
MIT Open Access Articles

Comparison of computational algorithms for simulating
an electrospray plume with a n-body approach

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Journal of Electric Propulsion. 2022 Oct 07;1(1):17

As Published: https://doi.org/10.1007/s44205-022-00015-w

Publisher: Springer International Publishing

Persistent URL: https://hdl.handle.net/1721.1/145777

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145777
https://creativecommons.org/licenses/by/4.0/

Comparison of computational algorithms
for simulating an electrospray plume
with a n‑body approach
Sebastian K. Hampl1*, Marshall T. Waggoner2, Ximo Gallud Cidoncha3, Elaine M. Petro2 and Paulo C. Lozano3

Introduction
Electrospraying is commonly used to eject mass from conductive liquids. The electro-
spraying technique has been used in the small satellite electric propulsion field due to
its innate compactness, simplicity, and scalability [1]. The most commonly used sources
in electrospray propulsion include ionic liquid and liquid metal ion sources, which are
known to spray pure ions, thus maximizing the charge to mass ratio and achieving a
very high efficiency and specific impulse (up to 4000 s [2]). During electrospray pure ion
emission, a liquid propellant meniscus emerges at the top of a sharp needle or capillary,
which is at balance between electric surface tension and hydraulic stresses. The result-
ing equilibrium shape adopts a conical form, which is generally different from the Taylor
characteristic solution, as it does not involve a perfectly conical electrode geometry, and
needs a finite hydrostatic pressure drop to sustain the emission of current. At the apex
of the meniscus, the electric fields are high enough (∼ 109 V/m) to lower the solvation

Abstract

In order to better evaluate the trade-offs between different simulation options for an
electrospray thruster plume, we have developed a multi-scale n-body code to com-
pute the evolution of a single emitter electrospray plume in the pure ionic regime.
The electrostatic force computations in the simulation are captured through the use
of three different computational algorithms with various degrees of approximation.
The results of the simulations for a simple test case are compared in terms of compu-
tational speed and accuracy. The test case utilizes a single operating point (323nA) for
a stable meniscus solution for the ionic liquid EMI-BF4 firing in the positive pure ion
mode. Complex species and probabilistic fragmentation processes are neglected. An
overview is provided of the trade-off between accuracy and computational speed for
the three algorithms in the context of simulating the electrostatic interactions between
particles. For a large number of particles, the faster algorithms show a significant reduc-
tion in computational time while maintaining a high level of accuracy with a proper
choice of tuning parameters.

Keywords: Electrospray Propulsion, N-body simulation, Barnes hut tree code, Fast
multipole method

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Hampl et al. Journal of Electric Propulsion (2022) 1:17
https://doi.org/10.1007/s44205‑022‑00015‑w

Journal of Electric Propulsion

*Correspondence:
sebastian.hampl@mail.mcgill.ca

1 Department of Mechanical
Engineering, McGill University,
817 Sherbrooke St W,
Montréal H3A 0C3, Québec,
Canada
2 Sibley School of Mechanical
and Aerospace Engineering,
Cornell University, 130 Upson
Hall, Ithaca 14850, NY, USA
3 Department of Aeronautics
and Astronautics, Massachusetts
Institute of Technology,
125 Massachusetts Ave,
Cambridge 02139, MA, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s44205-022-00015-w&domain=pdf

Page 2 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

energy barrier of the ions and therefore eject them through a process of electrically-
assisted thermionic evaporation [3].

The optics of the ion beams in electrospray ion sources are crucial to assess the per-
formance and lifetime of electrospray thrusters [4], for instance the prediction of plume
deflection angles for grid erosion, or neutral impingement to the walls [5]. It also con-
tributes to the thrust, specific impulse, and beam divergence efficiency. Such factors are
determined by the structure of the electric field across the ion acceleration region, the
initial conditions of the ions right before emission, and the process of ion fragmentation.
These electric fields typically span over multiple scales, from the 109 V/m in the emis-
sion region to almost vanishing fields in the field-free region, and are a direct byproduct
of the geometry of the acceleration region, including the features of the meniscus shape
itself [6] and the curvature of the tip electrodes. The study of these processes affecting
ion plume trajectories has motivated the development of multi-scale simulation frame-
works at different levels of accuracy: from kinetic approaches [7] to particle-in-cell (PIC)
models [8, 9]. The former model improves the accuracy of the electric field estimation by
computing the exact Coulomb force between the particles at the expense of an intense
computational scalability O(N 2)1, where N is the number of particles being simulated.
This O(N 2) scalability commonly limits the number of particles being simulated to
N ∼ 104 , which corresponds to the number of ions that an ILIS source operating at
∼ 200 nA ejects in 20 nanoseconds. The latter approach, PIC, uses a macro-particle
approach and field grid interpolation, which can trade extended simulation times at the
expense of a lower accuracy of the background electric field calculations as well as the
inability to capture particle-particle interactions directly.

In this work, we implement algorithmic updates to the n-body method to alleviate the
computational load and extend the simulation beyond the tens of nanosecond timescale.
The algorithms include the Barnes and Hut octree division (BH) [5, 10] and the fast
multipole method (FMM) [11]. The algorithms reduce the computational load from the
direct N-body computation at O(N 2) to O(N logN) and O(N) respectively. As observed
in previous iterations of the simulation framework, the inter-particle forces become a
minor contributor beyond the close vicinity of the emission region (∼ 5µm), and thus
the direct method is computationally inefficient for many particle interactions. Hence,
approximations are assumed to be justified without introducing any notable errors. The
approximations are done by clustering groups of ions and approximating their far field
contributions using multipole expansions. The details for each algorithm are provided at
a later stage. This paper aims to assess the utility in the given simulation framework and
analyze the trade off between accuracy and computational speed.

Previous works in the astrodynamic field have assessed the utility of publicly availa-
ble, large galaxy, gravitational simulations with the same algorithms. The gravitational
force computation is similar to the electrostatic force computation since both exhibit
a 1/r2 force field and the force is calculated between all particles in the n-body simula-
tion. For instance, [12] focuses on the computational aspects such as memory consump-
tion and computational efficiency and the use of multi-core computing. Yokota et al. [13]

1 The O-notation refers to the computational time complexity, not spatial complexity, every time it is used in this work.
Further information about the use of the Big O notation in computer science can be found in [33].

Page 3 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

developed and tested a generic BH and FMM code, as well as a hybrid Treecode-FMM
and performed parameter tuning studies and error estimations as well as their perfor-
mance on GPUs. Dehnen [14] focuses on assessing the accuracy of an advanced FMM
code for gravitational simulations, its approximation error, and gives a guideline on how
to minimize the computational effort at a given accuracy

In this paper, we take all of these aspects into account in the context of an electrospray
plume, where interactions are governed by Coulombic forces and a background field.
The work focuses on the practical aspects of chosing the correct algorithm for a given
application and accuracy requirement.

