SPHERICAL REFLECTOR FEED FIELD SYNTHESIS
BY GEOMETRICAL OPTICS
AND SPHERICAL WAVE EXPANSION

by

EDWARD F., MCCANN, II
S«B., UNITED STATES NAVAL ACADEMY
(1965)

SUBMITTED TO THE DEPARTMENT OF NAVAL ARCHITECTURE AND MARINE
ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF
THE MASTER OF SCIENCE DEGREE IN ELECTRICAL ENGINEERING
AND THE PROFESSIONAL DEGREE, NAVAL ENGINEER

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1970

Signature redacted

Signature of Auther R N N R R R R R R R R R R

Department of Naval Architecture and
Marime Emngimeerimg, May, 1970

Signature redacted

Certifigd bV LU R R R L o I e A I e RN T = R R A A I I W)

Thesis Supérvisor

/
| Signature redacted
0{_. 5 0°F 800 ‘l./'.‘. s s 0e 8 LY l'“f'gl [ c".'-f
Q@Z;;; fer the Department
- Signature redacted

Accepted by Setsamesssasseraassanses

Certified by

Archives Chairman, Dcpiitmental Cemmittee jn Graduate Students
MASS: INST. 7 4

AUG 17

EIBR’A Ri?_gi)




ABSTRACT

The inherent symmetry of a spherical reflector microwave antenna
suggests that if the fields incident upon the reflector from a feed
required to produce a specified reflected field can be determined,
then scanning of this reflected field may be accomplished by rotation
of the feed assembly rather than by rotation of the entire antenna.

A technique has been determined to solve for the fields in wvicinity

of a hypothetical transmitting feed that will, following reflection
from the surface of the spherical reflector, yield a specified field
pattern at the reflector aperture, From given fields over a sphere,

a portion of which coincides with the surface of the spherical reflec-
tor, a spherical harmonic series expansion is used to calculate the
fields on a smaller concentric sphere encompassing the feed region

in solution of the boundary value problem.

This technique is extended to a case where it is shown that
geometrical optics approximations are valid over a specific region
of the reflector system, and that by ray tracing, the fields on an
arbitrary reference sphere, whose radius is confined only to the
axis of symmetry of the reflector, can be determined., From this
field distribution, the spherical harmonic series expansion can be
used to determine the fields on the surface of a smaller concentric
sphere enclosing the hypothetical feed. It is shown that this tech-
nique has flexibility wherein a number of origins could be examined
for various feed spheres with fewer terms of the series expansion
than with the fixed-origin case.
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CHAPTER I

GENERAL BACKGROUND

The fact that a reflecting parabeleid ef revelutiem, whem il-
luminated by a seurce ef spherical waves placed at the geemetrical
feecus of the parabeleid, will preduce a uniferm plame wave ever the
aperture of the reflecter is well knewmn., The gemeratiem of a pemcil-
shaped beam antenna patterm has reached a state of refimememnt such
that extremely marrew beamwidth, lew sidelebe levels, reasemably
bread-band eperatiem, high aperture efficiemcy amnd gaim are readily
attaimable foer mamy applicatienms.

The axis ef this pemcil beam ceincides with the axis of revelutiem
ef the reflecter, amd attempts te direct the amtemma patterm by eoff-
axis mevement ef the peint-seurce feci have failed fer all but the
smallest eff-axis angles, Therefere, te direct the pattern requires
that the emtire reflecter amd feed assembly be retated er meved te aim
the antenna patterm in the directiem eof inmterest,

Widespread use ef large aperture parabeleidal reflecters with wide-
angle scamming requirememts has stimulated cemsiderable interest im
develepment of impreved feed systems te alleviate preblems eof greund
neise radiatiem, spurieus pelarizatiem effects amnd lew aperture ef-
ficiencies emcountered in radie~telescepe applicatiems. Other such
preblems that are emceuntered imclude difficulties in maimntaiming
mechanical and structural teleramces of the reflecer surface at partie-

ular frequencies of interest,



The inherent symmetry of the spherical reflector suggests that it
could provide some relief from the problems previously described. Assum-
ing an energy source could be obtained that would, upon reflection from
the spherical surface, provide an antenna pattern whose beam coincided
with the radius of the reflector upon which illumination occurred, it
would be no longer necessary to overcome the inertia of the entire
system to meet a wide-angle scanning requirement, but merely to direct
the feed assembly as desired. In such a case, it is feasible that large
apertures could be illuminated to provide desired gain . Further, the
symmetry of a spherical section enhances both ease of fabrication and
verification of system tolerances in many applications, Other advantages
that may be realized from such a system follow directly from speculation
of possible application, including for example an antenna system whose
reflector could be imbedded in the earth, with few moving parts, pre-
senting a low silhouette to wind forces.

Unfortunatly, analysis of the spherical reflector reveals its
inherent spherical aberration. For a plane wave incident upon a
spherical reflector, rays close to the axis of symmetry intersect at
a point defined as the paraxial focus, exactly half-way between the
center of curvature of the spherical section and the vertex., Other rays
reflected from the surface intersect the axis at points closer to the
vertex, This phenomenon may be observed in figure 1, where rays are
constrained by Snell's law to reflect with an angle equal to that of
incidence, as measured from the surface normal at the point of interest.

