

MIT Open Access Articles

The flag manifold over the semifield Z

The MIT Faculty has made this article openly available. *[Please](https://libraries.mit.edu/forms/dspace-oa-articles.html) share* how this access benefits you. Your story matters.

Citation: Lusztig, G. 2020. "The flag manifold over the semifield Z." Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES, 15 (1).

As Published: 10.21915/BIMAS.2020105

Publisher: Institute of Mathematics, Academia Sinica

Persistent URL: <https://hdl.handle.net/1721.1/145769>

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons [Attribution-Noncommercial-Share](http://creativecommons.org/licenses/by-nc-sa/4.0/) Alike

THE FLAG MANIFOLD OVER THE SEMIFIELD Z

G. Lusztig

INTRODUCTION

0.1. Let G be a connected semisimple simply connected algebraic group over C with a fixed pinning (as in [L94b, 1.1]). In this paper we assume that G is of simply laced type. Let β be the variety of Borel subgroups of G. In [L94b, 2.2, 8.8] a submonoid $G_{\geq 0}$ of G and a subset $\mathcal{B}_{\geq 0}$ of B with an action of $G_{\geq 0}$ (see [L94b, 8.12]) was defined. (When $G = SL_n$, $G_{\geq 0}$ is the submonoid consisting of the real, totally positive matrices in G .) More generally, for any semifield K , a monoid $\mathfrak{G}(K)$ was defined in [L19a], so that when $K = \mathbf{R}_{>0}$ we have $\mathfrak{G}(K) = G_{\geq 0}$. (In the case where K is $\mathbf{R}_{>0}$ or the semifield in (i) or (ii) below, a monoid $G(K)$ already appeared in [L94b, 2.2, 9.10]; it was identified with $\mathfrak{G}(K)$ in [L19b].)

This paper is concerned with the question of definining the flag manifold over a semifield K with an action of the monoid $\mathfrak{G}(K)$ so that in the case where $K = \mathbf{R}_{>0}$ we recover $\mathcal{B}_{\geq 0}$ with its $G_{\geq 0}$ -action.

In [L19b, 4.9], for any semifield K , a definition of the flag manifold over K was given (based on ideas of Marsh and Rietsch [MR]); but in that definition the lower and upper triangular part of G play an asymmetric role and as a consequence only a part of $\mathfrak{G}(K)$ acts on $\mathcal{B}(K)$ (unlike the case $K = \mathbf{R}_{>0}$ when the entire $\mathfrak{G}(K)$ acts). To get the entire $\mathfrak{G}(K)$ act one needs a conjecture stated in [L19b, 4.9] which is still open.

In this paper we get around that conjecture and provide an unconditional definition of the flag manifold (denoted by $\mathcal{B}(K)$) over a semifield K with an action of $\mathfrak{G}(K)$ assuming that K is either

(i) the semifield consisting of all rational functions in $\mathbf{R}(x)$ (with x an indeterminate) of the form $x^e f_1/f_2$ where $e \in \mathbf{Z}$ and $f_1 \in \mathbf{R}[x], f_2 \in \mathbf{R}[x]$ have constant term in $\mathbf{R}_{>0}$ (standard sum and product); or

(ii) the semifield **Z** in which the sum of a, b is $\min(a, b)$ and the product of a, b is $a + b$.

For K as in (i) we give two definitions of $\mathcal{B}(K)$; one of them is elementary and the other is less so, being based on the theory of canonical bases (the two definitions

Supported by NSF grant DMS-1855773.

are shown to be equivalent). For K as in (ii) we only give a definition based on the theory of canonical bases.

A part of our argument involves a construction of an analogue of the finite dimensional irreducible representations of G when G is replaced by the monoid $\mathfrak{G}(K)$ where K is any semifield.

Let W be the Weyl group of G . Now W is naturally a Coxeter group with generators $\{s_i; i \in I\}$ and length function $w \mapsto |w|$. Let \leq be the Chevalley partial order on W.

In §3 we prove the following result which is a **Z**-analogue of a result (for $\mathbf{R}_{>0}$) in [MR].

Theorem 0.2. The set $\mathcal{B}(\mathbf{Z})$ has a canonical partition into pieces $P_{v,w}(\mathbf{Z})$ indexed by the pairs $v \leq w$ in W. Each such piece $P_{v,w}(\mathbf{Z})$ is in bijection with $\mathbf{Z}^{|w|-|v|}$; in fact, there is an explicit bijection $\mathbf{Z}^{[w]-[v]} \stackrel{\sim}{\to} P_{v,w}(\mathbf{Z})$ for any reduced expression of w.

In §3 we also prove a part of a conjecture in [L19b, 2.4] which attaches to any $v \leq w$ in W a certain subset of a canonical basis, see 3.10.

In §4 we show that our definitions do not depend on the choice of a (very dominant) weight λ .

In §5 we show how some of our results extend to the non-simply laced case.

CONTENTS

- 1. Definition of $\mathcal{B}(\mathbf{Z})$.
- 2. Preparatory results.
- 3. Parametrizations.
- 4. Independence on λ .
- 5. The non-simply laced case.

1. DEFINITION OF $\mathcal{B}(\mathbf{Z})$

1.1. In this section we will give the definition of the flag manifold $\mathcal{B}(K)$ when K is as in $0.1(i), (ii)$.

1.2. We fix some notation on G. Let w_I be the longest element of W. For $w \in W$ let \mathcal{I}_w be the set of all sequences $\mathbf{i} = (i_1, i_2, \ldots, i_m)$ in I such that $w = s_{i_1} s_{i_2} \ldots s_{i_m}$, $m = |w|$.

The pinning of G consists of two opposed Borel subgroups B^+, B^- with unipotent radicals U^+, U^- and root homomorphisms $x_i : \mathbf{C} \to U^+, y_i : \mathbf{C} \to U^$ indexed by $i \in I$. Let $T = B^+ \cap B^-$, a maximal torus. Let $\mathcal Y$ be the group of one parameter subgroups $\mathbb{C}^* \to T$; let X be the group of characters $T \to \mathbb{C}^*$. Let $\langle , \rangle : \mathcal{Y} \times \mathcal{X} \to \mathbb{Z}$ be the canonical pairing. The simple coroot corresponding to $i \in I$ is denoted again by $i \in \mathcal{Y}$; let $i' \in \mathcal{X}$ be the corresponding simple root. Let $\mathcal{X}^+ = \{\lambda \in \mathcal{X}; \langle i, \lambda \rangle \geq 0 \quad \forall i \in I\}, \ \mathcal{X}^{++} = \{\lambda \in \mathcal{X}; \langle i, \lambda \rangle \geq 1 \quad \forall i \in I\}.$ Let $G(\mathbf{R})$ be the subgroup of G generated by $x_i(t), y_i(t)$ with $i \in I, t \in \mathbf{R}$. Let $\mathcal{B}(\mathbf{R})$ be the

subset of B consisting of all $B \in \mathcal{B}$ such that $B = gB^+g^{-1}$ for some $g \in G(\mathbf{R})$. We have $G_{\geq 0} \subset G(\mathbf{R}), \mathcal{B}_{\geq 0} \subset \mathcal{B}(\mathbf{R}).$ For $i \in I$ we set $\dot{s}_i = y_i(1)x_i(-1)y_i(1) \in G(\mathbf{R}),$ an element normalizing T. For $(B, B') \in \mathcal{B} \times \mathcal{B}$ we write $pos(B, B')$ for the relative position of B, B' (an element of W).

1.3. Let K be a semifield. Let $K^! = K \sqcup \{ \circ \}$ where \circ is a symbol. We extend the sum and product on K to a sum and product on K' by definining $\circ + a = a$, $a + \circ = a$, $\circ \times a = \circ$, $a \times \circ = \circ$ for $a \in K$ and $\circ + \circ = \circ$, $\circ \times \circ = \circ$. Thus $K^!$ becomes a monoid under addition and a monoid under multiplication. Moreover the distributivity law holds on K[!]. When K is $\mathbf{R}_{>0}$ we have $K^! = \mathbf{R}_{\geq 0}$ with $\circ = 0$ and the usual sum and product. When K is as in 0.1(i), $K^!$ can be viewed as the subset of $\mathbf{R}(x)$ given by $K \cup \{0\}$ with $\circ = 0$ and the usual sum and product. When K is as in 0.1(ii) we have $0 \in K$ and ∘ $\neq 0$.

1.4. Let $V = {}^{\lambda}V$ be the finite dimensional simple G-module over **C** with highest weight $\lambda \in \mathcal{X}^+$. For $\nu \in \mathcal{X}$ let V_{ν} be the *v*-weight space of V with respect to T. Thus V_{λ} is a line. We fix $\xi^{+} = {}^{\lambda} \xi^{+}$ in $V_{\lambda} - 0$. For each $i \in I$ there are well defined linear maps $e_i: V \to V, f_i: V \to V$ such that $x_i(t)\xi = \sum_{n\geq 0} t^n e_i^{(n)}$ $\zeta_i^{(n)}\xi, y_i(t)\xi =$ $\sum_{n\geq 0} t^n f_i^{(n)}$ $e_i^{(n)}\xi$ for $\xi \in V, t \in \mathbf{C}$. Here $e_i^{(n)} = (n!)^{-1}e_i^n : V \to V, f_i^{(n)} = (n!)^{-1}f_i^n$: $V \to V$ are zero for $n \gg 0$. For an integer $n < 0$ we set $e_i^{(n)} = 0, f_i^{(n)} = 0$.

Let $\beta = \lambda \beta$ be the canonical basis of V (containing ξ^+) defined in [L90a]. Let ξ^- be the lowest weight vector in $V - 0$ contained in β . For $b \in \beta$ we have $b \in V_{\nu_b}$ for a well defined $\nu_b \in \mathcal{X}$, said to be the weight of b. By a known property of β (see [L90a, 10.11] and [L90b, §3], or alternatively [L93, 22.1.7]), for $i \in I, b \in \beta, n \in \mathbb{Z}$ we have

$$
e_i^{(n)}b = \sum_{b' \in \beta} c_{b,b',i,n}b', \quad f_i^{(n)}b = \sum_{b' \in \beta} d_{b,b',i,n}b'
$$

where

 $c_{b,b',i,n} \in \mathbf{N}, \quad d_{b,b',i,n} \in \mathbf{N}.$

Hence for $i \in I, b \in \beta, t \in \mathbb{C}$ we have

$$
x_i(t)b = \sum_{b' \in \beta, n \in \mathbb{N}} c_{b,b',i,n}t^n b', \quad y_i(t)b = \sum_{b' \in \beta, n \in \mathbb{N}} d_{b,b',i,n}t^n b'.
$$

For any $i \in I$ there is a well defined function $z_i : \beta \to \mathbf{Z}$ such that for $b \in \beta$, $t \in \mathbf{C}^*$ we have $i(t)b = t^{z_i(b)}b$.

Let $P = \lambda P$ be the variety of C-lines in V. Let $P^{\bullet} = \lambda P^{\bullet}$ be the set of all $L \in P$ such that for some $g \in G$ we have $L = gV_\lambda$. Now P^{\bullet} is a closed subvariety of P. For any $L \in P^{\bullet}$ let $G_L = \{ g \in G; gL = L \}$; this is a parabolic subgroup of G.

Let $V^{\bullet} = {}^{\lambda}V^{\bullet} = \cup_{L \in P^{\bullet}} L$, a closed subset of V. For any $\xi \in V, b \in \beta$ we define $\xi_b \in \mathbf{C}$ by $\xi = \sum_{b \in \beta} \xi_b b$. Let $V_{\geq 0} = {}^{\lambda}V_{\geq 0}$ (resp. $V_{\mathbf{R}}$) be the set of all $\xi \in V$ such

that $\xi_b \in \mathbf{R}_{\geq 0}$ (resp. $\xi_b \in \mathbf{R}$) for any $b \in \beta$. We have $V_{\geq 0} \subset V_\mathbf{R}$. Note that $V_\mathbf{R}$ is stable under the action of $G(\mathbf{R})$ on V. Let $P_{\geq 0} = {}^{\lambda}P_{\geq 0}$ (resp. $P_{\mathbf{R}}$) be the set of lines $L \in P$ such that $L \cap V_{\geq 0} \neq 0$ (resp. $L \cap V_{\mathbf{R}} \neq 0$.) We have $P_{\geq 0} \subset P_{\mathbf{R}}$.

