
MIT Open Access Articles

Beyond Reasonable Doubt: Improving Fairness in Budget-
Constrained Decision Making Using Confidence Thresholds

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bakker, Michiel, Tu, Duy Patrick, Gummadi, Krishna, Pentland, Alex, Varshney, Kush 
et al. 2021. "Beyond Reasonable Doubt: Improving Fairness in Budget-Constrained Decision 
Making Using Confidence Thresholds."

As Published: https://doi.org/10.1145/3461702.3462575

Publisher: ACM|Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society

Persistent URL: https://hdl.handle.net/1721.1/145979

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145979
https://creativecommons.org/licenses/by/4.0/


Beyond Reasonable Doubt: Improving Fairness in
Budget-Constrained Decision Making Using Confidence

Thresholds
Michiel A. Bakker

Massachusetts Institute of Technology

MIT-IBM Watson AI Lab

Cambridge, MA, USA

bakker@mit.edu

Duy Patrick Tu

Massachusetts Institute of Technology

MIT-IBM Watson AI Lab

Cambridge, MA, USA

patrick2@mit.edu

Krishna P. Gummadi

Max Planck Institute for Software

Systems

Saarbrücken, Germany

gummadi@mpi-sws.org

Alex ‘Sandy’ Pentland

Massachusetts Institute of Technology

MIT-IBM Watson AI Lab

Cambridge, MA, USA

pentland@mit.edu

Kush R. Varshney

IBM Research

Yorktown Heights, NY, USA

krvarshn@us.ibm.com

Adrian Weller

University of Cambridge

Cambridge, United Kingdom

The Alan Turing Institute

London, United Kingdom

aw665@cam.ac.uk

ABSTRACT
Prior work on fairness in machine learning has focused on settings

where all the information needed about each individual is readily

available. However, in many applications, further information may

be acquired at a cost. For example, when assessing a customer’s

creditworthiness, a bank initially has access to a limited set of in-

formation but progressively improves the assessment by acquiring

additional information before making a final decision. In such set-

tings, we posit that a fair decision maker may want to ensure that

decisions for all individuals are made with similar expected error

rate, even if the features acquired for the individuals are different.

We show that a set of carefully chosen confidence thresholds can

not only effectively redistribute an information budget according

to each individual’s needs, but also serve to address individual and

group fairness concerns simultaneously. Finally, using two public

datasets, we confirm the effectiveness of our methods and investi-

gate the limitations.
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1 INTRODUCTION
The machine learning community has proposed myriad definitions

for fairness [37], that can be broadly categorized in two groups.

(1) Group or statistical definitions of fairness focus on balancing

classification errors across protected population subgroups (based

on attributes like race or gender), towards achieving equal error

rates (overall accuracy equality), equal false-positive rates (predic-
tive equality), equal false-negative rates (equal opportunity), or both
(equal odds). Although these notions can be easily verified, they fail

to give meaningful guarantees to individuals. (2) Individual notions
of fairness, on the other hand, provide individual-level guarantees,

as opposed to enforcing parity of some quantity that is averaged

over a group. For example, Dwork et al. [12] require that ‘similar

individuals should be treated similarly’, using a predefined distance

function to measure similarity between individuals. Individual fair-

ness definitions have stronger semantics but existing proposals

have proven difficult to implement in practice [9].

Methods for improving fairness have focused predominantly on

predictive models that make or support decisions when all data

is readily available. In such a setting, the model makes a classifi-

cation decision for each subject based on the same set of features

that is observed at training time. In practice, however, there are

many scenarios where some or all features are missing initially

and features can be acquired during the decision making process,

possibly at a cost [24]. As our running example, we consider a

set of applicants applying for a job. If the position is temporary, a

hiring manager might make the final decision only based on the

set of resumes. By contrast, when the applicants are instead consid-

ered for a more permanent position, a hiring manager will want

to invite a subset of the applicants for an assessment or interview

to gather additional information before making a more informed

hiring decision. Taking all candidates through the full process is
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prohibitively expensive and time-consuming, hence, for each candi-

date, an important decision should be made as to which information

should be gathered and how much information is required. This

problem, in which a decision maker sequentially selects a subset of

costly features for each individual, is called active feature acquisition
(AFA) and is relevant in a wide range of domains such as credit

assessment, criminal justice, medical diagnosis, advertising and

recruiting [15, 24, 25, 27, 35].

There is a large literature concerned with different AFA strate-

gies that, given a set of already selected features, predict the most

cost-effective feature to select next [21, 24, 28, 35]. However, there

is a second important part of the problem that has received com-

paratively little attention: how should we split a limited information
budget across individuals? Most work on AFA simply assumes an

equal information budget for each individual such that the fea-

ture acquisition process stops when this budget is reached [24, 28].

Though this approach does treat everyone equally in terms of in-

formation budget, it can yield outcomes that are unfair in terms of

the quality of the decision.

Consider again the example of the hiring manager. While going

through a stack of resumes, they might observe a pool of candidates

that can broadly be categorized in two groups: some candidates

have more familiar, traditional backgrounds while other candidates

have taken unconventional paths or have unfamiliar schools or

employers on their resume. Neither group is, on average, more

qualified for the job but note that, at least in the context of the

“training data”, decisions made about the latter group of candidates

will have lower confidence and are thus more likely to be erro-

neous. Collecting more information for each candidate, for example

through assessments or interviews, will probably not close this

gap if we keep splitting the information budget equally and col-

lect the same amount of information for all candidates. As a result,

good but unconventional candidates are more likely to be rejected

and, perhaps even worse, a conservative hiring strategy will not

even consider the unfamiliar set of candidates. Similarly, many U.S.

households lack a formal credit history, making it difficult to ap-

ply for loans at traditional financial institutions [5]. However, the

absence of a credit history does not mean that households are less

creditworthy per se, it might only require more effort to assess how

creditworthy these individuals really are.

1.1 Our contributions
We propose a more equitable strategy for deciding how to spend a

limited feature budget across individuals, inspired by the legal con-

cept of “Beyond a reasonable doubt”. Beyond a reasonable doubt

is a legal standard of proof required to validate a criminal con-

viction [19]. Simply put, if the jury (or judge) perceives that the

probability a defendant committed a crime is equal or greater than

their interpretation of beyond reasonable doubt, they will decide

to convict [22]. The “burden of proof” in this case rests not on the

defendant, who is “innocent until proven guilty”, but on the prose-

cution, who is tasked with finding sufficient evidence to support

the innocence or guilt of the accused.

Building on this legal foundation, we argue that for fair decision

making, the “burden of uncertainty” should not be put on the deci-

sion subject but on the decision maker. In the example of hiring,

a hiring manager should thus request more information from the

unfamiliar set of applicants so that the eventual hiring decision

can be made with equal confidence for each applicant. Similarly,

in a fair financial system, institutions would be required to first

close the information gap between loan applicants by collecting

more information before making a decision. Hence, to make fair

decisions, a decision maker should continue the collection of new

information until every individual can be guaranteed a decision

that is equally likely to be erroneous. We thus want to guarantee

an equal error rate in expectation, an individual notion of fairness

which we call individual error parity.
We will formalize the notion of individual error parity and show

how, in contrast to most existing proposals for individual fairness,

this notion has a natural connection to group fairness – in particular,

how it implies overall accuracy equality across groups, and in some

cases also equal odds. Subsequently, we show how “confidence

thresholds” as stopping criteria in AFA are a natural mechanism to

guide information collection and mitigate individual error disparity.

In particular, we derive a set of thresholds, determining when to

stop collecting features for each individual, which ensure that we

only classify an individual’s outcome once we have acquired a suf-

ficient number of features to reach a predefined expected error rate.

Because the expected error rate will be the same across individuals,

we attain error parity for calibrated probabilistic classifiers across

groups and, in expectation, across individuals within these groups.