A more complete explanation of this reflection phenomenon will be given,
7
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This suggests that rather tham a distimct peint fecus there exists a
fuzzy fecal regien, Illuminatiem ef the reflecter with a peint seurce in
the fecal regien reveals a diffractiem pattern with wider beamwidth,
higher sidelebes and much less gain thamn a parabeleidal reflecter ef
identical aperture, It is this aberratiem that has presemted an ebstacle
te develepment of the spherical rather tham parabeleidal reflecter fer
use as a micrewave amtemma, Since intreductiem ef the preblem te the
micrewave cemmumity in WerldWar II, hewever, there has remained am
active imterest in the preblem, Mest recemtly, with cemstructiem im
1960 ef the Arecibe (Puerte Rice) lenespheric Observatery's 1000-feeot
diameter spherical reflectorl, considerable interest has been gemerated
in the selutien te preblems ef spherical aberratiem at radie frequencies
by means ef varieus feed systems,

1.2 It is apprepriate te review past efferts relevamt te the preblem, Early
attempts te explain eptical phenemena fellewed frem geemetrical theery.,
Euclid presented an analysis ef the reflectiem laws areumd 300 B.C. while

ebserving that light emergy ceuld be cencentrated by means ef
3



reflectors? Early astronomers used spherical mirrors as primary
collectors of light incident upon their telescopes. Presumably the
ease of manufacture of these spherical mirrors led to their widespread
use, even though the geometrical analysis of the reflecting properties
of paraboloidal surfaces had been conducted. The difficulty of manufacture
of the latter apparently precluded exploiting their point-focus charac-
teristic.

The concept of a spherical reflector for microwave use evolved from
the World War II advances of radar technology. In 1941, Ashmead and

Pippard suggested two approaches to the aberration encountered:

1. For reflectors of large radius and restricted
aperture, the surface of the spherical reflec-
tor departs only slightly from that of a para-
boloidal reflector. It follows that the diffrac-
tion pattern is only slightly different from that
of a paraboloidal reflector. If the slight depar-
ture from plane wave illumination at the aperture
and the value of gain accompanying the restric-
tive aperture can be tolerated, this approach
permits a simple design and is suitable for wide

angles of scan.



2, For the general case of spherical reflectors,
should the primary energy source be a special
radiator that provides not spherical waves but
waves whose departure from spherical waves is
just that necessary to compensate for the differ-
ence between the sphere and paraboloid, then
reflected wave fronts will be plane waves, uniform-

ly illuminating the aperture,

Early work indicated that it was possible to create non-spherical
waves of approximately the right shape by proper combination of wave-
guide horns and dielectric lenses, Unfortunatly, difficulties in
correcting for the larger phase error did not, at the time, justify
pursuance of this approach. Rather, to meet the expedience of the
wartime effort, the first approach of toleration of error rather than
compensation was used exclusively. Subsequent studies exploiting this
technique reached a natural conclusion with the work of LiA, who
extended and verified the theory of restrictive aperture large radius
spherical reflectors., His experimental work indicated that with a ten-
foot aperture hemisphere absolute gain comparable to that of a forty-
inch paraboloid was obtained over a scan of 140° with rotation of
the feed at a constant radius from the reflector.

The second, more interesting approach to the solution allows the

use of a larger aperture at the expense of increased complexity in

cost, design and some reduction in the available angle of scan.
io



In the cemtext ef the latter appreach cerrective devices have fallen

inte the fellewing categeries:

1. lems structures
2, auxilary reflecters
3. line-seurce feeds

4, tramsverse aperture feeds

Lens struectures, while previding satisfactery cerrectiem at eptical
frequencies, previde marginal cerrectiem im micrewave applicatiems, Sizes
cemparable te the reflecter amd primary seurce, requirements fer large
pieces of carefully centrelled precisiem-cut dielectric amd imhereat
dielectric lesses, te say methimng ef the cests and weights invelved,
relegate this categery eof cerrective devices at micrewave frequemncies te
a pesitien ef academic imnterest,

Auxilary reflecters are of miner imnterest whem the umdesirable charac-
teristics ef shadewing er aperture bleckage are immiment, Ever in cases
where this is ef small cencerm, the excessive weight ef the secendary
reflecter must be censidered, as must the mechanical arrangements fer
suppert ef the assembly. A gregeriam reflecter has beem described by
Helt amnd Bouche5 wherein a reflecting surface imtercepting a great deal
of the emergy imcideat frem the spherical reflecter is imstalled. The
surface of the sub-reflecter is such that it prevides a cemstant path

length frem seme referemce plane mear the aperture te the primary seurce,



Experimental results indicate that the scanning capability was realized
to 30° by rotation of the sub-reflector on a constant radius from the
spherical surface. Sidelobe levels were very high in comparison to
those available with paraboloidal reflectors., While aperture blockage
was estimated to be 1.,5%Z, no figures on gain were given,