Let $V_{\geq 0}^{\bullet} = {}^{\lambda}V_{\geq 0}^{\bullet} = V^{\bullet} \cap V_{\geq 0}, P_{\geq 0}^{\bullet} = {}^{\lambda}P_{\geq 0}^{\bullet} = P^{\bullet} \cap P_{\geq 0}.$

Now let K be a semifield. Let $V(K) = {}^{\lambda}V(K)$ be the set of formal sums $\xi = \sum_{b \in \beta} \xi_b b, \xi_b \in K^!$. This is a monoid under addition $(\sum_{b \in \beta} \xi_b b) + (\sum_{b \in \beta} \xi'_b b) =$ $\sum_{b \in \beta} (\xi_b + \xi_b') b$ and we define scalar multiplication $K^! \times V(K) \to V(K)$ by $(k, \sum_{b \in \beta} \xi_b b) \mapsto \sum_{b \in \beta} (k \xi_b) b.$

For $\xi = \sum_{b \in \beta} \overline{\xi_b b} \in V(K)$ we define supp $(\xi) = \{b \in \beta; \xi_b \in K\}.$

Let End($V(K)$) be the set of maps $\zeta: V(K) \to V(K)$ such that $\zeta(\xi + \xi') =$ $\zeta(\xi) + \zeta(\xi')$ for ξ, ξ' in $V(K)$ and $\zeta(k\xi) = k\zeta(\xi)$ for $\xi \in V(K), k \in K'$. This is a monoid under composition of maps. Define $\subseteq V(K)$ by $\subseteq_b = \circ$ for all $b \in \beta$. The group K (for multiplication in the semifield structure) acts freely (by scalar multiplication) on $V(K) - \underline{\circ}$; let $P(K) = {}^{\lambda}P(K)$ be the set of orbits of this action.

For $i \in I, n \in \mathbb{Z}$ we define $e_i^{(n)}$ $i^{(n)}$, $f_i^{(n)}$ in End $(V(K))$ by

$$
e_i^{(n)}(b) = \sum_{b' \in \beta} c_{b,b',i,n} b', \quad f_i^{(n)}(b) = \sum_{b' \in \beta} d_{b,b',i,n} b',
$$

with $b \in \beta$. Here a natural number N (such as $c_{b,b',i,n}$ or $d_{b,b',i,n}$) is viewed as an element of K[!] given by $1 + 1 + \cdots + 1$ (N terms, where 1 is the neutral element for the product in K, if $N > 0$) or by $\circ \in K^!$ (if $N = 0$).

For $i \in I, k \in K$ we define $i^k \in \text{End}(V(K)), (-i)^k \in \text{End}(V(K))$ by

$$
i^k(b) = \sum_{n \in \mathbb{N}} k^n e_i^{(n)} b
$$
, $(-i)^k(b) = \sum_{n \in \mathbb{N}} k^n f_i^{(n)} b$,

for any $b \in \beta$. We show:

(a) The map $i^k: V(K) \to V(K)$ is injective. The map $(-i)^k: V(K) \to V(K)$ is injective.

Using a partial order of the weights of V, we can write $V(K)$ as a direct sum of monoids $V(K)_s, s \in \mathbb{Z}$ where $V(K)_s = \{ \underline{\circ} \}$ for all but finitely many s and $(-i)^k$ maps any $\xi \in V(K)$, to ξ plus an element in the direct sum of $V(K)$, with $s' < s$. Then (a) for $(-i)^k$ follows immediatly. A similar proof applies to i^k .

For $i \in I, k \in K$ we define $\underline{i}^k \in \text{End}(V(K))$ by $\underline{i}^k(b) = k^{z_i(b)}b$ for any $b \in \beta$. Let $\mathfrak{G}(K)$ be the monoid associated to G, K by generators and relations in [L19a, 2.10(i)-(vii)]. (In loc.cit. it is assumed that K is as in 0.1(i) or 0.1(ii) but the same definition makes sense for any K .) We have the following result.

Proposition 1.5. The elements i^k , $(-i)^k$, i^k (with $i \in I, k \in K$) in End($V(K)$) satisfy the relations in [L19a, 2.10(i)-(vii)] defining the monoid $\mathfrak{G}(K)$ hence they define a monoid homomorphism $\mathfrak{G}(K) \to \text{End}(V(K))$.

We write the relations in *loc.cit.* (for the semifield $\mathbf{R}_{>0}$) for the endomorphisms $x_i(t), y_i(t), i(t)$ of V with $t \in R_{>0}$. These relations can be expressed as a set of identities satisfied by $c_{b,b',i,n}$, $d_{b,b',i,n}$, $z_i(b)$ and these identities show that the endomorphisms i^k , $(-i)^k$, i^k of $V(K)$ satisfy the relations in *loc.cit.* (for the semifield K). The result follows.

1.6. Consider a homomorphism of semifields $r : K_1 \to K_2$. Now r induces a homomorphism of monoids $\mathfrak{G}_r : \mathfrak{G}(K_1) \to \mathfrak{G}(K_2)$. It also induces a homomorphism of monoids $V_r: V(K_1) \to V(K_2)$ given by $\sum_{b \in \beta} \xi_b b \mapsto \sum_{b \in \beta} r(\xi_b) b$. From the definitions, for $g \in \mathfrak{G}(K_1), \xi \in V(K_1)$, we have $V_r(g\xi) = \mathfrak{G}_r(g)(V_r(\xi))$ where $g\xi$ is given by the $\mathfrak{G}(K_1)$ -action on $V(K_1)$ and $\mathfrak{G}_r(g)(V_r(\xi))$ is given by the $\mathfrak{G}(K_2)$ -action on $V(K_2)$. Assuming that $r: K_1 \to K_2$ is surjective (so that $\mathfrak{G}_r: \mathfrak{G}(K_1) \to \mathfrak{G}(K_2)$ is surjective) we deduce:

(a) If E is a subset of $V(K_1)$ which is stable under the $\mathfrak{G}(K_1)$ -action on $V(K_1)$, then the subset $V_r(E)$ of $V(K_2)$ is stable under the $\mathfrak{G}(K_2)$ -action on $V(K_2)$.

1.7. In the remainder of this section we assume that $\lambda \in \mathcal{X}^{++}$. Then $L \mapsto G_L$ is an isomorphism $\pi : P^{\bullet} \xrightarrow{\sim} \mathcal{B}$ and

(a) π restricts to a bijection $\pi_{\geq 0} : P^{\bullet}_{\geq 0} \xrightarrow{\sim} \mathcal{B}_{\geq 0}$. See [L94b, 8.17].

1.8. Let Ω be the set of all open nonempty subsets of **C**. Let X be an algebraic variety over **C**. Let X_1 be the set of pairs (U, f_U) where $U \in \Omega$ and $f_U : U \to X$ is a morphism of algebraic varieties. We define an equivalence relation on X_1 in which (U, f_U) , $(U', f_{U'})$ are equivalent if $f_U|_{U \cap U'} = f_{U'}|_{U \cap U'}$. Let \tilde{X} be the set of equivalence classes. An element of X is said to be a rational map $f: \mathbf{C} \to X$. For $f \in X$ let Ω_f be the set of all $U \in \Omega$ such that f contains $(U, f_U) \in X_1$ for some f_U ; we shall then write $f(t) = f_U(t)$ for $t \in U$. We shall identify any $x \in X$ with the constant map $f_x : \mathbf{C} \to X$ with image $\{x\}$; thus X can be identified with a subset of \tilde{X} . If X' is another algebraic variety over **C** then we have $\widetilde{X \times X'} = \widetilde{X} \times \widetilde{X'}$ canonically. If $F : X \to X'$ is a morphism then there is an induced map $\tilde{F}: \tilde{X} \to \tilde{X}'$; to $f: \mathbf{C} \to X$ it attaches $f': \mathbf{C} \to X'$ where for some $U \in \Omega_f$ we have $f'(t) = F(f(t))$ for all $t \in U$. If H is an algebraic group over C then \tilde{H} is a group with multiplication $\tilde{H} \times \tilde{H} = \widetilde{H} \times \widetilde{H} \to \tilde{H}$ induced by the multiplication map $H \times H \to H$. Note that H is a subgroup of \tilde{H} . In particular, the group G is defined. Also, the additive group C and the multiplicative group $\widetilde{\mathbf{C}}^*$ are defined. Also $\widetilde{\mathcal{B}}$ is defined.

1.9. Let X be an algebraic variety over **C** with a given subset $X_{\geq 0}$. We define a subset $\tilde{X}_{\geq 0}$ of \tilde{X} as follows: $\tilde{X}_{\geq 0}$ is the set of all $f \in \tilde{X}$ such that for some $U \in \Omega_f$ and some $\epsilon \in \mathbf{R}_{>0}$ we have $(0, \epsilon) \subset U$ and $f(t) \in X_{\geq 0}$ for all $t \in (0, \epsilon)$. (In particular, $\tilde{G}_{\geq 0}$ is defined in terms of $G, G_{\geq 0}$ and $\tilde{B}_{\geq 0}$ is defined in terms of $B, B_{\geq 0}$.) If X' is another algebraic variety over **C** with a given subset $X'_{\geq 0}$, then $X \times X'$ with its subset $(X \times X')_{\geq 0} = X_{\geq 0} \times X'_{\geq 0}$ gives rise as above to the set

 $\widetilde{X \times X'}_{\geq 0}$ which can be identified with $\widetilde{X}_{\geq 0} \times \widetilde{X}'_{\geq 0}$. If $F : X \to X'$ is a morphism such that $F(X_{\geq 0}) \subset X'_{\geq 0}$, then the induced map $\tilde{F}: \tilde{X} \to \tilde{X}'$ carries $\tilde{X}_{\geq 0}$ into $\tilde{X}'_{\geq 0}$ hence it restricts to a map $\tilde{F}_{\geq 0}$: $\tilde{X}_{\geq 0} \to \tilde{X}'_{\geq 0}$. From the definitions we see that:

(a) if \tilde{F} is an isomorphism of \tilde{X} onto an open subset of \tilde{X}' and F carries $\tilde{X}_{\geq 0}$ bijectively onto $\tilde{X}'_{\geq 0}$, then the map $\tilde{F}_{\geq 0}$ is a bijection.

Now the multiplication $G \times G \to G$ carries $G_{\geq 0} \times G_{\geq 0}$ to $G_{\geq 0}$ hence it induces a map $G_{\geq 0} \times G_{\geq 0} \to G_{\geq 0}$ which makes $G_{\geq 0}$ into a monoid; the conjugation action $G \times \mathcal{B} \to \mathcal{B}$ carries $G_{\geq 0} \times \mathcal{B}_{\geq 0}$ to $\mathcal{B}_{\geq 0}$ hence it induces a map $\tilde{G}_{\geq 0} \times \tilde{\mathcal{B}}_{\geq 0} \to \tilde{\mathcal{B}}_{\geq 0}$ which define an action of the monoid $\tilde{G}_{\geq 0}$ on $\tilde{B}_{\geq 0}$. We define $\tilde{C}^*_{\geq 0}$ in terms of \mathbb{C}^* and its subset $\mathbb{C}^*_{\geq 0} := \mathbb{R}_{>0}$. The multiplication on \mathbb{C}^* preserves $\mathbb{C}^*_{\geq 0}$ hence it induces a map $\tilde{\mathbf{C}}^*_{\geq 0} \times \tilde{\mathbf{C}}^*_{\geq 0} \to \tilde{\mathbf{C}}^*_{\geq 0}$ which makes $\tilde{\mathbf{C}}^*_{\geq 0}$ into an abelian group. We define $\mathbf{C}_{\geq 0}$ in terms of C and its subset $\mathbf{C}_{\geq 0} := \mathbf{R}_{\geq 0}$. The addition on C preserves $C_{\geq 0}$ hence it induces a map $\tilde{C}_{\geq 0} \times \tilde{C}_{\geq 0} \to \tilde{C}_{\geq 0}$ which makes $\tilde{C}_{\geq 0}$ into an abelian monoid. The imbedding $\mathbf{C}^* \subset \mathbf{C}$ induces an imbedding $\tilde{\mathbf{C}}^*_{\geq 0} \to \tilde{\mathbf{C}}_{\geq 0}$; the monoid operation on $\tilde{\mathbf{C}}_{\geq 0}$ preserves the subset $\tilde{\mathbf{C}}^*_{\geq 0}$ and makes $\tilde{\mathbf{C}}^*_{\geq 0}$ into an abelian monoid. This, together with the multiplication on $\tilde{\mathbf{C}}^*_{\geq 0}$ makes $\tilde{\mathbf{C}}^*_{\geq 0}$ into a semifield. From the definitions we see that this semifield is the same as K in 0.1(i) and that $G_{\geq 0}$ is the monoid associated to G and K in [L94b, 2.2] (which is the sme as $\mathfrak{G}(K)$. We define $\mathcal{B}(K)$ to be $\mathcal{B}_{\geq 0}$ with the action of $G_{\geq 0} = \mathfrak{G}(K)$ described above. This achieves what was stated in 0.1 for K as in 0.1(i).

