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ABSTRACT

The inherent symmetry of a spherical reflector microwave antenna
suggests that if the fields incident upon the reflector from a feed
required to produce a specified reflected field can be determined,
then scanning of this reflected field may be accomplished by rotation
of the feed assembly rather than by rotation of the entire antenna.
A technique has been determined to solve for the fields in vicinity
of a hypothetical transmitting feed that will, following reflection
from the surface of the spherical reflector, yield a specified field
pattern at the reflector aperture. From given fields over a sphere,
a portion of which coincides with the surface of the spherical reflec-
tor, a spherical harmonic series expansion is used to calculate the
fields on a smaller concentric sphere encompassing the feed region
In solution of the boundary value problem.

This technique is extended to a case where it is shown that
geometrical optics approximations are valid over a specific region
of the reflector system, and that by ray tracing, the fields on an
arbitrary reference sphere, whose radius is confined only to the
axils of symmetry of the reflector, can be determined. From this
field distribution, the spherical harmonic series expansion can be
used to determine the fields on the surface of a smaller concentric

sphere enclosing the hypothetical feed. It is shown that this tech-
nique has flexibility wherein a number of origins could be examined
for various feed spheres with fewer terms of the series expansion
than with the fixed=-origin case.
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CHAPTER I

GENERAL BACKGROUND

The facet that a reflecting pr’ “f revelutiem, when il-

luminated by a seurce eof spherical waves placed at the geemetrical

fecus of the parabeleid, will preduce a uniferm plame wave ever the

aperture of the reflecter is well knewn, The gemeratien of a pemcil-

shaped beam antemna patterm has reached a state of refimement such

that extremely marrew beamwidth, lew sidelebe levels, reasemably

bread-bard eperatien, high aperture efficiemcy and gain are readily

attainable for mamy applicatienms,

The axis ef this pemcil beam ceincides with the axis eof revelutiem

of the reflecter, and attempts te direct the amtemma patterm by eff-

axis mevement of the peint-seurce feed have failed fer all but the

smallest off-axis angles. Therefere, te direct the patterm requires

that the entire reflector amd feed assembly be retated er meved te aim

the antenna pattern im the directiem of imterest.

Widespread use of large aperture parabeleidal reflecters with wide-

angle scamming requiremenmts has stimulated cemsiderable interest im

development of impreved feed systems te alleviate preblems ef greund

neise radiatiem, spurieus pelarizatiem effects and lew aperture ef-

ficiemcies emceuntered in radie-telescepe applicatiems. Other such

preblems that are emceuntered imclude difficulties im maintaining

mechanical amd structural teleramces of the reflecer surface zi partic-

alar frequencies of interest,



The inherent symmetry of the spherical reflector suggests that it

could provide some relief from the problems previously described. Assum-

ing an energy source could be obtained that would, upon reflection from

the spherical surface, provide an antenna pattern whose beam coincided

with the radius of the reflector upon which illumination occurred, it

would be no longer necessary to overcome the inertia of the entire

system to meet a wide-angle scanning requirement, but merely to direct

the feed assembly as desired. In such a case, it is feasible that large

apertures could be illuminated to provide desired gain . Further, the

symmetry of a spherical section enhances both ease of fabrication and

verification of system tolerances in many applications. Other advantages

that may be realized from such a system follow directly from speculation

of possible application, including for example an antenna system whose

reflector could be imbedded in the earth, with few moving parts, pre-

senting a low silhouette to wind forces.

Unfortunatly, analysis of the spherical reflector reveals its

inherent spherical aberration. For a plane wave incident upon a

spherical reflector, rays close to the axis of symmetry intersect at

a point defined as the paraxial focus, exactly half-way between the

center of curvature of the spherical section and the vertex. Other rays

reflected from the surface intersect the axis at points closer to the

vertex. This phenomenon may be observed in figure 1, where rays are

constrained by Snell's law to reflect with an angle equal to that of

Incidence, as measured from the surface normal at the point of interest.

A more complete explanation of this reflection phenomenon will be given
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This suggests that rather tham a distinct meint fecus there exists a

Fuzzy fecal region, Illuminatien ef the reflecter with a peimt seurce im

the fecal regiemr reveals a diffractien pattern with wider beamwidth,

higher sidelebes ard much less gain tham a parabeleidal reflecter eof

identical aperture, It is this aberratiem that has presemted an ebstacle

te develepment of the spherical rather tham parabeleidal reflecter fer

use as a micrewave amntemna, Since intreductiem of the preblem te the

micrewave cemmuaity im WerldWar II, hewever, there has remained an

rctive interest in the preblem, Mest recemtly, with cemstructiem im

1960 ef the Arecibe (Puerte Rice) Ienespheric Observatery's 1000-feeot

diameter spherical reflecter!, considerable interest has been gemerated

in the selutien te preblems ef spherical abr -fiem at radile frequemcies

by means of varieus feed systems,

[,2 It is apprepriate te review past efferts relevant te the preblem., Early

attempts te explaim eptical phenemena fellewed frem geemetrical theory.

Euclid presented am analysis ef the reflectiem laws areumd 300 B,C, while

sbserving that light emergy ceuld be cencentrated by means eof



reflectors’ Early astronomers used spherical mirrors as primary

collectors of light incident upon their telescopes. Presumably the

ease of manufacture of these spherical mirrors led to their widespread

use, even though the geometrical analysis of the reflecting properties

of paraboloidal surfaces had been conducted. The difficulty of manufacture

of the latter apparently precluded exploiting their point-focus charac-

teristic.

The concept of a spherical reflector for microwave use evolved from

the World War II advances of radar technology. In 1941, Ashmead and

Pippard suggested two approaches to the aberration encountered:

For reflectors of large radius and restricted

aperture, the surface of the spherical reflec-

tor departs only slightly from that of a para-

boloidal reflector. It follows that the diffrac-

tion pattern is only slightly different from that

of a paraboloidal reflector, If the slight depar-

‘ure from plane wave illumination at the aperture

and the value of gain accompanying the restric-

tive aperture can be tolerated, this approach

permite a simple design and is suitable for wide

angles of scan.
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2. For the general case of spherical reflectors,

should the primary energy source be a special

radiator that provides not spherical waves but

waves whose departure from spherical waves is

just that necessary to compensate for the differ-

ence between the sphere and paraboloid, then

reflected wave fronts will be plane waves, uniform-

ly illuminating the aperture.

Early work indicated that it was possible to create non-spherical

waves of approximately the right shape by proper combination of wave-

guide horns and dielectric lenses, Unfortunatly, difficulties in

correcting for the larger phase error did not, at the time, justify

pursuance of this approach. Rather, to meet the expedience of the

wartime effort, the first approach of toleration of error rather than

compensation was used exclusively. Subsequent studies exploiting this

technique reached a natural conclusion with the work of Li4, who

extended and verified the theory of restrictive aperture large radius

spherical reflectors. His experimental work indicated that with a ten-

foot aperture hemisphere absolute gain comparable to that of a forty-

inch paraboloid was obtained over a scan of 140° with rotation of

the feed at a constant radius from the reflector.

The second, more interesting approach to the solution allows the

use of a larger aperture at the expense of increased complexity in

cost, design and some reduction in the available angle of scan.
1a



In the context of the latter appreach cerrective devices have fallen

inte the fellewimng categeries:

.:» lems structures

2. auxilary reflecters

3, line-seurce feeds

4 t- —--rme aperture Lceds

Lens str:ctures, while providimg si! ~“fuetory cerrectiem at eptical

frequencies, previde marginal cerrectiem im micrewave applicatiems, Sizes

cemparable te the reflecter amd primary seurce, requirements fer large

pieces of carefully cemtrelled precisien-cut dielectric amd imhereat

dielectric lesses, te say mothimg ef the cests and weights invelved,

relegate this categery ef cerrective devices at micrewave frequemcies

Rn pesitien ef academic interest,

Auxilary reflecters are of miner imterest whem the umdesirable charac-

teristics ef shadewing er aperture bleckage are immimemt, Even in cases

where this is ef small cencerm, the excessive weight ef the secendary

reflecter must be censidered, as must the mechanical arrangements fer

suppert ef the assembly. A gregerian reflecter has beem described by

Helt amd Beuche’ wherein a reflecting surface intercepting a great deal

of the emergy imcideat frem the spherical reflecter is imstalled. The

surface of the sub-reflecter is such that it prevides a cemstant path

length frem seme referemce plame near the aperture te the primary seurce.



Experimental results indicate that the scanning capability was realized

to 30° by rotation of the sub-reflector on a constant radius from the

spherical surface, Sidelobe levels were very high in comparison to

those available with paraboloidal reflectors. While aperture blockage

was estimated to be 1.5%, no figures on gain were given.

The earliest attempts at compensation involved the fact that rays

incident upon the spherical reflector were reflected to cross the axis

of symmetry. It was postulated by Spencer, Sletten and walsh® that the

incoming energy could be recombined with an appropriate phase shift

to provide a maximum of received signal. Reciprocity was invoked to

suggest that a properly phased line source could produce a wavefront

that would provide uniform illumination over the aperture. Techniques

of geometrical optics were used for path length calculations. The

sources considered were open-ended waveguides, polyrod travelling wave

structures, discrete dipole sources alog the axis and slotted waveguide

feeds. Indeed, the first feed system constructed at the Arecibo

reflector was based upon a modification of this design! Aberrationless

scan of over 60° was predicted for this initial installation-as well

a8 reasonable aperture efficiency. Actual results were well under those

anticipated. The high-power dual circularly polarized feed illuminated

the full aperture of 1000 feet with an efficiency of 21% at 430 MHZ

Love’ described a composite radiating system wherein channel guide

feed and a polyrod array provided a travelling wave structure to illumin-

ate from both the line focus and the paraxial focus, He predicted a scan

of 110° for a hemispherical reflector, and efficiency on the order of
Le



55%. schell™investigated the fields along the axis by application of

diffraction theory. He demonstrated the deviation from the geometrical

optics solution in the non-zero wavelength and agreement in the zero-

wavelength case, Schell's solution consisted of the use of a sufficient

number of discrete sources located along the axis, illuminating partic-

ular regions of the reflector. The analysis was based upon the fields

present along the focal axis when the reflector was illuminated by an

incoming plane wave. In an attempt to solve the problem based upon

Schell's solution, Cohen and Peronall constructed a feed system at the

Arecibo reflector. Their compound antenna feed consisted of a four-

element linear array with a reflecting screen and a sixteen-element

linear array located on the axis. Experimentation determined that gain

was lower and sidelobes higher than had been anticipated. Aperture

efficiencies were on the order of 30-3872, McCormick’ &gt; followed this

study with an analysis that considered the transmitting case and, in

particular, the aspect of polarization. His analysis concluded that a

zain deterioration was inevitable with a circular waveguide with cir-

cumferential slots that did not consider the azimuthal fields as well

as the longitudinal fields. The theory of McCormick was used by

Love and Gustinict? to illustrate the feasibility of illuminating from

8 leaky cylindrical waveguide that considered these fields. Most

recent literature indicates that a line source feed with high performance

has finally been achieved at Arecibo. Lalonde and Harris? note that

their feed has been installed at the observatory and has realized an



overall efficiency of 70% at 318 MHz. Designing for a flat waveguide line

feed with transverse slots was necessary to avoid problems of previous

feeds which, it was felt, did not provide sufficient control over

amplitude and phase variation along the line focus nor sufficient

isolation from the effects of mutual coupling between the radiating

elements of the feed. The lower frequency of operation was specified to

avoid losses due to surface imperfections of the reflector. The design

of the phase and amplitude required was based upon a geometrical optics

analysis of the rays intersecting the axis. This design is significant

in that it represents the first installation of a corrective feed in

a spherical reflector that has ylelded aperture efficiencies approaching

those of paraboloidal reflectors. Aside from strengthening arguments for

fixed-reflector scanning antennas, providing some 40° of scan with high

efficiency at Arecibo, the success of this feed indicates the potential

of the spherical reflector antenna for fully steerable arrays, where

iesired.

