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The transfer of topological concepts from the quantum world
to classical mechanical and electronic systems has opened fun-
damentally different approaches to protected information trans-
mission and wave guidance. A particularly promising emergent
technology is based on recently discovered topolectrical circuits
that achieve robust electric signal transduction by mimicking
edge currents in quantum Hall systems. In parallel, modern
active matter research has shown how autonomous units driven
by internal energy reservoirs can spontaneously self-organize
into collective coherent dynamics. Here, we unify key ideas
from these two previously disparate fields to develop design
principles for active topolectrical circuits (ATCs) that can self-
excite topologically protected global signal patterns. Realizing
autonomous active units through nonlinear Chua diode circuits,
we theoretically predict and experimentally confirm the emer-
gence of self-organized protected edge oscillations in one- and
two-dimensional ATCs. The close agreement between theory, sim-
ulations, and experiments implies that nonlinear ATCs provide a
robust and versatile platform for developing high-dimensional
autonomous electrical circuits with topologically protected
functionalities.

topological electronics | active circuits | autonomous signal propagation |
self-organized currents

Information transfer and storage in natural and man-made
active systems, from sensory organs (1–3) to the internet,

rely on the robust exchange of electrical signals between a
large number of autonomous units that balance local energy
uptake and dissipation (4, 5). Major advances in the under-
standing of photonic (6–9), acoustic (10–12), and mechani-
cal (13–16) metamaterials have shown that topological pro-
tection (17–24) enables the stabilization and localization of
signal propagation in passive and active (25–27) dynamical
systems that violate time-reversal and/or other symmetries.
Recent studies have successfully applied these ideas to real-
ize topolectrical circuits (28) in the passive linear (29–34) and
passive nonlinear (35, 36) regimes. However, despite substan-
tial progress in the development of topological wave guides
(37), lasers (38, 39), and transmission lines (40–43), the trans-
fer of these concepts to active (44, 45) nonlinear circuits made
from autonomously acting units still poses an unsolved chal-
lenge. From a broader perspective, not only does harnessing
topological protection in nonlinear active circuits promise a
new generation of autonomous devices, but also understanding
their design and self-organization principles may offer insights
into information storage and processing mechanisms in liv-
ing systems, which integrate cellular activity, electrical signal-
ing, and nonlinear feedback to coordinate essential biological
functions (46, 47).

Exploiting a mathematical analogy with active Brownian par-
ticle systems (26), we theoretically develop and experimentally
demonstrate general design principles for active topolectrical
circuits (ATCs) that achieve self-organized, self-sustained, topo-
logically protected electric current patterns. The main building

blocks of ATCs are nonlinear dissipative elements that exhibit an
effectively negative resistance over a certain voltage range. Neg-
ative resistances can be realized using van der Pol (vdP) circuits
(48), tunnel diodes, unijunction transistors, solid-state thyris-
tors (49), or operational amplifiers set as negative impedance
converters through current inversion (50), and the design princi-
ples described below are applicable to all these systems. Indeed,
we expect them to apply to an even broader class of nonlinear
systems, as similar dynamics also describe electromagnetic
resonators with Kerr-type nonlinearities (51–53).

Results
Theoretical Framework. Active electronic circuits with basic non-
topological interactions have been studied previously as mod-
els of neuronal networks (48) and solitary signal transport (4,
5). To leading order, the negative resistance elements in an
active circuit can be described (4, 5) by a nonlinear Rayleigh-
type conductance R−1(V )=−(α− γV 2), where V denotes
voltage, and α and γ are positive parameters. A prototypical
example is the vdP oscillator circuit with capacitance C and
inductance Lii , as shown in Fig. 1A. When expressed in terms
of the rescaled dimensionless voltage V̂i = xi =

√
3γ/αVi , the

Significance

Originally discovered in condensed-matter physics, topolog-
ical protection has become a unifying paradigm for under-
standing robust localized wave propagation in electronic,
optical, acoustic, and even geophysical systems. The excitation
of topologically protected waves in passive matter typically
requires external forcing in a specific frequency range. Here,
we show both theoretically and experimentally that robust
topological edge modes can be spontaneously self-excited in
active systems made from internally powered subunits. Pre-
senting different realizations of active nonlinear electronic
circuits, we demonstrate the emergence of self-organized
topological wave patterns, in close agreement with predic-
tions from a generic mathematical model. More broadly,
these results can provide guidance for designing autonomous
active systems with topologically protected signaling and
transmission properties.