1.10. In the remainder of this section K will denote the semifield in 0.1(i) and we assume that $\lambda \in \mathcal{X}^{++}$. We associate $\tilde{P}_{\geq 0} = {}^{\lambda} \tilde{P}_{\geq 0}$ to P and its subset $P_{\geq 0}$ as in 1.9. We associate $\tilde{P}_{\geq 0}^{\bullet} = {}^{\lambda} \tilde{P}_{\geq 0}^{\bullet}$ to P^{\bullet} and its subset $P_{\geq 0}^{\bullet}$ as in 1.9. We write $P^{\bullet}(K) = {}^{\lambda}P^{\bullet}(K) = \tilde{P}^{\bullet}_{\geq 0}.$

We associate $\tilde{V}_{\geq 0} = {}^{\lambda} \tilde{V}_{\geq 0}$ to V and its subset $V_{\geq 0}$ as in 1.9. We can identify $\tilde{V}_{\geq 0} = V(K)$ (see 1.4). We associate $\tilde{V}_{\geq 0}^{\bullet} = {}^{\lambda} \tilde{V}_{\geq 0}^{\bullet}$ to V^{\bullet} and its subset $V_{\geq 0}^{\bullet}$ as in 1.9. We write $V^{\bullet}(K) = {}^{\lambda}V^{\bullet}(K) = \tilde{V}_{\geq 0}^{\bullet}$. We have $V^{\bullet}(K) \subset \tilde{V}_{\geq 0}$.

The obvious map $a' : V - 0 \to \overline{P}$ restricts to a (surjective) map $a'_{\geq 0} : V_{\geq 0}$ $0 \to P_{\geq 0}$ and defines a map $\tilde{a}'_{\geq 0} : \tilde{V}_{\geq 0} - 0 \to \tilde{P}_{\geq 0}$. The scalar multiplication $\mathbb{C}^* \times (V - 0) \to V - 0$ carries $\overline{\mathbb{C}^*}_{\geq 0} \times (V_{\geq 0} - 0)$ to $V_{\geq 0} - 0$ hence it induces a map $\widetilde{\mathbf{C}}_{\geq 0}^* \times (\widetilde{V}_{\geq 0} - 0) \to \widetilde{V}_{\geq 0} - 0$ which is a (free) action of the group $K = \widetilde{\mathbf{C}}_{\geq 0}^*$ on $\tilde{V}_{\geq 0} - 0 = V(K) - 0$. From the definitions we see that $\tilde{a}'_{\geq 0}$ is surjective and it induces a bijection $(V(K) - 0)/K \stackrel{\sim}{\to} \tilde{P}_{\geq 0}$. Thus we have $\tilde{P}_{\geq 0} = P(K)$ (notation of 1.4). Note that $P^{\bullet}(K) \subset P(K)$.

The obvious map $a: V^{\bullet} - 0 \to P^{\bullet}$ restricts to a (surjective) map $a_{\geq 0} : V^{\bullet}_{\geq 0}$ $0 \to P_{\geq 0}^{\bullet}$ and it defines a map $\tilde{a}_{\geq 0} : V^{\bullet}(K) = \tilde{V}_{\geq 0}^{\bullet} - 0 \to \tilde{P}_{\geq 0}^{\bullet} = P^{\bullet}(K)$. The (free) K-action on $\tilde{V}_{\geq 0} - 0$ considered above restricts to a (free) K-action on $V^{\bullet}(K) - 0 = \tilde{V}^{\bullet}_{\geq 0} - 0$. From the definitions we see that $\tilde{a}_{\geq 0}$ is constant on any orbit of this action. We show:

(a) The map $\tilde{a}_{\geq 0}$ is surjective. It induces a bijection $(V^{\bullet}(K)-0)/K \stackrel{\sim}{\rightarrow} P^{\bullet}(K)$. Let $f \in \tilde{P}_{\geq 0}^{\bullet}$. We can find $U \in \Omega_f$, $\epsilon \in \mathbb{R}_{>0}$ such that $(0, \epsilon) \subset U$ and $f(t) \in P_{\geq 0}^{\bullet}$ for $t \in (0, \epsilon)$. Using the surjectivity of $a_{>0}$ we see that for $t \in (0, \epsilon)$ we have $f(t) = a(x_t)$ where $t \mapsto x_t$ is a function $(0, \epsilon) \to V_{\geq 0}^{\bullet} - 0$. We can assume that there exists $B \in \mathcal{B}(\mathbf{R})$ such that $\pi(f(t))$ is opposed to B for all $t \in U$. Let $\mathcal{O} = \{B_1 \in \mathcal{B}; B_1 \text{ opposed to } B\};$ thus we have $\pi(f(t)) \in \mathcal{O}$ for all $t \in U$. Let $B' \in \mathcal{O} \cap \mathcal{B}(\mathbf{R})$ and let $\xi' \in V_{\mathbf{R}} - 0$ be such that $\pi(\mathbf{C}\xi') = B'$. Let U_B be the unipotent radical of B. Then $U_B \to \mathcal{O}$, $u \mapsto uB'u^{-1}$ is an isomorphism. Hence there is a unique morphism $\zeta : \mathcal{O} \to V^{\bullet} - 0$ such that $\zeta(uB'u^{-1}) = u\xi'$ for any $u \in U_B$. From the definitions we have $\zeta(\mathcal{O} \cap \mathcal{B}(\mathbf{R})) \subset (V_\mathbf{R} \cap V^\bullet) - 0$. We define $f': U \to V^{\bullet} - 0$ by $f'(t) = \zeta(\pi(f(t)))$. We can view f' as an element of $\tilde{V}^{\bullet} - 0$ such that $\tilde{a}(f') = f$. Since $\pi(f(t)) \in \mathcal{B}(\mathbf{R})$, we have $f'(t) \in (V_{\mathbf{R}} \cap V^{\bullet}) - 0$ for $t \in (0, \epsilon)$. For such t we have $a(f'(t)) = f(t) = a(x_t)$ hence $f'(t) = z_t x_t$ where $t \mapsto z_t$ is a (possibly discontinuous) function $(0, \epsilon) \to \mathbf{R} - 0$. Since $x_t \in V_{\geq 0} - 0$ and $\mathbf{R}_{>0}(V_{\geq 0} - 0) = V_{\geq 0} - 0$, we see that for $t \in (0, \epsilon)$ we have $f'(t) \in (V_{\geq 0} - 0)$ 0) ∪ (-1)($V_{\geq 0}$ – 0). Since $(0, \epsilon)$ is connected and f' is continuous (in the standard topology) we see that $f'(0, \epsilon)$ is contained in one of the connected components of $(V_{\geq 0}-0) \cup (-1)(V_{\geq 0}-0)$ that is, in either $V_{\geq 0}-0$ or in $(-1)(V_{\geq 0}-0)$. Thus there exists $s \in \{1, -1\}$ such that $sf'(0, \epsilon) \subset V_{\geq 0} - 0$ hence also $sf'(0, \epsilon) \subset V_{\geq 0} - 0$. We define $f'' : U \to V^{\bullet} - 0$ by $f''(t) = sf'(t)$. We can view f'' as an element of $\tilde{V}_{\geq 0}^{\bullet} - 0$ such that $\tilde{a}_{\geq 0}(f') = f$. This proves that $\tilde{a}_{\geq 0}$ is surjective. The remaining statement of (a) is immediate.

Since P^{\bullet} and its subset $P_{\geq 0}^{\bullet}$ can be identified with \mathcal{B} and its subset $\mathcal{B}_{\geq 0}$ (see 1.7(a)), we see that we may identify $P^{\bullet}(K) = \mathcal{B}(K)$. The action of $\mathfrak{G}(K)$ on $P^{\bullet}(K)$ induced from that on $V^{\bullet}(K) - 0$ is the same as the previous action of $\mathfrak{G}(K)$, see [L19a, 2.13(d)]. This gives a second incarnation of $\mathcal{B}(K)$.

1.11. Let Z be the semifield in 0.1(ii). Following [L94b], we define a (surjective) semifield homomorphism $r: K \to \mathbb{Z}$ by $r(x^e f_1/f_2) = e$ (notation of 0.1). Now r induces a surjective map $V_r: V(K) \to V(\mathbf{Z})$ as in 1.6. Let $V^{\bullet}(\mathbf{Z}) = {}^{\lambda}V^{\bullet}(\mathbf{Z}) \subset$ $V(\mathbf{Z})$ be the image under V_r of the subset $V^{\bullet}(K)$ of $V(K)$. Then $V^{\bullet}(\mathbf{Z}) - \underline{\circ} =$ $V_r(V^{\bullet}(K) - 0).$

The **Z**-action on $V(\mathbf{Z}) - \underline{\circ}$ in 1.4 leaves $V^{\bullet}(\mathbf{Z}) - \underline{\circ}$ stable. (We use the Kaction on $V^{\bullet}(K) - 0$.) Let $P^{\bullet}(\mathbf{Z}) = {}^{\lambda}P^{\bullet}(\mathbf{Z})$ be the set of orbits of this action. We have $P^{\bullet}(\mathbf{Z}) \subset P(\mathbf{Z})$ (notation of 1.4). From 1.6(a) we see that $V^{\bullet}(\mathbf{Z}) - \underline{\circ}$ is stable under the $\mathfrak{G}(Z)$ -action on $V(Z)$ in 1.6. Since the $\mathfrak{G}(Z)$ -action commutes with scalar multiplication by Z it follows that the $\mathfrak{G}(Z)$ -action on $V(Z) - \circ$ and $V^{\bullet}(\mathbf{Z}) - \underline{\circ}$ induces a $\mathfrak{G}(\mathbf{Z})$ -action on $P(\mathbf{Z})$ and $P^{\bullet}(\mathbf{Z})$.

1.12. We set $\mathcal{B}(\mathbf{Z}) = \lambda P^{\bullet}(\mathbf{Z})$. This achieves what was stated in 0.1 for the semifield **Z**. This definition of $\mathcal{B}(Z)$ depends on the choice of $\lambda \in \mathcal{X}^{++}$. In §4 we will show that $\mathcal{B}(\mathbf{Z})$ is independent of this choice up to a canonical bijection.

(Alternatively, if one wants a definition without such a choice one could take λ such that $\langle i, \lambda \rangle = 1$ for all $i \in I$.)

2. Preparatory results

2.1. We preserve the setup of 1.4. As shown in [L94a, 5.3, 4.2], for $w \in W$ and $\mathbf{i} = (i_1, i_2, \dots, i_m) \in \mathcal{I}_w$, the subspace of V generated by the vectors

$$
f_{i_1}^{(c_1)} f_{i_2}^{(c_2)} \dots f_{i_m}^{(c_m)} \xi^+
$$

for various c_1, c_2, \ldots, c_m in N is independent of **i** (we denote it by V^w) and $\beta^w :=$ $\beta \cap V^w$ is a basis of it. Let V'^i be the subspace of V generated by the vectors

$$
e_{i_m}^{(d_m)} e_{i_{m-1}}^{(d_{m-1})} \ldots e_{i_1}^{(d_1)} b_w
$$

for various d_1, d_2, \ldots, d_m in N, where

$$
b_w = \dot{w}\xi^+, \n\dot{w} = \dot{s}_{i_1}\dot{s}_{i_2}\dots\dot{s}_{i_m}.
$$

We show:

$$
(a) \t V^w = V'^1.
$$

We show that $V^w \subset V'^{i}$. We argue by induction on $m = |w|$. If $m = 0$, the result is obvious. Assume now that $m \geq 1$. Let c_1, c_2, \ldots, c_m be in N. By the induction hypothesis,

(b)
$$
f_{i_1}^{(c_1)} f_{i_2}^{(c_2)} \dots f_{i_m}^{(c_m)} \xi^+
$$

is a linear combination of vectors of form

$$
f_{i_1}^{(c_1)} e_{i_m}^{(d_m)} e_{i_{m-1}}^{(d_{m-1})} \dots e_{i_2}^{(d_2)} b_{s_{i_1}w}
$$

for various d_2, \ldots, d_m in N. Using the known commutation relations between f_{i_1} and e_i we see that (b) is a linear combination of vectors of form

$$
e_{i_m}^{(d_m)} e_{i_{m-1}}^{(d_{m-1})} \dots e_{i_2}^{(d_2)} f_{i_1}^{(c_1)} b_{s_{i_1}w}
$$

for various d_2, \ldots, d_m in N. It is then enough to show that

$$
f_{i_1}^{(c_1)} b_{s_{i_1}w} = e_{i_1}^{(d_1)} \dot{s}_{i_1} b_{s_{i_1}w}
$$

for some $d_1 \in \mathbb{N}$. This follows from the fact that

(c) $e_{i_1}b_{s_{i_1}w}=0$ and $b_{s_{i_1}w}$ is in a weight space of V.

Next we show that $V'^{\mathbf{i}} \subset V^w$. We argue by induction on $m = |w|$. If $m = 0$ the result is obvious. Assume now that $m \geq 1$. Since V^w is stable under the action of $e_i (i \in I)$, it is enough to show that $b_w \in V^w$. By the induction hypothesis, $b_{s_{i_1}w} \in V^{s_{i_1w}}$. Using (c), we see that for some $c_1 \in \mathbf{N}$ we have

$$
b_w = \dot{s}_{i_1} b_{s_{i_1}w} = f_{i_1}^{(c_1)} b_{s_{i_1}w} \in f_{i_1}^{(c_1)} V^{s_{i_1}w} \subset V^w.
$$

This completes the proof of (a).

