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Estimation of Wasserstein
distances in the Spiked
Transport Model
Jonathan Niles-Weed∗ and Philippe Rigollet†

New York University and Massachusetts Institute of Technology

Abstract. We propose a new statistical model, the spiked transport
model, which formalizes the assumption that two probability distribu-
tions differ only on a low-dimensional subspace. We study the minimax
rate of estimation for the Wasserstein distance under this model and
show that this low-dimensional structure can be exploited to avoid the
curse of dimensionality. As a byproduct of our minimax analysis, we
establish a lower bound showing that, in the absence of such struc-
ture, the plug-in estimator is nearly rate-optimal for estimating the
Wasserstein distance in high dimension. We also give evidence for a
statistical-computational gap and conjecture that any computationally
efficient estimator is bound to suffer from the curse of dimensionality.

AMS 2000 subject classifications: Primary 62F99; secondary 62H99.
Key words and phrases: Wasserstein distance; optimal transport; high-
dimensional statistics.

1. INTRODUCTION

Optimal transport is an increasingly useful toolbox in various data-driven dis-
ciplines such as machine learning [2, 3, 4, 17, 20, 32, 36, 41, 44, 64, 67, 73, 75, 80],
computer graphics [31, 54, 78, 79], statistics [1, 7, 18, 19, 21, 43, 49, 51, 55, 65, 70,
71, 72, 76, 82, 91, 94] and the sciences [22, 59, 74, 93]. A core primitive of this tool-
box is the computation of Wasserstein distances between probability measures,
and a natural statistical question is the estimation of Wasserstein distances from
data.

A key object in this endeavor is the empirical measure µn associated to µ. It
is the empirical measure defined by

µn =
1

n

n
∑

i=1

δXi , Xi ∼ µ i.i.d .

Owing to their flexibility, Wasserstein distances are notoriously hard to estimate
in high dimension since in such cases, the empirical distribution is a poor proxy
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2 NILES-WEED & RIGOLLET

for the underlying distribution of interest. Indeed, for d-dimensional distributions,
Wasserstein distances between empirical measures generally converge at the slow
rate n−1/d [11, 23, 29, 34, 90] and thus suffer from the curse of dimensionality.
For example, the following behavior is typical.

Proposition 1. Let µ be a probability measure on [−1, 1]d. If µn is an em-
pirical measure comprising n i.i.d. samples from µ, then for any p ∈ [1,∞),

EWp (µn, µ) ≤ rp,d(n) := cp
√
d







n−1/2p if d < 2p

n−1/2p(log n)1/p if d = 2p

n−1/d if d > 2p

In many settings, this bound is known to be tight up to logarithmic factors. In
fact, the rate in Proposition 1 has been shown to be essentially minimax optimal
for the problem of estimating µ in Wasserstein distance [77], using any estimator,
not necessarily the empirical distribution µn.

Since Wp satisfies the triangle inequality, Proposition 1 readily yields that
Wp(µ

(1), µ(2)) for two probability measures µ(1), µ(2) on [−1, 1]d can be estimated

at the rate n−1/d by the plug-in estimator Wp(µ
(1)
n , µ

(2)
n ) when d > 2p, and a

lower bound of the same order can be shown for the plug-in estimator when µ(1)

and µ(2) are, for example, the uniform measure on [−1, 1]d. However, while the
above results give a strong indication that the Wasserstein distanceWp(µ

(1), µ(2))
itself is also hard to estimate in high dimension, they do not preclude the exis-

tence of estimators that are better than Wp(µ
(1)
n , µ

(2)
n ). Indeed, until recently, the

best known lower bound for the problem of estimating the distance itself was of
order n−3/2d [28]. A concurrent and independent result [58] closes this gap for
p = 1 and indicates that estimating the W1 itself is essentially as hard as esti-
mating the measure itself. Our results show that, in fact, estimating the distance
Wp(µ

(1), µ(2)) is essentially as hard as estimating a measure µ in Wp-distance, for
any p ≥ 1. As a result, any estimator of the distance itself must suffer from the
curse of dimensionality.

One goal of statistical optimal transport is to develop new models and meth-
ods that overcome this curse of dimensionality by leveraging plausible structure
in the problem. Early contributions in this direction include assuming smooth-
ness [43, 58, 91] or sparsity [33]. In this work, we propose a new model, called the
spiked transport model, to formalize the assumption that two distributions differ
only on a low dimensional subspace of Rd. Such an assumption forms the basis of
several popular alternatives to Wasserstein distances such as the Sliced Wasser-
stein distance [69] or random one-dimensional projections [68]. More recently, sev-
eral numerical methods that exploit a form of low-dimensional structure were pro-
posed together with illustration of their good numerical performance [24, 50, 66].

To exploit the low-dimensional structure of the spiked transport model, we
consider a standard method in statistics often called “projection pursuit” [35, 52,
53]. This general method aims to alleviate the challenges of high-dimensional data
analysis by considering low-dimensional projections of the dataset that reveal
“interesting” features of the data. We show that a suitable instantiation of this
method to the present problem, which we call Wasserstein Projection Pursuit
(WPP), leads to near optimal rates of estimation of the Wasserstein distance in
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the spiked transport model and permits to alleviate the curse of dimensionality
from which the plug-in estimator suffers.

While our results establish a clear statistical picture, it is unclear how to im-
plement WPP efficiently. An efficient relaxation of this estimator was recently
proposed by Paty and Cuturi [66], and a natural question is to analyze its perfor-
mance in the spiked transport model. Instead of pursuing this direction we bring
strong evidence that, in fact, no computationally efficient estimator is likely to
be able to take advantage of the low-dimensional structure inherent to the spiked
transport model. Our computational lower bounds come from the well-established
statistical query framework [48]. In particular, they indicate a fundamental trade-
off between statistical and computational efficiency [5, 6, 13, 16, 60]: computa-
tionally efficient methods to estimate Wasserstein distances, are bound to suffer
the curse of dimensionality.

The rest of this paper is organized as follows. We introduce our model and main
results in Sections 2 and 3. In Section 4, we define a low-dimensional version of
the Wasserstein distance and establish its connection to the spiked transport
model. Section 5 proves the equivalence between transportation inequalities and
subgaussian concentration properties of the Wasserstein distance. In Section 6 we
propose and analyze an estimator for the Wasserstein distance under the spiked
transport model. We establish a minimax lower bound in Section 7. Finally, we
prove a statistical query bound on the performance of efficient estimators in
Section 8. Supplementary proofs and lemmas appear in the appendices.

Notation.
We denote by ‖ · ‖ the Euclidean norm on R

d. The symbols ‖·‖op and ‖·‖F
denote the operator norm and Frobenius norm, respectively. If X is a random
variable on R, we let ‖X‖p := (E|X|p)1/p. Throughout, we use c and C to denote
positive constants whose value may change from line to line, and we use subscripts
to indicate when these constants depend on other parameters. We write a . b if
a ≤ Cb holds for a universal positive constant C.

2. MODEL AND METHODS

In this section, we describe the spiked transport model and Wasserstein pro-
jection pursuit.

2.1 Wasserstein distances

Given two probability measures µ and ν on R
d, let Γµ,ν denote the set of

couplings between µ and ν so that γ ∈ Γµ,ν iff γ(U×R
d) = µ(U) and γ(Rd×V ) =

ν(V ).
For any p ≥ 1, the p-Wasserstein distance Wp between µ and ν is defined as

(1) Wp(µ, ν) := inf
γ∈Γµ,ν

(
∫

Rd×Rd

‖x− y‖p dγ(x, y)
)1/p

.

The definition of Wasserstein distances may be extended to measures defined
on general metric spaces but such extensions are beyond the scope of this paper.
We refer the reader to Villani [89] for a comprehensive treatment.
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2.2 Spiked transport model

We introduce a new model that induces a low-dimensional structure on the
optimal transport between two measures µ(1) and µ(2) over R

d. To that end, fix
a subspace U ⊆ R

d of dimension k ≪ d and let X(1),X(2) ∈ U be two random
variables with arbitrary distributions. Next, let Z be a third random variable,
independent of (X(1),X(2)) and such that Z is supported on the orthogonal com-
plement U⊥ of U . Finally, let

(2)
µ(1) := Law(X(1) + Z)

µ(2) := Law(X(2) + Z) .

Though µ(1) and µ(2) are high-dimensional distributions, they differ only on the
low-dimensional subspace U . Borrowing terminology from principal component
analysis [47], we say that the pair (µ(1), µ(2)) satisfies the spiked transport model
and we call U the spike.

We pose the following question: given n independent observations from both
µ(1) and µ(2), is it possible to estimate the Wasserstein distance between them at
a rate faster than n−1/d?

2.3 Concentration assumptions

In order to establish sharp statistical results for estimation of the Wasserstein
distance, it is necessary to adopt smoothness and decay assumptions on the mea-
sures in question [see, e.g., 9, 34]. We focus on a family of such conditions known
as transport inequalities, the study of which is a central object in the theory of
concentration of measure [56].

A probability measure µ on R
d is said to satisfy the Tp(σ

2) transport inequality
if

(3) Wp(ν, µ) ≤
√

2σ2D(ν‖µ)

for all probability measures ν on R
d.

These inequalities interpolate between several well known assumptions in high-
dimensional probability. For example inequality T1(σ

2) is essentially equivalent to
the assertion that µ is subgaussian, and T2(σ

2) is implied by (and often equivalent
to) a stronger log-Sobolev inequality [40].

Our main results on the estimation of Wp(µ
(1), µ(2)) are established under the

assumption that both µ(1) and µ(2) satisfy a Tp(σ
2) transport inequality. We show

in Section 5 that (3) is precisely equivalent to requiring that the random variable
Wp(µn, µ) is subgaussian.

2.4 Wasserstein projection pursuit

To take advantage of the spiked transport model, we employ a natural estima-
tion method that we call Wasserstein Projection Pursuit (WPP).

