc., we get a constant ck depending just on k so that

∫

Q r
10k

∣

∣∂kt u
∣

∣

2
≤

ck
r4k

∫

Qr

u2 ≤
ck
r4k

r2Vol(Br) sup
Qr

u2 ≤ C ck r
2−4k (1 + r)2d+dV .(1.15)

Since 4k > 2d+ dV + 2, the right-hand side goes to zero as r → ∞, giving the corollary. �

We will prove Corollary 0.5 next, though it will eventually be a corollary of Theorem 0.3.

Proof of Corollary 0.5. Choose an integer m with 4m > 2k + dV + 2. Corollary 1.14 gives
that ∂mt u = 0 for any u ∈ P2k(M). Thus, any u ∈ P2k(M) can be written as

u = p0 + t p1 + · · ·+ tm−1 pm−1 ,(1.16)

where each pj is a function on M . Moreover, using the growth bound u ∈ P2k(M) for t
large and x fixed, we see that pj ≡ 0 for any j > k. (See theorem 1.2 in [LZ] for a similar
decomposition under more restrictive hypotheses and [KoT] for a splitting result for ancient
positive solutions on homogeneous spaces.)

We will show next that the functions pj grow at most polynomially of degree d. Fix
distinct values −1 < t1 < t2 < · · · < tk < tk+1 = 0. We claim that the k + 1-vectors

(1, ti, t
2
i , . . . , t

k
i )(1.17)

are linearly independent in Rk+1 for i = 1, . . . , k + 1. If this was not the case, then there
would be some (non-trivial) (a0, . . . , ak) ∈ Rk+1 that is orthogonal to all of them. But this
means that there would be k + 1 distinct roots to the degree k polynomial

a0 + a1t+ · · ·+ akt
k ,(1.18)

which is impossible, and the claim follows. Let ej ∈ Rk+1 be the standard unit vectors.

Since the (1, ti, t
2
i , . . . , t

k
i )’s span Rk+1, we can choose coefficients bji so that for each j

ej =
∑

i

bji (1, ti, t
2
i , . . . , t

k
i ) .(1.19)
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It follows from (1.16) and (1.19) that

pj(x) =
∑

i

bjiu(x, ti) .(1.20)

Since u ∈ P2k(M), (1.28) implies that each pj is a linear combination of functions that grow
polynomially of degree at most 2k and, thus, pj grows polynomially of degree at most 2k.

Since u satisfies the heat equation, it follows that ∆pk = 0 and

∆pj = (j + 1) pj+1 .(1.21)

Thus, we get a linear map Ψ0 : P2k(M) → H2k(M) given by Ψ0(u) = pk. Let K0 = Ker(Ψ0).
It follows from this that

dimP2k(M) ≤ dimK0 + dimH2k(M) .(1.22)

If u ∈ K0, then pk = 0 and ∆pk−1 = 0, so we get a linear map Ψ1 : K0 → H2k(M) given by
Ψ1(u) = pk−1. Let K1 be the kernel of Ψ1 on K0. It follows as above that

dimK0 ≤ dimK1 + dimH2k(M) .(1.23)

Repeating this k + 1 times gives the theorem. �

Lemma 1.24. If u ∈ P2k(M) can be written as u = p0(x) + t p1(x) + · · ·+ tk pk(x), then

|pj(x)| ≤ Cj

(

1 + |x|2(k−j)
)

.(1.25)

Proof. By assumption, there is a constant C so that

|u(x, t)| ≤ C
(

1 + |t|k + |x|2k
)

.(1.26)

Following the proof of Corollary 0.5, fix −1 < t1 < t2 < · · · < tk < tk+1 = −1
2
and coefficients

bji so that (1.19) holds for each j. Observe that (1.19) gives for each j
∑

i

bjiu(x,R
2 ti) =

∑

i

∑

ℓ

bji pℓ(x)R
2j tℓi =

∑

ℓ

∑

i

bji pℓ(x)R
2j tℓi = R2j pj(x) .(1.27)

Thus, given R > 2 and x ∈ BR, we get that

∣

∣R2j pj(x)
∣

∣ =

∣

∣

∣

∣

∣

∑

i

bjiu(x,R
2 ti)

∣

∣

∣

∣

∣

≤ max
i,j

|bji |
∑

i

|u(x,R2 ti)|

≤ C̃
(

1 + |x|2k +max
i

|R2 ti|
k
)

≤ 3 C̃ R2k .(1.28)

From this, we conclude that supBR
|pj| ≤ 3 C̃ R2k−2j. �

Proof. (of Theorem 0.3). Following the proof Corollary 0.5, each u ∈ P2k(M), can be
expanded as u = p0(x) + t p1(x) + · · · + tk pk(x). By Lemma 1.24, the linear map Ψ0 :
P2k(M) → H2k(M) given by Ψ0(u) = pk actually maps into H0(M) and, thus,

dimP2k(M) ≤ dimH0(M) + dimKer(Ψ0) .(1.29)

Similary, Lemma 1.24 implies that the map Ψ1 maps the kernel of Ψ0 to H2(M). Applying
this repeatedly gives the theorem. �
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2. Caloric polynomials