From [L93, 28.1.4] one can deduce that $b_w \in \beta$. From (a) we see that $b_w \in V^w$. It follows that

(d)
$$
b_w \in \beta^w.
$$

2.2. For $v \leq w$ in W we set

$$
\mathcal{B}_{v,w} = \{ B \in \mathcal{B}, pos(B^+, B) = w, pos(B^-, B) = w_I v \}
$$

(a locally closed subvariety of \mathcal{B}) and

$$
(\mathcal{B}_{v,w})_{\geq 0} = \mathcal{B}_{\geq 0} \cap \mathcal{B}_{v,w}.
$$

We have $\mathcal{B} = \sqcup_{v \leq w \text{ in } W} \mathcal{B}_{v,w}, \mathcal{B}_{\geq 0} = \sqcup_{v \leq w \text{ in } W} (\mathcal{B}_{v,w})_{\geq 0}.$

2.3. Recall that there is a unique isomorphism $\phi: G \to G$ such that $\phi(x_i(t)) =$ $y_i(t)$, $\phi(y_i(t)) = x_i(t)$ for all $i \in I$, $t \in \mathbb{C}$ and $\phi(g) = g^{-1}$ for all $g \in T$. This carries Borel subgroups to Borel subgroups hence induces an isomorphism $\phi : \mathcal{B} \to \mathcal{B}$ such that $\phi(B^+) = B^-$, $\phi(B^-) = B^+$. For $i \in I$ we have $\phi(\dot{s}_i) = \dot{s}_i^{-1}$ $i^{\text{-}1}$. Hence ϕ induces the identity map on W. For $v \leq w$ in W we have $ww_I \leq vw_I$; moreover,

(a) ϕ defines an isomorphism $\mathcal{B}_{ww_1,vw_1} \xrightarrow{\sim} \mathcal{B}_{v,w}$.

(See [L19b, 1.4(a)].) From the definition we have

(b) $\phi(G_{\geq 0}) = G_{\geq 0}$.

From [L94b, 8.7] it follows that

(c) $\phi(\mathcal{B}_{\geq 0}) = \mathcal{B}_{\geq 0}$.

From (a),(c) we deduce:

(d) ϕ defines a bijection $(\mathcal{B}_{ww_1, vw_1})_{\geq 0} \stackrel{\sim}{\rightarrow} (\mathcal{B}_{v,w})_{\geq 0}$. By [L90b, §3] there is a unique linear isomorphism $\phi : V \to V$ such that $\phi(g\xi) =$ $\phi(g)\phi(\xi)$ for all $g \in G$, $\xi \in V$ and such that $\phi(\xi^+) = \xi^-$; we have $\phi(\beta) = \beta$ and $\phi^2(\xi) = \xi$ for all $\xi \in V$.

2.4. Assume now that $\lambda \in \mathcal{X}^{++}$. Let $B \in \mathcal{B}_{v,w}$ and let $L \in P^{\bullet}$ be such that $\pi(L) = B$. Let $\xi \in L - 0$, $b \in \beta$. We show:

(a) $\xi_b \neq 0 \implies b \in \beta^w \cap \phi(\beta^{vw_I}).$

We have $B = gB^+g^{-1}$ for some $g \in B^+ \dot{w} B^+$. Then $\xi = cg\xi^+$ for some $c \in \mathbb{C}^*$. We write $g = g' \dot{w} g''$ with $g' \in U^+, g'' \in B^+$. We have $\xi = c' g' \dot{w} \xi^+ = c' g' b_w$ where $c' \in \mathbb{C}^*$. By 2.1(d) we have $b_w \in \beta^w$. Moreover, V^w is stable by the action of U⁺; we see that $\xi \in V^w$. Since $\xi_b \neq 0$ we have $b \in \beta^w$. Let $B' = \phi(B)$. We have $B' \in \mathcal{B}_{ww_1, vw_1}$ (see 2.3(a)). Let $L' = \phi(L) \in P^{\bullet}$ and let $\xi' = \phi(\xi) \in L' - 0$, $b' =$ $\phi(b) \in \beta$. We have $\xi'_{b'} \neq 0$. Applying the first part of the proof with B, L, ξ, v, w, b replaced by B', L', ξ', v', w', b' we obtain $b' \in \beta^{vw_I}$. Hence $b \in \phi(\beta^{vw_I})$. Thus, $b \in \beta^w \cap \phi(\beta^{vw_I}),$ as required.

2.5. We return to the setup of 1.4. For $i \in I$ we set

$$
V^{e_i} = \{ \xi \in V; e_i(\xi) = 0 \} = \{ \xi \in V; \sum_{b \in \beta} \xi_b c_{b, b', i, 1} = 0 \text{ for all } b' \in \beta \},\
$$

$$
V^{f_i} = \{ \xi \in V; f_i(\xi) = 0 \} = \{ \xi \in V; \sum_{b \in \beta} \xi_b d_{b, b', i, 1} = 0 \text{ for all } b' \in \beta \}.
$$

If $\xi \in V_{\geq 0}$, the condition that $\sum_{b \in \beta} \xi_b c_{b,b',i,1} = 0$ is equivalent to the condition that $\xi_b c_{b,b',i,1} = 0$ for any b, b' in β . Thus we have

$$
V_{\geq 0} \cap V^{e_i} = \{ \xi \in V_{\geq 0}; \xi = \sum_{b \in \beta^{e_i}} \xi_b b \}
$$

where $\beta^{e_i} = \{b \in \beta; c_{b,b',i,1} = 0 \text{ for any } b' \in \beta\}$. Similarly, we have

$$
V_{\geq 0} \cap V^{f_i} = \{ \xi \in V_{\geq 0}; \xi = \sum_{b \in \beta^{f_i}} \xi_b b \}
$$

where $\beta^{f_i} = \{b \in \beta; d_{b,b',i,1} = 0 \text{ for any } b' \in \beta\}.$

Now the action of \dot{s}_i on V defines an isomorphism $\mathcal{T}_i : V^{e_i} \to V^{f_i}$. If $b \in \beta^{e_i}$ we have $\mathcal{T}_i(b) = f_i^{(\langle i,\nu_b \rangle)}$ $\sum_{b' \in \beta} d_{b,b',i,\langle i,\nu_b \rangle} b'$; in particular, we have $\mathcal{T}_i(b) \in$ $V_{\geq 0} \cap V^{f_i}$. Thus \mathcal{T}_i restricts to a map $\mathcal{T}'_i : V_{\geq 0} \cap V^{e_i} \to V_{\geq 0} \cap V^{f_i}$. Similarly the action of \dot{s}_i^{-1} $i⁻¹$ restricts to a map $\mathcal{T}'_i : V_{\geq 0} \cap V^{f_i} \to V_{\geq 0} \cap V^{e_i}$. This is clearly the inverse of \mathcal{T}'_i .

2.6. Now let K be a semifield. Let

$$
V(K)^{e_i} = \{ \sum_{b \in \beta} \xi_b b; \xi_b \in K^! \text{ if } b \in \beta^{e_i}, \xi_b = \circ \text{ if } b \in \beta - \beta^{e_i} \},
$$

$$
V(K)^{f_i} = \{ \sum_{b \in \beta} \xi_b b; \xi_b \in K^! \text{ if } b \in \beta^{f_i}, \xi_b = \circ \text{ if } b \in \beta - \beta^{f_i} \}.
$$

We define $\mathcal{T}_{i,K}: V(K) \to V(K)$ by

$$
\sum_{b \in \beta} \xi_b b \mapsto \sum_{b' \in \beta} (\sum_{b \in \beta} d_{b, b', i, \langle i, \nu_b \rangle} \xi_b) b'
$$

(notation of 1.4). From the results in 2.5 one can deduce that

(a) $\mathcal{T}_{i,K}$ restricts to a bijection $\mathcal{T}'_{i,K}: V(K)^{e_i} \xrightarrow{\sim} V(K)^{f_i}$.

2.7. Let K be a semifield. We define an involution $\phi: V(K) \to V(K)$ by $\phi(\sum_{b\in\beta}\xi_b b) = \sum_{b\in\beta}\xi_{\phi(b)}b.$ (Here $\xi_b \in K^!$; we use that $\phi(\beta) = \beta.$) This restricts to an involution $V(K)$ – \circ → $V(K)$ – \circ which induces an involution $P(K) \to P(K)$ denoted again by ϕ .

3. PARAMETRIZATIONS

3.1. In this section K denotes the semifield in 0.1(i). For $v \leq w$ in W we define $\mathcal{B}_{v,w}(K) = \mathcal{B}_{v,w\geq 0}$ as in 1.9 in terms of $\mathcal{B}_{v,w}$ and its subset $(\mathcal{B}_{v,w})_{\geq 0}$. We have

$$
\mathcal{B}(K) = \sqcup_{v \leq w \text{ in } W} \mathcal{B}_{v,w}(K).
$$

3.2. We preserve the setup of 1.4. We now fix $v \leq w$ in W and $\mathbf{i} = (i_1, i_2, \ldots, i_m) \in$ \mathcal{I}_w . According to [MR], there is a unique sequence q_1, q_2, \ldots, q_m with $q_k \in \{s_{i_k}, 1\}$ for $k \in [1, m], q_1 q_2 \ldots q_m = v$ and such that $q_1 \leq q_1 q_2 \leq \cdots \leq q_1 q_2 \ldots q_m$ and $q_1 \leq q_1 s_{i_2}, q_1 q_2 \leq q_1 q_2 s_{i_3}, \ldots, q_1 q_2 \ldots q_{m-1} \leq q_1 q_2 \ldots q_{m-1} s_{i_m}.$ Let $[1, m]' =$ ${k \in [1, m]; q_k = 1}, [1, m]'' = {k \in [1, m]; q_k = s_{i_k}}$. Let A be the set of maps $h: [1, m] \to \mathbb{C}^*$; this is naturally an algebraic variety over **C**. Let $A_{\geq 0}$ be the subset of A consisting of maps $h: [1, m]' \to \mathbf{R}_{>0}$. Following [MR], we define a morphism $\sigma : A \to G$ by $h \mapsto g(h)_{1}g(h)_{2} \ldots g(h)_{m}$ where

(a) $g(h)_k = y_{i_k}(h(k))$ if $k \in [1, m]'$ and $g(h)_k = \dot{s}_{i_k}$ if $k \in [1, m]''$. We show:

(b) If $h \in A_{\geq 0}$, then $\sigma(h)\xi^+ \in V^w$, so that $\sigma(h)$ is a linear combination of vectors $b \in \beta^w$. Moreover, $(\sigma(h)\xi^+)_{b_w} \neq 0$.

From the properties of Bruhat decomposition, for any $h \in A_{\geq 0}$ we have $\sigma(h) \in$ $B^+ \dot w B^+$, so that $\sigma(h)\xi^+ = cu\dot w \xi^+ = cub_w$ where $c \in \mathbb{C}^+, u \in U^+$. Since $b_w \in V^w$ and V^w is stable under the action of U^+ , it follows that $cu\dot{w}\xi^+ \in V^w$. More precisely, $ub_w = b_w$ plus a linear combination of elements $b \in \beta$ of weight other than that of b_w . This proves (b).

We show:

(c) Let $h \in A_{\geq 0}$. Assume that $i \in I$ is such that $|s_i w| > |w|$ and that $b \in \beta$ is such that $(\sigma(h)\xi^+)_b \neq 0$. Then $\nu_b \neq \nu_{b_w} + i'$.

Since $|s_i w| > |w|$ we have $e_i b_w = 0$. We write $\sigma(h)x^+ = c u b_w$ with c, u as in the proof of (b). Now ub_w is a linear combination of vectors of the form $e_{j_1}e_{j_2}\dots e_{j_k}b_w$ with $j_t \in I$. Such a vector is in a weight space $V(\nu)$ with $\nu = \nu_{b_w} + j'_1 + j'_2 + \cdots + j'_k$. If $j'_1 + j'_2 + \cdots + j'_k = i'$ then $k = 1$ and $j_1 = i$. But in this case we have $e_{j_1}e_{j_2}\dots e_{j_k}b_w=e_ib_w=0.$ The result follows.

3.3. Let $h \in A_{\geq 0}$. Let $k \in [1, m]^{\prime\prime}$. The following result appears in the proof of [MR, 11.9].

(a) We have
$$
(g(h)_{k+1}g(h)_{k+2}\ldots g(h)_m)^{-1}x_{i_k}(a)g(h)_{k+1}g(h)_{k+2}\ldots g(h)_m \in U^+
$$
.