Let µ and ν be two probability distributions on R
d. Given a k × d matrix U

with orthonormal rows, let µU (resp. νU ) denote the distribution of UY where
Y ∼ µ (resp. Y ∼ ν). We define

W̃p,k(µ, ν) := max
U∈Vk(Rd)

Wp(µU , νU ) ,



SPIKED TRANSPORT MODEL 5

where the maximization is taken over the Stiefel manifold Vk(Rd) of k×dmatrices
with orthonormal rows.

Given empirical measures µ
(1)
n and µ

(2)
n associated to µ(1) and µ(2) that sat-

isfy the spiked transport model, we propose the following WPP estimator of
Wp(µ

(1), µ(2)):

Ŵp,k = W̃p,k(µ
(1)
n , µ(2)n ) ,

In the next section, we show that this estimator is near-minimax-optimal.

3. MAIN RESULTS

As a theoretical justification for Wasserstein projection pursuit, we prove that
our procedure successfully avoids the curse of dimensionality under the spiked
transport model. Our results primarily focus on the estimation of the the Wasser-
stein distance itself but we also obtain as a byproduct of Wasserstein projection
pursuit an estimator for the spike U using standard perturbation results.

3.1 Estimation of the Wasserstein distance

The following theorem shows that Wasserstein projection pursuit takes ad-
vantage of the low-dimensional structure of the spiked transport model when
estimating the Wasserstein distance.

Theorem 1. Let (µ(1), µ(2)) satisfy the spiked transport model (2). For any
p ∈ [1, 2], if µ(1) and µ(2) satisfy the Tp(σ

2) transport inequality, then the WPP
estimator Ŵp,k satisfies

E
∣

∣Ŵp,k −Wp(µ
(1), µ(2))

∣

∣ ≤ ck · σ
(

rp,k(n) +

√

d log n

n

)

.

Strikingly, the rate rp,d(n) achieved by the näıve plug-in estimator (see Propo-
sition 1) has been replaced by rp,k(n)—in other words, this estimator enjoys the
rate typical for k-dimensional rather than d-dimensional measures. The only de-
pendence on the ambient dimension is in the second term, which is of lower order
than the first whenever p > 1 or k > 2. A more general version of this theorem
appears in Section 6.

3.2 Estimation of the spike

We show that if the distance between µ(1) and µ(2) is large enough, Wasserstein
projection pursuit recovers the subspace U . For simplicity, we state here the result
when k = 1 and defer the full version to Section 6.

Theorem 2. Let (µ(1), µ(2)) satisfy the spiked transport model with k = 1
and let U be spanned by the unit vector u ∈ R

d. Fix p ∈ [1, 2] and assume that
µ(1) and µ(2) satisfy the Tp(σ

2) transport inequality and that Wp(µ
(1), µ(2)) & 1.

Then the estimator
û := argmax

v∈Rd,‖v‖=1

Wp(µ
(1)
v , µ(2)v )

satisfies

E sin2
(

∡(û, u)
)

. σ ·
(

n−1/2p +

√

d log n

n

)

.
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3.3 Lower bounds

To show that Theorem 1 has the right dependence on n and d, we exhibit two
lower bounds, which imply that neither term in Theorem 1 can be avoided.

To show the optimality of the first term, we define

r′p,d(n) := cp,d







n−1/2p if d < 2p

n−1/2p if d = 2p

(n log n)−1/d if d > 2p

Theorem 3. Fix p ≥ 1. For any estimator Ŵ , there exists a pair of measures
µ and ν supported on [0, 1]d such

E|Ŵ −Wp(µ
(1), µ(2))| ≥ r′p,d(n) .

This lower bound readily implies that the plug-in estimator for the Wasserstein
distance is optimal up to logarithmic factors. By embedding [0, 1]k into [0, 1]d, this
result likewise implies that the term rp,k(n) in Theorem 1 is essentially optimal.
A proof appears in Section 7

Independently, Liang [58] recently obtained a similar result in the case p = 1.
More specifically, he proved that when d ≥ 2, for any estimator Ŵ , there exist
probability measures µ(1) and µ(2) such that the following lower bound holds:

E|Ŵ −W1(µ
(1), µ(2))| & log log n

log n
n−1/d

In particular, while our lower bound is slightly stronger and holds for all p ≥ 1,
both our result and that of Liang [58] fail to match the näıve upper bound of order
n1/d by logarithmic factors when d is large. The presence of a logarithmic factor in
our lower bound comes from a reduction to estimating the total variation distance.
In that case, as in several other instances of functional estimation problems, the
presence of this factor is, in fact, optimal, and has been dubbed sample size
enlargement [45]. Closing this gap in the context of estimation of the Wasserstein
distance is an interesting and fundamental question.

The only appearance of the ambient dimension d is in the second term of The-
orem 1. The following theorem shows that this dependence cannot be eliminated,
even when k = 1.

Theorem 4. Let p ∈ [1, 2] and σ > 0, and assume k = 1. For all estimators
Ŵ , there exists a pair of measures µ(1) and µ(2) satisfying the spiked transport
model and Tp(σ

2) such that

E|Ŵ −Wp(µ
(1), µ(2))| & σ

√

d

n
.

The proof of Theorem 4 is deferred to the appendix. For problems where d is
large, dependence on d may be a crippling limitation. In that case, we conjecture
that assuming a sparse spike, in the same spirit as sparse PCA, can mitigate this
effect and bring interpretability to the estimated spike.
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3.4 A computational-statistical gap

The WPP estimator achieving the rate in Theorem 1 is computationally ex-
pensive to implement, which raises the question of whether an efficient estimator
exists achieving the same rate. We give evidence in the form of a statistical query
lower bound that no such estimator exists. The statistical query model considers
algorithms with access to an oracle VSTAT(t), where t > 0 is a parameter which
plays the role of sample size. We show that any such algorithm for estimating
the Wasserstein distance needs an exponential number of queries to an oracle
with exponential sample size parameter, even under the spiked transport model.
By contrast, Theorem 1 implies that a non-efficient estimator needs a number of
samples only polynomial in the dimension.

Theorem 5. Let p ∈ [1, 2], and consider probability measures µ(1) and µ(2)

satisfying the spiked transport model. There exists a positive constant c such
that any statistical query algorithm which estimates Wp(µ

(1), µ(2)) to accuracy
1/poly(d) with probability at least 2/3 requires at least 2cd queries to VSTAT(2cd).

4. LOW-DIMENSIONAL WASSERSTEIN DISTANCES

Motivated by projection pursuit, we define the following version of the Wasser-
stein distance which measures the discrepancy between low-dimensional projec-
tions of the measures.

Definition 1. For k ∈ [d], the k-dimensional Wasserstein distance between
µ(1) and µ(2) is

W̃p,k(µ
(1), µ(2)) := sup

U∈Vk(Rd)

Wp(µ
(1)
U , µ

(2)
U ) .

This definition has been proposed independently and concurrently by a number
of other recent works [24, 50, 66].

We will use throughout the following basic fact about the k-dimensional Wasser-
stein distance [66, Proposition 1].

Proposition 2. W̃p,k is a metric on the set of probability measures over R
d

with finite pth moment.

The definition of W̃p,k is chosen so that, under the spiked transport model (2),
the k-dimensional Wasserstein distance agrees with the normal Wasserstein dis-
tance.

Proposition 3. Under the spiked transport model (2),

W̃p,k(µ
(1), µ(2)) =Wp(µ

(1), µ(2)) .

Proposition 3 follows from the following statement, which pertains to distribu-
tions that are allowed to have a different component on the space orthogonal to
the spike U . Suppose ν(1) and ν(2) satisfy

(4)
ν(1) = Law(X(1) + Z(1))

ν(2) = Law(X(2) + Z(2)) ,
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where as before X(1) and X(2) are supported on a subspace U and Z(1) and Z(2)

are supported on its orthogonal complement U⊥, and where we assume that X(i)

and Z(i) are independent for i ∈ {1, 2}. Note that unlike in the spiked transport
model, the components Z(1) and Z(2) on the orthogonal complement of U need
not be identical. The following result shows that under this relaxed model, the
k-dimensional Wasserstein distance between ν(1) and ν(2) still captures the true
Wasserstein distance between the distributions as long as the distributions of Z(1)

and Z(2) are sufficiently close.

Proposition 4. Under the relaxed spiked transport model (4),

|W̃p,k(ν
(1), ν(2))−Wp(ν

(1), ν(2))| ≤Wp(Law(Z
(1)),Law(Z(2))) .

5. CONCENTRATION

A key step to establish the upper bound of Section 6 consists in establishing
good concentration properties for the Wasserstein distance between a measure
and its empirical counterpart. The main assumption we adopt is that the measures
in question satisfy a transport inequality. Since the pioneering work of [61, 62]
and [81], transport inequalities have played a central role in the analysis of the
concentration properties of high-dimensional measures.

We require two definitions.

Definition 2. Given a Polish space X equipped with a metric ρ, denote
by P(X ) the space of all Borel probability measures X . Let Pp(X ) := {µ ∈
P(X ) :

∫

ρ(x, ·)p dµ(x) <∞}.
A measure µ ∈ Pp(X ) satisfies the Tp(σ

2) inequality for some σ > 0 if

Wp(ν, µ) ≤
√

2σ2D(ν‖µ) ∀ν ∈ Pp(X ) ,

where Wp is the Wasserstein-p distance on (X , ρ) and D is the Kullback-Leibler
divergence.

Definition 3. A random variable X on R is σ2-subgaussian if

Eeλ(X−EX) ≤ eλ
2σ2/2 ∀λ ∈ R .