It has been noted by Ricardil® that line source radiator correcting

feed systems must be capable of producing a wave whose polarization and

shape are not easily obtained with elementary radiators.This basic fact

has caused present day line source correcting feeds to fall short of

expectations, with exception of the LaLonde-Harris feed. It should be

noted, however, that the requirements of Arecibo call for high power

with capability for dual circular polarizatidd. The line feed of Lalonde

and Harris achieved success in providing for linear polarization. While

-he high power requirement mav be easily met with the slotted guide,



the authors note that polarization flexibility has yet to be developed.

Presumably, the transverse aperture corrective feed designs have no

inherent difficulty in polarization flexibility. Early attempts to

provide aperture corrective feeds met with reasonable success in over-

coming the aberration, but were hampered by aperture blockage of the

moderately large feed systems, Sletten and Mavroldes™ were succesful

in lowering sidelobes substantially, while plagued with aperture

blockage. An aperture feed was suggested for the spherical reflector by

Burrows and Ricardil’ in which they predicted a possible gain of 61 db.

~omnared to the maximum gain of such an aperture the size of Arecibo at

h2.8 db. Their feed system was derived from a spherical harmonic expan-

sion of the fields necessary to produce a uniform distribution over the

aperture, based upon the fields incident upon a spherical reflector.

Spencer and fyde? conducted a detailed study of the focal region fields

associated with the spherical reflector illuminated by incoming plane

waves and concluded that only a vector field solution considering polar-

ization would yield adequate information. They solved the diffraction

integral by means of a stationary phase approximation, noting the

similarities to the geometrical optics approximations. Their theory

was shown to have reasonable agreement with fields actually found in the

focal region by experimentation, and their work has been used as a

basis for further study into aperture feeds?! Their work, however, did

not offer a solution to the problem, but rather provided a theoretical

analysis of the fields that could be expected. Work by Minnet and

MacA. Thomas 22 has been extended to show that the fields in the image



of symmetrical focussing reflectors can be generated by certain hybrid

modes to provide theoretically aberrationless pehaviozrsd. An aperture

source is described that uses a corrugated waveguide structure to generate

a set of waves that combines to provide a theoretically high efficiency.

Further developing his earlier ideas of spherical harmonic expansions,

Ricardi has recently provided a technique for synthesis of the fields

on a surface enclosing a transmitting feed? This treatment for the

transmitting feed synthesis provides for the solution to an electro-

magnetic boundary value problem, identifying as boundaries the reflector

surface and the surface of a smaller sphere enclosing the feed region.

[t is with this technique, substantially different from those involving

seometrical optics or anproximations of stationary phase, offering a

solution that appears to contain inherent accuracy, with which this

hesis is concerned.

-W)



CHAPTER II

PROBLEM STATEMENT AND THE THEORY OF GEOMETRICAL OPTICS

2,1 The selutien ssed by Ricardi te the preblem of the spherical

reflecter micrewave antemma relates twe sets eof electremagmetic fields

sver pertiems ef surfaces of twe cemcentric spheres. Due te the mathe-

matical fermulatien ef the preblem, eme surface ceimcides with that ef

the reflecter while the ether surface is takem at a radius ef interest

within that ef the reflecter. Origim eof beth spheres is at the cemnter

of curvature of the reflecter (figure 2). The fields ever the reflecter

surface are specified te be these fields that will preduce a desired

field distributiem ever the aperture of the reflecter fellewimg reflectien

frem its surface. The fields at the reflecter surface are them expanded

in a spherical wave expansiem, Thus it may be determined that if the field

distributiem givem by this expansien, evaluated at the immer surface, cam

oe semehew generated by a seurce within this surface that the apprepriate

reflected fields will appear, as desired, ever the aperture, Interpreta-

tien of the fields at varieus radii has revealed that there are certain

radii ceimcident with mearly cemstamt phase frents, Synthesis ef these

fields weuld be enhanced due te a petertial lesseming of the complexity

»f the radiatimg structure. Exactly which radius te be chesen fer the

inner surface is beyemd the scepe of this werk, but is cevered by

Ricardi??



[t is the hypothesis of this work that the technique of solution

to the boundary-value problem may be applied to a reference sphere

whose origin is a variable distance along the axis of symmetry and to

the surface of which outgoing rays from a hypothetical feed located

within this reference sphere would be traced if the spherical reflector

were absent. The rays outgoing from the region of the hypothetical feed

would be precisely those rays representing the fields that would, upon

reaction with the surface of the spherical reflector, reflect a desired

illumination over the reflector aperture, These rays would be based upon

the rays reflecting from the spherical surface when illuminated by an

incident plane wave over the aperture. Strictly speaking, this analysis

begins with the principles of the receiving case, but then requires

the field distribution to be produced over the reference sphere by some

transmitting feed. It is then the reaction of the radiated field with

the spherical reflector that theoretically produces a desired wavefront

over the aperture, The geometry for this case is given by figure 3.

Thus, within the limits imposed on ray tracing technique by theory

of geometrical optics, Ricardi's results for the transmitting feed

case may be compared to an approximate solution that originates with

the receiving situation, It is further possible that such a solution,

known to be strictly valid only in the zero-wavelength limit, may yield

results with less computation time than the exact solution within an

appreciably small deviation in results. The choice of origin of the

system of concentric spheres suggests that a more detailed analysis of

 83
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the fields in a particular region may be conducted in an economical

fashion, since the fields will be distributed over a sphere of smaller

radius than the previous problem's inner sphere with origin at that

of the reflector,

We thus proceed to describe the illumination of a spherical

reflector by a uniform plane wave to illustrate certain character-

istics of the reflector. This is followed by development of geometrical

optics principles essential to the description of the fields over

the reference sphere, Finally, expressions will be developed that

yleld the amplitude, phase, and direction of the electric field

over the reference sphere,

2,2 It has been noted previously that rays reflected from the spher-

ical surface following illumination by a uniform plane wave over the

aperture cross the axis of symmetry at varying distances from the

paraxial focus, This phenomenon may be analytically formulated to

illustrate the generation of caustic surfaces by these reflected rays.

[n fact, it will be shown that the caustic surface is the envelope

of reflected rays. Consider the situation given by figure 4.

iL]
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Constrained emly by the fact that the angles of reflectiem and imcidenmce

are identical, the equatiems ef rays may be givem by the slepe intercept

form of the straight lime equatiem. That the rays are straight limes and

the angles equal will be cevered im «¢ “tail im later sectiems. Viewing

he system im the x-z plame we have:

®
E——te—= tam 26 (2.1)

’eints em the reflecter surface are givem by:

R 8inb

z = R cesb

Letting peints en the ~
)

-
, and substituting inte 2.1:



= R sin® - (R cos® - z )tan20 (2.2)

Thus points on the caustic surface as viewed in the x-z plane become

Functions of parameter 0, We then form the function f(x,z,0) = 0 that

vill be satisfied by points on the caustic.

} { 110 4+ (R cosO = c )tan20 = 0 (2.3)

Adjacent points on the caustic generated by rays incident at angle

9 +60 will still satisfy the function for small 60, Since both functions

E(x.»2.+0) and E(x yz ,0+50) are equal to zero, their difference as well

is equal to zero. We can then form the exprecsion valid in the limit of

small SO:

1imS6-&gt;0 E(x 52,0460) - £(x.22.00) J

Me

d £(x.s2_,0) - 5
40 (2.4)

differentiating and solving for Zz yields:

‘2 sin‘0o «+  Ll) cosO (2,5)

rl



This expression for z, is then substituted into 2.2 to solve for Xe

Manipulation with trigonometric identities yields the parametric form

»f the equations for the caustic surface:

 ~ ne R( 3 sind - s8in30) (2.5)
Te

ACOS8 | 9 sino + |) = t( J cosO - cos30) (2.7)

Thus it has been shown that the reflected rays' envelope forms the

caustic surface and quantitative expressions for this surface have been

developed. They will be called upon in conjunction with development of

the expression for amplitude.

J 3 Electromagnetic field problems may be formulated in two contrasting

fashions, following from a choice of application of the Maxwell field

equations. In one treatment, relationships may be derived that determine

what fields will arise from a prescribed set of sources, The field and

vector Helmholtz equations are integrated by application of a vector

Green's theorem, and express the fields at an observation point as the

sum of contributions from the sources distributed throughout a particular

volume and from fields on the surface of the volume arising from sources

outside the volume2® This rigorous treatment indicates that the field

represents a flow of energy outward from the region of the sources, and



that these sources and fields satisfy certain assumptions of continuity

over the surface of interest, as required by application of the Green's

theorem. In the second treatment, the integral relations derived by the

first method may be applied to yield expressions for the field vectors

at a specified point,given the values of the fields over a surrounding

equiphase surface, or wavefront, without direct reference to the sources

zenerating the wavefronts, These integral expressions are the analytic

formulation of the Huygens-Fresnel principle, which states that each point

on the equiphase surface can be regarded as a secondary source of elec-

tric and magnetic current and charge which in turn gives rise to a spher-

ical wavelet. The fields at a point of interest may be obtained by a

superposition of these wavelets, considering the phase difference upon

arrival at the point of interest, Hence, energy flow is a wave phenomenon-

one which may be studied without reference to the sources of energy. As

before, the rigor of the solution depends upon adherence of the given

field distribution to several constraints as imposed by application of the

Jreen's theoren.

While the Huygens-~Fresnel relation provides expressions for solutions

ro the wave equation that satisfy Maxwell's equations, complexities of

integration of these expressions often render solutions impractical, or

require approximations to be made that eventually lessen the rigor of the

solution only after substantial manipulation. In these cases it becomes

convenient to approach the propagation of waves from the standpoint of

geometrical optics, wherein a rigorous solution is sacrificed for a

i!



simpler formulation that offers a more immediate solution, subject to

several additional constraints on the problem. In geometrical optics,

successive positions of equiphase wavefronts of the fields and an

associated system of rays are related.

{n an arbitrary medium the wave field is characterized by both a ray

velocity and wave velocity at every point, where the ray velocity is the

velocity of energy propagation, directed as the ray passing through the

point of interest, and the wave velocity is the rate of displacement of

the wavefront in the direction normal to the surface, The energy propa-

gates at the speed of light in vacuum, c¢. The wavefront propagates at the

velocity v, a function of the medium.