From (a) it follows that for $\xi \in V$ we have

$$
e_{i_k}(g(h)_{k+1}g(h)_{k+2}\dots g(h)_{m}\xi) = g(h)_{k+1}g(h)_{k+2}\dots g(h)_{m}(e'\xi)
$$

where $e' : V \to V$ is a linear combination of products of one or more factors $e_j, j \in$ *I*. When $\xi = \xi^+$ we have $e' \xi = 0$ hence $e_{i_k}(g(h)_{k+1}g(h)_{k+2} \dots g(h)_{m} \xi^+) = 0$. We can write uniquely

$$
g(h)_{k+1}g(h)_{k+2}\dots g(h)_{m}\xi^{+} = \sum_{\nu \in \mathcal{X}} (g(h)_{k+1}g(h)_{k+2}\dots g(h)_{m}\xi^{+})_{\nu}
$$

with $(g(h)_{k+1}g(h)_{k+2}...g(h)_{m}\xi^{+})_{\nu} \in V_{\nu}$. We have

$$
\sum_{\nu \in \mathcal{X}} e_{i_k}((g(h)_{k+1}g(h)_{k+2}\dots g(h)_m \xi^+)_\nu) = 0.
$$

Since the elements $e_{i_k}((g(h)_{k+1}g(h)_{k+2}\dots g(h)_m\xi^+)_\nu)$ (for various $\nu \in \mathcal{X}$) are in distinct weight spaces, it follows that $e_{i_k}((g(h)_{k+1}g(h)_{k+2}\dots g(h)_m\xi^+)_\nu)=0$ for any $\nu \in \mathcal{X}$. If $\xi \in V_{\nu}$ satisfies $e_{i_k} \xi = 0$, then

(b) $\dot{s}_{i_k} \xi = f_{i_k}^{(\langle i_k, \nu \rangle)}$ $\binom{(k, \nu)}{i_k}$ ξ. (If $\langle i_k, \nu \rangle < 0$ then $\xi = 0$ so that both sides of (b) are 0.) We deduce (c) λ

$$
g(h)_k((g(h)_{k+1}g(h)_{k+2}\ldots g(h)_m\xi^+)_\nu) = f_{i_k}^{(\langle i_k,\nu\rangle)}((g(h)_{k+1}g(h)_{k+2}\ldots g(h)_m\xi^+)_\nu)
$$

for any $\nu \in \mathcal{X}$.

3.4. Let $h \in A_{\geq 0}$. For any $k \in [1, m]$ we set $[k, m]' = [k, m] \cap [1, m]'$, $[k, m]'' =$ $[k, m] \cap [1, m]$ ". Let $\mathcal{E}_{\geq k}$ be the set of all maps $\chi : [k, m]' \to \mathbb{N}$. (If $[k, m]' = \emptyset$, $\mathcal{E}_{\geq k}$ consists of a single element.) For $\chi \in \mathcal{E}_{\geq k}$ and $k' \in [k,m]$ let $\chi_{\geq k'}$ be the restriction of χ to $[k',m]'.$

We now define an integer $c(k, \chi)$ for any $k \in [1, m]''$ and any $\chi \in \mathcal{E}_{\geq k}$ by descending induction on k. We can assume that $c(k', \chi')$ is defined for any $k' \in$ $[k+1, m]'$ and any $\chi' \in \mathcal{E}_{\geq k'}$. We set $c_{k,\chi} = \langle i_k, \nu \rangle$ where

(a)
$$
\nu = \lambda - \sum_{\kappa \in [k+1,m]'} \chi(\kappa) i'_{\kappa} - \sum_{\kappa \in [k+1,m]''; c(\kappa, \chi_{\geq \kappa}) \geq 0} c(\kappa, \chi_{\geq \kappa}) i'_{k} \in \mathcal{X}.
$$

This completes the inductive definition of the integers $c(k, \chi)$.

Next we define for any $k \in [1, m]$ and any $\chi \in \mathcal{E}_{\geq k}$ an element $\mathcal{J}_{k,\chi} \in V$ by

$$
\mathcal{J}_{k,\chi} = g(h)_{k}^{\chi}g(h)_{k+1}^{\chi} \dots g(h)_{m}^{\chi}\xi^{+}
$$

where

$$
g(h)_{\kappa}^{\chi} = h(\kappa)^{\chi(\kappa)} f_{i_{\kappa}}^{(\chi(\kappa))} \text{ if } \kappa \in [k, m]',
$$

$$
g(h)_{\kappa}^{\chi} = f_{i_{\kappa}}^{(c(\kappa, \chi)_{\geq \kappa})} \text{ if } \kappa \in [k, m]''.
$$

For $k \in [1, m]$ we show:

(b)
$$
g(h)_k g(h)_{k+1} \dots g(h)_m \xi^+ = \sum_{\chi \in \mathcal{E}_{\geq k}} \mathcal{J}_{k,\chi}.
$$

We argue by descending induction on k. Assume first that $k = m$. If $k \in [1, m]$ then

$$
g(h)_k \xi^+ = \sum_{n \ge 0} h(k)^n f_{i_k}^{(n)} \xi^+ = \sum_{\chi \in \mathcal{E}_{\ge k}} \mathcal{J}_{k,\chi},
$$

as required. If $k \in [1, m]^{\prime\prime}$, then $g(h)_k \xi^+ = \dot{s}_{i_k} \xi^+ = f_{i_k}^{(\langle i_k, \lambda \rangle)}$ $\zeta_{i_k}^{(\langle i_k,\lambda \rangle)} \xi^+,$ see 3.3(b).

Next we assume that $k < m$ and that (b) holds for k replaced by $k + 1$. Let $\chi' = \chi_{\geq k+1}$. By the induction hypothesis, the left hand side of (b) is equal to

(c)
$$
g(h)_k \sum_{\chi \in \mathcal{E}_{\geq k+1}} \mathcal{J}_{k+1,\chi}.
$$

If $k \in [1, m]$ ', then clearly (c) is equal to the right hand side of (b). If $k \in [1, m]$ '', then from the induction hypothesis we see that for any $\nu \in \mathcal{X}$ we have

$$
(g(h)_{k+1}\dots g(h)_m\xi^+)_\nu=\sum_{\chi\in\mathcal{E}_{\geq k+1}}(\mathcal{J}_{k+1,\chi})_\nu=\sum_{\chi\in\mathcal{E}_{\geq k+1;\nu}}\mathcal{J}_{k+1,\chi}
$$

where $\mathcal{E}_{\geq k+1;\nu}$ is the set of all $\chi \in \mathcal{E}_{\geq k+1}$ such that

$$
\nu = \lambda - \sum_{\kappa \in [k+1,m]'} \chi(\kappa) i'_{\kappa} - \sum_{\kappa \in [k+1,m]'', c(\kappa, \chi_{\geq \kappa}) \geq 0} c(\kappa, \chi_{\geq \kappa}) i'_{k}.
$$

Using this and 3.3(c) we see that

$$
g(h)_{k}g(h)_{k+1} \dots g(h)_{m} \xi^{+} = \sum_{\nu \in \mathcal{X}} f_{i_{k}}^{(\langle i_{k}, \nu \rangle)}((g(h)_{k+1}g(h)_{k+2} \dots g(h)_{m} \xi^{+})_{\nu})
$$

=
$$
\sum_{\nu \in \mathcal{X}} f_{i_{k}}^{(\langle i_{k}, \nu \rangle)} \sum_{\chi \in \mathcal{E}_{\geq k+1;\nu}} \mathcal{J}_{k+1,\chi} = \sum_{\chi \in \mathcal{E}_{\geq k}} f_{i_{k}}^{(c(k,\chi))} \mathcal{J}_{k+1,\chi|_{\geq k+1}} = \sum_{\chi \in \mathcal{E}_{\geq k}} \mathcal{J}_{k,\chi}.
$$

This completes the inductive proof of (b).

In particular, we have

(d)
$$
g(h)_{1}g(h)_{2}\ldots g(h)_{m}\xi^{+}=\sum_{\chi\in\mathcal{E}}\mathcal{J}_{1,\chi},
$$

where $\mathcal E$ is the set of all maps $\chi : [1, m]' \to \mathbb N$. This shows that for any $b \in \beta$ there exists a polynomial P_b in the variables $x_k, k \in [1, m]'$ with coefficients in N such that the coefficient of b in $g(h)_1 g(h)_2 \dots g(h)_m \xi^+$ is obtained by substituting in P_b the variables x_k by $h(k) \in \mathbf{R}_{>0}$ for $k \in [1, m]'$, $h \in A_{\geq 0}$. Each coefficient of this polynomial is a sum of products of expressions of the form $d_{b_1,b_2,i,n} \in \mathbb{N}$ (see 1.4); if one of these coefficients is $\neq 0$ then after the substitution $x_k \mapsto h(k) \in \mathbf{R}_{>0}$ we obtain an element in $\mathbb{R}_{\geq 0}$ while if all these coefficients are 0 then the same substitution gives 0. Thus, there is a well defined subset $\beta_{v,i}$ of β such that $P_b|_{x_k=h(k)}$ is in $\mathbf{R}_{>0}$ if $b \in \beta_{v,i}$, and is 0 if $b \in \beta - \beta_{v,i}$.

For a semifield K_1 we denote by $A(K_1)$ the set of maps $h: [1, m] \rightarrow K_1$. For any $h \in K_1$ we can substitute in P_b the variables x_k by $h(k) \in K_1$ for $k \in [1, m]$ '; the result is an element $P_{b,h,K_1} \in K_1^!$. Clearly, we have $P_{b,h,K_1} \in K_1$ if $b \in \beta_{v,\mathbf{i}}$ and $P_{b,h,K_1} = \circ \text{ if } b \in \beta - \beta_{v,\mathbf{i}}.$

From 3.2(b) we see that $b_w \in \beta_{v, \mathbf{i}}$.

We see that for a semifield $K_1, h \mapsto \sum_{b \in \beta} P_{b,h,K_1} b$ is a map $\theta_{K_1} : A(K_1) \rightarrow$ $V(K_1) - \underline{\circ}$ and

(d)
$$
\theta_{K_1}(A(K_1)) \subset \{\xi \in V(K_1); \text{supp}(\xi) = \beta_{v,1}\}.
$$

 $(\text{supp}(\xi)$ as in 1.4.) Let $\omega_{K_1}: A(K_1) \to P(K_1)$ be the composition of θ_{K_1} with the obvious map $V(K_1) - \underline{\circ} \rightarrow P(K_1)$. From the definitions, if $K_1 \rightarrow K_2$ is a homomorphism of semifields, then we have a commutative diagram

$$
A(K_1) \xrightarrow{\omega_{K_1}} P(K_1)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
A(K_2) \xrightarrow{\omega_{K_2}} P(K_2)
$$

where the vertical maps are induced by $K_1 \to K_2$.

3.5. In this subsection we assume that $m \geq 1$. We will consider two cases:

(I) $t_1 = s_{i_1}$,

(II) $t_1 = 1$.

In case (I) we set $(v', w') = (s_{i_1}v, s_{i_1}w),$ $\mathbf{i}' = (i_2, i_3, \ldots, i_m) \in \mathcal{I}_{w'}.$ We have $v' \leq w'$ and the analogue of the sequence q_1, q_2, \ldots, q_m in 3.2 for (v', w', i') is $q_2, q_3, \ldots, q_m.$

In case (II) we set $(v', w') = (v, s_{i_1}w),$ **i'** = **i**. We have $v' \leq w'$ and the analogue of the sequence q_1, q_2, \ldots, q_m in 3.2 for (v', w', i') is q_2, q_3, \ldots, q_m . For a semifield K_1 let $A'(K_1)$ be the set of maps $[2, m]' \rightarrow K_1$ (notation of 3.4) and let θ'_{K_1} : $A'(K_1) \to V(K_1) - \underline{\circ}, \ \omega'_{K_1}$: $A'(K_1) \to P(K_1)$ be the analogues of $\theta_{K_1}, \omega_{K_1}$ in 3.4 when v, w is replaced by v', w'. From the definitions, in case (I), for $h \in A(K_1)$ we have

(a) $\theta_{K_1}(h) = \mathcal{T}_{i_1, K_1}(\theta'_{K_1}(h|_{[2,m]'})$

(notation of 2.6(a); in this case we have $\theta'_{K_1}(h|_{[2,m]}) \in V(K_1)^{e_{i_1}}$ by 3.3(a) and the arguments following it); hence

(b) $\omega_{K_1}(h) = [\mathcal{T}_{i_1,K_1}](\omega'_{K_1}(h|_{[2,m]'})$ where $[\mathcal{T}_{i_1,K_1}]$ is the bijection $(V(K_1)^{e_{i_1}} - \underline{\circ})/K_1 \rightarrow (V(K_1)^{f_{i_1}} - \underline{\circ})/K_1$ induced by $\mathcal{T}_{i_1,K_1}: V(K_1)^{e_{i_1}} \to V(K_1)^{f_{i_1}}$ (the image of $\omega'_{K_1}(h|_{[2,m]})$ is contained in $(V(K_1)^{e_{i_1}} - \underline{\circ})/K_1).$

From the definitions, in case (II), for $h \in A(K_1)$ we have

(c) $\theta_{K_1}(h) = (-i_1)^{h(i_1)} (\theta'_{K_1}(h|_{[2,m]'})$ (notation of 1.4).

