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INVARIANT HERMITIAN FORMS ON VERTEX ALGEBRAS

VICTOR G. KAC
PIERLUIGI MÖSENEDER FRAJRIA

PAOLO PAPI

Abstract. We study invariant Hermitian forms on a conformal vertex algebra and on
their (twisted) modules. We establish existence of a non-zero invariant Hermitian form on
an arbitrary W –algebra. We show that for a minimal simple W –algebra Wk(g, θ/2) this
form can be unitary only when its 1

2
Z–grading is compatible with parity, unless Wk(g, θ/2)

“collapses” to its affine subalgebra.

1. Introduction

In the present paper we study invariant Hermitian forms on a conformal vertex algebra V
and its (possibly twisted) positive energy modules. By a conformal vertex algebra we mean
a vector superspace V over C, endowed with a structure of a vertex algebra (with state–field
correspondence a 7→ Y (a, z)), and a Virasoro vector L such that the eigenvalues of L0 lie in
1
2Z+, all eigenspaces are finite–dimensional, and the 0–th eigenspace consists of multiples of
the vacuum vector (cf. Definition 1.1 in Section 2 and [11]).

Let φ be a conjugate linear involution of V . A Hermitian form ( · , · ) on V is called
φ–invariant if, for all a ∈ V , one has

(1.1) (v, Y (a, z)u) = (Y (A(z)a, z−1)v, u), u, v ∈ V.

Here A(z) : V → V ((z)) is defined by

(1.2) A(z) = ezL1z−2L0g,

where

(1.3) g(a) = e−π
√
−1(

1
2p(a)+∆a)φ(a), a ∈ V,

and p(a) = 0 or 1 stands for the parity of a and ∆a for its L0–eigenvalue. The definition of
a φ–invariant Hermitian form on a V –module M is similar (cf. Definition 6.6).

The operator A(z) with g = (−1)L0 appeared first in [4] in the construction of the coadjoint
module in the case when V is purely even and the eigenvalues of L0 are integers. Under the
same assumptions on V this operator was used in [9] for the construction of the dual to the
V –modules.

Formula (1.2) with g = (−1)L0φ was used in [7] to define unitary structures on vertex
operator algebras and this notion was generalized in [3] to vertex algebras with 1

2Z+–grading
compatible with parity, in which case formula (1.3) simplifies to (see (4.2))

g = (−1)L0+2L2
0φ.

As one can infer from the above remarks, the motivation for this definition stems from
the observation that, given a V –module M , one has (as in the Lie algebra case), a bijective
correspondence between φ–invariant Hermitian forms (·, ·) on V and V –module conjugate
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linear homomorphisms Θ : M → M †, where M † is the conjugate linear dual to M , with
V –module structure defined by

(1.4) 〈YM†(a.z)m′,m〉 = 〈m′, YM (A(z)a, z−1)m〉, m ∈M,m′ ∈M †.

Our first result, which generalizes [9, Theorem 5.2.1, Proposition 5.3.1] (with a similar
proof), is Proposition 3.6: formula (1.4) indeed defines a structure of a V –module on the
restricted dual superspace M † of M . Our second result, which generalizes, with the same
proof, that of [15] in the symmetric case, is Proposition 4.3, which describes φ–invariant
Hermitian forms on V . Its Corollary 4.7 claims that a conformal vertex algebra V with a
conjugate linear involution φ admits a (unique, up to a constant factor) φ–invariant Hermitian
form if and only if any eigenvector of L0 with eigenvalue 1 is annihilated by L1 (see also
Remark 4.4). As usual, such a Hermitian form can be expressed in terms of the expectation
value on the vacuum (see formula (4.9)).

In Section 5 we construct invariant Hermitian forms of fermionic, bosonic, affine and lattice
vertex algebras. In Section 6 we extend the results on invariant Hermitian forms on V to
arbitrary positive–energy (twisted) modules M . Proposition 5.3 claims that the space of
φ–invariant Hermitian forms on M is isomorphic to the set of ω–invariant Hermitian forms
on the module M0 over the Zhu algebra. Here M0 is the lowest energy subspace of M and ω
is the conjugate linear anti–involution of the Zhu algebra, induced by the endomorphism of
the superspace V defined by

ω(v) = A(1)v, v ∈ V.

In Remark 6.8 we note that actually Proposition 4.3 is a special case of Proposition 6.7.
In Section 7 we construct an invariant Hermitian form on the W–algebras W k(g, x, f)

[12], [13]. This construction is based on Proposition 7.4 (b), which says that the condition
of Corollary 4.7, that all eigenvectors of L0 with eigenvalue 1 of the vertex algebra are
annihilated by L1, holds, provided that the elements h := 2x and f can be included in a
sl(2)-triple {e, f, h}.

In conclusion of this section we briefly discuss unitarity (i.e., positive semi-definiteness) of
this Hermitian form for minimal W–algebras W k(g, θ/2). We show that the only interesting
cases might occur when the 1

2Z–grading on the W–algebra is compatible with parity. In all
the other cases we show that the W–algebra can be unitary only at collapsing levels [1], i.e.
when the simple W -algebra Wk(g, θ/2) “collapses” to its affine subalgebra: see Propositions
7.9, 7.11. These are just the first steps towards classification of unitary minimal W–algebras.

Throughout the paper the base field is C. We also denote by Z+ the set of nonnegative
integers and by N the set of positive integers.

2. Setup

2.1. Basic definitions. Recall that a vector superspace is a Z/2Z–graded vector space V =
V0̄ ⊕ V1̄. The elements in V0̄ (resp. V1̄) are called even (resp. odd). Set

p(v) =

{
0 ∈ Z if v ∈ V0̄,

1 ∈ Z if v ∈ V1̄,

i.e. we will regard p(v) as an integer, not as a residue class. We will often use the notation

(2.1) σ(u) = (−1)p(u)u, p(u, v) = (−1)p(u)p(v).
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Let V be a vertex algebra. We let

Y : V → (EndV )[[z, z−1]],(2.2)

v 7→ Y (v, z) =
∑

n∈Z
v(n)z

−n−1 (v(n) ∈ EndV ),

be the state–field correspondence. We denote by 1 the vacuum vector in V and by T the
translation operator (see e.g. [11] for details).

Definition 2.1. In the present paper we will call a vertex algebra V conformal if there exists
a distinguished vector L ∈ V2, called a Virasoro vector, satisfying the following conditions:

Y (L, z) =
∑

n∈Z
Lnz

−n−2, [Lm, Ln] = (m− n)Lm+n +
1

12
(m3 −m)δm+n,0c I,(2.3)

L−1 = T,(2.4)

L0 is diagonalizable and its eigenspace decomposition has the form(2.5)

(2.6) V =
⊕

n∈ 1
2
Z+

Vn,

where

(2.7) dimVn <∞ for all n and V0 = C1.

The number c is called the central charge.

Remark 2.2. Important examples of conformal vertex algebras are vertex operator super-
algebras, namely the conformal vertex algebras for which decomposition (2.6) is compatible
with parity, i.e. σ(u) = (−1)2L0u.

In the definition of [11] of conformal vertex algebras properties (2.6) and (2.7) are not
required.

By an automorphism of a conformal vertex algebra V we mean a vertex algebra automor-
phism φ of V (i. e. φ(u(n)v) = φ(u)(n)φ(v) for all n ∈ Z) with the property that φ(L) = L.
Consequently, φ(Vn) = Vn.

The eigenvalues of L0 on V are called conformal weights; the conformal weight of v ∈ V is
denoted by ∆v, so that v ∈ V∆v . The eigenvector v of L0 is called quasiprimary if L1v = 0
and primary if Lnv = 0 for n ≥ 1. One has for v of conformal weight ∆v:

(2.8) [Lλv] = (L−1 +∆vλ)v +
∑

n≥2

λn

n! Ln−1v.

Here and throughout the paper we use the formalism of λ-brackets, which are defined by

[uλv] = Resze
zλY (u, z)v, u, v ∈ V.

Let Γ be an additive subgroup of R containing Z. If γ ∈ R, denote by [γ] its coset γ + Z.

Definition 2.3. Let V be a conformal vertex algebra. A Γ/Z–grading on V is a map

Υ : [γ] 7→ V [γ] ⊆ V such that V decomposes as

(2.9) V =
⊕

[γ]∈Γ/Z
V [γ]

and (2.9) is a vertex algebra grading, compatible with L0, i.e.

V [α]
(n)V

[β] ⊆ V [α+β] , L0(V
[γ]) ⊆ V [γ] .
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If a ∈ V [γ] then [γ] is called the degree of a. Given a vector a ∈ V of conformal weight
∆a and degree [γ], denote by ǫa the maximal non–positive real number in the coset [γ−∆a].
This number has the following properties [5]:

(2.10) ǫ1 = 0 , ǫTa = ǫa , ǫa(n)b = ǫa + ǫb + χ(a, b) ,

where χ(a, b) = 1 or 0, depending on whether ǫa + ǫb ≤ −1 or not.
Let γa = ∆a + ǫa . Then

(2.11) γ1 = 0 , γTa = γa + 1 , γa(n)b = γa + γb + χ(a, b) − n− 1 .

2.2. Twisted modules.

Definition 2.4. Let Γ be an additive subgroup of R containing Z, and let Υ be a Γ/Z–grading
on a conformal vertex algebra V . A Υ–twisted module for V is a vector superspace M and a
parity preserving linear map from V to the space of EndM–valued Υ–twisted quantum fields
a 7→ YM (a, z) =

∑
m∈[γa] a

M
(m)z

−m−1 (i.e. aM(m) ∈ EndM and aM(m)v = 0 for each v ∈ M and

m≫ 0), such that the following properties hold:

1M(n) = δn,−1IM ,(2.12)

∑

j∈Z+

(
m

j

)
(a(n+j)b)

M
(m+k−j)v(2.13)

=
∑

j∈Z+

(−1)j
(
n

j

)
(aM(m+n−j)b

M
(k+j) − p(a, b)(−1)nbM(k+n−j)a

M
(m+j))v ,

where a ∈ V [γa] (γa ∈ Γ), m ∈ [γa], n ∈ Z, k ∈ [γb].

The following Lemma is known; we prove it for completeness.

Lemma 2.5. The Borcherds identity (2.13) is equivalent to

Resu(iw,uYM(Y (a, u)b, w)(w + u)munwl) =

(2.14)

Resz(iz,wYM (a, z)YM (b, w)zm(z − w)nwl − p(a, b)iw,zYM (b, w)YM (a, z)zm(z − w)nwl)

for all n ∈ Z, m ∈ [γa], l ∈ [γb]. As usual, ix,y means expanding in the domain |x| > |y|.
Proof. Computing the residues we find that (2.14) is equivalent to

∑

t∈Z,j∈Z+

(
m

j

)
(a(j+n)b)

M
(t−j+m+l)w

−t−1

=
∑

t∈Z,j∈Z+

(−1)j
(
n

j

)(
aM(m+n−j)b

M
(t+j+l) − p(a, b)(−1)nbM(t+n−j+l)a

M
(m+j))

)
w−t−1.

�

Since V [γ] is L0–invariant, we have its eigenspace decomposition V [γ] = ⊕∆V
[γ]
∆ , and we

will write for v ∈ V
[γ]
∆v

,

YM (v, z) =
∑

n∈[γ−∆v]

vMn z−n−∆v .
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Definition 2.6. A Υ–twisted V –module M is called a positive energy V –module if M has
an R–grading M = ⊕j≥0Mj such that

(2.15) aMn Mj ⊆Mj−n, a ∈ V∆a .

The subspace M0 is called the minimal energy subspace. Then,

(2.16) aMn M0 = 0 for n > 0 and aM0 M0 ⊆M0 .

2.3. Zhu algebras. Set

(2.17) VΥ = span(a ∈ V | ǫa = 0).

Define a subspace JΥ of V as the span of elements

(2.18)
∑

j∈Z+

(
γa
j

)
a(−2+χ(a,b)+j)b = Reszz

−2+χ(a,b)Y ((1 + z)γaa, z)b,

with ǫa + ǫb ∈ Z.
Let

a ∗ b =
∑

j∈Z+

(
γa
j

)
a(−1+j)b,

Then JΥ is a two sided ideal in VΥ with respect to the product ∗. The quotient ZhuΥ(V ) =
VΥ/JΥ is an associative superalgebra with respect to the product ∗ (see [5] for a proof), which
is called the Zhu algebra associated to the grading (2.9).