The earliest attempts at compensation involved the fact that rays
incident upon the spherical reflector were reflected to cross the axis
of symmetry. It was postulated by Spencer, Sletten and Walsh6 that the
incoming energy could be recombined with an appropriate phase shift
to provide a maximum of received signal. Reciprocity was invoked to
suggest that a properly phased line source could produce a wavefront
that would provide uniform illumination over the aperture. Techniques
of geometrical optics were used for path length calculations. The
sources considered were open—-ended waveguides, polyrod travelling wave
structures, discrete dipole sources alog the axis and slotted waveguide
feeds. Indeed, the first feed system constructed at the Arecibo
reflector was based upon a modification of this designz Aberrationless
scan of over 60° was predicted for this initial installation-as well
as reasonable aperture efficiency. Actual results were well under those
anticipated. The high-power dual circularly polarized feed illuminated
the full aperture of 1000 feet with an efficiency of 21% at 430 MHz?
Love9 described a composite radiating system wherein channel guide
feed and a polyrod array provided a travelling wave structure to illumin-
ate from both the line focus and the paraxial focus, He predicted a scan

of 110° for a hemispherical reflector, and efficiency on the order of
iz



55%. Schellloinvestigated the fields along the axis by application of
diffraction theory. He demonstrated the deviation from the geometrical
optics solution in the non-zero wavelength and agreement in the zero-
wavelength case, Schell's solution consisted of the use of a sufficient
number of discrete sources located along the axis, illuminating partic-
ular regions of the reflector. The analysis was based upon the fields
present along the focal axis when the reflector was illuminated by an
incoming plane wave. In an attempt to solve the problem based upon
Schell's solution, Cohen and Perona11 constructed a feed system at the
Arecibo reflector. Their compound antenna feed consisted of a four-
element linear array with a reflecting screen and a sixteen-element
linear array located on the axis. Experimentation determined that gain
was lower and sidelobes higher than had been anticipated. Aperture
efficiencies were on the order of 30-38212. McCormick13 followed this
study with an analysis that considered the transmitting case and, in
particular, the aspect of polarization., His analysis concluded that a
gain deterioration was inevitable with a circular waveguide with cir-
cumferential slots that did not consider the azimuthal fields as well
as the longitudinal fields. The theory of McCormick was used by

Love and Gustinicla to illustrate the feasibility of illuminating from
a leaky cylindrical waveguide that considered these fields., Most

recent literature indicates that a line source feed with high performance
has finally been achieved at Arecibo. LaLonde and Harr1515 note that

their feed has been installed at the observatory and has realized an
13



overall efficiency of 70% at 318 MHz. Designing for a flat waveguide line
feed with transverse slots was necessary to avoid problems of previous
feeds which, it was felt, did not provide sufficient control over
amplitude and phase variation along the line focus nor sufficient
isolation from the effects of mutual coupling between the radiating
elements of the feed. The lower frequency of operation was specified to
avoid losses due to surface imperfections of the reflector. The design
of the phase and amplitude required was based upon a geometrical optics
analysis of the rays intersecting the axis, This design is significant
in that it represents the first installation of a corrective feed in

a spherical reflector that has yielded aperture efficiencies approaching
those of paraboloidal reflectors. Aside from strengthening arguments for
fixed-reflector scanning antennas, providing some 40° of scan with high
efficiency at Arecibo, the success of this feed indicates the potential
of the spherical reflector antenna for fully steerable arrays, where
desired.

It has been noted by Ricard116 that line source radiator correcting
feed systems must be capable of producing a wave whose polarization and
shape are not easily obtained with elementary radiators.This basic fact
has caused present day line source correcting feeds to fall short of
expectations, with exception of the LalLonde-Harris feed. It should be
noted, however, that the requirements of Arecibo call for high power
with capability for dual circular polarizati&g. The line feed of LaLonde
and Harris achieved success in providing for linear polarization., While

the high power requirement may be easily met with the slotted guide,
1



the authors note that polarization flexibility has yet to be developed.
Presumably, the transverse aperture corrective feed designs have no
inherent difficulty in polarization flexibility. Early attempts to
provide aperture corrective feeds met with reasonable success in over-
coming the aberration, but were hampered by aperture blockage of the
moderately large feed systems, Sletten and Mavroidesl8 were succesful

in lowering sidelobes substantially, while plagued with aperture
blockage. An aperture feed was suggested for the spherical reflector by
Burrows and Ricardi19 in which they predicted a possible gain of 61 db,
compared to the maximum gain of such an aperture the size of Arecibo at
62.8 db. Their feed system was derived from a spherical harmonic expan-
sion of the fields necessary to produce a uniform distribution over the
aperture, based upon the fields incident upon a spherical reflector.
Spencer and Hydezo conducted a detailed study of the focal region fields
assoclated with the spherical reflector illuminated by incoming plane
waves and concluded that only a vector field solution considering polar-
ization would yield adequate information. They solved the diffraction
integral by means of a stationary phase approximation, noting the
similarities to the geometrical optics approximations, Their theory

was shown to have reasonable agreement with fields actually found in the
focal region by experimentation, and their work has been used as a
basis for further study into aperture feedsz} Their work, however, did
not offer a solution to the problem, but rather provided a theoretical
analysis of the fields that could be expected. Work by Minnet and

