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OPTIMAL BOUNDS FOR ANCIENT CALORIC FUNCTIONS

TOBIAS HOLCK COLDING AND WILLIAM P. MINICOZZI 11

ABSTRACT. For any manifold with polynomial volume growth, we show: The dimension of
the space of ancient caloric functions with polynomial growth is bounded by the degree of
growth times the dimension of harmonic functions with the same growth. As a consequence,
we get a sharp bound for the dimension of ancient caloric functions on any space where Yau'’s
1974 conjecture about polynomial growth harmonic functions holds.

0. INTRODUCTION

Given a complete manifold M and a constant d, Hq(M) is the linear space of harmonic
functions of polynomial growth at most d. Namely, u € Hy(M) if Au = 0 and for some
p € M and a constant C,, depending on u

(0.1) sup |u| < C, (14 R)? for all R.
Br(p)
In 1974, S.T. Yau conjectured that H,(M) is finite dimensional for each d when Ricy, > 0.

The conjecture was settled in [CM2]; see [CMI]-[CMS] for more results[] In fact, [CM2]-

proved finite dimensionality under much weaker assumptions of:

(1) A volume doubling bound.
(2) A scale-invariant Poincaré inequality or meanvalue inequality.

The natural parabolic generalization is a polynomial growth ancient solution of the heat
equation. A solution of the heat equation is often called a caloric function. Ancient solutions
are ones that are defined for all negative ¢ - these are the solutions that arise in a blow up
analysis. Given d > 0, u € Py(M) if u is ancient, dyu = Aw and for some p € M and a
constant C,

(0.2) sup lu| < C, (1+ R)? for all R.
Br(p)x[-R?,0]

On R, P, is the classical space of caloric polynomials that generalize the Hermite poly-
nomials; see [N|, [E1], [E2]. More generally, the spaces Py(M) play a fundamental role in
geometric flows, see [CM6]-[CMS8]. They were studied by Calle in her 2006 thesis, [Call,
[Ca2], in the context of mean curvature flow.

A manifold has polynomial volume growth if there are constants C' and dy so that
Vol(Bg(p)) < C(1+ R)% for some p € M, all R > 08 Our main result is the follow-
ing sharp inequality:

The authors were partially supported by NSF Grants DMS 1812142 and DMS 1707270.
IFor Yau’s 1974 conjecture see: page 117 in [Ya2], problem 48 in [Ya3], Conjecture 2.5 in [Sd], [Ka], [KZ,
[DF], Conjecture 1 in [Li], and problem (1) in [LiTa], amongst others.
2A volume doubling space with doubling constant Cp has polynomial volume growth of degree log, Cp.
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Theorem 0.3. If M has polynomial volume growth and k is a nonnegative integer, then

k
(0.4) dim Poy (M) <Y~ dim Hoy (M)
i=0
The inequality (0.4)) is an equality on R" (see Corollary below). Since Hq, C Hgy, for
d; < dy, Theorem implies:

Corollary 0.5. If M has polynomial volume growth, then for all £ > 1
(0.6) dim Poy (M) < (k+ 1) dim Hop (M) .

Combining this with the bound dim H4(M) < C' d*~! when Ricypm > 0 from gives:
Corollary 0.7. There exists C' = C'(n) so that if Ricp» > 0, then for d > 1
(0.8) dim Py(M) < Cd".

The exponent n in (L) is sharp: There is a constant ¢ depending on n so that for d > 1
(0.9) ctd" < dimPy(R") < cd".

Recently, Lin and Zhang, [LZ], proved very interesting related results, adapting the methods
of [CM2]-[CM4] to get the bound d"**.

Using parabolic gradient estimates of Li-Yau, [LiY], and Souplet-Zhang, [SoZ|, one can
show that if d < 2 and Ric > 0, then Py(M) = Hq(M) consists only of harmonic functions of
polynomial growth. In particular, Py(M) = {Constant functions} for d < 1 and, moreover,
dim P; (M) < n+1, by Li and Tam, [LiTa], with equality if and only if M = R" by [ChCM].