This work is divided into five sections: After the introduction, in Section 2, the paper
describes the underlying model for the single emitter plume and the test case that will
be used to compare the algorithms. Section 3 is concerned with the algorithms and the
type of approximations they make as well as the tuning parameters. In Section 4, the
performance and accuracy are compared based on computational time, an error estima-
tion, parameter variations, energy conservation, and specific particle trajectories. The
last section, Section 5, provides a summary of the findings and points out gaps that can
motivate future work.

Model description and test case
Overview and geometry

The simulation combines a fluid model and a particle model. The fluid model is adapted
from [6] to handle curved geometries of the electrode. It contributes the background
Laplace field, meniscus geometry and initial conditions of the particles at the begin-
ning of their flight (position, velocity and current density, or probability of emission for
a time step dt). The particle model integrates the particle trajectories across the back-
ground field and computes their mutual field interaction (Coulomb field) using a n-body
approach. This calculation is performed with different algorithms, which are assessed for
performance and accuracy in this work.

Previous iterations of the n-body simulation framework [5, 7] include three types of
ion species (monomers, dimers, and trimers) as well as a probabilistic fragmentation
model. Moreover, the injection was randomized and hence probabilistic interactions and
grid interactions were tracked. In order to produce consistent results and precisely com-
pare the accuracy between the different algorithms, the code was simplified with the fol-
lowing assumptions:

• The injection procedure is pre-randomized for a subset of particles
• Only monomers are considered
• Fragmentation is neglected
• Particle interactions with the extractor grid are not tracked

The geometry however is the same as the one used in [7] and shown in Fig. 1. The ionic
liquid flows through a porous needle (in practice oftentimes glass [15]) with flux ŴE
and a potential of �φ is applied. The flux to the extractor grid is ŴE , which is modeled
as a rectangular square with sides of length lsim = 300µm (the extractor covers entire
downstream boundary except the extractor hole) and a thickness of zext = 30µm . The

Page 4 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

aperture in the middle of the extractor is rh = 150µm and the flux through it Ŵext . The
needle is modeled as a hyperboloid with linear eccentricity a, asymptote value η0 and tip
curvature Rc = 11µm . More details can be found in [7].

Electrohydrodynamic modeling

The top of the tip contains an extrusion which acts a a fluid channel for the ionic liquid.
The meniscus is in a stress equilibrium state and evaporates ions steadily along its sur-
face. The equilibrium shape is computed from the EHD model based on the previously
presented geometry and ionic liquid properties. Work by Coffman [16] and Gallud [6],
present the model in detail. An adapted version of the Laplace equation is solved for the
meniscus bulk and the particle acceleration region to handle ion charge flow through
the interface. The equation includes a phenomenological law for current evaporation [3],
which considers ion emission from the meniscus interface ŴM as an activated process
regulated by the external electric field. In order to obtain the distribution of stresses on
the mensicus surface, the Navier-Stokes and energy equations are solved. Then, when
enforcing all constraints iteratively to achieve a balance of electric and fluid viscous
stresses, the equilibrium shape can be calculated. When the shape is known, the other
output parameters that serve as initial conditions for the particle model can be obtained.
These parameters include the density map for the emitted current, initial velocity of the
particles, and the Laplacian electric field solution for the emitting meniscus.

N‑body model and particle propagation

The n-body model integrates Newton’s second law to compute the particle trajectories
through the domain after they have been injected from the meniscus surface. There is
a contribution of the background Laplace field and the Poisson field, which is shown
in Eq. 4. The calculation of the Poisson field and the algorithms will be discussed in the
next section. The background electric field contribution is computed by interpolation

Fig. 1 Computational domain of the simulation with its parameters. The values for the parameters are given
in the text

Page 5 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

from the mesh grids of the EHD model. A standard Delauny point search procedure is
employed [17].

The integrator that is used in the simulation framework is a standard Leapfrog method
which is second order accurate. The Kick-Drift-Kick (Eqs. 1, 2, 3) approach is used.

Implementation and codes

The model is implemented in a single code which allows the use of different initial condi-
tions and fields as well as the specification of different integrators and algorithms which
are described in Section 3. The Direct Force (DF) and BH algorithm as well as the electric
field model and injection mechanism are adapted from previous work. The FMM algo-
rithm was adapted from the open source GitHub repository of the Barba Group2, which
is presented in detail in [11]. Other parts of the algorithms are adapted from Section 8.1
of [18]. Since those codes were primarily developed for gravitational simulations, both
codes have been modified for simulating the electrospray plume and integrated with the
electric field model and injection; proposed optimizations to the code including multi-
threading or GPU computing were excluded for this study for reasons described earlier.
Basic multi-threading capability (using pthread.h in C++) is written into the code, and
the simulation is executed with a constant number of four threads. The effects of multi-
threading and using GPUs for every type of algorithm proposed in this paper have been
previously explored [12, 19].

Test case

A total current of I = 323 nA is emitted with a maximum time step of dt = 5 ps which is
well in the region of convergence for the time step as shown in [7]; all time steps below
1× 10−11 s are found to resolve the trajectory to within 0.1% accuracy. The applied
potential is �φ = 1823 V and EMI-BF4 is used as the ionic liquid.

The steady-state requirement and the convergence in the time step is only relevant
for the computation of the accuracy. Figure 2 shows the changes in velocity and density
between discretized cylindrical sections of the plume along the z-axis for different snap-
shots in time. It can be observed that neither the density nor the velocity show signifi-
cant changes for a simulation time of �t > 15 ns between the cylindrical sections and
therefore, the simulation can be assumed to be at steady-state in the whole domain.

All simulations for which accuracy is compared are therefore run for at least 15 ns or
longer. The beam will have propagated to approximately 1000 microns in the z-direction

(1)r
n+ 1

2
i = r

n
i + vi

�t

2

(2)v
n+ 1

2
i = v

n
i + ai r

n+ 1
2

�t

2

(3)r
n+1
i = r

n+ 1
2

i + vi
�t

2

2 https:// github. com/ barba group/ gemsf mm

https://github.com/barbagroup/gemsfmm

Page 6 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

and particles are not deleted from the domain. The final state for an exemplary simulation is
shown in Fig. 3a as well as the meniscus shape and the initial location of the particles on the
meniscus before injection in Fig. 3b. The injection is randomized and pre-initialized for all
particles that will be injected to ensure consistency within the different runs of the simula-
tion. A current weighting is utilized to assign different probabilities of emission to different
regions of the meniscus. As can be seen in Fig. 3b, there is practically no emission from the
sides of the meniscus and the majority of particles is concentrated on the very tip of the
meniscus.

Algorithms
A short description of the governing equations of the different algorithms if provided
below. Starting from the DF algorithm with the order O(N 2) , the complexity is reduced
to O(NlogN) in the BH Tree Code and then further reduced to the ideal O(N) using the

Fig. 2 The change in velocity and density between discretized cylindrical plume segments along the z-axis
of the simulation. The data is compared for snapshots at 15 ns, 16 ns, 17 ns, and 18 ns of a DF simulation

Fig. 3 a Final state of the plume of a 343 nA direct force simulation with a simulation time of 20 ns and
a maximum vertical propagation distance between a particle and the extractor of 1067 microns. b Initial
distribution of the particles on the meniscus due to a higher emission probability on the top. The full shape
of the meniscus is shown as a reference. The shape was obtained from the EHD model described in [7]

Page 7 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

FMM. As described in Section 2, the forces acting on a particle consist of a Laplacian
background electric field EL and the particle-particle electrostatic interactions EC . The
equation is based on Newton’s second law for a charged particle of mass mi:

The algorithms optimize the computation of the sum, which constitutes the second part
of the equation. The Laplace field is not included in the explanation of the algorithms.