We proceed to describe the relations among wavefront and phase, con-

sidering wavefronts generated by some source propagating in a steady-

state radiation, Let the wavefront at time t, be the surface L(x,y,2)=L_,

a surface of constant phase V¥ = (w/e)L relative to some point, The wave=-

front at some short time St later is the surface L(x,y,z) = L, + SL,

The phase difference between successive wavefronts is then given by

(w/c)S8L. Since the wave proceeds from one surface to the next in time §t

while the phase at any fixed position changes at the rate w, this phase

difference must be equal to wét. Further, if Ser is the distance between

the adjacent surfaces and if v is the wave velocity, then vit = Sen

TS



We then relate these expressions:

w/2)8L = wlt =(ws_ )/v

) A
 Nn

= AY =71) index of retraction of the medium (2.8)

Note that expression 2.8 is the directional derivative of a scalar L

in the direction of the normal to the wavefront. By definition of the

directional derivative of a scalar function 8.25

IP G3 =
~
i V¢

shere T is the unit vector indicating direction in which the derivative

is taken, By definition of the vector dot product, with © the angle

between T and Vo,

1p/ds = TeVp = |T||Vé]| cos® = |V¢]|cosO

For our case the direction of interest in normal to the front, and O0= 0.

Hence?

Lis=[VL] = e/v= 1 (2 .9)

Ci



Considering the curvature of rays im am imhemegeneeus medium we can

demenstrate that the rays are rectilinear im a hemegeneeus medium, Let

S be a unit vecter in the directien eof a ray at the peint ef interest,

This vecter is nermal te the wavefr~nt and has the directien ef VL, Then,

"hen

/L

J

-

71, }

-

L VL|

(2,10)

Let N be a unit vector im the directien of the radius ef curvature ef the

ray at the same peint ef interest and p the radius ef curvature ef the

ray at the peimt, The vector curvature is defined?’ as N/p . This vecter

curvature is alse given by dS/ds, where s is a ¢’ “tance measured aleng

the ray. By defimitien and vecJr identity the fellewing expansien can

e made:

1S/ds = (S+V)S = = §S |,~ (V x 8S) = N/p (2.11)

This expressien can be manipulated te shew a simple relatiemship between

curvature of the rays and index eof refractien ef the medium, Details are

left te appendix 1. The result ef interest is:

fp 5 NeV(ln ny (2.12)
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Thus for a homogeneous medium where the index of refraction is constant,

or independent of position, we see that the right hand side of 1.12

is zero, indicating that the radius of curvature of the ray is infinite

indicating that the rays are, in fact, rectilinear. It follows that

JXS = 0, which is a sufficient condition for the existence of a family

rf surfaces orthogonal to a field of vectors S.,

The relationship of the amplitude of fields on successive wavefronts

can be determined from the premise of geometrical optice that rays are

lines of flow energy and that no power flows across the sides of a tube

of rays. These results were verified in the preceeding paragraph. Silves

considers two surfaces of waves Ly and L, and a tube of rays that cuts

out elements of area dA, and da, on the resnective surfaces. By con-

servation of energy requirements, the flow across any section normal to

he tube will be constant. In terms of the Poynting vector defined by

 %
EXH )

7e can formulate the

dz.

flow constraint by

= J , dA,

Since in free space the Poynting vector is proportional to the magnitude

squared of the field, between successive wavefronts the following relation

will hold:

LA



2 = 2E, | dA, E, | dA, (2.13)

Considering the ray through point A on the surface L, coincident with

the z-axis in figure 5, let the xz,yz planes coincide with the principle

ylanes of Ly at A, A ray through an adjacent point B lying in L, and the

x-z plane will intersect the ray through A at the point 0» a distance

Ry away. This distance R, thus is one of the principle radii of L, at A,

A similar analysis reveals the definition of the other radii R, based

upon intersection of rays passing through adjacent points in the x-y

plane. The point A' on L, lies on the ray through point A. At A' local

coordinates x', y' are constructed. Since the fronts are spaced apart

by the distance P, the two principle radii of curvature of the wavefront

Ly at the point A' are R, + P and R, + P.

Considering the elements of area dA, and dA, around the points A,

bound by the curve C, C' on surfaces L, and L, respectively, we can

write:

dA

3N oo
- X

*y 1 dX
' )

(2.14)

From inspection of figure J, and by the law Of sines we can relate

various distances:
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2 +*

Ov

t J

a

\/ AA=T t

bqure 5

(R, + P)x
R.

y' m= (Rg + P)y
R, (2.15)

8y relating dx, dx', dy, dy' and substituting into 1.14 we obtain a

relationship between the are=a elements:

ds. (R,_+P)(R, +P)
RR,

Substitution of 5.15 into 7.13 we obtain:

-y
J ‘uA, = [E,[2dA; RR. + P)(R, + P)

RR,

(2.16)

For the case of a wavefront diverging from a region of sources this

expression relates the amplitude at the wavefront farther from the

source?

20



y= Ej R, R
(rR, + PY(R, + P)

(2.17)

From the preceeding development it would appear that geometrical

optics is based on the local behavior of the wavefront as a plane

wave, Indeed, this is the basic tenet of the theory. The plane wave

solution to the wave equation may be used to show that in the limit of

decreasing wavelength the geometrical optics solution satisfies the

Maxwell fields equations. The vector solutions appropriate to describe

linearly polarized electromagnetic fields that behave locally like

nlane waves have the form:

RY 2) oJ (wt=k L(x,y,2))

(2.18)

B(X.V.2) eo (wt=}. L(x,y,2))

The amplitude vectors may be complex, but phases must be independent of

position to fit the plane wave solutions. Substituting these forms of

solution into the homogeneous forms of Maxwell's equations given by

V XE + jouH=O
(2,19)

-jJweE +VXH=0
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and expanding the resulting cxpr cions, these may be solved for the

vector amplitudes A and B :

A  wm =k ( VL xB) + 1 (V xB)
we Jwe

(2.20)
3 Ek (VL x A) = 1 {VV x A)

ou wu

where k, is the free space propagation constant, k = win €_

Equations 2,20 may be solved to yield an expression in terms of A alone,

Jsing the definition of k_ and the index of refraction

(eule wu _)
pe

J@ obtain the following exr ~L10n¢

re"VLxVLxA)+1(VLxV~xA+V97VxVLxA)+
jk _n?

1 (VxVxA)

nZk2 (2.21)

fxpanding 2.21 with the vector. identity

JL a vi ¥ A = Li Vi A) = A(VLeVL)

we obtain for A

)2.



A -. { VL(A*VL) = A|VL|-} + 1 (VLxVxA~+ 7 x VL x A)

jk _n?

A [2 22)
1~

A similar expracsion results for B, replacing A with B in 2.22, If

L and the first and second derivatives of A and B are finite, the last

two terms of 2.22 are of the order 1/k and 1/k compared to the first

term, As the wavelength approaches zero, LN approaches infinity, and

ve are left with the following expressions:

- {(VL{/ VL) = AVL“

(2.23)

1

2
{VL(B.VL) - B.VL}2

For these expressions to yield identity of amplitude of the vectors

A and B we see that the following must be true for the zero wavelength

ras deat .

3

i VL = 0

3eV], = [)

These two conditions note that A and B are transverse to the gradient of

Ly or that they both lie in a plane transverse to the directien of propa-

gation, Furthermore, since 2.20 expresses B in terms of A we have:

is



3 = Ve/u{(VL x A) - 1VxA

a Jk n
(2,24)

We see that in the zero wavelength case the second term vanishes

and we are left with an expression that implies vector amplitude B is

perpendicular to A as well as transverse to the direction of propagation,

since VL/n is a unit vector in the direction of propagation.

Thus the field vectors of geometrical optics possess the properties

of plane waves in what might be called the far-zone fields, indicating

great distances from the source with respect to wavelength, The condition

for neglecting terms of the order 1/k and 1/k for short wavelengths

require that all associated derivatives are finite, In the neighborhood

of geometrical focal points or caustic surfaces, the function L varies

rapidly, and geometrical optics predicts infinite amplitudes , which

nust be rejected on non-physical grounds. At the region of geometrical

shadow the approximations begin to predict erroneous results due to

the rapid variation of amplitude over distances small compared to

wavelength, In these regions the simple methods do not work, and dif-

fraction and scattering theory must be used,

Further work 34 has determined that the Huygens-Irecsnel relation in

the zero-wavelength case approaches the point-to-point amplitude relation-

ship predicted by the geometrical optics concept of energy flow in tubes

of ravs. Agreement holds in the far-zone approximation, at distances

yreater than wavelength, and reveals the constraint on amplitude

34



A's normal derivative that, besides being finite everywhere,

A dA &lt;&lt; 27
A 3n 2,

This is satisfied in the limit of zero wavelength providing the frac-

tional change in amplitude over distance equal to that of a wavelength

ls small compared with unity.

Since the basic tenet of geometrical optics requires that the wave-

front behave locally like an infinite plane wave, scattering phenomenon

may be interpreted geometrically, and appropriate laws of reflection

derived from the field equations and boundary conditions, That these

results are valid can be developed from other principles of optics

Including Fermat's principle and the law of the optical path, demonstrat

ing the properties of optical rays and the reflection phenomenon, or

Snell's laws.

Je consider the two-dimensional analysis of an infinite plane

wave incident upon an infinitely conducting ( that is to say perfectly

reflecting) sheet, The geometry of the problem is described by figure 6.
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The incident fields will have the form:

- I* CO8C

5 ~ J « C080, + I= X sing,

.8in0.) e -

(2.25)

coso, + Jk x sin0Q,

where is the wave impedance of free space, equal to (u,/€,)”

The reflected fields will have the following form:

 -

3

[h_cosO +-

2080 To) : X sino

(2.26)

, sino yetik,z coso_ + Jk x sin®_

3,



Since at z = 0 for all x and y the boundary condition on the tangential

component of electric field requires that (E4 + E) tang = Q,

Then, equating reflected and incident fields appropriat-ly we obtain:

Thus we note that the following boundary conditions exist at the inter-

Face:

E. + Ee) rang =
(2.27)

Ey nor = (EL) or

These expressions may be given in terms of a vector relationship:

1 oa i + F

(2.28)
i » mn «FE

We can examine this vector relationship to determine an expression for

the field reflected from a surface in terms of the incident field and

the surface normal- assuming that the field acts locally as a plane wave.

7



With the vector form of the boundary conditions we form the cross product

of the normal n and the first expression of 2.28, We then multiply the

gecond of 2.28 with the normal vector n and add the two expressions,

This yields:

1 -rE)n=~-un ke, xn+ (n¢E )n

ixpanding by the vector identity

Je obtain the

This may be int

v

Bd
2 te »C)B - (A*B)C

wi m

&gt; 2(n*E )n (2.29)

roreted to express quantitatively the fact that the

reflected field experiences reversal of its sense of tangential

components in order to provide a zero tangential field at the surface

of the reflector,

Thus we have demonstrated that the approximate methods of geometrical

optics involving point-to-point transformations along rectilinear rays

vetween successive wavefronts or surfaces of constant phase can provide

3K



adequate phase and amplitude information providing certain constraints

are observed, Furthermore, that these fields satisfy Maxwell's fields

equations and the wave equation within the limits of certain constraints

has been demonstrated by a zero-wavelength limit. We summarize the results

of geometrical optics in which we are int-—--&lt;2d as relevant to this work:

. Energy passing through consecutive cross-

sections of a tube of neighboring rays is

ronstant.