MacA. Thomas22 has been extended to show that the fields in the image

15



of symmetrical focussing reflectors can be generated by certain hybrid
modes to provide theoretically aberrationless behavior23. An aperture
source is described that uses a corrugated waveguide structure to generate
a set of waves that combines to provide a theoretically high efficiency.
Further developing his earlier ideas of spherical harmonic expansions,
Ricardi has recently provided a technique for synthesis of the fields

on a surface enclosing a transmitting feea? This treatment for the
transmitting feed synthesis provides for the solution to an electro-
magnetic boundary value problem, identifying as boundaries the reflector
surface and the surface of a smaller sphere enclosing the feed region.
It is with this technique, substantially different from those involving
geometrical optics or approximations of stationary phase, offering a
solution that appears to contain inherent accuracy, with which this

thesis is concerned.

lo



CHAPTER II

PROBLEM STATEMENT AND THE THEORY OF GEOMETRICAL OPTICS

2,1 The selutien prepesed by Ricardi te the preblem of the spherical
reflecter micrewave antemma relates twe sets ef electremagmetic fields
ever pertiems ef surfaces ef twe cemcentric spheres. Due te the mathe-
matical fermulatien ef the preblem, eme surface ceimcides with that ef
the reflecter while the ether surface is takem at a radius ef imterest
within that ef the reflecter. Origim ef beth spheres is at the center
of curvature of the reflecter (figure 2)., The fields ever the reflecter
surface are specified te be these fields that will preduce a desired
field distributiem ever the aperture of the reflecter fellewing reflectiem
frem its surface., The fields at the reflecter surface are them expanded
in a spherical wave expansiem, Thus it may be determined that if the field
distributiem givem by this expansien, evaluated at the immer surface, cam
be semehew generated by a seurce within this surface that the apprepriate
reflected fields will appear, as desired, ever the aperture, Interpreta-
tien of the fields at varieus radii has revealed that there are certainm
radii ceincident with mearly cemstant phase fremts. Symnthesis ef these
fields weuld be enhanced due te a petemtial lessening ef the cemplexity
ef the radiatimg structure, Exactly which radius te be chesem fer the
imner surface is beyemd the scepe of this werk, but is cevered by

Ricardiz?



It is the hypothesis of this work that the technique of solution
to the boundary-value problem may be applied to a reference sphere
whose origin is a variable distance along the axis of symmetry and to
the surface of which outgoing rays from a hypothetical feed located
within this reference sphere would be traced if the spherical reflector
were absent, The rays outgoing from the region of the hypothetical feed
would be precisely those rays representing the fields that would, upon
reaction with the surface of the spherical reflector, reflect a desired
illumination over the reflector aperture, These rays would be based upon
the rays reflecting from the spherical surface when illuminated by an
incident plane wave over the aperture, Strictly speaking, this analysis
begins with the principles of the receiving case, but then requires
the field distribution to be produced over the reference sphere by some
transmitting feed. It is then the reaction of the radiated field with
the spherical reflector that theoretically produces a desired wavefront
over the aperture, The geometry for this case is given by figure 3.

Thus, within the limits imposed on ray tracing technique by theory
of geometrical optics, Ricardi's results for the transmitting feed
case may be compared to an approximate solution that originates with
the receiving situation. It is further possible that such a solution,
known to be strictly wvalid only in the zero-wavelength limit, may yield
results with less computation time than the exact solution within an
appreciably small deviation in results. The choice of origin of the

system of concentric spheres suggests that a more detailed analysis of

18
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the fields in a particular region may be conducted in an economical
fashion, since the fields will be distributed over a sphere of smaller
radius than the previous problem's inner sphere with origin at that

of the reflector,

We thus proceed to describe the illumination of a spherical
reflector by a uniform plane wave to illustrate certain character-
istics of the reflector. This is followed by development of geometrical
optics principles essential to the description of the fields over
the reference sphere. Finally, expressions will be developed that
yield the amplitude, phase, and direction of the electric field

over the reference sphere.

2,2 It has been noted previously that rays reflected from the spher-
ical surface following illumination by a uniform plane wave over the
aperture cross the axis of symmetry at varying distances from the
paraxial focus. This phenomenon may be analytically formulated to
illustrate the generation of caustic surfaces by these reflected rays.
In fact, it will be shown that the caustic surface is the envelope

of reflected rays. Consider the situation given by figure 4,
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Censtraimed emly by the fact that the angles of reflectien and imcidemce
are identical, the equatiems ef rays may be givem by the slepe imtercept
ferm of the straight lime equatiem. That the rays are straight limes amd
the angles equal will be cevered in detail im later sectiems. Viewing

the system im the x-z plame we have:
——2 = tam 20 (2.1)

