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EQUIANGULAR LINES WITH A FIXED ANGLE

ZILIN JIANG, JONATHAN TIDOR, YUAN YAO, SHENGTONG ZHANG, AND YUFEI ZHAO

Abstract. Solving a longstanding problem on equiangular lines, we determine, for each given fixed

angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by

the given angle.

Fix 0 < α < 1. Let Nα(d) denote the maximum number of lines through the origin in R
d

with pairwise common angle arccosα. Let k denote the minimum number (if it exists) of vertices

in a graph whose adjacency matrix has spectral radius exactly (1 − α)/(2α). If k < ∞, then

Nα(d) = ⌊k(d−1)/(k−1)⌋ for all sufficiently large d, and otherwise Nα(d) = d+o(d). In particular,

N1/(2k−1)(d) = ⌊k(d− 1)/(k − 1)⌋ for every integer k ≥ 2 and all sufficiently large d.

A key ingredient is a new result in spectral graph theory: the adjacency matrix of a connected

bounded degree graph has sublinear second eigenvalue multiplicity.

1. Introduction

A set of lines passing through the origin in R
d is called equiangular if they are pairwise separated

by the same angle. Equiangular lines and their variants appear naturally in pure and applied math-

ematics. It is an old and natural problem to determine the maximum number of equiangular lines

in a given dimension. The study of equiangular lines was initiated by Haantjes [12] in connection

with elliptic geometry and has subsequently grown into an extensively studied subject. Equiangular

lines show up in coding theory as tight frames [21]. Complex equiangular lines, also known under

the name SIC-POVM, play an important role in quantum information theory [20].

The problem of determining N(d), the maximum number of equiangular lines in R
d, was formally

posed by van Lint and Seidel [18]. The exact value of N(d) has been determined for only finitely

many d (see [2, 10]). A general upper bound N(d) ≤
(d+1

2

)

was shown by Gerzon (see [17]). It had

remained open for some time whether there is a matching quadratic lower bound, until de Caen [4]

gave a remarkable construction showing N(d) ≥ 2
9(d + 1)2 for d of the form d = 6 · 4i − 1, which

in particular implies that N(d) = Θ(d2) for all d. All examples of sets of Θ(d2) equiangular lines

in R
d have angles approaching 90◦ as d → ∞. It turns out that a completely different behavior

emerges when the common angle is held fixed as d → ∞, which is the focus of this paper.

Let Nα(d) denote the maximum number of lines in R
d through the origin with pairwise angle

arccosα. Equivalently, Nα(d) is the maximum number of unit vectors in R
d with pairwise inner

products ±α. Lemmens and Seidel [17] in 1973 initiated the problem of studying Nα(d) for fixed α

and large d. They completely determined the values of N1/3(d) for all d, and in particular proved

that N1/3(d) = 2(d − 1) for all d ≥ 15. Neumann (see [17]) showed that Nα(d) ≤ 2d unless 1/α

is an odd integer. It was conjectured by Lemmens and Seidel [17] and subsequently proved by

Neumaier [19] that N1/5(d) = ⌊3(d− 1)/2⌋ for all sufficiently large d. Neumaier [19] writes that

“the next interesting case [α = 1/7] will require substantially stronger techniques.”

Jiang was supported by an AMS Simons Travel Grant and NSF Award DMS-1953946. Tidor was supported by

the NSF Graduate Research Fellowship Program DGE-1745302. Zhao was supported by NSF Award DMS-1764176,
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We focus on the problem for fixed α and large d and refer the readers to [7] for discussion on

bounds for smaller values of d.

Recently there were a number of significant advances giving new upper bounds on Nα(d), starting

with the work of Bukh [3] who proved that Nα(d) is at most linear in the dimension for every fixed

α.1 Then came a surprising breakthrough of Balla, Dräxler, Keevash, and Sudakov [1], who showed

that lim supd→∞Nα(d)/d, as a function of α ∈ (0, 1), is maximized at α = 1/3, and in fact this

limit is at most 1.93 unless α = 1/3, in which case the limit is 2. In addition to introducing many

new tools and ideas, their important paper presents an approach to the equiangular lines problem

that forms a bedrock for subsequent work.