’ Kay$S 1n a homogeneous medium are rectcilnec.

}o At a surface of reflection, an incident

wavefront behaves locally like a plane

wave, and the reflection of rays may be

ceometrically interpreted in accordance

vith specular reflection laws.

The following cenr-~-"nts must be ob~-rved for the geometrical optics

approximations to hold:

.» All lengths of interest, radii of curvaturc

for example, must be large compared to a

vavelength,

2G



?. Spacing between neighboring rays must

change very little over distances on the

srder of wavelength.

3 od The fractienal change in amplitude of

field quantities over distances on the

order of wavelength must be small com-

pared to unity,

Geometrical optics cannot be used in

the region of geometrical shadow.

Geometrical optics fails at focal peints

or caustic surfaces, predicting non-

physical results,

+0



).4 It remains to utilize the previously developed expressions to describe

the phase, amplitude and direction of the electric field over the ref-

erence sphere, The choice of radius of the reference sphere is discussed,

as is the technique of ray tracing to be used, Expressions for phase

and amplitude on the reference sphere are developed, relating these

juantities to those incident upon the reflector surface. Finally, the

distribution over the reference sphere is related te a coordinate system

with coincident origin,

For the geometry of figure 7, we consider determination of the fields

produced by some source, directed towards the reflector,that will produce

Illumination over the aperture in the form of waves propagating in the

- z direction. The fields propagating in this direction will be of the

"Orin:

u JK 2

i,H «= ao

&gt;r in spherical coordinates:

fe
L_R cos©

Since we desire to specify these fields over a rr erence sphere of radius

R' with origin at z = cR, where c is some constant fixing the origin,

the phase expression must be corrected to account for the additional

|
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path length of travel to the reference sphere. Inspection of figure ,

indicates that the phase variation has two cases of interest, ome for

angles g » 8a and the other for the case of g &lt; He y Where 6, is the

angle at which the reference sphere intersects the spherical reflector.

The variation in field expressions is introduced as:

‘R.28 £1)

(2.30)

r*
Reos Lo)

1

(nspectior ef the expoment suggests that if appropriate values of ether

parameters could be found so as to keep the difference to a minimum that

synthesis might be enhanced, since the smaller expoment represents a

slower varying sinusoid. Furthermore, amplitude considerations in the

ceometrical optics approximation, namely the desire to avoid the region

of the caustic surface, suggest that a wise choice would be to comsider

the reference sphere intersecting the reflector surface at the latter's

axtreme edge. Thus the radius of the reference sphere will be constrained

by the radius of the reflector under imnvestigatiom, R, the position of

the origin of the reference sphere z = cR, and the maximum angle sub-

tended by the reflector. By laws of trigomometry we observe:

{ &amp; + .&lt;R2 = 2cR%ces®
m (2.31)

A



The ray tracing technique proceeds from a ray incident upon the

reflector at a particular angle of interest. The ray reflects im ac-

cordance with the previeusly developed laws of reflection. We then

assume that if a hypothetical source could produce the appropriate

fields that would give the same illumination as we have upom the aper-

ture, these rays would remain as we have determined, but the sense of

propagation of energy aleng the rays would be reversed. We them remove

the reflector, and trace the rays until they intersect the reference

sphere, Within the limits of geometrical optics, we can estimate the

amplitude and phase at each point of intersection, based upon the

extra path length travelled by the waves, along the rays, to the refer-

ence sphere,

It is necessary to calculate the distance L. We proceed with an

squation determining the distance between points on the reflector and

points on the reference sphere, as measured along the ray of interest.

Referring to figure 8:

 of
i % w wr }2 - 2

)¢ + (7, vo) + (z, z ) (2.32)

where

 rR

7

R! sino’ co Ss ¢’

x RK! sino' siné'!

RY cosb! + cR

il
=

R sin® cos¢

R sinb sind

[4 2083



Noting from symmetry that ¢ = ¢°, and substituting, expanding terms

ve obtain?

i. 3)
(R'sinf: = Ks.

[0 proceed, we must relate 6 and J

WW) (x'cosd’ + cR = Rcosd )?

, Viewing in the x-z plane, the

equation of ray is given by:

&lt;in2o
(2.34)

From the equation or &amp; spherical surface

a) £ 4 72 {2.35)

Je can solve 2,34 ard 2.35 in the plane vy = 0 to yield am cxpression

representing the intersection of a ray and the surface of the °°hate

sphere. Solvimg for Zz _, intercept of the z-axis we obtain:

A FR Z

sin(n= 26) sin@ (2.36)

Substituting 2.34 into 2.35, and expanding in a straightforward fashion

ve obtain, with substitution of 2.36:
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r
dl - 2z( Rsin®sin20 + cRcos226 ) + R2%sin?8 = cos?220(R'Z - c2R2) = 0

Details of the manipulation are included in appendix 1. Normalizimg all

distances to R, radius of the reflector under investigation, we obtain:

31m6c.nld + ¢ cos%20 ) + sin‘f~- cos?26(R!'? -’) =0

2.37)

Jia re

RY uw R!
nl ry

&amp;
—

Solving the quadratic 5

27 by usual methods, we obtain for £
1

os

hy
3 70 + ¢c cos‘ 29)

/
(sinfsin26 + c cos? 28) - sin?e+ cos?26(R'2 - ¢2)

2 .38)

Noting from the geometry of figure 8:

x  nN
v

a a

1

 ld - 37 (z - cR) = (z - ¢)

n? -~ 1

(2.39)

+ (



Substituting equation 2.38 into 2.39 the fellewimg relatiemship between

angles 0 and 6' is obtained:

+53)  Ad
rR!" sing

r
1 i

“20 + ¢ co

&lt; Oo

Z,\J [

J) = ciard + cos’26(R'2 - c2)

 40)

Equation 2.40 states that there is a relatiomship between angles such

that for every angle of incidence on the reflector surface there exists

an angle 0', as measured from the origim of the reference sphere, that

describes the intersection of the reflected ray traced back to the refer-

ance sphere and the surface of this sphere. Thus the angles may be

related in terms of the parameters of the reflector under investigatien,

R and © » and the center of the reference sphere implied by the value

of c. Once the angles associated with a particular incident ray have been

related, they may be substituted inte 2.33 te yield the distamce L as

a function ef the point of interest on the reference sphere.

Equatien 2.17 was developed to express the amplitude of field quanti-

ties on one wavefront with respect to the field quantities en another

front. It is seen that the amplitude varies with the two primciple radii

3f the wavefront and the distance of separation between fronts. It is

necessary, then, to develop expressions for the radii.

4
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Once again we consider the case of a spherical reflector illumirated

by am incoming plane wave, A typical reflected wavefront has been

constructed in figure 9, where the front represents a surface of

constant phase as defined by the total path length measured along

each ray, L, + L, = R , The wavefront is formed by connecting normals

erected on each ray at the point where total path length equals the

radius of the reflector. Figure 9 shows the front as viewed in the

plane y = 0, From symmetry, it may be seen that the surface of the

front can be generated by revolutiom of the projection in figure 9

around the axis.

At any point of interest, a wavefront may be passed through this

point by cheice of the appropriate path length, At each point the

wavefront will have two principle radii of curvature. Since a ray is

normal to the front and any twe adjacent rays intersect at the caustic

surface, forming the envelope that is the caustic surface, it is seen

that one radius of interest is the distance from the fromt at the peint

of interest to the peint em the caustic, as measured alomg the ray. The

second radius of curvature may be determined from the axial symmetry of

the system, In the ¢ directiom, adjacent rays will intersect at the-axis

of symmetry, and the second radius of curvature will be the distance

from the front at the point of interest to the axis, measured along the

Cav

{9



Rays incident uper the reflecto¥ at ar angle 9 are reflected at this

angle, pass tangent te the caustic surface amd cress the axis, The

reordinates of the peimt te which tamgemcy eccurs are givem by equatienms

2,6 and 2.7, the parametric equatiems ef the caustic. Frem figure 9 we

R@S*

vhere

=] =

wl

Re2386

 i

4 a
—

THT

(2.41)

2.42)

Rsing

y sinf

sin26

Substituting inte equatiens 2.41 and 2,42, and mermalizimg all quantities

r® the radius R we ebtain:

oa

889
(2.43)

2.44)
2 cesh

Details eof the manipulatiem irvelved are cevered im appendix 1.
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Although the wavefront has been analyzed by considering illumination of

the reflector by an incoming wave, it 1s the fact that if a source can

be provided that can generate such a wavefront as has been described, tim

wavefront will be reflected from the spherical surface to yield an

outgoing plane wave over the reflector aperture. Figure 9 represents a

graphical illustration of the method of compemsation suggested by

Ashmead and Pippardlia wavefront whose departure from sphericity is

just that needed to transform into a plane wave upon reflection.

Since we wish to describe the fields over the reference sphere as

a function of coordinates with origin at that ef the referemce sphere,

we must introduce a transformation of the field vectors. Initially,

field quantities were described upon incidence in terms ef coordinates

with origin at that of the reflector. The geometry of interest is

described in figures 10 and 11, considering both cases where the center

of curvature of the reference sphere is exterior and interior to the

Intersection of the reflected marginal ray (edge ef reflector being the

point of incidence) and the axis. Nete that due to axial symmetry there

is no modificatien r-~~rrytothe¢components By inspection:

ws wut 3) + gin JY -— 3)

(2.45)

310 (8' ed 9) + COs (J
“4

sowie J)
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Solving for the unprimed components in terms of the primed system:

\ nF J J

(2.46)

We -wlild yw ))

Frem the preceeding derivations it may be seen that equations

2,17, 2.30 and 2.29 provide sufficient information to form an expression

for the geometrical optics amplitude, phase and direction of the electric

field distributien over the referemce sphere, based upon a desired

reflected field E. « Quantities of interest, includiag the radii of curv-

ature of the wavefront, distance from the point of the reference sphere

under consideratien te the corresponding point on the reflector, and the

relationship between angles are given by 2.43, 2.44, 2.33 and 2.40

respectively. Finally, transformation of the vecter components given by

2,46 relates this field distributien te coordimates at the center of the

reference sphere, Thus the geometrical optics field is described ever the

reference sphere as a function of the reflector surface under imvestiga~

tion and the particular erigin ef interest of the refcrenmce sphere,
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In summary, we formulate an expression for the general case where

a desired electric vector field is specified over the aperture. Choosing

this field te have unity amplitude, we describe the field that would

occur over the reference sphere:

Amplitude?

‘hase?