Direct force method

The direct force method method computes the computes the Coulomb force Fi directly
as:

where qi is the charge of a particle interacting with particles of charges, qj and ||ri − rj|| is
the distance between the particles. An illustration is provided in Fig. 4. This method is of
order O(N 2) and was implemented as a first iteration and tested by Petro et al. [7].

Barnes‑hut tree code

An approach to reducing the complexity of the calculation can be achieved by approxi-
mating the contribution to the force on the particle from distant particle clusters as the
one created by a single large particle at the cluster’s center of charge. This approach is
accurate as long as the cluster of particles is sufficiently far away from the particle for
which the field is calculated.

The clustering is done recursively in a tree structure, such as the binary tree or the
Barnes-Hut tree [10]. The efficiency of these tree structures has been studied from a

(4)miai = qi(EL(ri)+ EC(ri, rj))

(5)Fi =
∑

j

qiqj(ri − rj)

4πǫ0|ri − rj|3

Fig. 4 Illustration of the DF method

Page 8 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

computational perspective in previous works [19] with the BH tree being the most effi-
cient one. This method is the one that Gallud, Petro et al. used in the second iteration of
their code [5].

In the BH algorithm, the computational domain is discretized in octants (an hexahe-
dral region of the three-dimensional space). The discretization is done hierarchically,
where each of the N bodies are allocated in one of these octants (or nodes). The top of
the tree is the root node that contains all the particles in the domain, while the children
in the tree represent octants and contain the particles in the respective octant. Each par-
ent node is recursively subdivided into children with a minimum of one particle required
in each octant. In the simulation, the total charge and the spatial center of charge are
computed and stored as part of the information about the child node. The Coulomb field
is computed by traversing the nodes of the tree, starting from the root node. If the ratio θ
between the size of the octant s and the distance between d between its center of charge
and the particle (θ = s/d) is sufficiently small (typically θ < 1), then the approximated
octree contribution to the force can be calculated:

In the equation, instead of rj for each particle inside the sum, the center of charge rCM for
the octant is used. This approach reduces the complexity in an ideal case to O(NlogN) ,
instead of computing each of the individual’s particle contributions.

A schematic for the interaction criterion θ = 1
2 is shown in Fig. 5.

Fast multipole method

The FMM adds another level of approximation to the code: instead of only cluster-
ing the particles in the far field, the FMM also considers cluster-to-cluster interac-
tions and thus further reduces the complexity [20] which might enable us to simulate
multiple emitters with significantly more particles in the domain. The approach of
creating clusters is similar to the tree code but the force calculation is performed dif-
ferently. Simply written, we partition the domain into cells, called P. Assuming that

(6)Fi =
∑

j

qiqj(ri − rj)

4πǫ0|ri − rj|3
≈

(ri − rCM)

4πǫ0|ri − rCM |3
qi
∑

j

qj

Fig. 5 Schematic of how the force is calculated in the tree code for a given acceptance angle θ . Each square
represents an octant which contains at the minimum one particle

Page 9 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

i = 1, ...,N , where N is the number of particles and particle i ∈ Pi , we can create two
sets:

Then, the potential can be approximated as:

where M is a multipole expansion. The first set represents the near field interactions of
the particles, while the second set is used to compute far field interactions. This distinc-
tion is schematically shown in Fig. 6 with the respective computational order of com-
plexity. The example shows the four simple steps of the FMM force calculations for
randomly located cells and neglecting the octree structure in the schematic. In general,
the structure is the same as the BH tree, only the near field force computation is added
as an additional step. The exact implementation and equations of the current code are
adapted from Yokota and can be obtained in [11].

The seven key steps as well as the pre-processing procedure are extensively described
and referenced in the Appendix as the concrete implementation of the method is not
imminently relevant for the scope of this work.

Exact mathematical details, justifications for the approximations, and further details of
implementation of Fast Multipole Methods can be found in [20–22].

(7)
S1 ={P : P is near to Pi}

S2 ={P : P is far from Pi}

(8)φi =
∑

P∈S1

∑

j∈P

M(ri, rj)+
∑

P∈S2

∑

j∈P

M(ri, rj)

Fig. 6 Simplified schematic of the FMM. For a more detailed graphic representation refer to [11]

Page 10 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

Computational time complexity

The computational time complexity scaling of the three algorithms has been men-
tioned previously. Figure 7 shows the scaling of the computational time with the number
of particles N for N < 10, 000 which is larger than the maximum number of particles
simulated in this work. The y-axis is nondimensionalized as computation time varies on
different computers while the trends stay the same. The advantage of using the faster
algorithms especially for high number of particles is imminently visible.

Key parameters

The key parameters that determine the accuracy of the two fast algorithms are the
Multipole Acceptance Criteria (MAC), also called the acceptance angle, θ , for the BH
code and the order of expansion, p, for the FMM. In a tree code, the order of expansion p
is kept constant (p = 1).

The MAC is defined as the ratio of the size of a cell s and the distance from the cell it
is interacting with d, which is shown in Fig. 5. This criteria determines if the cell will be
used to calculate the interactions or not; if the cell is small (small s), it will interact with
cells at a closer distance, while a cell with a large s would only be accepted if it is further
away. Changing the MAC alters the interaction list and thus the accuracy of the compu-
tations. A common range for θ lies between: 0 ≤ θ ≤ 1 , where a value of θ = 0 would be
equivalent to a DF calculation. For a given value of p, a pth-order multipole expansion
is formed for each box about its center [23]. A higher choice of parameter p increases
the accuracy, but also increases the computational time necessary. Typical values for the
order of expansion are 1 ≤ p ≤ 20 and the scaling of the computational time with the
choice of parameter p is shown in [14].

Since the FMM method is often used in combination with a tree structure, a possible
optimization of varying both parameters in a hybrid tree code-FMM as well as its imple-
mentation on a GPU has been explored [13]. To assess the accuracy of the codes sepa-
rately and not introduce further complexity to the analysis, this work will not explore the
joint variation of the two parameters.

Fig. 7 Schematic displaying the scaling of computation time with different orders of complexity in time

Page 11 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

Performance and accuracy comparison
In this section, we compare the computational time, accuracy, and particle trajectories
for the BH and FMM methods against the DF method for different values of the tuning
parameters. We also analyze the impact of the different methods on the energy of the
simulation. The simulations were performed on an Intel(R) Core(TM) i7-6500U CPU @
2.50 GHz with 16.0 GB (15.9 GB usable) of installed RAM.

