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ABSTRACT

We present a randomized algorithm which takes as input an undi-

rected graph 𝐺 on 𝑛 vertices with maximum degree Δ, and a num-

ber of colors 𝑘 ≥ (8/3 + 𝑜Δ (1))Δ, and returns – in expected time

�̃� (𝑛Δ2
log𝑘) – a proper 𝑘-coloring of 𝐺 distributed perfectly uni-

formly on the set of all proper𝑘-colorings of𝐺 . Notably, our sampler

breaks the barrier at𝑘 = 3Δ encountered in recent work of Bhandari

and Chakraborty [STOC 2020]. We also discuss how our methods

may be modified to relax the restriction on 𝑘 to 𝑘 ≥ (8/3 − 𝜖0)Δ
for an absolute constant 𝜖0 > 0.

As in the work of Bhandari and Chakraborty, and the pioneering

work of Huber [STOC 1998], our sampler is based on Coupling from

the Past [Propp&Wilson, Random Struct. Algorithms, 1995] and the

bounding chain method [Huber, STOC 1998; Häggström& Nelander,

Scand. J. Statist., 1999]. Our innovations include a novel bounding

chain routine inspired by Jerrum’s analysis of the Glauber dynamics

[Random Struct. Algorithms, 1995], as well as a preconditioning

routine for bounding chains which uses the algorithmic Lovász

Local Lemma [Moser&Tardos, J.ACM, 2010].
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1 INTRODUCTION

Let𝐺 = (𝑉 (𝐺), 𝐸 (𝐺)) be an undirected graph with vertex set𝑉 (𝐺)
and edge set 𝐸 (𝐺). For an integer 𝑘 ≥ 1, a (proper) 𝑘-coloring

of 𝐺 is a map 𝜑 : 𝑉 (𝐺) → [𝑘] (:= {1, . . . , 𝑘}) such that for all

{𝑢, 𝑣} ∈ 𝐸 (𝐺), 𝜑 (𝑢) ≠ 𝜑 (𝑣). In this paper, we study the problem of
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efficiently perfectly sampling a𝑘-coloring of a graph with maximum

degree Δ, uniformly at random from among all such colorings.

1.1 Sampling 𝑘-Colorings: Approximately and

Perfectly

The algorithmic problem of sampling a uniformly random𝑘-coloring

of a graph with maximum degree Δ has been intensely studied (see,

e.g., the references in [4, 6]). Perhaps the major open problem in

this area is to devise – for all 𝑘 ≥ Δ + 2 – a (randomized) algo-

rithm, with running time polynomial in 𝑛 = |𝑉 (𝐺) |, 𝑘 , and ln(1/𝜖),
which outputs a distribution within total variation distance 𝜖 of the

uniform distribution on the space of 𝑘-colorings; the lower bound

corresponds to the minimum number of colors needed to ensure

that the Glauber dynamics on the space of proper 𝑘-colorings is

irreducible, and is within 1 color of the classical theorem of Brooks

which asserts that Δ + 1 colors are sufficient to color any graph of

maximum degree Δ (and necessary for cliques and cycles of odd

length).

Recall that the Glauber dynamics on the space of 𝑘-colorings

is the Markov chain which, at a coloring 𝜒 , chooses a vertex uni-

formly at random from 𝑉 (𝐺), and updates its color to be a color

chosen uniformly at random from among those not already oc-

cupied by its neighbors; it is readily seen that this Markov chain

is ergodic for 𝑘 ≥ Δ + 2, and has the uniform distribution on the

space of 𝑘-colorings as its stationary distribution. In a seminal work,

Jerrum [10] showed that the Glauber dynamics mixes rapidly for

𝑘 > 2Δ, thereby providing an efficient algorithm for approximately

sampling 𝑘-colorings for all 𝑘 > 2Δ. The lower bound on 𝑘 was

relaxed by Vigoda [17] to 11Δ/6 by using a different Markov chain

based on ‘flip dynamics’, although by using comparison techniques,

his proof also implies rapid mixing of the Glauber dynamics for

𝑘 > 11Δ/6. Recently, Chen, Delcourt, Moitra, Perarnau, and Postle

[4] sharpened Vigoda’s analysis to further relax the lower bound to

𝑘 > (11/6 − 𝜖0)Δ, where 𝜖0 is a small absolute constant (∼ 10
−4).

Under additional assumptions on the degree and girth of 𝐺 , even

less restrictive lower bounds on 𝑘 are known (see, e.g., the refer-

ences in [2, 4, 6]).

The problem of efficiently (i.e. polynomial in 𝑛 and 𝑘) perfectly

sampling 𝑘-colorings, which is the focus of this paper, was first

studied by Huber [9], who used Coupling from the Past (CFTP)

[16] along with the bounding chain method [8, 9] to devise an

efficient algorithm for perfectly sampling 𝑘-colorings, provided

that 𝑘 > Δ(Δ + 2). One of the motivations of Huber’s work was

that using perfect sampling algorithms in the general sampling-

to-counting framework of Jerrum, Valiant, and Vazirani [11] can

potentially be used to obtain faster algorithms for the problem
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of approximately counting the number of 𝑘-colorings of a graph,

than can be obtained from approximate sampling algorithms [9,

Theorem 7]. Another motivation for his work was that – in contrast

to the approximate sampling algorithms discussed above, which

always need to be run for the known worst-case upper bound on

the mixing time in order to output a distribution guaranteed to

be close to the uniform distribution – perfect sampling algorithms

based on CFTP have the attractive property of coming with a well-

defined termination criterion, which may be reached in practice

well before the time suggested by worst-case analysis (in fact, for

implementing such an algorithm, the practitioner need not have

any knowledge of the worst-case running time).

In recent years, by exploiting the connection, due to Jerrum,

Valiant, and Vazirani [11, Theorem 3.3], between deterministic ap-

proximate counting and perfect sampling, several improvements of

Huber’s result, which are efficient for graphs of constant maximum

degree, have been obtained. Using the correlation decay technique,

Gamarnik and Katz [7], respectively Lu and Yin [13], obtained per-

fect samplers with 𝑘 > 2.78Δ for triangle free graphs, respectively

𝑘 > 2.58Δ for general bounded degree graphs, both running in time

𝑂 (𝑛𝑂 (log𝑘) ); using Barvinok’s polynomial interpolation method,

Liu, Sinclair, and Srivastava [12] provided a perfect sampler for

𝑘 ≥ 2Δ running in time𝑂 (𝑛exp(poly(𝑘)) ) (in fact, these three works

provide deterministic approximate counting algorithms, which lead

to perfect sampling algorithms using the work of Jerrum, Valiant,

and Vazirani [11] mentioned above).

For general graphs, where Δ (or 𝑘) is allowed to grow with 𝑛, the

only improvement of Huber’s result is the recent work of Bhandari

and Chakraborty [2], who provided an efficient CFTP based perfect

sampler for 𝑘 > 3Δ. The natural question left open by their work

is whether one can devise efficient perfect samplers for 𝑘 < 3Δ –

indeed, the sampler in [2] may be viewed as implementing a two-

stage process, with natural barriers at 𝑘 = 3Δ encountered (for

different reasons) at both the stages (see Section 3.3 for a quick

overview and [2, Section 3] for a more detailed explanation).

1.2 Our Result

As our main result, we obtain a CFTP based perfect sampler for

𝑘 > (8/3 + 𝑜 (1))Δ. Pleasantly, our sampler has the same expected

running time as in [2].

Theorem 1.1. There is a randomized algorithm PerfectSampler

(Algorithm 1) and an absolute constant 𝐶1.1 > 0 such that the fol-

lowing holds. Given an undirected graph 𝐺 with maximum degree

Δ ≥ 𝐶1.1, and a number of colors 𝑘 with 𝑘 ≥ 8Δ/3 +𝐶1.1

√
Δ logΔ,

PerfectSampler returns a uniformly random 𝑘-coloring of 𝐺 , and

runs in expected time 𝑂 (𝑇1 +𝑇2 +𝑇3), where

𝑇1,𝑇2,𝑇3 = 𝑂 (𝑛(log𝑛)2Δ2 (logΔ) (log𝑘)).

Remark. The proof shows that for Δ sufficiently large, taking𝐶1.1 =

2 is sufficient. Moreover, in Section 6, we briefly indicate how our

sampler may be modified to obtain a version of Theorem 1.1 for

𝑘 ≥ (8/3−𝜖)Δ, where 𝜖 ≈ 10
−2

is an absolute constant. We decided

not to pursue this improvement since (i) the details are a bit more

technical and all the main ideas are already present in our current

analysis, (ii) the improvement is relatively minor, and can anyway

not reach 𝑘 > 5Δ/2, which we believe is a natural barrier for our

methods (see Section 6 for a discussion of this).

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we pro-

vide an introduction to coupling from the past, and the bounding

chain method. In particular, the standard Lemma 2.1 reduces the

proof of Theorem 1.1 to the construction of a certain procedure

which we call SamplerUnit. In Section 3, we provide an overview

of this procedure – Section 3.1 contains some notation used through-

out the paper, Section 3.2 contains a preliminary routine used by

our algorithm, whose proof is presented in Appendix A, Section 3.3

provides a quick introduction to the sampler in [2], Section 3.4

provides a description of SamplerUnit, modulo the details of some

primitive routines, and finally, Section 3.5 provides a high-level dis-

cussion of the key ideas underpinning the construction and analysis

of our sampler. Section 4 presents and analyses our main primitives

– compress, seeding, and disjoint, Section 5 completes the anal-

ysis of SamplerUpdate, and Section 6 concludes with some final

remarks (including a brief sketch of how to relax the lower bound

in Theorem 1.1 to (8/3 − 𝜖0)Δ) and directions for future research.

2 COUPLING FROM THE PAST AND

BOUNDING CHAINS

2.1 Coupling from the Past

As in [2, 9], our perfect sampler is based on coupling from the past

(CFTP), which is a general procedure due to Propp and Wilson [16]

for sampling exactly from the stationary distribution of a Markov

chain. The basic idea behind CFTP is that for an ergodic Markov

chain started at time −∞, its location at time 0 should be distributed

according to the stationary distribution; hence, if we could deter-

mine the location at time 0 by only looking at the randomness

generating the chain in the recent past, then we would have an

efficient way of obtaining a sample from the stationary distribution

of the chain.

Implementing this idea algorithmically for an ergodic Markov

chain on a finite state space Ω typically amounts to the following:

for 𝑖 = 1, 2, . . . ,𝑇 , we generate independent random maps 𝑓−𝑖 :

Ω → Ω with the property that if 𝜔 ∈ Ω is distributed according to

the stationary distribution, then 𝑓−𝑖 (𝜔) is also distributed according
to the stationary distribution. If it so happens that the composite

function

𝐹−1,−𝑇 := 𝑓−1 ◦ · · · ◦ 𝑓−𝑇
is constant on Ω, then we are guaranteed that 𝐹−1,−𝑇 (𝜔0) (for any
𝜔0 ∈ Ω; note that the image does not depend on the choice of𝜔0) is

a sample from the stationary distribution. If 𝐹−1,−𝑇 is not constant,

then we can consider 𝐹−1,−𝑇 ◦𝐹−𝑇−1,−2𝑇 (by independently generat-

ing 𝑓−𝑇−1, . . . , 𝑓−2𝑇 ), and so on. More formally, Theorem 1.1 follows

from the following standard lemma, once we have constructed a

suitable randomized algorithm SamplerUnit and predicate Φ.