Peints en the reflecter surface are givem by:

x = R sin@

z = R cesb

Letting peints em the envelepe be X0 Zo» and substituting imte 2.1:

21



" R sin® - (R cos® - zc)tanZO (£.2)

Thus points on the caustic surface as viewed in the x-z plane become
functions of parameter 0. We then form the function f(x,z,0) = 0 that

will be satisfied by points on the caustic.

f(x,2z,0) = x, - R 8in® + (R cos® - zc)tanze =0 (2.3)

Adjacent points on the caustic generated by rays incident at angle
© +60 will still satisfy the function for small 60, Since both functions
f(xc,zc,e) and f(xc,zc,6+5@) are equal to zero, their difference as well

is equal to zero. We can then form the expression valid in the limit of

small 60:

f(x ,z ,0+80) - f(x ,z ,0) _

1im§e~0 e et 0
60
or d £k ;2 _,0)
e’ e

70 0 (2.4)
Differentiating and solving for z, vields:

Z. = R (2 sin%0 + 1)cos® 2.5)

2

22



This expression for z, is then substituted into 2.2 to solve for L
Manipulation with trigonometric identities yields the parametric form

of the equations for the caustic surface:

x, = R sin® = R( 3 sin0 - sin30) (2.6)
4

z, = Reos ( 2 sin?0 + 1) = R( 3 cos® - cos30) (2.7)
2 4

Thus it has been shown that the reflected rays' envelope forms the
caustic surface and quantitative expressions for this surface have been

developed, They will be called upon in conjunction with development of

the expression for amplitude.

2.3 Electromagnetic field problems may be formulated in two contrasting
fashions, following from a choice of application of the Maxwell field
equations. In one treatment, relationships may be derived that determine
what fields will arise from a prescribed set of sources, The field and
vector Helmholtz equations are integrated by application of a vector
Green's theorem, and express the fields at an observation point as the
sum of contributions from the sources distributed throughout a particular
volume and from fields on the surface of the volume arising from sources
outside the volume%6 This rigorous treatment indicates that the field

represents a flow of energy outward from the region of the sources, and

23



that these sources and fields satisfy certain assumptions of continuity
over the surface of interest, as required by application of the Green's
theorem. In the second treatment, the integral relations derived by the
first method may be applied to yield expressions for the field vectors

at a specified point,given the values of the fields over a surrounding
equiphase surface, or wavefront, without direct reference to the sources
generating the wavefront%Z These integral expressions are the analytic
formulation of the Huygens-Fresnel principle, which states that each point
on the equiphase surface can be regarded as a secondary source of elec-
tric and magnetic current and charge which in turn gives rise to a spher-
ical wavelet., The fields at a point of interest may be obtained by a
superposition of these wavelets, considering the phase difference upon
arrival at the point of interest. Hence, energy flow is a wave phenomenon=-
one which may be studied without reference to the sources of energy. As
before, the rigor of the solution depends upon adherence of the given
field distribution to several constraints as imposed by application of the
Green's theorem.

While the Huygens-Fresnel relation provides expressions for solutions
to the wave equation that satisfy Maxwell's equations, complexities of
integration of these expressions often render solutions impractical, or
require approximations to be made that eventually lessen the rigor of the
solution only after substantial manipulation. In these cases it becomes
convenient to appreocach the propagation of waves from the standpoint of

geometrical optics, wherein a rigorous solution is sacrificed for a

2%



simpler formulation that offers a more immediate solution, subject to
several additional constraints on the problem, In geometrical optics,
successive positions of equiphase wavefronts of the fields and an

associated system of rays are related.

In an arbitrary medium the wave field is characterized by both a ray
velocity and wave velocity at every point, where the ray velocity is the
velocity of energy propagation, directed as the ray passing through the
point of interest, and the wave velocity is the rate of displacement of
the wavefront in the direction normal to the surface, The energy propd—
gates at the speed of light in vacuum, c. The wavefront propagates at the
velocity v, a function of the medium.

We proceed to describe the relations among wavefront and phase, con-
sidering wavefronts generated by some source propagating in a steady-
state radiation. Let the wavefront at time t, be the surface L(x,y,z)-Lo,
a surface of constant phase ¥ = (m/c)Lo relative to some point, The wave-
front at some short time &t later is the surface L(x,y,z) = L0 + 8L,

The phase difference between successive wavefronts is then given by
(w/c)8L. Since the wave proceeds from one surface to the next in time &t
while the phase at any fixed position changes at the rate w, this phase
difference must be equal to wdét. Further, if asn is the distance between

the adjacent surfaces and if v is the wave velocity, then vit = Gsn.

25



We then relate these expressions:

(w/e)8L = wét -(mdsn)/v

or GLfﬁsn = ¢/v =n , index of refraction of the medium (3.8)

Note that expression 2.8 is the directional derivative of a scalar L

in the direction of the normal to the wavefront, By definition of the

directional derivative of a scalar function ¢,28

de/ds = T-V¢
where T is the unit vector indicating direction in which the derivative
is taken, By definition of the vector dot product, with © the angle
between T and V¢,

d¢/ds = T+V¢ = |T||V¢| cose = |V¢|coso

For our case the direction of interest in normal to the front, and 0= 0.