Author contributions: R.T., H.R., and J.D. designed research; T. Kotwal, F.M., A.S., S.I.,
H.B., T. Kießling, and H.R. performed research; T. Kotwal, F.M., A.S., S.I., H.B., T. Kießling,
and H.R. analyzed data; and T. Kotwal, F.M., A.S., S.I., H.B., T. Kießling, R.T., H.R., and J.D.
wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y
1 T. Kotwal and F.M. contributed equally to this work.y
2 To whom correspondence may be addressed. Email: dunkel@mit.edu or
hmr1@williams.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2106411118/-/DCSupplemental.y

Published August 4, 2021.

PNAS 2021 Vol. 118 No. 32 e2106411118 https://doi.org/10.1073/pnas.2106411118 | 1 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 2
08

.1
27

.7
9.

16
4 

on
 O

ct
ob

er
 4

, 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
20

8.
12

7.
79

.1
64

.

http://orcid.org/0000-0002-8044-3447
http://orcid.org/0000-0003-4209-2663
http://orcid.org/0000-0002-0243-0886
http://orcid.org/0000-0002-3979-8836
http://orcid.org/0000-0001-8865-2369
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:dunkel@mit.edu
mailto:hmr1@williams.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106411118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106411118/-/DCSupplemental
https://doi.org/10.1073/pnas.2106411118
https://doi.org/10.1073/pnas.2106411118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2106411118&domain=pdf


A C D E

B

F

G

Fig. 1. Schematic and dynamics of active topolectrical SSH circuits. (A) Circuit diagram of a basic vdP oscillator with capacitance C, inductance Lii , and
nonlinear resistor R(V). (B and C) One-dimensional and 2D SSH circuits where each node is a vdP oscillator. Thick lines indicate strong coupling s and thin
lines weak coupling w� s. (D) Oscillator dynamics in an undamped passive (ε= 0) 1D SSH circuit with six nodes. Applying a nonzero initial voltage at
the first node, the oscillation remains exponentially localized on that edge. (E–G) Dynamics of a 1D ATC (ε> 0) for the same initial condition as in D. The
high-frequency topological edge mode is activated first and induces slow synchronized bulk oscillations, which eventually actuate the second topological
mode at the opposite end. Phase portraits of the boundary (F) and bulk (G) nodes show the limit cycles of the fast and slow oscillations. The edge oscillators
show approximately circular limit cycles typical of weak nonlinearity while the bulk dynamics are of strong relaxation type despite ε being small. Simulation
parameters in D–E: g = 1, w = 0.003, s = g−w with ε= 0 in D and ε= 0.1 in E–G. Initial conditions: x1(0) = 2 and ẋ1(0) = xj(0) = ẋj(0) = 0 for j≥ 2.

dynamics of an isolated vdP-unit i are governed by (54)
(Materials and Methods)

ẍi − ε
(
1− x2

i

)
ẋi + xi =0, [1]

where ε=α
√

L/C , t =
√
LC t̂ , and ẋi = dxi/dt̂ . Because this

active system is linearly unstable, a stabilizing nonlinearity is nec-
essary to obtain bounded dynamics. In this case, we find limit
cycle oscillations (Fig. 1F). Eq. 1 is intimately related to that of
a harmonically trapped active Brownian particle (55), with posi-
tion coordinate y and velocity u = ẏ described by the standard
cubic friction model u̇ = ε(1− u2/3)u − y . Upon taking the time
derivative and identifying u = ẏ = xi , one recovers Eq. 1. It was
shown recently (26) that suitably coupled mechanical chains of
active Brownian particles can autonomously actuate topological
modes. This insight provides guidance for the design of ATCs.

To design an ATC with desired topological properties, we gen-
eralize Eq. 1 by introducing suitably chosen couplings between
vdP units i and j through inductances Lij ; see Fig. 1 B and C for
two examples. Assuming a lattice of vdP units and introducing
the symmetric coupling matrix elements βij =−L0/Lij for i 6=j ,
and βii =

∑
k L0/Lik , Eq. 1 generalizes to

ẍi − ε
(
1− x2

i

)
ẋi +

∑
j

βij xj =0, [2]

where L0 is the smallest inductance in the circuit.
Interpreting each individual vdP unit as a node in the net-

work graph (Fig. 1 B and C), the effective dimension d of the
ATC can be tuned by increasing the number of couplings. In
principle, arbitrary values d ≥ 1 are realizable with large, densely
connected networks (28). For example, for d -dimensional cubic
lattices, rows of the coupling matrix β=(βij ) corresponding to
bulk nodes will have 2d off-diagonal entries. Below, we focus on
the cases d =1 (Fig. 1B) and d =2 (Fig. 1C) to demonstrate the
implementation and key properties of ATCs. Generally, through
an appropriate choice of β, it is possible to realize a wide range
of topological phases.