An outstanding problem is to determine limd→∞Nα(d)/d for every α. The results in [17, 19]

suggest, and it is explicitly conjectured in [3, Conjecture 8], that N1/(2k−1)(d) = kd/(k− 1)+Ok(1)

as d → ∞. A conjectural value of limd→∞Nα(d)/d for every α was given in [13] in terms of the

following spectral graph quantity.

Definition 1.1 (Spectral radius order). Define the spectral radius order, denoted k(λ), of a real

λ > 0 to be the smallest integer k so that there exists a k-vertex graph G whose spectral radius

λ1(G) is exactly λ. (When we say the spectral radius or eigenvalues of a graph we always refer to

its adjacency matrix.) Set k(λ) = ∞ if no such graph exists.

Jiang and Polyanskii [13] conjectured that limd→∞Nα(d)/d = k/(k − 1) where k = k(λ) with

λ = (1 − α)/(2α). They proved their conjecture whenever λ <
√

2 +
√
5 ≈ 2.058 (the cases

α = 1/3, 1/5, corresponding to λ = 1, 2, were known earlier, as discussed). In particular, it was

shown that N1/(1+2
√
2)(d) = 3d/2 +O(1). Furthermore, it was shown that Nα(d) ≤ 1.49d for every

α /∈ {1/3, 1/5, 1/(1 + 2
√
2)} and sufficiently large d > d0(α), improving the earlier bound in [1].

There is a natural limitation to all previous techniques when λ ≥
√

2 +
√
5, which Neumaier

had already predicted at the end of his paper [19] (hence his comment about α = 1/7, i.e., λ = 3,

mentioned earlier). We refer to [13] for discussion.

We completely settle all these conjectures in a strong form.

Theorem 1.2 (Main theorem). Fix α ∈ (0, 1). Let λ = (1 − α)/(2α) and k = k(λ) be its spectral

radius order. The maximum number Nα(d) of equiangular lines in R
d with common angle arccosα

satisfies

(a) Nα(d) = ⌊k(d− 1)/(k − 1)⌋ for all sufficiently large d > d0(α) if k < ∞.

(b) Nα(d) = d+ o(d) as d → ∞ if k = ∞.

Remark. Our proof of (a) works for d > 22
Cλk

with some constant C. For (b), it is known [13,

Propositions 15 and 23] that d ≤ Nα(d) ≤ d + 2 unless λ is a totally real algebraic integer that is

largest among its conjugates.2 For the remaining values of α, we leave it as an open problem to

determine the growth rate of Nα(d)− d.

If k ≥ 2 is an integer and α = 1/(2k−1), then λ = k−1 and k(λ) = k (the complete graph Kk is

the graph on fewest vertices with spectral radius k− 1), so the following corollary confirms Bukh’s

conjecture [3] in a stronger form, and extending the only two previously known cases of k = 2 [17]

and k = 3 [19].

1In fact a stronger version of the inequality was shown by Bukh [3], namely that for every fixed β > 0 one cannot

have more than Cβd unit vectors in R
d whose mutual inner products lie in [−1,−β] ∪ {α}.

2The conjugates of an algebraic integer λ are the other roots of its minimal polynomial. We say that λ is totally

real if all its conjugates are real.
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Corollary 1.3. For every fixed integer k ≥ 2, one has N1/(2k−1)(d) = ⌊k(d− 1)/(k − 1)⌋ for all

sufficiently large d > d0(k).

2. Proof ideas

In this section we summarize several key ideas used in the proof and discuss their origins.

Connection to spectral graph theory. Choose a unit vector in the direction of each line in the

equiangular set. By considering the Gram matrix, we recast the problem to one concerning the

spectrum of the adjacency matrix of an associated graph. The connection between equiangular

lines and spectral graph theory has been well known from early works, making equiangular lines

one of the foundational problems of algebraic graph theory (e.g., see [8, Chapter 11]).

Forbidden induced subgraphs. Using the fact that the Gram matrix is positive semidefinite, we

show that the associated graph cannot have certain induced subgraphs. This idea has appeared in

the early works of Lemmens and Seidel [18] and Neumaier [19], and it was reintroduced in recent

papers [1, 3, 13] under the guise of taking an orthogonal projection onto some subspace. In our

proof, we do not take projections; instead we simply verify the forbidden induced configurations by

testing positive semidefiniteness using appropriately chosen vectors.

