
MIT Open Access Articles

Cache-Efficient Parallel-Partition Algorithms
using Exclusive-Read-and-Write Memory

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Westover, Alek and Kuszmaul, William. 2020. "Cache-Efficient Parallel-Partition
Algorithms using Exclusive-Read-and-Write Memory."

As Published: https://doi.org/10.1145/3350755.3400234

Publisher: ACM|Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures CD-ROM

Persistent URL: https://hdl.handle.net/1721.1/146212

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146212

Brief Announcement:
Cache-Efficient Parallel-Partition Algorithms
using Exclusive-Read-and-Write Memory

William Kuszmaul∗
Massachusetts Institute of Technology

kuszmaul@mit.edu

Alek Westover†
Belmont High School

alek.westover@gmail.com

ABSTRACT
We present an in-place algorithm for the parallel-partition problem
with linear work and polylogarithmic span. The algorithm uses
only exclusive read/write shared variables and can be implemented
using parallel-for-loops without any additional concurrency consid-
erations (i.e., the algorithm is EREW). A key feature of the algorithm
is that it exhibits provably optimal cache behavior up to small-order
factors.

We also present a second in-place EREW algorithm with work
O(n) and span O(logn · log logn), which is within an O(log logn)
factor of the optimal span. By using this low-span algorithm as a
subroutine within the cache-friendly algorithm, we obtain a single
EREW algorithm that combines their theoretical guarantees: the
algorithm achieves span O(logn · log logn) and exhibits optimal
cache behavior. As an immediate consequence, we also get an in-
place EREW Quicksort algorithm with work O(n logn) and span
O(log2 n · log logn).

Whereas the standard EREW algorithm for parallel-partition is
memory-bandwidth bound on large numbers of cores, our cache-
friendly algorithm is able to achieve near-ideal scaling in practice
by avoiding the memory-bandwidth bottleneck. Our algorithm’s
performance is comparable to that of the Blocked Strided Algorithm
of Francis, Pannan, Frias, and Petit, which is the previous state-
of-the-art for parallel EREW sorting algorithms, but which lacks
theoretical guarantees on its span and cache behavior.

CCS CONCEPTS
• Theory of computation → Shared memory algorithms.

KEYWORDS
Parallel Partition; EREW; in-place algorithms; cache-efficient
ACM Reference Format:
William Kuszmaul and Alek Westover. 2020. Brief Announcement: Cache-
Efficient Parallel-PartitionAlgorithms using Exclusive-Read-and-WriteMem-
ory. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms

∗Supported by a Hertz Fellowship, a NSF GRFP Fellowship, and NSF grant 1533644.
†Supported by MIT PRIMES.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6935-0/20/07.
https://doi.org/10.1145/3350755.3400234

and Architectures (SPAA ’20), July 15–17, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3350755.3400234

1 INTRODUCTION
Given an array A of length n and a decider function
dec : A → {0, 1} labelling the elements of A as predecessors (if
dec(A[i]) = 0) and successors (if dec(A[i]) = 1), a partition opera-
tion rearranges the elements in an array so that predecessors occur
before successors. In addition to playing a central role in parallel
Quicksort, the parallel-partition operation is used as a primitive
throughout parallel algorithms.1

A parallel algorithm can be measured by its work, the time
needed to execute in serial, and its span, the time to execute on
infinitely many processors. There is a well-known algorithm for par-
allel partition on arrays of size n with workO(n) and spanO(logn)
[1, 3]. Moreover, the algorithm uses only exclusive read/write
shared memory variables (i.e., it is an EREW algorithm). This elim-
inates the need for concurrency mechanisms such as locks and
atomic variables, and ensures good behavior even if the time to
access a location is a function of the number of threads trying to
access it (or its cache line) concurrently. EREW algorithms also
have the advantage that their behavior is internally deterministic,
meaning that the behavior of the algorithm will not differ from run
to run, which makes test coverage, debugging, and reasoning about
performance substantially easier [4].

This parallel-partition algorithm suffers fromusing a large amount
of auxiliary memory, however. To the best of our knowledge, the
only known linear-work and polylog(n)-span algorithms for paral-
lel partition that are in-place require the use of atomic operations
(e.g, fetch-and-add) [2, 7, 9].

Results. We present an in-place EREW algorithm, that we call the
Smoothed Striding Algorithm, for the parallel partition problem
with work O(n) and span polylog(n) (Section 4). A key feature of
this algorithm is that it exhibits provably optimal cache behavior
up to small-order factors.