Example 2.7. If Γ is the subgroup of R spanned by the conformal weights ∆a then one has
a Γ/Z–grading (2.9), for which

V [γ] = ⊕∆∈[γ]V∆.

The corresponding Zhu algebra is called the L0–twisted (or Ramond twisted) Zhu algebra and
denoted by ZhuL0V . If Γ = Z then one has the trivial grading (2.9) by setting V Z = V . The
corresponding Zhu algebra is denoted by ZhuZV and is called the non–twisted Zhu algebra
([5], Examples 2.14 and 2.15).

3. The conjugate contragredient module

In this section we adapt to our setting the proofs of Section 5 of [9], where the action of a
vertex operator algebra on the linear dual of a module is defined. If a ∈ V∆a , set

(−1)L0a = eπ
√
−1∆aa, σ1/2(a) = e

π
2

√
−1p(a)a.(3.1)

Lemma 3.1. Let g be a diagonalizable parity preserving conjugate linear operator on V with
modulus 1 eigenvalues, such that g(L) = L. Then one has the relation

(3.2) gY (a, z)g−1b = p(a, b)Y (g(a),−z)b
if and only if the operator

(3.3) φ = (−1)L0σ1/2g

is a conjugate linear automorphism of V . Moreover

(3.4) g2 = I ⇐⇒ φ2 = I.
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Proof. Assume that g satisfies (3.2). Then

φ(a)(n)φ(b) = ((−1)L0σ1/2g)(a)(n)((−1)L0σ1/2g)(b)(3.5)

= eπ
√
−1(∆a+∆b)eπ/2

√
−1(p(a)+p(b))g(a)(n)g(b).

By (3.2), g(a(n)b) = (−1)n+1p(a, b)g(a)(n)g(b). Substituting in (3.5), and noting that p(a) +
p(b) + 2p(a)p(b) = p(a(n)b) mod 4Z, we obtain

φ(a)(n)φ(b) = eπ
√
−1(∆a+∆b)eπ/2

√
−1(p(a)+p(b))(−1)n+1p(a, b)g(a(n)b)

= e
π
√
−1∆a(n)beπ/2

√
−1(p(a)+p(b)+2p(a)p(b))g(a(n)b)

= e
π
√
−1∆a(n)beπ/2

√
−1p(a(n)b)g(a(n)b) = φ(a(n)b).

Reversing the argument we obtain the converse statement.
To prove (3.4) remark that g(L) = L, hence L0g(a) = g(L)0g(a) = g(L0a), so, since

∆a ∈ R, ∆g(a) = ∆a. Moreover g is parity preserving and conjugate linear, hence

φ2(a) = (−1)L0σ1/2g(−1)L0σ1/2g(a) = eπ
√
−1(∆a+

1
2p(a))geπ

√
−1(∆a+

1
2p(a))g(a)

= eπ
√
−1(∆a+

1
2p(a))e−π

√
−1(∆a+

1
2 p(a))g2(a) = g2(a).

�

Definition 3.2. Let g be a diagonalizable parity preserving conjugate linear operator on V ,
satisfying (3.2) and such that g2 = I. Define A(z) : V → V ((z)) by

(3.6) A(z)v = ezL1z−2L0gv, v ∈ V.

Lemma 3.3. We have

(3.7) p(a, b)A(w)Y (a, z)A(w)−1b = iw,zY

(
A(z + w)a,

−z
(z + w)w

)
b

and

(3.8) A(z−1) = A(z)−1.

Proof. It is clear that

(3.9) w−2L0Y (a, z)w2L0b = Y (w−2L0a, z/w2)b.

By (3.2)

(3.10) p(a, b)gw−2L0Y (a, z)w2L0g−1b = Y (gw−2L0a,−z/w2)b.

Finally we use that, if |wz| < 1, then

(3.11) ewL1Y (a, z)e−wL1 = Y (ew(1−wz)L1(1− wz)−2L0a,
z

1− wz
)

(see (5.2.38) of [9] and (4.9.17) of [11]) to get, for |z| < |w|,

(3.12) p(a, b)ewL1Y (gw−2L0a,−z/w2)e−wL1b = Y (e(w+z)L1g(w + z)−2L0a,
−z

w(w + z)
)b,

which is (3.7).
Since g2 = I, (3.8) is equivalent to

(3.13) A(z)a = g−1z−2L0e−z−1L1a = gz−2L0e−z−1L1a.
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Next observe that

gz−2L0e−z−1L1a =
∑

r

z−2L0(−1)r 1
r!g(L

r
1a)z

−r

=
∑

r

z−2∆az2r(−1)r 1
r!g(L

r
1a)z

−r

=
∑

r

(−1)r 1
r!g(L

r
1a)z

r−2∆a .

Since g(L1v) = −g(L)1g(v) = −L1g(v) we obtain

gz−2L0e−z−1L1a =
∑

r

1
r!L

r
1g(a)z

r−2∆a = ezL1z−2L0g(a) = A(z)a.

�

Remark 3.4. Note that, by (3.13), if v is quasiprimary, we have

(3.14) A(z)v = z−2∆vg(v).

If Υ is a Γ/Z-grading on V , we let the opposite grading −Υ be the grading defined by
setting

−Υ([γ]) = Υ(−[γ]).

We say that a Γ/Z-grading is compatible with a map φ if φ(V [γ]) ⊆ V [γ].
Let M be a positive energy Υ–twisted module and let M † denote the restricted conjugate

dual of M , that is

(3.15) M † =
⊕

n≥0

M †
n

where M †
n is the space of conjugate linear maps from Mn to C.

Lemma 3.5. If M +K ∈ Z, then

(3.16) Reszz
MwN iz,w(z + w)K = (−1)K+M−1Reszz

−2−K−Mw2+2K+M+N iw,z(z + w)M .

Proof. If M +K < −1, both sides of (3.16) are zero. If M +K ≥ −1, then

Reszz
MwN iz,w(z + w)K = Resz

∑

j∈Z+

(
K

j

)
zM+K−jwN+j

=

(
K

M +K + 1

)
wN+M+K+1.

On the other hand

Reszz
mwniw,z(z +w)k = Resz

∑

j∈Z+

(
k

j

)
zm+jwn+k−j

=

(
k

−m− 1

)
wn+m+k+1

= (−1)−m−1

(−m− 1− k − 1

−m− 1

)
wn+m+k+1.

Equality holds for m = −2−K −M,n = 2 + 2K +M +N, k =M. �
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Theorem 3.6. Let φ be a conjugate linear involution of a conformal vertex algebra V . Choose
g as in Definition 3.2 and define A(z) by (3.6). Let Υ be a Γ/Z–grading on V compatible
with φ. Let M be a Υ–twisted positive energy module. Then

(a) The map YM† given by

(3.17) 〈YM†(v, z)m′,m〉 = 〈m′, YM (A(z)v, z−1)m〉, m ∈M,m′ ∈M †,

defines on M † the structure of a (−Υ)–twisted V –module.
(b) If dimMn <∞ for all n then (M †)† is naturally isomorphic to M .

Proof. Let V = ⊕γ∈Γ/ZV
γ be the grading Υ. Write explicitly for v ∈ V γ

∆v
,

YM†(v, z) =
∑

n∈−γ−∆v

vM
†

n z−n−∆v .

Then we have ∑

n

〈vM†

n m′,m〉z−n−∆v =
∑

n

〈m′,
∑

t

1
t!(L

t
1g(v))

M
n m〉zn−∆v .

In other words, if n ∈ −γ −∆v, then

(3.18) 〈vM†

n m′,m〉 = 〈m′,
∑

t

1
t!(L

t
1g(v))

M
−nm〉.

In particular, vM
†

n M †
j ⊆ M †

j−n. This proves that, by (3.15), YM†
is indeed a (−Υ)–twisted

quantum field.
Next observe that

(3.19) 〈1M†

(n)m
′,m〉 = 〈1M†

n+1m
′,m〉 = 〈m′,1M−n−1m〉 = δ−n−1,0〈m′,m〉,

hence (2.12) for M † follows.
We now prove the Borcherds identity (2.14) for M †, that is

Resu〈YM†(Y (a, u)b, w)iw,u(w + u)kunwlm′,m〉
= Resz(〈YM†(a, z)YM†(b, w)iz,wz

k(z − w)nwlm′,m〉)(3.20)

− p(a, b)Resz(〈YM†(b, w)YM†(a, z)iw,zz
k(z − w)nwlm′,m〉)

for all n ∈ Z, k ∈ [−γa], l ∈ [−γb]. Since
〈YM†(a, z)YM†(b, w)m′,m〉 = 〈m′, YM (A(w)b, w−1)YM (A(z)a, z−1)m〉,
〈YM†(b, w)YM†(a, z)m′,m〉 = 〈m′, YM (A(z)a, z−1)YM (A(w)b, w−1)m〉,
〈YM†(Y (a, u)b, w)m′,m〉 = 〈m′, YM (A(w)Y (a, u)b, w−1)m〉,

we have to prove that

Resu(〈m′, YM (A(w)Y (a, u)b, w−1)m〉iw,u(w + u)kunwl)

= Resz(〈m′, YM (A(w)b, w−1)YM (A(z)a, z−1)m〉iz,wzk(z −w)nwl)

− p(a, b)Resz(〈m′, YM (A(z)a, z−1)YM (A(w)b, w−1)m〉iw,zz
k(z − w)nwl).

Hence we need to check that

Resu(YM (A(w)Y (a, u)b, w−1)iw,u(w + u)kunwl)

= Resz(YM (A(w)b, w−1)YM (A(z)a, z−1)iz,wz
k(z −w)nwl)(3.21)

− p(a, b)Resz(YM (A(z)a, z−1)YM (A(w)b, w−1)iw,zz
k(z − w)nwl).
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Changing variables in the Borcherds identity (2.14) for YM we obtain, for all n ∈ Z, m ∈ [γa],
l ∈ [γb],

RestYM (Y (a, t−1)b, w−1)iw−1,t−1(w−1 + t−1)mt−n−2w−l

= Rest(YM (a, t−1)YM (b, w−1)it−1,w−1t−m−2(t−1 − w−1)nw−l)

− p(a, b)Rest(YM (b, w−1)YM (a, t−1)iw−1,t−1t−m−2(t−1 − w−1)nw−l),

which is equivalent to

Rest(YM (Y (a, t−1)b, w−1)it,w(w + t)mt−n−2−mw−l−m

= Rest(YM (a, t−1)YM (b, w−1)iw,tt
−m−n−2(w − t)nw−l−n)(3.22)

− p(a, b)Rest(YM (b, w−1)YM (a, t−1)it,wt
−m−2−n(w − t)nw−l−n).

Write explicitly A(w)a =
∑

r∈Z+
Cr(a)w

r−2∆a , where Cr(a) ∈ V . Then

YM (A(t)a, t−1) =
∑

r∈Z+,h∈[γa]
Cr(a)(h)t

h+1tr−2∆a =
∑

r∈Z+

YM(Cr(a), t
−1)tr−2∆a ,

so, by (3.22),

Rest(YM (A(t)a, t−1)YM (A(w)b, w−1)iw,tt
−m−n−2(w − t)nw−l−n)

− p(a, b)Rest(YM (A(w)b, w−1)YM (A(t)a, t−1)it,wt
−m−2−n(w − t)nw−l−n)

=
∑

r

Rest(YM (Cr(a), t
−1)YM (A(w)b, w−1)iw,tt

−m−n−2+r−2∆a(w − t)nw−l−n)

− p(a, b)
∑

r

Rest(YM (A(w)b, w−1)YM (Cr(a), t
−1)it,wt

−m−2−n+r−2∆a(w − t)nw−l−n)

=
∑

r

Rest(YM (Y (Cr(a), t
−1)A(w)b, w−1)it,w(w + t)m−r+2∆at−n−2−m+r−2∆aw−l−m+r−2∆a

= Rest(YM (it,wY (A(
wt

w + t
)a, t−1)A(w)b, w−1)(w + t)mt−n−2−mw−l−m.

Therefore we have

Resz(YM (A(z)a, z−1)YM (A(w)b, w−1)iw,zz
k(w − z)nwl)

− p(a, b)Resz(YM (A(w)b, w−1)YM (A(z)a, z−1)iz,wz
k(w − z)nwl)

= Rest(YM (it,wY (A(
wt

w + t
)a, t−1)A(w)b, w−1)(w + t)−k−n−2tkwl+k+2n+2.