Computational time

In order to compare the computational performance of the three different algorithms
and the influence of the tuning parameters, different studies were performed. First, the
influence of the tuning parameters for the BH tree code and FMM is investigated and
afterwards the FMM and BH are compared. In every cases the DF method is used as
a baseline. Computational errors, where singular simulations require a very long com-
putation time due to for instance background processes are smoothed out through a
moving median calculation. The background electric field calculation is part of the com-
putational time but negligible (on the same order as the integration time; interpolation
points are initialized before running the code, therefore the actual linear interpolation
time is small) compared to the Coulomb force calculation time.

Particles are injected at each time-step, depending on the total current emitted I. The
simulation time �t is directly correlated to the number of injected particles by

where N is the number of particles, q the elementary charge, and I the current. The sim-
ulation time is plotted on all plots as a second x-axis.

In a first simulation the BH tree code is run for three values of the MAC
θ = {0.1, 0.5, 1} and the results are shown in Fig. 8. The computation time decreases

(9)�t =
Nq

I

Fig. 8 BH computation time for different MAC θ and comparison to the DF method

Page 12 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

for larger values of θ as expected. An important point to mention is that the BH
method becomes faster than the DF method for θ = 0.5 at around N = 2000 par-
ticles, while for θ = 0.1 the DF method is always faster and for θ = 1 , the BH tree
code becomes faster at approximately N = 800 . The reason for the DF method being
faster than a method with approximations is that the creation of the tree structures
also requires computation time and the acceleration in the actual calculation only
becomes visible for a larger number of particles.

The breakdown of tree structure creation and computational time for the BH
method with θ = 0.5 is shown in Fig. 9. The figure shows that the contribution of the
tree structure creation time diminishes with a higher number of particles, and the
force calculation time becomes the main factor which is significantly accelerated by
using the approximation algorithm.

The same procedure is repeated for the FMM code and the multipole expansion cri-
terion p = {3, 5, 7} . The results are shown in Fig. 10. Here, the DF method is faster for
N = 3000 particles and after that the FMM becomes significantly faster, independent
of parameter p. The computation time decreases with a lower p, which is expected
since it means a higher degree of approximations. The difference when varying the
parameters is less distinctive than for the BH method.

In the same manner as for the BH code, the computation time for the actual force
computation and other parts of the algorithm are plotted for the FMM in Fig. 10.
Since most of the algorithmic steps between particle-to-multipole (P2M) and
multipole-to-particle (M2P) have negligible contribution to the computational time,
they are combined into one part of the area3.

Fig. 9 Computational time contributions for the BH method with a MAC of θ = 0.5 , separated into
acceleration time and tree structure creation time. The right y-axis shows the contribution of the time needed
to create the structure compared to the total time

3 The jump discontinuities that are observed in the components of the computation time in Fig. 11 are due to another
level being added to the octree structure. If n is the number of levels, then we have 8n nodes in the octree. This behavior
results in oscillations of the computation time around a linear slope which can be better observed in Fig. 5 in the appen-
dix of reference [11]. The location of the jump discontinuities depends on parameter p and its effects can also be seen in
Fig. 14, since the amount of approximations made increases as a consequence of the modified tree structure. Overall, the
scaling of the computation time with O(N) is not affected by the changes in the tree structure though.

Page 13 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

The largest contribution is from the particle-to-particle (P2P) calculations which is
essentially the bare-bones force calculation part of the algorithm. It is clearly visible that
in the range of over N = 10000 particles, the FMM is significantly faster at calculating
the particle interactions.

Lastly, the FMM and BH code are compared for the medium accuracy parameter of
each parameter study to investigate at which point they outperform the other and the
DF method. The results for the simulation are shown in Fig. 12. The BH method and
FMM method intersect with the DF method line at the approximately same number of

Fig. 10 FMM computation time for different number of multipole expanions p and a comparison to the DF
method

Fig. 11 Computational time contributions for the FMM method with a number of multipole expansions
of p = 5 , separated into the different algorithmic steps. The right y-axis shows the contribution of the time
needed to create the structure compared to the total time

Page 14 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

particles around N = 3× 103 . The FMM is faster than the BH code for an increasing
number of particles.

The observed order of computations is compared to the theoretical order of the algo-
rithms. The results from Fig. 12 are plotted with a linear scaling of the axis and a curve fit
to the theoretical computational order is applied: O(N 2) for the DF method, O(NlogN)
for the BH code, and O(N) for the FMM. The results are shown in the Appendix in Fig. 21
and Table 1. The fit of the data to the theoretical computational order is very accurate as
showcased by the R2 values and with the model and parameters a and a04 the computa-
tional time and total number of operations for higher numbers of particles can be accu-
rately estimated.

Accuracy/Error estimation

The simulations with the varying parameters from the previous section are used for the
calculations of the |L|2 norm.

Fig. 12 BH and FMM computation time for fixed parameters θ = 0.5 and p = 5 with a comparison to the DF
method

Table 1 Curve fit results and goodness of fit parameter R2 from MATLAB. Parameter a in [ms] and a0
in [GFLOP]

Algorithm Order O Fit type Parameter a Parameter a0 R2

DF N2 a ∗ N2
3.37× 10

−6 4.04× 10
−5 0.999

BH Nlog(N) a ∗ Nlog(N) 0.007 0.084 0.9640

FMM N a ∗ N 0.025 0.3 0.9724

4 Parameter a depends on the hardware of the computer and is only valid for our specific computing station. Parameter
a0 is given by a ∗ cCPU where cCPU is a hardware specific parameter, which represents the number of double-precision
floating point operations per second that the CPU performs. The value should be available in the data sheet of the pro-
cessor. For the i7-6500U the parameter cCPU ≈ 12 GFLOP/s [34]. With a0 and cCPU , an estimated computation time can
be obtained for different CPUs. It should be noted that this is just a rough estimate.

Page 15 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

A |L|2 norm of |L|2 < 1× 10−2 is a sensible lower bound of accuracy, since the leapfrog
integrator with its second order accuracy is accurate to that level and further refinement
in the accuracy of the force calculation would not improve the overall accuracy of the
simulation.

The |L|2 norm for accuracy in the acceleration is calculated from the error in the rela-
tive acceleration at a given simulation time ti:

where OM (other method) stands for either the BH or FMM code. From this we can cal-
culate the |L|2 norm:

Figure 13 shows the norm for all particles in the simulation. This simulation compares
the BH algorithm to the DF method for the same parameters θ from earlier. As expected
the accuracy increases with lowering the tree acceptance angle; both θ = 0.1 and θ = 0.5
achieve an accuracy below the bound of ǫ < 1× 10−2 and can therefore be considered
as sufficiently accurate. Outliers with significantly higher error exist but do not bias the
overall quality of the simulation.

The results for the FMM are shown in Fig. 14. While the errors for the high p = 7
are higher than for the comparable BH simulation of θ = 0.1 , the p = 5 simulation
shows very similar accuracy to the θ = 0.5 simulation. The maximum outliers are also
quite similar. For the FMM, both p = 5 and p = 7 achieve sufficiently accurate results
while p = 3 exceeds the threshold of ǫ < 1× 10−2 error in accuracy.