We also present a second in-place EREW algorithm with work
O(n) and span O(logn · log logn), which is within an O(log logn)
factor of the optimal span (Section 3). By using this low-span algo-
rithm as a subroutine within the Smoothed Striding algorithm, we
are able to obtain a single EREW algorithm that combines their the-
oretical guarantees: the algorithm achieves spanO(logn · log logn)

1In several well-known textbooks and surveys on parallel algorithms [1, 3], for example,
parallel partitions are implicitly used extensively to perform what are referred to as
filter operations.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

551

https://doi.org/10.1145/3350755.3400234
https://doi.org/10.1145/3350755.3400234

and optimal cache behavior (Theorem 4.1). As an immediate conse-
quence, we also get an in-place EREW Quicksort algorithm with
work O(n logn) and span O(log2 n · log logn).

Whereas the standard EREW algorithm for parallel partitioning
is memory-bandwidth bound on large numbers of cores, our cache-
friendly algorithm is able to achieve near-ideal scaling in practice
by being in-place.

The full analysis of the algorithms, along with the empirical
evaluations are available in the extended paper [8].

2 PRELIMINARIES

Workflow Model. We consider a simple language-based model of
parallelism in which algorithms achieve parallelism through the
use of parallel-for-loops (see, e.g., [1, 3]); function calls within
the inner loop then allow for more complicated parallel structures
(e.g., recursion). Our algorithms can also be implemented in the
less restrictive PRAM model [1, 3].

Memory Model.Memory is exclusive-read and exclusive-write
(i.e. we are in the EREW model). That is, no two threads are ever
permitted to attempt to read or write to the same variable concur-
rently. Note that threads are not in lockstep (i.e., they may progress
at arbitrary different speeds), and thus the EREW model requires
algorithms to be data-race free in order to avoid the possibility of
non-exclusive data accesses.

In an in-place algorithm, each thread is givenO(polylogn)mem-
ory upon creation that is deallocated when the thread dies. This
memory can be shared with the thread’s children. However, the
depth of the parent-child tree is not permitted to exceedO(polylogn).

Modeling Cache Misses.We treat memory as consisting of fixed-
size cache lines, each of some size b. Each processor is assumed to
have a small cache of polylogn cache lines. A cache miss occurs on
a processor when the line being accessed is not currently in cache,
in which case some other line is evicted from cache to make room
for the new entry. Each cache is managed with the optimal off-line
policy (furthest-in-the-future).

The (Standard) Linear-Space Parallel Partition.The linear-space
implementation of parallel partition consists of two phases [1, 3]:
The Parallel-Prefix Phase: In this phase, the algorithm first creates
an array D whose i-th element D[i] = dec(A[i]) indicates whether
A[i] is a predecessor (dec(A[i]) = 0 if A[i] is a predecessor and
dec(A[i]) = 1 if A[i] is a successor). Then the algorithm constructs
an array S whose i-th element S[i] =

∑i
j=1 D[i] is the number of

predecessors in the first i elements of A. The transformation from
D to S is called a parallel prefix sum and can be performed with
O(n)work andO(logn) span using a simple recursive algorithm: (1)
First construct an arrayD ′ of size n/2withD ′[i] = D[2i−1]+D[2i];
(2) Recursively construct a parallel prefix sum S ′ of D ′; (3) Build S
by setting each S[i] = S ′[⌊i/2⌋] +A[i] for odd i and S[i] = S ′[i/2]
for even i .
The Reordering Phase: In this phase, the algorithm constructs an
output-array C by placing each predecessor A[i] ∈ A in position
S[i] ofC . If there are t predecessors inA, then the first t elements of
C will now contain those t predecessors in the same order that they
appear in A. The algorithm then places each successor A[i] ∈ A in

position t + i − S[i]. Since i − S[i] is the number of successors in
the first i elements of A, this places the successors in C in the same
order that they appear in A. Finally, the algorithm copies C into A,
completing the parallel partition.

Both phases can be implemented with O(n) work and O(logn)
span. However, the algorithm uses multiple auxiliary arrays of size
n. Reducing the extra space below o(n) has remained open until
now, even when the number of threads is fixed.

3 AN IN-PLACE PARTITION ALGORITHM
WITH SPAN O(logn log logn)

Wenow outline the key algorithmic ideas needed tomake the classic
Parallel Partition algorithm in-place with span O(logn log logn).
Although it is in-place, and hence more cache-efficient than the
standard out-of-place parallel partition algorithm, the algorithm
described here still exhibits poor cache behavior, and performs
poorly in practice; however, using this algorithm as a subroutine on
a small subproblem in the Smoothed Striding Algorithm will allow
the Smoothed Striding Algorithm to achieve spanO(logn log logn)
without sacrificing its good cache behavior.