In this section, we present a surprisingly simple equivalence between trans-
port inequalities and subgaussian concentration for the Wasserstein distance.
The essence of this result is present in the works of Gozlan and Léonard [see
38, 39, 40], and similar bounds have been obtained by Bolley et al. [12]. Nev-
ertheless, we could not find this simple fact stated in a form suitable for our
purposes in the literature. For any measure µ, recall that the random measure
µn := 1

n

∑n
i=1 δXi , where Xi ∼ µ i.i.d., denotes its associated empirical measure.

Theorem 6. Let p ∈ [1, 2]. A measure µ ∈ Pp(X ) satisfies Tp(σ
2) if and only

if the random variable Wp(µn, µ) is σ
2/n-subgaussian for all n.

Because Tp′(σ
2) implies Tp(σ

2) when p′ ≥ p, Theorem 6 also implies that a
measure satisfying Tp′(σ

2) has good concentration forWp if p ≤ p′. In the opposite
direction, if p > p′, then satisfying Tp′(σ

2) still yields a weaker concentration
bound. A modification of the proof of Theorem 6 yields the following result.
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Theorem 7. Let p′ ∈ [1, 2] and p ≥ 1. If µ ∈ Pp′(X ) satisfies Tp′(σ
2), then

Wp(µn, µ) is σ
2/n

1−
(

2
p′
− 2

p

)

+ subgaussian.

The conclusion of Theorem 7 is interesting whenever
(

2
p′ − 2

p

)

+
< 1. For exam-

ple, if we assume merely that µ satisfies T1(σ
2), Theorem 7 only yields a nontrivial

concentration result for Wp(µn, µ) when p < 2; by contrast, if µ satisfies T2(σ
2),

then Theorem 7 implies a concentration result for Wp(µn, µ) for all p <∞.
In Section 6, we require concentration properties not of the Wasserstein dis-

tance itself but of the k-dimensional Wasserstein distance. The following result
shows that low-dimensional projections inherit the concentration properties of
the d-dimensional measure.

Proposition 5. Let U ∈ Vk(Rd). For any p ∈ [1, 2] and σ > 0, if µ satisfies
Tp(σ

2), then so does µU .

Proof. The projection x 7→ Ux is a contraction. The result then follows from
Gozlan [37, Corollary 20] [see also 63].

We conclude this section by giving some simple conditions under which the
T1(σ

2) inequality is satisfied. The following characterization is well known. Denote
by Lip(X ) the space of all functions f : X → R satisfying |f(x)− f(y)| ≤ d(x, y)
for all x, y ∈ R.

Proposition 6 (10, Theorem 1.3). A measure µ ∈ P1(X ) satisfies T1(σ
2) if

and only if f(X) is σ2-subgaussian for all f ∈ Lip(X ).

It is common to extend Definition 3 to random vectors as follows.

Definition 4. A random variable X on R
d is σ2-subgaussian if u⊤X is σ2-

subgaussian for all u ∈ R
d satisfying ‖u‖ = 1.

Subgaussian random vectors yield a large collection of random variables satis-
fying a T1 inequality.

Lemma 1. If µ on R
k satisfies Tp(σ

2) for any p ≥ 1, then X ∼ µ is σ2-
subgaussian. Conversely, if X ∼ µ on R

k is σ2-subgaussian, then µ satisfies T1(Ckσ
2)

for a universal constant C > 0.

If the entries of X are independent, then the result holds with C = 1 by a
result of Marton [61]. The presence of the factor k in the converse statement is
unavoidable; unlike T2 inequalities, T1 inequalities do not exhibit dimension-free
concentration [40].

6. UPPER BOUNDS

In this section, we establish that under the spiked transport model, Wasser-
stein projection pursuit produces a significantly more accurate estimate of the
Wasserstein distance than the plug-in estimator.
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Let µ(1) and µ(2) be two measures generated according to the spiked transport

model (2). For i ∈ {1, 2}, we let µ
(i)
n := 1

n

∑n
j=1 δX(i)

j

, where X
(i)
j ∼ µ(i) are i.i.d.

We define
Ŵp,k := W̃p,k(µ

(1)
n , µ(2)n ) .

Our main upper bound shows that Ŵp,k converges to the true Wasserstein
distance Wp(µ, ν) at a rate much faster than n−1/d.

Theorem 8. Let p′ ∈ [1, 2] and p ≥ 1. Under the spiked transport model, if
µ(1) and µ(2) satisfy Tp′(σ

2), then

E|Ŵp,k −Wp(µ
(1), µ(2))| . σ

(

rp,k(n) + cp · n(
1
p′
− 1

p
)+

√

dk log n

n

)

.

Theorem 8 can also be extended to the misspecified model proposed in (4)

Theorem 9. Let p′ ∈ [1, 2] and p ≥ 1. Under the relaxed spiked transport
model (4), if ν(1) and ν(2) satisfy Tp′(σ

2), then

E|Ŵp,k −Wp(ν
(1), ν(2))| . σ

(

rp,k(n) + cp · n(
1
p′
− 1

p
)+

√

dk log n

n

)

+ ε ,

where ε =Wp(Law(Z
(1)),Law(Z(2))).

Theorem 9, which follows almost immediately from the proof of Theorem 8,
establishes that Wasserstein projection pursuit brings statistical benefits even in
the situation where the spiked transport model holds only approximately.

Theorem 8 follows from the following two propositions. We first show that the
quality of the proposed estimator Ŵp,k can be bounded by the sum of two terms

depending only on µ
(1)
n and µ

(2)
n individually.

Proposition 7.

E|Ŵp −Wp(µ
(1), µ(2))| ≤ EW̃p,k(µ

(1), µ(1)n ) + EW̃p,k(µ
(2), µ(2)n )

Proof. Since Ŵp = W̃p,k(µ
(1)
n , µ

(2)
n ) and Wp(µ

(1), µ(2)) = W̃p,k(µ
(1), µ(2)), the

claim is immediate from Proposition 2.

The following proposition allows us to bound both terms of Proposition 7 by
the desired quantity.

Proposition 8. Let p′ ∈ [1, 2] and p ≥ 1. If µ satisfies Tp′(σ
2), then

EW̃p,k(µ, µn) . σ

(

rp,k(n) + cp · n(
1
p′
− 1

p
)+

√

dk log n

n

)

.

Proof. Wasserstein distances are invariant under translating both measures
by the same vector. Therefore, we can assume without loss of generality that µ
has mean 0. Likewise, by homogeneity, we assume σ = 1.

Let ZU := Wp(µU , (µn)U ). We first show that the process ZU is Lipschitz.
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Lemma 2. There exists a random variable L such that for all U, V ∈ Vk(Rd),

|ZU − ZV | ≤ L ‖U − V ‖op
and EL .

√
dp.

Proof. Let X ∼ µ. Then

|ZU − ZV | ≤Wp(µU , µV ) +Wp((µn)U , (µn)V )

≤ (E‖(U − V )X‖p)1/p +
( 1

n

n
∑

i=1

‖(U − V )Xi‖p
)1/p

≤ ‖U − V ‖op
(

(E‖X‖p)1/p +
( 1

n

n
∑

i=1

‖Xi‖p
)1/p)

.

We obtain that
|ZU − ZV | ≤ L ‖U − V ‖op

where L = (E‖X‖p)1/p +
(

1
n

∑n
i=1 ‖Xi‖p

)1/p
. By Jensen’s inequality, we have

EL ≤ 2(E‖X‖p)1/p. Together with Lemma 5, it yields the claim.

By Theorem 7, for all U ∈ Vk(Rd), the random variable ZU is n
−1+

(

2
p′
− 2

p

)

+ sub-
gaussian. Therefore, by a standard ε-net argument, if we denote byN (Vk, ε, ‖·‖op)
the covering number of Vk with respect to the operator norm, we obtain

E sup
U∈Vk(Rd)

(ZU − EZU ) . inf
ε>0







εEL+ n
( 1
p
− 1

p′
)+

√

logN (Vk, ε, ‖·‖op)
n







.

Lemma 4 shows that there exists a universal constant c such that logN (Vk, ε, ‖·‖op) ≤
dk log c

√
k
ε for ε ∈ (0, 1]. Choosing ε =

√

k/n yields

E sup
U∈Vk(Rd)

(ZU − EZU ) .

√

dkp

n
+ n

( 1
p′
− 1

p
)+

√

dk log n

n

≤ cp · n(
1
p′
− 1

p
)+

√

dk log n

n
.

Applying Proposition 17 yields

E sup
U∈Vk(Rd)

Wp(µU , (µn)U ) ≤ sup
U∈Vk(Rd)

EWp(µU , (µn)U ) + E sup
U∈Vk(Rd)

(ZU − EZU )

. rp,k(n) + cp · n(
1
p′
− 1

p
)+

√

dk log n

n
,

as claimed.

We also obtain a Davis-Kahan-type theorem on subspace recovery. Given two
subspaces U1 and U2, the minimal angle [25, 27] between them is defined to be

∡(U1,U2) := arccos

(

sup
u1∈U1,u2∈U2

u⊤1 u2
‖u1‖‖u2‖

)

.
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If ∡(U1,U2) = 0, then U1 ∩ U2 6= {0}, so that U1 and U2 are at least partially
aligned. In the important special case that U1 and U2 are each one dimensional,
this definition reduces to the angle between the subspaces.

The following result indicates that as long as µ(1) and µ(2) are well separated,
Wasserstein projection pursuit also yields a subspace with at least partial align-
ment to U .

Theorem 10. Let p′ ∈ [1, 2] and p ≥ 1. Assume that µ(1) and µ(2) satisfy the
spiked transport model and Tp′(σ

2) Let Û := span(Û), where

Û := argmax
U∈Vk(Rd)

Wp

(

(µ(1)n )U , (µ
(2)
n )U

)

.

Then

E sin2
(

∡(Û ,U)
)

.

σ

(

rp,k(n) + cp · n(
1
p′
− 1

p
)+
√

dk logn
n

)

Wp(µ(1), µ(2))
.