Switching. Given a set of unit vectors representing an equiangular lines configuration, we may

negate some unit vector without changing the configuration of lines. The corresponding operation

on the associated graph picks some vertex and swaps the adjacency and non-adjacency relations

coming from that vertex. The idea of switching already appears in the early work of van Lint and

Seidel [18]. It was further used by Neumaier [19] together with an application of Ramsey’s theorem

to determine N1/5(d).

A novel extension of the switching argument was introduced in [1], combining the knowledge of

forbidden induced subgraphs (mentioned above) with an application of Ramsey’s theorem. This

can be used to show that one can switch some of the vertices in the associated graph so that it has

bounded degree.

Theorem 2.1. For every α ∈ (0, 1), there exists some ∆ (depending only on α) so that for every

set of equiangular lines in R
d with common angle arccosα, one can choose a set S of unit vectors,

with one unit vector in the direction of each line in the equiangular set, so that each unit vector in

S has inner product −α with at most ∆ other vectors in S.

The proof of this theorem follows by combining Lemmas 2.7 and 2.8 of [1]. Since this result is

an important ingredient of our proof and does not appear explicitly in [1], we give a self-contained

and streamlined proof in Section 5.

Second eigenvalue multiplicity. Our most significant new contribution is an upper bound on the

second eigenvalue multiplicity of the associated graph. Let λ1(G) ≥ λ2(G) ≥ · · · ≥ λ|G|(G) be the

eigenvalues of the adjacency matrix of G, accounting for multiplicities as usual. We call λj(G) the

j-th eigenvalue of G.

Theorem 2.2. For every j and every ∆, there is a constant C = C(∆, j) so that every connected n-

vertex graph with maximum degree at most ∆ has j-th eigenvalue multiplicity at most Cn/ log log n.

We only need j = 2 in this paper, though the proof for any fixed j is essentially the same. The

j-th eigenvalue multiplicity bound is used in a follow-up work on spherical two-distance sets [14].

We introduce a novel approach to bound eigenvalue multiplicity using the Cauchy interlacing

theorem along with comparing local and global spectral data via counting closed walks in the graph
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after deleting a small fraction of the vertices. See Section 4 for the proof as well as remarks on

bounds.

In contrast, the strategy in [1] and later adapted in [13] had the flavor of using projections to

exclude a finite set of subgraphs with spectral radii exceeding λ, though this strategy runs into a

serious limitation when λ ≥
√

2 +
√
5, as foreseen by Neumaier [19], since the family of forbidden

subgraphs has infinitely many minimal elements [13]. Our method overcomes this significant barrier.

3. Proof of the main theorem

A set of N equiangular lines can be represented by unit vectors v1, . . . , vN ∈ R
d with 〈vi, vj〉 = ±α

for all i 6= j. The Gram matrix (〈vi, vj〉)i,j is a positive semidefinite matrix with 1’s on the diagonal

and ±α everywhere else, so it is equal to (1− α)I + α(J − 2AG), where I is the identity matrix, J

the all-1’s matrix, and AG the adjacency matrix of an associated graph G on vertex set [N ] where

ij is an edge whenever 〈vi, vj〉 = −α. Dividing by 2α, we can rewrite this matrix as λI −AG + 1
2J ,

where λ = (1 − α)/(2α). Conversely, for every G and λ for which the above matrix is positive

semidefinite and has rank d, there exists a corresponding configuration of N equiangular lines in

R
d, one line for each vertex of G, with pairwise inner product ±α. Thus the equiangular lines

problem has the following equivalent spectral graph theoretic formulation.

Lemma 3.1. There exists a family of N equiangular lines in R
d with common angle arccosα if and

only if there exists an N -vertex graph G such that the matrix λI −AG + 1
2J is positive semidefinite

and has rank at most d, where λ = (1− α)/(2α) and J is the all-1’s matrix. �

We first establish the lower bounds.

Proposition 3.2. Let α ∈ (0, 1) and λ = (1 − α)/(2α). Let d be a positive integer. One has

Nα(d) ≥ d. If k = k(λ) < ∞, then Nα(d) ≥ ⌊k(d− 1)/(k − 1)⌋.