Hence (3.21) turns into

Rest(it,wYM (Y (A(
wt

w + t
)a, t−1)A(w)b, w−1)(w + t)−k−n−2tkwl+k+2n+2

= −p(a, b)(−1)nRest(YM (A(w)Y (a, t)b, w−1)iw,t(w + t)ktnwl).

Expand the L.H.S. above as

Rest(YM (it,wY (A(
wt

w + t
)a, t−1)A(w)b, w−1)(w + t)−k−n−2tkwl+k+2n+2) =

∑

p,q,r,s

Rest((Cr(a)(p)Cs(b))(q)it,w(w + t)−r+2∆a−k−n−2tk+r−2∆a+p+1wl+k+2n+2+q+s−2∆b+r−2∆a),
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and apply Lemma 3.5 to obtain

Rest(YM (it,wY (A(
wt

w + t
)a, t−1)A(w)b, w−1)(w + t)−k−n−2tkwl+k+2n+2

= Rest
∑

p,q,r,s

(−1)p−n−1(Cr(a)(p)Cs(b))(q)iw,t(w + t)k+r−2∆a+p+1tn−p−1wl+q+s+p+1−2∆b

= (−1)n+1Rest
∑

p

(−1)pYM ((A(w + t)a(p)A(w)b), w
−1)iw,t(w + t)k+p+1tn−p−1wl+p

= (−1)n+1Rest(iw,tYM (Y ((A(w + t)a,
−t

w(w + t)
)A(w)b), w−1)(w + t)ktnwl).

Thus we are reduced to prove that

Rest(iw,tYM (Y (A(t+ w)a,
−t

w(t+ w)
)A(w)b, w−1)wl(t+ w)ktn

= p(a, b)Rest(YM (A(w)Y (a, t)b, w−1)iw,t(w + t)ktnwl),

or equivalently

(3.23) p(a, b)A(w)Y (a, t)b = iw,tY

(
A(t+ w)a,

−t
(t+ w)w

)
A(w)b,

which is equation (3.7) with A(w)b in place of b. Claim (a) follows.
Let us now check (b). We need only to check that the map m 7→ fm ∈ (M †)† where

〈fm,m′〉 = 〈m′,m〉 is a V –module isomorphism. The map is clearly bijective since we are
assuming dimMn <∞. Now

〈(Y(M†)†(v, z)fm,m
′〉 = 〈fm, YM†(A(z)v, z−1)m′〉 = 〈YM†(A(z)v, z−1)m′,m〉
= 〈m′, YM (A(z)A(z−1)v), z)m〉.

Now use (3.8) to get

〈(Y(M†)†(v, z)fm,m
′〉 = 〈m′, YM (v, z)m〉 = 〈fYM (v.z)m,m

′〉.

�

4. Invariant Hermitian forms on conformal vertex algebras

Let V be a conformal vertex algebra. By a Hermitian form on V we mean a map ( · , · ) :
V × V → C conjugate linear in the first argument and linear in the second, such that
(v1, v2) = (v2, v1) for all v1, v2 ∈ V .

Let φ be a conjugate linear parity preserving involution of V . Consider the conjugate
linear operator (cf (3.3))

(4.1) g = ((−1)L0σ1/2)−1φ.

By (3.4), we have that g2 = I. Obviously g satisfies the hypothesis of Definition 3.2. Two
instances of such a situation are the following.

(1) Recall from Remark 2.2 that, if V is a vertex operator superalgebra, then (−1)2∆a =

(−1)p(a) for all a ∈ V . Set s(a) = ∆a +
1
2p(a) and note that in this case s(a) is an
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integer. Then

∆a + 2∆2
a = s(a)− 1

2
p(a) + 2(s(a)− 1

2
p(a))2

= s(a)− 1

2
p(a) + 2s(a)2 − 2s(a)p(a) +

1

2
p(a)2.

As p(a)− p(a)2 = 0 and p(a), s(a) are integers, we see that

∆a + 2∆2
a ≡ s(a) mod 2

so that

g(a) = e−π
√
−1(∆a+

1
2
p(a))φ(a) = (−1)s(a)φ(a) = (−1)∆a+2∆2

aφ(a)

hence, if V is a vertex operator superalgebra,

(4.2) g = (−1)L0+2L2
0φ.

(2) The vertex algebra of symplectic bosons provides an example of a conformal vertex
algebra that is not a vertex operator superalgebra, where our definition applies. Let
RR be a real finite dimensional even vector space equipped with a bilinear non-
degenerate symplectic form 〈·, ·〉. Let R = C ⊗ RR. Equip R with the structure of a
nonlinear conformal algebra with λ-bracket given by

[aλb] = 〈a, b〉.
Let V be the corresponding universal enveloping vertex algebra. The Virasoro vector
is

L =
1

2

∑
: T (ai)ai :

with {ai}, {ai} dual bases of R. The elements in R are primary of conformal weight
1
2 . Let φ(r) = r̄, where r̄ is complex conjugation with respect to RR. Then, clearly,

[φ(a)λφ(b)] = 〈a, b〉,
hence φ extends to a conjugate linear involution of V . In this case

g(r) = −
√
−1r̄, r ∈ R.

The following definition first appeared in [3] for vertex operator superalgebras, generalizing
the definition, given in [7], for vertex operator algebras.

Definition 4.1. Let φ be a conjugate linear involution of a conformal vertex algebra V .
Choose g as in Definition 3.2 and define A(z) by (3.6). A Hermitian form ( · , · ) on V is said
to be φ–invariant if, for all a ∈ V ,

(4.3) (v, Y (a, z)u) = (Y (A(z)a, z−1)v, u), u, v ∈ V.

Remark 4.2. If v ∈ V is quasi-primary, then, due to (3.14), (4.3) becomes

(4.4) (v, anu) = (g(a)−n(v), u), u, v ∈ V.

The statement of the main result of [15] can be extended to our setting as follows.

Theorem 4.3. In the setting of Definition 4.1, the space of φ–invariant Hermitian forms

on V is linearly isomorphic to the set of conjugate linear functionals F ∈ V †
0 such that

〈F,L1V1〉 = 0 and 〈F, g(v)〉 = 〈F, v〉 for all v ∈ V0.
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The proof is the same as in [15, Theorem 3.1]. In the following we simply check that the
argument also works in our modified setting. Recall that an element m in a V –module M is
called vacuum–like if a(n)m = 0 for all n ≥ 0 and all a ∈ V . By Proposition 2.3 of [15], a
vector m ∈ M is vacuum-like if and only if L−1m = 0, i.e. the space of vacuum–like vectors
is the space ML−1 of L−1–invariants; moreover, if m is a vacuum–like vector in M , then
Y (u, z)m = ezL−1u(−1)m.

Consider the map

Ψ : HomV (V,M) →M, Ψ(ψ) = ψ(1).

By Proposition 3.4 of [15], for any V –module M , Ψ is an isomorphism between HomV (V,M)
and the space ML−1 .

Proof of Theorem 4.3. Assume that ( · , · ) is a φ–invariant Hermitian form on V . Note that,
since g(L) = L, (4.4) implies that (L0v,w) = (v, L0w). In particular the eigenspaces of L0

are orthogonal. Define F ∈ V †
0 by 〈F, v〉 = (v,1). Then ( · , · ) is uniquely determined by F ,

since, letting u = 1 and taking Reszz
−1 of both sides of (4.3), we obtain

(v, a) = Reszz
−1(Y (A(z)a, z−1)v,1).

By Remark 4.2,

(4.5) (L1v,1) = (v, L−11) = 0, (1, L1v) = (L−11, v) = 0,

hence, since L−11 = 0, we see that 〈F,L1V1〉 = 0.
Next we prove that, if a ∈ V , then

(4.6) (g(a),1) = (1, a),

Since the form is Hermitian, we have (1, a) = (a,1), so that (4.6) implies 〈F, g(a)〉 = 〈F, a〉.
To prove (4.6) we observe that, since g(L) = L, g preserves the L0–eigenspace decomposition.
Since the eigenspaces of L0 are orthogonal, we have that (4.6) is satisfied if ∆a 6= 0. We can
therefore assume that ∆a = 0, so that

(1, a) = Reszz
−1(1, Y (a, z)1) = Reszz

−1(Y (A(z)a, z−1)1,1)

=
∑

r

( 1
r!(L

r
1g(a))∆a1,1)

=
∑

r

1
r!((L

r
1g(a))01,1).

By (4.5), in order to prove (4.6), we need only to prove that

(4.7) (Lr
1g(a))01 ∈ L1V1, r ≥ 1, a ∈ V0.

We prove by induction on r that

(Lr
1b)01 ∈ L1V1, r ≥ 1, b ∈ V0.

If r = 1, then

[L1, b−1] =
∑

j∈Z+

(
2

j

)
(L(j)b)0 = (L−1a)0 + 2∆bb0 + (L1b)0.

Since ∆b = 0, (L−1b)0 = 0, so

(L1b)01 = L1(a−11)− b−1(L11) = L1(b−11) ∈ L1V1.
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If r > 1, then

[L1, (L
r−1
1 b)−1] =

∑

j∈Z+

(
2

j

)
(L(j)(L

r−1
1 b))0

= L−1(L
r−1
1 b)0 − 2(r − 1)(Lr−1

1 b)0 + (Lr
1b)0

= −(r − 1)(Lr−1
1 b)0 + (Lr

1b)0 ,

so

(Lr
1b)01 = L1((L

r−1
1 b)−11)− (Lr−1

1 b)−1L11+ (r − 1)(Lr−1
1 b)01

= L1((L
r−1
1 b)−11) + (r − 1)(Lr−1

1 b)01.

The claim now follows by the induction hypothesis.
We now prove the converse statement. Consider V as a Γ/Z–graded vertex algebra with

Γ = Z and the trivial grading Υ(Z) = V . Then the state–field correspondence defines on V
the structure of a Υ–twisted positive energy module. Since Υ is clearly compatible with φ,

by Thoerem 3.6, we have a Υ–twisted module structure on V †. Fix F ∈ V †
0 which vanishes

on L1V1. Then F is a vacuum–like vector in V †. In particular the map ΦF : V → V † defined
by ΦF (v) = v†(−1)F is a V –module homomorphism. Here and in what follows we write for

simplicity a†n instead of aV
†

n . Define

(u, v) = 〈v†(−1)F, u〉 = 〈ΦF (v), u〉.
Let us check that this form is φ–invariant:

(v, Y (a, z)u) = 〈ΦF (Y (a, z)u), v〉
= 〈YV †(a, z)ΦF (u), v〉
= 〈ΦF (u), Y (A(z)a, z−1)v〉
= (Y (A(z)a, z−1)v, u).

It remains to show that, if 〈F, a〉 = 〈F, g(a)〉, then the form is Hermitian. Since the form
is φ–invariant, by (4.6),

(a,1) = 〈F, a〉 = 〈F, g(a)〉 = (g(a),1) = (1, a).

We can now check that the form is Hermitian:

(u, v) = Reszz
−1(u, Y (v, z)1)

= Reszz
−1(Y (A(z)v, z−1)u,1)

= Reszz
−1(1, Y (A(z)v, z−1)u)

= Reszz
−1(Y (A(z)A(z−1)v, z)1, u)

= Reszz
−1(Y (v, z)1, u) = (v, u),

where, in the last step, we used (3.8). �

Remark 4.4. Note that we didn’t use in the proof the assumptions that V0 = C1 and that
dimVn = 0 for n < 0. However, if V0 = C1, then Theorem 4.3 implies that there exists a
non–zero φ–invariant Hermitian form on V if and only if V1 consists of quasiprimary elements,
and for this form (1,1) 6= 0. The last statement follows observing that the eigenspaces of
L0 are orthogonal to each other and the kernel of a φ–invariant Hermitian form is an ideal.
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So if (1,1) = 0, then 1 lies in the kernel, hence the kernel of the form is V . Also, such a
Hermitian form, satisfying (1,1) = 1, is unique.

Lemma 4.5. Let M be a module over sl(2) := span{e, h, f}, such that h is diagonalisable
with finite–dimensional eigenspaces and negative eigenvalues. Then M is a direct sum of
Verma modules.