(10)eirel =
�aiDM − a

i
OM�2

�aiDM�2

(11)|L|2 =

√

√

√

√

1

N

N
∑

i=1

eirel

Fig. 13 Acceleration |L|2 norm comparison for Barnes-Hut method with different values of the MAC θ

Page 16 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

In Fig. 15 the comparable BH and FMM simulations are shown. As expected, the
FMM is slightly more accurate than the BH code for a similar amount of approximations
defined by the parameters.

In theory, if θ → 0 , the results of the BH tree code should converge to the ones of the
DF method. Similarly when p → ∞ , the code should converge to the DF results. This is
neither practical nor relevant, since the additional accuracy is irrelevant due to the inte-
gration error. The degree of approximation of far-field Coulombic force contributions is
determined by the parameter of expansion, p.

Fig. 14 Acceleration |L|2 norm comparison for Fast Multipole Method with different values of p

Fig. 15 Acceleration |L|2 norm comparison between the BH algorithm with θ = 0.5 and the FMM with p = 5

Page 17 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

Publications have proposed a simple formula to chose an appropriate parameter of
expansion [14]:

where ǫ is the chosen accuracy. For ǫ = 10−2 , the value for the multipole expansion
parameter should be p ≥ 4.61 . This matches very well with the observation that the
error drops below the required accuracy for p = 5 , while p = 3 is not sufficient.

Parameter variation

The dependence of the computational time and the |L|2 on the tuning parameters is
shown for the BH and FMM code. The computational time on the left y-axis is normal-
ized by the computation time of the DF method. The horizontal line shows the intersec-
tion with the desired accuracy of ǫ = 1× 10−2.

First, the MAC θ is shown in a range between θ = 0 to θ = 1 in Fig. 16. The trends
show a decreasing computational time and an increasing error with increasing θ as pre-
viously shown. The computational time increases exponentially when lowering the MAC
below 0.5, which was identified as the maximum θ to achieve the required accuracy.

Second, the number of expansions p are varied in the range between p = 1 and p = 10
and the results are plotted in Fig. 17. The computational time increases and the error
decreases with an increased p. Here, the dependence on the computational time is prac-
tically linear, while the |L|2 norm follows a logarithmic trend.

The graphs can be used to chose the appropriate tuning parameter in the simulation
for a prescribed accuracy. The number of expansions can be increased further but at a
point the error will not decrease linearly anymore due to rounding errors and floating
point computational accuracy.

(12)p ≥ −log2(ǫ)

Fig. 16 Dependence of the normalized computational time and |L|2 norm on the MAC θ

Page 18 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

Energy conservation

Another important aspect to ensure the accuracy of the algorithms is energy conserva-
tion. Injecting new particles adds to the energy of the system. Therefore, the total energy
of the simulation is compared to the injected energy to the simulation. This is repeated
for all algorithms. The tuning parameters are θ = 0.5 and p = 5 , since they fulfill the
accuracy requirement. The breakdown of the different energy components is shown in
Fig. 18 for the DF simulation. PEC is the potential energy, KE the kinetic energy, and PEL
the background electric field energy. Total simulation energy refers to the energy com-
ponents of all the particles that are already within the simulation domain, while injected
energy refers to the energies that is initially added when injecting the particles.

Hence, energy is conserved if the ratio of the injected energy and the total energy in
the simulation is approximately EInjectedETotal

≈ 1 . This ratio is plotted in Fig. 19 for the three

Fig. 17 Dependence of the normalized computational time and |L|2 norm on the number of expansions p

Fig. 18 Different energy components for the DF simulations over the simulation time. The y-axis utilizes a
logarithmic scaling so that all energy components are properly visible

Page 19 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

algorithms and it can be clearly seen that the energy is conserved with less than a 0.1%
error margin.

Particle trajectories

The use of faster algorithms is only necessary if the relative importance of the Pois-
son space charge effects is non-negligible compared to the Laplace background
field. Especially in the vicinity of the emitter, where a high charged particle density
is encountered, the effects cannot be neglected and particle-particle forces must be
considered. An analysis was performed comparing the trajectories of two distinct
particles when computed with only the background field, the DF algorithm, the BH
algorithm, and the FMM. The initial conditions for those particles are all informed
by the EHD model. The trajectories for two particles are shown in Fig. 20, once with-
out a Poisson field calculation (dashed line) and with a Poisson field calculation. The
particle trajectories were computed with all three algorithms but the differences in
trajectories are below 0.1% and thus not visible in the figure. The particles were cho-
sen because Particle 72 has the highest absolute initial XY-velocity, while Particle 202
has the lowest. For both particles the difference between the trajectories with and
without the Poisson field is quite significant. There is a deviation (in the final radial
position) of 17.4% in the final position of particle 72 and 15.5% in the final position of
particle 202 respectively. These findings support the choice of an n-body simulation,
as the inability to capture these particle-particle forces of the latter could produce
similar errors in a PIC approach if the grid cannot be reduced to the order of the
inter-particle spacing near the emission site.

The analysis indicates that even with a background electric field, the error in the parti-
cle trajectories without the computationally intensive particle-particle force calculations
is high and thus the particle-particle forces need to be calculated. In general, if the simu-
lation results are used as the initial conditions to a PIC simulation at a later stage, it is of
utmost importance that these initial conditions are as precise as possible.

Fig. 19 Ratio of Injected and Total Energy in the simulation for all three algorithms

Page 20 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

Multi‑threading effects and gpu computing

Multi-core computing has shown to achieve a tremendous increase in computational
speed for different types of algorithms. For n-body simulations, GPUs which typically
have a very high number of cores are used to accelerate computations for the three algo-
rithms presented in this paper. Implementations of these algorithms on GPUs and data
on their performance can be found in [24–26].

Oftentimes, for small numbers of particles in a simulation, the computational over-
head for creating the threads is higher than the actual benefit to the computational time
when using multiple cores. For simulations with high numbers of particles, where the
approximation algorithms become faster than the direct method, the overhead is mini-
mal compared to the force calculation time and multithreading can provide speedups
of 100 time or more depending on the number of cores [26] in addition to the faster
algorithm. This drastically expands the capabilities of the code when the memory alloca-
tion is adjusted as well. An example of a massive n-body simulation is the Department
of Energy “Exascale” project where up to 1013 particles in a gravitational n-body code are
simulated with GPU parallelizations [27].

One of the limitations of using an n-body approach on multiple processors is the trans-
fer of data in distributed memory applications. While PIC can be highly optimized for
distributed memory applications, it is much more complex for n-body codes. Research
on how to optimize the fast algorithms for distributed memory applications is ongoing
(an example implementation for the BH code can be found in [28], for the FMM in [29]).
In conclusion, the n-body approach has been shown to be competitive to PIC in shared
memory applications, which might not necessarily hold true for distributed memory
applications.