Lemma 2.1. Let 𝐺 be an undirected graph on 𝑛 vertices with max-

imum degree Δ, let 𝑘 ≥ 8Δ/3 + 𝐶1.1

√
Δ logΔ, and let Ω denote

the set of 𝑘-colorings of 𝐺 . Suppose there is a randomized algo-

rithm SamplerUnit for generating a distribution D on functions
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𝐹 : Ω → Ω, and a predicate Φ : Supp(D) → {true, false} with the

following properties:

(P1) If 𝜒 is uniformly distributed in Ω, and 𝐹 is generated accord-

ing to D independently of 𝜒 , then 𝐹 (𝜒) is also uniformly

distributed in Ω.
(P2) If Φ(𝐹 ) = true, then 𝐹 is constant on Ω.
(P3) P𝐹∼D [Φ(𝐹 ) = true] ≥ 1/2.
(P4) SamplerUnit runs in time 𝑇1, Φ(𝐹 ) can be computed in time

𝑇2, and 𝐹 (𝜒) can be computed in time 𝑇3.

Then, given a seeding setS as in Line 1 of Algorithm 1, the randomized

algorithm PerfectSampler terminates in expected time𝑂 (𝑇1+𝑇2+𝑇3)
and returns a uniformly distributed 𝑘-coloring of 𝐺 .

Proof. Let 𝐹−1, 𝐹−2, . . . be the i.i.d. samples from D generated

by PerfectSampler. Let 𝜒 be an independent and uniformly dis-

tributed 𝑘-coloring, let 𝜒 𝑗 = 𝐹−1 ◦ · · · ◦ 𝐹−𝑗 (𝜒), and let 𝜒∗ be
the output of the algorithm. Let 𝑖 ≥ 1. By (P1), it follows that

𝜒𝑖 is also a uniformly distributed 𝑘-coloring. Moreover, by (P2,

P3), 𝜒𝑖 = 𝜒∗ with probability at least 1 − 2−𝑖 (since this happens
whenever ∨𝑖

𝑗=1
Φ(𝐹−𝑖 ) = true). In particular, by the coupling char-

acterization of total variation distance, 𝜒∗ is within total variation

distance 2
−𝑖

of the uniform distribution on the space of 𝑘-colorings.

Finally, since 𝑖 ≥ 1 is arbitrary, it follows that 𝜒∗ is actually itself

uniformly distributed. The claim about the running time follows

easily by noting that the outer loop is executed at most 2 times in

expectation. □

Algorithm 1: PerfectSampler – Takes an input proce-

dure SamplerUnit and converts procedure into a perfect

sampler.

1 Compute seeding set S (as in Proposition 3.1)

2 for 𝑖 = 1, 2, . . . do

3 Generate 𝐹−𝑖 according to SamplerUnit

4 if Φ(𝐹−1 ◦ · · · ◦ 𝐹−𝑖 ) = True then

5 Output unique coloring in the image of

𝐹−1 ◦ · · · ◦ 𝐹−𝑖 and Terminate

The main challenge in CFTP based algorithms is efficiently de-

termining whether Φ(𝐹 ) = true. A priori, this requires evaluating

𝐹 for every 𝜔 ∈ Ω, which is infeasible if |Ω | is very large. How-

ever, in certain contexts where the domain Ω is equipped with a

natural partial order compatible with the Markov chain, considera-

tions of monotonicity or anti-monotonicity can reduce this task to

evaluating 𝐹 on only a small number of ‘extremal’ elements (see,

e.g., [8, 16] for examples). Unfortunately, in our case, where Ω is

the space of 𝑘-colorings, |Ω | is too large (potentially 𝑘𝑛) to per-

mit direct evaluation of 𝐹 , and moreover, there doesn’t seem to be

any natural notion of (anti)monotonicity compatible with various

Markov chains on the space of colorings.

2.2 Bounding Chains

To overcome this issue, Huber [9] and independently Häggström

and Nelander [8] introduced the method of bounding chains. The

way this method is implemented in the case of 𝑘-colorings is the

following: while evaluatingΦ(𝐹 ), where 𝐹 is the composite function

𝐹−1,−𝑇 as in the previous subsection, instead of precisely keeping

track of the intermediate images 𝑓−𝑗 ◦ · · · ◦ 𝑓−𝑇 , we maintain a set

𝐿−𝑗+1 (𝑣) of colors for each vertex 𝑣 ∈ 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛} with the

property that for all 𝑗 ∈ [𝑇 ], the image of Ω under 𝑓−𝑗 ◦ · · · ◦ 𝑓−𝑇
is contained in 𝐿−𝑗+1 (𝑣1) × · · · × 𝐿−𝑗+1 (𝑣𝑛). Then, if we can show

that |𝐿0 (𝑣) | = 1 for all 𝑣 ∈ 𝑉 (𝐺), we will be done. The idea here is
that the (product) space of sets of available colors at each vertex,

while cruder, is more amenable to the design of CFTP algorithms

(for instance, note that there is a natural partial order on this space

induced by set-theoretic inclusion of the set of available colors

at each vertex). The perfect samplers in [2, 9] are both based on

CFTP and the bounding chain method. Our improvement stems

from a novel implementation of this method (see Section 3.5 for a

discussion of the key ideas); in particular, among other things, we

find a way of lifting Jerrum’s analysis [10] of the rapid mixing of

Glauber dynamics to bounding chains (Section 3.5.1).

3 OVERVIEW OF SAMPLERUNIT

3.1 Notation

Throughout, 𝐺 will be an undirected graph on 𝑛 vertices with

maximum degree Δ. A bounding list is a list 𝐿 = (𝐿(𝑣) : 𝑣 ∈ 𝑉 (𝐺)),
where each 𝐿(𝑣) is a subset of colors in [𝑘]. We will often refer to

𝐿(𝑣) as the bounding set of the vertex 𝑣 . Given a vertex 𝑣 ∈ 𝑉 (𝐺),
we let

𝑆𝐿 (𝑣) =
⋃

𝑤∈𝑁 (𝑣)
𝐿(𝑤), 𝑄𝐿 (𝑣) =

⋃
𝑤∈𝑁 (𝑣)
|𝐿 (𝑤) |=1

𝐿(𝑤).

Here, as is standard, 𝑁 (𝑣) denotes the neighborhood of a vertex 𝑣 .

A key quantity in our algorithm is the set

𝑁 ∗𝐿 (𝑣) = {𝑤 ∈ 𝑁 (𝑣) : |𝐿(𝑤) | = 2 and

𝐿(𝑤) ∩ 𝐿(𝑤 ′) = ∅ if𝑤 ′ ∈ 𝑁 (𝑤),𝑤 ′ ≠ 𝑤},
and the set of disjoint-pair colors associated to 𝑣 , defined by

𝐷𝐿 (𝑣) =
⋃

𝑤∈𝑁 ∗
𝐿
(𝑣)

𝐿(𝑤) .

Finally, let

𝐸𝐿 (𝑣) = 𝑆𝐿 (𝑣) \ (𝑄𝐿 (𝑣) ∪ 𝐷𝐿 (𝑣)) .
We will reserve the symbols 𝜒, 𝜒 ′ for 𝑘-colorings, and say that 𝜒

is compatible with 𝐿, denoted by 𝜒 ∼ 𝐿, if 𝜒 (𝑣) ∈ 𝐿(𝑣) for all 𝑣 . As
in [2], we will associate update operations with tuples – specifically,

we will use 6-tuples of the form

𝛼 = (𝑣, 𝜏, 𝐿, 𝐿′, 𝑀,𝛾),

where 𝑣 ∈ 𝑉 (𝐺), 𝜏 ∈ [0, 1], 𝐿, 𝐿′ are bounding lists,𝑀 is a sequence

of at most Δ + 1 distinct colors from [𝑘], and 𝛾 ∈ [3] specifies the
‘type’ of the update. Here, 𝑣 should be viewed as the vertex on which

the Glauber dynamics is being performed, 𝐿 represents the input

bounding lists before performing the Glauber dynamics, and 𝐿′

represents the output bounding lists after performing the Glauber

dynamics. The role of 𝜏 and𝑀 is more technical, and will become

clear later. We will denote the update operation (i.e. the map from

the space of proper colorings to itself) associated to the tuple 𝛼 by

𝑓𝛼 ; in particular, the sequence of random functions 𝑓−1, . . . , 𝑓−𝑇 , . . .
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discussed in Section 2.1 will be specified by the sequence of random

updates 𝛼−1, . . . , 𝛼−𝑇 , . . . .
As in [2], SamplerUnit will consist of a sequence of 𝑇 updates

satisfying the following three key properties. Fix 𝑡 ∈ {−𝑇, . . . ,−1}.
First, the random vertex 𝑣𝑡 is independent of 𝛼−𝑇 , . . . , 𝛼−𝑡−1. Sec-
ond, 𝑓𝛼𝑡 implements the Glauber dynamics at 𝑣𝑡 i.e. for any coloring

𝜒 , 𝑓𝛼𝑡 (𝜒) (𝑤) = 𝜒 (𝑤) for all 𝑤 ≠ 𝑣𝑡 and 𝑓𝛼𝑡 (𝜒) (𝑣𝑡 ) is uniformly

distributed in [𝑘] \ 𝜒 (𝑁 (𝑣)). Third, if 𝜒 ∼ 𝐿𝑡 , then 𝑓𝛼𝑡 (𝜒) ∼ 𝐿′𝑡 .

3.2 Finding a Seeding Set

The very first step of PerfectSampler consists of efficiently finding

a set S of seeded vertices, as defined in the following proposition.

In fact, if we need to generate multiple samples, we can perform

this step only once at the start, and use the same S for all calls to

PerfectSampler.

Proposition 3.1. Fix 𝜂 ∈ (0, 1/3) and let Δ ≥ 𝐶𝜂 . There is a set

of vertices 𝑆 ⊆ 𝑉 (𝐺) such that any 𝑣 ∈ 𝑉 (𝐺) satisfies
|𝑁 (𝑣) ∩ S𝑐 | ≤ (1 − 𝜂)Δ, |𝑁 (𝑣) ∩ S| ≤ Δ/3. (3.1)

Furthermore, there is a randomized algorithm that finds such a set

with probability at least 1/2 and runs in time 𝑂 (𝑛Δ + 𝑛 log𝑛).

Remark. In fact, we can let 𝐶𝜂 be an absolute constant for 𝜂 =

1/3 − 2
√
(logΔ)/Δ.

Proposition 3.1 is purely a statement about probabilistic combina-

torics, and has nothing to do with graph colorings. Its proof is based

on a standard application of the algorithmic Lovász Local Lemma

due to Moser and Tardos [15], and is included in Appendix A for

completeness.

3.3 Outline of the Bhandari-Chakraborty

Construction

Before presenting our construction of SamplerUnit, it is instruc-

tive to briefly review the salient features of the corresponding

construction in [2]; we refer the reader to [2, Section 1.2] for a more

detailed overview. Recall that the goal of the block of 𝑇 updates in

SamplerUnit is to ensure that, with probability at least 1/2, the
bounding list at the most recent time consists of sets of size 1. In

[2], this is accomplished in two phases – the first phase (referred

to as ‘collapsing’) serves to ensure that all bounding sets are of size

at most 2, whereas the second phase (referred to as ‘coalescing’)

makes all bounding sets of size 1 with probability at least 1/2.
The two phases are themselves based on two types of updates,

called compress and contract. The coalescing phase consists of

a predetermined number of applications of contract at uniformly

randomly chosen vertices. Whenever contract is applied at a

vertex 𝑣 , it results in the bounding set at 𝑣 contracting to size at

most 2, and with some probability, to size 1. However, to apply

contract at 𝑣 , one needs the promise that |𝑆𝐿 (𝑣) | < 𝑘 − Δ; since
bounding sets of size 2 (which is the only guarantee we have at the

end of the collapsing phase) can in general lead to |𝑆𝐿 (𝑣) | = 2Δ,
this is one source of the restriction 𝑘 > 3Δ. Also, while contract
leads to bounding sets of size at most 2, it may very well happen

that applying contract to a vertex which already has bounding

set of size 1 leads to a larger bounding set of size 2. During the

coalescing phase, in order for the repeated random applications of

contract to lead to a ‘drift’ towards all bounding sets having size

1, one also needs the condition that 𝑘 > Δ + Δ ·max𝑣∈𝑉 (𝐺) |𝐿(𝑣) |,
which again leads to the restriction 𝑘 > 3Δ.