Direction:

£ = FE
reference reflector
sphere

2n"2n _|s2a17)
(Ry + I1)(R, +L)

Phase( E ) « JE R( oss - L,)
reference
sphere

(2.30)

E
reference 2( n *E_)n (2.29)

sphere

combining:

=

reference
sphere

Raton | 2 elk R(cos - L,) {-E_ + 2(n°E_)n}

(R, + L) (R, + L),

Zetl)

5b



wshere:

3osb’ = x
RY

Rn - £080

’

2ceosf

1+ ¢2 - 2¢ cosd
m

(sin® = R’siné6 )

( sinfsin26 + ¢ cos&lt;28 hue

(2.43)

(2.44)

2, 31)

(R! cosd' + c¢ - cosd) (2.33)

5in0sin26 + c co0s?26)2- sin?e+ cos?26(R!Z - ¢2) ) (2.40)

2080’  y L¢Sinid
3

a J)

(2.46)

Lain’ 3) y

n

y COS {0 NY

3 §
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aperture, side projection
ryqure Le

2.5 In this section, we apply the results of the general expression 2.47

to a particular case of interest, Specifying the field at the aperture

shown in figure 12 to be a uniform plane wave linearly polarized in the

x- direction we have:

v
")

ud
-™

aperture

Expanding in spherical cocerding ~ Yny
Ww

i
aperture

xcosh
Jie ’ i sinfcosd + i, cosf cos or 1,sing) (2.48)

By applying equation 2.29, reversing the sense of tangential components

we can determine the sense of direction of the field ever the reference

sphere

yA



direction( E eference’ = 1_sinfcosé oe 1,cosbcosé + 1,sin¢ (2.49)
sphere

Applying equations 2.46 to 2.49 the direction of the field vector

an be expressed in terms of the origin at that of the reference sphere:

JB ’ 3
o -

 A, 1&amp;4
&gt;= y

(2,46)

~ad lV ” J J yrco8(8” i)

Substituting:

~ ; = tr - LI.

iicection( E eference’ 1,.1c08¢ ( sinbcos(8 8) cosfsin(8 8))
sphere

cos¢( sinfsin(8' - J) + cosfcos(0' - 3I))

o Ap |Z 30)

Collecting terms and applying trigonometric identities for the difference

of angles we obtain:

- , - tf - - '

direction ( E eference’ 1 1cos¢sin(26 8%) 1,1cos$cos(26 8')
sphere

 A i. J 1)

3 “i



Thus frem previeusly develeped relatiemships 2,17 and 2,30, expressiems

fer amplitude, phase, and directien ef the electric field ever the ref-

srence sphere cam be cembined te yield the vecter field selely as a

functien of the particular reflecter umder imvestigatien and the cheice

of origin ef the referemce sphere alemg the axis,

While simplificatiem ceuld be perfermed en the resluting expressien,

the field ever the referemce sphere is, in itself, erly a means te

sventually describe the fields ever a smaller sphere surreumding seme

seurce regien, cemcentric with the referemce sphere. Since the simplifica-

tien weuld met emhance this precedure, it will met be pursued. Rather,

‘he resulting expressien

o
reference

sphere

Raton CL

(Ry + L) (Rg $e L)

JK R( cesf - i,

,ces¢sin(26 - 6") ~ i_,ces¢ces(26 - 6') + i sing )

Zzh ;2)

(where Rin? Ryn? L and angle relatienships are defimed by 2.43,

2.44, 2.33, and 2,40 and are listed fer cenvemiemce im sectien 2.4)

jends itself readily te tecriques of machire cemprtatiem., As a result,

the fellewing pages centain graphs representing the field cempenents

in amplitude and phase fer a particular cheice of parameters. The results

are calculated fer nermalized amplitude and reflect ne variatien in the

-~&amp;



azimuthal ¢ directiem. Thus the cempenents Ey and E, indicated in the

graph must be multiplied by ces¢ and sin¢ respectively te represent the

true nature of the field ever the emtire sphere, Similarly, the Ev com-

ponent must be multiplied by the variatiem ces¢ ., The cemputer pregram

leveleped te calculate the field ever the reference sphere is included

in appendix II,
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CHAPTER III

ELECTROMAGNETIC FIELD EQUATIONS, EXPANSION, AND SOLUTION

}.1 In the preceeding chapter expressions for the electric field ever the

reference sphere were determined. In this chapter those fields will be

matched at the reference sphere te an expansion of spherical harmenics

fellewing frem selutien te the vecter wave equation in spherical coerdi-

nates, These harmemics will be evaluated at a particular radius within

that ef the reference sphere te yield the electric field ever the surface

pf that smaller sphere enclosing some source regien, These fields will be

compared to the solution ef Ricardi for the same region, Finally, these

results and the ceomparisen of solutions will be interpreted.

Lt may be showil that solution to the scalar Helmholtz equatien

for svherical coord.

JL

oil

z

28 13

wit)

, J

Ja.ven oy separation of variables to ve:

= ( C { oa 2)

where b: (kr) is the spherical Bessel function and P(ces0) is the

associated Legendre function ef the first kimd. The cheice of cosmd

or sinmé depends upem the variation of the fields at the beundary ef

interest,

~?



lhe fields under investigation in chapter 2 were shown te be vector

fields, and the selutien te the vector Helmheltz equatiem must be

~onsidered as:

V2 + k2)A = J 2.3)

shere A is a vector field, representing either the magnetic vector

potential er its dual, the electric vecter petential, It has been

shewn that a general selutien may be fermulated by censidering a set

pf fields, beth magnetic amd electric, which are transverse te the

radial vector, 1i_, In this case the solutions te 3.3 are feund te be:

(3.4)

7 E1

where ¥ is the solution to the scalar Helmheltz equatien, with the super-

script indicating that is solution te the vector Helmheltz equation

for the magnetic petential A or the electric peteatial F.
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The mest general selutien fer fields in a seur- + 2» hemeceneeous regien

in terms ef vecter petentials is feund te pet a linear cembinatien ef

fields with the behavior of equatiens 3.4, where:

? = JuuA + Lv (@.A)
{we

(3.5)

We £  KE
od
- a

7(7«F)
Jwu

Since the selutiems fer A and F imvelve the preduct ef r and ¥, it has

been feund cenvenient te adept am alternative defimitien ef the spherical

Jessel functien&gt;’:

A (2) *»

i, (kr) = kr h_(kr)

ARDY

The superscript Ho indicates we have chesen the spherical Hamkel fumctienm

»f the secend kind, whese behavier indicates prepagatien eutward frem the

prigin, as applicable te this preblem, Anticipating further, simce the

fields we wish te expand are ef the ferm of equatien 2.52, where the var-

Latien with ¢ is given by sim¢ and ces¢p , we cheese m = 1 . Thus:

A) 1 { sin?
 ES H_(kr) P,(cesd) cos®

(3.6)
A) 1 { sing

Lowy H_(kr) P,(cost), py

Hk



Expanding equatiem 3.5 in cempenent ferm we ebtainm:

BE 7
jwe arl

4
2

z= =] oF, + 1 3 Ar

rsind 9¢ jwer oro8

932A
—L

19 jwersinb ard¢

+

B

jog dr?

2
1 oA, + 1 0 Fr

rsin8 3d¢ jwur drab

, OA
I xXr_ tr

38

2

oa Xe
jwpursinb arad

(3.7)

Referring te the cempenmnent Eq in 3.7, we nete that ¢ variatien fer

AL and BY is the same, Hence we cheese the apprepriate variatiea in

3¢
equatien 3.6. We nete further that the functien PX (cost) is identically

rere fer mn = 0, The series need begin for mn = 1, and may be written:
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3 &gt;

0 A * 1

Ek a H_ (kr) P_(ces6) cesé
(3.8)

Ay
A

by H (kr) P_(cost) sing

Substituting imte the apprepriate compemcnts ef 3.7 the cleetrie field

an be formulated 3
3

A(2)

i, n (ntl) H (kr) PL (ces0) ces¢
jwer?

A) 1

by H (kr) P_(cesd) cess 1,

(3.9)

vi

nim -

it)

a cos

ALD) 1

di (kr) 4B. (rash)
ir io

A (2) 1

b. H (kr) sing dP (cost)
 | - er—

13

AL)

Loa sing Pl(cose) of (kr)
jwer 8imb  fo

Abo



fer convenience we define:

WA

LA (kr)

and since we are ¢ Ee

A(21 ”
Ay

= x GHG _ H_(kr)

d(kr)

red with the EC. “SE &amp; t prepagation in free space

=wYe MU

- Yu le,

Substituting the relatismships frem abeve, multiplying threugh by j/j =

and including the summatien we form equatiem 3,10 frem 3.9 :

co )
+a n(ntl) Ac 1

L | n H_ (kr) P_ (cost) cesd 1
n=l

jwer
i

Nz,
- Joa H_(kr)

i

-ces¢ d Py (cosf) i, + sing pl(cose) i |
_ do sing ¢

A (2)

id (kr)
p— | N

-coSs pt Lc |cos a (cos6) 1, + sing ! Falcos®)y
0

a

7 10)

A/



[ntreducing tangential spherical harmenics as defined by Merse and

reshbacks

3 dq )

&lt;

Sn v 5
va(a+l)

dP" (cesb) m
cesmé¢ RA i, - msimmoP (cesd) i,

10 simb

—

+O

nA
= 1 =

Yn(n+l)

m

mcesm¢ P (cost) 1, - sinmé Paloes®)y
Lsin®

Substituting 3.11 inte 3,10 we can ferm an

fields. By expleiting certaim erthegenality preperties of the tangential

narmenics, we can derive the censtants a and b_ in 3,10 frem the fields

specified at the beundary ef interest, Im our preblem, it will be the

tangential fields en the reference sphere that will be specified. Nete

that frem equation 3.10 the twe cemstants a and b are sufficient te

describe the field vecter. It must alse be noted that develepment ef all

axpressiems im this chapter has preceeded fer the case where the erigin

»f the sphere for which beundary cemditiems were given ceincided with

the erigim of the ceerdimate system fer the spherical harmemics., It mew

becomes necessary te stipulate that the harmenics must be expanded abeut

ar erigim at the ceater of the referemce sphere, Te adapt these expre:plies

ve need emnly te substitute 6' fer 8, recegmizimg that the amgle is de-

fined as in chapter 2, and fer the radius variable r we substitute r'.

indicating that it is measured frem the prime ceerdinate eriginm.
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Frem the preceeding we cam write fer the tangential field cemperments:

LARD

A ° AD, “

LI va(n+l) I&gt; H (kr) Clin + jza_ H (kr) Bin
a=1

Ceefficients are evaluated by forming the vecter det preduct Cra rang?

nultiplying each side ef 3,12 by s8in6d6d¢, integrating ever the

interval O-v and 0-27 em ¢ amd 6 respectively, evaluatimg the fields at

‘he reference sphere, radius R'. The fellewing preperties are listed

celows

e e

Bye Bin
@® o

C1q Clim
sin6dodé =

2ra(ntl) n=dq
2n+1

Be

a8 n®
“ln Bq sinGdode ) fer all n,q

Applying these preperties te equatiem 3.12 we have:

20



' «RE taal

J(2wt1)RYSSE +B), sim0'do'dy
z2nH_(KR") (n(n+1)) 3/2

(3.13)

-(2m+1) R' ff E_.*Cip sin6'do'd¢
RRae

2TH _ (kR') (m(m+l)) 3/2

vhere E_. is the vector re- tien of the tangential cempenents ef

the electrie field ever the referemce sphere at radius R', Te perferm

the integratiem indicated im equatiems 3,13 we preceed by expanding

the field 3 in a feurier series, We cheese a series apprepriate fer

the fields ever the reference sphere, in this case a series with even

symmetry abeut 6' = 0, and where the ¢ dependence matches that ef the

fields at the beumndary, as suggested by equatiem 2,52, Preceeding:

CK 2090) = r c cc
m=0

 oO La  HD Decesmb' (3.14)

The feurier ceeffiecients are rtinined ir the nermal fashien, and are

covered in appendix 2.