A proof of Theorem 10 appears in the appendix. Note that the a bound on the
minimal angle is a rather weak guarantee. Indeed, ∡(Û ,V) → 0 implies that the
subspaces Û and U share at least a common line asymptotically but not more.
When k = 1, this ensures recovery of the subspace, but this no longer holds true
for higher dimensional spikes. In retrospect such a guarantee is all that we can
hope for under the mere assumption that Wp(µ

(1), µ(2)) > 0. Indeed, it may be
the case that these distributions differ only on a one dimensional space. Stronger

guarantees may be achieved by assuming thatWp(µ
(1)
V , µ

(2)
V ) > 0 for a large family

of V , but we leave them for future research.

7. A LOWER BOUND ON ESTIMATING THE WASSERSTEIN DISTANCE

In this section, we prove that the rate rp,d(n) is optimal for estimating the
Wasserstein distance, up to logarithmic factors. The core idea of our lower bound
is to relate estimating the Wasserstein distance to the problem of estimating total
variation distance, sharp rates for which are known [45, 86]. To obtain sufficient
control over the Wasserstein distance as a function of total variation, we prove a
refined bound incorporating both total variation and the χ2 divergence (Propo-
sition 9). We then show a modified lower bound (Proposition 10) for a testing
problem involving the total variation distance over the class of distributions on
[m] close to the uniform measure in χ2 divergence.

In the interest of generality, we formulate our results for any compact metric
space X whose covering numbers satisfy

(5) cε−d ≤ N (X , ε) ≤ Cε−d

for all ε ≤ diam(X ). This condition clearly holds for compact subsets of Rd and
more generally for metric spaces with Minkowski dimension d. We adopt the
assumption diam(X ) = 1 without loss of generality.

Let P be the set of distributions supported on X and let R(n,P) denote the
minimax risk over P,

R(n,P) := inf
Ŵ

sup
µ,ν∈P

Eµ,ν |Ŵ −Wp(µ, ν)| .
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The bound R(n,P) & n−1/2p is an almost trivial consequence of the fact that
the distribution 1

2δ−1 +
1
2δ1 cannot be distinguished from (12 + ε)δ−1 + (12 − ε)δ1

on the basis of n samples when ε ≍ n−1/2. The interesting part of Theorem 3 is
the rate when d > 2p. We prove the following.

Theorem 11. Let d > 2p ≥ 2 and assume X satisfies (5). Then

R(n,P) ≥ Cd,p(n log n)
−1/d .

Before proving Theorem 11, we establish the two propositions described above.
Proposition 9 allows us to reduce Theorem 11 to an estimation problem involving
total variation distance, and Proposition 10 is a lower bound on the minimax rate
for that total variation estimation problem.

Proposition 9. Assume d > 2p ≥ 2, and let m be a positive integer. Let u be
the uniform distribution on [m] := {1, . . . ,m}. There exists a random function F :
[m] → X such that for any distribution q on [m],

cm−1/ddTV(q, u)
1
p ≤Wp(F♯q, F♯u) ≤ Cd,pm

−1/d(χ2(q, u))1/ddTV(q, u)
1
p
− 2

d

with probability at least .9.

Proof. Lemma 6 shows that the condition N (X , ε) ≥ cε−d implies the exis-
tence a set Gm := {x1, . . . , xm} ⊆ X such that d(xi, xj) & m−1/d for all i 6= j. We
select F uniformly at random from the set of all bijections from [m] to Gm.

To show the lower bound, we note that any points x, y ∈ Gm satisfy

d(x, y)p & m−p/d
1{x 6= y} ,

which implies that for any coupling π between F♯q and F♯u

∫

d(x, y)p dπ(x, y) & m−p/d
Pπ[X 6= Y ]

≥ m−p/ddTV(F♯q, F♯u)

= m−p/ddTV(q, u) .

The lower bound therefore holds with probability 1.
We now turn to the upper bound. We employ a dyadic covering bound [90,

Proposition 1]. For any k∗ there exists a dyadic partition {Qk}1≤k≤k∗ of X with
parameter δ = 1/3 such that |Qk| ≤ N (X , 3−(k+1)). We obtain that for any
k∗ ≥ 0,

W p
p (F♯q, F♯u) ≤ 3−k

∗p +

k∗
∑

k=1

3−(k−1)p
∑

Qk
i ∈Qk

|F♯q(Qki )− F♯u(Q
k
i )| ,

By Lemma 7, for any k,

E

∑

Qk
i ∈Qk

|F♯q(Qki )− F♯u(Q
k
i )| ≤ 2dTV(q, u) ∧Cd,p

(

3kdχ2(q, u)

m

)1/2

.
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Let k0 be a positive integer to be fixed later.
By applying the first bound, we obtain

E

∑

k>k0

3−(k−1)p
∑

Qk
i ∈Qk

|F♯q(Qki )− F♯u(Q
k
i )| . 3−k0pdTV(q, u) .

Applying the second bound and recalling that d/2 > p yields

E

∑

k≤k0
3−(k−1)p

∑

Qk
i ∈Qk

|F♯q(Qki )− F♯u(Q
k
i )| ≤ Cd,p

(

χ2(q, u)

m

)1/2
∑

k≤k0
3k(d/2−p)

≤ Cd,p

(

χ2(q, u)

m

)1/2

3k0(d/2−p) ,

We obtain for any k∗ ≥ 0 that

EW p
p (F♯q, F♯u) ≤ Cd,p

(

χ2(q, u)

m

)1/2

3k0(d/2−p) +C · 3−k0pdTV(q, u) + 3−k
∗p ,

and taking k∗ → ∞ it suffices to bound the first two terms.
Let k0 to be the smallest positive integer such that

3k0d ≥ m
dTV(q, u)

2

χ2(q, u)
.

Then

3k0d/2
(

χ2(q, u)

m

)1/2

≤ Cd · dTV(q, u) ,

and hence

EW p
p (F♯q, F♯u) ≤ Cd,p · 3−k0pdTV(q, u) ≤ Cd,pm

−p/d(χ2(q, u))p/ddTV(q, u)
1− 2p

d .

The claim follows from Markov’s inequality.

We now show that there are composite hypotheses that are well separated
in total variation distance but nevertheless hard to distinguish on the basis of
samples.

Proposition 10. Fix a positive integer n and a constant δ ∈ [0, 1/10]. Given
a positive integer m, let Dm be the set of probability distributions q on [m] sat-
isfying χ2(q, u) ≤ 9. Denote by D−

m,δ the subset of Dm of distributions satisfy-

ing dTV(q, u) ≤ δ and by D+
m the subset of Dm satisfying dTV(q, u) ≥ 1/4. If

m = ⌈Cδ−1n log n⌉ for a sufficiently large universal constant C and n is suffi-
ciently large, then

inf
ψ

{

sup
q∈D+

m

Pq[ψ = 1] + sup
q∈D−

m,δ

Pq[ψ = 0]
}

≥ .9 ,

where the infimum is taken over all (possibly randomized) tests based on n sam-
ples.
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The proof of Proposition 10 follows a strategy due to Valiant and Valiant [85]
and Wu and Yang [92], and our argument is a modification of theirs which permits
simultaneous control of total variation and the χ2 divergence. We give the proof
in Appendix A.2.

We now give a proof of the main theorem.

Proof of Theorem 11. Let Ŵ be any estimator for the Wasserstein dis-
tance between distributions on X constructed on the basis of n samples from
each distribution.

Let u be the uniform distribution on [m], for some m to be specified. Let
c∗ be the constant appearing in the lower bound of Proposition 9 and define
∆d = 1

16c
∗m−1/d. Given n samples X1, . . . ,Xn from an unknown distribution

on [m], define the randomized test

ψ = ψ(X1, . . . ,Xn) := 1{Ŵ (F (X1), . . . , F (Xn);F (Y1), . . . , F (Yn)) ≤ 2∆d} ,

where F is the random function constructed in Proposition 9 and where Yi are
i.i.d. from u.

By Proposition 9, if δ ≤ δd,p :=
(

c∗

176Cd,p

)
1

1/p−2/d
, any q ∈ D−

m,δ satisfies the

bound Wp(F♯q, F♯u) ≤ ∆d with probability at least .9. Likewise, for q ∈ D+
m, the

bound Wp(F♯q, F♯u) ≥ 3∆d also holds with probability at least .9.

Define the event A = {|Ŵ−Wp(F♯q, F♯u)| ≥ ∆d}. We obtain, for any q ∈ D−
m,δ,

EFPF♯q,F♯u[A] ≥ EFPF♯qF♯u[Ŵ > 2∆d and Wp(F♯q, F♯u) ≤ ∆d]

≥ EFPF♯qF♯u[Ŵ > 2∆d]− P[Wp(F♯q, F♯u) > ∆d]

≥ Pq[ψ = 0]− .1 ,

and analogously for q ∈ D+
m,

EFPF♯q,F♯u[A] ≥ Pq[ψ = 1]− .1 .

For any estimator Ŵ , we have

sup
µ,ν∈P

Pµ,ν [|Ŵ −Wp(µ, ν)| ≥ ∆d] ≥
1

2

(

sup
q∈D+

m

EFPF♯q,F♯u[A] + sup
q∈D−

m,δ

EFPF♯q,F♯u[A]
)

≥ 1

2

(

sup
q∈D+

m

Pq[ψ = 1] + sup
q∈D−

m,δ

Pq[ψ = 0]
)

− .1 .

Choosing m = ⌈Cδ−1n log n⌉ for a sufficiently large constant C and applying
Proposition 10 yields that supµ,ν∈P Pµ,ν [|Ŵ − Wp(F♯q, F♯u)| ≥ ∆d] ≥ .8, and
Markov’s inequality yields the claim.