In contrast to the coalescing phase, where the vertices are cho-

sen uniformly at random, the vertices chosen to update in the

collapsing phase are predetermined. Indeed, for an arbitrary order-

ing 𝑣1, . . . , 𝑣𝑛 of the vertices, the collapsing phase can be concisely

represented as

spruceup(𝑣1), contract(𝑣1), . . . , spruceup(𝑣𝑛), contract(𝑣𝑛),

where the job of spruceup(𝑣𝑖 ) is to ensure that the condition

|𝑁𝐿 (𝑣𝑖 ) | < 𝑘−Δ, needed to apply contract(𝑣𝑖 ), is satisfied. Finally,
spruceup(𝑣𝑖 ) is performed as follows: first, we pick an arbitrary

set 𝐴 of size Δ which non-trivially intersects the bounding sets of

all neighbors of 𝑣𝑖 preceding 𝑣𝑖 (in the fixed ordering of vertices).

Next, to each neighbor of 𝑣𝑖 succeeding it in the ordering, we apply

compress with input 𝐴 – this has the effect of changing the bound-

ing sets at these vertices to be the union of 𝐴 and a color outside

of 𝐴. Note that once spruceup(𝑣𝑖 ) is completed, we indeed have

|𝑁𝐿 (𝑣𝑖 ) | ≤ 2Δ, since the vertices preceding 𝑣𝑖 have already been

contracted (and hence, can contribute at most one color outside of

𝐴) whereas the vertices succeeding 𝑣𝑖 can also contribute at most

one color outside of 𝐴 (by definition of compress).

3.4 Our Construction of SamplerUnit

We are now ready to present our construction, which is based on

three kinds of updates – compress (Algorithm 2), seeding (Algo-

rithm 3), and disjoint (Algorithm 4). For the rest of the paper, we

will assume that Δ ≥ 𝐶 , for some sufficiently large absolute con-

stant𝐶 . Throughout this subsection, let 𝜂 = 1/3 − 2
√
(logΔ)/Δ, let

𝑘 > (3 − 𝜂)Δ, and let S be the set of vertices coming from Proposi-

tion 3.1 applied with 𝜂. For the sake of simplicity, let 𝑠 = |S|.

We construct SamplerUnit in the following four phases:

• Phase 1 (Seeding step): Arbitrarily order the vertices in S as

𝑣1, . . . , 𝑣𝑠 . For 1 ≤ 𝑖 ≤ 𝑠 , perform compress on all neighbors

of 𝑣𝑖 that are not in {𝑣1, . . . , 𝑣𝑖−1} with associated set𝐴 being

an arbitrary set of size Δ completely containing 𝐿(𝑤) for each
𝑤 ∈ 𝑁 (𝑣𝑖 ) ∩ {𝑣 𝑗 : 𝑗 < 𝑖}. Then, perform seeding on 𝑣𝑖 and

increment 𝑖 by 1 (if 𝑖 < 𝑠) or move to Phase 2 (if 𝑖 = 𝑠). Note

that at the end of this phase, all vertices in S have bounding

set of size at most 3.

• Phase 2 (Converting seeded vertices to size 2): For each 1 ≤
𝑖 ≤ 𝑠 , apply compress to all neighbors of 𝑣𝑖 not in S, with
associated set 𝐴 being an arbitrary set of size Δ completely

containing 𝐿(𝑤) for all𝑤 ∈ 𝑁 (𝑣𝑖 ) ∩S. Then, apply disjoint
to 𝑣𝑖 . Note that at the end of this phase, all vertices in S have

bounding set of size at most 2.

• Phase 3 (Converting remaining vertices to size 2): Mark all

vertices in S. Arbitrarily order the vertices in 𝑉 (𝐺) \ S
as 𝑣𝑠+1, . . . , 𝑣𝑛 . For 𝑠 + 1 ≤ 𝑖 ≤ 𝑛 perform the following

sequence of operations. Apply compress to all unmarked

neighbors of 𝑣𝑖 with associated set 𝐴 of size Δ determined

as follows: let 𝐿𝑚 be the current bounding list, restricted

to marked neighbors of 𝑣 . We greedily take elements from

𝑄𝐿𝑚 (𝑣) ∪ 𝐸𝐿𝑚 (𝑣) first, then (if the set constructed at this
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point has size less than Δ colors) elements from 𝐷𝐿𝑚 (𝑣) (in
order to do this, we arbitrarily order the vertices in 𝑁 ∗

𝐿𝑚
(𝑣)

as𝑤1, . . . ,𝑤ℓ , arbitrarily assign the two colors in 𝐿𝑚 (𝑤𝑖 ) the
numbers 2𝑖 − 1 and 2𝑖 , and then take as many colors as we

can in the prescribed order), and then (if we still do not have

Δ colors) arbitrarily from the remaining colors. Then, apply

disjoint to 𝑣𝑖 , mark 𝑣𝑖 , and increment 𝑖 by 1 (if 𝑖 < 𝑛) or

move to Phase 4 (if 𝑖 = 𝑛). Note that at the end of this phase,

all vertices have bounding set of size at most 2.

• Phase 4 (Drifting to size 1): For 𝑇𝐷 = 2(𝑘 − Δ)𝑛 log𝑛/(𝑘 −
5Δ/2) steps, apply disjoint on a uniformly random vertex

in the graph.

In Section 5, we show how SamplerUnit can be used to generate

a distributionD and a predicate Φ satisfying (P1)-(P4) in Lemma 2.1

with 𝑇1,𝑇2,𝑇3 as in Theorem 1.1.

3.5 Key Ideas

In this subsection, we provide an informal and high-level discussion

of some of the key ideas underlying our construction and analysis

of SamplerUnit.

3.5.1 Lifting Jerrum’s Analysis of Glauber Dynamics Using 𝐷𝐿 (𝑣).
Themain idea which enables us to bypass the obstacle at 3Δ encoun-

tered in the coalescing phase is a bounding list version of Jerrum’s

analysis in [10]. Recall that in the pre-Jerrum analysis of the Glauber

dynamics for 𝑘 > 3Δ (interpreted in the framework of path cou-

pling), one couples two chains by generating a uniformly random

pair (𝑣, 𝑐) ∈ 𝑉 (𝐺) × [𝑘], and updating the color at 𝑣 to 𝑐 whenever

possible. Suppose we have two colorings 𝜒 and 𝜒 ′ differing only at a
single vertex 𝑣0, with 𝜒 (𝑣0) = 𝑐0 and 𝜒 ′(𝑣0) = 𝑐 ′

0
. Then, under this

coupling, the distance between 𝜒 and 𝜒 ′ decreases by 1 iff for the

random pair (𝑣, 𝑐), 𝑣 = 𝑣0 and 𝑐 is one of the at most 𝑘−Δ colors not

appearing in |𝜒 (𝑁 (𝑣0)) | (note that 𝜒 (𝑁 (𝑣0)) = 𝜒 ′(𝑁 (𝑣0)). Also,
the distance between 𝜒 and 𝜒 ′ increases by 1 iff for the random

pair (𝑣, 𝑐), 𝑣 ∈ 𝑁 (𝑣0) and 𝑐 ∈ {𝑐0, 𝑐 ′
0
}. Since there are at least 𝑘 − Δ

pairs which decrease the distance by 1, and at most 2Δ pairs which

increase the distance by 1, we see (at least intuitively) that the dis-

tance drifts towards 0 if 𝑘 − Δ > 2Δ i.e. 𝑘 > 3Δ. Jerrum improved

the lower bound to 2Δ by slightly modifying this coupling so that

whenever 𝑐0 (respectively 𝑐
′
0
) is selected by for 𝜒 , 𝑐 ′

0
(respectively

𝑐0) is selected for 𝜒 ′; it is immediate that this halves the number of

‘bad’ pairs (𝑣, 𝑐), and leads to the weaker restriction 𝑘 − Δ > Δ i.e.

𝑘 > 2Δ.
In our algorithm, we perform a similar coupling of the colors in

𝐷𝐿 (𝑣) (which are naturally paired up by definition) – this appears

as one of the cases in the update disjoint, specifically Line 10 of

Algorithm 4 (amoment’s thought reveals that Line 20 of Algorithm 4

in effect implements Jerrum’s trick). However, in order to obtain

any improvement via such a coupling, we need |𝐷𝐿 (𝑣) | to constitute
a non-trivial fraction of |𝑁𝐿 (𝑣) |, which need not be the case (note

that no such difficulty arises in Jerrum’s work). We overcome this

issue using a win-win analysis based on a robust version (see (5.2))

of the extremal combinatorial fact that if |𝑆𝐿 (𝑣) | > 3Δ/2, then
|𝐷𝐿 (𝑣) | ≠ 0.

While this idea takes care of the barrier at 3Δ provided the bound-

ing list consists of sets of size at most 2, getting to this stage presents

a different obstacle owing to the fact that the update contract in

[2] requires 𝑘 > 3Δ in the worst case to satisfy its promise. We

circumvent this issue by using a combination of several ideas.

3.5.2 Preconditioning via Seeding. In contrast to [2, 9], we make

much greater use of the structure of the underlying graph𝐺 by first

identifying a set S of size ≈ 𝑛/3 such that each vertex has no more

than ≈ 2Δ/3 neighbors outside S and no more than Δ/3 neighbors
inside 𝑆 . Phase 1 ensures that all vertices in S have bounding sets

of size at most 3 – in order to accomplish this, we employ an update

called seeding which requires a weaker promise than contract,

but comes at the cost of the bounding set being of size at most

3 (as opposed to 2). Specifically, seeding requires the guarantee

that 𝑘 − Δ ≥ |𝑆𝐿 (𝑣) |2/(Δ + |𝑆𝐿 (𝑣) |); when |𝑆𝐿 (𝑣) | ≤ 2Δ (as can be

guaranteed by applying compress updates as in [2]), the right hand

side is at most 4Δ/3, so that the restriction on 𝑘 is only 𝑘 > 7Δ/3.
We note that the algorithmic Lovász local lemma has been used

in recent works on sampling [5, 14], also to find a distinguished set

of seed vertices depending on the combinatorial structure of the

instance, although our use of seed vertices is of a rather different

nature. We also remark that the specific seeding update we use is

closely related to the BoundedListSampler_2 in arXiv version 1

of [2] (which showed that perfectly sampling 𝑘-colorings with 𝑘 ≥
2𝑒Δ2/logΔ suffices); our use of this update here is of a completely

different nature, and is linked to the ideas mentioned before.

3.5.3 Substantially Exploiting the Flexibility in the Choice of 𝐴. In

[2], the set𝐴 used for compress updates to ‘spruce-up’ the neighbor-

hood of 𝑣 is always chosen to be simply a set of size Δ intersecting

the bounding set of each neighbor of 𝑣 preceding it in the order,

and has no additional properties. In contrast, our construction of

𝐴 is much more careful, and in fact, varies across phases to ac-

count for the different nature of the challenges encountered. In

particular, when ‘sprucing-up’ a vertex 𝑣 ∈ S in Phase 2, we take

𝐴 to be a set of size Δ containing all the colors appearing in any

bounding set of 𝑁 (𝑣) ∩ S – by Phase 1 and the definition of S,
this is always possible. Then, note that applying compress to the

at most ≈ 2Δ/3 neighbors of 𝑣 not in S can contribute at most

one additional color each, so that after this sprucing-up procedure,

|𝑆𝐿 (𝑣) | ≤ Δ+ ≈ 2Δ/3 =≈ 5Δ/3. At this point, we could use the

contract update from [2] to convert the bounding set of 𝑣 to size

at most 2, but for a streamlined treatment, we use our more refined

disjoint update.