The exponent n — 1 is also sharp in the bound for dim H; when Ricy» > 0. However, as
in Weyl’s asymptotic formula, the coefficient of d"~! can be related to the volume, [CM3]:

(0.10) dim Hy(M) < C, Vs d™ '+ o(d™™1).

e V), is the “asymptotic volume ratio” lim, ., Vol(B,)/r".
e o(d" ') is a function of d with limg o o(d"1)/d"1 = 0.

Combining (0I0) with Corollary 0.5 gives dim Py(M) < C, Var d™ + o(d™) when Ricpm > 0.

An interesting feature of these dimension estimates is that they follow from “rough” prop-
erties of M and are therefore surprisingly stable under perturbation. For instance, [CMA4]
proves finite dimensionality of H4 for manifolds with a volume doubling and a Poincaré in-
equality, so we also get finite dimensionality for P; on these spaces. Unlike a Ricci curvature
bound, these properties are stable under bi-Lipschitz transformations (cf. [MS]). Moreover,
these properties make sense also for discrete spaces, vastly extending the theory and methods
out of the continuous world. Recently Kleiner, [K], (see also Shalom-Tao, [ST], [T1], [T2])
used, in part, this in his new proof of an important and foundational result in geometric
group theory, originally due to Gromov, [G]. We expect that the proof of Theorem
extends to many discrete spaces, allowing a wide range of applications.

1. ANCIENT SOLUTIONS OF THE HEAT EQUATION

The next lemma gives a reverse Poincaré inequality for the heat equation (cf. [M]).
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Lemma 1.1. There is a universal constant ¢ so that if u; = A wu, then

(1.2) r? |Vu|? + r? u? <c u?.
2 2 t
Br x[~ 22 0] By X[~ 425.0] By x[~1r2,0]

100 100
Proof. Let Qg denote Br x [—R? 0] and ¢ be a cutoff function on M. Since u; = Auw,
integration by parts and the absorbing inequality 4ab < a® 4 4b? give

o, /u2¢2:2/uw2Au:—2/|Vu|2¢2—4/uw<v¢,Vu)
(1.3) < —/\vu|2¢2+4/u2\v¢\2.

Integrating this in time from —R? to 0 gives

(1.4) [zou2¢2—[:_R2 W ? < /_OR (—/|Vu|2¢2+4/u2|vw|2) it

In particular, we get

(1.5) /_; /|Vu|2¢2dt§/t:_R2u2w2+4/_ORZ /u2|v¢|2dt.

Let |¢)| <1 be one on Bg/s, have support in Bg, and satisfy |Vi| < 2/R, so we get

16
(1.6) / \Vu|2 < / u2+—2 u?.
QRry/2 Brx{t=—R?} R Qr

Next, we argue similarly to get a bound on u?. Namely, differentiating, then integrating by
parts and using that u; = A u gives

o, /|Vu|2w2 — 2/<Vu, Vu,) ? = —2/u§¢2 —4/ut¢<Vu, V)

(1.7 < [wvr+a [ 190 voP.
Integrating (7)) in time from —R? to 0 gives

wy [ [ e | R (= [utvr+a [ 1wupivur) ar

Letting v be as above, we conclude that

16
(1.9) / ul < — |Vul|? —I—/ |Vul?.
R? _
Qr/2 Qr Brx{t=—R?}

Next, choose some 1y € [4r/5,r| with

25 [° 25
(1.10) / u? < — (/ u2) dt=— [ u*.
B"“X{t:_T%} 9T —r2 r 9/r Qr

Applying (LL6) with R = r; and using the bound (LI0) at r; gives

16 20
(1.11) / |Vul|? < / |Vul? < / u+ = / <SR
Q Q B’l‘l X{t:—’f‘%} Tl 1 ,rl QT

1
2

r X
10

2r
5
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For simplicity, ¢ is a constant independent of everything that can change from line to line.
It follows from (LII]) that there must exist some p € [r/5,2r /5] so that

25 [* 25
(1.12) / Vuf < 22 / VuP | at= 22 [ v < / 2.
Bay x{t=—p%) 3r2 Jo422 \ Jp, 3r Qzr " JQr

2r
5

Now applying (L9) with R = p and using (LI1]) and (L.I2) gives

16
(1.13) / ui < —2/ |Vul|? +/ Vul? < % u? .
Qp/2 P Qp By x{t=—p?} r Qr

U
Corollary 1.14. If Vol(Bg) < C (1+R)% and u € Py(M), then 8%u = 0 for 4k > 2d+dy +2.