8. COMPUTATIONAL-STATISTICAL GAPS FOR THE SPIKED

TRANSPORT MODEL

Sections 4 and 7 clarify the statistical price for estimating the Wasserstein
distance for high-dimensional measures. Section 4 shows that the curse of dimen-
sionality can be avoided under the spiked transport model. The WPP estimator
exploits the low-dimensional structure in the spiked transport model, thereby
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beating the worst-case rate presented in Section 7. However, it is not clear how
to make the estimator we propose computationally efficient. In this section, we
give evidence that this obstruction is a fundamental obstacle, that is, that no
computationally efficient estimator can beat the curse of dimensionality.

The statistical query model, first introduced in the context of PAC learn-
ing [48], is a well known computational framework for analyzing statistical algo-
rithms. Instead of being given access to data points from a distribution, a sta-
tistical query (SQ) algorithm can approximately evaluate the expectation of ar-
bitrary functions with respect to the distribution. This model naturally captures
the power of noise-tolerant algorithms [48] and is strong enough to implement
nearly all common machine learning procedures [see, e.g. 8].

We recall the following definition.

Definition 5. Given a distribution D on R
d, for any sample size parame-

ter t > 0 and function f : Rd → [0, 1], the oracle VSTAT(t) returns a value

v ∈ [p− τ, p + τ ], where p = Ef(X) and τ = 1
t ∨
√

p(1−p)
t .

A query to a VSTAT(t) oracle can be simulated by using a data set of size
approximately t. Our main result proves a lower bound against an oracle with
sample size parameter t = 2cd for a positive constant c. Simulating such an oracle
would require a number of samples exponential in the dimension. Nevertheless,
we show that even under this strong assumption, at least 2cd queries to the oracle
are required. This result suggests that any computationally efficient procedure to
estimate the Wasserstein distance under the spiked transport model requires an
exponential number of samples. By contrast, Section 6 establishes that, informa-
tion theoretically, only a polynomial number of samples are required.

We now state our main result.

Theorem 12. There exists a positive universal constant c such that, for
any d, estimating W1(µ

(1), µ(2)) for distributions µ(1) and µ(2) on R
d satisfying

the spiked transport assumption with k = 1 to accuracy Θ(1/
√
d) with probability

at least 2/3 requires at least 2cd queries to VSTAT(2cd).

Our proof is based on a construction due to [26] [see also 14]. We defer the
details to the appendix.

APPENDIX A: PROOFS OF LOWER BOUNDS

A.1 Proof of Theorem 4

We reduce from the spiked covariance model. By homogeneity, we may assume
that σ = 1. Let µ(1) be the standard Gaussian measure on R

d, and for µ(2) we take
either the standard Gaussian measure or the distribution of a centered Gaussian
with covariance I +βvv⊤, where ‖v‖ = 1 and β > 0 is to be specified. As long as
β . 1, the measure µ(2) is a O(1)-Lipschitz pushforward of the Gaussian measure.
Hence, it satisfies Tp(O(1)) [37, Corollary 20].

Note that if µ(2) has covariance I + βvv⊤, then

Wp(µ
(1), µ(2)) ≥W1(µ

(1), µ(2)) =W1(N (0, 1),N (0, 1 + β)) & β .
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However, Cai et al. [15, Proposition 2] establish that the minimax testing error
for

H0 : N (0, I) vs. H1 : N (0, I + βvv⊤), ‖v‖ = 1

is bounded below by a constant when β .
√

d/n. A standard application of Le
Cam’s two-point method [84] yields the claim.

A.2 Proof of Proposition 10

We require the existence of two distributions on R+, which will serve as the
building blocks of our construction.

Proposition 11. For any integer L ≥ 0 and ε ∈ [0, 1/6], there exists a pair
of random variables U and V with the following properties:

• EU j = EV j ∀j ≤ L
• U, V ∈ [0, 16ε−1L2] almost surely
• EU = EV = 1 and EU2 = EV 2 ≤ 6.
• E|U − 1| ≤ 12ε but E|V − 1| ≥ 1.

The proof is deferred to Appendix A.3.

Proof of Proposition 10. The proof follows closely the approach of Wu
and Yang [92, Proposition 1]. We first employ a standard argument showing that
we can consider the Poissonalized setting. It is trivial to see that given samples
X1, . . . ,Xn from a distribution q on [m], the counts Ni = Ni(X1, . . . ,Xn) :=
|{j ∈ [n] : Xj = i}| are sufficient for q. We therefore consider tests ψ based on
count vectors. Note that, under q, the count vector (N1, . . . , Nm) has distribution
Multinomial(n, q).

Define
Rn := inf

ψ

{

sup
q∈D+

m

Pq[ψ = 1] + sup
q∈D−

m,δ

Pq[ψ = 0]} .

We aim to prove a lower bound on Rn.
Let ρ > 0, and let for n ≥ 1 let {ψn} be a set of near optimal tests for a fixed

sample size; i.e.

sup
q∈D−

m,δ∪D
+
m

Pq[ψn 6= 1{q ∈ D−
m,δ}] ≤ Rn + ρ .

Define set of approximate probability vectors

D̃−
m,δ :=

{

q ∈ R
m
+ :

∣

∣

∣

∣

∣

m
∑

i=1

qi − 1

∣

∣

∣

∣

∣

≤ δ,
q

∑m
i=1 qi

∈ D−
m,δ

}

D̃+
m :=

{

q ∈ R
m
+ :

∣

∣

∣

∣

∣

m
∑

i=1

qi − 1

∣

∣

∣

∣

∣

≤ δ,
q

∑m
i=1 qi

∈ D+
m

}

.

We let D̃m,δ := D̃−
m,δ ∪ D̃+

m. Given q ∈ D̃m,δ, define the renormalization q̄ =
∑m

i=1 qi/q. We then define

R̃n := inf
ψ

{

sup
q∈D̃+

m

Pq[ψ = 1] + sup
q∈D̃−

m,δ

Pq[ψ = 0]
}

,
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where the infimum is taken over all estimators based on the counts N1, . . . , Nm

and where Pq indicates the probability when N1, . . . , Nm are independent and
Ni ∼ Pois(nqi) for all i ∈ [m]. We set N =

∑m
i=1Ni, and note that, conditioned

on N = n′, the count vector (N1, . . . , Nm) has distribution Multinomial(n′, q̄).
We define a test ψ̃ based on these Poissonalized counts by setting

ψ̃(N1, . . . , Nm) := ψN (N1, . . . , Nm) .

This definition along with the near optimality of ψn′ for n′ ≥ 0 implies

sup
q∈D̃+

m

Pq[ψ̃ = 1] + sup
q∈D̃−

m,δ

Pq[ψ̃ = 0] ≤
∑

n′≥0

Rn′Pq[N = n′] + ρ

≤ Rn/2 + Pq[N < n/2] + ρ ,

where the last inequality follows from the fact that Rn′ ≤ 1 for all n′ ≥ 0 and Rn′

is non-increasing in n′. Since N = Pois(n
∑m

i=1 qi) and
∑m

i=1 qi ≥ 3/4, a standard
Chernoff bound implies P[N < n/2] ≤ exp(−Cn). Since ρ was arbitrary, we
obtain that

R̃n ≤ Rn/2 + exp(−Cn) .
To prove a lower bound on R̃n, we consider random vectors

Q =
1

m
(U1, . . . , Um)

Q′ =
1

m
(V1, . . . , Vm) ,

where Ui and Vi for i ∈ [m] are independent copies of U and V constructed in
Proposition 11 with ε = 1

24δ. Conditioned onQ andQ′, letN andN ′ be count vec-
tors with independent entries generated by Ni ∼ Pois(nQi) and N

′
i ∼ Pois(nQ′

i).
Let us denote by P and P′ the distributions of N and N ′ respectively. Under P
and P′, the entries of N and N ′ are i.i.d. Poisson mixtures, so applying Wu and
Yang [92, Lemma 4] yields

dTV(P,P
′) ≤ m

(

8enL

εm

)L

.

Let E = {Q ∈ D̃−
m,δ} and E′ = {Q′ ∈ D̃+

m}. By Lemma 10, P[EC ] and P[E′C ] are

each at most C L4

δ2m
.

Let πE be the law of Q conditioned on E, and define π′E′ analogously, and
let PE and P′

E′ be the laws of N and N ′ under these priors. We obtain for any
estimator ψ based on count vectors

sup
q∈D̃+

m

Pq[ψ̃ = 1] + sup
q∈D̃−

m,δ

Pq[ψ̃ = 0] ≥
∫

Pq′ [ψ = 1] dπ′E′(q′) +
∫

Pq[ψ = 0] dπE(q)

≥ 1− dTV(PE ,P
′
E′)

≥ 1− dTV(P,P
′)−C

L4

δ2m
.

Choosing L = c δmn for a sufficiently small constant c yields that

R̃n ≥ 1−m exp(−C δm
n

)− C
δ2m3

n4
.
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Therefore

Rn ≥ 1−m exp(−C δm
n

)−C
δ2m3

n4
− exp(−Cn) ,

and choosing m = ⌈Cδ−1n log n⌉ for C a sufficiently large constant and n suffi-
ciently large yields the claim.

A.3 Proof of Proposition 11

First, the reduction of Wu and Yang [92, Lemma 7] implies that it suffices to
construct random variables Y and Y ′ such that

• EY j = EY ′j ∀0 ≤ j < L
• Y, Y ′ ∈ [1, 16ε−1L2] a.s.
• EY = EY ′ ≤ 6
• E

1
Y ≥ 1− 6ε but E 1

Y ′ ≤ 1
2 .

Indeed, applying their construction yields U and V satisfying the first three re-
quirements of Proposition 11 as well as P[U = 0] ≤ 6ε and P[V = 0] ≥ 1

4 . Since
the supports of U and V lie in {0}∪ [1,+∞), we have E|U−1| = 2P[U = 0] ≤ 12ε
and E|V − 1| = 2P[V = 0] ≥ 1, as desired. We therefore focus on constructing
such a Y and Y ′.