3.5.4 Refining contract by Tracking 𝐷𝐿 (𝑣). Phase 3 of our algo-
rithm, whose analysis is the most involved, combines the previous

idea of exploiting the flexibility in the choice of 𝐴 with a varia-

tion of contract, called disjoint, which implements the idea in

Section 3.5.1. Notably, as compared to contract, which requires

the promise 𝑘 − Δ > |𝑆𝐿 (𝑣) |, disjoint requires the more refined

promise

|𝑆𝐿 (𝑣) | − |𝑄𝐿 (𝑣) | < (𝑘 − Δ)
(

𝑘 − |𝑄𝐿 (𝑣) |
𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2

)
;

note that when |𝑄𝐿 (𝑣) | = 0 = |𝐷𝐿 (𝑣) |, this reduces to the promise

required by contract. Once the desired properties of the disjoint

update have been established (Lemma 4.3), the analysis of Phase

3 boils down to checking that the promise required by disjoint is

always satisfied; we show that by using a more intricate procedure
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for selecting the set 𝐴, this refined promise can be satisfied with

around 8Δ/3 colors.

4 compress, seeding, AND disjoint

In this section, we present and analyse our three main updates –

compress, seeding, and disjoint. In each case, we explain how the

update is generated, how it interacts with the bounding list, and

how one can apply the resulting random function to colorings (i.e.

‘decode the update’) in order to simulate the Glauber dynamics at

the appropriate vertex.

4.1 compress

The first update, compress, is exactly the same as in [2], which

in turn builds on ideas in [9]; we sketch the analysis, as it serves

as a warm-up for the analysis of our other updates. We define

Compress in Algorithm 2, and summarize its important properties

in the following lemma.

Algorithm 2: compress – Takes an input update 𝛼in =

(𝑣in, 𝜏in, 𝐿in, 𝐿′in, 𝑀in, 𝛾in), a vertex 𝑣 , and a set 𝐴 of size Δ,
and outputs a compatible “compressed update”.

1 Function compress.gen:

Input :𝛼in = (𝑣in, 𝜏in, 𝐿in, 𝐿′in, 𝑀in, 𝛾in), 𝑣 ∈ 𝑉 (𝐺) and
𝐴 ⊆ [𝑘] with |𝐴| = Δ

Output :𝛼f = (𝑣f, 𝜏f, 𝐿f, 𝐿′f, 𝑀f, 𝛾f)
2 𝛾f ← 1; 𝑣f ← 𝑣 ; 𝐿f ← 𝐿′

in
; 𝐿′

f
← 𝐿f; 𝜏f ← unif[0, 1];

3 𝑐1 ← unif( [𝑘] \𝐴); 𝐿′
f
(𝑣) ← 𝐴 ∪ {𝑐1};

4 𝑀f ← UnifPermutation(𝐴);𝑀f ← (𝑀f, 𝑐1);
5 𝛼f ← (𝑣f, 𝜏f, 𝐿f, 𝐿′f, 𝑀f, 𝛾f);
6 Function compress.decode:

Input :𝛼 = (𝑣, 𝜏, 𝐿, 𝐿′, 𝑀,𝛾) with 𝛾 = 1 and a coloring

𝜒 ∼ 𝐿

Output : 𝜒 ′ ∼ 𝐿′

7 𝜒 ′ ← 𝜒 ;

8 𝑝𝜒 (𝑣) ← 𝑘−Δ
𝑘−|𝜒 (𝑁 (𝑣)) | ;

9 𝑐1 ← 𝑀 [Δ + 1] ⊲ Since 𝛾 = 1,𝑀 has length Δ + 1
10 if 𝑐1 ∉ 𝜒 (𝑁 (𝑣)) and 𝜏 ≤ 𝑝𝜒 (𝑣) then
11 𝜒 ′(𝑣) ← 𝑐1;

12 else

13 𝑀 ′ ← 𝑀 [1,Δ] \ 𝜒 (𝑁 (𝑣));
14 𝜒 ′(𝑣) ← 𝑀 ′[1]; ⊲ Exists if 𝑐1 ∈ 𝜒 (𝑁 (𝑣))

Lemma 4.1 ([2, Lemma 2.1]). Let 𝑘 ≥ Δ + 1. Let
𝛼in = (𝑣in, 𝜏in, 𝐿in, 𝐿′in, 𝑀in, 𝛾in),

and choose 𝑣 ∈ 𝑉 (𝐺) and 𝐴 ⊆ [𝑘] with |𝐴| = Δ. Let

𝛼f = (𝑣f, 𝜏f, 𝐿f, 𝐿′f, 𝑀 ′f, 𝛾 ′f)
be the output of compress.gen[𝛼in, 𝑣, 𝐴]. Let 𝜒 be a coloring, and let

𝜒 ′ = compress.decode[𝛼f, 𝜒]. Then:
(C1) 𝐿f = 𝐿′

in
, 𝐿′

f
(𝑢) = 𝐿f (𝑢) for 𝑢 ≠ 𝑣 , and 𝐿′

f
(𝑣) = 𝐴 ∪ {𝑐1} for

some 𝑐1 ∈ [𝑘] \𝐴.
(C2) If 𝜒 ∼ 𝐿f, then 𝜒 ′ ∼ 𝐿′

f
.

(C3) For 𝜒 ∼ 𝐿f, the random variable 𝜒 ′ is uniformly distributed

over the set of colorings satisfying 𝜒 ′(𝑤) = 𝜒 (𝑤) for 𝑤 ≠ 𝑣

(i.e., this follows Glauber dynamics).

(C4) Other than copying 𝐿′
in
, the expected runtime of compress.gen

is 𝑂 (Δ log𝑘 + log𝑛). The runtime of compress.decode is

𝑂 (Δ(logΔ log𝑘 + log𝑛)) .

Proof Sketch. The first and second items follow trivially by

construction, and the final item can also be justified easily (see [2,

Lemma 2.1] for details); the technical heart of the above lemma is

the third item, whose proof we now sketch.

Now, note that the randomness in 𝜒 ′ comes entirely from the

compress.gen routine. Consider some 𝜒 ∼ 𝐿f = 𝐿′
in
. compress.gen

chooses 𝑐1 ∈ [𝑘] \𝐴 uniformly. compress.decode changes only the

color of 𝜒 at 𝑣 , in the following way: if 𝑐1 ∉ 𝜒 (𝑁 (𝑣)), then we let

𝜒 ′(𝑣) = 𝑐1 with probability 𝑝𝜒 (𝑣). In all other cases, we let 𝜒 ′(𝑣) be
a uniform color in𝐴\𝜒 (𝑁 (𝑣)). Note that this set is empty onlywhen

𝜒 (𝑁 (𝑣)) = 𝐴, which implies that 𝑝𝜒 (𝑣) = (𝑘−Δ)/(𝑘−|𝜒 (𝑁 (𝑣)) |) =
1 and 𝑐1 ∉ 𝜒 (𝑁 (𝑣)), i.e., that the first case is always invoked. Hence
the decoding algorithm is well-defined.

Finally, we check that the color 𝜒 ′(𝑣) is chosen with the correct

probability. For this, note that we choose any fixed element 𝑐 ∈
[𝑘] \ (𝐴 ∪ 𝜒 (𝑁 (𝑣))) if 𝑐1 = 𝑐 and 𝜏 ≤ 𝑝𝜒 (𝑣), which happens with

probability

1

𝑘 − Δ ·
𝑘 − Δ

𝑘 − |𝜒 (𝑁 (𝑣)) | =
1

𝑘 − |𝜒 (𝑁 (𝑣)) | ,

which is the correct probability according to the Glauber dynamics.

By symmetry, the remaining probability is easily seen to be split

equally among 𝐴 \ 𝜒 (𝑁 (𝑣)), hence the probability distribution of

𝜒 ′(𝑣) is indeed uniform on [𝑘] \ 𝜒 (𝑁 (𝑣)). □

4.2 seeding

The second update, seeding, is a variant of contract in [2] (in fact,

it is closely related to BoundedListSampler_2 in arXiv version

1 of [2]). It has the crucial property of operating under a weaker

guarantee than |𝑆𝐿 (𝑣) | ≤ 𝑘 − Δ. The tradeoff in exchange for this

weaker guarantee is that the bounding set is no longer guaranteed

to be of size 2 but will instead be of size at most 3.

Lemma 4.2. Let 𝛼in = (𝑣in, 𝜏in, 𝐿in, 𝐿′in, 𝑀in, 𝛾in), and choose 𝑣 ∈
𝑉 (𝐺) such that

|𝑆𝐿 (𝑣) |2
Δ+|𝑆𝐿 (𝑣) | ≤ 𝑘 − Δ. Let 𝛼f = (𝑣f, 𝜏f, 𝐿f, 𝐿′f, 𝑀 ′f, 𝛾 ′f)

be the output of seeding.gen[𝛼in, 𝑣]. Let 𝜒 be a coloring, and let

𝜒 ′ = seeding.decode[𝛼f, 𝜒]. Then:
(S1) 𝐿f = 𝐿′

in
, 𝐿′

f
(𝑢) = 𝐿f (𝑢) for 𝑢 ≠ 𝑣 , and |𝐿′

f
(𝑣) | ≤ 3.

(S2) If 𝜒 ∼ 𝐿f, then 𝜒 ′ ∼ 𝐿′
f
.

(S3) For 𝜒 ∼ 𝐿f, the random variable 𝜒 ′ is uniformly distributed

over the set of colorings satisfying 𝜒 ′(𝑤) = 𝜒 (𝑤) for 𝑤 ≠ 𝑣

(i.e., this follows Glauber dynamics).

(S4) Other than copying 𝐿′
in
, the expected runtime of seeding.gen

is 𝑂 (Δ(log𝑘 + log𝑛)). The runtime of seeding.decode is

𝑂 (Δ(log𝑘 + log𝑛)).

Proof. The first two items are trivial, and the fourth item fol-

lows in the same way as in [2, Lemma 2.2(d)]. We now verify

the key third item. First, note that 𝑝𝜒 (𝑣) ∈ [0, 1] by the condi-

tion given. Indeed, since |𝜒 (𝑁 (𝑣)) | ∈ (0,Δ] we easily see that
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Algorithm 3: seeding – Takes an input update 𝛼in =

(𝑣in, 𝜏in, 𝐿in, 𝐿′in, 𝑀in, 𝛾in) and a vertex 𝑣 with
|𝑆𝐿 (𝑣) |2
Δ+|𝑆𝐿 (𝑣) | ≤

𝑘 − Δ, and outputs a compatible “seeding update”.