It is a classical fact that Pd(R
n) consists of caloric polynomials, i.e., polynomials in x, t

that satisfy the heat equation ([E1], [E2], [N]). We compute the dimensions of these spaces.
Given a polynomial in x and t, define its parabolic degree by considering t to have degree

two. Thus, xm1

1 xm2

2 tm0 has parabolic degree m1 +m2 + 2m0. A polynomial in x, t is homo-
geneous if each monomial has the same parabolic degree. Let An

p denote the homogeneous
degree p polynomials on Rn. The parabolic homogeneous degree p polynomials An

p are

An
p = An

p ⊕ t An
p−2 ⊕ t2An

p−4 ⊕ . . .(2.1)

Lemma 2.2. For each positive integer p, we have dim
(

Pp(R
n) ∩ An

p

)

= dimAn
p and

dim Pp(R
n) =

p
∑

j=0

dimAn
j .(2.3)

Proof. Observe that ∂t and ∆ map An
p to An

p−2. Moreover, given any u ∈ An
p−2, we have

(∂t −∆)

[

t u−
1

2
t2(∂t −∆)u+

1

6
t3(∂t −∆)2u− . . .

]

= u .(2.4)

Therefore, the map (∂t−∆) : An
p → An

p−2 is onto. Since the kernel of this map is Pp(R
n)∩An

p ,
we conclude that

dim
(

Pp(R
n) ∩ An

p

)

= dimAn
p − dimAn

p−2 = dimAn
p .(2.5)

This gives both claims. �

Lemma 2.6. If p ≥ n, then

1

(n− 1)!
pn−1 ≤ dim An

p ≤
2n−1

(n− 1)!
pn−1 .(2.7)

Proof. To get the upper bound, we use that p ≥ n to get

dim An
p =

(p+ n− 1)!

p! (n− 1)!
≤

(p+ n− 1)n−1

(n− 1)!
≤

(2p)n−1

(n− 1)!
=

2n−1

(n− 1)!
pn−1 .(2.8)

The lower bound follows similarly since (p+n−1)!
p! (n−1)!

≥ pn−1

(n−1)!
. �

The dimension bounds for Pd(R
n) in (0.9) follow by combining Lemmas 2.2 and 2.6.

2.1. Harmonic polynomials. For each j, the Laplacian gives a linear map ∆ : An
j → An

j−2.
The kernel Hn

j ⊂ An
j of this map is the linear space of homogeneous harmonic polynomials

of degree j on Rn. The next lemma shows that this map is onto:

Lemma 2.9. For each d, the map ∆ : An
d+2 → An

d is onto.

Proof. Take an arbitrary u ∈ An
d . For each nonnegative ℓ ≤ d/2, define uℓ and vℓ by

uℓ = |x|2ℓ ∆ℓu ,(2.10)

vℓ = |x|2 uℓ = |x|2ℓ+2∆ℓu .(2.11)

Note that u0 = u. We will use repeatedly that if v ∈ An
k , then homogeneity gives

〈x,∇v〉 = k v .(2.12)



OPTIMAL BOUNDS FOR ANCIENT CALORIC FUNCTIONS 7

Using this and ∆ |x|2 = 2n, we get for each ℓ that

∆ vℓ = (ℓ+ 1) (2n+ 4ℓ) |x|2ℓ∆ℓu+ 2 〈∇|x|2(ℓ+1),∇∆ℓu〉+ |x|2(ℓ+1) ∆ℓ+1u

= (ℓ+ 1) (2n+ 4ℓ) |x|2ℓ∆ℓu+ 4 (ℓ+ 1) (d− 2ℓ) |x|2ℓ∆ℓu+ |x|2(ℓ+1)∆ℓ+1u(2.13)

= (ℓ+ 1) (2n+ 4d− 4ℓ) uℓ + uℓ+1 .

Thus, if we define positive constants cℓ = (ℓ+ 1) (2n+ 4d− 4ℓ), then we have that

∆vℓ = cℓ uℓ + uℓ+1 .(2.14)

Let k be the greatest integer less than or equal to d
2
. Note that uk+1 = vk+1 ≡ 0. It follows

from this and (2.14) that

∆ (vk − ck vk−1 + ck ck−1 vk−2 − ck ck−1 ck−2 vk−3 + . . . )(2.15)

is a nonzero multiple of u0 = u, giving the lemma. �

Corollary 2.16. For each positive integer k, we have dimHn
k = dimAn

k − dimAn
k−2 and

dim Hk(R
n) = dimAn

k + dimAn
k−1 .(2.17)

Proof. Note that ∆ : An
j → An

j−2 gives a linear map with kernel equal to Hn
j . The map is

onto by Lemma 2.9, giving the first claim. Summing the first claim gives (2.17). �

Corollary 2.18. For each k, (0.4) is an equality on Rn.

Proof. Corollary 2.16 and Lemma 2.2 give

k
∑

j=0

dimH2j(R
n) =

k
∑

j=0

(

dimAn
2j + dimAn

2j−1

)

=

2k
∑

i=0

dimAn
i = dim P2k(R

n) .(2.19)

�
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