3.6. In the remainder of this section we assume that $\lambda \in \mathcal{X}^{++}$. In the setup of 3.5, let h, \tilde{h} be elements of $A(K_1)$. Let $\xi = \theta'_{K_1}(h|_{[2,m]'})$, $\tilde{\xi} = \theta'_{K_1}(\tilde{h}|_{[2,m]'})$ be such that $(-i_1)^{h(i_1)}(\xi)$, $(-i_1)^{\tilde{h}(i_1)}(\tilde{\xi})$ have the same image in $P(K)$. We show:

(a) $h(i_1) = \tilde{h}(i_1)$ and $\xi, \tilde{\xi}$ have the same image in $P(K)$. By $3.2(a),(b)$ (for w' instead of w),

(b) $b_{w'}$ appears in ξ with coefficient $c \in K_1$; if $b \in \beta$ appears in ξ with coefficient $\neq \circ \text{ then } \nu_b \neq \nu_{b_{w'}} + i'_1.$

Similarly,

(c) $b_{w'}$ appears in $\tilde{\xi}$ with coefficient $\tilde{c} \in K_1$; if $b \in \beta$ appears in $\tilde{\xi}$ with coefficient $\neq \circ \text{ then } \nu_b \neq \nu_{b_{w'}} + i'_1.$

From our assumption on λ we have $b_{w'} \neq b_w = f_{i_0}^{(n)}$ $f_{i_0}^{(n)}b_{w'}$ and $f_{i_0}^{(1)}$ $i_0^{(1)}b_{w'} \neq \underline{\circ}$. By (b),(c) we have

$$
(-i_1)^{h(i_1)}(\xi) = c\beta_{w'} + h(i_1)c f_{i_0}^{(1)}b_{w'} + K_1^1
$$
-comb. of $b \in \beta$ of other weights,

$$
(-i_1)^{\tilde{h}(i_1)}(\tilde{\xi}) = \tilde{c}\beta_{w'} + \tilde{c}\tilde{h}(i_1)f_{i_0}^{(1)}b_{w'} + K_1^1
$$
-comb. of $b \in \beta$ of other weights.

We deduce that for some $k \in K_1$ we have $\tilde{c} = kc$, $\tilde{ch}(i_1) = kch(i_1)$. It follows that $h(i_1) = h(i_1)$. Using this and our assumption, we see that for some $k \in K_1$ we have $(-i_1)^{h(i_1)}(\xi) = (-i_1)^{h(i_1)}(c\tilde{\xi})$. Using 1.4(a) we deduce $\xi = c\tilde{\xi}$. This proves (a).

3.7. In the setup of 3.4 we show:

(a) $\omega_{K_1}: A(K_1) \to P(K_1)$ is injective.

We argue by induction on m. If $m = 0$ there is nothing to prove. We now assume that $m \geq 1$. Let $\omega'_{K_1} : A'(K_1) \to P(K_1)$ be as in 3.5. By the induction hypothesis, ω'_{K_1} is injective. In case I (in 3.5), we use 3.5(b) and the bijectivity of $[\mathcal{T}_{i_1,K_1}]$ to deduce that ω_{K_1} is injective. In case II (in 3.5), we use 3.5(c) and 3.6(a) to deduce that ω_{K_1} is injective. This proves (a).

3.8. According to [MR],

(a) $h \mapsto \sigma(h)B^+\sigma(h)^{-1}$ defines an isomorphism τ from A to an open subvariety of $\mathcal{B}_{v,w}$ containing $(\mathcal{B}_{v,w})_{\geq 0}$ and τ restricts to a bijection $A_{\geq 0} \stackrel{\sim}{\to} (\mathcal{B}_{v,w})_{\geq 0}$.

(The existence of a homeomorphism $\mathbf{R}_{>0}^{|w|-|v|}$ $\vert {}^{w[-|v]}_{>0}~\overset{\sim}{\to}~(\mathcal{B}_{v,w})_{\geq 0}$ was conjectured in [L94b].)

We define $A_{\geq 0}$ in terms A and its subset $A_{\geq 0}$ as in 1.9. Note that $A_{\geq 0}$ can be identified with the set of maps $h: [1, m]' \to K$ that is, with $A(K)$ (notation of 3.4). Now $\tau : A \to \mathcal{B}_{v,w}$ (see (a)) carries $A_{\geq 0}$ onto the subset $(\mathcal{B}_{v,w})_{\geq 0}$ of $\mathcal{B}_{v,w}$ hence it induces a map

(b) $A(K) = \tilde{A}_{\geq 0} \rightarrow \mathcal{B}_{v,w>0}$ which is a bijection. (We use (a) and $1.9(a)$).

3.9. From the definition we deduce that we have canonically

(a) $\widetilde{\mathcal{B}}_{\geq 0} = \sqcup_{v,w \text{ in } W, v \leq w} \widetilde{\mathcal{B}_{v,w}}_{\geq 0}.$

The left hand side is identified in 1.10 with $P^{\bullet}(K)$, a subspace of $P(K)$. Hence the subset $\widetilde{\mathcal{B}_{v,w}}_{\geq 0}$ of $\widetilde{\mathcal{B}}_{\geq 0}$ can be viewed as a subset $P_{v,w}(K)$ of $P(K)$ and 3.8(b) defines a bijection of $A(K)$ onto $P_{v,w}(K)$. The composition of this bijection with the imbedding $P_{v,w}(K) \subset P(K)$ coincides with the map $\omega_K : A \to P(K)$ in 3.4. (This follows from definitions.)

Similarly, the composition of the imbeddings

$$
(\mathcal{B}_{v,w})_{\geq 0} \subset \mathcal{B}_{\geq 0} = P_{\geq 0}^{\bullet} \subset P_{\geq 0} = P(\mathbf{R}_{>0})
$$

(see 1.7(a)) can be identified via 3.8(a) with the imbedding $\omega_{\mathbf{R}_{>0}} : A_{\geq 0} \to P(\mathbf{R}_{>0})$ whose image is denoted by $P_{v,w}(\mathbf{R}_{>0})$.

Recall that $P^{\bullet}(\mathbf{Z})$ is the image of $P^{\bullet}(K)$ under the map $P(K) \to P(\mathbf{Z})$ induced by $r: K \to \mathbb{Z}$ (see 1.11). For $v \leq w$ in W let $P_{v,w}(\mathbb{Z})$ be the image of $P_{v,w}(K)$ under the map $P(K) \to P(\mathbf{Z})$. We have clearly $P^{\bullet}(\mathbf{Z}) = \bigcup_{v \leq w} P_{v,w}(\mathbf{Z})$. From the commutative diagram in 3.4 attached to $r: K \to \mathbb{Z}$ we deduce a commutative diagram

in which the vertical maps are surjective and the upper horizontal map is a bijection. It follows that the lower horizontal map is surjective; but it is also injective (see $3.7(a)$) hence bijective.

3.10. We return to the setup of 3.4. If K_1 is one of the semifields $\mathbf{R}_{>0}, K, \mathbf{Z}$, then the elements of $P_{v,w}(K_1)$ are represented by elements of $\xi \in V(K_1) - \underline{\circ}$ with $\text{supp}(\xi) = \beta_{v,i}$. In the case where $K_1 = \mathbf{R}_{>0}, P_{v,w}(K_1)$ depends only on v, w and not on i. It follows that $\beta_{v,i}$ depends only on v, w not on i hence we can write $\beta_{v,w}$ insead of $\beta_{v,i}$.

Note that in [L19b, 2.4] it was conjectured that the set $[[v, w]]$ defined in [L19b, $2.3(a)$] in type A_2 should make sense in general. This conjecture is now established by taking $[[v, w]] = \beta_{v,w}$.

Using 2.4(a) and the definitions we see that

(a)
$$
\beta_{v,w} \subset \beta^w \cap \phi(\beta^{vw_I}).
$$

We expect that this is an equality (a variant of a conjecture in [L19b, 2.4], see also $[L19b, 2.3(a)]$. From 3.4 we see that

(b)
$$
b_w \in \beta_{v,w}.
$$

From 2.3(d) we deduce:

(c)
$$
\phi(\beta_{ww_I,vw_I}) = \beta_{v,w}.
$$

Using (b) , (c) we deduce:

(d)
$$
\phi(b_{vw_I}) \in \beta_{v,w}.
$$

3.11. For K_1 as in 3.10 and for $v \leq w$ in $W, v' \leq w'$ in W , we show:

(a) If $P_{v,w}(K_1) \cap P_{v',w'}(K_1) \neq \emptyset$, then $v = v'$, $w = w'$.

If K_1 is $\mathbf{R}_{>0}$ or K this is already known. We will give a proof of (a) which applies also when $K_1 = \mathbf{Z}$. From the results in 3.10 we see that it is enough to show:

(b) If $\beta_{v,w} = \beta_{v',w'}$, then $v = v'$, $w = w'$. From 3.10(b) we have $b_{w'} \in \beta_{v',w'}$ hence $b_{w'} \in \beta_{v,w}$ so that (using 3.10(a)) we have $b_{w'} \in \beta^w$. Using 2.1(a) we deduce that $b_{w'} \in V'^{i}$ (with i as in 2.1). It follows that either $b_{w'} = b_w$ or $\nu_{b_{w'}} - \nu_{b_w}$ is of the form $j'_1 + j'_2 + \cdots + j'_k$ with $j_t \in I$ and $k \geq 1$. Interchanging the roles of w, w' we see that either $b_w = b_{w'}$ or $\nu_{b_w} - \nu_{b_{w'}}$ is of the form $\tilde{j}'_1 + \tilde{j}'_2 + \cdots + \tilde{j}'_{k'}$ with $\tilde{j}_t \in I$ and $k' \geq 1$. If $b_w \neq b_{w'}$ then we must have $j'_1 + j'_2 + \cdots + j'_k + \tilde{j}'_1 + \tilde{j}'_2 + \cdots + \tilde{j}'_{k'} = 0$, which is absurd. Thus we have $b_w = b_{w'}$. Since $\lambda \in \mathcal{X}^{++}$ this implies $w = w'$.

Now applying ϕ to the first equality in (a) and using 3.10(c) we see that $\beta_{ww_1,vw_1} = \beta_{w'w_1,v'w_1}$. Using the first part of the argument with v, w, v', w' replaced by $ww_I, vw_I, w'w_I, v'w_I$, we see that $vw_I = v'w_I$ hence $v = v'$. This completes the proof of (b) hence that of (a).

Now the proof of Theorem 0.2 is complete.

3.12. Now $\phi : \mathcal{B} \to \mathcal{B}$ (see 2.3) induces an involution $\tilde{\mathcal{B}} \to \tilde{\mathcal{B}}$ and an involution $\tilde{\mathcal{B}}_{\geq 0} \to \tilde{\mathcal{B}}_{\geq 0}$ denoted again by ϕ . From 2.3(a),(d) we deduce that this involution restricts to a bijection $\widetilde{\mathcal{B}_{ww_1,ww_1\geq 0}} \to \widetilde{\mathcal{B}_{v,w}}_{\geq 0}$ for any $v \leq w$ in W. The involution $\phi : \tilde{\mathcal{B}}_{\geq 0} \to \tilde{\mathcal{B}}_{\geq 0}$ can be viewed as an involution of $P^{\bullet}(K)$ which coincides with the restriction of the involution $\phi: P(K) \to P(K)$ in 2.7. The last involution is compatible with the involution $\phi : P(\mathbf{Z}) \to P(\mathbf{Z})$ in 2.7 under the map $P(K) \to$ $P(\mathbf{Z})$ induced by $r : K \to \mathbf{Z}$. It follows the image $P^{\bullet}(\mathbf{Z})$ of $P^{\bullet}(K)$ under $P(K) \to$ $P(\mathbf{Z})$ is stable under $\phi: P(\mathbf{Z}) \to P(\mathbf{Z})$. Thus there is an induced involution ϕ on $\mathcal{B}(\mathbf{Z}) = P^{\bullet}(\mathbf{Z})$ which carries $P_{ww_I,vw_I}(\mathbf{Z})$ onto $P_{v,w}(\mathbf{Z})$ for any $v \leq w$ in W.

4. INDEPENDENCE ON λ

4.1. For λ, λ' in \mathcal{X}^+ let $\lambda, \lambda' P$ be the set of lines in $\lambda V \otimes \lambda' V$. We define a linear map $E: {}^{\lambda}V \times {}^{\lambda'}V \to {}^{\lambda}V \otimes {}^{\lambda'}V$ by $(\xi, \xi') \mapsto \xi \otimes \xi'$. This induces a map $\bar{E}: {}^{\lambda}P \times {}^{\lambda'}P \to {}^{\lambda,\lambda'}P.$

Let K_1 be a semifield. Let $S = \lambda \beta \times \lambda' \beta$. Let $\lambda, \lambda' V(K_1)$ be the set of formal sums $u = \sum_{s \in \mathcal{S}} u_s s$ where $u_s \in K_1^!$. This is a monoid under addition (component by component) and we define scalar multiplication

$$
K_1^! \times {}^{\lambda,\lambda'}V(K_1) \to {}^{\lambda,\lambda'}V(K_1)
$$

by $(k, \sum_{s \in \mathcal{S}} u_s s) \mapsto \sum_{s \in \mathcal{S}} (ku_s) s$. Let $\text{End}(\lambda, \lambda' V(K_1))$ be the set of maps ζ : $\lambda, \lambda' V(K_1) \to \lambda, \lambda' V(K_1)$ such that $\zeta(\xi + \xi') = \zeta(\xi) + \zeta(\xi')$ for ξ, ξ' in $\lambda, \lambda' V(K_1)$ and $\zeta(k\xi) = k\zeta(\xi)$ for $\xi \in \lambda, \lambda' V(K_1), k \in K_1^!$. This is a monoid under composition of maps.