Our approach to fairness differs from the typical approaches to

mitigating unfairness such as data pre-processing [6, 14], constrain-

ing or regularizing the learning process [3, 38], or post-processing

predictions [17]. However, we suggest that in many settings our

approach is intuitive. In the standard machine learning paradigm, in

which a decision-maker collects the exact same information for each

individual, individuals from groups that are underrepresented in the

training data will naturally face more erroneous decisions. Redis-

tributing the amount of information we collect across individuals is

therefore an intuitive way to guarantee equitable decision-making.

Our approach trades off inequality (the set of features used is per-

sonalized in our framework and thus varies across individuals) for

equity (each of the individuals are classified with an equal expected

error rate).

2 ADDITIONAL RELATEDWORK
2.1 Fairness in machine learning
Most recent work on fairness in machine learning focuses on group
fairness notions, fixing a number of protected demographic sub-

groups and requiring parity of some statistical measure across these

subgroups. One such group fairness notion is demographic parity,
requiring parity of the raw positive classification rate across group.

However, demographic parity can lower a model’s accuracy, es-

pecially when the base rate across groups differ [17]. To tackle

this, one can instead consider parity in error rates. Overall accu-
racy equality is achieved when the total classification error is the

same across protected subgroups [4]. When either false-positives or

false-negatives are desirable, one can consider equal false-positive

rates (predictive equality) or false-negative rates (equal opportu-
nity), while equal odds requires parity in both false-positive and
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false-negative rates [17]. We refer to Verma and Rubin [37] for an

overview of definitions.

In contrast, individual fairness notions define unfairness at the
level of a single individual. An early formalization of individual

fairness was proposed by Dwork et al. [12], defining fairness as the

smoothness of the classification function by requiring that ‘similar

individuals should be treated similarly’. The authors introduce a

framework to maximize accuracy subject to a fairness constraint

that binds on pairs of individuals. Their framework has two draw-

backs: it requires a predefined distance function that determines

how similar two individuals are and the optimization does not

produce an inductive rule that generalizes to previously unseen

data [12, 20].

Given the limitations of individual and group fairness notions,

is there a way to get the ‘best of both worlds’? Kearns et al. [23]

and Hébert-Johnson et al. [18] ask for group fairness definitions

to hold on an exponential class of groups instead of a small num-

ber of subgroups. Although promising, the approach still inherits

the weaknesses of group fairness at a smaller scale [8]. Sharifi-

Malvajerdi et al. [34] propose average individual fairness, computing

the statistical error rate not across individuals but across different

classification tasks an individual is subjected to during a period of

time. Our work is similar in the sense that is aimed at error rate

parity at the individual level. However, where they define rate as an

expectation over multiple classification tasks over time, we define

rate as the expected error rate for a single task.

To measure individual unfairness with respect to the expected

error rate, we build on a fairness definition introduced by Speicher

et al. [36]. Using inequality indices from economics, they formu-

late a measure of inequity of the distribution of a benefit over the

population. This naturally captures notions of both individual and

group fairness. Our approach focuses on a measure of individual

expected error rate which we call ‘risk’ instead of ‘benefit’, such

that by minimizing this, we mitigate both individual and group

unfairness.

2.2 Prediction-time active feature-value
acquisition

Different from active learning where labels are queried to improve

a model, prediction-time active feature-value acquisition (AFA) de-

scribes the problem where costly feature-values of a test instance

are unknown and are acquired sequentially. The different but re-

lated problem of training-time active feature-value acquisition is

concerned with which feature values must be acquired for model

improvement.

An AFA system consists of three components: 1) a classifier that

can handle partially observed feature sets, 2) a strategy for deter-

mining which feature to select next based on the features that are

already collected, and 3) a stopping criterion for determining when

to stop acquiring more features and make a final prediction. First,

there are different ways that classifiers handle partial features sets.

Generative models handle missing features naturally by first inte-

grating out missing values. However, for tabular datasets as we con-

sider here, we found the best performance using distribution-based

imputation for random forests in which the possible assignments

of missing values are weighted proportionally [33].

Second, to determine which feature to select next, we need a

method that estimates the cost-effectiveness of each of the unse-

lected features based on the features we have already selected. For

simplicity, we use a method that maximizes the expected utility of a

feature, where the utility function is based on the expected increase

in the absolute difference between the estimated class probabilities

of the two most likely classes [21]. However, we emphasize that our

framework is agnostic to the specific model and acquisition strat-

egy that is used. Hence, simpler strategies such as population-level

feature selection methods (e.g. LASSO) would yield similar results.

Third, to determine when to stop selecting additional features,

most prior work assumes some given feature budget per individual

such that the decision maker is tasked only with selecting the most

cost-effective features within that budget [24]. The work that is

most similar to ours develops an optimization framework that is

used to find an information budget for each population subgroup

such that an AFA classifier achieves parity in false-positive or false-

negative rates [29]. Notably, by using the information budget as

an additional degree of freedom during optimization, they show

that several statistical (group) notions of fairness can be achieved

in an AFA setting. Where their method accommodates different

information budgets according to the needs of each population

subgroup, our method adapts the information budget dynamically

to the needs of each individual. Our work thus provides a novel

method aimed at individual fairness which, in turn, gives rise to

group fairness.

Finally, a more recent method considers all three AFA compo-

nents jointly in one reinforcement learning framework, trading

off the cost of each feature with the expected decrease in loss [35].

Bakker et al. [2] extend this framework by adding an adversarial

loss to force the agent to acquire feature sets from which one can

only predict the label but not the sensitive attribute. In this way,

they guarantee demographic parity, a group fairness measure, over

the protected subgroups split by the sensitive attribute. This work

is the first that to address and improve individual fairness in an

AFA setting.

3 DATA COLLECTION AND BROADER
IMPACTS

The confidence thresholds introduced in this work help mitigate

individual error disparity across individuals. However, we note

that careful consideration should be given to the potential privacy

implications on individuals. If an individual belongs to a popula-

tion subgroup for which the classifier faces more uncertainty (for

example because of underrepresentation in the training data), more

features will be collected to reach the same expected error rate. In

practice, this could result in an increased privacy burden on minor-

ity communities who are often already victim of over-policing [13].

Although this is an important concern that needs careful consid-

eration when applying confidence thresholds in practice, we note

that some form of data collection is often unavoidable.

Disparities in error rates are often caused by skewed sample

sizes or a selection of features that are more predictive for some

population subgroups than others [7]. Although typical approaches

like restricting the model class, pre-processing the data or post-

processing predictions can improve fairness without collecting
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additional data, these strategies do not directly address the under-

lying causes but instead achieve fairness by harming predictive

accuracy [10]. In high-stakes domains like criminal justice, health

care diagnosis, loan approval, or hiring, the reduction in accuracy

that is introduced by these methods is hard to justify and can even

be considered unethical. Chen et al. [7] highlight this issue and pro-

pose collecting additional training examples to close the disparity

gap between groups that are naturally over- and underpresented

in the data. Though effective, this approach only improves group-

level error rate disparities, measured across protected groups, and

thus fails to give any individual-level guarantees. Moreover, this

approach inevitably puts a increased privacy burden on the group

for which more data is collected. And, in contrast to the prediction-

time data collection method that we propose, this burden is not on

the individuals that are subject to the decision, but on the group

as a whole as more members of the group will have to contribute

their data for training.
1

Even though a trade-off between privacy and fairness (or be-

tween accuracy and fairness) seems inevitable, there are measures

that could alleviate some of these concerns in practice. Institutional

controls and privacy laws such as HIPAA and FERPA can stipu-

late how information should be maintained and limit the access of

data to properly authorized individuals [11]. A more cryptographic

approach could be to not release the data to decision maker but in-

stead have a third-party trusted entity that stores and processes the

data, and subsequently communicates only the decision to the deci-

sion maker. Other approaches that build on this paradigm include

privacy preserving computational techniques such as fully homo-

morphic encryption and secure multiparty computation [1, 39].

Note that these approaches can only mitigate some of the privacy

risks and do not directly address the issue of potentially excessive

data collection.

