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ABSTRACT

Machine learning for healthcare researchers face challenges to
progress and reproducibility due to a lack of standardized process-
ing frameworks for public datasets. We present MIMIC-Extract,
an open source pipeline for transforming the raw electronic health
record (EHR) data of critical care patients from the publicly-available
MIMIC-III database into data structures that are directly usable
in common time-series prediction pipelines. MIMIC-Extract ad-
dresses three challenges in making complex EHR data accessible
to the broader machine learning community. First, MIMIC-Extract
transforms raw vital sign and laboratory measurements into usable
hourly time series, performing essential steps such as unit con-
version, outlier handling, and aggregation of semantically similar
features to reduce missingness and improve robustness. Second,
MIMIC-Extract extracts and makes prediction of clinically-relevant
targets possible, including outcomes such as mortality and length-
of-stay, as well as comprehensive hourly intervention signals for
ventilators, vasopressors, and fluid therapies. Finally, the pipeline
emphasizes reproducibility and is extensible to enable future re-
search questions. We demonstrate the pipeline’s effectiveness by
developing several benchmark tasks for outcome and intervention
forecasting and assessing the performance of competitive models.
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INTRODUCTION

Applying modern machine learning to observational health data
holds the potential to improve healthcare in many ways, such as
delivering better patient treatments, improving hospital operations,
and answering fundamental scientific questions [8]. To realize this
potential, there have been efforts to make healthcare data avail-
able to credentialed researchers with human subjects training. A
widely-used public data source is the Medical Information Mart for
Intensive Care (MIMIC-III) dataset [14], which makes available the
de-identified electronic health records (EHRs) of 53,423 patients
admitted to critical care units at a Boston-area hospital from 2001-
2012. While MIMIC-IIT’s availability has catalyzed many research
studies, working with MIMIC-III data remains technically challeng-
ing, which presents a barrier to entry. The primary difficulties rest
in the complexity of EHR data and the myriad choices that must
be made to extract a clinically-relevant cohort for analysis. These
same difficulties hinder the reproducibility of studies that apply
machine learning to MIMIC-III data, because researchers develop
code independently to extract and preprocess task-appropriate co-
horts. The majority of papers do not share code used to extract
study-specific data [13], resulting in expensive yet redundant ef-
forts to build upon existing work and creating the potential for
hard-to-explain differences in results.

In this paper, we introduce MIMIC-Extract,! an open source
pipeline to extract, preprocess, and represent data from MIMIC-
III v1.4, including static demographic information available at ad-
mission, time-varying vital signs and laboratory measurements,
time-varying intervention signals, and static outcomes such as
length-of-stay or mortality. Figure 1 gives a visual summary of the
data we extract from the observed records of an individual patient
stay available in MIMIC-IIIL Our principled approach yields a com-
prehensive cohort of time-series data that is well-suited for several
clinically-meaningful prediction tasks — several of which we profile
in this paper — while simultaneously providing flexibility in cohort
selection and variable selection.

We intend this pipeline to serve as a foundation for both bench-
marking the state-of-the-art and enabling progress on new research
tasks. Several other recent works have developed, in parallel, ex-
traction pipelines and prediction benchmark tasks for MIMIC-III

!https://github.com/MLforHealth/MIMIC_Extract
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Figure 1: Example data produced by MIMIC-Extract to sum-
marize a single subject’s stay in the intensive care unit(ICU).
Time evolves on the x-axis, and all extracted time series are
discretized into hourly buckets. Mechanical Ventilation is
an example intervention with multi-hour continuous dura-
tion. Colloid bolus is an example of an intermittent fluids
intervention. All interventions are recorded as binary indi-
cators at each hour. Heart Rate is an example of a frequent
vital sign. Glucose is an example of an infrequent lab mea-
surement.

data [12, 24, 26]. However, compared to these we advance the field
with three primary contributions:

e Robust Representations of Labs and Vitals Time Series. The
primary difficulty of using the raw MIMIC-III data is the noisy
nature of clincal data. We present a comprehensive procedure
designed with clinical validity in mind to standardize units of
measurement, detect and correct outliers, and select a curated set
of features that reduce data missingness. Importantly, we offer
data representations that are resilient to concept drift over time,
by aggregating semantically similar raw features. The robustness
of this “clinically aggregated” representation is demonstrated
by recent work on feature robustness in non-stationary health
records [22].

i

e Clinically Meaningful Interventions and Outcomes. Our
pipeline focuses on making hourly-observed treatment signals
available for several actionable critical care interventions, includ-
ing ventilation, vasopressors (for blood pressure management),
and fluid bolus therapies (for managing sepsis and other condi-
tions). No other recent pipeline makes interventions a primary
focus. We also support several common outcomes of interest,
such as mortality and length of stay. We intentionally avoid tasks
of questionable clinical utility appearing in some prior works,
such as diagnosis billing code prediction, because they have poor
diagnostic value [1]. In later benchmark task design, we further
emphasize realistic settings such as predictions that occur every
hour rather than after a single 24-hour duration. We are careful
to include meaningful temporal gaps between measurement and
outcome, in order to minimizes label leakage and thus improve
the utility of models in real clinical deployment.

e Focus on Usability, Reproducibility, and Extensibility. Fi-
nally, we have designed the entire pipeline with usability and
extensibility in mind. Our patient selection criteria can be easily
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adjusted to support future research questions, requiring changes
to only keyword arguments rather than source code. Extracted
data can be read directly into a Pandas DataFrame [20] with
appropriate data typing, enabling immediate computational anal-
ysis. We also provide Jupyter Notebooks [23] that demonstrate
the use of the data produced by our MIMIC-Extract pipeline in
benchmark prediction tasks, including steps for data loading and
preprocessing, and baseline model building.