We define a map

$$
E(K_1): {}^{\lambda}V(K_1) \times {}^{\lambda'}V(K_1) \to {}^{\lambda,\lambda'}V(K_1)
$$

by

$$
(\sum_{b_1 \in \lambda_{\beta}} \xi_{b_1}), (\sum_{b'_1 \in \lambda'_{\beta}} \xi'_{b'_1}) \mapsto \sum_{(b_1, b'_1) \in \mathcal{S}} \xi_{b_1} \xi'_{b'_1}(b_1, b'_1).
$$

We define a map

$$
End({}^{\lambda}V(K_1)) \times End({}^{\lambda'}V(K_1)) \to End({}^{\lambda,\lambda'}V(K_1))
$$

by $(\tau, \tau') \mapsto [(b_1, b'_1) \mapsto E(K_1)(\tau(b_1), \tau'(b'_1))$. Composing this map with the map

$$
\mathfrak{G}(K_1) \to \mathrm{End}(\Lambda^2 V(K_1)) \times \mathrm{End}(\Lambda^2 V(K_1))
$$

whose components are the maps

$$
\mathfrak{G}(K_1) \to \mathrm{End}(\Lambda^{\mathcal{V}}(K_1)), \quad \mathfrak{G}(K_1) \to \mathrm{End}(\Lambda^{\mathcal{V}}(K_1))
$$

in 1.5 we obtain a map $\mathfrak{G}(K_1) \to \text{End}(\lambda, \lambda' V(K_1))$ which is a monoid homomorphism. Thus $\mathfrak{G}(K_1)$ acts on $\lambda, \lambda' V(K_1)$; it also acts on $\lambda V(K_1) \times \lambda' V(K_1)$ (by 1.5) and the two actions are compatible with $E(K_1)$.

Let \circ be the element $u \in \lambda, \lambda' V(K_1)$ such that $u_s = \circ$ for all $s \in \mathcal{S}$. Let $\lambda, \lambda' P(K_1)$ be the set of orbits of the free K_1 action (scalar multiplication) on $\lambda, \lambda' V(K_1) - \underline{\circ}$. Now $E(K_1)$ restricts to a map

$$
({}^{\lambda}V(K_1)) - \underline{\circ}) \times ({}^{\lambda'}V(K_1) - \underline{\circ}) \to {}^{\lambda,\lambda'}V(K_1) - \underline{\circ}
$$

and induces an (injective) map

$$
\bar{E}(K_1): {}^{\lambda}P(K_1) \times {}^{\lambda'}P(K_1) \to {}^{\lambda,\lambda'}P(K_1).
$$

Now $\mathfrak{G}(K_1)$ acts naturally on $\lambda P(K_1) \times \lambda' P(K_1)$ and on $\lambda, \lambda' P(K_1)$; these $\mathfrak{G}(K_1)$ actions are compatible with $\bar{E}(K_1)$.

4.2. For λ , λ' in \mathcal{X}^+ there is a unique linear map

$$
\Gamma: {}^{\lambda+ \lambda'}V \to {}^{\lambda}V \otimes {}^{\lambda'}V
$$

which is compatible with the G-actions and takes $\lambda + \lambda' \xi^+$ to $\lambda \xi^+ \otimes \lambda' \xi^+$. This induces a map $\bar{\Gamma}: \lambda^{+\lambda'}P \to \lambda^{,\lambda'}P$.

For $b \in \lambda + \lambda' \beta$ we have

$$
\Gamma(b)=\sum_{(b_1,b_1')\in\mathcal{S}}e_{b,b_1,b_1'}b_1\otimes b_1'
$$

where $e_{b,b_1,b'_1} \in \mathbb{N}$. (This can be deduced from the positivity property [L93, 14.4.13(b)] of the homomorphism r in [L93, 1.2.12].) There is a unique map

$$
\Gamma(K_1) : \lambda^{+\lambda'} V(K_1) \to \lambda^{,\lambda'} V(K_1)
$$

compatible with addition and scalar multiplication and such that for $b \in \lambda + \lambda' \beta$ we have

$$
\Gamma(K_1)(b) = \sum_{(b_1, b'_1) \in \mathcal{S}} e_{b, b_1, b'_1}(b_1, b'_1)
$$

where e_{b,b_1,b'_1} are viewed as elements of $K_1^!$. Since Γ is injective, for any $b \in \lambda^{+\lambda'}\beta$ we have $e_{b,b_1,b'_1} \in \mathbb{N} - \{0\}$ for some b_1, b'_1 , hence $e_{b,b_1,b'_1} \in K_1$, when viewed as an element of $K_1^!$. It follows that $\Gamma(K_1)$ maps $\lambda^{+\lambda'}V(K_1) - \mathcal{Q}$ into $\lambda, \lambda'V(K_1) - \mathcal{Q}$. Hence $\Gamma(K_1)$ defines an (injective) map

$$
\bar{\Gamma}(K_1) : \lambda^{+\lambda'} P(K_1) \to \lambda^{,\lambda'} P(K_1)
$$

which is compatible with the action of $\mathfrak{G}(K_1)$ on the two sides.

4.3. We now assume that K_1 is either K as in 0.1(i) or **Z** as in 0.1(ii) and that $\lambda \in \mathcal{X}^{++}, \lambda' \in \mathcal{X}^+$ so that $\lambda + \lambda' \in \mathcal{X}^{++}$. We have the following result.

(a) Let $\mathcal{L} \in {}^{\lambda+\lambda'}P^{\bullet}(K_1)$. Then $\overline{\Gamma}(K_1)(\mathcal{L}) = \overline{E}(K_1)(\mathcal{L}_1, \mathcal{L}'_1)$ for some $(\mathcal{L}_1, \mathcal{L}'_1) \in$ $\lambda P\bullet (K_1) \times \lambda' P(K_1)$ (which is unique, by the injectivity of $\overline{E}(K_1)$). Thus, $\mathcal{L} \mapsto \mathcal{L}_1$ is a well defined map $H(K_1): \lambda^{+\lambda'} P^{\bullet}(K_1) \to \lambda P^{\bullet}(K_1)$.

We shall prove (a) for $K_1 = \mathbb{Z}$ assuming that it is true for $K_1 = K$. We can find $\tilde{\mathcal{L}} \in {}^{\lambda+\lambda'}P^{\bullet}(K)$ such that $\mathcal{L} \in {}^{\lambda+\lambda'}P^{\bullet}(\mathbf{Z})$ is the image of $\tilde{\mathcal{L}}$ under the map $\lambda^{A} \rightarrow^{\lambda} P^{\bullet}(K) \rightarrow^{\lambda + \lambda'} P^{\bullet}(\mathbf{Z})$ induced by $r : K \rightarrow \mathbf{Z}$. By our assumption we have $\bar{\Gamma}(K)(\tilde{\mathcal{L}}) = \bar{E}(K)(\tilde{\mathcal{L}}_1, \tilde{\mathcal{L}}'_1)$ with $(\tilde{\mathcal{L}}_1, \tilde{\mathcal{L}}'_1) \in {}^{\lambda}P^{\bullet}(K) \times {}^{\lambda'}P(K)$. Let \mathcal{L}_1 (resp. \mathcal{L}'_1) be the image of \tilde{L}_1 (resp. \tilde{L}'_1) under the map $\lambda P^{\bullet}(K) \to \lambda P^{\bullet}(\mathbf{Z})$ (resp. $\lambda' P(K) \to$ $\lambda' P(\mathbf{Z})$ induced by $r: K \to \mathbf{Z}$. From the definitions we see that $\bar{\Gamma}(\mathbf{Z})(\mathcal{L}) =$ $\bar{E}(\mathbf{Z})(\mathcal{L}_1, \mathcal{L}'_1)$. This proves the existence of $(\mathcal{L}_1, \mathcal{L}'_1)$. The proof of (a) in the case where $K_1 = K$ will be given in 4.6.

Assuming that (a) holds, we have a commutative diagram

$$
\begin{array}{ccc}\n\lambda + \lambda' P^{\bullet}(K) & \xrightarrow{H(K)} & \lambda P^{\bullet}(K) \\
\downarrow & & \downarrow \\
\lambda + \lambda' P^{\bullet}(\mathbf{Z}) & \xrightarrow{H(\mathbf{Z})} & \lambda P^{\bullet}(\mathbf{Z})\n\end{array}
$$

in which the vertical maps are induced by $r : K \to \mathbb{Z}$.

4.4. We preserve the setup of 4.3. For each $w \in W$ we assume that a sequence $\mathbf{i}_w = (i_1, i_2, \ldots, i_m) \in \mathcal{I}_w$ has been chosen (here $m = |w|$). Let $\mathcal{Z}(K_1) =$

 $\sqcup_{v\leq w \text{ in } W} A_{v,w}(K_1)$ where $A_{v,w}(K_1)$ is the set of all maps $[1,m]' \to K_1$ (with $[1, m]'$ defined as in 3.2 in terms of v, w and $\mathbf{i} = \mathbf{i}_w$. From the results in 3.9 we have a bijection

$$
\lambda D(K_1): \mathcal{Z}(K_1) \xrightarrow{\sim} \lambda P^{\bullet}(K_1)
$$

whose restriction to $A_{v,w}(K_1)$ is as in the last commutative diagram in 3.9 (with $\mathbf{i} = \mathbf{i}_w$). Replacing here λ by $\lambda + \lambda'$ we obtain an analogous bijection

$$
\lambda + \lambda' D(K_1) : \mathcal{Z}(K_1) \xrightarrow{\sim} \lambda + \lambda' P^{\bullet}(K_1).
$$

From the commutative diagram in 3.4 we deduce a commutative diagram

$$
\mathcal{Z}(K) \xrightarrow{\lambda D(K)} \lambda P^{\bullet}(K)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mathcal{Z}(\mathbf{Z}) \xrightarrow{\lambda D(\mathbf{Z})} \lambda P^{\bullet}(\mathbf{Z})
$$

and a commutative diagram

$$
\mathcal{Z}(K) \xrightarrow{\lambda + \lambda' D(K)} \lambda + \lambda' P^{\bullet}(K)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
\mathcal{Z}(\mathbf{Z}) \xrightarrow{\lambda + \lambda' D(\mathbf{Z})} \lambda + \lambda' P^{\bullet}(\mathbf{Z})
$$

in which the vertical maps are induced by $r : K \to \mathbb{Z}$.

4.5. We preserve the setup of 4.3. We assume that $4.3(a)$ holds. From the commutative diagrams in 4.3, 4.4 we deduce a commutative diagram

$$
\mathcal{Z}(K) \xrightarrow{\left(\lambda D(K)\right)^{-1} H(K) \lambda + \lambda' D(K)} \mathcal{Z}(K)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\mathcal{Z}(\mathbf{Z}) \xrightarrow{\left(\lambda D(\mathbf{Z})\right)^{-1} H(\mathbf{Z}) \lambda + \lambda' D(\mathbf{Z})} \mathcal{Z}(\mathbf{Z})
$$

in which the vertical maps are induced by $r : K \to \mathbb{Z}$. Recall that K_1 is K or \mathbb{Z} . We have the following result.

(a) $({}^{\lambda}D(K_1))^{-1}H(K_1)^{\lambda+\lambda'}D(K_1)$ is the identity map $\mathcal{Z}(K_1) \to \mathcal{Z}(K_1)$. If (a) holds for $K_1 = K$ then it also holds for $K_1 = \mathbb{Z}$, in view of the commutative diagram above in which the vertical maps are surjective. The proof of (a) in the case $K_1 = K$ will be given in 4.7.

From (a) we deduce:

(b) $H(K_1)$ is a bijection.

4.6. In this subsection we assume that $K_1 = K$. Let $\mathbf{k} = \mathbf{C}(x)$ where x is an indeterminate. We have $K^! \subset \mathbf{k}$. For any $\lambda \in \mathcal{X}^+$ we set $\lambda V_k = \mathbf{k} \otimes \lambda V$. This is naturally a module over the group $G(\mathbf{k})$ of **k** points of G. Let $\mathcal{B}(\mathbf{k})$ be the set of subgroups of $G(\mathbf{k})$ that are $G(\mathbf{k})$ -conjugate to $B^+(\mathbf{k})$, the group of **k**-points of B^+ . We identify $\lambda V(K)$ with the set of vectors in λV_k whose coordinates in the **k**-basis $\lambda \beta$ are in K[!]. In the case where $\lambda \in \mathcal{X}^{++}$, we identify $\lambda V^{\bullet}(K) - 0$ with the set of all $\xi \in {}^{\lambda}V(K) - 0$ such that the stabilizer in $G(\mathbf{k})$ of the line [ξ] belongs to $\mathcal{B}(\mathbf{k})$. (For a nonzero vector ξ in a k-vector space we denote by $[\xi]$ the k-line in that vector space that contains ξ .)