Proof. Since the sum of h–eigenspaces with eigenvalues congruent mod 2 is a submodule,
we may assume that all eigenvalues of h are congruent mod 2. Since the h–eigenspaces are
finite–dimensional, U decomposes as the direct sum of the generalized eigenspaces for the
Casimir operator Ω of sl(2). We can therefore assume that Ω has only one eigenvalue. Any
irreducible subquotient of M has negative highest weight, say n, and the eigenvalue of Ω is
1
2n

2 + n on it. Hence if two irreducible subquotients with non–equal highest weights have
the same Ω–eigenvalue, the sum of these highest weights is −2. Since all eigenvalues of h are
negative and congruent mod 2, we deduce that all irreducible subquotients have the same
highest weight n. So, on the space M e of e–invariants (which is non-zero since the set of
eigenvalues of h is bounded above), h has one eigenvalue n, and the same is true for any
quotient of M . But on N =M/U(sl(2))M e, h has eigenvalues strictly smaller that n, hence
N e = 0 and M = U(sl2)M

e. Since n < 0, any vector from M e generates an irreducible
Verma module, so M is a direct sum of Verma modules with highest weight n. �

Proposition 4.6. Let V be a conformal vertex algebra such that L1V1 = 0, i.e. V1 consists
of quasiprimary vectors. Let {v1, v2, . . .} be a minimal system of strong generators, which
includes L, and consists of eigenvectors for L. Then, summing to the vi elements from
L−1V , we can make these generators quasiprimary.

Proof. By Lemma 4.5, applied to U =
⊕

n>0 Vn and f = L−1, h = −2L0, e = −1
2L1, we get

(4.8) V = C1⊕
∑

i

Mi,

where theMi are Verma modules for sl(2) with highest weight vectors quasiprimary elements.
We proceed by induction on the conformal weight of a generator. If the conformal weight
is 1

2 or 1 there is nothing to prove. Take now a generator vi whose conformal weight is
strictly greater than 1. By (4.8), we can write vi = v′i + L−1b, where v

′
i is quasiprimary and

non-zero, due to minimality. By inductive assumption b lies in the subalgebra generated by
quasiprimary generators. Hence we can replace vi by v

′
i. �

Recall (cf. [11]) that, since V0 = C1, one can define the expectation value 〈v〉 of v by the
equation PV0(v) = 〈v〉1 where PV0 is the projection onto V0 with respect to the decomposition
V = V0 ⊕ (

∑
n 6=0 Vn).

Corollary 4.7. Suppose that V is a conformal vertex algebra such that V1 consists of quasipri-
mary vectors. Let φ be a conjugate linear involution of V . Then there exists a unique φ–
invariant Hermitian form ( · , · ) on V such that (1,1) = 1. Moreover for any collection
{U i | i ∈ I} of quasiprimary elements that strongly generate V (it exists by Proposition 4.6)
we have

(
(U i1

j1
)m1 · · · (U it

jt
)mt1, (U

i′1
j′1
)m

′
1 · · · (U i′r

j′r
)m

′
r1

)

=
〈
((g(U it)−jt)

mt · · · (g(U i1)−j1)
m1(U

i′1
j′1
)m

′
1 · · · (U i′r

j′r
)m

′
r1

〉
.(4.9)
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Proof. Since L1V1 = {0}, the first statement follows from Theorem 4.3.
To prove the second statement, note that, by (4.4), for a quasiprimary element U , we have

(g(U)nv,w) = (v, U−nw) and

(Unv,w) = (w,Unv) = (g(U)−nw, v) = (v, g(U)−nw).

Since V0 = C1, we have (1, a) = 〈a〉, hence formula (4.9) follows. �

Definition 4.8. If the Hermitian form (4.9) is positive definite, the vertex algebra V is called
unitary.

Lemma 4.9. Let V be a conformal vertex algebra and let φ be a conjugate linear involution
on V . If there is a φ–invariant positive definite Hermitian form on V and a ∈ V is a non-zero
quasiprimary element such that φ(a) = a then

〈a∆aa−∆a1〉 ∈ R\{0} if (−1)2L0σ(a) = a,

〈a∆aa−∆a1〉 ∈
√
−1R\{0} if (−1)2L0σ(a) = −a.

Proof. Since

(a, a) = e−
π
2
√
−1(2∆a+p(a))〈a∆aa−∆a1〉,

and (a, a) > 0, we see that 〈a∆aa−∆a1〉 is real and non-zero if (−1)2∆aσ(a) = a, while it is
purely imaginary and non-zero otherwise. �

In conclusion of this section we discuss invariant Hermitian forms on tensor products of
vertex algebras. Recall from [11] that if V,W are vertex algebras, their tensor product is the
vertex algebra having V ⊗W as space of states, 1⊗ 1 as vacuum vector and T ⊗ I + I ⊗ T
as translation operator. The state–field correspondence is given by

Y (u⊗ v, z) = Y (u, z)⊗ Y (v, z).

If V,W are conformal vertex algebras, also V ⊗W is conformal: its Virasoro vector is L =
LV ⊗ 1+ 1⊗ LW .

Let φV , φW be conjugate linear involutions of V , W and set

gV = ((−1)(LV )0σ
1/2
V )−1φV , gW = ((−1)(LW )0σ

1/2
W )−1φW ,

g = gV ⊗ gW , φ = φV ⊗ φW .

Observe that

φ = (−1)L0σ1/2g.

Moreover

A(z) = ezL1z−2L0g = (ez(LV )1 ⊗ ez(LW )1)(z−2(LV )0 ⊗ z−2(LW )0)(gV ⊗ gW ) = AV (z)⊗AW (z).

If ( . , . )V , ( . , . )W are invariant Hermitian forms on V,W , respectively, we can induce an
invariant Hermitian form ( . , . )V ⊗W on V ⊗W by setting

(v1 ⊗ w1, v2 ⊗ w2)V⊗W = (v1, v2)V (w1, w2)W .

Indeed,

(v1 ⊗ v2, Y (a⊗ b, z)(w1 ⊗ w2)) = (v1, Y (a, z)w1)V (v2, Y (b, z)(w2))W

= (Y (AV (z)a, z
−1)v1, w1)V (Y (AW (z)b, z−1)v2, w2)W

= (Y (AV (z)⊗AW (z)(a⊗ b), z−1)(v1 ⊗ v2), w1 ⊗ w2)

= (Y (A(z)(v1 ⊗ v2), w1 ⊗ w2).



16 VICTOR G. KAC, PIERLUIGI MÖSENEDER FRAJRIA, PAOLO PAPI

5. Examples of invariant Hermitian forms

In this Section we apply Corollary 4.7 to fermionic, bosonic, affine, and lattice vertex
algebras.

5.1. Superfermions. Consider a superspace A = A0̄ ⊕ A1̄ endowed with a non-degenerate
even skew-supersymmetric bilinear form ( . | . ). Let V (A) be the universal vertex algebra of
the Lie conformal superalgebra A⊕CK with λ-bracket

[aλb] = (a|b)K,
K being an even central element. Let F be the fermionic vertex algebra:

F = V (A)/(K − 1).

Let φ be a conjugate linear involution of A such that

(φ(a)|φ(b)) = (a|b).
By setting φ(K) = K we can extend φ to a conjugate linear involution of A⊕ CK. Indeed

[φ(a)λφ(b)] = (φ(a)|φ(b)) = (a|b)K = φ((a|b)K).

This implies that φ extends to a conjugate linear involution of V (A), hence, since φ(K−1) =
K − 1, to an involution of F .

Fix a basis {ai} of A and let {bi} be its dual basis w.r.t. ( . | . ) (i.e. (ai|bj) = δi,j). The
Virasoro vector is [11]

(5.1) L =
1

2

n∑

i=1

: (Tbi)ai : .

It is easy to see that φ(L) = L. We embed A in F by identifying v with : v1 :. It is easily
checked that v ∈ A is a primary element of F of conformal weight 1/2. Set

(5.2) gA = ((−1)L0σ1/2)−1φ.

By (3.4), we have that g2A = I. Note that

(5.3) gA(a) = −
√
−1φ(a), a ∈ A0̄, gA(a) = −φ(a), a ∈ A1̄.

The set {ai} strongly and freely generates F . This means that, if we order (−1
2 − Z+) ×

{1, . . . ,m+ n} lexicographically, then the set

B =
⋃

r

{(ai1j1)
h1 · · · (airjr)

hr1 | (j1, i1) < · · · < (jr, ir), hs = 1 if p(ais) = 1}

is a basis of F . With this choice one easily checks that

F0 = C1, F1 = spanC({: aiaj :}).
Since, by Wick formula [11],

[Lλ : aiaj :] =: T (ai)aj : + : aiT (aj) : +λ : aiaj : +

∫ λ

0
([T (ai)µa

j] +
1

2
λ[aiµa

j])dµ

= T (: aiaj :) + λ : aiaj : −1

2
λ2(ai|aj) + 1

2
λ2(ai|aj)

= T (: aiaj :) + λ : aiaj :,
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we see that L1(F1) = {0}, hence Corollary 4.7 applies. Let ( · , · ) be the unique invariant
Hermitian form on F such that (1,1) = 1. By (5.3) and (4.4), the invariance amounts to

(vja, b) = −
√
−1(a, φ(v)−jb), v ∈ A0̄, (vja, b) = −(a, φ(v)−jb), v ∈ A1̄

for all a, b ∈ F , j ∈ 1
2 + Z.

We now discuss the unitarity of F . Assume that F is unitary and A0̄ 6= 0. Choose a 6= 0
in A0̄; we can assume φ(a) = a. Then, by Lemma 4.9, 〈a1/2a−1/21〉 6= 0 but 〈a1/2a−1/21〉 =
(a|a) = 0. It follows that, if F is unitary, then A = A1̄. Set AR = {a ∈ A | φ(a) = −a}.
Then, if a ∈ AR,

0 < (a, a) = 〈a1/2a−1/21〉 = (a|a),
so ( . | . )AR×AR

must be positive definite. In such a case, choose {ai} to be an orthonormal
basis of AR. It can be checked (say by induction on r) that

〈
ait−jt

· · · ai1−j1
a
i′1
j′1
· · · ai

′
r
j′r
1
〉
= δr,t

r∏

s=1

δis,i′s

r∏

s=1

δjs,j′s

so the invariant Hermitian form is the form defined by declaring the basis B to be orthonor-
mal. Hence F is a unitary conformal vertex algebra if and only if A is purely odd.

5.2. Superbosons. Let h be a vector superspace equipped with a supersymmetric even bi-
linear form ( . | . ). Let V (h) be the universal vertex algebra of the Lie conformal superalgebra
h⊕CK with λ-bracket

[vλw] = λ(v|w)K,
K being an even central element. Let M(h) be the vertex algebra:

M(h) = V (h)/(K − 1).

Let φ be a conjugate linear involution of h. As in the previous example, if

(φ(a)|φ(b)) = (a|b).
we can extend φ to a conjugate linear involution of M(h).

Fix a basis {ai} of h and let {bi} be its dual basis w.r.t. ( . | . ) (i.e. (ai|bj) = δi,j). The
Virasoro vector is

(5.4) L = 1
2

n∑

i=1

: biai : .

It is easy to see that φ(L) = L.
We embed h in M(h) by identifying h with : h1 :. It is easily checked that h ∈ h is a

primary element of M(h) of conformal weight 1.
Set

(5.5) gh = ((−1)L0σ1/2)−1φ.

By (3.4), we have that g2h = I. Note that

(5.6) gh(a) = −φ(a), a ∈ A0̄, gh(a) =
√
−1φ(a), a ∈ A1̄.

As in the previous example we can apply Corollary 4.7, thus there is a unique φ–invariant
Hermitian form ( · , · ) on M(h) such that (1, 1) = 1.

We now discuss the unitarity of M(h). Assume that M(h) is unitary and h1̄ 6= 0. Choose
h 6= 0 in h1̄; we can assume φ(h) = h. Then, by Lemma 4.9, 〈h1h−11〉 6= 0 but 〈h1h−11〉 =
(h|h) = 0. It follows that, if M(h) is unitary, then h = h0̄. If this is the case, set hR = {h ∈
h | φ(h) = −h}. Then, as in Subsection 5.1, we must have that ( . | . )hR×hR is positive definite.
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We choose an orthonormal basis {ai} of hR, ; the φ–invariant Hermitian form is therefore
given by
(
(ai1j1)

m1 · · · (aitjt)
mt1, (a

i′1
j′1
)m

′
1 · · · (ai

′
r
j′r
)m

′
r1

)
=

〈
(ait−jt

)mt · · · (ai1−j1
)m1(a

i′1
j′1
)m

′
1 · · · (ai

′
r
j′r
)m

′
r1

〉
.