Proof. Let G be the empty graph on d vertices, so that AG = 0 and λI − AG + 1
2J is positive

semidefinite and has rank d. So Nα(d) ≥ d by Lemma 3.1.

Now assume k < ∞. Let H be a k-vertex graph with λ1(H) = λ. Let G be the disjoint union of

⌊(d− 1)/(k − 1)⌋ copies of H along with (d − 1) − (k − 1) ⌊(d− 1)/(k − 1)⌋ isolated vertices. The

number of vertices in G is (d− 1) + ⌊(d− 1)/(k − 1)⌋ = ⌊k(d− 1)/(k − 1)⌋.
Since λ is the spectral radius of G and the multiplicity of λ in G is ⌊(d− 1)/(k − 1)⌋, the matrix

λI − AG is positive semidefinite and has rank d− 1. Because 1
2J is also positive semidefinite and

has rank 1, their sum λI−AG+ 1
2J is positive semidefinite and has rank at most d. By Lemma 3.1,

Nα(d) ≥ ⌊k(d− 1)/(k − 1)⌋. �

We now prove the upper bounds in Theorem 1.2 assuming Theorems 2.1 and 2.2.

Proof of Theorem 1.2. The lower bounds follow from Proposition 3.2. For the upper bounds, con-

sider N equiangular lines in R
d. By Theorem 2.1, there is some constant ∆ = ∆(α) such that we

can choose one unit vector in the direction of each line so that the associated graph (whose edges

correspond to negative inner products) has maximum degree at most ∆. Let C1, . . . , Ct be the

connected components of G, numbered such that λ1(G) = λ1(C1).

If λ is not an eigenvalue of AG, then λI −AG has full rank. As J has rank 1,

d ≥ rank(λI −AG + 1
2J) ≥ N − 1.

Thus N ≤ d+ 1, and Theorem 1.2 clearly holds. Therefore we may assume that λ is an eigenvalue

of AG.
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First consider the case λ1(G) = λ. By the definition of spectral radius order k = k(λ) < ∞.

Since both λI −AG and J are positive semidefinite,

ker(λI −AG + 1
2J) = ker(λI −AG) ∩ ker(J).

By the Perron–Frobenius theorem, there is a top eigenvector of G with nonnegative entries. This

vector lies in ker(λI −AG) but not in ker(J), implying that dimker(λI −AG+ 1
2J) ≤ dimker(λI −

AG)− 1. By the rank–nullity theorem, we obtain

rank(λI −AG) ≤ rank(λI −AG + 1
2J)− 1 ≤ d− 1.

Without loss of generality, suppose C1, . . . , Cj are the components of G with spectral radius exactly

λ, and thus |C1| , . . . , |Cj | ≥ k by the definition of spectral radius order. By the Perron–Frobenius

theorem, the multiplicity of λ in each component is at most 1. Thus

dimker(λI −AG) = j and rank(λI −AG) ≥ (k − 1)j.

Combining the upper and lower bounds on rank(λI −AG), we obtain j ≤ (d− 1)/(k − 1). Thus,

N = rank(λI −AG) + dimker(λI −AG) ≤ d− 1 + j ≤ k(d− 1)

k − 1
.

Therefore Theorem 1.2 holds in this case.

Now we consider the complementary case λ1(C1) > λ. Since λI−AG+ 1
2J is positive semidefinite

and J is a rank 1 matrix, λI −AG has at most one negative eigenvalue. Thus λ2(G) ≤ λ.

We claim that this implies that the spectral radius of all the remaining components is strictly

less than λ. By the Perron-Frobenius theorem, there are top eigenvectors u,v for C1, Ci with

nonnegative entries (positive in the component under consideration and 0 outside it). Since both

1⊺u and 1⊺v are positive, we can choose c 6= 0 such that w = u− cv satisfies 1⊺w = 0. Now since

λI −AG + 1
2J is positive semidefinite, we have

0 ≤ w
⊺(λI −AG + 1

2J)w = w
⊺(λI −AG)w.