One-Dimensional Su–Schrieffer–Heeger ATC: Theoretical Analysis.
As a first realization of an ATC, we consider the coupling matrix
of a one-dimensional (1D) Su–Schrieffer–Heeger (SSH) model.

Originally introduced to describe polyacetylene (56), the SSH
model is known to support topologically protected boundary
modes in a variety of quantum (57) and classical (16, 26, 28) sys-
tems. The n ×n SSH coupling matrix for the case of n =6 vdP
units reads (Materials and Methods)

β=


g −w 0 0 0 0
−w g −s 0 0 0
0 −s g −w 0 0
0 0 −w g −s 0
0 0 0 −s g −w
0 0 0 0 −w g

, [3]

with the diagonal elements βii = g > 0 representing the elec-
trical grounds. In electrical circuits, the diagonal elements of
the coupling matrix βii =

∑
k L0/Lik depend on the neighboring

inductors and are generally not uniform. Therefore, we introduce
additional ground inductances Lii at all boundaries, such that
βii = g is uniform and the coupling matrix represents an instance
of the SSH model. Upon generalizing this coupling matrix by
permitting nonuniform grounds gi , one can achieve additional
frequency control (SI Appendix). The off-diagonal entries w > 0
and s >w > 0 encode the weak and strong couplings, respec-
tively. Adding more units extends the matrix symmetrically along
the diagonal. As in the original quantum SSH model, the strongly
coupled nodes form “dimers” that are connected to each other
through weak bonds (thin lines in Fig. 1B).

To gain intuition about the dynamics of the 1D SSH circuit,
it is instructive to first consider the undamped passive topolec-
trical SSH circuit with ε=0 and s�w . In this case, Eqs. 2
and 3 reduce to a linear dynamical system that exhibits topo-
logically protected, exponentially localized modes at both ends
of the chain (57). These edge modes have finite frequency for
g > 0 and become zero modes as g→ 0. Their presence can be
illustrated by considering an ideal passive (ε=0) circuit (28) in
the almost fully dimerized topological regime (w� s) with all
nodes initially at rest, xi(t)= ẋi(t)= 0 for t < 0. Upon initializ-
ing the chain by imposing a nonzero voltage value at the left edge,
x1(0)> 0, the boundary node will oscillate with a nonzero ampli-
tude at frequency

√
g , while the amplitudes of the other nodes

remain exponentially small (Fig. 1D). In the next part, we will see
that ATCs with ε> 0 exhibit fundamentally different behaviors
that promise a broad range of applications.

2 of 7 | PNAS
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Adding just a small amount of activity (0<ε�√g) signifi-
cantly alters the dynamics of the edge and bulk oscillators (Fig.
1 E–G). In the topological regime, characterized by s�w and
g ≥ s +w , the boundary nodes are only weakly coupled to the
bulk and behave similarly to isolated vdP oscillators. The active
local energy input renders the rest state (xi = ẋi =0) unstable,
forcing the boundary nodes to approach a stable limit cycle cor-
responding to an oscillation at frequency

√
g (Fig. 1 E and F).

By contrast, bulk nodes are strongly coupled to one or more
neighbors, resulting in nontopological, distinct bulk dynamics
reminiscent of highly nonlinear relaxation oscillations (Fig. 1 E
and G). For fully decoupled pairs of vdP oscillators, one expects
stable phase-locked solutions with relative phase 0 or π (58, 59).
Because the system is close to the vdP oscillator’s Andronov–
Hopf bifurcation (60), the frequencies of the limit cycle are
approximately given by the imaginary parts of the Jacobian of the
dynamics (Eq. 2) at the unstable rest state. The Jacobian’s eigen-
values are λk ,±= 1