Consistent with the - "mn of Rieavdi we cdofire eeupling ccofficients

-
mn

: Teesmd’ Pl(cest’)
2 »

d0°

Lv 15)

pk
mn

itt

1 '

"cosmo! sinb' d P, (cost ) do’
do!

A]



Substitutien of 3.15 inte 3.13, using the detinitien ef fourier ce-

&gt;fficients frem 3.14 we ebtain:

1 a ”

JAR : (ec 19 - 4 1°
meres m mn m mn

Ho (kR') m=0
(3.16)

0

I (e 1° - 4 1%
m mn m mn

i (kR' ) m=0

vhere

2n + 1

2(n(n+l))2

Therefere te fully express the =._-=Ciric field im the spherical harmenie

axpansien we need enly te evaluate the feurier ceefficiemts in 3.14 and

the ceupling ceefficiemts givem by 3.15, These ceefficients, whem sub-

stituted inte the series 3,16 yield ¢ ~~“ " -Z-ats ef the spherienl

harmenic expansien.

These censtants are mormally evaluated by a recurcienm rechaique®®

rather than selvimg fer each term by evaluatiem ef the imtegrals, This

recursien techmique is particularly easy te realize with machine cemputa-

tien, and is imhereat im Ricardi's methed ef evaluatiem., Thus ceefficients

will be cemputed rather tham analvtically determined.



{n summary the relatiemships that express the electric field as a

spherical expansioem of a specified field om a givem referemce sphere

such as shewn in fipure 12 are listed:

‘3 17)

yo -
Lr 6 $y ) --

-i ” =a n(na+l) a ' 1 '

 I R H (kr ) P (cess ) i.
~! p=] jwer'

P—

AND , ° AY , e

AD | On Ba(F7) Cp + 30 3, Hl) By

where cl. and BI are given by equatien 3.11 with m=1

sk(H ange o

i cos¢ pt i .
“a(nt+l) | sino’ pleess!) id, ~ sing Spleens?) i/ do"

— 1
| cesd dP (cesf’) i 1

= g' sing P (ces8') 1
] sing' © }

1

/ a(n+l)

ziven vy equatiems 3,16:

b

1A RC d
 x I (e I -d 1°)

mT , mn mA m ma

gH_(kr ) m=0

 7)



yo _R I (e 1° -4a 19% )
~ .7), — m mn m mn

H_(kr') m=0

2a + 1
A ,
»

and the ceupling

2(m(m+1))2

coefficients I ’ I* given by 3.15:
ma? mm

SC . 1 ' 1 ' .

am [cosmd P_(ceso ) db

a
CL = feosmO sing’

&gt; 1

dP (ces ) do

in!

The feurier c nn
wwe of

ficents e and d are defined in equatiem 3.14:

.., = Ett  (R7507,6) = F  3
bi.1

eso Y sing 1, )cesmd
m=0

1



£ is the vector
rt

tien of the electric field tamgential te the

reference sphere, as determined frem 2,52,

While the series renresentatiem gives an accurate selutiem fer the

sum of all terms, it is recognized that this is impractical te realize,

An impertamt sectiem ef Ricardi's thesis dealt with justificatiem eof an

apprepriate truncatien ef the series solution" That analysis deals with

subjects beyond the scope ef the presemt work, although it will be neted

‘hat the series trumcatien stems frem a desire te aveid generation of

highly reactive waves that de met, im practice, yield that much accuracy

re the end result. Om the basis ef a rigereus analysis regaeding genera-

tien ef these highly reactive waves it will suffice here te state that

satisfactery results are ebtaimed with the spherical expamsien when the

number of terms of the series is em the erder ef N = kR/ , Where Ry is

the particular radius at which evaluatien is desired.

Therefore, equatien 3.17, evaluated at r' = R! , where R! is the radius

snclesing the tramsmitting feed which will preduce the desired field

K
reference
sphere

specified by equatiemn 2.52, which wiil im turm preduce after reflectien

a desired field distributiem at the aperture, yields

feed = Del
3vphere

2  yg O y J



The equatiens for magnetic fields ever the {eed sphere can be ebtained

Frem Maxwell's equatiens. Im particular:

lead
sphere

In this analysis we have

7% Rrued
wu sphere

“=qted on solution of the electric fields

at varieus beumdaries, Te produce the desired fields at the aperture it

is not necessary to separately excite beth Efaed and Heed » Since

sphere sphere

~hreugh Maxwell's equatiens, wvne — RGR ‘tance ef ene field specifies the

other,
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;} To illustrate the principles outlined in preceeding

sections and to show that these principles provide an

economical and efficient method of mathematical expansion

of fields from the geometrical optics reference sphere to

an interior feed sphere, a particular case was chosen for

rvaluation.,.

The parameters of interest were chosen for c = i — )

representing a displacement of the origin of the feed and

reference spheres to z = .52R for a reflector of radius

R = 931 and subtended angle of 37,4 degrees. The field

distribution of magnitude and phase were presented in

csraphical form in section 2.5 for this choice of parameters

Figure 3 of section 2.1 illustrates the geometry of the

sccentric coordinate system.

it must be noted that the choice of eccentric origin

chosen for this case of investigation was rather arbitrr-y

as was the choice of inner sphere radius. This choice was

guided, however, from principles of geometrical optics. The

rays incident upon the extreme edge of the reflector surface

are reflected into the focal region, forming the caustic

surface. The points at which the edge rays are tangent to

the caustic surface define the marginal surface focus, that

plane surface generated by the rotation of B-B' of figure

l5 about the axis of revolution of the reflector.

I»





Note that all reflected rays must pass through this surface, The

smallest such surface through which all reflected rays must pass is

defined by the circle of least confusion, generated by rotation of

A-A' of figure 15 about the axis of symmetry.

While geometrical optics wrongly predicts infinite fields in the

vicinity of caustics, the fact remains that converging rays indicate

an area of energy concentration. Hence, an intuitive choice of probable

location for 2 minimum-sized feed would be that aperture which most

closely coincides with the circle of least confusion associated with

a particular reflector. It is a simple matter to show from the geometry

that a choice of origin between z = ,5R and .6R requires a feed sphere

on the order of 5-10 A for a reflector of 93 XA with subtended angle

37.4 °, as considered in this study, to meet these specifications.

lence, a representative distribution of fields over such a feed sphere

that would be required by the tangential boundary conditions to yield

a uniform plane wave over the reflector aperture is given by figures

l6. Amplitude and phase of three components of electric field over

the surface of a feed sphere of radius 8.4 A with origin at z = ,52R

for a reflector of radius R = 93 A are presented in figures 16 A-F,

This solution is a graphical result, obtained from evaluation of the

series solution given by equation 3.16 and 3.17 of section 3.1.
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3.3 For the choice of parameters indicated in section 3,2

rhe magnitude and phase of the field distribution over the

reference sphere, as given by equation 2.52, were presented

in graphical form as figures 13 and 14 of section 2.5. The

nearly identical distribution of tangential components and

the near-vanishing radial component of the field are due

to the relationship between angular variables 8 and J

where to first order

Only the tangential field components are used in the

oundary condition to generate the fourier coefficients,

as noted in appendix II. The tangential fields were expanded

in the following manner from equation 2.52:

i LL 1 2 % jv

tan ( E,cos¢i,, + E,singi, )e

Stan © E,cos¢ (cosy + jsiny) i, + E,sin¢ (cosy + jsiny)i,

3h



The real and imaginary parts, less the cos¢, sin¢ dependence

were then plotted graphically and are presented as figures

l7 and 18 . Due to the similarity of magnitudes resulting

from the nearly-identical nature of tangential components

indicated by figures 13 and 14 of section 2.5, only two

rather than four plots are presented here. The calculations

iowever, retain the existence of four separate components,

wo real and two imaginary, of tangential fields, These

~omponents were then expanded into a fourier series of the

form:

M

2 = PN * 4 ’ .tan mzaC Co cos¢ Lao d_ sing i,)cosmb

where Cn? d are now complex fourier coefficients determined

13s noted in appendix II, and M is the limiting value of

he highest harmonic desired, given, as noted previously,

RY

N#ith r the radius of observation.
N







To check on the accuracy of the fourier expansion technique, the series

was summed using coefficients determined by the geometrical optics

field over the reference sphere. The results are indicated in figures

17 and 18 as small departures from the heavy dark line, which represents

the values used to generate the fourier coefficients.

These fourier coefficients were then used with the series solution,

given by equations 3,16 and 3.17, to evaluate the fields at the reference

sphere. The trends and accuracy of this series solution, when compared

to the geometrical optics field initially calculated and subsequently

used to generate the necessary coefficients, appears to be reasonable

when viewed in figures 19. It is to be recalled that the series was

truncated at a value of terms much less than infinite in ordér to avoid

generation of highly reactive fields. The presentation of figures 19

involved 390 terms. As the series' accuracy improves with the number of

terms, better agreement between the geometrical optics and resulting

synthesized fields would theoretically be forthcoming with continued

summation. It is to be noticed. that the agreement of phase appears

quite good for the tangential fields and satisfactory for the radial

component, Similar agreement occurs in amplitude. The basic boundary

condition that was involved required matching of the tangential fields

so as to force the field to zero at the reflector surface. Hence, the

radial component is also determined from this boundary condition, and

should contain some variation for less than an infinite number of terms.

The phase of the radial component is similarly determined from the

real and imaginary parts of the component, and for the radial component

«J



&gt;f near-zero magnitude, the error involved in the difference of small

numbers begins to override the solution. Hence, for values of radial

~omponent near zero, rapid phase variations were encountered. These

were not plotted as not being significant they added no contribution

-o the work.
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CHAPTER IV

CONCLUSIONS

«1 As noted by the graphical representation of solution offered in

figures 19, the technique explored by this thesis has yielded results

hat indicate its accuracy and applicability. A geometrical optics expan-

sion from the surface of a spherical reflector to a hypothetical ref-

erence sphere can be utilizedto generate necessary coefficients required

by the series solution of spherical harmonics that constitute the

expression for the electromagnetic fields in the region of concern.

With regards to the efficiency of the technique, an investigation of

various eccentric origins from z = ,5R to .6R indicated that the radii

of the ensuing reference spheres were on the order of R' = ,6R for

the reflector chosen for investigation by this thesis. Thus, evaluation

of the series solution at the reference sphere for purposes of compar-

ison to the initially determined geometrical optics field involved a

reduction in the number of terms that would have been required without

the eccentric coordinate system by some 40 %. The reduction in terms is

due to the direct relationship between the radius of observation and the

number of terms required. Due to the flexible nature of the technique,

choice of eccentric origin to include regions of energy concentration

near the feed sphere result in the feed radius on the order of 8 A

for the reflector of 93 A considered by this study.