By Wu and Yang [92, Lemma 7] combined with Timan [83, Section 2.11.1],
there exist random variables X and X ′ supported on [1, 16L2] such that EXj =
EX ′j for 0 ≤ j < L and E

1
X − E

1
X′ ≥ 1

2 . Let Pε and P′
ε denote the distribution

of ε−1X and ε−1X ′, respectively.
Let

∆ε :=

∫

1

(y − 1)(y − 2)
dPε(y)

∆′
ε :=

∫

1

(y′ − 1)(y′ − 2)
dP′

ε(y
′)

Zε :=
∫

1

y − 2
dPε(y)−

∫

1

y′ − 1
dP′

ε(y
′) .

We define two new distributions Q and Q′ by

Q(dy) = δ1(dy) +
1

Zε

(

1

(y − 1)(y − 2)
Pε(dy)−∆εδ1(dy)

)

(6)

Q′(dy′) = δ2(dy
′) +

1

Zε

(

1

(y′ − 1)(y′ − 2)
P′
ε(dy

′)−∆ε′δ2(dy
′)
)

(7)

By Lemma 8,

∆ε,∆ε′ ∈ [0,
9

5
ε2]

Zε ≥
3

10
ε ,

which implies in particular that both Q and Q′ are probability distributions.
Let Y ∼ Q and Y ′ ∼ Q′. We first check the last three conditions. Clearly Y

and Y ′ are supported on [1, 16ε−1L2], and Lemma 9 implies that EY = EY ′ ≤ 6.
We have E

1
Y ≥ P[Y = 1] = 1− ∆ε

Zε
≥ 1 − 6ε, and since Y ′ ≥ 2 almost surely the

bound E
1
Y ′ ≤ 1

2 is immediate.



20 NILES-WEED & RIGOLLET

It remains to check the moment-matching condition. Any polynomial p(y) of
degree at most L− 1 can be written

p(y) = (y − 1)(y − 2)q(y) + αy + β ,

where q(y) has degree less than L− 1. Then

Ep(Y )−Ep(Y ′) = E(Y −1)(Y −2)q(Y )−E(Y ′−1)(Y ′−2)q(Y ′)+α(EY −EY ′) .

The last term vanishes because EY = EY ′, and

E(Y −1)(Y −2)q(Y )−E(Y ′−1)(Y ′−2)q(Y ′) =
1

Zε
(

Eq(ε−1X)− Eq(ε−1X ′)
)

= 0 ,

since EXj = EX ′j for all j < L− 1.
Therefore Ep(Y ) = Ep(Y ′) for all polynomials of degree at most L− 1.

A.4 Proof of Theorem 12

We first establish the existence of a probability distribution on R which agrees
with N (0, 1) on many moments, but is far from N (0, 1) in Wasserstein distance.

Proposition 12. There exists a O(1)-subgaussian distribution A on R that
satisfies the following requirements.

• A agrees with N (0, 1) on the first 2m− 1 moments.
• W1(A,N (0, 1)) = Ω(1/

√
m).

• χ2(A,N (0, 1)) = exp(O(m)).

Proof. By Diakonikolas et al. [26, Corollary 4.4], for any δ ∈ (0, 1) we
can find an atomic measure Q supported on m points in [−O(

√
m), O(

√
m)]

such that A := Q ∗ N (0, δ) matches N (0, 1) on the first 2m − 1 moments.
By Diakonikolas et al. [26, Lemma 4.6], this distribution satisfies the bound
χ2(A,N (0, 1)) = exp(O(m))/

√
δ. Moreover, the distribution Q is supported on

the zeros of a rescaled version of the mth Hermite polynomial, and by Bubeck
et al. [14, Lemma A.1] these zeros are Ω(1/

√
m) apart.

Since the points in the support of Q are Ω(1/
√
m) apart, there exists a constant

c such that the union of balls of radius c/
√
m centered at the support of Q

covers at most half of the interval [−1, 1], and since the Gaussian density is
bounded below on this interval, a constant fraction of the mass of N (0, 1) is
located at distance at least c/

√
m from Q. Hence W1(Q,N (0, 1)) = Ω(1/

√
m).

Clearly W1(A,Q) = O(
√
δ).

Therefore, if we choose δ = O(1/m), then

W1(A,N (0, 1)) ≥W1(Q,N (0, 1)) −W1(A,Q) = Ω(1/
√
m)

and χ2(A,N (0, 1)) = O(
√
m) exp(O(m)) = exp(O(m)).

Finally, we show that A is O(1)-subgaussian, and therefore satisfies T1(C) for
a positive constant C. Standard facts [see 88] imply that it suffices to show that
if X ∼ A, then ‖X‖k = O(

√
k) for all k. This clearly holds for k ≤ 2m − 1,

since N (0, 1) is itself 1-subgaussian and the first 2m − 1 moments of A and
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N (0, 1) agree. On the other hand, for k ≥ 2m, if Y ∼ Q and Z ∼ N (0, 1), then
X = Y +

√
δZ ∼ A, and

‖X +
√
δZ‖k ≤ ‖X‖∞ +

√
δ‖Z‖k .

√
m+

√

k/m .
√
k ,

as desired.

The separation W1(A,N (0, 1)) = Ω(1/
√
m) in Proposition 12 is easily seen to

be tight. Indeed, Rigollet andWeed [72, Corollary 2] show that if µ and ν areO(1)-
subgaussian and agree on their first O(m) moments, then W1(µ, ν) = O(1/

√
m).

By planting the distribution constructed in Proposition 12 in a random direc-
tion, we obtain two high-dimensional measures satisfying the spiked transport
model.

Lemma 3. Let v be a unit vector in R
d, and denote by Pv the distribution

on R
d of the random variable Xv + Z, where X ∼ A and Z ∼ N (0, Id − vv⊤)

is independent of X. Then µ(1) = Pv and µ(2) = N (0, Id) satisfy the spiked
transport model (2), and W1(Pv,N (0, Id)) = Ω(1/

√
m).

Proof. If we let ξ ∼ N (0, 1), then N (0, Id) is the law of ξv + Z, where ξ
and Z are independent and Z ∼ N (0, Id − vv⊤). Denoting by U the span of
v, we see that Pv and N (0, Id) satisfy (2) with X(1) = Xv and X(2) = ξv. By
Propositions 3 and 12, W1(Pv ,N (0, Id)) =W1(A,N (0, 1)) = Ω(1/

√
m).

The proof of Theorem 12 follows from a framework due to Feldman et al. [30],
from which the following result is extracted. Given distributions P1, P2, and Q,
define

χ2
Q(P1, P2) :=

∫
(

dP1

dQ
− 1

)(

dP2

dQ
− 1

)

dQ .

We call a set P of distributions (γ, β) correlated with respect to Q if for all
Pi, Pj ∈ P,

χ2
Q(Pi, Pj) ≤

{

β if i = j,
γ if i 6= j.

We then have the following.

Proposition 13. Let Q be a set of distributions, and let Q be a reference
distribution. Suppose that there exists a set P ⊆ Q such that P is (γ, β) correlated
with respect to Q. Then any SQ algorithm that distinguishes queries from P = Q
and P ∈ Q requires at least |P|γ/3β queries to VSTAT(1/2γ)

Proof. By choosing γ′ = γ in Feldman et al. [30, Lemma 3.10], we obtain
that the set P satisfies SDA(P, Q, 2γ) ≥ |P|γ/(β − γ) ≥ |P|γ/β. Then Feldman
et al. [30, Theorem 3.7] implies that distinguishing Q from Q requires at least
|P|γ/3β queries to VSTAT(1/2γ).

We can now prove the lower bound.

Proof of Theorem 12. Let Q be the set {Pv : v ∈ R
d, ‖v‖ = 1}. The

Johnson-Lindenstrauss lemma [46] implies that for any δ ∈ (0, 1), there exists a
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set of 2Ω(δ2d) unit vectors in R
d with pairwise inner product at most δ. Denote

by S a set of such vectors, and set P := {Pv : v ∈ S} ⊆ Q.
Write ∆ for χ2(A,N (0, 1)), and recall that ∆ = exp(O(m)). By Diakonikolas

et al. [26, Lemma 3.4], χ2
N (0,I)(Pv , Pv′) ≤ |v · v′|2m∆, and the set P is therefore

(δ2m∆,∆) correlated. By Proposition 13, any SQ algorithm that distinguishes
between µ = N (0, 1) and µ ∈ P with probability at least 2/3 requires 2Ω(δ2d)δ2m

queries to VSTAT(δ−2m/2∆).
Let δ > 0 be a constant small enough that δ−2m/2∆ = exp(Ω(m)). If m = cd

for a sufficiently small positive constant c, then 2Ω(δ2d)δ2m = exp(Ω(d)). An
SQ algorithm to distinguish queries from N (0, 1) from those from a distribu-
tion in Q with probability at least 2/3 therefore requires exp(Ω(d)) queries to
VSTAT(exp(Ω(d)). Therefore, by Lemma 3, any SQ algorithm which estimates
W1 under the spiked transport model to accuracy Θ(1/

√
m) = Θ(1/

√
d) requires

exp(Ω(d)) queries to VSTAT(exp(Ω(d)), as claimed.

APPENDIX B: SUPPLEMENTARY MATERIAL

B.1 Additional lemmas

Lemma 4. There exists a universal constant c such that for all ε ∈ (0, 1), the
covering number of Vk(Rd) satisfies

logN (Vk, ε, ‖·‖op) ≤ dk log
c
√
k

ε
.

Proof. If we denote by Sd the unit sphere in R
d, then Vk(Rd) ⊆ S×k

d , and

‖U − V ‖2op ≤
k
∑

i=1

‖Ui − Vi‖2 ,

where {Ui} (resp. {Vi}) are the rows of U (resp. V ). The claim follows immediately
from the fact that logN (Sd, ε, ‖ · ‖) ≤ d log c

ε for a universal constant c.