Hence?

sL/§_ = |VL| = e¢/v=n (2.9)

2l



Censidering the curvature of rays in am imhemegeneeous medium we can
demenstrate that the rays are rectilinear im a hemegeneeus medium, Let
S be a unit vecter in the directiem ef a ray at the peint ef interest,

This vecter is nermal te the wavefremt and has the directiem ef VL. Then,

VL] = n eor |WL| /n =1

Then S = VL /n (2.10)

Let N be a unit vecter im the directien of the radius ef curvature ef the
ray at the same peint ef interest amd p the radius ef curvature ef the
ray at the peint, The vecter curvature is definedz9 as N/p . This vecter
curvature is alse given by dS/ds, where s is a distamce measured aleng

the ray. By definitien and vecter identity the fellewing expansien canm

be made:

dS/ds = (S+V)S = - S x (V x 8) = N/p (129 B )}

This expressien cam be manipulated te shew a simple relatiemship between
curvature ef the rays and index ef refractiemn ef the medium. Details are

left te appendix 1. The result ef interest is:

1/p = N<Y(lm n) (21012
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Thus for a homogeneous medium where the index of refraction is constant,
or independent of position, we see that the right hand side of 1,12

is zero, indicating that the radius of curvature of the ray is infinite,
indicating that the rays are, in fact, rectilinear., It follows that

VXS = 0, which is a sufficient condition for the existence of a family

of surfaces orthogonal to a field of vectors S.

The relationship of the amplitude of fields on successive wavefronts
can be determined from the premise of geometrical optice that rays are
lines of flow energy and that no power flows across the sides of a tube
of rays. These results were verified in the preceeding paragraph, Silve%o
considers two surfaces of waves L, and L, and a tube of rays that cuts

1 2

out elements of area dA1 and dA2 on the respective surfaces. By con-

servation of energy requirements, the flow across any section normal to

the tube will be constant. In terms of the Poynting vector defined by

%*
S = %(EXH )

we can formulate the flow constraint by

S, dA; = 5, dA

Since in free space the Poynting vector is proportional to the magnitude
squared of the field, between successive wavefronts the following relation

will hold:
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|E1|2dA1 = |1e*.2|2 da, (2.13)

Considering the ray through point A on the surface L1 coincident with
the z-axis in figure 5, let the xz,yz planes coincide with the principle

planes of L1 at A, A ray through an adjacent point B lying in L1 and the

x-z plane will intersect the ray through A at the point Ox’ a distance

R1 away. This distance R1 thus is one of the principle radii of L1 at A,

A similar analysis reveals the definition of the other radii R2 based

upon intersection of rays passing through adjacent points in the x-y

plane, The point A' on L, lies on the ray through point A, At A' local

2
coordinates x', y' are constructed. Since the fronts are spaced apart

by the distance P, the two principle radii of curvature of the wavefront

L, at the point A' are R, « P and R, + P,

2 1 2
Considering the elements of area dAl and dA2 around the points A, A'
bound by the curve C, C' on surfaces Ll and L2 respectively, we can
write:

dA; = [(xdy=-ydx)
< (2.14)
daA, = ééx'dy'—y'dx')

From inspection of figure 5, and by the léw 0f sines we can relate

various distances:
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Oy

R R (2.15)

By relating dx, dx', dy, dy' and substituting into 1.14 we obtain a

relationship between the arsa elements:

dA, = dAl (R, + P)(R, + P) (2.16)

2 3 2
Ry Ro

Substitution of 2,16 into 2.13 we obtain:

|E1|2dAl = |E,[2dA; R+ P)(R, + P)

B18s

For the case of a wavefront diverging from a region of sources this

expression relates the amplitude at the wavefront farther from the

source?
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E, = E R, R,
(Rl + PT(R; + P)

(2.17)

From the preceeding development it would appear that geometrical
optics is based on the local behavior of the wavefront as a plane
wave, Indeed, this 1is the basic tenet of the theory. The plane wave
solution to the wave equation may be used to show that in the limit of
decreasing wavelength the geometrical optics solution satisfies the
Maxwell fields equations., The vector solutions appropriate to describe
linearly polarized electromagnetiec fields that behave locally like
plane waves have the form:

B - A(x,y,z) ej(mt"’koL(x|Y1z))

(2.18)

H = B(x,v,z) ej(mt—koL(x,y,z))

The amplitude vectors may be complex, but phases must be independent of
position to fit the plane wave solutions, Substituting these forms of

solution into the homogeneous forms of Maxwell's equations given by

VXE+ jouH = 0
(2.19)
-jweE 4V X H = 0

31



and expanding the resulting expressions, these may be solved for the

vector amplitudes A and B @

A=-k (VLxB)+ 1 (VxB)

we juwe
(2.20)
B=_k (VLxA)=- _1(VxA)
wu Jwu

where ko is the free space propagation constant, ko = miuoeo .