Proof. Since the metric on M is constant in time, J; — A commutes with &; and, thus,
(0y — A)d]u = 0 for every j. Let Qg denote Br x [—R?,0]. Applying Lemma [I.T] to u on Q,
for some 7, then to u; on Q -, etc., we get a constant ¢; depending just on k so that
k12 - Ck 2 %k 2 2 2—4k 2d+dy
(1.15) OFul” < 7 u” < ——= 1" Vol(B,) supu” < Cepr™ ™ (1 +1) :
Q_r r Qr r Qr

10F

Since 4k > 2d + dy + 2, the right-hand side goes to zero as r — oo, giving the corollary. [
We will prove Corollary next, though it will eventually be a corollary of Theorem [0.3

Proof of Corollary[0.J. Choose an integer m with 4m > 2k + dy + 2. Corollary [[.14] gives
that 0]"u = 0 for any u € Por(M). Thus, any u € Por(M) can be written as

(1.16) u=po+tp+-+t"  pg,

where each p; is a function on M. Moreover, using the growth bound u € Py, (M) for ¢
large and x fixed, we see that p; = 0 for any j > k. (See theorem 1.2 in for a similar
decomposition under more restrictive hypotheses and for a splitting result for ancient
positive solutions on homogeneous spaces.)

We will show next that the functions p; grow at most polynomially of degree d. Fix
distinct values —1 < t; <ty < --- <t <tgy; = 0. We claim that the k + 1-vectors

(1.17) (1,t;,t2,...,t%
are linearly independent in R**! for 4 = 1,...,k 4+ 1. If this was not the case, then there
would be some (non-trivial) (a,...,a;) € RFF! that is orthogonal to all of them. But this

means that there would be k 4 1 distinct roots to the degree £ polynomial
(1.18) ap + art + -+ agt®,

which is impossible, and the claim follows. Let e; & RF*! be the standard unit vectors.
Since the (1,#;,t2,...,t%)’s span R*"! we can choose coefficients b! so that for each j

(1.19) ej = bl (Lt ], th).
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It follows from (LI6) and (LI9) that
(1.20) pi(x) =Y blu(z,t;)

Since u € Pop (M), (L28) implies that each p; is a linear combination of functions that grow
polynomially of degree at most 2k and, thus, p; grows polynomially of degree at most 2k.
Since u satisfies the heat equation, it follows that Apy = 0 and

(1.21) Apj = +1)pjt1-

Thus, we get a linear map W : Po (M) — Hor(M) given by Wo(u) = pg. Let Ky = Ker(¥y).
It follows from this that

If u € Ky, then p, =0 and Ap,_1 = 0, so we get a linear map ¥y : Ky — Har(M) given by
Uy (u) = pr_1. Let Ky be the kernel of Uy on Ky. It follows as above that

(1.23) dim ICy < dim Ky + dim Hoy, (M) .

Repeating this k 4 1 times gives the theorem. U
Lemma 1.24. If u € Py (M) can be written as u = po(x) +tpy(z) + - - - + tF pp(2), then
(1.25) py(@)] < Gy (14 [P

Proof. By assumption, there is a constant C' so that

(1.26) lu(z, )] < C (1 + [t]" + [=]*) .

Following the proof of Corollary[0L5], fix —1 < t; <ty < -+ <ty < t41 = —% and coefficients
b! so that (LI9) holds for each j. Observe that (LI9) gives for each j

(1.27) Zb’ (z, R*t; Zijpg YR¥ ¢ = Zijpg ) R¥ ¢ = R¥ p,(x).

Thus, given R > 2 and x € By, we get that

1% 0,0 = |3 tute B4 < mx ] 3 (e, B20)
(1.28) <C (1 + |2|* + max | R? mk) <3CR*.
From this, we conclude that supy,_ |p;| < 3C R#*~%, O

Proof. (of Theorem [0.3]). Following the proof Corollary 0.5, each u € Por(M), can be
expanded as u = po(x) + tpi(z) + -+ + t* pp(x). By Lemma [[24] the linear map ¥, :
Paor (M) — Hor (M) given by Wo(u) = pg actually maps into Ho(M) and, thus,

(1.29) dim Py, (M) < dim Ho(M) + dim Ker ().