Lemma 5. Let µ be a centered distribution satisfying T1(σ
2). If X ∼ µ, then

(E‖X‖p)1/p . √
dp.

Proof. By the monotonicity of Lp norms, we may assume that p is a positive
even integer. The claim then follows from Proposition 16 and standard bounds
on the moments of subgaussian random variables [88].

The following proposition provides a sort of converse to Proposition 3: if the k-
dimensional Wasserstein distance agrees with the Wasserstein distance, then there
is an optimal coupling between the measures which acts only on a k-dimensional
subspace.

Proposition 14. If W̃p,k(µ, ν) = Wp(µ, ν), then there exists a coupling γ
optimal for µ and ν such that X − Y is supported on a k-dimensional subspace.

Proof. Let γ be an optimal coupling for µ and ν, and write

U = argmax
V ∈Vk(Rd)

Wp(µV , νV ) .
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Then

W p
p (µ, ν) =

∫

‖x− y‖p dγ(x, y) ≥
∫

‖U(x− y)‖p dγ(x, y) ≥ W̃ p
p,k(µ, ν) ,

where the first inequality uses the fact that ‖U‖op = 1 and the second uses the
fact that if (X,Y ) ∼ γ, then UX and UY are distributed according to µU and νU ,
respectively. If the first equality holds, then we must have ‖X−Y ‖ = ‖U(X−Y )‖
γ-almost surely, and if the second inequality holds then this coupling is optimal
for µU and νU

Proposition 15 (88, Proposition 2.5.2). If a real-valued random variable X
is σ2-subgaussian, then

(8) Eeλ
2X2 ≤ e4λ

2σ2 ∀|λ| ≤ 1

2σ
.

Conversely, if (8) holds and EX = 0, then X is 8σ2-subgaussian.

Proof. For the first claim, let Z be a standard Gaussian random variable
independent of X. Then, if λ2σ2 < 1/4,

Eeλ
2X2

= Ee
√
2λZX ≤ Eeλ

2σ2Z2
=

1

(1− 2λ2σ2)1/2
≤ e4λ

2σ2 ,

where the last step uses the inequality (1− x)−1 ≤ e2x for 0 ≤ x ≤ 1
2 .

Conversely, suppose that (8) holds and EX = 0. Then, for |λ| ≤ 1
2σ , we have

EeλX ≤ EλX + Eeλ
2X2 ≤ e4λ

2σ2 .

If |λ| > 1
2σ , then

EeλX ≤ Ee2λ
2σ2+ X2

8σ2 ≤ e2λ
2σ2+1 ≤ e4λ

2σ2 .

Proposition 16. If X on R
k is σ2-subgaussian, then ε‖X‖ is (8kσ2)-subgaussian,

where ε is a Rademacher random variable independent of X.

Proof. For |λ| < 1
2
√
kσ

,

E exp(λ2(ε‖X‖)2) = E exp(λ2‖X‖2) ≤ E exp(kλ2(e⊤i X)2) ≤ exp(4kλ2σ2) .

Applying Proposition 15 yields the claim.

Proposition 17. Let p′ ∈ [1, 2]. If ρn on R
k satisfies Tp′(σ

2), then for any
p ∈ [1,∞),

EWp (ρn, ρ) ≤ rp,k(n) := cpσ
√
k







n−1/2p if k < 2p

n−1/2p(log n)1/p if k = 2p

n−1/k if k > 2p
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Proof. Lemma 1 implies that X ∼ ρ is σ2 subgaussian. in particular, X
satisfies (E‖X‖q)1/q ≤ σ

√
qk. Choosing q = 3p and using Lei [57, Theorem 3.1]

implies the claim.

Lemma 6. If Nε(X ) ≥ cε−d, then for any positive integer m there exists a
subset of X of cardinality m such that each pair of points is separated by at least
1
2

(

c
m

)1/d
.

Proof. Let S be a maximal subset of X such that each pair of points in S is

separated by at least 1
2

(

c
m

)1/d
. Then, for any point x ∈ X, there must be an s ∈ S

such that d(x, s) < 1
2

(

c
m

)1/d
, since otherwise x could be added to S. Therefore,

balls of radius 1
2

(

c
m

)1/d
around the points s ∈ S cover X, which implies

|S| ≥ N (X,
( c

m

)1/d
) ≥ m,

as claimed.

Lemma 7. Let Q1, . . . , Qℓ be a partition of X . If F is a uniform random
bijection from [m] to Gm, then

E

ℓ
∑

i=1

|F♯q(Qi)− F♯u(Qi)| ≤ ‖q − u‖1 ∧
√

ℓ · χ2(q, u)

m

Proof. The first bound follows immediately from the triangle inequality:

ℓ
∑

i=1

|F♯q(Qi)− F♯u(Qi)| ≤
ℓ
∑

i=1

∑

j:F (j)∈Qi

∣

∣

∣

∣

q(j)− 1

m

∣

∣

∣

∣

= ‖q − u‖1 .

We now show the second bound. Fix i ∈ [ℓ]. Under the random choice of F ,
the quantity F♯q(Qi) − F♯u(Qi) =

∑

j:F (j)∈Qi

(

q(j)− 1
m

)

is a sum of |Qi| terms

selected uniformly without replacement from the set ∆ := {q(j) − 1
m : j ∈ [m]}.

By Hoeffding [42, Theorem 4], since x 7→ |x| is continuous and convex,

E

∣

∣

∣

∣

∣

∣

∑

j:F (j)∈Qi

(

q(j)− 1

m

)

∣

∣

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

∣

∣

|Qi|
∑

j=1

∆j

∣

∣

∣

∣

∣

∣

,

where ∆j are selected uniformly with replacement from ∆. Note that E∆j = 0,
and E∆2

j =
1
m

∑m
j=1(q(j)− 1

m )2 = m−2χ2(q, u). Jensen’s inequality then yields

E

∣

∣

∣

∣

∣

∣

|Qi|
∑

j=1

∆j

∣

∣

∣

∣

∣

∣

≤
√

|Qi|χ2(q, u)

m
.

The Cauchy-Schwarz inequality finally implies

E

ℓ
∑

i=1

∣

∣

∣

∣

∣

∣

∑

j:F (j)∈Qi

(

q(j)− 1

m

)

∣

∣

∣

∣

∣

∣

≤
ℓ
∑

i=1

√

|Qi|χ2(q, u)

m
≤
√

ℓ · χ2(q, u)

m
.
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Lemma 8. Let ε ∈ [0, 1/6]. If X,X ′ ≥ 1 almost surely and E
1
X − E

1
X′ ≥ 1

2 ,
then

E
1

(ε−1X − 1)(ε−1X − 2)
,E

1

(ε−1X ′ − 1)(ε−1X ′ − 2)
∈ [0,

9

5
ε2]

and

E
1

ε−1X − 2
− E

1

ε−1X ′ − 1
≥ 3

10
ε .

Proof. If x ≥ 1 and ε ≤ 1/6, then (x− ε)(x− 2ε) ≥ 5
9 , so

1

(ε−1x− 1)(ε−1x− 2)
=

ε2

(x− ε)(x − 2ε)
≤ 9

5
ε2 ,

and since X,X ′ ≥ 1 almost surely the first claim is immediate.
Similarly, if x′ ≥ 1 and ε ≤ 1/6, we have ε

x′(x′−ε) ≤ 1
5 ; hence almost surely

1

ε−1X − 2
− 1

ε−1X ′ − 1
≥ ε

X
− ε

X ′ −
ε2

X ′(X ′ − ε)
≥ ε

(

1

X
− 1

X ′ −
1

5

)

,

and taking expectations yields the claim.

Lemma 9. Let Q and Q′ be defined as in (6) and (7). If Y ∼ Q and Y ′ ∼ Q′,
then

EY = EY ′ ≤ 6 .

Proof. It follows directly from the definition that

EY = 1 +
1

Zε

(
∫

y

(y − 1)(y − 2)
Pε(dy)−∆ε

)

= 1 +
1

Zε

∫

1

y − 2
Pε(dy)

and analogously

EY ′ = 2 +
1

Zε

(
∫

y′

(y′ − 1)(y′ − 2)
P′
ε(dy

′)− 2∆ε′

)

= 2 +
1

Zε

∫

1

y′ − 1
P′
ε(dy

′) ,

which implies

EY ′ − EY = 1− 1

Zε

(
∫

1

y − 2
dPε(y)−

∫

1

y′ − 1
dP′

ε(y
′)
)

= 1− 1

Zε
(Zε) = 0 .

To verify the inequality, note that
∫

1

y − 2
Pε(dy) = E

1

ε−1X − 2
= εE

1

X − 2ε
,

and the fact that X ≥ 1 almost surely and ε ≤ 1/6 implies that this quantity is
bounded by 3

2ε. By Lemma 8, Zε ≥ 3
10ε; therefore

EY = 1 +
1

Zε

∫

1

y − 2
Pε(dy) ≤ 1 +

3
2ε
3
10ε

= 6 .
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Lemma 10. If Q = 1
m (U1, . . . , Um) and Q

′ = 1
m(V1, . . . , Vm), where U and V

satisfy the assumptions of Proposition 11 with ε = 1
24δ, and recall that E = {Q ∈

D̃−
m,δ} and E′ = {Q ∈ D̃+

m}. Then

P[EC ] + P[E′C ] .
L4

δ2m
.

Proof. We first show that E holds as long as 1
m

∑m
i=1 U

2
i ≤ 8 and 1

m

∑m
i=1 |Ui−

1| ≤ δ. Indeed, if we set s :=
∑m

i=1Qi, where Qi = Ui/m, then the second condi-
tion together with Jensen’s inequality imply that |s− 1| ≤ δ. Therefore, recalling
that Q̄ = Q/s, we get

χ2(Q̄, u) + 1 = m

m
∑

i=1

Q̄2
i =

1

s2m

m
∑

i=1

U2
i ≤ 8

s2
≤ 8

1− 2δ
≤ 10 ,

where the final inequality follows from the assumption that δ ≤ 1/10. Hence
χ2(Q̄, u) ≤ 9.