Finally, under one interpretation, our proposedmethod for achiev-

ing individual error parity actually has a positive impact on the

privacy of individuals. While it may appear unreasonable to require

more information for some people, and we emphasize the need

for transparent discussion and debate with stakeholders given im-

portant concerns about selective surveillance, we are in fact only

collecting the smallest possible set of features to reach a desirable

level of confidence — in contrast to methods that necessitate all

features to be collected before making a prediction. Therefore we

believe it follows the ‘need-to-know’ or ‘data minimization’ princi-

ple expressed in Article 5(1)(c) of the EU’s General Data Protection

Regulation (GDPR) which provides that personal data shall be “ad-

equate, relevant and limited to what is necessary in relation to the

purposes for which they are processed”.
2
Though GDPR does not

clearly define “adequate, relevant and limited”, the UK regulator,

the ICO, stipulates that “you should identify the minimum amount

of personal data you need to fulfil your purpose” and that “you may

need to consider this separately for each individual”.
3
We argue

1
A controversial example of a training-time data collection effort to mitigate bias made

the news recently when a Google contractor targeted dark-skinned homeless people in

Atlanta to gather more facial data in an attempt to improve Google’s facial recognition

algorithm, https://www.theatlantic.com/technology/archive/2019/10/google-allegedly-

used-homeless-train-pixel-phone/599668/.

2
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04

3
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-

general-data-protection-regulation-gdpr/principles/data-minimisation/

that confidence thresholds present a natural way to operationalize

data minimization. When assessing creditworthiness, for example,

a bank or regulator might set the acceptable error rate to 1%. In

practice, the bank would thus collect information up to reaching

this expected error rate after which any further collection could be

considered excessive.

4 PROBLEM SETUP
Let (x(𝑖) , 𝑦 (𝑖) ) ∼ 𝑃 be an individual 𝑖 in 𝑃 represented by a 𝑑-

dimensional feature set x(𝑖) and a binary label 𝑦 (𝑖) ∈ {0, 1}. In the

AFA setting, we acquire the features in sequential order starting

with the empty set O (𝑖)
0

:= ∅ at time 𝑡 = 0.
4
At every later timestep

𝑡 we choose a feature from the unselected set of features, 𝑗
(𝑖)
𝑡 ⊆

{1, . . . , 𝑑} \ O (𝑖)
𝑡−1

and examine the value of 𝑗
(𝑖)
𝑡 at a cost 𝑐 𝑗 . After

each new acquisition step, the classifier will have access to features

O (𝑖)
𝑡 := 𝑗

(𝑖)
𝑡 ∪ O (𝑖)

𝑡−1
. We keep acquiring features up to time 𝑇 (𝑖)

when we meet a stopping criterion or collect the last available

feature. At that point, we will classify x(𝑖) using only the set of

features in O (𝑖)
𝑇

, {𝑥 𝑗 } 𝑗 ∈O (𝑖 )
𝑇

. The cost vector c is equal for every

individual in 𝑃 and can represent different types of costs such as

monetary or privacy costs. The final set of features for individual 𝑖 ,

O (𝑖)
𝑇

, is determined by two factors. First, we compute the expected

utility of each feature to determine, for each individual and at each

timestep, which feature should be selected to balance costs and

expected increase in accuracy [21]. Second, to mitigate unfairness,

we introduce a set of confidence thresholds that determine when

to stop selecting features.

5 INDIVIDUAL ERROR PARITY
For classification, letℎ : R𝑑 → [0, 1] be a binary classifier that deter-
mines, given a partial feature set O (𝑖)

𝑡 , the probability that individ-

ual 𝑖 belongs to the positive class, ℎ(O (𝑖)
𝑡 ) = 𝑃

[
𝑦 = 1 | {𝑥 𝑗 } 𝑗 ∈O (𝑖 )

𝑡

]
.

We omit the index 𝑖 and denote {𝑥 𝑗 } 𝑗 ∈O (𝑖 )
𝑡

as O (𝑖)
𝑡 when it is clear

from context. Similarly, 1 − ℎ(O𝑡 ) corresponds to the probability

that individual 𝑖 belongs to the negative class.

Definition 1. At prediction time, each decision carries a finite
risk 𝑟𝑒𝑟𝑟 (O (𝑖)

𝑇
), defined as the expectation that the prediction affecting

individual 𝑖 is erroneous given a probabilistic classifier ℎ and a set of
features O (𝑖)

𝑇
.

For a well-calibrated probabilistic classifier ℎ, we can derive the

following equation for this risk

𝑟𝑒𝑟𝑟 (O𝑇 ) = E(x,𝑦)∼𝑃
[
|ℎ(O𝑇 ) − 𝑦 |

]
=

∫
1

0

𝑝 P(x,𝑦)∼𝑃
[
ℎ(OT) = 𝑝 | 𝑦 = 0

]
P(x,𝑦)∼𝑃

[
𝑦 = 0

]
+(1 − 𝑝) P(x,𝑦)∼𝑃

[
ℎ(OT) = 𝑝 | 𝑦 = 1

]
P(x,𝑦)∼𝑃

[
𝑦 = 1

]
𝑑𝑝,

4
We assume an empty set at the start but note that a decision maker could instead

have access to an initial set of features that is the same for all individuals O (𝑖 )
0

. This

does not change the further feature acquisition process.
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where we drop the index (𝑖) for brevity. We can now use Bayes rule

to find

𝑟𝑒𝑟𝑟 (O𝑇 ) =
∫

1

0

(
𝑝 P(x,𝑦)∼𝑃

[
𝑦 = 0 | ℎ(OT) = 𝑝

]
+

(1 − 𝑝) P(x,𝑦)∼𝑃
[
𝑦 = 1 | ℎ(OT) = 𝑝

] )
P(x,𝑦)∼𝑃

[
ℎ(OT) = 𝑝

]
𝑑𝑝.

Substituting P(x,𝑦)∼𝑃
[
𝑦 = 0 | ℎ(OT) = 𝑝

]
= 1 − 𝑝 and

P(x,𝑦)∼𝑃
[
𝑦 = 1 | ℎ(OT) = 𝑝

]
= 𝑝 results in

5

𝑟𝑒𝑟𝑟 (O𝑡 ) =
∫

1

0

2

(
𝑝 − 𝑝2

)
P(x,𝑦)∼𝑃

[
ℎ(OT) = 𝑝

]
𝑑𝑝

= 2E(x,𝑦)∼𝑃
[
ℎ(OT) −ℎ(OT)2

]
. (1)

Using the risk 𝑟𝑒𝑟𝑟 we can now define a corresponding individual

fairness definition:

Definition 2. Individual error parity across a population 𝑃 where
each individual 𝑖 in 𝑃 is represented by a set of features O𝑇 requires
𝑟𝑒𝑟𝑟 (O (𝑖)

𝑇
) = 𝑟𝑒𝑟𝑟 (O ( 𝑗)

𝑇
) ∀𝑖, 𝑗 ∈ 𝑃 .

In practice, however, exact risk equality is hard to enforce so we

follow Speicher et al. [36] and measure the degree of inequality in

risk among individuals within a population using half the squared

coefficient of variation.
6
This inequality measure is part of a family

of inequality indices called the generalized entropy indices.

Definition 3. The amount of individual unfairness within a pop-
ulation 𝑃 is defined as

E𝑃 (r𝑒𝑟𝑟 ) =
1

2|𝑃 |
∑
𝑖∈𝑃


(
𝑟
(𝑖)
𝑒𝑟𝑟

𝑟𝑒𝑟𝑟,𝑃

)
2

− 1

 ,
where 𝑟 (𝑖)𝑒𝑟𝑟 is the risk received by individual 𝑖 ∈ 𝑃 and 𝑟𝑒𝑟𝑟,𝑃 =

1

𝑁

∑𝑁
𝑖∈𝑃 𝑟

(𝑖)
𝑒𝑟𝑟 is the average risk across all individuals in 𝑃 . Perfect

individual fairness, when the risk is equal for all individuals, corre-
sponds to E𝑃 (r𝑒𝑟𝑟 ) = 0.

Importantly, many of the axioms that are satisfied by generalized

entropy indices are also appealing properties for fairness measures:

• zero-normalization – the inequality is zero when every indi-

vidual receives the same level of risk.