I



Previous investigation 43 constrained by a fixed origin and con-

centric spheres, as given by figure 2, found it necessary to keep the

radius of the feed sphere on the order of half the radius of the reflec-

tor. Thus we consider that this technique has provided a substantial

reduction in the number of terms involved from

xr = ( 2n/X )( 93x /2)

1=kr = ( 2n/A) 8 X

indicating a savings of a factor of approximately an order of magnitude.
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3 &amp; A next logical step in pursuanceofthistechnique

sould be to concentrate on the series solutionatthe

radii of various feed spheres. This study suggests that

if the fields given by figure 16 can be duplicated over

the surface of the feed sphere by some source within the

sphere the desired illumination of uniform plane wave

over the aperture of the reflector will be realized. The

calculation of the fields at the aperture by an alternative

measurement technique, or by experimental methods, if the

fields over the feed sphere can be realized by some practi-

cal feed system, would be a most worthwhile endeavor.

Further study for a series of parameter variations for

one reflector could, as well, yield a meaningful extension

of this technique. Based upon the field distribution over

the feed sphere, design and experimentation with a feed

system could provide the basis for additional study of this

~opic at various academic levels of concern.
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APPENDIX I

SIMPLIFICATION AND MANIPULATIVE DETAILS OF CERTAIN EXPRESSIONS

Derivatien ef Equatien 2,12

‘rem equation 2,11:

1/ D -3 9xS

Faking the det preduet with N te J0LN

 kL J =IN ed

applying the ve-- “Tr centitv

JI C) = C+(AxB)

sides of A.l

» §

‘hen

L/p= = (Nx S)«(vVv x 8S) » Ae

By equatien 2,10

3 = JL/n

OC



Substituting ard eperating:

boy - xVL + * VxUVL

bY Nn ha

dut V x VL = J

z VL }

Substituting A.3 1nte A.Z:

or
weal “Nx S)e(V * x VL) 4

Ne substitute

Vv (In 9)

But by the vector

LyoJ 2 w=

laent..Ly

I.3)ee-_V(1m a) x VL)

Ws  £4 JU = (AeC)(BeD) ~ (AD) (BC)

LO



A 1
rl 3

‘rem 2.10, where

l/p =

SVL =

L/D

__\ (NeVlm n)(SeVL) =~ (NeVL)(S&lt;V1n n J)

LVL“

__ NeVlma n = (NeVL)(S+Vln n) 3

‘he secerd term im 4,’ is identically z~~&gt; simce by A.l

Ju

and frem 2,10

/1, edwin Sn

hem substitutimg the abeve inte the secend term:

Again using the s

NeVL) = =Se (5
yn

.-or identity

ov

Lo

a2 B ~ o) = Ce(a wo 3)

Q7



y&amp; see

—» 5 (SxS)= 0

‘heretere, frem A,/

Jerivation e

l/o = NeVlm n

 equatien 2.37

A.8 = 2,12

"rem equatiem 2,34

tan26

ir“ + c
2

) tan426

Frem equatiem 2,35

- 2zeR + e2R? -10

Substitution ef .

\.11

&lt; + z&lt;
oo

=(tan&lt;20 + 1)z2 - ya

Ytanl20 + LL 2¢eR + elR2

= tan?26 + eR)+ c¢tan226+c?R?

{0.4



Multiplying A.ll by ces&lt;28

Q Lo res LO = (s1m“20 + ces420)z? - 2z(z_sin‘26 + cRces?26)

11a~-20 + c“R4ces&lt;20 2

selving A.12 fer g

314-20 + cRces?228) + z “sin”26 - co8220(R'2 = ¢2R2) A,13

‘rem 2,36

3in26

A—

gsimnf

35imb

8in26

R A.14

Substituting A.14 inte A.13 .

c2(sin08in26R + cRces?20) + 8im?0R? - ces220( R'2 - ¢2R2) =

A.15

OY



Nermalizing A.15 te the radius ef reflecter R:

R’' =
n

La (sin6sin20 + c4ces&lt;20) im+ sin?0 -ces? 12 28220 (R'? = c?) = 0,A,16=2,37

derivatien ef eaurtiems 2.43, 2.44

NOTTRAL."IREg equ ow. Leal,

 a

2.42

\ a we z ) zo
mn CA

A,17

here

z = cos0
mR

x = ging
mR

z = 1 ( 3cesd ~- ces3b)

}

bo 3sinf ~ sin36)X x
CR

om sinb
sin26

Substitutien and expandimg A,17:
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32 = ( ces + ces38 )2 + ( sing + sim36 )?
in 4 L 4 4

A,18

 ( 2cesBces30 + 2sinfsin3f + 2 )

ut cesZ2h = i JRE

1.4 =
in I...

14

-
a ~C88.0U /

2S ASO

\ 1 = sin40)

\,19

2 = ces?pYa T Se58

‘NER

a = ceso A.20=2,41

Similarly, by expanding 2.42:

14
— ( cosf - sind 42 gin26

sin26

0540 + sin?0 + simb — 2ces0sinb

8inZ20 gin26

\.21

OL



 7

Te
sinb
sin 26

Then

” 2 ces8f

A.22= 2,44
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APPENDIX Il

COMPUTATIONAL TECHNIQUES RELEVANT TO PROBLEM SOLUTION

As neted in sectien 2.5, expre~sniens fer fields were pregrammed in

FORTRAN te yield a mumerical solutiem te equatiem 2.52, A cepy of the

pregram utilized fellews this discussien., Briefly, the legical rrc-—- ~~ien

 8s eutlined:

fo - , riven reflecter of radius R amd subtemded angle

om, equatien 2,3] is used te calculate the referemce

;mhere radius R' fer » rarticular cheice of parameter

Equatiem 2,40 is pregrammed te yield the amgle O°

reasured frem the new erigin at z=cR te peints en the

reference sphere cerr--—-: “img te ravs imcideant upen

the reflecter surface at a civen angle ©, A ene~-teo—-one

+ '-=pe i8 ¢-"-H1ished between the angles,

Equatiens 2.41 and 2.42 are pre rammed aleng with

2.33 te yield values for the field amplitude at var-

leus angles 0', measured frem the mew erigim, en the

surface of the reference sphere. The amplitude exrirer-

is them given by the imver  ZY trnce relationship eof

10K

the form of equatiem 2.17.
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«. The pclori-matien features cevered by equatiems 2,46-2,51

are programmed te imdicate the effect of redefining the

field components im the mew e¢--r-'irate system,

The »h-~2 ~“-~Jem is calculated fer the reflecter

under cemsideratiem by relatiem 2,30 and 2,33, and the

resulting phase is chesen relative te the phase at

J) = O' = () deerees.

B3 The nf ~matien cc ted by the previeus steps is

cellected and eutput, if desired, is made available,

representing a numerical selutiem te equatiem 2,52,

The graphs imcluded in se "RO. .5 were  4d rem rer Jics senerated

as described abeve,

[t is neted, hewever, that the actual field em the referemce sphere

is enly of passing interest at this peint, and that expansien of this

field inte a cesine fourier series, as given by equatiemn 3.14, is ef

paramount interest:

E reference = I (c cesp i, + d_ sing 1 cesmd' A,23
n 6 ~ 4

sphere m=0
rangential
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The subreutine FORC was develeped te gemcrate cec~fficients fer the

feurier series from the generated field cempenents., A numerical techaique

fer evaluating the ceefficiemts for such a series aprrepriate fer

Rn periedic set of discrete values of a fumctien was available and was

used as the basis fer this subreutime., As a check, the feurier series

vas summed, indicatiag accuracy te within a few percent whem viewed

pverall and cempared te the peints used te gemerate the ceefficients.

The techmique fellews frem cr“

function £(8) im a fourier serie:

+ ¥

~*rn of a periedic

*
.

gi. 9) = a J; &amp; + IL a cesm8 +b simmb
I m mn

A, 24

vhere from erit mality it may easily be shown that the resultamt

reefficients are given by: 45

LT

f f(6) cesmd dO
0

a=0, ig eos eo A.25

As the case orf interest imvelves symmetry abeut 6 = 0, it is ebvieus

chat a cesire series will suffice te fully express the fumctiom and

’, will be identically zere fer all m.



he integral expressiem A,25 can be related te a summatiemn ef discrete

values by approximations ef basic calculus, where the interval frem

0 &lt;0 &lt; 2n is divided inte 2N intervals, previding 2N + 1 data peints.

Thus we can fermulate a realatiemship between the mumber of intervals

ard the spacire invelved where

JN = 360°/ DEL

DEL being the spacing betweem succec-ive r-ints.Thus we ~rpreximate,

fer a sufficiently large number of peints:

Lif
!

-

2N + 1

J = AG =

Substitutien ef the abeve

Joo

2N + 1

2m

2N + 1

where n= 0,1,2, .,

~otiens inte A,25 results im

2N
I £CT™ ) cesm 2M A.26

n=0 26 + 1 2N + 1



Thus we see the functiem must be made available in steps of angle,

ietermined by the imdex m, or at the fellewing discrete points:

)
TTA

2N +1

 nn = 0y00254002N

Therefore, the fellewing steps are eutlined te previde an imdicatienm

pf the pregressien fellewed threugh the subreutine:

ls Since the series requires evem spacing between the data

reints, it was necessary te interpelate between the points

generated em the referemce sphere by successive steps eof

the angle aleng the reflecter surface. As equatiem 2.40

illewed ne simple imverse relatiemship between the twe

angles 6 and 0', small steps of the angle en the reflecter

surface were taken ( spacing = ,2 degrees ) te insure the

accuracy of limear imt ~~ slatiem between the discrete values

of angle 0' gemerated.

2, The resulting field «¢ onbey*‘ns were arranged im cempenment

ferm and subsequently expanded frem the expememtial represeat-

ation te the trigememetric ferm :

i2



where Ael? = A( cosy + jsimy ) = AR + JAI

J. The values of field ce Kents, twe real and twe

imaginary, were them used te ger-rate a cempiex

fourier coefficient eof the ferm

C = CR + jCI

i

 yy the techmique prev -u- 'y o

The answers of interest were these ¢ .~cients which,

whem preperly inserted inte am existing pregram fer

the series selutiem te field expressiems 3,16 and 3.17,

The feurier ceefficienmts c and “ are noted in equatien

Jo lb.