Likewise,

dTV(Q̄, u) =
1

2

m
∑

i=1

∣

∣

∣

∣

Q̄i −
1

m

∣

∣

∣

∣

≤ 1

2

m
∑

i=1

∣

∣Q̄i −Qi
∣

∣+
1

2

m
∑

i=1

∣

∣

∣

∣

Qi −
1

m

∣

∣

∣

∣

≤ 1

2
(|s−1|+δ) ≤ δ .

By Chebyshev’s inequality combined with the assumption that EU2 ≤ 6,

P

[

1

m

m
∑

i=1

U2
i > 8

]

≤ Var(U2)

4m
,

and since U ≤ 16ε−1L2 almost surely,

Var(U2) ≤ EU4 ≤ (16ε−1L2)2EU2 . δ−2L4 .

Moreover, since ε = 1
24δ and E|U − 1| ≤ 12ε,

P

[

1

m

m
∑

i=1

|Ui − 1| > δ

]

≤ 4Var(|U − 1|)
δ2m

.
1

δ2m
.

Combining these bounds yields

P[EC ] .
L4

δ2m
.

The argument for E′ is analogous. It suffices for E′ to hold that 1
m

∑m
i=1 V

2
i ≤ 8

along with the conditions 1
m

∑m
i=1 |Vi − 1| ≥ 3

4 and
∣

∣( 1
m

∑m
i=1 Vi)− 1

∣

∣ ≤ δ. As

above, the first condition is violated with probability at most C L4

δ2m , and the
latter two conditions are violated with probability at most C 1

δ2m . The claim
follows.
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B.2 Omitted proofs

Proof of Proposition 4. Denote by ρ(1) and ρ(2) the distributions of Z(1)

and Z(2), respectively. It suffices to show W̃p,k(ν
(1), ν(2))+Wp(ρ

(1), ρ(2)) ≥Wp(ν
(1), ν(2)).

Let U ∈ Vk(Rd) be such that the column span of U agrees with the subspace U on
which the random variables X(1) and X(2) are supported in the definition of µ(1)

and µ(2). We let (Y (1), Y (2)) be a pair of random variables such that marginally

Y (i) ∼ µ
(i)
U for i ∈ {1, 2} and

W p
p (µ

(1)
U , µ

(2)
U ) = E‖Y (1) − Y (2)‖p .

Likewise, let (W (1),W (2)) be a coupling of ρ(1) and ρ(2) such that

W p
p (ρ

(1), ρ(2)) = E‖W (1) −W (2)‖p .

Then (4) implies that (Y (1) +W (1), Y (2) +W (2)) is a coupling of µ(1) and µ(2).
Therefore

Wp(µ
(1), µ(2)) ≤

(

E‖Y (1) +W (1) − (Y (2) +W (2))‖p
)1/p

≤
(

E‖Y (1) − Y (2)‖p
)1/p

+
(

E‖W (1) −W (2)‖p
)1/p

=Wp(µ
(1)
U , µ

(2)
U ) +Wp(ρ

(1), ρ(2))

≤ W̃p,k(µ
(1), µ(2)) +Wp(ρ

(1), ρ(2)) .

Proof of Lemma 1. This can be deduced from a series of well known facts.
By Proposition 6, it suffices to show that for f Lipschitz,

Eeλ(f(X)−Ef(X)) ≤ eC
2kλ2σ2/2 .

By symmetrization, we can bound

Eeλ(f(X)−Ef(X)) ≤ Eeλε(f(X)−f(X′)) ≤ Eeλε‖X−X′‖ ,

where X ′ ∼ µ is independent of X. Continuing, we obtain

Eeλε‖X−X′‖ ≤ Ee2λε‖X‖ ≤ e16kλ
2σ2

by Proposition 16. This proves the claim with C = 32.

Proof of Theorem 6. First, assume that µ satisfies the Tp(σ
2) inequality.

Then, by Gozlan and Léonard [40, Proposition 1.9], the product measure µ⊗n

satisfies the inequality Tp(n
2/p−1σ2) on the space X n equipped with the metric

ρp(x, y) := (
∑n

i=1 ρ(xi, yi)
p)1/p. Therefore, µ⊗n also satisfies T1(n

2/p−1σ2) with
respect to this same metric.

We now note that the function

(x1, . . . xn) 7→Wp

(

1

n

n
∑

i=1

δxi , µ

)
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is n−1/p-Lipschitz with respect to ρp. Indeed, we have

∣

∣

∣
Wp

( 1

n

n
∑

i=1

δxi , µ
)

−Wp

( 1

n

n
∑

i=1

δyi , µ
)
∣

∣

∣
≤Wp

( 1

n

n
∑

i=1

δxi ,
1

n

n
∑

i=1

δyi

)

≤
( 1

n

n
∑

i=1

ρ(xi, yi)
p
)1/p

= n−1/pρp(x, y) .

Combining these observations with Proposition 6, we obtain

Eeλ(Wp(µn,µ)−EWp(µn,µ)) ≤ eλ
2n−2/pn2/p−1σ2/2 = eλ

2n−1σ2/2 ∀λ ∈ R .

In the other direction, suppose thatWp(µn, µ) is σ
2/n-subgaussian. A Chernoff

bound implies the concentration inequality

P[Wp(µn, µ)− EWp(µn, µ) ≥ t] ≤ ent
2/2σ2 .

We follow the proof of Gozlan [38, Theorem 3.4], and only sketch the argument
here. It is easy to verify that the function Wp(·, µ) is lower semi-continuous with
respect to the weak topology [see 89, proof of Theorem 4.1], which implies that,
for any t ≥ 0, the set Ot := {ν ∈ P(X ) : Wp(ν, µ) > t} is open. Moreover, as
µ ∈ Pp, Villani [89, Theorem 6.9] combined with Varadarajan’s theorem yields
that EWp(µn, µ) → 0 as n→ ∞ [see 89, proof of Theorem 22.22].

Applying Sanov’s theorem then yields

− inf
ν∈Ot

D(ν‖µ) ≤ lim inf
n→∞

1

n
logP[Wp(µn, µ) > t]

≤ lim inf
n→∞

1

n
· nmax{(t− EWp(µn, µ))

2, 0}
2σ2

=
t2

2σ2
.

We obtain that, for any t ≥ 0,

D(ν‖µ) ≥ − t2

2σ2
∀ν ∈ P(X ) s.t. Wp(ν, µ) > t .

Therefore µ satisfies Tp(σ
2).

Proof of Theorem 7. As in the proof of Theorem 6, we have that µ⊗n

satisfies T1(n
2/p′−1σ2) with respect to ρp′(x, y). We also that that

(x1, . . . xn) 7→Wp

(

1

n

n
∑

i=1

δxi , µ

)

is n−1/p-Lipschitz with respect to ρp′ , since the fact that p′ ≤ p implies

∣

∣

∣
Wp

( 1

n

n
∑

i=1

δxi , µ
)

−Wp

( 1

n

n
∑

i=1

δyi , µ
)∣

∣

∣
≤ n−1/pρp(x, y) ≤ n−1/pρp′(x, y) .

We conclude as in the first part of the proof of Theorem 6.
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Proof of Theorem 10. We show that for any measures ν(1), ν(2), if V =

span(V̂ ) where V = argmaxU∈Vk(Rd)Wp(ν
(1)
U , ν

(2)
U ), then

sin2
(

∡(V,U)
)

.
W̃p,k(µ

(1), ν(1)) + W̃p,k(µ
(2), ν(2))

Wp(µ(1), µ(2))
.

Combined with Proposition 8, this implies the claim.
Proposition 14 guarantees the existence of an optimal coupling between µ(1)

and µ(2) such that if (X,Y ) ∼ γ, then X − Y lies in U almost surely. Let U ∈
Vk(Rd) be such that the column span of U is U . We have

Wp(µ
(1)
V , µ

(2)
V ) ≤ (E‖V (X − Y )‖p)1/p

= (E‖V U⊤U(X − Y )‖p)1/p

≤
∥

∥

∥
V U⊤

∥

∥

∥

op
(E‖X − Y ‖p)1/p =

∥

∥

∥
V U⊤

∥

∥

∥

op
Wp(µ

(1), µ(2)) .

By the definition of V ,

Wp(µ
(1), µ(2))−Wp(µ

(1)
V , µ

(2)
V ) =Wp(µ

(1)
U , µ

(2)
U )−Wp(µ

(1)
V , µ

(2)
V )

≤Wp(µ
(1)
U , µ

(2)
U )−Wp(ν

(1)
U , ν

(2)
U )

+Wp(ν
(1)
V , ν

(2)
V )−Wp(µ

(1)
V , µ

(2)
V )

≤ 2 sup
U∈Vk(Rd)

|Wp(µ
(1)
U , µ

(2)
U )−Wp(ν

(1)
U , ν

(2)
U )|

≤ 2W̃p,k(µ
(1), ν(1)) + 2W̃p,k(µ

(2), ν(2)) .

Therefore

(1−
∥

∥

∥
V U⊤

∥

∥

∥

op
)Wp(µ

(1), µ(2)) ≤ 2W̃p,k(µ
(1), ν(1)) + 2W̃p,k(µ

(2), ν(2)) .

Moreover,

sin2
(

∡(V,U)
)

= 1− sup
v∈V ,u∈U

‖u‖=‖v‖=1

(u⊤v)2

= 1− sup
x,y∈Rd

‖x‖=‖y‖=1

((Ux)⊤(V y))2

= 1−
∥

∥

∥
V U⊤

∥

∥

∥

2

op

≤ 2(1 −
∥

∥

∥
V U⊤

∥

∥

∥

op
) ,

since
∥

∥V U⊤∥
∥

op
≤ 1. The claim follows.
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