Equations 2,20 may be solved to yield an expression in terms of A alone,

Using the definition of ko and the index of refraction

n=-clv= (Eu/souo)%

we obtain the following expression:

A= -1 (VLxVLxA)+ 1 (VLxVxA+VYxVLxA) +

n Jk n
1. v v A
7171?5 R % (2.21)
[0}

Expanding 2.21 with the vector identity

VL x VL x A = L(VL+.A) - A(VL.YL)

we obtain for A :
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A= -1 { VL(A-VL) - A|VL]%2} + 1 (VL x9Vx A+ ¥V x VL x A)
nZ ik n?

A similar expression results for B, replacing A with B in 2,22, If

L and the first and second derivatives of A and B are finite, the last
two terms of 2,22 are of the order l/ko and 1/ko compared to the first
term, As the wavelength approaches zero, ko approaches infinity, and

we are left with the following expressions:

A= -1 {VL(A-VL) - A|VL|2 }
o
(2.23)

B= -1 {VL(B-VL) - B|VL|2 }
=

For these expressions to yield identity of amplitude of the vectors

A and B we see that the following must be true for the zero wavelength

case:
A*VL = 0
BeVL =0

These two conditions note that A and B are transverse to the gradient of
L, or that they both lie in a plane transverse to the directien ef propa-

gation, Furthermore, since 2,20 expresses B in terms of A we have:
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B= e/u{l(WL_x A) - _1VxA } (2.24)
n Ik n
We see that in the zero wavelength case the second term vanishes
and we are left with an expression that implies vector amplitude B is
perpendicular to A as well as transverse to the direction ef propagation,
since VL/n is a unit vector in the direction of propagation.

Thus the fi;ld vectors of geometrical optics possess the properties
of plane waves in what might be called the far-zone fields, indicating
great distances from the source with respect to wavelength., The condition
for neglecting terms of the order llk0 and 1/ko for short wavelengths
require that all associated derivatives are finite, In the neighborhoed
of geometrical focal points or caustic surfaces, the function L varies
rapidly, and geometrical optics predicts infinite amplitudes , which
must be rejected on non-physical grounds, At the region of geometrical
shadow the approximations begin to predict erroneous results due to
the rapid wvariation of amplitude over distances small compared to
wavelength, In these regions the simple methods do not work, and dif-
fraction and scattering theory must be used.

Further work 34 has determined that the Huygens-Fresnel relation in
the zero-wavelength case approaches the point-to-point amplitude relation-
ship predicted by the geometrical optics concept of energy flow in tubes
of rays. Agreement holds in the far-zone approximation, at distances

greater than wavelength, and reveals the constraint on amplitude
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A's normal derivative that, besides being finite everywhere,

1 23A << 2¢
A dn A

This is satisfied in the limit of zero wavelength providing the frac-
tional change in amplitude over distance equal to that of a wavelength

is small compared with unity.

Since the basic tenet of geometrical optics requires that the wave-
front behave locally like an infinite plane wave, scattering phenomenon
may be interpreted geometrically, and appropriate laws of reflection
derived from the field equations and boundary conditions. That these
results are valid can be developed from other principles of optics32
including Fermat's principle and the law of the optical path, demonstrat-
ing the properties of optical rays and the reflection phenomenon, or
Snell's laws.

We consider the two-dimensional analysis of an infinite plane
wave incident upon an infinitely conducting ( that is to say perfectly

reflecting) sheet. The geometry of the problem is described by figure 6,
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'{:l.j(.! e 63

The incident fields will have the form:

H, =1 h o~k z coso, + jk x sing,
y i
(2:.25)

-jkoz coso, + jkox sing

E, = ;(ix hicose : - i h sinai) © i i

i i

where { is the wave impedance of free space, equal to (y /Vg:.)l‘i
e e

The reflected fields will have the following form:

T e+jkoz coser + Jkox 51n®r
r y r

(2.26)
+jk z cosO_ 4+ jk x sin®
o % e x

=
]

;(—ix hrcos@r + 1z hrsinor)e
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Since at z = 0 for all x and y the boundary condition on the tangential
component of electric field requires that (Ei & Er) Cans = 0,

Then, equating reflected and incident fields appropriately we obtain:

Thus we note that the following boundary conditions exist at the inter-
face:

(E

+ E =
i r)tang (2.27)

(Ei>nor & (Er)nor

These expressions may be given in terms of a vector relationship:

nx ( Ei + Er) = 0
(2.28)
n .Ei = 1 -Er

We can examine this vector relationship to determine an expression for

the field reflected from a surface in terms of the incident field and

the surface normal- assuming that the field acts locally as a plane wave.
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With the vector form of the boundary conditions we form the cress product
of the normal n and the first expression of 2,28, We then multiply the
second of 2,28 with the normal vector n and add the two expressions.

This yields:

nx Er xn + (n-Er)n = -nx E, xn+ (n-Ei)n

a

Expanding by the vector identity

AxBxC = (AC)B - (A*B)C

we obtain the expression

Er = -Ei + 2(n-Ei)n (2.29)
This may be interpreted to express quantitatively the fact that the
reflected field experiences reversal of its sense of tangential
components in order to provide a zero tangential field at the surface

of the reflector.