Fig. 20 Particle trajectories in the rz-plane with and without P2P force calculations. For better visibility of the
trajectories, one particle is shown to go to the left and one to the right. There is rotational symmetry around
the z-axis

Page 21 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

Conclusions and future work
Based on the simulations, the first important aspect is that the “fast” algorithms only
become faster when simulating a minimum of N = 1000− 10000 particles. After that,
the computations are significantly faster (at N = 10, 000 by a factor of f = 1.35 and at
N = 100, 000 by a factor of f = 13.5). In terms of the tuning parameters, if a second
order Leapfrog integrator is used, a MAC of θ < 0.5 or a number of multipole expan-
sions of p > 5 is required to not introduce further numerical errors in addition to the
integration error. The curve fits for the computational time (Table 1) can be used to
extrapolate the computation time for physically relevant time scales (> 1 µs).

A summary of the tuning parameter choice and total computation time comparison
for a �t = 1 µs simulation is shown in Table 2.

In this paper, two different algorithm updates have been presented to solve the elec-
trospray plume propagation problem of an ionic liquid ion source. Up to one order of
magnitude reduction of the computational time from the direct force calculation in the
range of simulated particles N ∼ 105 . As shown previously, this is suitable for the num-
ber of particles that need to be simulated for an ionic liquid electrospray plume in steady
state. The reduction in computational time is done at the expense of a minimal accuracy
reduction, up to 0.1%. The trade-off between accuracy and time execution can be regu-
lated with the parameters θ and p in the BH and FMM approaches respectively.

This study has shown that FMM has better execution time vs. accuracy relationship,
and better scalability with the number of particles N. Conversely, the BH method offers
slightly lower performance, but at the advantage of a much higher simplicity and ease of
implementation.

A fast N-body approach is very appealing to solving particle propagation problems
that were traditionally solved with Particle-In-Cell (PIC) methods. In a PIC approach,
the effect of the electric field on other particles is computed by solving a Poisson equa-
tion in a grid. The accuracy of the PIC method is then regulated by the grid size, which
can be very challenging to manage and require special treatment when dealing with
close particle-particle interactions. This can be especially challenging with electrospray
plume propagation problems, where the electric fields and particle dynamics span across
multiple scales (slow ∼ 0.1 eV near the emission region, E ∼ 109 V/m, � ∼ 3 nm; fast
∼ 1500 eV in the field free region, E ∼ 102 V/m, � ∼ 1 mm) and � is the average dis-
tance between particles.

Even at larger scales (for instance, at the array level, or even spacecraft considera-
tions), fast mesh free methods such as the ones presented in this paper can emerge as
a very competitive methodology compared to PIC. At such scales, where the number
of particles extends beyond N ∼ 106 (about 100 arrays of particles emitting at 200 nA),

Table 2 Appropriate tuning parameter choice for a given accuracy ǫ and extrapolated simulation
time (�t = 1 µs) for a I = 323 nA simulation on the computer described in Section 4 with four parallel
threads

Metric DF BH FMM

Tuning Parameter (ǫ ≤ 0.01) - θ ≤ 0.5 p ≥ 5

Computation Time 25,370 hrs 239 hrs 140 hrs

Page 22 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

the limitation of both the FMM and BH methods seems not longer to be computational
scalability, but storage capability. In such cases, the user could still use this methodology
with simplifications such as a macroparticle approach, and run at PIC’s level accuracy,
at least. For this reason future research efforts will use these new algorithms to extend
electrospray modeling to the array level.

Appendix A: additional figures
Figure 21 is mentioned within the paper. It uses a linear scaling on both axes and thus,
the trends (N 2 , NlogN, and N) in the computational time can be directly observed from
the Figure.

Aside from the number of expansions, a second parameter in the FMM can be varied:
maxLevel. Since its variation is outside the scope of this paper, the results are included
here, in the Appendix, in Fig. 22.

The Figure shows the relation between the force computation time and |L|2 norm
against the number of expansions present in the FMM for different values of the max-
Level parameter. The maxLevel parameter is one of the tunable parameters in the code
that affects the cell creation portion of the FMM, which can have a large impact on the
computation time required.

For this implementation of the FMM, all particles in the simulation are covered with a
set of base-level cubic cells, such that there are nx cells in the x̂ dimension, ny cells in the
ŷ dimension, and nz cells in the ẑ dimension, with at least one of nx , ny , or nz equal to 1.
Given the symmetry of the electrospray simulation analyzed, typically nx = ny = 1 . The
maxLevel parameter then controls the number of times these base-level cubic cells are
subdivided into octants, such that if m = maxLevel , the cubic cells will be subdivided
into a set of 2m × 2m × 2m subcells.

Fig. 21 BH and FMM computation time for fixed parameters θ = 0.5 and p = 5 with linear x-axis scaling and
a comparison to the DF method

Page 23 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

With fewer cells, the computation time is dominated by computing particle-particle
interactions, hence the result that when maxLevel is equal to zero, the computation time
is comparable to that of the direct force implementation. With more cells, the cell-cell
interactions, such as the multipole to local, multipole to multipole, and local to local
interactions, are performed more often and take up more of the computation time in the
FMM algorithm. Additionally, the more cell-cell interactions performed, the larger the
|L|2 norm, due to the approximations in the multipole and local expansions propagating
throughout the cell structure.

Figure 22 demonstrates the importance of the cell creation, the benefit of optimiz-
ing the maxLevel parameter, and how the optimal choice of the maxLevel parameter
depends on the number of expansion terms used.

Appendix B: detailed code implementation
An overview over the exact implementation of the Fast Multipole Method in the code is
provided here:

Pre‑processing. After the cell structures are created, the pre-processing takes place,
which consits of sorting the particles into supercells and subcells, using a morton index,
counting the number of filled cells, and allocating the proper amount of space for all
multipole and local expansions and other variables required. Morton indices allow cells
to be uniquely labeled in 3-D space using integer values, such that given a morton index,
m, and the number of cells that make up the next highest level n3 , floor(m/n3) gives the
index of the next highest level cell and m mod n3 gives the index of the cell relative to
the next highest level cell [30].

Particle to Particle. The particle to particle (P2P) calculations are used at the lowest
level of the cell structure. They compute the force between particles inside cells which
are too close together for the multipole expansions to converge. For a cell, A, cells which

Fig. 22 Dependence of the computational time and |L|2 norm on the number of expansions p and the
maxLevel parameter

Page 24 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

are considered too close are those within a 3x3x3 box centered on A. See also [18] Sec-
tion 8.1, number 6.

Particle to Multipole. The particle to multipole (P2M) calculations compute the
multipole moments for the lowest level cells (Section 8.1, number 1 from [18]). Theo-
rem 5.2 from [31] gives the equation for the multipole expansion coefficients, Mm

n , as
well as convergence criterion.

Multipole to Multipole. After the multipole moments for the lowest level cell are cal-
culated, they are passed upwards to larger cells(Section 8.1, number 2 from [18]). The
multipole to multipole (M2M) step allows this propagation to occur and is analogous to
the Barnes-Hut method, which computes the net charge and center of charge of a cell
using the cells from the next lowest level.