Algorithm Outline. Prior to beginning the algorithm, the first
implicit step of the algorithm is to count the number of predecessors
in the array in order to determine whether the majority of elements
are either predecessors or successors. We assume without loss of
generality that the total number of successors in A exceeds the
number of predecessors since otherwise their roles can simply be
swapped in the algorithm. Further, we assume for simplicity that
the elements of A are distinct; this assumption can be removed.

Consider how to remove the auxiliary array C from the Re-
ordering Phase. If one attempts to simply swap in parallel each
predecessor A[i] with the element in position j = S[i] of A, then
the swaps will almost certainly conflict. Indeed, A[j] may also be
a predecessor that needs to be swapped with A[S[j]]. Continuing
like this, there may be an arbitrarily long list of dependencies on
the swaps.

To combat this, we begin the algorithm with a Preprocessing
Phase in which A is rearranged so that every prefix is successor-
heavy, meaning that for all t , the first t elements contain at least t4
successors. Then we compute the prefix-sum array S , and begin the
Reordering Phase. Using the fact that the prefixes ofA are successor-
heavy, the reordering can now be performed in place as follows: (1)
We begin by recursively reordering the prefix P of A consisting of
the first 4/5 · n elements so that the predecessors appear before the
successors; (2) Then we simply swap each predecessor A[i] in the
final 1/5 · n elements with the corresponding element S[A[i]]. The
fact that the prefix P is successor-heavy ensures that, after step (1),
the final 1

5 · n elements of (the reordered) P are successors. This
implies in step (2) that for each of the swaps between predecessors
A[i] in the final 1/5 · n elements and earlier positions S[A[i]], the
latter element will be in the prefix P . In other words, the swaps are
now conflict free.

Next, consider how to remove the array S from the Parallel-Prefix
Phase. At face value, this would seem quite difficult since the re-
ordering phase relies heavily on S . Our solution is to implicitly store
the value of every O(logn)-th element of S in the ordering of the
elements of A. That is, we break A into blocks of size O(logn), and

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

552

use the order of the elements in each block to encode an entry of S .
(If the elements are not all distinct, then a slightly more sophisti-
cated encoding is necessary.) Moreover, we modify the algorithm
for building S to only construct every O(logn)-th element. The
new parallel-prefix sum performs O(n/logn) arithmetic operations
on values that are implicitly encoded in blocks; since each such
operation requires O(logn) work, the total work remains linear.

Analysis of the algorithm yields the following theorem:

Theorem 3.1. There exists an in-place algorithm using exclusive-
read-write variables that performs parallel-partition with work
O(n) and span O(logn · log logn).

4 A CACHE EFFICIENT IN-PLACE PARALLEL
PARTITION ALGORITHM

The Strided Algorithm [5]. Our Smoothed Striding Algorithm
borrows several structural ideas from a previous algorithm of Fran-
cis and Pannan [5], which we call the Strided Algorithm2. The
Strided Algorithm is designed to behave well on random arrays A,
achieving span Õ(n2/3) and exhibiting only n/b + Õ(n2/3/b) cache
misses on such inputs. On worst-case inputs, however, the Strided
Algorithm has span Ω(n) and incurs n/b + Ω(n/b) cache misses.
Our algorithm, the Smoothed Striding Algorithm, builds on the
Strided Algorithm by randomly perturbing the internal structure of
the Strided Algorithm; in doing so, we are able to provide provable
performance guarantees for arbitrary inputs and add a previously
impossible recursion step. The original Strided Algorithm consists
of two steps:
The Partial Partition Step. Let д ∈ N be a parameter, and assume
for simplicity that дb | n. Partition the array A into n

дb chunks
C1, . . . ,Cn/дb , each consisting of д cache lines of size b. For i ∈

{1, 2, . . . ,д}, define Pi to consist of the i-th cache line from each of
the chunks C1, . . . ,Cn/дb . One can think of the Pi ’s as forming a
strided partition of array A, since consecutive cache lines in Pi are
always separated by a fixed stride of д − 1 other cache lines. The
first step of the algorithm is to perform an in-place serial partition
on each of the Pi s, rearranging the elements within the Pi so that
the predecessors come first. This step requires work Θ(n) and span
Θ(n/д). The Serial Cleanup Step. For each Pi , define the splitting po-
sitionvi to be the position inA of the first successor in (the already
partitioned) Pi . Define vmin = min{v1, . . . ,vд} and define vmax =
max{v1, . . . ,vд}. Then the second step of the algorithm is to per-
form a serial partition on the sub-array A[vmin], . . . ,A[vmax − 1].
This completes the full partition of A.