1 Function seeding.gen:

Input :𝛼in = (𝑣in, 𝜏in, 𝐿in, 𝐿′in, 𝑀in, 𝛾in), 𝑣 ∈ 𝑉 (𝐺)
with

|𝑆𝐿 (𝑣) |2
Δ+|𝑆𝐿 (𝑣) | ≤ 𝑘 − Δ

Output :𝛼f = (𝑣f, 𝜏f, 𝐿f, 𝐿′f, 𝑀f, 𝛾f)
2 𝛾f ← 2; 𝑣f ← 𝑣 ; 𝐿f ← 𝐿′

in
; 𝐿′

f
← 𝐿f; 𝜏f ← unif[0, 1];

3 𝑐1 ← unif( [𝑘] \ 𝑆𝐿 (𝑣)); 𝑐2, 𝑐3 ← unif(𝑆𝐿 (𝑣));
𝐿′
f
(𝑣) ← {𝑐1, 𝑐2, 𝑐3};

4 ⊲ 𝑐2, 𝑐3 chosen with repetition

5 𝑀f ← (𝑐1, 𝑐2, 𝑐3);
6 𝛼f ← (𝑣f, 𝜏f, 𝐿f, 𝐿′f, 𝑀f, 𝛾f);
7 Function seeding.decode:

Input :𝛼 = (𝑣, 𝜏, 𝐿, 𝐿′, 𝑀,𝛾) with 𝛾 = 2,

|𝑆𝐿 (𝑣) |2
Δ+|𝑆𝐿 (𝑣) | ≤ 𝑘 − Δ,𝑀 [1] ∉ 𝑆𝐿 (𝑣),
𝑀 [2], 𝑀 [3] ∈ 𝑆𝐿 (𝑣), and a coloring 𝜒 ∼ 𝐿

Output : 𝜒 ′ ∼ 𝐿′

8 𝜒 ′ ← 𝜒 ;

9 𝑝𝜒 (𝑣) ← |𝑆𝐿 (𝑣) |2
(𝑘−|𝜒 (𝑁 (𝑣)) |) ( |𝜒 (𝑁 (𝑣)) |+ |𝑆𝐿 (𝑣) |) ;

10 (𝑐1, 𝑐2, 𝑐3) ← 𝑀 [1, 3]
11 if {𝑐2, 𝑐3} ⊆ 𝜒 (𝑁 (𝑣)) or 𝜏 > 𝑝𝜒 (𝑣) then
12 𝜒 ′(𝑣) ← 𝑐1;

13 else if 𝑐2 ∉ 𝜒 (𝑁 (𝑣)) then
14 𝜒 ′(𝑣) ← 𝑐2;

15 else

16 𝜒 ′(𝑣) ← 𝑐3;

𝑝𝜒 (𝑣) ≥ 0, and moreover, that 𝑝𝜒 (𝑣) is maximized by its value

when |𝜒 (𝑁 (𝑣)) | = 0 or |𝜒 (𝑁 (𝑣)) | = Δ (since the denominator of

𝑝𝜒 (𝑣) is a concave function of |𝜒 (𝑁 (𝑣)) | on [0,Δ]). In the former

case, we have 𝑝𝜒 (𝑣) = |𝑆𝐿 (𝑣) |/𝑘 ≤ 1. In the latter case, we have

𝑝𝜒 (𝑣) =
|𝑆𝐿 (𝑣) |2

(𝑘 − Δ) (Δ + |𝑆𝐿 (𝑣) |)
≤ 1

by the given condition.

Finally, consider any color 𝑐 ∈ 𝑆𝐿 (𝑣) \ 𝜒 (𝑁 (𝑣)). It is chosen if

and only if 𝜏 ≤ 𝑝𝜒 (𝑣), and also either 𝑐2 = 𝑐 or 𝑐2 ∈ 𝜒 (𝑁 (𝑣)) and
𝑐3 = 𝑐 (and the latter case clearly satisfies 𝑐2 ≠ 𝑐). This occurs with
probability(

1

|𝑆𝐿 (𝑣) |
+ |𝜒 (𝑁 (𝑣)) ||𝑆𝐿 (𝑣) |

· 1

|𝑆𝐿 (𝑣) |

)
· |𝑆𝐿 (𝑣) |2
(𝑘 − |𝜒 (𝑁 (𝑣)) |) ( |𝜒 (𝑁 (𝑣)) | + |𝑆𝐿 (𝑣) |)

=

1

𝑘 − |𝜒 (𝑁 (𝑣)) | ,

as required. Furthermore, since colors in [𝑘] \ 𝑆𝐿 (𝑣) are symmetri-

cally chosen, the result again immediately follows. □

4.3 disjoint

For the sake of notational lightness, throughout this subsection and

in the definition of Algorithm 4, we let 𝑆 = |𝑆𝐿 (𝑣) |, 𝑄 = |𝑄𝐿 (𝑣) |,
𝐷 = |𝐷𝐿 (𝑣) |, and 𝐸 = |𝐸𝐿 (𝑣) | = 𝑆 −𝑄 − 𝐷 .

We now define our most complicated update, disjoint, which

can be seen as combining the contract update in [2] with a bound-

ing list version of Jerrum’s analysis of the Glauber dynamics in [10],

by pairing up colors in 𝐷𝐿 (𝑣). This additional pairing, compared to

the analysis in [2, 9], is critical in obtaining a better drift estimate

in the final coalescence phase and ensuring that the final stages of

Phase 3 succeed for 𝑘 < 3Δ.

To begin, recall from Section 3.1 that 𝑆𝐿 (𝑣) is the set of colors
appearing in the bounding lists 𝐿(𝑤) for neighbors𝑤 of 𝑣 , 𝑄𝐿 (𝑣)
is the set of colors that appear in some bounding list 𝐿(𝑤) for
𝑤 ∈ 𝑁 (𝑣) with |𝐿(𝑤) | = 1, i.e., the bounding list forces this color

to appear in 𝜒 (𝑁 (𝑣)) if 𝜒 ∼ 𝐿,

𝑁 ∗𝐿 (𝑣) = {𝑤 ∈ 𝑁 (𝑣) : |𝐿(𝑤) | = 2 and

𝐿(𝑤) ∩ 𝐿(𝑤 ′) = ∅ if𝑤 ′ ∈ 𝑁 (𝑤),𝑤 ′ ≠ 𝑤},
and the disjoint-pair colors associated to 𝑣 are

𝐷𝐿 (𝑣) =
⋃

𝑤∈𝑁 ∗
𝐿
(𝑣)

𝐿(𝑤) .

The key property of the disjoint-pair colors is that they appear in

exactly one bounding set of a neighbor of 𝑣 , and moreover, are nat-

urally paired up with another disjoint-pair color via the bounding

set of the same element of 𝑁 ∗
𝐿
(𝑣). Note that𝑄𝐿 (𝑣) ∩𝐷𝐿 (𝑣) = ∅ and

𝐷𝐿 (𝑣) is a disjoint union of pairs 𝐿(𝑤) for𝑤 ∈ 𝑁 ∗
𝐿
(𝑣); in particular,

𝜒 (𝑁 (𝑣)) always has at least 𝑄 + 𝐷/2 different colors. Recall also
that 𝐸𝐿 (𝑣) = 𝑆𝐿 (𝑣) \ (𝑄𝐿 (𝑣) ∪ 𝐷𝐿 (𝑣)).

Lemma 4.3. Let 𝛼in = (𝑣in, 𝜏in, 𝐿in, 𝐿′in, 𝑀in, 𝛾in), and choose 𝑣 ∈
𝑉 (𝐺) such that 𝑆 −𝑄 < (𝑘 − Δ) ( 𝑘−𝑄

𝑘−𝑄−𝐷/2 ). Let

𝛼f = (𝑣f, 𝜏f, 𝐿f, 𝐿′f, 𝑀 ′f, 𝛾 ′f)
be the output of disjoint.gen[𝛼in, 𝑣]. Let 𝜒 be a coloring and let

𝜒 ′ = disjoint.decode[𝛼f, 𝜒]. Then:
(D1) 𝐿f = 𝐿′

in
, 𝐿′

f
(𝑢) = 𝐿f (𝑢) for 𝑢 ≠ 𝑣 , and |𝐿′

f
(𝑣) | ≤ 2. Moreover,

|𝐿′
f
(𝑣) | = 1 with probability 1 − 𝑆−𝑄

𝑘−Δ +
𝐷/2

𝑘−𝑄−𝐷/2 .
(D2) If 𝜒 ∼ 𝐿f, then 𝜒 ′ ∼ 𝐿′

f
.

(D3) For 𝜒 ∼ 𝐿f, the random variable 𝜒 ′ is uniformly distributed

over the set of colorings satisfying 𝜒 ′(𝑤) = 𝜒 (𝑤) for 𝑤 ≠ 𝑣

(i.e., this follows Glauber dynamics).

(D4) Other than copying 𝐿′
in
, the expected runtime of disjoint.gen

is 𝑂 (Δ(log𝑘 + log𝑛)). The runtime of disjoint.decode is

𝑂 (Δ(log𝑘 + log𝑛)).

Proof. To begin, we check that 𝑞(𝑣), 𝑝𝜒 (𝑣), 𝑝Δ (𝑣), 𝑝 ′𝜒 (𝑣) ap-
pearing in Algorithm 4 lie in [0, 1] and 𝑝𝜒 (𝑣) ≤ 𝑝Δ (𝑣). Since
|𝜒 (𝑁 (𝑣)) | ≤ Δ < 𝑘 , it follows that 𝑝 ′𝜒 (𝑣) ∈ [0, 1]. Next, since

𝑘 −𝑄 − 𝐷
𝑘 −𝑄 − 𝐷/2 · (1 − 𝑞(𝑣)) ·

1

𝐸
· 𝑝 ′𝜒 (𝑣) =

1

𝑘 − |𝜒 (𝑁 (𝑣)) | , (4.1)

it follows that 1 − 𝑞(𝑣) > 0. Also,

1

𝑘 −𝑄 −𝐷/2 +
𝑘 −𝑄 −𝐷
𝑘 −𝑄 −𝐷/2 · 𝑞 ·

1

𝐷
=

𝑘 −𝑄
(𝐾 −𝑄 −𝐷/2)𝐷 −

𝐸

(𝑘 − Δ)𝐷

=
𝑘 −𝑄

(𝑘 −𝑄 −𝐷/2)𝐷 −
𝑆 −𝑄 −𝐷
(𝑘 − Δ)𝐷
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Algorithm 4: disjoint – Takes an input update 𝛼in =

(𝑣in, 𝜏in, 𝐿in, 𝐿′in, 𝑀in, 𝛾in) and a vertex 𝑣 with 𝑆 −𝑄 < (𝑘 −
Δ) ( 𝑘−𝑄

𝑘−𝑄−𝐷/2 ), and outputs a compatible “disjoint update”.

1 Function disjoint.gen:

Input :𝛼in = (𝑣in, 𝜏in, 𝐿in, 𝐿′in, 𝑀in, 𝛾in), 𝑣 ∈ 𝑉 (𝐺)
with 𝑆 −𝑄 < (𝑘 − Δ) ( 𝑘−𝑄

𝑘−𝑄−𝐷/2 )
Output :𝛼f = (𝑣f, 𝜏f, 𝐿f, 𝐿′f, 𝑀f, 𝛾f)

2 𝛾f ← 3; 𝑣f ← 𝑣 ; 𝐿f ← 𝐿′
in
; 𝐿′

f
← 𝐿f; 𝜏f ← unif[0, 1];

3 if unif[0, 1] > 𝑘−𝑄−𝐷
𝑘−𝑄−𝐷/2 then

4 𝑤 ← unif(𝑁 ∗
𝐿
(𝑣)); 𝐿′

f
(𝑣) ← 𝐿(𝑤);𝑀f ← 𝐿(𝑤); ⊲

Arbitrarily order 𝐿(𝑤)
5 else

6 𝑐1 ← unif( [𝑘] \ 𝑆𝐿 (𝑣)); 𝑐2 ← unif(𝐷𝐿 (𝑣));
7 𝑞(𝑣) ← 1 − (𝑘−𝑄−𝐷/2)𝐸

(𝑘−𝑄−𝐷) (𝑘−Δ) ;

𝑝Δ (𝑣) ← (Δ−𝑄−𝐷/2)𝐷
(𝑘−Δ) (𝑘−𝑄−𝐷)𝑞 (𝑣)

8 if unif[0, 1] ≤ 𝑞(𝑣) then
9 if unif[0, 1] > 𝑝Δ (𝑣) then
10 𝐿′

f
(𝑣) ← {𝑐1};𝑀f ← (𝑐1);