Now let $\lambda \in \mathcal{X}^{++}, \lambda' \in \mathcal{X}^+$. We show that 4.3(a) holds for λ, λ' . We identify $\lambda, \lambda' V(K)$ with the set of vectors in $\lambda' V_{\mathbf{k}} \otimes_{\mathbf{k}} \lambda' V_{\mathbf{k}}$ whose coordinates in the **k**-basis ${}^{\boldsymbol{\lambda}}\beta\otimes {}^{\boldsymbol{\lambda}'}\!\beta$ are in $K^!$.

Then $E(K)$ becomes the restriction of the homomorphism of $G(\mathbf{k})$ -modules $E' : {}^{\lambda}V_{\mathbf{k}} \times {}^{\lambda'}V_{\mathbf{k}} \to {}^{\lambda}V_{\mathbf{k}} \otimes_{\mathbf{k}} {}^{\lambda'}V_{\mathbf{k}}$ given by $(\xi, \xi') \mapsto \xi \otimes_{\mathbf{k}} \xi'$ and $\Gamma(K)$ becomes the restriction of the homomorphism of $G(\mathbf{k})$ -modules $\Gamma' : \lambda + \lambda' V_{\mathbf{k}} \to \lambda' V_{\mathbf{k}} \otimes_{\mathbf{k}} \lambda' V_{\mathbf{k}}$ obtained from Γ by extension of scalars.

Let $L_{\lambda} = [\lambda \xi^+] \subset \lambda V_{\mathbf{k}}, L_{\lambda'} = [\lambda' \xi^+] \subset \lambda' V_{\mathbf{k}}, L_{\lambda + \lambda'} = [\lambda^{+\lambda'} \xi^+] \subset \lambda^{+\lambda'} V_{\mathbf{k}}.$ Now let $\xi \in \lambda^{+\lambda'} V^{\bullet}(K) - 0$. Then $[\xi] = gL_{\lambda+\lambda'}$ for some $g \in G(\mathbf{k})$ hence

$$
\Gamma'([\xi]) = g(L_{\lambda} \otimes L_{\lambda'}) = (gL_{\lambda}) \otimes (g(L_{\lambda'}) = E'(gL_{\lambda}, g(L_{\lambda'}) = E'([g({}^{\lambda}\xi^{+})], [g({}^{\lambda'}\xi^{+})]).
$$

To prove 4.3(a) in our case it is enough to prove that for some c, c' in \mathbf{k}^* we have $cg(\lambda \xi^+) \in {}^{\lambda}V(K)$, $c'g({^{\lambda}}'\xi^+) \in {}^{\lambda'}V(K)$. We have $\xi = c_0g({^{\lambda+\lambda'}}\xi^+)$ for some $c_0 \in \mathbf{k}^*$ and $\Gamma'(\xi) = \Gamma(\xi) \in \lambda^{\lambda'} V(K)$. Thus, $c_0 \Gamma'(g(\lambda + \lambda' \xi) \in \lambda^{\lambda'} V(K)$ that is, $c_0(g^{\lambda}\xi^+) \otimes (g^{\lambda'}\xi^+) \in \lambda^{\lambda'}V(K)$. It is enough to show:

(a) If $z \in {}^{\lambda}V_{\mathbf{k}}, z' \in {}^{\lambda'}V_{\mathbf{k}}, c_0 \in \mathbf{k}^*$ satisfy $c_0z \otimes z' \in {}^{\lambda,\lambda'}V(K) - 0$, then $cz \in {}^{\lambda}V(K) - 0, c'z' \in {}^{\lambda'}V(K) - 0$ for some c, c' in \mathbf{k}^* .

We write $z = \sum_{b \in \lambda}^{\infty} z_b b, z' = \sum_{b' \in \lambda' \beta} z'_{b'} b'$ with $z_b, z'_{b'}$ in k. We have $c_0 z_b z'_{b'} \in K^!$ for all b, b'. Replacing z by $c_0 z$ we can assume that $c_0 = 1$ so that $z_b z'_{b'} \in K'$ for all b, b' and $z_b z'_{b'} \neq 0$ for some b, b'. Thus we can find $b'_0 \in {\lambda'}\beta$ such that $z'_{b'_0} \in K$. We have $z_b z_{b_0'}^j \in K^!$ for all b. Replacing z by $z_{b_0'}^j z$ we can assume that $z_b \in K^!$ for all b. We can find $b_0 \in {}^{\lambda} \beta$ such that $z_{b_0} \in K$. We have $z_{b_0} z'_{b'} \in K'$ for all b'. It follows that $z'_{b'} \in K'$ for all b'. This proves (a) and completes the proof of 4.3(a).

4.7. We preserve the setup of 4.3 and assume that $K_1 = K$. We show that 4.5(a) holds in this case. Let $v \leq w$, i be as in 3.2 and let $A(K_1)$ be as in 3.4. Let $h \in A(K_1)$. We have $\lambda + \lambda' D(K_1)(h) = [\sigma_{K_1}(h) \lambda + \lambda' \xi^+]$ where $\sigma_{K_1} : A(K_1) \to G(\mathbf{k})$ is defined by the same formula as σ in 3.2. (Note that for $i \in I$, $y_i(t) \in G(\mathbf{k})$ is defined for any $t \in \mathbf{k}$.) Hence

$$
\begin{aligned} \bar{\Gamma}(K_1)^{\lambda + \lambda'} D(K_1)(h) &= [(\sigma_{K_1}(h)^{\lambda} \xi^+) \otimes (\sigma_{K_1}(h)^{\lambda'} \xi^+)] \\ &= \bar{E}(K_1) ([\sigma_{K_1}(h)^{\lambda} \xi^+], [\sigma_{K_1}(h)^{\lambda'} \xi^+]) \end{aligned}
$$

so that

$$
H(K_1)^{\lambda + \lambda'} D(K_1)(h) = [\sigma_{K_1}(h)^{\lambda} \xi^+] = {\lambda} D(K_1)(h).
$$

This shows that the map in 4.5(a) takes h to h for any $h \in A(K_1)$. This proves $4.5(a).$

4.8. We now assume that K_1 is either K as in 0.1(i) or **Z** as in 0.1(ii) and that $\lambda \in \mathcal{X}^{++}, \lambda' \in \mathcal{X}^{++}$. From 4.3(a),4.5(a) we have a well defined bijection $H(K_1)$: $\lambda^{+\lambda'} P^{\bullet}(K_1) \stackrel{\sim}{\longrightarrow} \lambda P^{\bullet}(K_1)$. Interchanging λ, λ' we obtain a bijection $H'(K_1)$: $\lambda^{A} \rightarrow^{\lambda} P^{\bullet}(K_1) \xrightarrow{\sim}^{\lambda'} P^{\bullet}(K_1)$. Hence we have a bijection

$$
\gamma_{\lambda,\lambda'} = H'(K_1)H(K_1)^{-1} : {}^{\lambda}P^{\bullet}(K_1) \xrightarrow{\sim} {}^{\lambda'}P^{\bullet}(K_1).
$$

From the definitions we see that $H(K_1)$ is compatible with the $\mathfrak{G}(K_1)$ -actions. Similarly, $H'(K_1)$ is compatible with the $\mathfrak{G}(K_1)$ -actions. It follows that $\gamma_{\lambda,\lambda'}$ is compatible with the $\mathfrak{G}(K_1)$ -actions. From the definitions we see that if λ'' is third element of \mathcal{X}^{++} , we have

$$
\gamma_{\lambda,\lambda''} = \gamma_{\lambda',\lambda''} \gamma_{\lambda,\lambda'}.
$$

This shows that our definition of $\mathcal{B}(K_1)$ is independent of the choice of λ .

5. The non-simplylaced case

5.1. Let $\delta: G \to G$ be an automorphism of G such that $\delta(B^+) = B^+, \delta(B^-) =$ B⁻ and $\delta(x_i(t)) = x_{i'}(t)$, $\delta(y_i(t)) = y_{i'}(t)$ for all $i \in I, t \in \mathbb{C}$ where $i \mapsto i'$ is a permutation of I denoted again by δ . We define an automorphism of W by $s_i \mapsto s_{\delta(i)}$ for all $i \in I$; we denote this automorphism again by δ . We assume further that $s_i s_{\delta(i)} = s_{\delta(i)} s_i$ for any $i \in I$. The fixed point set G^{δ} of $\delta: G \to G$ is a connected simply connected semisimple group over C . The fixed point set W^{δ} of $\delta : W \to W$ is the Weyl group of G^{δ} and as such it has a length function $w \mapsto |w|_{\delta}$.

Now δ takes any Borel subgroup of G to a Borel subgroup of G hence it defines an automorphism of $\mathcal B$ denoted by δ , with fixed point set denoted by $\mathcal B^{\delta}$. This automorphism restricts to a bijection $\mathcal{B}_{\geq 0} \to \mathcal{B}_{\geq 0}$. We can identify \mathcal{B}^{δ} with the flag manifold of G^{δ} by $B \mapsto B \cap G^{\delta}$. Under this identification, the totally positive part of the flag manifold of G^{δ} (defined in [L94b]) becomes $\mathcal{B}_{\geq 0}^{\delta} = \mathcal{B}_{\geq 0} \cap \mathcal{B}^{\delta}$. For $\lambda \in \mathcal{X}$ we define $\delta(\lambda) \in \mathcal{X}$ by $\langle \delta(i), \delta(\lambda) \rangle = \langle i, \lambda \rangle$ for all $i \in I$. In the setup of 1.4 assume that $\lambda \in \mathcal{X}^{++}$ satisfies $\delta(\lambda) = \lambda$. There is a unique linear isomorphism $\delta: V \to V$ such that $\delta(g\xi) = \delta(g)\delta(\xi)$ for any $g \in G, \xi \in V$ and such that $\delta(\xi^+) = \xi^+$. This restricts to a bijection $\beta \to \beta$ denoted again by δ . For any semifield K_1 we define a bijection $V(K_1) \to V(K_1)$ by $\sum_{b \in \beta} \xi_b b \mapsto \sum_{b \in \beta} \xi_{\delta^{-1}(b)} b$ where $\xi_b \in K_1^!$. This induces a bijection $P(K_1) \to P(K_1)$ denoted by δ . We now assume that K_1 is as in 0.1(i),(ii). Then the subset $P^{\bullet}(K_1)$ of $P(K_1)$ is defined and is stable under δ ; let $P^{\bullet}(K_1)^{\delta}$ be the fixed point set of $\delta : P^{\bullet}(K_1) \to P^{\bullet}(K_1)$. Recall that $\mathfrak{G}(K_1)$ acts naturally on $P(K_1)$. This restricts to an action on $P^{\bullet}(K_1)^{\delta}$

of the monoid $\mathfrak{G}(K_1)^\delta$ (the fixed point set of the isomorphism $\mathfrak{G}(K_1) \to \mathfrak{G}(K_1)$) induced by δ) which is the same as the monoid associated in [L19a] to G^{δ} and K_1 . We set $\mathcal{B}^{\delta}(K_1) = P^{\bullet}(K_1)^{\delta}$.

The following generalization of Theorem 0.2 can be deduced from Theorem 0.2. (a) The set $\mathcal{B}^{\delta}(\mathbf{Z})$ has a canonical partition into pieces $P_{v,w;\delta}(\mathbf{Z})$ indexed by the

pairs $v \leq w$ in W^{δ} . Each such piece $P_{v,w;\delta}(\mathbf{Z})$ is in bijection with $\mathbf{Z}^{|w|_{\delta}-|v|_{\delta}}$; in fact, there is an explicit bijection $\mathbf{Z}^{|w|_{\delta}-|v|_{\delta}} \overset{\sim}{\to} P_{v,w;\delta}(\mathbf{Z})$ for any reduced expression of w in W^{δ} .

REFERENCES

- [L90a] G.Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
- [L90b] G.Lusztig, Canonical bases arising from quantized enveloping algebras,II, Progr.of Theor. Phys. Suppl. 102 (1990), 175-201.
- [L93] G.Lusztig, *Introduction to quantum groups*, Progr.in Math.110, Birkhäuser Boston, 1993.
- [L94a] G.Lusztig, Problems on canonical bases, Algebraic groups and their generalizations: quantum and infinite dimensionalmethods, Proc. Symp. Pure Math. 56(2), Amer. Math. Soc., 1994, pp. 169-176.
- [L94b] G.Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr.in Math. 123, Birkhäuser Boston, 1994, pp. 531-568.
- [L98] G.Lusztig, Total positivity in partial flag manifolds, Represent.Th. 2 (1998), 70-78.
- [L18] G.Lusztig, *Positive structures in Lie theory*, arxiv:1812.09313 (to appear).
- [L19a] G.Lusztig, *Total positivity in reductive groups, II*, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), 403-460.
- [L19b] G.Lusztig, Total positivity in Springer fibres, arxiv:1909.00896.
- [MR] R.Marsh and K.Rietsch, *Parametrizations of flag varieties*, Represent.Th. 8 (2004), 212-242.

Department of Mathematics, M.I.T., Cambridge, MA 02139