2
(ε±

√
ε2− 4µk )=±

√
−µk +O(ε), where

µk are the eigenvalues of the coupling matrix β (SI Appendix).
This way, topological modes encoded in β can appear in the
nonlinear regime. In the fully dimerized limit (w→ 0), µk can
be calculated explicitly and one finds two degenerate eigen-
states at µk = g , corresponding to the topologically protected
edge modes, and n − 2 degenerate bulk modes at µk = g ± s
(SI Appendix). The bulk eigenvectors are pairwise localized with
components (1,±1) on one of the dimers and zero everywhere
else, corresponding to a low-energy in-phase oscillation (µk =
g − s) and a high-energy antiphase oscillation (µk = g + s) (SI
Appendix). This implies that the dimers’ dynamics near the rest
state are approximately decoupled and governed by the eigen-
values

√
−g ∓ s . If g > s , all modes are oscillatory, while for

g < s , the antiphase mode becomes unstable and is not physi-
cally realizable. Armed with these analytical insights, we proceed
to numerically characterize the interesting nonlinear effects that
arise in ATCs. In the simulations, we can fix g =1 without loss of
generality, which is equivalent to dividing Eq. 2 by g and rescaling
t→√gt , ε→ ε/

√
g , s→ s/g , and w→w/g .

In contrast to passive (ε=0) topolectrical circuits, which
remain quiescent in the bulk when initiated at the edge (Fig.
1D), ATCs with ε> 0 exhibit complex self-organization and syn-
chronization phenomena. To explain the underlying physical
mechanisms, we consider the 1D SSH ATC from Fig. 1B with
the same initial condition as for the passive circuit in Fig. 1D.
When one edge node of the ATC is initialized at time t =0, it
rapidly settles into a limit-cycle oscillation (Fig. 1 E and F), as
predicted above. As it gets activated, the edge mode imparts a
weak external forcing on the neighboring strongly coupled dimer.

The combination of forcing and local energy input from the
negative resistance drives the dimer into its low-energy state,
characterized by a slow nonlinear in-phase oscillation of the
dimer nodes with period 2π/

√
g − s (Fig. 1 E and G). The first

bulk dimer then in turn activates the second dimer, and so on,
resulting in a globally synchronized bulk state. The activation
front eventually reaches the last node, where it triggers the sec-
ond topological edge mode (Fig. 1F). The final state of the chain
is a robust attractor that is self-sustained and could be used for
active solitary signal transmission.

One-Dimensional Su–Schrieffer–Heeger ATC: Experimental Realiza-
tion. As a first experimental demonstration of the underlying
general concepts, we built a 1D four-node ATC using a Chua
diode circuit as the active element (Fig. 2 A–C). The measured
time series of the oscillator voltages exhibit the theoretically pre-
dicted topological edge modes and low-frequency bulk dynamics
(Fig. 1). In the case of active circuits, the edge modes excite
the bulk abruptly over the scale of just a single oscillation, even
when corresponding passive circuits would exhibit exponential
decay over a longer scale. The quantitative agreement of the
experiments with theory as well as explicit circuit simulations (SI
Appendix) confirms that Eq. 2 provides a predictive framework
for ATCs—and that it is straightforward to realize active topolec-
trical materials with off-the-shelf components. Indeed, the exam-
ple in Fig. 2 is only one of many possible ATC implementations
(SI Appendix).

Attractor Statistics. In practice, ATCs can be actuated with a wide
range of initial conditions that can select different types of stable
asymptotic behaviors (Fig. 3), similar to information storage in
Hopfield networks. To investigate the likelihood and character-
istics of possible attractors, we used Eq. 2 to simulate an active
SSH circuit with n =6 nodes with nonzero initial conditions on
the bulk (Fig. 3A). Since the edge node initial conditions become
negligible in this case due to the weak edge–bulk coupling, we
fixed zero initial conditions at the edges. Thus, the topological
edge modes are actuated by the bulk dynamics in these simu-
lations. Examples of low-energy and high-energy attractors with
slow and fast bulk dimer oscillations, obtained with binary initial
conditions in the bulk, xi(0)=±0.1 and ẋi(0)= 0, are shown in
Fig. 3A. These attractors can be classified in terms of the relative
signs of the nb =n − 2=4 bulk voltages xi at a fixed time. Nor-
malizing by the sign of the first bulk oscillator, we numerically
find that there exist four different stable attractors correspond-
ing to different possible combinations of in-phase and antiphase
dimer oscillations (Fig. 3 A and B).
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Fig. 2. Experimental realization of a 1D active topolectric circuit with four nodes. (A) Implementation of a single active node using a Chua diode circuit
(SI Appendix). (B) Four-node active topolectrical circuit using C = 42 nF, L12 = L34 = 10.5 mH, L23 = 525 µH. To obtain the classical SSH coupling matrix Eq.
3, no inductors were used for the bulk nodes, such that L11 = L44 = 525 µH. The corresponding dimensionless parameters are s = 1.0, w = 0.05, g = 1.05,
and ε= 0.28. (C) Experimental setup on circuit board. (D) Experimental data (orange lines), simulations of the full circuit using LTSpice (blue lines), and
theoretical simulation using Eq. 2 match. Voltages V1 to V4 vary between ±6 V; in-phase initial conditions were chosen on the two bulk oscillators.
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A