• anonymity – the inequality depends only on the risk of the

individuals and not on other characteristics.

• population invariance – the inequality is independent of the

size of the population.

• transfer principle – transferring risk high-risk to a low-risk

individual decreases inequality.

5.1 Connection to group fairness definitions
We connect equal error parity to four corresponding group fairness

definitions: overall accuracy equality (equal error rates), predic-

tive equality (equal false-positive rates), equal opportunity (equal

false-negative rates), and equal odds (equal false-positive and false-

negative rates). To make this connection, we first assume a set of

disjoint subgroups 𝐺𝑎 in our population 𝑃 with 𝑎 ∈ A, which, for

5
Here, we assume perfect calibration. The derivation for approximate calibration can

be found in the Appendix.

6
[36] measures inequality in terms of ‘benefits’ but in our case, it makes more sense

to share expected errors or ‘risk’ fairly.

example, represent subgroups split by race or gender. Generally,

these subgroups can have different base rates 𝜇𝑎 , defined as the

probability of belonging to the positive class 𝜇𝑎 = 𝑃 [𝑦 = 1 | 𝐴 = 𝑎].
To compute the errors of our probabilistic classifier with respect to

the groups, we use the generalized rates introduces by Pleiss et al.

[32].

Definition 4. The generalized false-positive rate for a classifier
ℎ computed over a group 𝐺𝑎 is 𝑐 𝑓 𝑝,𝑎 (ℎ) = E(x,𝑦)∼𝐺𝑎

[ℎ(O𝑇 ) | 𝑦 =

0]. The generalized false-negative rate is 𝑐 𝑓 𝑛,𝑎 (ℎ) = E(x,𝑦)∼𝐺𝑎
[1 −

ℎ(𝑂𝑇 ) | 𝑦 = 1]. The generalized error rate is equivalent to the 𝐿1 loss
𝑐𝑒𝑟𝑟,𝑎 (ℎ) = E(x,𝑦)∼𝐺𝑎

[|𝑦 − ℎ(𝑂𝑇 ) |].

We use probabilistic classifiers and thus generalized rates be-

cause it helps decision makers interpret the predictions. If, for an

individual, the confidence of the classifier is low, it will be reflected

in the final probability and a decision maker can thus choose to

reject the decision or collect more information. Moreover, if the

classifier would output binary predictions ℎ ∈ {0, 1} instead of

probabilities, these rates would simply represent standard false-

positive rates, false-negative rates, and the zero-one loss. Similarly,

we use generalized notions of equal accuracy, equal opportunity,

and predictive equality for probabilistic classifiers:

Definition 5. Equal accuracy for a set of probabilistic classi-
fiers ℎ1 and ℎ2 for groups 𝐺1 and 𝐺2 requires 𝑐𝑒𝑟𝑟,1 (ℎ) = 𝑐𝑒𝑟𝑟,2 (ℎ).
Similarly, predictive equality requires 𝑐 𝑓 𝑝,1 (ℎ) = 𝑐 𝑓 𝑝,2 (ℎ), equal op-
portunity 𝑐 𝑓 𝑛,1 (ℎ) = 𝑐 𝑓 𝑛,2 (ℎ) and equal odds 𝑐 𝑓 𝑝,1 (ℎ) = 𝑐 𝑓 𝑝,2 (ℎ)
and 𝑐 𝑓 𝑛,1 (ℎ) = 𝑐 𝑓 𝑛,2 (ℎ).

Exact equality is hard to enforce in practice so we study the

degree towhich these constraints are violated: |𝑐 𝑓 𝑝,1−𝑐 𝑓 𝑝,2 |, |𝑐 𝑓 𝑛,1−
𝑐 𝑓 𝑛,2 |, |𝑐𝑒𝑟𝑟,1−𝑐𝑒𝑟𝑟,2 |. Further, for probabilistic classifiers, we require
the probabilities to be calibrated, 𝑃 (x,𝑦)∼𝐺𝑎

[𝑦 = 1 | ℎ(O𝑡 ) = 𝑝] = 𝑝 .

We can make two important connections between individual

error parity and these group fairness definitions:

Proposition 1. Individual error parity across a population 𝑃

necessarily yields equal accuracy across groups 𝐺𝑎 ⊆ 𝑃 .

Proof. When individual error parity is satisfied, the risk for

each member of the population will be equal to the risk of each

other member of the population, irrespective of group membership

(see Definition 2). If we assume that this risk has some finite value

𝑟𝑒𝑟𝑟 = 𝛽𝑒𝑟𝑟 then the expected error for each group in the population

will also be equal to this risk 𝛽𝑒𝑟𝑟 . Hence, each group will have an

equal error rate, resulting in equal accuracy across groups

𝑐𝑒𝑟𝑟,𝑎 (ℎ(OT)) = EGa

[
𝑟𝑒𝑟𝑟 (ℎ(OT))

]
= 𝛽𝑒𝑟𝑟 ∀𝑎 ∈ A . (2)

where we write E(x,𝑦)∼𝐺𝑎
as E𝐺𝑎

for brevity. □

Proposition 2. Individual error parity implies equal false-positive
and false-negative rates (equal odds) across all groups that have an
equal base rate 𝜇𝑎 .
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Proof. Similar to Proposition 1, we assume an equal risk across

the population of 𝑟𝑒𝑟𝑟 = 𝛽𝑒𝑟𝑟 . We can then derive from Definition 4

𝑐 𝑓 𝑝,𝑎 (ℎ) = EGa

[
ℎ(OT) | 𝑦 = 0

]
=

∫
1

0

𝑝 PGa
[ℎ(OT) = 𝑝 | 𝑦 = 0] 𝑑𝑝

=

∫
1

0

𝑝
1 − PGa

[𝑦 = 1 | ℎ(OT) = 𝑝]
1 − PGa

[𝑦 = 1] PGa
[ℎ(OT) = 𝑝] 𝑑𝑝.

Again, using PGa

[
𝑦 = 1 | ℎ(OT) = 𝑝

]
= 𝑝 and PGa

[𝑦 = 1] = 𝜇𝑎 , we

can rewrite this as

𝑐 𝑓 𝑝,𝑎 (ℎ) = 1

1 − 𝜇𝑎

∫
1

0

𝑝 (1 − 𝑝) PGa
[ℎ(OT) = 𝑝] 𝑑𝑝

=
1

1 − 𝜇𝑎
EGa

[
ℎ(OT) −ℎ(OT)2

]
(3)

=
1

2(1 − 𝜇𝑎)
EGa

[
𝑟𝑒𝑟𝑟 (ℎ(O𝑇 ))

]
.

Following the same steps for the false-negative rate, we find

𝑐 𝑓 𝑛,𝑎 (ℎ) = 1

𝜇𝑎
EGa

[
ℎ(OT) −ℎ(OT)2

]
(4)

=
1

2𝜇𝑎
EGa

[
𝑟𝑒𝑟𝑟 (ℎ(O𝑇 ))

]
.

If the base rate 𝜇𝑎 is equal across groups and 𝑟
(𝑖)
𝑒𝑟𝑟 = 𝛽𝑒𝑟𝑟 ∀𝑖 ∈ 𝑃 ,

𝑐 𝑓 𝑝,𝑎 (ℎ(OT)) =
𝛽𝑒𝑟𝑟

2(1 − 𝜇𝑎)
∀𝑎 ∈ A,

𝑐 𝑓 𝑛,𝑎 (ℎ(OT)) =
𝛽𝑒𝑟𝑟

𝜇𝑎
∀𝑎 ∈ A,

which yields equal-false positive and equal false-negative rates

across groups. If equal odds is satisfied, predictive equality and

equal opportunity must also be satisfied. □

In contrast to 𝑐𝑒𝑟𝑟 , 𝑐 𝑓 𝑝 and 𝑐 𝑓 𝑛 now depend on the group-specific

base rate, and individual error parity therefore only implies equal

odds (equal false-positive and equal false-negative rates) when

the base rates are the same across group. However, an error rate

disparity can still be present when the base rates are different if

unfairness is caused only by a difference in variance across groups,

for example, because of different sample sizes |𝐺𝑎 | or because of a
difference in group-conditional feature variance Var(x | 𝑎). In that

case the base rates across group will be equal, leading to attaining

individual error parity, as well as equal odds.