If we order (−N)× {1, . . . ,dim h} lexicographically, then the set

B =
⋃

r

{ai1j1 · · · a
ir
jr
1 | (j1, i1) < · · · < (jr, ir)}

is a basis ofM(h). As in Example 5.1, one can check that the basis B is orthogonal; moreover
the norm of each element is positive, so M(h) is a unitary vertex operator superalgebra, if
and only if h is purely even.

5.3. Affine vertex algebras. Let g be a simple Lie algebra or a basic classical simple
finite–dimensional Lie superalgebra and let ( . | . ) be a supersymmetric non-degenerate even
invariant bilinear form on g.

We normalize the form ( . | . ) on g by choosing an even highest root θ of g as in [13] or [1],
and requiring (θ|θ) = 2. If g = D(2, 1, a), we assume a ∈ R.

Let φ be a conjugate linear involution of g. We assume that

(φ(x)|φ(y)) = (x|y),

noting that, if g is a Lie algebra, then the above assumption always holds.
Let Cur g = g⊕CK be the current Lie conformal algebra associated to g [11]. We extend

φ to Curg by setting φ(K) = K. Since

[φ(x)λφ(y)] = [φ(x), φ(y)] + λ(φ(x)|φ(y)K = φ([x, y]) + λ(x|y)K = φ([xλy]),

φ is a conjugate linear involution of Cur g, hence we can extend φ to a conjugate linear
involution of the universal enveloping vertex algebra V (g) of Cur g.

Choosing k ∈ R, we note that φ(K − k1) = K − k1, so φ pushes down to a conjugate
linear involution of the the universal affine vertex algebra of level k.

We identify a ∈ g with : a1 :∈ V k(g). Let h∨ be the dual Coxeter number of g, i.e. the
eigenvalue of the Casimir operator

∑
i b

iai on g divided by 2, where {ai} and {bi} are dual
bases of g, i. e. (ai|bj) = δij .

A Virasoro vector is provided by the Sugawara construction (defined for k 6= −h∨), see
e.g. [11]:

(5.7) Lg =
1

2(k + h∨)

dim g∑

i=1

: biai : .

It is easy to see that φ(Lg) = Lg provided that k ∈ R.
Set

gg = ((−1)L0σ1/2)−1φ.

Explicitly

gg(a) = −φ(a), a ∈ g0̄, gg(a) =
√
−1φ(a), a ∈ g1̄.

It is well known that a ∈ g is a primary element of V k(g) of conformal weight 1 (see e.g. [11]).
Moreover, the set {ai} strongly and freely generates V k(g). It follows that V k(g)0 = C1 and
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L1V
k(g)1 = 0. By Corollary 4.7, there exists a unique φ–invariant Hermitian form on V k(g),

given by
(
(ai1j1)

m1 · · · (aitjt)
mt1, (a

i′1
j′1
)m

′
1 · · · (ai

′
r
j′r
)m

′
r1

)

=
〈
(gg(a

it)−jt)
mt · · · (gg(ai1)−j1)

m1(a
i′1
j′1
)m

′
1 · · · (ai

′
r
j′r
)m

′
r1

〉
.

If k 6= −h∨, the vertex algebra V k(g) has a unique simple quotient that we denote by Vk(g).
We now discuss the unitarity of Vk(g). Assume that there is a conjugate linear involution φ
such that the corresponding φ–invariant form on Vk(g) is positive definite. If g is not a Lie
algebra then there is a ∈ g1̄, a 6= 0. Since φ is parity preserving we can assume φ(a) = a.
Then

(a, a) = (a−11, a−11) =
√
−1〈a1a−11〉 =

√
−1k(a|a) = 0.

If Vk(g) is unitary, then a is in the maximal ideal of V k(g), hence k = 0 and Vk(g) = C.
Assume now that g is a Lie algebra. Since φ is a conjugate linear involution of V k(g) then

φ|g is a conjugate linear involution of g. Let gR be the corresponding real form. As shown
above, if a ∈ gR, then

0 < (a, a) = (a−11, a−11) = −〈a1a−11〉 = −k(a|a),

hence ( . | . )|gR×gR
is either positive or negative definite. Let

◦
ω0 be a compact conjugate linear

involution of g such that φ
◦
ω0 =

◦
ω0φ. Let kR be the corresponding compact real form. Then

gR = gR ∩ kR ⊕ gR ∩ (
√
−1kR).

Since ( . | . )|kR×kR is negative definite and kR ∩ gR 6= {0}, we see that ( . | . )|gR×gR is negative

definite so φ =
◦
ω0. Let ω0 be the conjugate linear involution of the affinization ĝ of g which

extends
◦
ω0 as in §7.6 of [10]. Then the

◦
ω0–invariant Hermitian form on V k(g) is defined by

the property that

(ajx, y) = −(x,
◦
ω0(a)−jy), a ∈ g.

It follows from Theorem 11.7 of [10] combined with the formula for ω0 given at page 103 of

loc. cit., that the
◦
ω0–invariant Hermitian form on V k(g) is positive semi–definite if and only

if k ∈ Z+.

5.4. Lattice vertex algebras. Let Q be a positive definite integral lattice and VQ be its
associated lattice vertex superalgebra (see e.g. [11, §5.4]). Set h = C ⊗Z Q. Recall that the
free bosons vertex operator algebra M(h) embeds in VQ = ⊕α∈Q(M(h) ⊗ Ceα) with parity

p(M(h) ⊗ eα) = (α|α) mod 2. Let {a1, . . . , al} be an orthogonal basis of R ⊗Z Q and let
{b1, . . . , bl} be the dual basis of h with respect to the form ( . | . ) linearly extended from the
form on Q. The Virasoro vector of VQ is

L =
1

2

l∑

i=1

: aibi : .

There are primary elements eα ∈ VQ, α ∈ Q of conformal weight 1
2(α|α), such that a basis of

VQ is

B =
⋃

r,α

{ai1j1 · · · a
ir
jr
eα | (j1, i1) < · · · < (jr, ir)},

where, as in Example 5.2, (−N)× {1, . . . ,dim h} is ordered lexicographically.
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Following [7], we define a conjugate linear involution φ of VQ by setting

(5.8) φ(ai1−j1
· · · air−jr

eα) = (−1)rai1−j1
· · · air−jr

e−α.

It is immediate to see that φ(L) = L. Since the conformal weight of eα is 1
2(α|α), we have

that (−1)2L0σ = I so, if g = ((−1)L0σ1/2)−1φ, then

g = (−1)L0+2L2
0φ.

We have

(VQ)0 = C1, (VQ)1 = spanC({ai} ∪ {eα | (α|α) = 2}).
Since the ai, as well as the eα, are primary, we see that Corollary 4.7 applies. In particular

the explicit expression for the φ–invariant Hermitian form is
(
(ai1j1)

m1 · · · (aitjt)
mteα, (a

i′
1

j′
1

)m
′

1 · · · (ai
′

r

j′
r

)m
′

reβ
)
= δα,−β

〈
((ait

−jt
)mt · · · (ai1

−j1
)m1(a

i′
1

j′
1

)m
′

1 · · · (ai
′

r

j′
r

)m
′

r1
〉
.

As in Example 5.2 one can check that the basis B is orthogonal and consists of elements of
positive norm, so VQ is unitary.

6. Invariant Hermitian forms on modules

Let V be a conformal vertex algebra. Recall from (3.6) the definition of A(z). We let

(6.1) ω(v) = A(1)v, v ∈ V.

Assume that V is Γ/Z–graded and let Υ be a Γ/Z–grading compatible with φ.

Proposition 6.1. ω(JΥ) ⊆ J−Υ so ω induces a conjugate linear anti–isomorphism of asso-
ciative algebras ω : ZhuΥ(V ) → Zhu−Υ(V ). Moreover ω2 = Id.

Proof. By (2.18), we have

(6.2) ω


∑

j∈Z+

(
γa
j

)
a(−2+χ(a,b)+j)b


 = Resw(w

−2+χ(a,b)A(z)(Y ((1 + w)γaa,w)b)|z=1).

By (3.2)

p(a, b)A(z)Y ((1 + w)γaa,w)b =

= p(a, b)ezL1z−2L0gY ((1 + w)γaa,w)b

= ezL1z−2L0Y ((1 + w)γag(a),−w)g(b).
By (3.9)

ezL1z−2L0Y ((1 + w)γag(a), w)g(b) = ezL1Y ((1 + w)γaz−2L0g(a),−w/z2)z−2L0g(b).

By (3.11)

ezL1Y ((1 + w)γaz−2L0g(a),−w/z2)z−2L0g(b)

= Y (e(z+w)L1(z + w)−2L0(1 + w)γag(a), −w
z(z+w))e

zL1z−2L0g(b),

which means that

p(a, b)A(z)Y ((1 + w)γaa,w)b =

= Y (e(z+w)L1(z + w)−2L0(1 + w)γag(a), −w
z(z+w))A(z)b,
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so that, since the grading is compatible with φ and g(L) = L,

(p(a, b)A(z)Y ((1 + w)γaa,w)b)|z=1 = Y (e(1+w)L1(1 + w)−L0+ǫag(a), −w
(1+w))ω(b)

= Y (e(1+w)L1(1 + w)−L0+ǫg(a), −w
(1+w))ω(b)

Note that

e(1+w)L1(1 + w)−L0+ǫ = (1 + w)−L0+ǫeL1 .

Indeed, if a ∈ V ,

e(1+w)L1(1 + w)−L0+ǫa = e(1+w)L1(1 + w)−∆a+ǫaa = (1 + w)−∆a+ǫa
∑

r≥0

(1 + w)r 1
r!L

r
1a

=
∑

r≥0

(1 + w)−∆a+r+ǫa 1
r!L

r
1a = (1 + w)−L0+ǫ

∑

r≥0

1
r!L

r
1a

= (1 + w)−L0+ǫeL1a.

Hence,

(p(a, b)A(z)Y ((1 + w)L0+ǫa,w)b)|z=1 = Y ((1 + w)−L0+ǫeL1g(a), −w
(1+w))ω(b)(6.3)

= Y ((1 + w)−L0+ǫω(a), −w
(1+w))ω(b) = (1 + w)−L0Y ((1 +w)ǫω(a),−w)(1 + w)L0ω(b).

Set

̟a =

{
−ǫa − 1 if ǫa 6= 0,

0 if ǫa = 0.

Note that ̟ is the function ǫ defined in Section 2 corresponding to the grading −Υ.
Since ǫa+ ǫb ∈ Z, we have that ̟a = −χ(a, b)− ǫa and χ(a, b) = 1 if and only if ̟a+̟b ≤

−1. It follows that

Resw(w
−2+χ(a,b)(1 +w)−L0Y ((1 + w)ǫa,−w)(1 + w)L0b)

= Resw(w
−2+χ(a,b)

∑

n,j

(−1)n
(−∆a + ǫa + n+ 1

j

)
(a(n)b)w

−n−1+j)

=
∑

j

(−1)j
(−∆a + ǫa + j + χ(a, b)− 1

j

)
(a(−2+χ(a,b)+j)b)

=
∑

j

(
∆a − ǫa − χ(a, b)

j

)
(a(−2+χ(a,b)+j)b)

=
∑

j

(
∆a +̟a

j

)
(a(−2+χ(a,b)+j)b) = Resw(w

−2+χ(a,b)Y ((1 + w)L0+̟a,w)b.

Since Υ is compatible with φ, we have that ǫω(a) = ǫa (hence χ(a, b) = χ(ω(a), ω(b)). We
find that

Resw(w
−2+χ(a,b)A(z)(Y ((1 + w)L0a,w)b)|z=1)

= p(a, b)Resw(w
−2+χ(ω(a),ω(b))Y ((1 + w)L0+̟ω(a), w)ω(b)),

hence, by (6.2), ω(JΥ) ⊂ J−Υ.
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Next we prove that ω is an anti-automorphism. If a ∈ VΥ (cf. (2.17)) then ǫa = ǫω(a) = 0,
thus, if a, b ∈ VΥ, by (6.3),

p(a, b)ω(a ∗ b) = p(a, b)Resw(w
−1A(z)(Y ((1 + w)L0a,w)b)|z=1)

= Resww
−1(1 + w)−L0Y (ω(a),−w)(1 + w)L0ω(b).