Multipole to Particle. Since every cell has a multipole expansion associated with it,
the treecode O(N logN) version can be completed using the multipole to particle (M2P)
step (Section 5.2 from [31]). This is very similar to the Barnes-Hut method step in which
the force is computed between particles and all cells not already accounted for. However,
the multipole expansions have a well-defined convergence region, and are better approx-
imations than the center of charge and net charge used in the Barnes-Hut method.
Additionally, the multipole expansions require a little more work to convert into a force,
because they give expansions of the potential fields, not the electric fields [32]

Multipole to Local. To continue with the FMM, the conversion from multipole expan-
sions to local expansions (M2L) is critical to achieve the O(N) behavior. In this step,
those cells which are within a 3x3x3 box centered on the parent cell, but outside of a
3x3x3 box centered on the cell being considered, have their multipole moments con-
verted into a local expansion within the cell being considered (Section 8.1, number 3
from [18]). The local expansions within each cell give the contribution to electric poten-
tial due to the multipole moments from the cells that are interacted with in this step.

Note that in this step, the code uses the O(p3) method of rotating coordinate systems
using Wigner rotation matrices in order to improve the computation time over the base-
line O(p4) solution, where p is the number of expansion terms retained in the multipole/
local expansions. This method is discussed near the end of Section 5.3 in [31], also in
Section 5 of [18], and implemented in the code from https:// github. com/ barba group/
gemsf mm.

Local to Local. After each cell has a local expansion associated with it, the local expan-
sions are passed to smaller cells in the local to local (L2L) step. While the multipole
expansions are propagated to larger cells, the local expansions are propagated to smaller
cells. The goal for this step is to arrive at local expansions for the smallest cells which will
contain information about the electric potential due to all cells not included in the P2P
calculations (Section 8.1, number 4 [18]).

Local to Particle. The final step is to evaluate the local expansions of the potential in
each cell at the positions of each of the particles inside it to compute the force. This is
accomplished in the local to particle (L2P) step (Section 8.1, number 5 [18]). Also, note
that there are some conversions involved to convert the potential into the electric field,
as in the M2P step (Appendix D [18]).

Additional Notes. To prevent rounding errors, the multipole and local expansions are
scaled, as in Section 4 of [18].

https://github.com/barbagroup/gemsfmm
https://github.com/barbagroup/gemsfmm

Page 25 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

Acknowledgements
The authors gratefully acknowledge support from the NASA Early Stage Innovations Grant 80NSSC19K0211 and the NY
Space Grant Fellowship. S. Hampl would like to thank the German Academic Scholarship foundation for its continued
support, Rafid Bendimerad for supporting the team with the accuracy calculations, and Adler Smith for providing advice
on computational matters. P. Lozano would like to thank the M. Alemán-Velasco Foundation for its support.

Authors’ contributions
All authors contributed to the study conception and design. The coding and implementation of the new algorithms was
done by M. Waggoner. S. Hampl was responsible for the data analysis, coordination of the study, and the majority of the
writing process of the manuscript. X. Gallud provided the initial conditions for the simulations from his EHD model and
helped write the injection function. E. Petro and P. Lozano were responsible for the supervision from the different institu-
tions and continually provided feedback and support to the team. All authors read and approved the final manuscript.

Funding
Funding was provided by the NASA Early Stage Innovations Grant 80NSSC19K0211 and the NY Space Grant Fellowship.

Availability of data and materials
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability
The SOLVEiT (Simulating the Operational Local Volume of Electrospray ion Thrusters) code was made available for open
source use under the following GitHub repository and is subject to updates: https:// github. com/ Astra Lab- Corne ll/ SOLVE
iT- Code.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 14 July 2022 Accepted: 19 September 2022

References
 1. Krejci D, Mier-Hicks F, Fucetola C, Lozano P, Schouten AH, Martel F (2015) Design and Characterization of a Scalable

ion Electrospray Propulsion System. Joint Conference of 30th ISTS, 34th IEPC and 6th NSAT, Hyogo-Kobe, Japan pp
1–11. https:// www. resea rchga te. net/ publi cation/ 28009 8850. Accessed 15 June 2022

 2. Gamero-Castaño M, Hruby V (2001) Electrospray as a source of nanoparticles for efficient colloid thrusters. J Propuls
Power 17(5):977–987. https:// doi. org/ 10. 2514/2. 5858

 3. Iribarne JV, Thomson BA (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64(6):2287–
2294. https:// doi. org/ 10. 1063/1. 432536

 4. Thuppul A, Wright P, Wirz R (2018). Lifetime considerations and estimation for electrospray thrusters. https:// doi. org/
10. 2514/6. 2018- 4652

 5. Cidoncha XG, Lozano PC, Bendimerad R, Petro EM, Hampl SK (2022) Modeling and Characterization of Electrospray
Propellant-Surface Interactions, 2022 IEEE Aerospace Conference (AERO). p 1–11. https:// doi. org/ 10. 1109/ AERO5
3065. 2022. 98435 83

 6. Gallud X, Lozano PC (2022) The emission properties, structure and stability of ionic liquid menisci undergoing
electrically assisted ion evaporation. J Fluid Mech 933:A43. https:// doi. org/ 10. 1017/ jfm. 2021. 988

 7. Petro EM, Gallud X, Hampl SK, Schroeder M, Geiger C, Lozano PC (2022) Multiscale modeling of electrospray ion
emission. J Appl Phys 131(19):193301. https:// doi. org/ 10. 1063/5. 00656 15

 8. Nuwal N, Azevedo VA, Klosterman MR, Budaraju S, Levin DA, Rovey JL (2021) Multiscale modeling of fragmentation
in an electrospray plume. J Appl Phys 130(18):184903. https:// doi. org/ 10. 1063/5. 00647 11

 9. Asher J, Huang Z, Cui C, Wang J (2022) Multi-scale modeling of ionic electrospray emission. J Appl Phys
131(1):014902. https:// doi. org/ 10. 1063/5. 00714 83

 10. Barnes J, Hut P (1986) A hierarchical O(N log N) force-calculation algorithm. Nature 324(6096):446–449. https:// doi.
org/ 10. 1038/ 32444 6a0

 11. Yokota R, Barba L (2010) Treecode and fast multipole method for n-body simulation with cuda
 12. Fortin P, Athanassoula E, Lambert JC (2011) Comparisons of different codes for galactic n-body simulations. Astron

Astrophys 531. https:// doi. org/ 10. 1051/ 0004- 6361/ 20101 5933
 13. Yokota R, Barba LA (2012) Parameter tuning of a hybrid treecode-fmm on gpus
 14. Dehnen W (2014) A fast multipole method for stellar dynamics. Comput Astrophys Cosmol 1(1). https:// doi. org/ 10.