6 CONFIDENCE THRESHOLDS
Intuitively, the stopping criteria should be chosen such that we col-

lect more features for individuals and groups for which the model is

less certain. By stopping later, we have more predictive power, and

thus decrease the expected error rate. In this section, we present

confidence thresholds as a way to achieve approximate individual

error parity and will derive corresponding upper and lower thresh-

olds 𝛼𝑢 and 𝛼𝑙 . The upper threshold corresponds to predicting𝑦 = 1

with probability 𝛼𝑢 while the lower threshold corresponds to pre-

dicting 𝑦 = 0 with probability 1 − 𝛼𝑙 . We reach these thresholds

by sequentially adding features one-by-one, slowly increasing con-

fidence (moving the probabilistic estimate towards either of the

thresholds). We stop collecting features at time step 𝑇 when the

probability reaches either one of the thresholds, ℎ(OT) ≥ 𝛼𝑢 or

ℎ(OT) ≤ 𝛼𝑙 .

6.1 Individual error parity and overall accuracy
equality

Our aim is to find the thresholds 𝛼𝑢 and 𝛼𝑙 that ensure 𝑟
(𝑖)
𝑒𝑟𝑟 =

𝛽𝑒𝑟𝑟 ∀𝑖 ∈ 𝑃 . When the risk is equal across all individuals we obtain

individual error parity and thus also equal accuracy across groups.

During the feature selection process, each individual reaches either

the upper threshold or the lower threshold first. We consider poten-

tial overshooting later in this section but, for now, assume that we

can stop the process at exactly the upper or lower threshold such

that

ℎ(O𝑇 ) = 𝛼𝑢 or ℎ(O𝑇 ) = 𝛼𝑙 .

We then use Equation (1) to find, respectively, for each individual

𝑟𝑒𝑟𝑟 = 2(𝛼𝑢 − 𝛼2

𝑢 ) or 𝑟𝑒𝑟𝑟 = 2(𝛼𝑙 − 𝛼2

𝑙
).

To ensure 𝑟𝑒𝑟𝑟 = 2

(
ℎ(O𝑇 ) − ℎ(O𝑇 )2

)
= 𝛽𝑒𝑟𝑟 in both cases, the

solution for the confidence thresholds follows as

𝛼𝑢 =
1

2

+ 1

2

√
1 − 2𝛽𝑒𝑟𝑟 , 𝛼𝑙 =

1

2

− 1

2

√
1 − 2𝛽𝑒𝑟𝑟 . (5)

If, for every individual, we acquire features one-by-one until we

reach either of these thresholds, we attain a generalized error rate

𝛽𝑒𝑟𝑟 in expectation for each individual, and across groups, achiev-

ing overall accuracy equality. Importantly, these thresholds are

independent of the group label 𝑎 and thus guarantee group and

individual fairness with respect to arbitrary subgroups, even when

the subgroup labels are unknown at training and prediction time.

6.2 Equal false-positive or false-negative rates
When the desired measure of group fairness is equal false-positive

rates (predictive equality) or equal false-negative rates (equal oppor-

tunity), the thresholds derived for individual error parity will only

suffice if each group has an equal base rate 𝜇𝑎 (see Proposition 2).

In contrast, choosing the same thresholds for individuals in groups

with different base rates will result in different false-positive and

false-negative rates across these groups. To address this, we can

derive a new set of group-specific thresholds that account for these

differences in base rate. Following Equations (3) and (4), we find

𝑐 𝑓 𝑝 (ℎ𝑎) =
1

1 − 𝜇𝑎
EGa

[
ℎ𝑎 (OT) −ℎ𝑎 (OT)2

]
𝑐 𝑓 𝑛 (ℎ𝑎) =

1

𝜇𝑎
EGa

[
ℎ𝑎 (OT) −ℎ𝑎 (OT)2

]
.

Moreover, in line with Definition 1, we can define a false-positive

and false-negative risk 𝑟 𝑓 𝑝 and 𝑟 𝑓 𝑛 , corresponding to the probability

that a prediction for an individual in group𝐺𝑎 is a false-positive or

a false-negative

𝑟 𝑓 𝑝 (ℎ(O𝑇 )) =
1

1 − 𝜇𝑎
EGa

[
(ℎ(O𝑇 ) − ℎ(O𝑇 )2

]
,

𝑟 𝑓 𝑛 (ℎ(O𝑇 )) =
1

𝜇𝑎
EGa

[
ℎ(O𝑇 ) − ℎ(O𝑇 )2

]
.

Following a similar derivation as for equal error rates, we define a

target false-positive rate 𝛽𝑓 𝑝 to find the stopping criteria for each
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group such that 𝑟 𝑓 𝑝 (ℎ(O
(𝑖)
𝑇

)) = 𝛽𝑓 𝑝 , ∀𝑖 ∈ 𝑃 . In turn, this implies

𝑐 𝑓 𝑝 (ℎ(O𝑇 )) = EGa

[
𝑟 𝑓 𝑝 (ℎ(O𝑇 ))

]
= 𝛽𝑓 𝑝 , ∀𝑎 ∈ A and thus equal

false-positive rates across group. To ensure 𝛽𝑓 𝑝 for individuals that

stop at either one of the thresholds, we find a set of stopping criteria

for equalizing false-positive rates, analogously to those for 𝑐𝑒𝑟𝑟 ,

𝛼𝑢 =
1

2

+ 1

2

√
1 − 4𝛽𝑓 𝑝 (1 − 𝜇𝑎), (6)

𝛼𝑙 =
1

2

− 1

2

√
1 − 4𝛽𝑓 𝑝 (1 − 𝜇𝑎) . (7)

For false-negative rates we find a similar set of stopping criteria for

a target false-negative rate 𝛽𝑓 𝑛 ,

𝛼𝑢 =
1

2

+ 1

2

√
1 − 4𝛽𝑓 𝑛𝜇𝑎, 𝛼𝑙 =

1

2

− 1

2

√
1 − 4𝛽𝑓 𝑛𝜇𝑎 . (8)

Even though equal false-positive or false-negative rates can be

achieved using these thresholds at a group level, this approach

could raise some concerns when used in practice. In contrast to

the thresholds for 𝑐𝑒𝑟𝑟 , the thresholds for 𝑐 𝑓 𝑝 and 𝑐 𝑓 𝑛 now depend

on the group-specific base rate, precluding individual error parity

across the full population and requiring different confidence thresh-

olds across groups which could be perceived as unfair. Nonetheless,

within each subgroup, we still set the same thresholds and we

can thus achieve within-group individual error parity. Though not

equivalent to population-wide individual error parity, it does miti-

gate potential intra-group unfairness. The latter is a concern when

one imposes group fairness constraint with typical methods like

constraint optimization or post-processing predictions (see Kearns

et al. [23] for examples). In that case, a solution could be group

fair but simultaneously exhibit strong error rate differences within

groups, a problem that within-group individual error parity would

address.

6.3 Sources of residual unfairness
If the probabilities for each individual are calibrated and each indi-

vidual’s probabilistic estimate ℎ(O𝑇 ) stops exactly at the upper or

lower threshold, we can guarantee exact individual error parity. In

practice, however, there will still be some residual unfairness. First,

in real-world datasets, there will be a non-zero classification error

even when all features are collected such that, for some individuals,

we will not reach thresholds close to 0 or 1 even with unlimited bud-

get for feature acquisition. Not reaching the threshold will lead to

individual error disparity, as part of the estimates will fall between

the thresholds (𝛼𝑙 ≤ ℎ(O𝑇 ) ≤ 𝛼𝑢 ) and potentially also to group

unfairness when one subgroup has a disproportionate number of

members that do not reach the thresholds. Hence, decision mak-

ers should ensure there are sufficient predictive features for each

individual to reach the desired threshold. Fortunately, AFA allows

you to have much more diverse and personalized feature sets as

features are only acquired if they are expected to be predictive for

an individual.