The Smoothed Striding Algorithm. To obtain an algorithmwith
provable guarantees for all inputs A, we randomly perturb the
internal structure of each of the Pi ’s. Define U1, . . . ,Uд (which
play a role analogous to P1, . . . , Pд in the Strided Algorithm) so
that each Ui contains a randomly selected cache line from each of
C1, . . . ,Cn/дb (rather than containing the i-th cache line of eachCj).
This ensures that the number of predecessors in each Ui is a sum
of independent random variables with values in {0, 1, . . . ,n/д}.
2The original algorithm of Francis and Pannan [5] does not consider the cache-line
size b . Frias and Petit later introduced the parameter b [6] and showed that by setting
b appropriately, one obtains an algorithm whose empirical performance is close to the
state-of-the-art.

By Hoeffding’s Inequality, with high probability in n, the number
of predecessors in eachUi is tightly concentrated around

µn
д , where

µ is the fraction of elements in A that are predecessors. It follows
that, if we perform in-place partitions of each Ui in parallel, and
then define vi to be the position in A of the first successor in (the
already partitioned)Ui , then the difference betweenvmin = mini vi
and vmax = maxi vi will be small (regardless of the input array A!).

Rather than partitioning A[vmin], . . . ,A[vmax − 1] in serial, the
Smoothed Striding Algorithm simply recurses on the subarray. Such
a recursion would not have been productive for the original Strided
Algorithm because the strided partition P ′1, . . . , P

′
д used in the re-

cursive subproblem would satisfy P ′1 ⊆ P1, . . . , P ′д ⊆ Pд and thus
each P ′i is already partitioned. That is, in the original Strided Algo-
rithm, the problem that we would recurse on is a worst-case input
for the algorithm in the sense that the partial partition step makes
no progress.

The main challenge in designing the Smoothed Striding Algo-
rithm becomes the construction of U1, . . . ,Uд without violating
the in-place nature of the algorithm. A natural approach might
be to store for each Ui ,Cj the index of the cache line in Cj that
Ui contains. This would require the storage of Θ(n/b) numbers
as metadata, however, preventing the algorithm from being in-
place. To save space, the key insight is to select a random offset
X j ∈ {1, 2, . . . ,д} within each Cj , and then to assign the (X j + i
(mod д)) + 1-th cache line of Cj to Ui for i ∈ {1, 2, . . . ,д}. This
allows for us to construct the Ui ’s using only O(n/(дb)) machine
words storing the metadata X1, . . . ,Xn/дb . By setting д to be rel-
atively large, so that n

дb ≤ polylog(n), we obtain a cache-efficient
in-place algorithm.

The recursive structure of the Smoothed Striding Algorithm
allows for the algorithm to achieve polylogarithmic span. As an
alternative to recursing, one can also use the in-place algorithm
from Section 3 in order to partition the subarray. Doing so results
in the following theorem:

Theorem 4.1. There exists an in-place EREW parallel-partition al-
gorithm with work O(n) that, with high probability in n, has span
O(logn log logn) and incurs fewer than (n + o(n))/b cache misses.

REFERENCES
[1] Umut A Acar and Guy Blelloch. 2016. Algorithm design: Parallel and sequential.
[2] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. 2017. In-place

Parallel Super Scalar Samplesort. arXiv preprint arXiv:1705.02257 (2017).
[3] Guy E Blelloch. 1996. Programming parallel algorithms. Commun. ACM 39, 3

(1996), 85–97.
[4] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun. 2012.

Internally deterministic parallel algorithms can be fast. In ACM SIGPLAN Notices,
Vol. 47. ACM, 181–192.

[5] Rhys S. Francis and LJH Pannan. 1992. A parallel partition for enhanced parallel
quicksort. Parallel Comput. 18, 5 (1992), 543–550.

[6] Leonor Frias and Jordi Petit. 2008. Parallel partition revisited. In International
Workshop on Experimental and Efficient Algorithms. Springer, 142–153.

[7] Philip Heidelberger, Alan Norton, and John T. Robinson. 1990. Parallel quicksort
using fetch-and-add. IEEE Trans. Comput. 39, 1 (1990), 133–138.

[8] William Kuszmaul and AlekWestover. 2020. In-Place Parallel-Partition Algorithms
using Exclusive-Read-and-Write Memory: An In-Place Algorithm With Provably
Optimal Cache Behavior. arXiv preprint arXiv:2004.12532 (2020).

[9] Philippas Tsigas and Yi Zhang. 2003. A simple, fast parallel implementation of
quicksort and its performance evaluation on SUN enterprise 10000. In Proceedings
of the Eleventh Euromicro Conference on Parallel, Distributed and Network-Based
Processing. IEEE, 372.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

553

	Abstract
	1 Introduction
	2 Preliminaries
	3 An In-Place Partition Algorithm with Span O(logn loglogn)
	4 A Cache Efficient In-Place Parallel Partition Algorithm
	References