1186/ s40668- 014- 0001-7
 15. Krejci D, Lozano P (2017) Micro-machined ionic liquid electrospray thrusters for cubesat applications
 16. Coffman CS, Martínez-Sánchez M, Lozano PC (2019) Electrohydrodynamics of an ionic liquid meniscus during

evaporation of ions in a regime of high electric field. Phys Rev E 99(063):108. https:// doi. org/ 10. 1103/ PhysR evE. 99.
063108

https://github.com/AstraLab-Cornell/SOLVEiT-Code
https://github.com/AstraLab-Cornell/SOLVEiT-Code
https://www.researchgate.net/publication/280098850
https://doi.org/10.2514/2.5858
https://doi.org/10.1063/1.432536
https://doi.org/10.2514/6.2018-4652
https://doi.org/10.2514/6.2018-4652
https://doi.org/10.1109/AERO53065.2022.9843583
https://doi.org/10.1109/AERO53065.2022.9843583
https://doi.org/10.1017/jfm.2021.988
https://doi.org/10.1063/5.0065615
https://doi.org/10.1063/5.0064711
https://doi.org/10.1063/5.0071483
https://doi.org/10.1038/324446a0
https://doi.org/10.1038/324446a0
https://doi.org/10.1051/0004-6361/201015933
https://doi.org/10.1186/s40668-014-0001-7
https://doi.org/10.1186/s40668-014-0001-7
https://doi.org/10.1103/PhysRevE.99.063108
https://doi.org/10.1103/PhysRevE.99.063108

Page 26 of 26Hampl et al. Journal of Electric Propulsion (2022) 1:17

 17. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C, 2nd edn. Cambridge University
Press, Cambridge

 18. Kurzak JPB (2006) Fast multipole methods for particle dynamics. Mol Simul 32(10–11):775–790. https:// doi. org/ 10.
1080/ 08927 02060 09911 61

 19. Waltz J, Page G, Milder S, Wallin J, Antunes A (2002) A performance comparison of tree data structures for n-body
simulation. J Comput Phys 178:1–14. https:// doi. org/ 10. 1006/ jcph. 2001. 6943

 20. Aarseth S (2009) Gravitational N-Body Simulations: Tools and Algorithms, 1st edn. Cambridge University Press, Cam-
bridge, Cambridge Monographs on Mathematical Physics

 21. White CA, Head-Gordon M (1994) Derivation and efficient implementation of the fast multipole method. J Chem
Phys 101(8):6593–6605. https:// doi. org/ 10. 1063/1. 468354

 22. Board J, Schulten L (2000) The fast multipole algorithm. Comput Sci Eng 2:76–79. https:// doi. org/ 10. 1109/ 5992.
814662

 23. Cheng H, Greengard L, Rokhlin V (1999) A fast adaptive multipole algorithm in three dimensions. J Computat Phys
155(2):468–498. https:// doi. org/ 10. 1006/ jcph. 1999. 6355

 24. Darve E, Cecka C, Takahashi T (2011) The fast multipole method on parallel clusters, multicore processors, and
graphics processing units. C R Mécanique 339(2):185–193. https:// doi. org/ 10. 1016/j. crme. 2010. 12. 005

 25. Lashuk I, Chandramowlishwaran A, Langston H, Nguyen TA, Sampath R, Shringarpure A, Vuduc R, Ying L, Zorin D,
Biros G (2009) A massively parallel adaptive fast-multipole method on heterogeneous architectures. In: Proceedings
of the Conference on High Performance Computing Networking, Storage and Analysis, pp 1–12. https:// doi. org/ 10.
1145/ 16540 59. 16541 18

 26. Belleman RG, Bédorf J, Zwart SFP (2008) High performance direct gravitational n-body simulations on graphics
processing units II: An implementation in CUDA. New Astron 13(2):103–112. https:// doi. org/ 10. 1016/j. newast. 2007.
07. 004

 27. Alexander F, Almgren A, Bell J, Bhattacharjee A, Chen J, Colella P, Daniel D, DeSlippe J, Diachin L, Draeger E, Dubey
A, Dunning T, Evans T, Foster I, Francois M, Germann T, Gordon M, Habib S, Halappanavar M, Hamilton S, Hart W,
(Henry) Huang Z, Hungerford A, Kasen D, Kent PRC, Kolev T, Kothe DB, Kronfeld A, Luo Y, Mackenzie P, McCallen D,
Messer B, Mniszewski S, Oehmen C, Perazzo A, Perez D, Richards D, Rider WJ, Rieben R, Roche K, Siegel A, Sprague
M, Steefel C, Stevens R, Syamlal M, Taylor M, Turner J, Vay JL, Voter AF, Windus TL, Yelick K, (2020) Exascale applica-
tions: skin in the game. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 378(2166):20190056. https:// doi. org/ 10. 1098/ rsta. 2019. 0056

 28. Makino J (2004) A Fast Parallel Treecode with GRAPE. Publ Astron Soc Jpn 56:521–531. https:// doi. org/ 10. 1093/ pasj/
56.3. 521

 29. Kurzak J, Pettitt BM (2005) Massively parallel implementation of a fast multipole method for distributed memory
machines. J Parallel Distrib Comput 65(7). https:// doi. org/ 10. 1016/j. jpdc. 2005. 02. 001

 30. Bern M, Eppstein D, Teng Sh, Goodrich C (2001) Parallel construction of quadtrees and quality triangulations. vol 9.
https:// doi. org/ 10. 1007/3- 540- 57155-8_ 247

 31. Beatson R, Greengard L (1997) A short course on fast multipole methods Numerical Mathematics and Scientific
Computation. Oxford University Press, Oxford, UK, pp 1–37

 32. Rankin WT, Board JA (1999) Efficient parallel implementations of multipole based n-body algorithms. PhD thesis,
USA, aAI9928860

 33. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms, Third Edition, 3rd edn. The MIT Press,
Cambridge

 34. Berkley SETI@Home (2022) Cpu performance. https:// setia thome. berke ley. edu/ cpu_ list. php. Accessed 19 Aug 2022

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/08927020600991161
https://doi.org/10.1080/08927020600991161
https://doi.org/10.1006/jcph.2001.6943
https://doi.org/10.1063/1.468354
https://doi.org/10.1109/5992.814662
https://doi.org/10.1109/5992.814662
https://doi.org/10.1006/jcph.1999.6355
https://doi.org/10.1016/j.crme.2010.12.005
https://doi.org/10.1145/1654059.1654118
https://doi.org/10.1145/1654059.1654118
https://doi.org/10.1016/j.newast.2007.07.004
https://doi.org/10.1016/j.newast.2007.07.004
https://doi.org/10.1098/rsta.2019.0056
https://doi.org/10.1093/pasj/56.3.521
https://doi.org/10.1093/pasj/56.3.521
https://doi.org/10.1016/j.jpdc.2005.02.001
https://doi.org/10.1007/3-540-57155-8_247
https://setiathome.berkeley.edu/cpu_list.php

	Comparison of computational algorithms for simulating an electrospray plume with a n-body approach
	Abstract
	Introduction
	Model description and test case
	Overview and geometry
	Electrohydrodynamic modeling
	N-body model and particle propagation
	Implementation and codes
	Test case

	Algorithms
	Direct force method
	Barnes-hut tree code
	Fast multipole method
	Computational time complexity
	Key parameters

	Performance and accuracy comparison
	Computational time
	AccuracyError estimation
	Parameter variation
	Energy conservation
	Particle trajectories
	Multi-threading effects and gpu computing

	Conclusions and future work
	Acknowledgements
	References