11 else

12 𝐿′
f
(𝑣) ← {𝑐1, 𝑐2};𝑀f ← (𝑐1, 𝑐2);

13 else

14 𝑐2 ← unif(𝐸𝐿 (𝑣)); 𝐿′f (𝑣) ← {𝑐1, 𝑐2};
𝑀f ← (𝑐1, 𝑐2);

15 𝛼f ← (𝑣f, 𝜏f, 𝐿f, 𝐿′f, 𝑀f, 𝛾f);
16 Function disjoint.decode:

Input :𝛼 = (𝑣, 𝜏, 𝐿, 𝐿′, 𝑀,𝛾) with 𝛾 = 3,

𝑆 −𝑄 < (𝑘 − Δ) ( 𝑘−𝑄
𝑘−𝑄−𝐷/2 ), and a coloring

𝜒 ∼ 𝐿

Output : 𝜒 ′ ∼ 𝐿′

17 𝜒 ′ ← 𝜒 ;

18 𝑞(𝑣) ← 1 − (𝑘−𝑄−𝐷/2)𝐸
(𝑘−𝑄−𝐷) (𝑘−Δ) ;

𝑝𝜒 (𝑣) ← ( |𝜒 (𝑁 (𝑣)) |−𝑄−𝐷/2)𝐷
(𝑘−|𝜒 (𝑁 (𝑣)) |) (𝑘−𝑄−𝐷)𝑞 (𝑣) ;

𝑝 ′𝜒 (𝑣) ← 𝑘−Δ
𝑘−|𝜒 (𝑁 (𝑣)) | ;

19 if |𝑀 | = 1 or𝑀 [1, 2] ⊆ 𝐷𝐿 (𝑣) then
20 𝜒 ′(𝑣) ← 𝑀 \ 𝜒 (𝑁 (𝑣)); ⊲ This is size 1 due to the

disjointness condition

21 else

22 if 𝑀 [2] ∈ 𝐷𝐿 (𝑣) then
23 𝑟𝜒 (𝑣) ← 𝑝𝜒 (𝑣)/𝑝Δ (𝑣);
24 else

25 𝑟𝜒 (𝑣) ← 𝑝 ′𝜒 (𝑣);
26 if 𝑀 [2] ∈ 𝜒 (𝑁 (𝑣)) or 𝜏 > 𝑟𝜒 (𝑣) then
27 𝜒 ′(𝑣) ← 𝑀 [1];
28 else

29 𝜒 ′(𝑣) ← 𝑀 [2];

>
𝑆 −𝑄
(𝑘 − Δ)𝐷 −

𝑆 −𝑄 −𝐷
(𝑘 − Δ)𝐷

=
1

𝑘 − Δ
≥ 1

𝑘 − |𝜒 (𝑁 (𝑣)) |

≥ 1

𝑘 −𝑄 −𝐷/2 ;

where the strictly inequality uses our assumption that 𝑆 − 𝑄 <

(𝑘 − Δ) ( 𝑘−𝑄
𝑘−𝑄−𝐷/2 ); this shows that 𝑞(𝑣) > 0. Since

1

𝑘 −𝑄 − 𝐷/2 +
𝑘 −𝑄 − 𝐷
𝑘 −𝑄 − 𝐷/2 · 𝑞(𝑣) ·

1

𝐷
· 𝑝𝜒 (𝑣) =

1

𝑘 − |𝜒 (𝑁 (𝑣)) | ,
(4.2)

combining with the previous inequality shows that 𝑝𝜒 (𝑣) ∈ [0, 1].
Substituting Δ for |𝜒 (𝑁 (𝑣)) | in (4.2) also shows that 𝑝Δ ∈ [0, 1].
Finally, since |𝜒 (𝑁 (𝑣)) | ≤ Δ, it follows that 𝑝𝜒 (𝑣) ≤ 𝑝Δ (𝑣).

We now proceed to the proof of the items in the conclusion of

the lemma. The second item is trivial, and the fourth item follows

as in [2, Lemma 2.2(d)]. The only non-trivial part of the first item is

the claim about the probability with which |𝐿′
f
(𝑣) | = 1, which we

will check at the end of the proof. We now verify the third item.

• The expression on the left hand side of (4.1) is the probability

that a particular 𝑐 ∈ 𝐸𝐿 (𝑣)\𝜒 (𝑁 (𝑣)) is chosen as 𝜒 ′(𝑣), since
for this to happen, we must have chosen the second case

of disjoint.gen (which happens with probability (𝑘 −𝑄 −
𝐷)/(𝑘 −𝑄 − 𝐷/2)), then the second subcase of this (which

happens independently with probability 1 − 𝑞(𝑣)), and then

chosen 𝑐 ∈ 𝐸𝐿 (𝑣) from a uniform sample (which happens

independently with probability 1/𝐸), all before choosing the

last line of disjoint.decode (which happens independently

with probability 𝑝 ′𝜒 (𝑣)).
• The expression on the left hand side of (4.2) is the probability

that a particular 𝑐 ∈ 𝐷𝐿 (𝑣) \ 𝜒 (𝑁 (𝑣)) is chosen as 𝜒 ′(𝑣).
– The first term comes from the case where we generate

𝐿′
f
(𝑣) = {𝑐, 𝑐 ′} = 𝐿(𝑤) for some 𝑤 ∈ 𝑁 ∗

𝐿
(𝑣) (which hap-

penswith probability (1−(𝑘−𝑄−𝐷)/(𝑘−𝑄−𝐷/2))×2/𝐷 =

1/(𝑘 −𝑄 −𝐷/2)) – note that this always decodes to 𝑐 since

𝑐 is the unique element in {𝑐, 𝑐 ′} which is not in 𝜒 (𝑁 (𝑣))).
– The second term is similar to the previous paragraph – we

must choose the second case of disjoint.gen (which hap-

pens with probability (𝑘 −𝑄 −𝐷)/(𝑘 −𝑄 −𝐷/2)), then the

first subcase of that (which happens independently with

probability 𝑞(𝑣)), choose 𝑐 ∈ 𝐷𝐿 (𝑣) from a uniform sam-

ple (which independently happens with probability 1/𝐷),
enter line 12 of disjoint.gen (which happens indepen-

dently with probability 𝑝Δ (𝑣)), and finally, enter line 30

of disjoint.decode (which happens independently with

probability 𝑝𝜒 (𝑣)/𝑝Δ (𝑣)).
• Finally, all remaining colors in [𝑘] \ 𝜒 (𝑁 (𝑣)) are in [𝑘] \
𝑆𝐿 (𝑣), and are treated uniformly, hence as before we have

the desired uniformity.

Finally, we verify the remaining claim in the first item. Indeed,

the bounding chain gives a set of size 1 with probability

𝑘 −𝑄 −𝐷
𝑘 −𝑄 −𝐷/2𝑞 (𝑣) (1 − 𝑝Δ (𝑣)) =

𝑘 −𝑄 −𝐷
𝑘 −𝑄 −𝐷/2

(
1 − (𝑘 −𝑄 −𝐷/2)𝐸
(𝑘 −𝑄 −𝐷) (𝑘 − Δ)

− (Δ −𝑄 −𝐷/2)𝐷
(𝑘 − Δ) (𝑘 −𝑄 −𝐷)

)
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= 1 − 𝑆 −𝑄
𝑘 − Δ +

𝐷/2
𝑘 −𝑄 −𝐷/2 ,

as desired. □

5 ANALYSIS OF SamplerUnit

Let SamplerUnit be defined as in Section 3.4. More formally, let 𝑇

be the total number of updates used in the four phases, and starting

from time −𝑇 , let (𝛼−𝑇 )f, . . . , (𝛼−1)f be the 𝑇 updates described

in Section 3.4 generated as follows: for each 𝑡 ∈ [𝑇 ], (𝑣−𝑡 )in and

(𝛾−𝑡 )in are chosen as described in Section 3.4. Moreover,

((𝜏−𝑡 )in, (𝐿−𝑡 )in, (𝐿′−𝑡 )in, (𝑀−𝑡 )in)

= ((𝜏−𝑡−1)f, (𝐿−𝑡−1)f, (𝐿′−𝑡−1)f, (𝑀−𝑡−1)f),
with the initial conditions

((𝜏−𝑇 )in, (𝐿−𝑇 )in, (𝐿′−𝑇 )in, (𝑀−𝑇 )in)

= (1,
∏

𝑣∈𝑉 (𝐺)
[𝑘],

∏
𝑣∈𝑉 (𝐺)

[𝑘], ∅).

We slightly overload notation (this does not create any confusion) by

using 𝐹 to refer both to the sequence of tuples (𝛼−𝑇 )f, . . . , (𝛼−1)f, as
well as the composite function (𝛼−1)f .decode◦· · ·◦(𝛼−𝑇 )f .decode,
interpreted in the obvious way, generated by these tuples. Also, the

predicate Φ(𝐹 ) is defined as evaluating to true iff (𝐿′−1)f is a list
of sets of size 1.

To complete the proof of Theorem 1.1, we need to check two

things:

(Q1) Our description of SamplerUnit is well-defined or equiv-

alently that the promise required to execute seeding and

disjoint is satisfied at every step.

(Q2) The resulting D,Φ satisfy properties (P1)-(P4) of Lemma 2.1.

The next subsection contains an analysis of Phase 4 of SamplerUnit,

and completely addresses (Q2).

5.1 Drift Analysis: Phase 4 Succeeds with

Probability at least 1/2
The goal of this subsection is to show that after all bounding sets

have been reduced to size at most 2, applying disjoint a sufficient

number of times at a uniformly randomly chosen vertex gives

coalescence with sufficiently high probability. This is the analogue

of [2, Lemma 2.5]. As in [2, 9], we will make use of the following

random walk lemma due to Huber [9] (stated below with minor

indexing errors corrected).

Theorem 5.1 ([9, Theorem 4]). Suppose that𝑋𝑡 is a random walk

on {0, 1, . . . , 𝑛} where 0 is a reflecting state and 𝑛 is an absorbing

state. Further, assume that |𝑋𝑡+1 − 𝑋𝑡 | ≤ 1, and E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋𝑡 =
𝑖] ≥ 𝜅𝑖 > 0 for all 𝑋𝑡 < 𝑛. Let 𝑒𝑖 be the expected number of times the

walk hits the state 𝑖 . Then,

𝑛−1∑
𝑖=0

𝑒𝑖 ≤
𝑛−1∑
𝑖=0

1

𝜅𝑖
.

Lemma 5.2. Assume 𝑘 > 5Δ/2 and let 𝑇𝐷 = 2
𝑘−Δ

𝑘−5Δ/2𝑛 log𝑛. Sup-
pose that we have an update 𝛼0 = 𝛼 with bounding list 𝐿′ satisfying
|𝐿′(𝑣) | ≤ 2 for all 𝑣 ∈ 𝑉 (𝐺). Consider a random sequence of disjoint

updates 𝛼1, . . . , 𝛼𝑇𝐷 generated in sequence (note the forward time in-

dexing) via

𝛼𝑡 = disjoint.gen[𝛼𝑡−1, unif(𝑉 (𝐺))]

for all 1 ≤ 𝑡 ≤ 𝑇𝐷 . Let 𝛼𝑇𝐷 = (·, ·, ·, 𝐿′
0
, ·, ·). Then |𝐿′

0
(𝑣) | = 1 for all

𝑣 ∈ 𝑉 (𝐺) with probability at least 1/2.

Remark. Part of the assertion of this lemma is that the promise

required to execute disjoint is satisfied throughout.