B C

Fig. 3. Attractor statistics of a 1D ATC. (A) An active SSH circuit with n = 6
vdP nodes has four qualitatively distinct stable attractors. Circle size rep-
resents instantaneous absolute voltage |xi(t)|, symbol color the phase ϕ,
and background color the time-averaged frequency ω= 〈ϕ̇〉 of the oscilla-
tors. Two low-energy attractors exhibit in-phase dynamics of the bulk dimer
nodes, and two high-energy attractors show antiphase dynamics on the bulk
dimers. (B) Low-energy attractors are substantially more frequently real-
ized when bulk nodes are initialized with uniformly random xi(0)∈ [−4, 4]

and ẋi(0)∈ [−0.4, 0.4]. The two in-phase states are approached for≈ 99.5%

of initial conditions. (C) Frequencies of nonlinear bulk oscillations cluster
around

√
g± s (solid/dashed-dotted line) and boundary oscillations around√

g (dashed line), as predicted by linearized theory. Simulation parameters:
g = 1, w = 0.003, s = g−w, and ε= 0.1. Histograms were computed from
50, 000 trajectories, integrated up to t = 1,000.

To estimate the likelihood of observing a specific attractor in
experiments, we performed 50,000 simulations with randomly
chosen bulk initial data. To explore a large neighborhood of
the bulk limit cycle (Fig. 1G), initial conditions were sampled
uniformly from the eight-dimensional domain xi(0)∈ [−4, 4],
ẋi(0)∈ [−0.4, 0.4]. These simulations predict that, in practice,
low-energy states with in-phase bulk dimers are much more likely
than high-energy attractors with many antiphase dimers (Fig.
3B). Mixed in-phase/antiphase dimer attractors are not observed
for this parameter regime. Furthermore, even though the shape
of the bulk limit cycles indicates highly nonlinear relaxation
dynamics (Fig. 1G), the numerically determined time-averaged
frequencies 〈ϕ̇〉, where ϕ(t)= arctan(ẋ (t)/x (t)), agree remark-
ably well with the bulk oscillation frequencies

√
g ± s and bound-

ary oscillation frequency
√
g predicted by the linearized theory

above (Fig. 3C). Based on these observations, one expects that
low-energy attractors with in-phase bulk dimer dynamics will also
be dominant in more complex ATCs and that their bulk and edge
frequencies can be estimated from spectra of the coupling matrix
β in the weak-coupling limit.

Experimental Realization of a 2D SSH ATC. ATC implementations
become particularly powerful in d ≥ 2 dimensions. Different
types of 2D SSH lattices can be constructed by stacking 1D SSH
chains and connecting them using alternating strong and weak
couplings (Fig. 4). This procedure allows the realization of two
essentially different topological regimes T1 and T2, which we
realized in simulations and experiments (SI Appendix): In the
T1 regime, topologically protected modes exist along two oppo-
site edges of a finite sample (Fig. 4A and Movie S1), whereas
in the T2 regime such modes exist on all four of the edges
including the corners (Fig. 4B and Movie S2) (29). Because
essential aspects of the dynamics are qualitatively similar for both
cases, we focus our discussion on the T2 regime. In this case,

one can distinguish three different groups of oscillators: cor-
ner oscillators that are only weakly coupled to their neighbors,
strongly coupled vdP dimers along the edges that are similar
to the 1D case, and quartets of strongly coupled vdP oscilla-
tors in the bulk (Fig. 4 B, E, F, and H). Each quartet is weakly
coupled to its neighbors. Analogous to the 1D case, the linear
stability of the quartets can be analyzed independently in the
weak-coupling limit w→ 0, revealing that the lowest-frequency
mode is an in-phase state ((1, 1; 1, 1)) with period 2π/