Now use skew–symmetry Y (a, z)b = p(a, b)ezL−1Y (b,−z)a (see e.g. [11]) to get

ω(a ∗ b)
= Resw(w

−1(1 + w)−L0e−wL−1Y ((1 + w)L0ω(b), w)ω(a))

= Resw
∑

n,j,r

(−1)r
(−∆ω(a) + n+ 1− r

j

)
1
r!L

r
−1(ω(b)(n)ω(a))w

−n−2+j+r)

=
∑

j,r

(−1)r
(−∆ω(a) + j

j

)
1
r!L

r
−1(ω(b)(−1+j+r)ω(a))

=
∑

r,j

(−1)r
(−∆ω(a) + j

j

)(−∆ω(b) −∆ω(a) + j + r

r

)
(ω(b)(−1+j+r)ω(a)

=
∑

r,j

(−1)r+j

(
∆ω(a) − 1

j

)(−∆ω(b) −∆ω(a) + j + r

r

)
(ω(b)(−1+j+r)ω(a))

=
∑

r,j

(−1)r+j

(
∆ω(a) − 1

j

)(−∆ω(b) −∆ω(a) + j + r

r

)
(ω(b)(−1+j+r)ω(a))

=
∑

n≥r

(−1)n
(
∆ω(a) − 1

n− r

)(−∆ω(b) −∆ω(a) + n

r

)
(ω(b)(−1+n)ω(a))

=
∑

n

(−1)n
(−∆ω(b) + n− 1

n

)
(ω(b)(−1+n)ω(a))

=
∑

n

(
∆ω(b)

n

)
(ω(b)(−1+n)ω(a)) = ω(b) ∗ ω(a).

We used the fact that in ZhuΥV we have (cf. [5, (2.35)])

1

r!
Lr
−1a =

(−∆a

r

)
a.

and the Vandermonde identity on binomial coefficients.
Finally, by (3.8),

ω2(a) = A(1)2a = a.

hence ω2 = I. �

Remark 6.2. We now make explicit the map ω in the examples dealt with in Section 4. In
general, if a is quasi-primary, we have, by (6.1)

(6.4) ω(a) = g(a).

(1) Let V = F be the fermionic vertex algebra associated to a superspace A as in Example
5.1. According to [5, Theorem 3.25], ZhuL0(V ) is the Clifford algebra of A, i.e. the
unital associative algebra generated by A with relations

[a, b] = (a|b), a, b ∈ A.
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Then, according to (6.4) and (5.3),

(6.5) ω(a) = −
√
−1φ(a), a ∈ A0̄, ω(a) = −φ(a), a ∈ A1̄.

(2) Let V = M(h) be the vertex algebra of superbosons associated to a superspace h as
in Example 5.2. According to [5, Theorem 3.25], ZhuL0(V ) is the (super)symmetric
algebra of A. Then, according to (6.4) and (5.6),

ω(a) = −φ(a), a ∈ A0̄, ω(a) =
√
−1φ(a), a ∈ A1̄.

(3) If V = V k(g) (cf. Example 5.3), then ZhuL0(V ) = U(g) (see e.g. [5]). Then,
according to (6.4),

ω(a) = −φ(a), a ∈ g0̄, ω(a) =
√
−1φ(a), a ∈ g1̄.

(4) If V = VQ is a lattice vertex algebra (cf. Example 5.4), formulas (5.8) and (6.4) give

ω(eα) = (−1)
(α|α)((α|α)+1)

2 e−α, ω(h) = −h̄, h ∈ h.

Here h̄ is the conjugatie of h ∈ h with respect to R⊗ZQ. If Q is even, ZhuL0(VQ) has
been proved in [6] to be isomorphic to a generalized Smith algebra, denoted there by

A(Q). The algebra A(Q) is generated by elements Eα, α ∈ Q,h ∈ h, and the explicit

formula for the isomorphism ZhuL0VQ
∼= A(Q) given in [6, Theorem 3.4] implies that

ω(Eα) = (−1)
(α|α)

2 E−α, ω(h) = −h̄, h ∈ h,

is a conjugate linear anti–automorphism of A(Q).

Definition 6.3. Let R be an associative superalgebra over C with a conjugate linear anti–
involution ω, and letM be an R–module. A Hermitian form ( · , · ) onM is called ω–invariant
if

(ω(a)m1,m2) = (m1, am2), a ∈ R, m1,m2 ∈M.

Assume for the rest of this Section that Γ = Z or Γ = 1
2Z, so that ZhuΥ = Zhu−Υ. The

following is the natural extension of Definition 4.1 to V –modules.

Definition 6.4. Let φ be a conjugate linear involution of the vertex algebra V . A Hermitian
form ( · , · ) on a Υ–twisted V –module M is called φ–invariant if, for all v ∈ V ,

(6.6) (m1, YM (a, z)m2) = (YM (A(z)a, z−1)m1,m2).

From now on we assume that the module M is a positive energy module (see Definition
2.6).

Remark 6.5. The space of φ–invariant Hermitian forms on M is linearly isomorphic to

{Θ ∈ HomV (M,M †) | 〈Θ(m1),m2〉 = 〈Θ(m2),m1〉}
Indeed, given Θ :M →M † a V –module homomorphism, then setting, for m1,m2 ∈M

(m1,m2)Θ = 〈Θ(m2),m1〉
defines a φ–invariant hermitian form on M . In fact

(m1, YM (a, z)m2)Θ = 〈Θ(YM (a, z)m2),m1〉 = 〈YM†(a, z)Θ(m2),m1〉
= 〈Θ(m2), YM (A(z)v, z−1)m1〉 = (YM (A(z)v, z−1)m1,m2)Θ.
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Conversely, let F :M×M → C be a φ–invariant hermitian form; then ΘF :M →M † defined
by 〈ΘF (m1),m2〉 = F (m2,m1) is a V –homomorphism from M to M †. Indeed

〈ΘF (YM (a, z)m1),m2〉 = F (m2, YM (a, z)m1) = F (YM (A(z)a, z−1)m2,m1)

= 〈ΘF (m1), YM (A(z)a, z−1)m2〉 = 〈YM†(a, z)ΘF (m1),m2〉.

Recall that a positive energy Υ–twisted V –module M is said quasi–irreducible if it is
generated by M0 and there are no non-zero submodules N ⊂M such that N ∩M0 = {0}.

By [5, Lemma 2.2], if M is a positive energy Υ-twisted V –module, then the map a 7→
(aM0 )|M0

descends to define a ZhuΥV –module structure on M0.

Lemma 6.6. If M is quasi–irreducible then M † is quasi–irreducible.

Proof. Set N = VM †
0 . Then N⊥ is graded and 〈F, v〉 = 0 for all v ∈ N⊥

0 , F ∈ M †
0 . This

implies that N⊥
0 = {0}, so N⊥ = {0}, hence N =M †.

If N is a graded submodule of M † with N0 = {0} then N⊥ is a graded submodule of M
containing M0. Since M0 generates M , it follows that N⊥ =M hence N = {0}. �

Proposition 6.7. Let M be a Υ-twisted positive–energy V –module generated by M0. Then
the space of φ–invariant Hermitian forms on M is linearly isomorphic to the set of ω–
invariant Hermitian forms on the ZhuΥV –module M0.

Proof. If ( · , · ) is a φ–invariant Hermitian form on M , then ( · , · )0 = ( · , · )|M0×M0
is a

ω–invariant Hermitian form on M0 by Proposition 6.1.
Let ( · , · )0 be a ω–invariant Hermitian form on the ZhuΥV –moduleM0. Let N be the sum

of all graded submodules N ′ of M such that N ′ ∩M0 = {0}. Then M/N is quasi–irreducible

and (M/N)0 = M0. Define Φ0 : M0 → M †
0 by setting Φ0(m1)(m2) = (m2,m1)0. Since the

form ( · , · )0 is ω–invariant, we have

Φ0(v
M
0 m1)(m2) = (m2, v

M
0 m1)0 = (ω(v)M0 m2,m1)0 = Φ0(m1)(ω(v)

M
0 m2)

= (vM
†

0 Φ0)(m2)(m1),

so Φ0 is a ZhuΥ(V )–module map between M0 and M †
0 . By Lemma 6.6 and [5, Theorem

2.30], there is a V –module map Φ : M/N → (M/N)† such that Φ|M0
= Φ0. Define, for

m1,m2 ∈M ,

(m1,m2) = Φ(m2 +N)(m1 +N).

It is clear that the form ( · , · ) is φ–invariant and that ( · , · )0 = ( · , · )|M0×M0
. It remains to

check that the form is Hermitian.
Consider the form ( · , · )′ defined by (m1,m2)

′ = (m2,m1). Note that ( · , · )′ is φ–
invariant:

(m1, YM (a, z)m2)
′ = (YM (a, z)m2,m1) = (YM (A(z)A(z−1)a, z)m2,m1)

= (m2, YM (A(z)a, z−1)m1) = (YM (A(z)a, z−1)m1,m2)
′.

Since ( · , · )0 is Hermitian, then

( · , · )′|M0×M0
= ( · , · )|M0×M0

,

hence ( · , · )′ = ( · , · ). �
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Remark 6.8. Theorem 4.3 is a consequence of Proposition 6.7. Indeed, the space of ω–
invariant Hermitian forms on V0 is linearly isomorphic to (V0/L1V1)

†. The isomorphism is
defined by mapping ( · , · )0 to F( · , · )0 where F( · , · )0(v) = (v,1)0. To prove that this map is
well defined, let us check that F( · , · )0(L1V1) = 0. If v ∈ V1, then

L1v = (L1v)01 = (v0 + (L1v)0)1) = ω(g(v))01,

so

F( · , · )0(L1v) = (L1v,1)0 = ((ω(g(v))01,1)0 = −(1, g(v)01)0 = 0.

The inverse is the map F 7→ ( · , · )F , where (v,w)F = F (ω(w)0v). Let us check that ( · , · )F
is ω–invariant. If u, v ∈ V0 and w ∈ VZ, then (u,w0v)F = F (ω(w0v)0u) and (ω(w)0u, v)F =
F (ω(v)0ω(w)0u). Viewing F as an element of V †, we observe that

F (ω(w0v)0u) = ((w0v)
V †

0 F )(u), F (ω(v)0ω(w)0u) = (wV †

0 vV
†

0 F )(u),

so it is enough to check that

(6.7) (w0v)
V †

0 F = wV †

0 vV †
0 F.

Observe that, since 〈F,L1V1〉 = 0, L−1F = 0, F is a vacuum–like element of V †. It follows

from Proposition 3.4 of [15] that the map Φ : V → V † defined by Φ(a) = aV
†

(−1)F is a

V –module map. In particular,

Φ(a(n)b) = aV
†

(n)Φ(b) = aV
†

(n)(b
V †

(−1)F ).

On the other hand

Φ(a(n)b) = (a(n)b)
V †

(−1)F

so

aV
†

(n)(b
V †

(−1)F ) = (a(n)b)
V †

(−1)F.

Since ∆v = ∆w0v = 0, we find vV
†

(−1)F = vV
†

0 F and (w0v)
V †

(−1)F = (w0v)
V †

0 F , so (6.7) follows.

7. Invariant Hermitian forms on W–algebras

We adopt the setting and notation of Section 1 of [13]. We let W k(g, x, f) be the uni-
versal W–algebra of level k ∈ R associated to the datum (g, x, f), where g is a simple
finite–dimensional Lie superalgebra with a reductive even part and a non-zero even invariant
supersymmetric bilinear form (. | .), x is an ad–diagonalizable element of g with eigenvalues in
1
2Z, f is an even element of g such that [x, f ] = −f and the eigenvalues of adx on the central-

izer gf of f in g are non-positive. Recall that we are assuming that a ∈ R for g = D(2, 1; a).
We call the datum (g, x, f) a Dynkin datum if there is a sl(2)–triple {f, h, e} containing f
and x = 1

2h.
Let

(7.1) g =
⊕

j∈ 1
2
Z

gj

be the grading of g by ad(x)–eigenspaces. We assume that k 6= −h∨ so that W k(g, x, f) has
a Virasoro vector. Then W k(g, x, f) is a conformal vertex algebra in the sense of Definition
2.1.