Proof. Let𝑊𝑡 = {𝑣 ∈ 𝑉 (𝐺) : |𝐿′𝑡 (𝑣) | = 1}, let 𝑋𝑡 = |𝑊𝑡 |, and let

𝑊𝑡 = 𝑉 (𝐺) \𝑊𝑡 . Clearly, 𝑋𝑡 ∈ {0, . . . , 𝑛} and |𝑋𝑡+1 −𝑋𝑡 | ≤ 1, since

each update changes the bounding list for at most one vertex. We

now show that

E[𝑋𝑡+1 − 𝑋𝑡 |𝑋𝑡 ] ≥
𝑛 − 𝑋𝑡

𝑛

(
1 − 3Δ/2

𝑘 − Δ

)
. (5.1)

After proving (5.1), the claim follows immediately by Theorem 5.1,

since 𝑛 is easily verified to be an absorbing state (because in such a

situation, any vertex 𝑣 ∈ 𝑉 (𝐺) has |𝑆𝐿 (𝑣) | − |𝑄𝐿 (𝑣) | = |𝐷𝐿 (𝑣) | = 0).

To prove (5.1) we first show that if |𝐿(𝑤) | ≤ 2 for all𝑤 ∈ 𝑉 (𝐺),
then

|𝑆𝐿 (𝑣) |−|𝑄𝐿 (𝑣) | ≤
3

2

|𝑊𝑡∩𝑁 (𝑣) |+
|𝑁 ∗
𝐿
(𝑣) |
2

=
3

2

|𝑊𝑡∩𝑁 (𝑣) |+
|𝐷𝐿 (𝑣) |

4

(5.2)

To see this, consider assigning weights to each color: a color in

𝑆𝐿 (𝑣)\𝑄𝐿 (𝑣), which appears in𝑚 bounding lists, is assigned weight

1/𝑚, and any other color is assigned weight 0. In particular, for any

𝑤 ∈ 𝑁 ∗
𝐿
(𝑣), both elements of 𝐿(𝑤) are weight 1 so that the sum of

weights in 𝐿(𝑤) for 𝑤 ∈ 𝑁 ∗
𝐿
(𝑣) is 2. Also, if |𝐿(𝑤) | = 1, then sum

of weights is 0 by definition. Finally, in all other cases the sum of

weights is at most 1 + 1/2 = 3/2 (since 𝑤 ∉ 𝑁 ∗
𝐿
(𝑣) implies that at

least one of the two colors must appear in at least two bounding

lists). Now, (5.2) follows by noting that the leftmost quantity is the

sum of all the weights in all 𝐿(𝑤) for 𝑤 ∈ 𝑁 (𝑣) (counting colors

multiple times), whereas the middle quantity is a trivial upper

bound for this sum given the information above, and the rightmost

inequality follows by noting that |𝑁 ∗
𝐿
(𝑣) | = |𝐷𝐿 (𝑣) |/2.

Equation (5.2) shows that the condition needed to in order to

apply disjoint.gen is satisfied at every step it is used. Specifically,

we find that

|𝑆𝐿 (𝑣) |−|𝑄𝐿 (𝑣) | ≤
3

2

Δ+ |𝐷𝐿 (𝑣) |
4

≤ (𝑘−Δ) 𝑘 − |𝑄𝐿 (𝑣) |
𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2

.

The second inequality can be verified to hold as follows. Note that

𝐷𝐿 (𝑣) ∈ [0, 2Δ] and 𝑘 ≥ 2.5Δ. If 𝑘 ≥ 3Δ, then the left is at most

2Δ ≤ 𝑘 − Δ, which is clearly at most the right. If 𝑘 < 3Δ, note
that the quadratic (6Δ + 𝑡) (2𝑘 − 𝑡) is decreasing on 𝑡 ≥ 0, so is

maximized when 𝑡 = 0, and is at most 8𝑘 (𝑘 − Δ) since 𝑘 ≥ 2.5Δ.
Plugging in 𝑡 = |𝐷𝐿 (𝑣) | and rearranging, we deduce

3

2

Δ + |𝐷𝐿 (𝑣) |
4

≤ (𝑘 − Δ) 𝑘

𝑘 − |𝐷𝐿 (𝑣) |/2

≤ (𝑘 − Δ) 𝑘 − |𝑄𝐿 (𝑣) |
𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2

,

the second inequality using |𝑄𝐿 (𝑣) | ≥ 0 and 𝑘 − |𝐷𝐿 (𝑣) |/2 > 0.
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Next, dividing (5.2) by 𝑘 − Δ, we immediately deduce that

|𝑆𝐿 (𝑣) | − |𝑄𝐿 (𝑣) |
𝑘 − Δ − |𝐷𝐿 (𝑣) |/2

𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2
≤ 3

2

|𝑊𝑡 ∩ 𝑁 (𝑣) |
𝑘 − Δ ,

(5.3)

where for the second term on the left hand side, we have used that

𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2 ≤ 𝑘 ≤ 2(𝑘 − Δ).
Therefore,

E[𝑋𝑡+1 −𝑋𝑡 |𝐿′𝑡 ] =
1

𝑛

[ ∑
𝑣∉𝑊𝑡

(
1 − |𝑆𝐿 (𝑣) | − |𝑄𝐿 (𝑣) |

𝑘 − Δ + |𝐷𝐿 (𝑣) |/2
𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2

)
−

∑
𝑣∈𝑊𝑡

(
|𝑆𝐿 (𝑣) | − |𝑄𝐿 (𝑣) |

𝑘 − Δ − |𝐷𝐿 (𝑣) |/2
𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2

)]
=

1

𝑛

[
|𝑊𝑡 | −

∑
𝑣∈𝑉 (𝐺 )

(
|𝑆𝐿 (𝑣) | − |𝑄𝐿 (𝑣) |

𝑘 − Δ

− |𝐷𝐿 (𝑣) |/2
𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2

)]
≥ 1

𝑛

[
|𝑊𝑡 | −

3

2

∑
𝑣∈𝑉 (𝐺 )

|𝑊𝑡 ∩ 𝑁 (𝑣) |
𝑘 − Δ

]
≥ |𝑊𝑡 |

𝑛

[
1 − 3Δ/2

𝑘 − Δ

]
,

where the penultimate inequality uses (5.3) and the last inequality

follows since the graph has maximum degree at most Δ. Finally,

the law of total expectation and |𝑊𝑡 | = 𝑛 − 𝑋𝑡 gives the desired
inequality. □

In particular, Lemma 5.2 shows that once SamplerUnit reaches

Phase 4, it succeeds with probability at least 1/2. Therefore, it
only remains to check that the first three phases are always com-

pleted successfully i.e. the various guarantees required by compress,

seeding, anddisjoint are satisfied throughout the first three phases.

5.2 Phases 1, 2, and 3 Always Succeed

Lemma 5.3. Phase 1 succeeds deterministically, i.e., every applica-

tion of compress and seeding is guaranteed to satisfy its promise.

Proof. First, note that for every 𝑖 ∈ [𝑠], we can indeed find the

necessary associated set 𝐴 – 𝑣𝑖 has at most Δ/3 neighbors in S by

construction, and each neighbor of 𝑣𝑖 in {𝑣 𝑗 : 𝑗 < 𝑖} has a bounding
list of size at most 3 (since seeding has already been applied to

such a vertex); hence 𝐴 needs to contain a union of at most Δ/3
sets of size at most 3.

Next, note that when we perform seeding on 𝑣𝑖 , we trivially

have |𝑆𝐿 (𝑣) | ≤ 2Δ since each vertex to which we apply compress

(i.e. those neighbors of 𝑣𝑖 which do not precede it in S) contributes
up to 1 additional color not present in 𝐴. The claim now follows

upon noting that

|𝑆𝐿 (𝑣) |2
Δ + |𝑆𝐿 (𝑣) |

≤ (2Δ)2
Δ + (2Δ) =

4Δ

3

≤ 𝑘 − Δ. □

Lemma 5.4. Phase 2 succeeds deterministically, i.e., every applica-

tion of disjoint is guaranteed to satisfy its promise.

Proof. The existence of the set 𝐴 follows as in the previous

proof by noting that each vertex has at most Δ/3 neighbors in S,
each of which has a bounding list of size at most 3 at the end of

Phase 1.

Further, since each 𝑣𝑖 has at most (1 − 𝜂)Δ neighbors outside S,
it follows that after applying compress to all neighbors of 𝑣𝑖 not

in S, we have |𝑆𝐿 (𝑣) | ≤ Δ + (1 − 𝜂)Δ = (2 − 𝜂)Δ, where the first
inequality follows since the (1 − 𝜂)Δ neighbors of 𝑣𝑖 outside S can

each contribute at most 1 color outside of 𝐴 to 𝑆𝐿 (𝑣). The claim
now follows upon noting that

|𝑆𝐿 (𝑣) | − |𝑄𝐿 (𝑣) | ≤ (2 − 𝜂)Δ < 𝑘 − Δ

≤ (𝑘 − Δ)
(

𝑘 − |𝑄𝐿 (𝑣) |
𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2

)
. □

The analysis of Phase 3 is more nontrivial due to the intricate

nature of choosing the set 𝐴 of size Δ. Ultimately the proof is a

routine casework check.

Lemma 5.5. Phase 3 succeeds deterministically, i.e., every applica-

tion of disjoint is guaranteed to satisfy its promise.

Proof. Let 𝑣 = 𝑣𝑖 for some 𝑠 + 1 ≤ 𝑖 ≤ 𝑛. As in the defini-

tion of Phase 3, let 𝐿𝑚 be current the bounding list, restricted to

marked neighbors of 𝑣 . Also, let 𝐿 be the bounding list after ap-

plying compress to all unmarked neighbors of 𝑣 . Note that 𝑣 has

at most (1 − 𝜂)Δ unmarked neighbors; suppose that it has 𝜂 ′Δ
unmarked neighbors (this is true even for the neighbors of 𝑣 in

S𝑐 ). Recall that 𝜂 = 1/3 − 2

√
(logΔ)/Δ for Δ ≥ 𝐶 , where 𝐶 is a

sufficiently large absolute constant, and that 𝑆𝐿𝑚 (𝑣) is the disjoint
union 𝑄𝐿𝑚 (𝑣) ∪ 𝐸𝐿𝑚 (𝑣) ∪ 𝐷𝐿𝑚 (𝑣). Recall also that for all marked

neighbors𝑤 of 𝑣𝑖 , |𝐿𝑚 (𝑤) | ≤ 2.

Case 1: |𝑆𝐿𝑚 (𝑣) | ≤ Δ. In this case, we must have that 𝑆𝐿𝑚 (𝑣) ⊂
𝐴, since colors in 𝑆𝐿𝑚 (𝑣) are chosen to be in 𝐴 before any other

colors. Then, as in the proof of Lemma 5.4, we see that |𝑆𝐿 (𝑣) | ≤
Δ + (1 − 𝜂)Δ, so that as before,

|𝑆𝐿 (𝑣) | − |𝑄𝐿 (𝑣) | ≤ (2 − 𝜂)Δ < 𝑘 − Δ

≤ (𝑘 − Δ) 𝑘 − |𝑄𝐿 (𝑣) |
𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2

.

Case 2: 𝐴 ⊆ 𝑄𝐿𝑚 (𝑣) ∪ 𝐸𝐿𝑚 (𝑣). In particular, we must have

𝑋 = |𝑄𝐿𝑚 (𝑣) ∪𝐸𝐿𝑚 (𝑣) | ≥ Δ. Let 𝑌 = |𝐷𝐿𝑚 (𝑣) |. Since the bounding
list of each marked vertex has size at most 2, we may use a similar

argument as in the proof of (5.2) to see that the total weight (as

defined there) of the bounding list of each marked vertex𝑤 inter-

secting𝑄𝐿𝑚 (𝑣) ∪ 𝐸𝐿𝑚 (𝑣) is at most 3/2. Since 𝑋 is at least the sum

of all the weights in all such lists (counting colors multiple times),

it follows that there are at least 2𝑋/3 different (marked)𝑤 ∈ 𝑁 (𝑣)
with 𝐿𝑚 (𝑤) intersecting 𝑄𝐿𝑚 (𝑣) ∪ 𝐸𝐿𝑚 (𝑣). Therefore there are at
most Δ − 𝜂 ′Δ − 2𝑋/3 marked neighbors intersecting 𝐷𝐿𝑚 (𝑣), so
that

|𝑆𝐿𝑚 (𝑣) | ≤ 𝑋 + 2(Δ − 𝜂 ′Δ − 2𝑋/3) ≤ 5Δ/3 − 2𝜂 ′Δ.