√
g − 2s

(SI Appendix). Similar to the 1D case, in the limit (g − 2s)→ 0+,
the bulk quartets collectively synchronize to the low-frequency
in-phase state, avoiding mixing of bulk excitations with corners
and edges (61). However, the dimers on the boundary now
oscillate at a frequency lower than that of the corner nodes,
because (g − s)→ s as (g − 2s)→ 0+. This opens the intriguing
possibility of using topological protected modes to control oscil-
lation patterns in 2D ATCs. In particular, by varying the ground
inductances of each of the nodes one can control frequencies
of each of the corner nodes, edge dimers, and bulk quartets
(SI Appendix).

Initializing the 2D active SSH circuits with a nonzero voltage
at one of the corner nodes, one finds that essential qualitative
features of the dynamics seen in 1D ATCs carry over to the 2D
case. In particular, the boundary nodes belonging to topologi-
cally protected corner modes and edge modes become activated
one after the other and settle down in their respective vdP limit
cycles. Similarly, in the bulk, quartets of strongly coupled oscilla-
tors synchronize. Because the in-phase state is the lowest-energy
attractor above the quiescent state, the bulk synchronizes in a
global in-phase pattern (Fig. 4 B–D). Thus, in both 1D and 2D
ATCs, topologically protected edge modes become activated via
self-sustained oscillations, while the bulk dynamics are almost
decoupled, leading to synchronization.

Robustness of Self-Excited Edge Modes. Crucially, this ATC self-
organization principle remains valid in the presence of lattice
defects, demonstrating that topological protection phenomena
can survive in the nonlinear regime ε> 0 (Fig. 4 C, D, and I).
Introducing an edge defect in a passive (ε=0) 2D SSH grid by
removing a few unit cells does not affect the localized nature
of the edge state, which now wraps around the defect due to
topological protection from the linear coupling (Fig. 4 C and
I). Self-sustained oscillations in nonlinear active (ε> 0) circuits
inherit this topological protection globally: In the presence of
edge defects, all boundary nodes continue to oscillate at a high
nonzero frequency while bulk quartets synchronize at low fre-
quency (Fig. 4 B and E and Movie S3). Similarly, bulk defects also
lead to localized nonlinear edge oscillations (Fig. 4D and Movie
S4). These results show that the SSH network topology can be
used to precisely control the individual and collective behavior of
coupled nonlinear oscillators. Furthermore, the above ideas can
be extended to achieve control of active traveling-wave patterns
by means of nontopological defects. By strategically placing bulk
defects, one can guide the self-organization of active wave pat-
terns that can be initiated from a single corner node (SI Appendix
and Movie S5). More broadly, these results open a path toward
the inverse design of functionalized active topolectrical networks
(62) in the future.

General Design Rules for ATCs. The above analysis, combined
with insights from earlier studies (4, 5, 26, 44), suggests gen-
eral design principles for ATCs, by additively combining local
Rayleigh-type activity with suitably designed conservative node-
coupling interactions (62, 63). Previous investigations (5, 44, 62,
64) showed that, in the low-to-moderate activity regime, non-
linear Rayleigh-type driving mechanisms often select dynamical
attractors that reflect the mode structure of the correspond-
ing nondriven system. In these cases, the nonlinear driving
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Fig. 4. Self-organized, self-sustained nonlinear oscillations in 2D ATCs recapitulate topological edge mode phenomena in simulations of Eq. 2 and cor-
responding experiments based on Chua diode circuits. (A and B) Frequency patterns measured in simulations and experiments confirm the self-excitation
of the topological edge mode T1 regime (A) and the topological corner-edge mode T2 regime (B), respectively. Line width indicates inductive coupling
strength, and background color shows dominant frequency obtained from Fourier spectra of the individual oscillator time series. (C and D) In the presence
of edge defects (C) or bulk defects (D), the high-frequency dynamics remain robustly localized along the boundaries. (E and F) Root-mean-square Fourier
spectra measured in experiments (black) and simulations (orange) obtained by averaging over all bulk and edge oscillators, respectively, for the T2 networks
(B and H). The peak frequencies indicate slow bulk node oscillations and fast edge node oscillations. (G) Experimental ATC setup from which the data shown
in A–D, H, and I were acquired. An alternative experimental 2D ATC realization is given in SI Appendix. (H and I) Fourier power spectra for the individual
oscillator voltage time series measured in experiments (B and C, Bottom; black) and corresponding simulations (B and C, Top; orange) of Eq. 2. Background
colors show peak frequencies using the same color scale as in A–D. Axis scales of the individual spectra are equal to those in E and F. Experiments and
simulations were performed for grounding capacitances C = 42 nF, bulk inductances Lw = 13.3 mH, and Ls = 122 µH and nonlinear resistance parameters
α= 2.5 mΩ, γ= 90.7 µΩ·V−2. Despite its minimal generic character, Eq. 2 correctly predicts the experimentally observed edge mode phenomenology.