JR



SIMENSICN CRU4UU0)+OR(400),DI(4C0)CI(4C0)
LCY FURMAT(LIH 4 JV 33X,! CR by 3X,! Ci

3X? DR P93X,! DI 2
LCR FORMAT I(LH 3 I1593X ey F1JeT93XyF1lO0e793XeF1CeT793XyF10Us
150 FURMAT(LIHL y10Xs"REFLECTCR RADIUS='yFla793Xy

L'RADIUS OF OBSERVATILON=F10793X,REFERENCESPHERE
2F1 07 93Xs*MAXHARMUNICMAXM=',3X,15)

CHOOSE INNER SPHERE COINCIDENT WITH UUTER SPHERE F(R
CHECK UN SERIES EXPANSION
11 =93,
 = .06483G2%92,
ST eb?
HM=317.4
J1=0
AAXM=TFIX{2e%¥3s141593%R}
AU=MA XM+ 3
ALL XFEEDIRL Ry RAD Co THMy MAX My DT 40002,
ARITE (69 15C)IR1I JR yRADyMAXM
NRITE(6,1CT)
ARITE(S+41CBYJLHCLRWCZIHDIR,CZH
ARITE(E,1C8) (JyCROJ)HCILI)HORIIZOII)9d=10ilo
CALL EXIT
IND
&gt;UBRUUT INE XFEEO(R]L ¢yRe RAD» Cy THM, MAXM UT gIR9yiLR CT C7 7
JIMENSION CRAL)CI(L),0KR{L),0D1(1)
DIMENMSICN EFICMR(400)  ETHOMR(4UD) 9 2THUMI(40D) ycFICMI(403)
JIMENSTION ETCMRA{(400)yEFCMRA(400) yETCMIA{40UI) yEFCMLIA(430)
DIMENSION THP{Z25C) ETP (250) ,LPP250),PHR(250)
JIMENSION THPI(350) + PHRI(35C),eTPIL350),,2PPI(390])

LSOODFJORMAT(LIHL9283Xo"THM=',F10795Xy'RPN=1,
1FiGaTy5Xy! C =1,F10.7)

OLOFURMATILH 315 02X 969029 2X9 F107 92XyF lab 2X9F1Ce 1
LYCUSIPHI)Y 9 2X oFLOeT oy *CUSIPHI) 4 2X3 Fl 'SIn(2HI NN!
£2Xe F562)

J2OFURMAT (LH 2! IV 42Xy? THP T,6Xgy "AMPY , 8X YPHADSE 2 UA
VV RPV LITXGYETPY 17 X a VEPRPY ISX YTTHY)

RAC IU &gt;=

JT yDIRyDLT

&amp; 7. YULos



7’

tO FORMAT (LHL, cr ICMR ‘a cP CMR
13Xe? EFICMI Py 3X" EFCMIA 1,77, ETHCOMR
23K! tTCHMRA Vy 3X, 1? ETHCMI 1, Vy
3v ETCMIA $435 Xy'THPIY)

{11 FORMAT(LH 9 I543X F107 e3XyFi0e793X9F1lUel93X,yF1
13X os FLCC aT 93 Xs FLU eT 93K Fla 93XsFlCaTe3XsF%e0)

1C5 FURMAT(LIHL 41X"INTERPCLATED VALUES?Y)
C6 FURMAT (1H ! K¥y3Xy *THPI "yg 5X, ? PHR I Yes

ir EeTPI Ty8Xs! EpePl t)
LO3BOFURMAT(LH9I592X9F5e292X3F10e592X,

LF1O0e7 2 COSUPHII" 4 2X3 F107 *SIN(PHIN")
(PI=2.%3,1415926

CvrR=TPI/ 360.
Jel=425
N=IFIX(36Ce/(26%DEL))
STH=,2
NTH=LFIX{THNM/DTH+2.)
[HMR=THM*CVR
RPN=SGRT{C*Ct+le=2%C COS(THMR))
RAD=RPiN*R1
ARITE(691COITHM,RPN,C
ARITE(6,1C2)
[H=Q.0
Jo 3 I=1,NTH
MAR =TH*L VR
A=SINCTHER) *SIN(2e *THR IFC (LUST 2 *THRIFCUS( 24% THR) )
3=A%A=SIN(THR)RSTI(THR)I+(RPNRUPN-C#CI®CUS{24%THRIRS24THR
CTHPR=(1e/RPHI®{A-C+50RT(B))
3STHPR=SJIRT(1e=CTHPR=CTHPR)
AMPLITUDE
TAPEX=TLLUMINATION TAPER OF aMPLITUUE CVER APExTUKE
AL DGe=AMPLITUOE TJ) WHICH Taber DOSIRDU
TAPER =COS{AEDGE=THR)
ALDGE=0.0
TAPEK=140
AA=SIN(THR)=RPN%®STHPR



ton

NN
2

In=RKPNRCTHPR+C-CLS(THR)
SN=SWRT{AARAA+BExT)
RIN=CUS({THR)/2.
R2N=1e/(2e*CUS(THR))
AMP=S DRT (e257 ( 25+ SX (RINFRZINIHSN*X2,))
AMP=AMPR TAPER
PHASE FOR REFLECTOR RADIUS=K1 LAMBIA
JASE CALCULATED RELATIVE TU PHR(L1) AT idz
JELP=CUS{THR}=SN
PHR (1 )=R1FTPI*DELP
PHREL=PHRI(1)
[F(I-1)6406,41
PHR(1)=0.0
ib TU 5S
YHR (1 )=PHR{ I)=-PHREL
SUNTINUE
PULARTZATIUN
THPR=ARCOS(CTHPK
THP (I) =THPK/CVR
MtiP(1)=2C0.¢C
JIFR=2%THER=-THPR
CUOIF=CUS(CIFR)
SUIF=SIN(CIFR)
FIELD CUMPCN=NTS
SRP=AMPExS IN(DIFR)
STP )==ANMPXCLCSILIFR)
 PPI )=4MP
NRITE(O LCL )Io THRU) gy AMP LHRH
[H=TH+DTH
PHR{1)=PHREL
CUNT INUE
VALUES UF FIcLD ARE INTERPOLATED FOr SERILS ExPANSTON
INTERVAL BETWEEN PUINTS=DtL,y IN DEGREES UF THETA
PHE(1)=24.0
NITHP=TFIX(THPINTH)/DeL+140)
JO 4 K=]14NTHP



[HPI (K)=FLUAT(K=-1)=DtL
[=1

o IF (THPIA(K)=-THP(I)) &amp;+3,9

) IF (THPI(K)-THP(I+1)) B8,8,11
I=1+1
Gu Tu 10
CUNTINUE
S=(THPI(K)=THPLI))/(THP{I+1)=-THP(1)
PHRI(K)=PHRA(I)+(PHR(I+1)=PHR(T1)}*S
STPI(K)I=ETPLII+{ETP(I+]1)-£TP(1))xS
PPI(K)=EPPLL)+(EPP(I+L)-cPP{]))*S
CUNTINUE
NRITE(6 4,105)
ARITE(64100)
WARTITE(69y103)(KyTHPI(K)yPHRI(K)yETPI(K)4EPPI(K)4XK=143NTHP)
PHASE TERM EXPANCED INTU TRIGUNLMEITRIC FUKM
AHERE A EXP JPH=A{CUSPH+JUSINPH)
ETHCMR=KEAL PART JF THETA COMPONENT
EFICMR=REAL PART JF PHI CuMPInNeNT
ETHCMI=IMAG PART UF THETA CUMPUNENT
EFICMI=IMAG PART UF P77 CUMPINENT
JJ 12 1=1+NTHP
TFICMR(I)=EPPI(L )*CASI(P
STHOMRALD)=ETPI()*C2s
STHCMI(L)Y=cTPI(I)=*SIN
SFICMICI)=€ePPI(I)I=STvipPFH
CUNTINUE
SUBRJOUTINE CALLED TC EVALUATE FUURITIER (CEFFICIENTS
CRIM)=REAL C(™)
CLR=CRA(L)
ord) =rKEAL (MM)
DZR=DR (0)
SLMY=1IvAG C(M)
SLI=CIA(C)
21M) =1MAG D(M)
JLI=DI(3)

{



\)

CALL FORCUCFICHME -NaNTHP MAXMy IK)
CALL FORCUEFICMINgNTHP,MAXM,yD1)
CALL FURCAHETHCMI gy Ng NTHHPaMAXNM,CT)
TALL FUKC(ETHCMRyNgNTHPygMAXM,yCK)
2.1=0l(1)
cL1=CI(1)
CLR=CRI(1)
JZR=DR (1)
MU=MAXM+3
Ju 170 J=2,MJ
IR{J=1)=0r(J)
k(J=-1)=CR(J)
JI(u=-1)=CI1(J)
SI(d=-1)1=CI(J)
CUNT INUE
CHECK FCURIER SeERIz&gt; BY SUMRAT TUN
D0 2C K=14NTHP
ETCMRA(K)=CZR
SFCMRA(K)=DZK
ETCMIA(K)=CZ1
“FCMIA(K)=D21
SUML=0,C
SUM2=04,0
SUM3=0.0C
SUM4=C.C
AN=N

COUNST=2e*:.1a41553/12ANS
Cu 30 J=1yMAXM
FEK=FLUAT(K)
FEJ=FLUAT(J)
SUST=CUS(FRUxEFK®CIONST)
SUMLI=SUMI+CRJ)&gt;*=CIST
SUMZ=SUMZ2+DRrR(JIxCIST
SUMA=SUMB+CT(JI®CUST
SUMa=5UM4+ DLJ) =CasT
CONTINUE



STCHMEKA(K)=ETCMRA(K)+5UML
EFCMRA(K)=EFCMRA(K)+5UMZ2
STCHMIA(K)=ETCMIA(K)+SUM3
cFCMIAK)=EFCMIA(K)+SUM4
CuNTINUE
NRITE(6,110)
ARTTE (69111) (KybFICMRIK) yEFCMRA(K) yETHCMKIK)

ETCMRA(K) sEFICMIA(K) yEFCMIA(K)  ETHCAT(K),
PETCMIA(K)gTHPTI(K)9K=14NTHP)

RETURN
=ND

SUBROUTINE FUORCUIENT4NgNTHP3MAXM,A)
EXPANSION UF A FUNCTION GeNerRAaTED BY A SET JF
DISCRETE PCINTS INTO A FUURIER CUSINE SERIES
NAERE FIX)= A(CI+&gt;5UM A(J)ICUSIXy J=1,yMAXM
CIMENSIUN A{1)FENT(1)
SURMAT(LIHLiN NOT GREATER THAN MAXY, CREDER
JUES NUT CuMPUTE')
CHECK FUR PARAMETER ERRORS
=MA XM+ 2
[ER=0
TF(M=N) €Cy€U,450
LER=1
ARITE (64,500)
LE TUKN
CUMPUTE AND PKESET CJUNSTANTS
AN=N

SUEF=240/7(2.%AN+14)
CAUNST=3,141593%C0CF
S1=SIN{CUNST)
C1=COS(CENST)
C=1.
5=0.0
J=1
FNTZ=FNT (1)
UZ2%= Ye

0 5C0
1

tJ

- 0)

J

HIGHEST FARMUNIC-



J

5 1CO

J1=Ue0
[=NTHP
TURM FOURIEK COEFFICIENTS RECURSIVELY

JUsFNTLUD)+2,=xCxUl-U2
J2=Ul
21 =U0
(=1-1
[(F(I-1) B8Gs80s 75
AJ) =CUEF®(FENTZ+C®UL~-U21%2,
TF{J=-(M+1)) 9C,1CD,1C0
i=CL*C=S1%5
5=C 1% 5+ S1%C
=Q
J=J+1
5d Tu 7C
A{l)=A(1)*.5
RETURN
“ND
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