Finally, after applying compress to the unmarked neighbors of 𝑣 , we

gain an additional at most𝜂 ′Δ elements. Thus |𝑆𝐿 (𝑣) | ≤ (5/3−𝜂 ′)Δ,
and as above, the result follows immediately since 5/3 ≤ 2 − 𝜂.

Case 3: 𝑄𝐿𝑚 (𝑣) ∪ 𝐸𝐿𝑚 (𝑣) ⊆ 𝐴 ⊆ 𝑆𝐿𝑚 (𝑣). Again let 𝑋 =

|𝑄𝐿𝑚 (𝑣) ∪ 𝐸𝐿𝑚 (𝑣) | and 𝑌 = |𝐷𝐿𝑚 (𝑣) |. Thus 𝑋 ≤ Δ ≤ 𝑋 + 𝑌 .
First, by repeating the computation in Case 2, but with the trivial

lower bound 𝑋 ≥ 0, we see that 𝑋 + 𝑌 ≤ 2(1 − 𝜂 ′)Δ and |𝑆𝐿 (𝑣) | ≤
2(1−𝜂 ′)Δ +𝜂 ′Δ = (2−𝜂 ′)Δ. Thus if 𝜂 ′ ≥ 𝜂, we are done as before.

Hence, we may assume that 𝜂 ′ ∈ [0, 𝜂].
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We ultimately want to check the condition

|𝑆𝐿 (𝑣) | − |𝑄𝐿 (𝑣) | < (𝑘 − Δ)
𝑘 − |𝑄𝐿 (𝑣) |

𝑘 − |𝑄𝐿 (𝑣) | − |𝐷𝐿 (𝑣) |/2
. (5.4)

Since the left hand side is decreasing and the right hand side is

increasing in |𝑄𝐿 (𝑣) |, it suffices to check |𝑆𝐿 (𝑣) | < (𝑘 − Δ)𝑘/(𝑘 −
|𝐷𝐿 (𝑣) |/2), i.e.

|𝑆𝐿 (𝑣) |
(
𝑘 − |𝐷𝐿 (𝑣) |

2

)
< 𝑘 (𝑘 − Δ) . (5.5)

Note that there are at least ⌊(𝑋 + 𝑌 − Δ)/2⌋ pairs of colors 𝐿𝑚 (𝑤),
for𝑤 ∈ 𝑁 ∗

𝐿𝑚
(𝑣), inside 𝐷𝐿𝑚 (𝑣) \𝐴. Note also that every additional

color coming from the 𝜂 ′Δ unmarked neighbors could be one of

the following: (i) a color outside of 𝑆𝐿𝑚 (𝑣) (ii) a color in 𝐷𝐿𝑚 (𝑣)
(observe that every such color prevents two colors from 𝐷𝐿𝑚 (𝑣)
from appearing in 𝐷𝐿 (𝑣)), and (iii) a color in 𝐴 \ 𝐷𝐿𝑚 (𝑣). Suppose
we have 𝑠Δ colors of type (i) and 𝑡Δ colors of type (ii). Then,

|𝑆𝐿 (𝑣) | = 𝑋+𝑌+𝑠Δ, |𝐷𝐿 (𝑣) | ≥ 2⌊(𝑋+𝑌−Δ)/2⌋−2𝑡Δ, 𝑠+𝑡 ≤ 𝜂 ′.

Observe that if |𝑆𝐿 (𝑣) | = 𝑋 + 𝑌 + 𝑠Δ ≤ 𝑘 − Δ, then (5.5) is trivially

satisfied. Therefore, we may assume that 𝑋 + 𝑌 ≥ 𝑘 − Δ − 𝑠Δ ≥
(2 − 𝜂 − 𝑠)Δ. Finally, let 𝑋 = 𝑥Δ, 𝑌 = 𝑦Δ, and 𝑘 = 𝜅Δ, so that (5.5)

follows if

(𝑥 + 𝑦 + 𝑠)
(
𝜅 + 𝑡 − 𝑥 + 𝑦 − 1 − Δ−1

2

)
< 𝜅 (𝜅 − 1). (5.6)

From the discussion above, we have the constraints 𝑧 = 𝑥 + 𝑦 ∈
[2 − 𝜂 − 𝑠, 2 − 2𝜂 ′], 𝑠, 𝑡 ≥ 0, 𝑠 + 𝑡 ≤ 𝜂 ′, 𝜂 ′ ∈ [0, 𝜂], and 𝜅 ≥ 3 − 𝜂.
Recall also that 𝜂 is a fixed constant less than 1/3. Also, increasing
𝑆𝐿 (𝑣) \𝐷𝐿 (𝑣) can only make (5.5) harder to satisfy, we may assume

that 𝑠 + 𝑡 = 𝜂 ′.
We see by taking derivatives that as long as 𝜅 ≥ 3/2 (which is

true in our case), the condition in (5.6) is most restrictive when 𝜅 is

taken smaller. Therefore, we may let 𝜅 = 3 − 𝜂, to see that (5.6) is
implied by

(𝑧 + 𝑠)
(
3 − 𝜂 + 𝑡 − 𝑧 − 1 − Δ−1

2

)
< (2 − 𝜂) (3 − 𝜂). (5.7)

Next, we see by taking derivatives that for 𝜂 ∈ [0, 1/3], the condi-
tion in (5.7) is strictly more restrictive when 𝜂 = 1/3. Therefore, by
taking 𝜂 = 1/3 (note that for us, 𝜂 is strictly smaller than 1/3), we
see that (5.7) is implied by

(𝑧 + 𝑠)
(
8

3

+ 𝑡 − 𝑧 − 1 − Δ−1
2

)
≤ 40

9

. (5.8)

At this point, we assume Δ ≥ 9, and reduce to checking

(𝑧 + 𝑠)
(
29

9

+ 𝑡 − 𝑧

2

)
≤ 40

9

(5.9)

on the region carved out by 𝑠, 𝑡 ≥ 0, 𝑠 + 𝑡 ≤ 1/3, 𝑧 ≥ 5/3 − 𝑠 ,

and 𝑧 ≤ 2 − 2𝑠 − 2𝑡 . This is easily verified using computer algebra

software; we provide a short proof for the reader’s convenience.

Note that the left hand side is a downward quadratic in 𝑧 with

maximum at 𝑧 = 20/9+𝑡−𝑠/2, which is always bigger than 2−2𝑠−2𝑡 .
Hence, the left hand side is maximized at 2 − 2𝑠 − 2𝑡 , which yields

(2 − 𝑠 − 2𝑡)
(
20

9

+ 𝑠 + 2𝑡
)

?

≤ 40

9

;

this is clearly true since 𝑠 + 2𝑡 ≥ 0. □

5.3 Putting Everything Together

We now quickly check that (Q1) and (Q2) follow from our work so

far. Indeed, Lemmas 5.2 to 5.5 shows that (Q1) is true. For (Q2), we

note that (P2) follows from (C2), (S2) and (D2), and that (P1) follows

from (C3), (S3), and (D3). Moreover, the same running time analysis

as in [2] shows that (C4), (S4) and (D4) easily imply (P4). Finally,

Lemma 5.2 implies (P3), which completes our analysis.

6 CONCLUSION AND OPEN PROBLEMS

We first briefly elaborate on how the above analysis may be ex-

tended to push slightly beyond 𝑘 ≥ (8/3 + 𝑜 (1))Δ, i.e., to perfectly

sample (8/3 − 𝜖)Δ colors for some absolute constant 𝜖 ≈ 10
−2
.

The current algorithm (for sufficiently large Δ) is only limited at

𝑘 = (8/3+𝑜 (1))Δ in Phase 2 (although this requires performing the

analysis in Lemma 5.5 more carefully). In order to improve Phase 2,

one should use a variant of Algorithm 4 which allows for disjoint

triples (or an even more efficient routine using both disjoint pairs

and disjoint triples).

However, all of these techniques are currently limited at 𝑘 >

5Δ/2 due to Lemma 5.2; the extremal configuration limiting the

analysis here has shadows of the configurations which limit Jer-

rum’s [10] analysis for approximate sampling at 𝑘 > 2Δ using

the Glauber dynamics. In particular, this suggests that 𝑘 = 5Δ/2
forms a natural barrier for perfect sampling in the same sense that

𝑘 = 2Δ is a natural barrier for understanding mixing of the Glauber

dynamics. Incorporating the techniques of Vigoda [17] and more

general path-coupling ideas [3] may allow one to break this barrier,

but the interaction of these techniques with the bounding chain

framework of [8, 9] is nontrivial and remains an interesting open

question.
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A PROOF OF PROPOSITION 3.1

Proof. The proof uses the symmetric Lovász Local Lemma (LLL;

see [1]). We sample S by selecting each vertex in 𝑉 (𝐺) indepen-
dently with probability (𝜂 + 1/3)/2. For each 𝑣 ∈ 𝑉 (𝐺), let B𝑣
denote the ‘bad’ event that 𝑣 does not satisfy the condition in (3.1).

Then, it is straightforward to verify that each bad event is mutually

independent from all but at most 𝑑 = Δ2
other bad events (corre-

sponding to vertices with distance at most 2 from 𝑣). Moreover, a

standard application of the Chernoff bound shows that each bad

event occurs with probability at most 𝑝 = exp(−Ω𝜂 (Δ)). Thus, for
Δ ≥ 𝐶𝜂 , we trivially have 𝑒𝑝 (𝑑 + 1) < 1, which guarantees that a

set 𝑆 satisfying (3.1) for all 𝑣 ∈ 𝑉 (𝐺) exists.
In order to algorithmically generate such a set, we use the al-

gorithmic version of LLL due to Moser and Tardos [15]. We set

𝑥 (𝑣) = 𝑒𝑝 < 1/(𝑑 +1) for all 𝑣 ∈ 𝑉 (𝐺), which can easily be checked

to satisfy the hypotheses of [15, Theorem 1.2]. Therefore, by [15,

Theorem 1.2], the expected number of ‘resampling operations’ is at

most ∑
𝑣∈𝑉 (𝐺)

𝑥 (𝑣)
1 − 𝑥 (𝑣) < 2

∑
𝑣∈𝑉 (𝐺)

𝑥 (𝑣) = 𝑂 (𝑛 exp(−Ω𝜂 (Δ))).
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For the running time, note that it takes time 𝑂 (𝑛Δ) to initially

sample and compute the number of neighbors in S,S𝑐 each vertex

has, which we maintain as an array throughout. We also maintain

a binary heap with the set of vertices violating (3.1). Since each

resampling operation amounts to resampling the neighbors of a

violating vertex, we see that each resampling operation requires

updating at most Δ2
array elements (corresponding to vertices

within distance 2 of the violating vertex at which resampling occurs).

Finally, we remove vertices which no longer violate (3.1) from our

binary heap, and add vertices which have turned into violators

to the binary heap, which takes time 𝑂 (Δ2
log𝑛). Therefore the

running time is𝑂 (𝑛Δ+𝑛(log𝑛)Δ2
exp(−Ω𝜂 (Δ))), which is𝑂 (𝑛Δ+

𝑛 log𝑛) as desired (note that we terminate early if the number of

resampling operations is twice the expectation) □
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