Second, we achieve individual error parity among individuals

that stopped when the probabilistic estimates after stopping are

exactly ℎ(O𝑇 ) = 𝛼𝑢 or ℎ(O𝑇 ) = 𝛼𝑙 . In practice, however, each esti-

mate progresses in discrete jumps when a new feature is acquired

and thus find that estimates ‘overshoot’ the thresholds ℎ(O𝑇 ) ≥ 𝛼𝑢
or ℎ(O𝑇 ) ≤ 𝛼𝑙 . We refer to the Appendix for a detailed analysis of

the residual unfairness due to residual error and overshooting.

Finally, we have assumed access to a well-calibrated classifier

when defining our notion of risk. However, the standard notion of

calibration is a property that strictly holds only on average across

all predictions made by the classifier. The probabilities and the

corresponding risks could therefore still be inaccurate with respect

to a structured subgroup of individuals that is unknown at training

time and hence not taken into account explicitly when calibrating.

We analyze the effect of miscalibration on group fairness in the

appendix but encourage future work analyzing the effect of miscali-

bration on individual error parity, as well as work that combines our

method with individual calibration approaches that have recently

been developed [18, 40].

6.4 Choosing a target error rate
The optimal strategy for picking a target error rate, and thus for

picking a set of thresholds, will be strongly context dependent. In

the context of the law, Kaplan [22] developed a decision theoretic

framework for setting the probabilistic threshold that represents

the standard of proof. Focusing on the avoidance of errors, they

argue that a decision should be made to convict if the expected disu-

tility of a decision to acquit is greater than the expected disutility

of a decision to convict 𝑃𝐷𝑔 > (1− 𝑃)𝐷𝑖 where 𝑃 is the probability

that a defendant is guilty, 𝐷𝑔 the disutility of acquitting a guilty

person and 𝐷𝑖 the disutility of convicting an innocent person. Ex-

tending Kaplan’s framework for confidence thresholds, we can pick

a target error rate by balancing the cost of a potential error with

the cost spent on features. A bank could, for example, compute the

average costs of making an erroneous loan decision and find the

corresponding feature budget to minimize the overall costs. Alter-

natively, we could see scenarios, for example in criminal justice,

where the target error rates are instead set by a regulatory body.

7 EXPERIMENTS
In this section, we show that our method mitigates individual

and group unfairness while choosing the confidence thresholds to

achieve individual error parity and overall accuracy equality, equal

false-positive rates or equal false-negative rates. Experimental anal-

ysis of the residual unfairness and results for a second dataset can

be found in the Appendix.

We measure the residual individual error disparity using half the

squared coefficient of variation, E(r), where we compute the in-

equality across individuals using the risk functions 𝑟𝑒𝑟𝑟 = 2(ℎ(O𝑇 )−
ℎ(O𝑇 )2), 𝑟 𝑓 𝑝 = 1

1−𝜇𝑎 (ℎ(O𝑇 ) − ℎ(O𝑇 )2), and 𝑟 𝑓 𝑛 = 1

𝜇𝑎
(ℎ(O𝑇 ) −

ℎ(O𝑇 )2). Group-level unfairness between two groups 𝐺1 and 𝐺2

is measured using the absolute difference in generalized error

|Δ𝑐𝑒𝑟𝑟 | = |𝑐𝑒𝑟𝑟,1) − 𝑐𝑒𝑟𝑟,2 |, |Δ𝑐 𝑓 𝑝 | = |𝑐 𝑓 𝑝,1 − 𝑐 𝑓 𝑝,2 | or |Δ𝑐 𝑓 𝑛 | =
|𝑐 𝑓 𝑛,1 − 𝑐 𝑓 𝑛,2 | . As this is the first work concerned with individual

fairness in this setting, we compare the accuracy-unfairness trade-

offs in each experiment against an ‘equal budget’ benchmark. To

compute this benchmark, we use the exact same model and feature

acquisition strategy but, instead of using our stopping criteria to

redistribute budget, we now equally distribute the feature budget

across individuals. A second ‘all features’ benchmark represents

the point on the equal budget accuracy-unfairness trade-off when

all features are queried for all individuals.
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Table 1: Overview of the datasets. Accuracy is computed on a dataset-level using the full feature set, while 𝜇 is the dataset-level
base-rate 𝑃 (𝑦 = 1). For each subgroup 𝑛𝑎 is the relative number of individuals and 𝜇𝑎 the base rate.

Dataset Subgroup1 Subgroup0

Name N𝑠𝑎𝑚𝑝𝑙𝑒𝑠 N𝑓 𝑒𝑎𝑡 Acc 𝜇 Label1 n1 𝜇1 Label0 n0 𝜇0

Mexican poverty 70,305 99 75.9% 35.5% Urban 63.6% 34.9% Rural 36.4% 36.6%

Adult income 48,842 98 85.1% 23.9% White 85.4% 25.4% Non-white 14.6% 15.3%

7.1 Implementation
In addition to the confidence-based stopping criteria, implementa-

tion requires two more elements: a model and a feature acquisition

strategy. We refer to the Appendix for further implementation de-

tails but provide a summary in this section. First, we need a model

that allows us to estimate 𝑃 (𝑦 | O𝑡 ) for arbitrary feature subsets.

While this is easier with generative models like Naive Bayes, we use

distribution-based imputation in random forest as a random forest

model has superior predictive performance (accuracy of 75.9% using

the full feature set on the Mexican Poverty dataset set versus 73.4%

for Naive Bayes) [33]. We use the full feature set at training-time

but note that there are methods for training with partial feature

sets [16, 24].

Second, we implement a feature acquisition strategy to estimate

which next feature should be selected based on the expected utility

for of each feature given the current feature set O𝑡 [21]. In contrast

to population-level feature selection methods like LASSO, this strat-

egy allows us to pick a next feature on an individual level. However,

we note that confidence thresholds are agnostic to the model and

the feature acquisition strategy.

The cost for each feature 𝑐 𝑗 can be different and can represent

for example monetary or privacy costs. To make the results more

interpretable, we choose the costs to be the same for each feature

𝑐 𝑗 = 1. Changing these costs to make them more realistic will only

lead to a different ordering of features and will not further impact

the results. Finally, to account for overshooting, we use a validation

set to learn a mapping function that maps the confidence thresholds

to target error rates 𝛽𝑒𝑟𝑟 , 𝛽𝑓 𝑝 , and 𝛽𝑓 𝑛 . We sweep a range of 𝛼𝑢
(and 𝛼𝑙 = 1 − 𝛼𝑢 ), while measuring the empirical error rates for

individuals that reached either of the thresholds. At prediction

time, when we are given a target rate 𝛽 , we use the inverse of this

function to find the optimal set of thresholds.

7.2 Datasets
An overview of the datasets is given in Table 1 while preprocessing

details can be found in the Appendix. The Mexican Poverty dataset

is a household survey used in [29] for fair feature selection, moti-

vated by a real-world example of fair distribution of social programs

where there are insufficient resources to gather all information for

each individual [30]. The dataset contains a series of household-

level features and binary poverty levels for prediction. The Adult

income dataset is a standard benchmark for fair classification [26],

comprising demographic and occupational attributes, with the goal

to classify a person’s income as above $50,000 or not. We use 5-fold

cross-validation with random 60%/20%/20% train/validation/test

splits.
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Figure 1: Average used feature budget for the Rural and Ur-
ban subgroups, and across the full population (‘All’) in the
Mexican Poverty dataset. We apply confidence thresholds
for equalizing generalized error rates (left) and generalized
false-positive rates (right). Curves and shaded regions are
the average and 95% confidence intervals, computed using
5-fold cross validation. To mitigate group unfairness our
method successfully assigns more budget to the subgroup
for which the classifier is less certain.