Expanding and using the fact that the supports of u and v are disconnected in G, we find

λu⊺
u+ c2λv⊺

v ≥ u
⊺AGu+ c2v⊺AGv = λ1(C1)u

⊺
u+ c2λ1(Ci)v

⊺
v,

implying that λ1(Ci) < λ for all i > 1. Therefore λI−ACi is invertible for all i > 1, so dimker(λI−
AG) = dimker(λI −AC1). Since C1 has maximum degree at most ∆, Theorem 2.2 gives

dimker(λI −AC1) = O∆(|C1| / log log |C1|) = O∆(N/ log logN).

Also,

rank(λI −AG) ≤ rank(λI −AG + 1
2J) + 1 ≤ d+ 1.

Thus

N = rank(λI −AG) + dimker(λI −AG) ≤ O∆(N/ log logN) + d+ 1.

This implies that N ≤ d + O∆(d/ log log d). When k < ∞, this is smaller than ⌊k(d− 1)/(k − 1)⌋
for sufficiently large d. �
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4. Bounding eigenvalue multiplicity

In this section we prove Theorem 2.2, which bounds the j-th eigenvalue multiplicity of a connected

bounded degree graph.

Definition 4.1. The r-neighborhood of a vertex v in a graph G, denoted Gr(v), is the subgraph of

G induced by all the vertices that are at most distance r away from v. An r-net in G is a subset

V of the vertices such that all vertices in G are within distance r from some vertex in V .

Lemma 4.2. Let n and r be positive integers. Every n-vertex connected graph has an r-net with

size at most ⌈n/(r + 1)⌉.

Proof. It suffices to prove the lemma in the case where G is a tree. Pick an arbitrary vertex w.

Take a vertex v at the maximum distance D from w. If D ≤ r, then {w} is an r-net. Otherwise,

let u be the vertex on the path between w and v at distance r from v. Add u to the net and repeat

the argument on the component of w in G− u, which has at most n− r − 1 vertices. �

The next lemma tells us that removing an r-net from a graph significantly decreases its spectral

radius.

Lemma 4.3. Let r be a positive integer. If H (with at least 1 vertex) is obtained from a graph G

by deleting an r-net of G, then

λ1(H)2r ≤ λ1(G)2r − 1.

Proof. It suffices to prove the lemma in the case where G has no isolated vertices. The result then

follows from the Perron–Frobenius theorem and the observation that A2r
H ≤ A2r

G − I entry-wise

(padding zeros to extend AH to a |G| × |G| matrix). Indeed, for each vertex v of H, the number

of closed walks of length 2r starting from v is strictly more in G than in H, since in G one can

walk to a nearest vertex in the r-net and then walk back (and then walking back and forth along

a single edge to reach length 2r) and this walk is not available in H. �

The next lemma connects the spectrum of a graph with its local spectral radii.

Lemma 4.4. For every graph G and positive integer r,

|G|
∑

i=1

λi(G)2r ≤
∑

v∈V (G)

λ1(Gr(v))
2r.

Proof. The left-hand side counts the number of closed walks of length 2r in G. The number of

such walks starting at v ∈ V (G) is 1⊺vA2r
Gr(v)

1v since such a walk must stay within distance r from

v. This quantity is upper bounded by λ1(Gr(v))
2r, completing the proof. �

Proof of Theorem 2.2. Let G be a connected n-vertex graph with maximum degree at most ∆. If

λj(G) ≤ 0, the theorem holds as the graph has bounded size. Indeed, in this case,

2 |E(G)| =
n
∑

i=1

λi(G)2 ≤
j−1
∑

i=1

λi(G)2 +





n
∑

i=j

λi(G)





2

=

j−1
∑

i=1

λi(G)2 +

(

j−1
∑

i=1

λi(G)

)2

≤ j2∆2.

Now suppose λ = λj(G) > 0. Let r1 = ⌊c log log n⌋ and r2 = ⌊c log n⌋ where c = c(∆, j) > 0 is a

sufficiently small constant. Let r = r1 + r2.

Define U = {v ∈ V (G) : λ1(Gr(v)) > λ}. We wish to bound the size of U . Let U0 be a maximal

subset of U such that the pairwise distance (in G) between any two elements of U0 is at least 2(r+1).
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Then the graph Gr(U0) induced by the r-neighborhood of U0 has |U0| connected components each

with spectral radius greater than λ. Hence λ|U0|(Gr(U0)) > λ = λj(G), and thus |U0| < j by the

Cauchy interlacing theorem. Due to the maximality of U0, its 2(r + 1)-neighborhood contains U ,

and hence |U | ≤ |U0|∆2(r+1) < j∆2(r+1).