determines the mode amplitudes while quadratic expansions of
the interaction potentials determine the mode characteristics.
Conversely, recent studies (26, 62) have demonstrated that, by
designing the linear response of nonlinear mechanical networks,
one can control the spectral features, such as band gaps, of self-
excited waves in the presence of activity. Building on this general
idea, the above experimental realizations of ATCs provide an
extension to lattices with structured linear couplings that sup-
port self-sustained topologically protected phononic excitations.
An interesting direction for future research is the design and
implementation of autonomous electrical circuits that combine
structured nonlinear (e.g., Toda-like) (4, 36) couplings with non-
linear activity, which can be expected to support self-sustained
solitonic (4, 44) edge excitations.

Conclusion
Active topolectrical circuits promise a wide range of applications,
from active wave guides to autonomous electronic circuits with

topologically protected functionalities. The framework devel-
oped here can be integrated with recently developed methods for
the inverse design of network-based metamaterial structures (63,
65), to optimize and tailor the node couplings and transmission
properties. The close agreement with our 1D and 2D experi-
ments suggests that the generic ATC model from Eq. 2 provides a
useful theoretical basis for the implementation of more complex
ATCs. For example, by designing the coupling matrix β such that
the associated dynamical matrix possesses chiral (50) or other
symmetries, one can realize different topological phases by utiliz-
ing generic vdP-type nonlinearities. Another intriguing prospect
is the possibility of creating and studying electronic metama-
terials with effective dimensions d > 3 that appear to be diffi-
cult to access otherwise. Beyond man-made devices, the above
results suggest that it would be interesting to explore whether
active biological circuits (66, 67) may use topological coupling
regimes to facilitate robust signal transport and information
storage.
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Materials and Methods
Nondimensionalization of Variables and Parameters. Given a lattice circuit,
we state the equations of its voltage dynamics using Kirchoff’s laws as
follows:

CV̈i − (α− 3γV2
i )V̇i +

 1

Lii
+

∑
k

k 6=i

1

Lik

Vi −
∑

j
j 6=i

Vj

Lij
= 0, [4]

where Vi is the voltage, C is the capacitance, Lii is the ground inductance,
and α and γ are the vdP parameters of the oscillator at node i, while Lij are
the coupling inductances between nodes i and j. The coupling inductances
can be either of Lw or Ls, where the subscripts w and s stand for weak and
strong coupling, respectively (1/Lw < 1/Ls). Note that for nodes i and k that
are not connected, we have 1/Lik = 0.

We introduce a voltage scale Vi = V0V̂i and a time scale t = τ t̂, and we
scale all the inductances by the smallest inductance, say L0, to get Lij = L0L̂ij

for all i and j. For τ , we use the natural time scale of an oscillator such
that τ =

√
L0C, and the voltage scale is given by V0 =

√
α/(3γ). The dimen-

sionless dynamics are then given by Eq. 2, where V̂i = xi , ε=α
√

L0/C,
βij =−L0/Lij for i 6=j, and βii = L0(1/Lii +

∑
k

k 6=i
1/Lik).

In Eq. 3, the weak and strong couplings are given by w = L0/Lw and s =

L0/Ls, respectively, while Lii are chosen such that g = L0(1/Lii +
∑

k
k 6=i

1/Lik)

for each i. The coupling matrix can be generalized by replacing g by gi .

Circuit Implementation. A detailed description of the two circuit designs
based on Chua’s diode (68) and nonlinear resistors (4), respectively, and the
component parameters used in our experiments is given in SI Appendix.

Data Availability. All study data are included in this article and/or
SI Appendix.
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