7.3 Individual error disparity and overall
accuracy equality

We use the confidence thresholds derived in Equation (5) to mitigate

individual error disparity and improve overall accuracy equality

across groups. To ensure calibrated probabilities, we fit a sigmoid

function to the classifier’s probabilities using a validation set; a

method known as Platt scaling [31]. Importantly, we calibrate across

the entire population, effectively ignoring the underlying groups,

to demonstrate that we can mitigate unfairness with respect to

the generalized error rates without explicitly accounting for these

subgroups. In the left panel in Figure 1, we show the average num-

ber of features collected per subgroup (‘Rural’ and ‘Urban’) and

across the full population (‘All’) as the target error rate 𝛽𝑒𝑟𝑟 varies.

Note that for larger values of 𝛽𝑒𝑟𝑟 , when the acquisition process

stops early as the confidence thresholds are closer to 0.5, only a few

features are collected, while for smaller values of 𝛽𝑒𝑟𝑟 nearly all

features are collected. Moreover, the average number of collected

features differs across groups, demonstrating that our method as-

signs more budget to the group that is harder to classify without

having knowledge of the underlying group structure (using the full

feature set, the accuracy is 74.0% for the Rural subgroup and 76.9%

for the Urban subgroup).

In practice, a decision maker would choose a single constant

target error rate 𝛽𝑒𝑟𝑟 . However, to investigate the behavior for dif-

ferent 𝛽𝑒𝑟𝑟 , the left panels in Figures 2a and 2b show respectively

the residual individual and group unfairness across the full range
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(a) Group unfairness for equalizing error rates.
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(b) Individual unfairness for equalizing error rates.
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(c) Group unfairness for equalizing false-positive rates.
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(d) Individual unfairness for equalizing false-positive rates.
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(e) Group unfairness for equalizing gen. false-negative rates.
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(f) Individual unfairness for equalizing gen. false-negative rates.

Figure 2: Results for the Mexican Poverty dataset with group-level error disparity (Figures 2a, 2c and 2e) between the Urban
(𝑎 = 1) and Rural (𝑎 = 0) subgroups and individual error disparity (Figures 2b, 2d and 2f) measured across the full population.
The panel in the left of each subfigure measures the residual unfairness while sweeping a range of target rates 𝛽𝑒𝑟𝑟 , 𝛽𝑓 𝑝 or
𝛽𝑓 𝑛 . The curves and shaded confidence regions are the average and the 95% confidence intervals, computed using 5-fold cross-
validation. The curves in the panel in the right of each subfigure are generated by sweeping 𝛽𝑒𝑟𝑟 , 𝛽𝑓 𝑝 or 𝛽𝑓 𝑝 , taking the average
across the 5 folds, and computing the Pareto front. The accuracy-fairness trade-offs of our method (solid) Pareto dominate an
equal budget (EB) baseline (dashed) as well as a baseline where we select all features (AF, black square).

of target error rates 𝛽𝑒𝑟𝑟 . For large values of 𝛽𝑒𝑟𝑟 , when the confi-

dence thresholds are close to 0.5, there are sufficient features for

each individual to reach the thresholds and we effectively mitigate

unfairness. For smaller values of 𝛽𝑒𝑟𝑟 , when the information budget

grows, there are an increasing number of individuals for which

we exhaust all relevant features before we reach the confidence

thresholds, limiting the effectiveness of the confidence thresholds.

In deployment, a decision maker should thus avoid setting the

target rate too low, or should abstain from making a final deci-

sion when the threshold is not reached and should instead reassess

whether the feature set contains sufficient predictive features for

each member of the population. Finally, in the right panels in Fig-

ures 2a and 2b, we observe that the accuracy-fairness trade-off

of our method Pareto dominates the benchmark in terms of both

individual error parity and overall accuracy equality.

7.4 Equal false-positive or false-negative rates
To mitigate the group and individual-level unfairness with respect

to the expected false-positive and false-negative rates, we use the

confidence thresholds derived in in Equations (6) to (8). Equalizing

false-positive rates or false-negative rates necessitates access to the

sensitive attribute because computing the confidence thresholds

requires the group-specific base rates. As we now have access to

the sensitive attribute, we calibrate the probabilities for each group

separately, effectively creating separate classifiers for each group.

First, in the left frames of Figures 2c and 2d, we observe the resid-

ual unfairness with respect to the generalized false-positive rate and
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in Figures 2e and 2f with respect to the generalized false-negative

rate. Analogous to the results for equalizing error rates, we see

the strongest reduction in unfairness for larger values of the target

error rates 𝛽𝑓 𝑝 and 𝛽𝑓 𝑛 . In that regime, the thresholds are closer

to 0.5 and we thus have a sufficient number of features for each

individual to reach the confidence thresholds. Finally, in the right

frames of Figures 2c to 2f we show that, on a group and individual

level, our confidence thresholds method Pareto dominates an equal

budget baseline along the full accuracy-unfairness trade-off.

8 DISCUSSION AND CONCLUSION
We proposed individual error parity as an individual fairness no-

tion in an AFA setting and related it to a set of commonly used

group fairness notions. However, we argue that, more generally,

even in settings that are not commonly seen a budget-constrained,

measuring individual error disparity could help investigate how rep-

resentative a chosen set of features is, and guide whether additional

variables should be measured to foster more equitable decision

making. We then introduced a framework for mitigating unfair-

ness in this setting, addressing in a novel way both individual and

group fairness concerns. The framework is straightforward and in-

tuitive, and applies generally for any model that can handle partial

feature sets and any feature acquisition strategy. The thresholds

redistribute an information budget across individuals, allocating

additional budget to those individuals for which the classifier faces

most uncertainty.

On two public datasets, we demonstrated empirically that our

method mitigates unfairness. Especially for larger target error rates,

our framework strongly decreases disparities while for smaller rates

we exhaust the relevant features before reaching the confidence

thresholds. This issue also represents a limitation of the datasets

which have not been collected for active feature acquisition, and

features have thus been chosen to be cost-effective for the majority

of individuals. In our framework, however, it is natural to add

features that are relevant only to a handful of individuals. Hence,

we encourage future work that investigates the applications of our

framework to datasets and settings that meet this criterion. One

interesting avenue for future research is to use individual error

disparity as a guide for which variables should be measured during

dataset creation. Rather than choosing features which are cost-

effective for the majority of individuals, we imagine an iterative

process inwhich individuals forwhich there are insufficient features

are used to guide which additional variables should be measured.

We also encourage further research that investigates the impli-

cations on the privacy of individuals. Even though our method

reduces error disparities and naturally follows the data minimiza-

tion principle, it can actually create privacy disparities as for each

individual a different set of features will be collected. Although we

emphasize that some form of data collection is often unavoidable,

we encourage future work in which the privacy burden of each

feature is taken into account explicitly. A natural extension would

then be to work towards a framework that holistically trades-off

monetary costs for decision makers, privacy costs for decision sub-

jects, and fairness. Finally, we encourage future work that furhter

investigates the effects of miscalibration on individual error parity

and mitigates these effects using methods that are aimed at more

individual-level notions of calibration [18, 40].

9 ACKNOWLEDGMENTS
All authors would like to thank Humberto Riveron Valdes and

Prasanna Sattigeri for useful discussions and contributions to ear-

lier versions of this work. AW acknowledges support from a Turing

AI Fellowship under grant EP/V025379/1, The Alan Turing Insti-

tute under EPSRC grant EP/N510129/1 and TU/B/000074, and the

Leverhulme Trust via CFI.

REFERENCES
[1] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2017. Privacy-

preserving deep learning via additively homomorphic encryption. IEEE Transac-
tions on Information Forensics and Security 13, 5 (2017), 1333–1345.

[2] Michiel A Bakker, Duy Patrick Tu, Humberto Riverón Valdés, Krishna P Gummadi,

Kush R Varshney, Adrian Weller, and Alex Pentland. 2019. DADI: Dynamic

Discovery of Fair Information with Adversarial Reinforcement Learning. arXiv
preprint arXiv:1910.13983 (2019).

[3] Yahav Bechavod and Katrina Ligett. 2017. Penalizing unfairness in binary classi-

fication. arXiv preprint arXiv:1707.00044 (2017).
[4] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth.

2018. Fairness in criminal justice risk assessments: The state of the art. Sociological
Methods & Research (2018), 0049124118782533.