Let V0 be an r1-net of size at most ⌈n/(r1 + 1)⌉ in G obtained from Lemma 4.2. Let H be the

graph obtained fromG after removing V0∪U . For each v ∈ V (H), the vertices in Gr(v) not inHr2(v)

form an r1-net of Gr(v), and hence by Lemma 4.3, λ1(Hr2(v))
2r1 ≤ λ1(Gr(v))

2r1 − 1 ≤ λ2r1 − 1.

By Lemma 4.4,

|H|
∑

i=1

λi(H)2r2 ≤
∑

v∈V (H)

λ1(Hr2(v))
2r2 ≤

(

λ2r1 − 1
)r2/r1 n.

Hence the multiplicity of λ in H is at most

(

1− λ−2r1
)r2/r1 n ≤ e−r2λ−2r1/r1n ≤ e−

√
lognn,

provided that c is chosen to be small enough initially (here we note that λ ≤ λ1(G) ≤ ∆). Since

|V0| + |U | ≤ ⌈n/(r1 + 1)⌉ + j∆2(r+1) = Oj,∆(n/ log log n), the Cauchy interlacing theorem implies

that the multiplicity of λ in G is at most Oj,∆(n/ log log n). �

Remark. Theorem 2.2 fails for disconnected graphs since λj(G) can be the spectral radius of many

identical small components.

It seems likely that the upper bound can be further improved. It cannot be improved beyond

O(n1/3) due to the following construction: let p ≥ 5 be a prime and G the Cayley graph of PSL(2, p)

with two standard group generators. Then G is a connected 4-regular graph on p(p2−1)/2 vertices.

Since all non-trivial representations of PSL(2, p) have dimension at least (p − 1)/2, all eigenvalues

of G except λ1(G) have multiplicity at least (p − 1)/2 (see [6]). More generally, one can use

quasirandom groups [9], which are groups with no small irreducible non-trivial representations.

The claim is false without the maximum degree hypothesis. Paley graphs have p vertices and

second eigenvalue (
√
p − 1)/2 with multiplicity (p − 1)/2. Other strongly regular graphs and

distance-regular graphs have similar properties.

5. Switching to a bounded degree graph

It remains to prove Theorem 2.1, which says that one can choose the unit vectors for the equiangu-

lar lines so that the associated graph G has bounded degree. Recall that the edges of G correspond

to pairs of unit vectors with inner product −α. This argument essentially appears in [1] though

phrased differently. Here we give a self-contained and streamlined proof.

We begin by using the positive semidefiniteness of the Gram matrix to show that certain induced

subgraphs cannot appear in G.

Lemma 5.1. Let α ∈ (0, 1). Let G be the associated graph of a set of unit vectors with pairwise

inner products ±α. Then the largest clique in G has size at most α−1 + 1.

Proof. Let v1, . . . , vM be unit vectors corresponding to a clique in G, so that 〈vi, vj〉 = −α for i 6= j.

Then 0 ≤ ‖v1 + · · ·+ vM‖22 = M −M(M − 1)α. Hence M ≤ α−1 + 1. �

Definition 5.2. For a graph G and sets A ⊆ X ⊆ V (G), define CX(A) to be the set of vertices in

V (G) \X that are adjacent to all vertices in A and not adjacent to any vertices in X \ A.
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Lemma 5.3. Let α ∈ (0, 1) and λ = (1−α)/(2α). There exist positive integers M1,M2 depending

only on α such that the following holds. Let G be the associated graph of a set of unit vectors with

pairwise inner products ±α. If X is an independent set of G with at least M1 vertices, then

(a) the maximum degree of the subgraph of G induced by CX(∅) (i.e., the non-neighbors of X)

is at most ⌈λ2⌉, and
(b) |CX(Y )| ≤ M2 for every nonempty proper subset Y of X.