Remark 7.1. It is easy to show that a datum (g, x, f) as above is independent, up to
isomorphism, from the choice of f , hence we may use notation W k(g, x).
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Remark 7.2. An important special case is when f is a minimal nilpotent element of the
even part of g, i.e. f is the root vector e−θ corresponding to a maximal even root θ. In this
case, the invariant bilinear form (. | .) is normalized so that (θ|θ) = 2. Choose the root vector
eθ ∈ gθ in such a way that (eθ|e−θ) = 1

2 . Setting x = [eθ, e−θ], it is clear that (g, x, e−θ)
is a Dynkin datum. Identifying the Cartan subalgebra h with its dual using (. | .), one has
x = θ/2. The algebra W k(g, θ/2) is called a minimal W -algebra.

Lemma 7.3. Let φ be a conjugate linear involution of g such that

(7.2) φ(f) = f, φ(x) = x.

Assume also, as in Subsection 5.3, that

(7.3) (φ(X)|φ(Y )) = (X|Y ),

so that φ extends to a conjugate linear involution of V k(g). Then φ descends to an involution
of the vertex algebra W k(g, x, f).

Proof. Let A be the superspace Π(
∑

j>0 gj) where Π is the reverse parity functor. Let A∗ be

the linear dual of A and set Ach = A ⊕ A∗. Define the form 〈 · , · 〉ch on Ach by setting, for
a, b ∈ A, a′, b′ ∈ A∗,

〈a, b〉ch = 〈a′, b′〉ch = 0, 〈a, b′〉ch = b′(a), 〈b′, a〉ch = −p(a, b′)a′(b).
Let Ane be the superspace g1/2 equipped with the form 〈 · , · 〉ne defined by

〈a, b〉ne = (f |[a, b]).
Since φ(f) = f ,

〈φ(a), φ(b)〉ne = (f |[φ(a), φ(b)]) = (φ(f)|φ([a, b])) = (f |[a, b]) = 〈a, b〉ne.
It follows that φ extends to a conjugate linear involution of F (Ane). Similarly, setting

φ(b∗)(a) = b∗(φ(a)) for b∗ ∈ A∗ and a ∈ A, we have

〈φ(a), φ(b∗)〉ch = φ(b∗)(φ(a)) = b∗(a) = 〈a, b∗〉ch,
so φ extends to a conjugate linear involution of F (Ach). It follows that φ is a conjugate linear
involution of the vertex algebra C(g, f, x, k) = V k(g)⊗ F (Ach)⊗ F (Ane).

Recall that there is an element d ∈ C(g, f, x, k) such that d0 is an odd derivation and
d20 = 0, making C(g, f, x, k) a complex. It is easy to see that φ(d) = d, hence the involution φ
descends to an involution of the vertex algebraW k(g, x, f) = H0(C(g, f, x, k), d) [12], [13]. �

Recall from [13] that the vertex algebra W k(g, x, f) is strongly and freely generated by

fields J{xi} with {xi} a basis of gf , the centralizer of f in g. We can clearly assume that the

elements xi are homogeneous with respect to the gradation gf = ⊕jg
f
j . Let gR be the fixed

point set of φ. By (7.3), we see that ( . | . )gR×gR is a real bilinear form. Since φ(x) = x, we
see that gj = (gj ∩ gR)⊕ (

√−1gj ∩ gR). Moreover 〈·, ·〉ne is real when restricted to g1/2 ∩ gR.
Likewise, we can identify the real dual of g+∩gR with the set of b∗ ∈ A∗ such that φ(b∗) = b∗.
It follows that we can identify the algebra C(gR, f, x, k) as a real subalgebra of C(g, f, x, k).
We can therefore carry out the construction of the fields J{a} for a ∈ g

f
R
inside C(gR, f, x, k)

and therefore obtain that φ(J{a}) = J{a}. As a ∈ gf can be written as a = aR + ibR with

aR, bR ∈ g
f
R
, we see that we can construct the field J{a} so that φ(J{a}) = J{φ(a)}.

Let Lg the Virasoro vector for V k(g) defined in (5.7). The vertex algebra W k(g, x, f)
carries a Virasoro vector L, making it a conformal vertex algebra, which is the homology
class of Lg + T (x) + Lch + Lne (see [12]).
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In particular, by the above discussion and the explicit expressions for Lg, Lch, Lne, we
obtain that φ(L) = L. Following (3.3) we set

g = ((−1)L0σ1/2)−1φ.

If xi ∈ g
f
j , then the conformal weight of J{xi} is 1− j. It follows that

W k(g, x, f)0 = C1, W k(g, x, f)1 = span({J{xi} | xi ∈ g
f
0}).

Theorem 7.4. (a) Let v ∈ g
f
0 . If J{v} ∈ W k(g, x, f)1 is quasiprimary for more than one

k ∈ C, then

(7.4) (x|v) = 0.

(b) If the datum (g, x, f) is a Dynkin datum, then the elements J{v} are primary for all

v ∈ g
f
0 and k ∈ C (k 6= −h∨). In particular, by Corollary 4.7, there is a unique φ–invariant

Hermitian form ( · , · ) on W k(g, x, f) such that (1,1) = 1.

(c) Assume that g is a Lie algebra. If (7.4) holds for a datum (g, x, f) and all v ∈ g
f
0 , then

it is a Dynkin datum.

Proof. By [12, Theorem 2.4b], if v ∈ g
f
0 , then

[LλJ
{v}] = (T + λ)J{v} + λ2(12strg+(ad v) − (k + h∨)(v|x)),

hence claim (a) follows immediately.
If the datum (g, x, f) is a Dynkin datum, then 2(x|v) = ([e, f ]|v) = (e|[f, v]) = 0 if v ∈ gf .

Hence for (b) it suffices to show strgj (ad v) = 0 for all j ∈ 1
2N and v ∈ g

f
0 .

Consider the following bilinear form on gj :

< a, b >= ((ad f)2ja|b).
By sl(2)–representation theory, (ad f)2j : gj → g−j is injective for j > 0, hence < ·, · > is

non-degenerate. The form is clearly ad gf0–invariant. The form is super (resp. skew–super)
symmetric if j ∈ Z (resp. j ∈ 1

2 + Z):

< a, b >= ((ad f)2ja|b) = (−1)2j(a|(ad f)2jb) = (−1)2jp(a, b) < b, a > .

Hence for v ∈ g
f
0 , ad v lies in osp(gj) (resp. spo(gj)) if j ∈ Z (resp. j ∈ 1

2 + Z). Hence in
either case its supertrace is 0. This proves (b).

By Theorem 1.1 from [8], x = 1
2h+ c, where {e, h, f} is an sl(2)–triple for some e ∈ g1 and

c is a semisimple central element from the centralizer of this triple. We may assume that c is
defined over R. But then (x|c) = (12h+ c|c) = (c|c). Since we are assuming that g is a simple
Lie algebra, (7.4) implies that c = 0, proving (c). �

Remark 7.5. Let g be a simple Lie algebra. It follows from Theorem 7.4 that a datum

(g, x, f) is Dynkin if and only if (x|gf0 ) = 0 ( ⇐⇒ (x|gf ) = 0). In other words a 1
2Z–grading

of g is Dynkin iff f ∈ g−1, all eigenvalues of adx on gf are non-positive and (x|gf ) = 0.

Example 7.6. Let g = sl(3) with the data (g, 12(E11 − E33), E31, k) and (g,−2E11 + E22 +
E33, E31, k). The first one is a Dynkin datum corresponding to the minimal W–algebra

W k(g, θ/2). The second one is not Dynkin: indeed, if v = E11 − 2E22 +E33, then v ∈ g
f
0 and

(x|v) 6= 0.

Corollary 7.7. Assume that (g, x, f) is a Dynkin datum. Then there is a unique φ–invariant
Hermitian form ( . , . ) on W k(g, x, f) such that (1,1) = 1.
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Proof. By Theorem 7.4 (b), we can apply Corollary 4.7. �

We now describe the φ–invariant Hermitian form more explicitly using formula (4.9). Fix
a basis {xi} of gf . Set ∆i = ∆xi and pi = p(xi). By Proposition 4.6 we may assume that

the fields J{xi} are quasiprimary for all i. We can clearly assume that φ(xi) = xi for all i.
Since φ(L) = L, the proof of Lemma 4.5, hence of Proposition 4.6, can be done over R, so

φ(J{xi}) = J{xi} and let J{xi}(z) =
∑

n∈−∆i+Z

J
{xi}
n z−n−∆i .

Order the set

{(j, i) ∈ 1
2Z+ × {0, . . . ,dim gf − 1} | j ∈ ∆i + Z+}

lexicographically. Then the set

(7.5) {(J{xi1}
−j1

)m1 · · · (J{xit}
−jt

)mt1 | mi = 0 or 1 if xi is odd}

is a basis of W k(g, x, f). Since

g(J{xi}) = (−
√
−1)2∆i+piJ{xi},

formula (4.9) gives that
(
(J

{xi1}
j1

)m1 · · · (J{xit}
jt

)mt1, (J
{xi′1}
j′1

)m
′
1 · · · (J{xi′t}

j′r
)m

′
t1

)
(7.6)

= (−
√
−1)

∑
r mr(2∆ir+pir )

〈
(J

{xit}
−jt

)mt · · · (J{xi1}
−j1

)m1(J
{xi′1}
j′1

)m
′
1 · · · (J{xi′r}

j′r
)m

′
r

〉
.

Remark 7.8. SetR = span(T k(J{xi}), k ∈ Z
+). Let πZ be the quotient map fromW k(g, x, f)

to ZhuL0(W
k(g, x, f)). Set w = span(πZ(J

{xi})). By (7.5) the set

{: (T k1J{xi1})m1 · · · (T ktJ{xit})mt :| mi = 0 or 1 if xji is odd}
is a basis of W k(g, x, f). It follows from Theorem 3.25 of [5] that

R/(L−1 + L0)R ≃ w

has the structure of a nonlinear Lie superalgebra and that ZhuL0(W
k(g, x, f)) is its universal

enveloping algebra. In particular the set

{(πZJ{xi1})m1 ∗ · · · ∗ (πZJ{xit})mt | mi = 0 or 1 if xji is odd}

is a basis of ZhuL0(W
k(g, x, f)). Since, by Proposition 4.6, J{xi} can be chosen to be quasipri-

mary for all i, it is clear that the involution ω in this basis is given by

ω((πZJ
{xi1})m1∗· · ·∗(πZJ{xit})mt) = (−

√
−1)

∑
r mr(2∆ir+pir )(πZJ

{xit})mt ∗· · ·∗(πZJ{xi1})m1 .

We now restrict to the case of a minimal W–algebra W k(g, θ/2) (see Remark 7.2) where
one has a more explicit description of ZhuL0(W

k(g, θ/2)) and its involution.

Set g♮ = g
f
0 . Then gf = g♮ ⊕ g−1/2 ⊕ Cf . The elements J{v} are uniquely determined for

v ∈ g♮ ⊕ g−1/2 and have been computed explicitly in [12]. One usually denotes J{v} by G{v}

if v ∈ g−1/2. We also write g♮ = ⊕r
i=0gi with g0 the (possibly zero) center and gi a simple

ideal for i > 0.
Set, for u, v ∈ g−1/2,

〈u, v〉 = (eθ|[u, v])
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and note that 〈 · , · 〉 is a g♮–invariant skew–supersymmetric bilinear form on g−1/2. Fix a

basis {ai} of g♮ and a basis {ui} of g−1/2. Then W
k(g, θ) has as set of free generators

{J{ai}} ∪ {G{ui}} ∪ {L}.

Moreover the λ–brackets between generators is known explicitly [12], [13], [1], [14], and

Section 8: L is the Virasoro vector and its central charge is k sdimg
k+h∨ − 6k + h∨ − 4, the J{u}

are primary of conformal weight 1, the G{v} are primary of conformal weight 3
2 and

(1) [J{a}
λJ

{b}] = J{[a,b]} + λδij(k +
h∨−h∨

0,i

2 )(a|b) for a ∈ g
♮
i, b ∈ g

♮
j;

(2) [J{a}
λG

{u}] = G{[a,u]} for u ∈ g−1/2, a ∈ g♮;
(3)

[G{u}
λG

{v}] = −2(k + h∨)〈u, v〉L + 〈u, v〉
dim g♮∑

α=1

: J{aα}J{aα} : +

2

dim g♮∑

α,β=1

〈[aα, u], [v, aβ ]〉 : J{aα}J{aβ} : +2(k + 1)(∂ + 2λ)J{[[eθ ,u],v]♮}

+ 2λ

dim g♮∑

α,β=1

〈[aα, u], [v, aβ ]〉J{[aα,aβ ]} + 2p(k)λ2〈u, v〉.