[5] William Cai, Johann Gaebler, Nikhil Garg, and Sharad Goel. 2020. Fair Allocation

through Selective Information Acquisition. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society. 22–28.

[6] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Rama-

murthy, and Kush R Varshney. 2017. Optimized pre-processing for discrimination

prevention. In Advances in Neural Information Processing Systems. 3992–4001.
[7] Irene Chen, Fredrik D Johansson, and David Sontag. 2018. Why Is My Classifier

Discriminatory?. In Advances in Neural Information Processing Systems. 3539.
[8] Alexandra Chouldechova, Diana Benavides-Prado, Oleksandr Fialko, and Rhema

Vaithianathan. 2018. A case study of algorithm-assisted decision making in child

maltreatment hotline screening decisions. In Conference on Fairness, Accountabil-
ity and Transparency. 134–148.

[9] Alexandra Chouldechova and Aaron Roth. 2018. The frontiers of fairness in

machine learning. arXiv preprint arXiv:1810.08810 (2018).
[10] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. 2017.

Algorithmic decision making and the cost of fairness. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 797–806.

[11] John Davis and Osonde Osoba. 2016. Privacy Preservation in the Age of Big Data.

Available at SSRN 2944731 (2016).
[12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd innovations in
theoretical computer science conference. ACM, 214–226.

[13] Virginia Eubanks. 2018. Automating inequality: How high-tech tools profile, police,
and punish the poor. St. Martin’s Press.

[14] Michael Feldman, Sorelle A Friedler, JohnMoeller, Carlos Scheidegger, and Suresh

Venkatasubramanian. 2015. Certifying and removing disparate impact. In pro-
ceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining. 259–268.

[15] Tianshi Gao and Daphne Koller. 2011. Active classification based on value of

classifier. In Advances in Neural Information Processing Systems.
[16] Wenbo Gong, Sebastian Tschiatschek, Richard Turner, Sebastian Nowozin, and

José Miguel Hernández-Lobato. 2019. Icebreaker: Element-wise Active Infor-

mation Acquisition with Bayesian Deep Latent Gaussian Model. arXiv preprint
arXiv:1908.04537 (2019).

[17] Moritz Hardt, Eric Price, Nati Srebro, et al. 2016. Equality of opportunity in

supervised learning. In Advances in neural information processing systems. 3315.
[18] Úrsula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. 2018.

Multicalibration: Calibration for the (computationally-identifiable) masses. In

International Conference on Machine Learning. 1944–1953.
[19] Hock Lai Ho. 2015. The Legal Concept of Evidence. In The Stanford Encyclopedia

of Philosophy (winter 2015 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab,

Stanford University.

[20] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. 2016.

Fairness in learning: Classic and contextual bandits. In Advances in Neural Infor-
mation Processing Systems. 325–333.

[21] Pallika Kanani and Prem Melville. 2008. Prediction-time active feature-value

acquisition for cost-effective customer targeting. Advances In Neural Information
Processing Systems (NIPS) (2008).

Poster Paper Presentation AIES ’21, May 19–21, 2021, Virtual Event, USA

355



[22] John Kaplan. 1968. Decision Theory and the Factfinding Process. Stanford Law
Review (1968), 1065–1092.

[23] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. 2017. Preventing

fairness gerrymandering: Auditing and learning for subgroup fairness. arXiv
(2017).

[24] Balaji Krishnapuram, Shipeng Yu, and R Bharat Rao. 2011. Cost-sensitive Machine
Learning. CRC Press.

[25] Yoad Lewenberg, Yoram Bachrach, Ulrich Paquet, and Jeffrey S Rosenschein. 2017.

Knowing what to ask: A Bayesian active learning approach to the surveying

problem. In Thirty-First AAAI Conference on Artificial Intelligence.
[26] Moshe Lichman et al. 2013. UCI machine learning repository.

[27] Li-Ping Liu, Yang Yu, Yuan Jiang, and Zhi-Hua Zhou. 2008. TEFE: A time-

efficient approach to feature extraction. In Data Mining, 2008. ICDM’08. Eighth
IEEE International Conference on. IEEE.

[28] Chao Ma, Sebastian Tschiatschek, Konstantina Palla, Jose Miguel Hernandez-

Lobato, Sebastian Nowozin, and Cheng Zhang. 2019. EDDI: Efficient Dynamic

Discovery of High-Value Information with Partial VAE. In International Confer-
ence on Machine Learning. 4234–4243.

[29] Alejandro Noriega-Campero, Michiel Bakker, Bernardo Garcia-Bulle, and Alex

Pentland. 2019. Active Fairness in Algorithmic Decision Making. Proceedings of
AAAI / ACM Conference on Artificial Intelligence, Ethics, and Society (2019).

[30] Alejandro Noriega-Campero, Bernardo Garcia-Bulle, Luis Fernando Cantu,

Michiel A Bakker, Luis Tejerina, and Alex Pentland. 2020. Algorithmic targeting

of social policies: fairness, accuracy, and distributed governance. In Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency. 241–251.

[31] John C. Platt. 1999. Probabilistic outputs for support vector machines and com-

parisons to regularized likelihood methods. Advances in large margin classifiers
10, 3 (1999), 61–74.

[32] Geoff Pleiss, Manish Raghavan, FelixWu, Jon Kleinberg, and Kilian QWeinberger.

2017. On fairness and calibration. In Advances in Neural Information Processing
Systems. 5680–5689.

[33] Maytal Saar-Tsechansky and Foster Provost. 2007. Handling missing values when

applying classification models. Journal of machine learning research 8, Jul (2007),

1623–1657.

[34] Saeed Sharifi-Malvajerdi, Michael Kearns, and Aaron Roth. 2019. Average In-

dividual Fairness: Algorithms, Generalization and Experiments. In Advances in
Neural Information Processing Systems. 8242–8251.

[35] Hajin Shim, Sung Ju Hwang, and Eunho Yang. 2018. Joint active feature acqui-

sition and classification with variable-size set encoding. In Advances in Neural
Information Processing Systems. 1368–1378.

[36] Till Speicher, Hoda Heidari, Nina Grgic-Hlaca, Krishna P Gummadi, Adish Singla,

Adrian Weller, and Muhammad Bilal Zafar. 2018. A unified approach to quantify-

ing algorithmic unfairness: Measuring individual &group unfairness via inequal-

ity indices. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2239–2248.

[37] Sahil Verma and Julia Rubin. 2018. Fairness definitions explained. In 2018
IEEE/ACM International Workshop on Software Fairness (FairWare). IEEE, 1–7.

[38] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P

Gummadi. 2017. Fairness Constraints: Mechanisms for Fair Classification. In

Artificial Intelligence and Statistics. 962–970.
[39] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi Gao,

Hongwei Li, and Yu-an Tan. 2019. Secure multi-party computation: theory,

practice and applications. Information Sciences 476 (2019), 357–372.
[40] Shengjia Zhao, Tengyu Ma, and Stefano Ermon. 2020. Individual calibration with

randomized forecasting. In International Conference on Machine Learning. PMLR,

11387–11397.

Poster Paper Presentation AIES ’21, May 19–21, 2021, Virtual Event, USA

356


	Abstract
	1 Introduction
	1.1 Our contributions

	2 Additional related work
	2.1 Fairness in machine learning
	2.2 Prediction-time active feature-value acquisition

	3 Data collection and broader Impacts
	4 Problem setup
	5 Individual error parity
	5.1 Connection to group fairness definitions

	6 Confidence thresholds
	6.1 Individual error parity and overall accuracy equality
	6.2 Equal false-positive or false-negative rates
	6.3 Sources of residual unfairness
	6.4 Choosing a target error rate

	7 Experiments
	7.1 Implementation
	7.2 Datasets
	7.3 Individual error disparity and overall accuracy equality
	7.4 Equal false-positive or false-negative rates

	8 Discussion and Conclusion
	9 Acknowledgments
	References


 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Horizontal, vertical offset 49.98, 63.77 Width 246.48 Height 98.25 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

     49.9847 63.7744 246.4764 98.2458 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     11
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