Proof. (a) Assume for contradiction that there exists a star K1,D in CX(∅) with vertex set V1

where D = ⌈λ2⌉+1. Consider the vector v that assigns
√
D to the center of the star, 1 to all other

vertices in V1, −(D +
√
D)/ |X| to all vertices in X, and 0 to all other vertices of G. We have

v
⊺
(

λI −AG + 1
2J
)

v ≥ 0

due to positive semidefiniteness. Since Jv = 0,

0 ≤ λ(v⊺
v)− v

⊺AGv ≤ λ

(

2D +
(D +

√
D)2

|X|

)

− 2D
√
D.

As λ <
√
D, this gives a contradiction when |X| ≥ M1 is sufficiently large.

(b) Write a = |Y |, b = |X \ Y |, and c = |CX(Y )|. For any real numbers α, β, γ, we consider the

vector v that assigns α to the vertices in Y , β to the vertices in X \ Y , γ to the vertices in CX(Y ),

and 0 to all other vertices. We have

0 ≤ v
⊺
(

λI −AG + 1
2J
)

v ≤ λ(aα2 + bβ2 + cγ2)− 2acαγ + 1
2 (aα+ bβ + cγ)2

for all real α, β, γ. Taking β = −(aα+ cγ)/(b + 2λ), we obtain

λ(aα2 + cγ2)− 2acαγ +
λ

b+ 2λ
(aα+ cγ)2 ≥ 0

for all real numbers α and γ. This is a quadratic form in α and γ. For it to take nonnegative values

its discriminant must be nonpositive. Thus

4
(b+ λ)2

(b+ 2λ)2
a2c2 − 4

(

λa+
λa2

b+ 2λ

)(

λc+
λc2

b+ 2λ

)

≤ 0,

which simplifies to

(b+ λ)2ac ≤ (λa+ λb+ 2λ2)(λc + λb+ 2λ2).

Rearranging the inequality gives

c ≤ λ2(a+ b+ 2λ)

ab− λ2
.

Since a, b are positive integers, we have the easy bound ab ≥ a+ b−1. Recalling that a+ b = |X| ≥
M1, we can take M1 ≥ 2λ2 + 2 to give the somewhat crude bound

c ≤ λ2(a+ b+ 2λ)

ab− λ2
≤ λ2(a+ b+ 2λ)

a+ b− (λ2 + 1)
≤ 2λ2(a+ b+ 2λ)

a+ b
= 2λ2 +

4λ3

a+ b
≤ 2λ2 + 2λ.

Choosing M1,M2 appropriately, we conclude |CX(Y )| = c ≤ M2, as desired. �

Proof of Theorem 2.1. For a set of N equiangular lines in R
d with common angle arccosα, choose

unit vectors v1, . . . , vN in the directions of the lines arbitrarily. Let G be the associated graph,

whose vertex set is V = {v1, . . . , vN} with an edge between two vectors if their inner product is

−α.

Let M0 = ⌈α−1⌉ + 2 and define M1,M2 as in Lemma 5.3. By Ramsey’s theorem, there exists

R = R(M0, 2M1) such that if |V | > R, then G contains either a clique of size M0 or an independent
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set of size 2M1. As long as we choose ∆ ≥ R, the result is trivially true for |V | ≤ R. Thus we

may assume that |V | > R. By Lemma 5.1, G does not contain a clique of size M0. Thus G must

contain an independent set of size 2M1, which we call V1.

We perform the following switching operation, modifying our set of vectors {v1, . . . , vN}. For

any vertex vi 6∈ V1 adjacent to more than half of the vertices in V1, replace vi by −vi.

Considering how each vertex in V \ V1 is attached to V1, the set V \ V1 can be partitioned

as a disjoint union of CV1(Y ) as Y ranges over all subsets of V1 with at most |V1| /2 elements,

since the above switching step ensures that CV1(Y ) is empty for |Y | > |V1| /2. By Lemma 5.3(b),

|CV1(Y )| ≤ M2 for each Y 6= ∅. Let V2 = CV1(∅), the non-neighbors of V1. We know that

|V \ V2| ≤ M := 2M1 + 22M1M2.