Thus we have demonstrated that the approximate metheds of geometrical
optics involving point-to-point transformations aleng rectilinear rays

between successive wavefronts or surfaces of constant phase can provide
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adequate phase and amplitude infermation providing certain constraints

are observed, Furthermore, that these fields satisfy Maxwell's fields
equations and the wave equation within the limits of certain constraints
has been demonstrated by a zero-wavelength limit. We summarize the results

of geometrical optics in which we are interested as relevant to this werk:

1. Energy passing through consecutive cross-
sections of a tube of neighboring rays is

constant,

2. Rays in a homogeneous medium are rectilinear.

3. At a surface of reflection, an incident
wavefront behaves locally like a plane
wave, and the reflection of rays may be
geometrically interpreted in accordance

with specular reflection laws.

The following censtraints must be observed for the geometrical optics

approximations to held:

1. All lengths of interest, radii of curvature,
for example, must be large compared to a

wavelength,

33



2. Spacing between neighboring rays must
change very little over distances on the

order of wavelength.

3. The fractional change in amplitude of
field quantities over distances on the
order of wavelength must be small com-

pared to unity,

4, Geometrical optics cannot be used in

the region of geometrical shadow,

5. Geometrical optics fails at focal peints

or caustic surfaces, predicting non-

physical results.
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2.4 It remains to utilize the previously developed expressions to describe
the phase, amplitude and direction of the electric field over the ref-
erence sphere, The choice of radius of the reference sphere is discussed,
as is the technique of ray tracing to be used, Expressions for phase
and amplitude on the reference sphere are developed, relating these
quantities to those incident upon the reflecter surface., Finally, the
distribution over the reference sphere is related te a coordinate system
with coincident origin,

For the geometry of figure 7, we consider determination of the fields
produced by some source, directed towards the reflector,that will produce
illumination over the aperture in the form of waves propagating in the
- z direction, The fields propagating in this direction will be of the
form:

E, H = ejkoz

or in spherical coordinates:

B, H = ejkoR cos®

Since we desire to specify these fields over a reference sphere of radius
R' with origin at z = cR, where c is some constant fixing the originm,

the phase expression must be corrected to account for the additional
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path length of travel to the reference sphere. Inspectiom of figure 7
indicates that the phase variation has two cases of interest, ome for
angles g » 0c and the other for the case of g < ec , Where ec is the
angle at which the reference sphere intersects the spherical reflector.
The variation in field expressioms is introduced as:

ejko (Rcos + Ll)

(2.30)

ejko (Rcos - L2)

8 < 8 E,H =
Inspection of the expoment suggests that if appropriate values of ether
parameters could be found so as to keep the difference to a minimum that
synthesis might be enhanced, since the smaller expement represents a
slower varying sinusoid. Furthermore, amplitude consideratioms in the
geometrical optics approximation, namely the desire to avoid the regien
of the caustic surface, suggest that a wise choice would be to comsider
the reference sphere intersecting the reflector surface at the latter's
extreme edge. Thus the radius of the reference sphere will be constrained
by the radius of the reflector under imnvestigatiom, R, the positiom of
the origim of the reference sphere 2z = cR, and the maximum angle sub-

tended by the reflecter. By laws of trigomometry we observe:

12 o p2 2p2 _ 2
R R4 + c“R 2cR cesam (2.31)
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The ray tracimng technique proceeds from a ray incident upon the
reflector at a particular angle of interest, The ray reflects in ac-
cordance with the previeusly developed laws of reflection. We then
assume that if a hypothetical source could produce the appropriate
fields that would give the same illumination as we have upom the aper-
ture, these rays would remain as we have determined, but the sense of
propagation of energy alomng the rays would be reversed. We then remove
the reflector, and trace the rays until they intersect the reference
gphere, Within the limits of geometrical optics, we can estimate the
amplitude and phase at each point of intersection, based upon the
extra path length travelled by the waves, alomg the rays, to the refer-
ence sphere,

It is necessary to calculate the distance L. We proceed with an
equation determining the distance between points on the reflector and
points on the referemnce sphere, as measured along the ray of interest,

Referring to figure 8:

L2 = (xa - xm)z + (ya - ym)z + (za -zm)z (2.32)

where

x = R' sind' cos¢' x = R sind cos¢
y_ = R' sinf' sin¢' Y, = R sinb sing

z = R' cosé' + cR 2= R cos8
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Noting from symmetry that ¢ = ¢', and substituting, expanding terms

we obtain:

(2.33) L= Y (R'eind' - Rsind)2 + (R'cosd' + cR = Rcosd )2

To proceed, we must relate 6 and 6' ., Viewing in the x-z plane, the

equation of ray is givemn by:

x = (z - zo) tan20

(2.34)
y=20
From the equation of a spherical surface :
R'2= x2 + (z - cR)?2 + y2 (2:35)

We can solve 2,34 amd 2,35 in the plane y = 0 to yield am expression
representing the intersection of a ray and the surface of