.

Here {aα} (resp. {uγ}) is a basis of g♮ (resp. g1/2) and {aα} (resp. {uγ}) is the correspond-
ing dual basis w.r.t. ( . | . ) (resp w.r.t. 〈·, ·〉ne = (e−θ|[·, ·])), a♮ is the orthogonal projection of

a ∈ g0 on g♮, a♮i is the projection of a♮ on the ith minimal ideal g♮i of g
♮, ki = k+ 1

2(h
∨−h∨0,i),

where h∨0,i is the dual Coxeter number of g♮i with respect to the restriction of the form ( . | . ),
and p(k) is the monic quadratic polynomial given in Table 4 of [1]. See Appendix 8 for the
derivation of formula (3) from the formulas given in [12].

Identify w with g♮⊕g−1/2⊕CL by identifying πZJ
{a} with a, πZG

{v} with v and πzL with

L. As in Remark 7.8, a basis of ZhuL0(W
k(g, θ)) is given by

{um1
i1

∗· · ·∗umt
it

∗an1
j1
∗· · ·∗anr

jr
∗Lk | i1 < · · · it; j1 < · · · < jr; mp, nq ∈ {0, 1} if aip or ujq is odd}.

Moreover the commutation relations among the generators are as follows (here [·, ·]g denotes

the bracket in g, while [·, ·] is the bracket in ZhuL0(W
k(g, θ)).

(1) L is a central element,
(2) [a, b] = [a, b]g if a, b ∈ g♮,

(3) [a, v] = [a, v]g if a ∈ g♮ and v ∈ g−1/2,
(4)

[u, v] =〈u, v〉




dim g♮∑

α=1

(aα ∗ aα − [aα, aα]g)− 2(k + h∨)L− 1

2
p(k)




+

dim g♮∑

α,β=1

〈[aα, u]g, [v, aβ ]g〉(2aα ∗ aβ − [aα, aβ]g).
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By (2), (3) we can drop the subscript g from the bracket. Moreover observe that

dim g♮∑

α=1

[aα, aα]g = 0

and that

2aα ∗ aβ − [aα, aβ]g = 2aα ∗ aβ − [aα, aβ ] = aα ∗ aβ + p(aα, aβ)aβ ∗ aα.
Setting L′ = 2(k + h∨)L + 1

2p(k), a new generating space is g♮ ⊕ g−1/2 ⊕ CL′ and the com-
mutation relations are (1) with L′ in place of L, (2), (3) and

(4’)

[u, v] =〈u, v〉




dim g♮∑

α=1

aα ∗ aα − L′


+

dim g♮∑

α,β=1

〈[aα, u]g, [v, aβ ]g〉(aα ∗ aβ + p(aα, aβ)aβ ∗ aα).

It is then clear that ZhuL0(W
k(g, θ/2)) does not depend on k if k 6= −h∨.

The involution ω is easily computed: since the generators are quasiprimary, we have by
(6.4): ω(J{a}) = g(J{a}), hence

ω(L′) = L′,

ω(a) = (−1)p(a)+1(
√
−1)p(a)φ(a), a ∈ g♮,

ω(v) = (−1)p(v)(
√
−1)p(v)+1φ(v), v ∈ g−1/2.

Recall that, if k + h∨ 6= 0, then W k(g, θ/2) has a unique simple quotient Wk(g, θ/2). Re-
mark that the maximal proper ideal Ik of W k(g, θ/2) is the kernel of the invariant Hermitian
form on W k(g, θ/2), hence one can induce a invariant Hermitian form on Wk(g, θ/2). The
latter vertex algebra is unitary if and only if the invariant form onW k(g, θ/2) is positive semi-
definite. Recall from [1] that a level k is collapsing for W k(g, θ/2) if Wk(g, θ/2) is contained
in its affine vertex algebra part.

Theorem 7.9. Assume that Wk(g, θ/2) is unitary.

(1) If g 6= sl(2) is a Lie algebra then k is a collapsing level.
(2) If g♮ is not a Lie algebra then k is a collapsing level.

In particular, if Wk(g, θ/2) unitary for three different values of k, then either g = sl(2) or g

is not a Lie algebra and g♮ is a Lie algebra.

Proof. (1). By assumption g−1/2 6= 0, take a nonzero u ∈ g−1/2 such that φ(u) = u and
compute using (7.6) with m1 = m′

1 = 1:

(G{u}, G{u}) = (G
{u}
−3/21, G

{u}
−3/21) =

√
−1

〈
G

{u}
3/2G

{u}
−3/21

〉
= 4p(k)〈u, u〉 = 0.

If the form on W k(g, θ/2) is positive semidefinite then G{u} ∈ Ik, hence k is a collapsing
level.

(2). Take a ∈ g♮ such that p(a) = 1, φ(a) = a. Compute using (7.6) with m1 = m′
1 = 1

(J{a}, J{a}) = (J
{a}
−1 1, J

{a}
−1 1) =

√
−1

〈
J
{a}
1 J

{a}
−1 1

〉
= 0,

hence J{a} ∈ Ik. Assume that g♮ is simple; since Ik ∩ g♮ is and ideal of g♮, then g♮ ⊂ Ik.
Since g−1/2 is not the trivial representation of g♮, there exist b ∈ g♮ and u ∈ g−1/2 such

that [b, u] 6= 0. Since [J{b}
λG

{u}] = G{[b,u]}, [1, Prop. 3.2] implies that k is collapsing.
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The only remaining case, according to [1, Table 3], is g = osp(m|n),m ≥ 5. In this case

g♮ = osp(m − 4|n) ⊕ sl(2) and g−1/2 = C
m−4|n ⊗ C

2, and the previous argument applies to

osp(m− 4|n) acting on C
m−4|n. �

Remark 7.10. The proof of Theorem 7.9 shows more generally that if there exists an odd
(resp. even) element of integer (resp. half-integer) conformal weight in aW -algebraW k(g, x),
which does not lie in the kernel of its homomorphism to Wk(g, f), then the latter W -algebra
is not unitary.

In general, even at collapsing levels, the simple vertex algebra Wk(g, θ/2) might not be
unitary. It is clear that if W k(g, θ/2) collapses to C then Wk(g, θ/2) is unitary. The list of
such cases is given in Proposition 3.4 of [1].

In the next proposition we deal with other collapsing levels allowing unitarity.

Proposition 7.11. AssumeWk(g, θ/2) 6= C. If k is a collapsing level and there is a conjugate
linear involution φ on Wk(g, θ/2) such that the corresponding φ–invariant form is unitary,
then the pair (g, k) is one in the following list

g = sl(m|n), m 6= n, n+ 1, n+ 2,m ≥ 2, k = −1,(7.7)

g = G2, k = −4/3,(7.8)

g = osp(m|n), m− n ≥ 10, m− n even, k = −2,(7.9)

g = spo(2|3), k = −3/4,(7.10)

g = D(2, 1;−1 + n

n + 2
), n ∈ N, k = −1 + n

n+ 2
.(7.11)

Proof. Looking at [2, Table 5] one gets that in the cases listed in the statement there is
a conjugate linear involution φ such that the φ–invariant Hermitian form on Wk(g, θ/2)
is positive definite. In case (7.7) Wk(g, θ/2) is M(C) (Heisenberg vertex algebra) and its
unitarity is shown in Subsection 5.2. In cases (7.8), (7.9), (7.10), (7.11), Wk(g, θ/2) is a
simple affine vertex algebra at positive integral level, hence unitarity follows from Subsection
5.3.

It remains only to check that the cases in the statement are the only cases where one
can have unitarity at a collapsing level k, but, as explained in the discussion at the end of
Subsection 5.3, a simple affine vertex algebra Vk(g) can be unitary if and only if g is even
and k is a positive integer. �

Corollary 7.12. The following simple minimal W-algebras are unitary:

(1) W−1(sl(m|n), θ/2) ∼=M(C), m 6= n, n+1, n+2,m ≥ 2, where M(C) is the Heisenberg
vertex algebra with central charge c = 1;

(2) W−4/3(G2, θ/2) ∼= V1(sl(2)) with central charge c = 1;
(3) W−2(osp(m|n), θ/2) ∼= Vm−n−8

2
(sl(2)),m− n ≥ 10,m and n even, with central charge

c = 3(m−n−8)
m−n−4 ;

(4) W−3/4(spo(2|3), θ/2) ∼= V1(sl(2)) with central charge c = 1;

(5) W− 1+n
n+2

(D(2, 1;−1+n
n+2 ), θ/2)

∼= Vn(sl(2)) with central charge c = 3n
2+n , n ∈ Z+.

Remark 7.13. Case (4) of Corollary 7.12 is of special interest since Wk(spo(2|3)), tensored
with one fermion, is the N = 3 superconformal algebra. The collapsing level corresponds to
the central charge 1 of the simple W-algebra, isomorphic to V1(sl(2)), hence to the central
charge c = 3/2 of the N = 3 superconformal algebra, which is therefore unitary. This has
been already observed in [16].
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Remark 7.14. Another interesting case of Corollary 7.12 is (5). Recall that Wk(D(2, 1; a),
tensored with four fermions and one boson, is the big N = 4 superconformal algebra [13]. It
follows from Corollary 7.12 that this algebra is unitary when a = −1+n

n+2 , n ∈ Z+, the central
charge being −6a.

8. Appendix: λ-brackets in minimal W–algebras

If u ∈ g−1/2 and v ∈ g1/2, then a direct computation shows that

[u, v] =
∑

α

([u, v]|aα)aα + ([u,v]|x)
(x|x) x =

∑

α

(aα|[u, v])aα + (x|[u,v])
(x|x) x,

so

[uγ , v]
♮ =

∑

α

([uγ , v]|aα)aα =
∑

α

(uγ |[v, aα])aα,

[u, uγ ]♮ =
∑

α

(aα|[u, uγ ])aα =
∑

α

([aα, u]|uγ)aα.

Moreover,

[[u, uγ ], [uγ , v]]
♮ =

∑

α,β

([aα, u]|uγ)(uγ |[v, aβ ])[aα, aβ ].

Since, if v ∈ g−1/2, v =
∑

γ(v|uγ)[e−θ, uγ ], we obtain

2[eθ, v] = 2
∑

γ

(v|uγ)[eθ, [e−θ, uγ ]] = 2
∑

γ

(v|uγ)[x, uγ ] =
∑

γ

(v|uγ)uγ .

Substituting we find

∑

γ

([aα, u]|uγ)(uγ |[v, aβ ]) = (
∑

γ

([aα, u]|uγ)uγ |[v, aβ ])

= 2([eθ, [aα, u]]|[v, aβ ]) = 2〈[aα, u], [v, aβ ]〉.

Recall from [1], [14] that

[G{u}
λG

{v}] = −2(k + h∨)〈u, v〉L + 〈u, v〉
dim g♮∑

α=1

: J{aα}J{aα} : +(8.1)

dim g1/2∑

γ=1

: J{[u,uγ ]♮}J{[uγ ,v]♮} : +2(k + 1)(∂ + 2λ)J{[[eθ ,u],v]♮}

+ λ
∑

γ∈S1/2

J{[[u,uγ ],[uγ,v]]♮} + 2p(k)λ2〈u, v〉,
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where p(k) is a monic quadratic polynomial in k, listed in [1, Table 4]. Using the above
formulas we can rewrite (8.1) as

[G{u}
λG

{v}] = −2(k + h∨)〈u, v〉L + 〈u, v〉
dim g♮∑

α=1

: J{aα}J{aα} : +(8.2)

2
∑

α,β

〈[aα, u], [v, aβ ]〉 : J{aα}J{aβ} : +2(k + 1)(∂ + 2λ)J{[[eθ,u],v]♮}

+ 2λ
∑

α,β

〈[aα, u], [v, aβ ]〉J{[aα ,aβ ]} + 2p(k)λ2〈u, v〉.
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