It remains to bound the degree of vertices in V . If v ∈ V1, then v is only adjacent to vertices in

V \ V2 and thus has degree at most M . Now suppose v 6∈ V1. Let Y be the set of non-neighbors

of v in V1. The switching ensures that |Y | ≥ |V1| /2 = M1. Applying Lemma 5.3(a), the maximum

degree of the subgraph induced by CY (∅) is at most ⌈λ2⌉. This set CY (∅) includes V2 and v,

implying that v has degree at most D :=
⌈

λ2
⌉

+ M . Thus we have bounded the degree of every

vertex by D, a constant depending only on α. �

6. Further remarks

Our main theorem completely determines Nα(d) for sufficiently large d in the case k(λ) < ∞.

However, it is still open what happens exactly when k(λ) = ∞. The construction in Proposition 3.2

only gives a lower bound Nα(d) ≥ d, whereas the proof of Theorem 1.2 shows Nα(d) = d +

Oα (d/ log log d). The following conjecture was made in [13] and has been verified except when λ is

a totally real algebraic integer that is largest among its conjugates [13, Propositions 15 and 23].

Conjecture 6.1. Fix α ∈ (0, 1), and let λ = (1− α)/(2α). If k(λ) = ∞, then Nα(d) = d+Oα(1).

Question 6.2. How large does d need to be for Theorem 1.2 to hold?

Many interesting questions can be asked regarding Theorem 2.2 as well.

Question 6.3. Fix ∆. What is the maximum possible second eigenvalue multiplicity of a connected

n-vertex graph with maximum degree at most ∆?

Theorem 2.2 shows that the λ2 multiplicity is O∆(n/ log log n). On the other hand, it cannot be

better than O(n1/3) when ∆ ≥ 4 (see the remark at the end of Section 4).

Remark. It is interesting to ask the same question when restricted to Cayley graphs of finite groups.

For abelian or nearly abelian groups (e.g., nilpotent of bounded step), the problem of eigenvalue

multiplicities has interesting connections to deep results in Riemannian geometry. Following the

approach of Colding and Minicozzi [5] on harmonic functions on manifolds and Kleiner’s proof [15]

of Gromov’s theorem on groups of polynomial growth [11], Lee and Makarychev [16] showed that

in groups with bounded doubling constant K = maxR>0 |B(2R)| /|B(R)| (where B(R) is the ball

of radius R), the second eigenvalue multiplicity of such a Cayley graph is bounded, namely at most

KO(logK). Note that a Cayley graph on a nilpotent group of bounded step (e.g., an abelian group)

with a bounded number of generators has bounded doubling constant.

The above discussion gives a substantial improvement to Theorem 2.2 for non-expanding Cayley

graphs. On the other hand, for expander graphs (not necessarily Cayley), say, satisfying |N(A)| ≥
(1 + c) |A| for all vertex subsets A with |A| ≤ n/2, the bound in Theorem 2.2 can be improved to

O∆,j,c(n/ log n). Indeed, for such expander graphs Lemma 4.2 can be improved as follows. Every
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maximal r-separated set is necessarily an r-net, and the size of such a set in this expander graph

is at most n/(1 + c)⌊r/2⌋, as can be seen by considering the sizes of the ⌊r/2⌋-neighborhoods which
must necessarily be disjoint. However, there are Cayley graphs that expand at some scales and

have bounded doubling at other scales. Neither of these techniques applies to such graphs.

The following more refined question, where we fix λ > 0, appears to be more relevant to the

problem of equiangular lines, especially in pinning down the asymptotics of the error term in

Theorem 1.2.

Question 6.4. Fix ∆, λ > 0. What is the maximum multiplicity that λ can appear as the second

eigenvalue of a connected n-vertex graph with maximum degree at most ∆?

If the answer is O(1) for some λ and sufficiently large ∆, then our proof shows that Conjecture 6.1

holds for this λ.

Finally, there are many similarly flavored questions regarding s-distance sets and codes in R
n,

the sphere, and other spaces. Complex versions and higher dimensional analogs are also worth

exploring further. We state one of these questions here, which is partially addressed in a follow-up

work [14].

Question 6.5. Fix 1 > α ≥ 0 > β ≥ −1. What is the maximum size of a spherical {α, β}-code
in R

d? That is, what is the maximum number of unit vectors in R
d such that all pairwise inner

products are α or β?
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