Similary, Lemma implies that the map ¥; maps the kernel of Wy to Ha(M). Applying
this repeatedly gives the theorem. U
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2. CALORIC POLYNOMIALS

It is a classical fact that P;(R™) consists of caloric polynomials, i.e., polynomials in x,¢
that satisfy the heat equation ([EI], [E2], [N]). We compute the dimensions of these spaces.

Given a polynomial in x and ¢, define its parabolic degree by considering t to have degree
two. Thus, x"z5?t™° has parabolic degree m; + mg + 2mg. A polynomial in z,¢ is homo-
geneous if each monomial has the same parabolic degree. Let A} denote the homogeneous
degree p polynomials on R". The parabolic homogeneous degree p polynomials A} are

(2.1) A= Ap Dt Ay s Ot AY D
Lemma 2.2. For each positive integer p, we have dim (P,(R") N AZ) = dim A} and
(2.3) dim P,(R") = Zp: dim A’ .

=0
Proof. Observe that d; and A map A} to A} 5. Moreover, given any u € A} ,, we have
(2.4) (0 —A) |tu— %t2(8t ~ A+t ét?)(at CAPu—. | =

Therefore, the map (0;—A) : Ay — A7 _, is onto. Since the kernel of this map is P,(R")N.A7,
we conclude that

(2.5) dim (P,(R") N A?) = dim A7 — dim A?_, = dim A .
This gives both claims. U
Lemma 2.6. If p > n, then

2n—1
(n—1)! (n—1)!
Proof. To get the upper bound, we use that p > n to get
(p+n=D' _(p+n-1"" _@pnt 2

n—1

p

(2.7) p"t < dim A) <

n—1

2.8 dim A} = < =
(28) ST -1 = - -1 -1’
The lower bound follows similarly since (;’!J(r:__ll))!! > (f:f)!. U

The dimension bounds for P;(R") in ([0.9) follow by combining Lemmas 22 and (2.6l

2.1. Harmonic polynomials. For each j, the Laplacian gives a linear map A : A7 — A7 ,.
The kernel H}' C A’ of this map is the linear space of homogeneous harmonic polynomials
of degree j on R". The next lemma shows that this map is onto:

Lemma 2.9. For each d, the map A : A}, , — A} is onto.

Proof. Take an arbitrary u € AJj. For each nonnegative ¢ < d/2, define u, and v, by
(2.10) up = |o* Alu,

(2.11) ve = |z|Fup = |22 Al

Note that uy = u. We will use repeatedly that if v € A}, then homogeneity gives
(2.12) (x,Vv) =kv.
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Using this and A |z|* = 2n, we get for each ¢ that
Avp = (04 1) (2n +40) |2* Alu + 2 (V22D VA ) + oD APy,
(2.13) = (0+1)2n+40) |z[* Au+4 (L + 1) (d — 20) |z]** Afu + |22 D ALy
=(l+1) (2n+4d — 40) up + upy -
Thus, if we define positive constants ¢, = (¢ + 1) (2n + 4d — 4¢), then we have that
(2.14) Avp = cpup + Upyq -

Let k be the greatest integer less than or equal to g. Note that ug, 1 = vpyq = 0. It follows
from this and ([2.I4) that

(215) A (’Uk — Cr Uk 1+ CrClr1Vg_2—CrCt_1Ck_2Vp_3+ ... )
is a nonzero multiple of vy = u, giving the lemma. U

Corollary 2.16. For each positive integer k, we have dim H}' = dim A} — dim A} , and

(2.17) dim Hi(R") = dim A} + dim A} _, .
Proof. Note that A : A? — A , gives a linear map with kernel equal to H}'. The map is
onto by Lemma 2.9] giving the first claim. Summing the first claim gives (2.17]). O

Corollary 2.18. For each k, ([0.4]) is an equality on R™.
Proof. Corollary and Lemma 2.2 give

k k 2k
(2.19) Z dim Ho;(R") = ) (dim A}, + dim A3, ) = Z dim A7 = dim Py (R").
§=0 j=0 i=0
]
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