We emphasize that our pipeline has been used as the foundation
for reproducing many recent machine learning studies of MIMIC-III
data [7, 9-11, 18, 22, 25, 27]. While none of these released their own
extraction code, they nevertheless utilized similar cohort selection
and variable selection processes.

The rest of this paper provides an overview of the extraction
system design, a detailed comparison to other extraction systems
and their corresponding benchmark tasks, and a careful analysis of
several benchmark prediction tasks developed using our pipeline
to showcase its potential.

DATA PIPELINE OVERVIEW

Figure 2 summarizes the data extraction and processing steps in-
volved in MIMIC-Extract. From the MIMIC relational database,
SQL query results are processed to generate four output tables.
These tables, as summarized in Table 1, maintain the time series
nature of clinical data and also provide an aggregated featurization
of the cohort selected.

MIMIC Relational Database Data Processing Output DataFrames

icu_detail

cohort —
S
selection | patients |

icustays

unit o outlier ” vitals_labs
ST conversion removal

icu_detail ‘ mean, std, count
chartevents l

hourly and o mean
[ clinical missingness

4 threshold =
aggregation vitals_|labs_mean

icu_detail \—' binary interventions
_ >

durations indicators

Legend

timeseries

rocessin,
features 2 9

static features

Figure 2: MIMIC-Extract Overview: First, a cohort is created
that meets our selection criteria. Static demographic vari-
ables and ICU stay information for patients in the cohort are
extracted and stored in patients. Next, labs and vitals for pa-
tients in the cohort are extracted and stored in vital_labs
and vitals_labs_mean. By default, only labs and vitals that
are missing less frequently than a pre-defined threshold are
extracted and outlier values are filtered based on physiologi-
cal valid ranges. Finally, hourly intervention time series for
the same patients are extracted and stored in interventions.
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Table Name Index

Variables

patients
vitals_labs
vitals_labs_mean
interventions

subject_id, hadm_id, icustay_id

subject_id, hadm_id, icustay_id, hours_in
subject_id, hadm_id, icustay_id, hours_in
subject_id, hadm_id, icustay_id, hours_in

static demographics, static outcomes

time-varying vitals and labs (hourly mean, count and standard deviation)
time-varying vitals and labs (hourly mean only)

hourly binary indicators for administered interventions

Table 1: Description of all output tables generated by MIMIC-Extract.

Cohort Selection

The MIMIC-III database captures over a decade of intensive care
unit (ICU) patient stays at Beth Israel Deaconess Medical Center.
An individual patient might be admitted to the ICU at multiple
times over the years, and even within a single hospital stay could
be moved in and out of the ICU multiple times. We choose to focus
on each subject’s first ICU visit only, since those who make repeat
visits typically require additional considerations with respect to
modeling and providing useful treatment. Our proposed pipeline
thus includes all patient ICU stays in the MIMIC-III database that
meet the following criteria: the subject is an adult (age of at least 15
at time of admission), the stay is the first known ICU admission for
the subject, and the total duration of the stay is at least 12 hours
and less than 10 days. This cohort selection is consistent with many
previous papers using MIMIC-III [7, 9-11, 18, 25, 27].

Variable Selection

Static Variables. By default, our extraction code extracts all 10
static demographic variables listed in Table 2, along with static
outcomes including in-ICU mortality, in-hospital mortality, and
the patient’s total ICU length-of-stay (LOS), in hours. Our pipeline
presents values for static variables as they originally appear in
MIMIC-III raw data with no additional outlier removal. For example,
age for patients older than eighty-nine is masked as 300 in MIMIC-
III for privacy reasons, and our pipeline preserves this sentinel
value to allow downstream handling of these subjects.

Variable Concept

age patient age (masked as 300 for patients
older than 89 years old in MIMIC-III)

ethnicity patient ethnicity

gender patient gender

insurance patient insurance type

admittime hospital admission time

dischtime hospital discharge time

intime ICU admission time

outtime ICU discharge time

admission_type | type of hospital admission

first_careunit type of ICU when first admitted

Table 2: Static demographic variables and admission infor-
mation generated by MIMIC-Extract.
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Time-Varying Vitals and Labs. By default, our extraction code
extracts 104 clinically aggregated time-series variables (listed in
Appendix A) related to vital signs (e.g., heart rate or blood pressure)
and laboratory test results (e.g., white blood cell counts). These
were selected as a comprehensive set of possible signals for predic-
tion algorithms with input from clinical care teams. Practitioners
can optionally choose to output only a subset of these variables
that meet certain minimum percentages of non-missingness, as
explained in later sections.

When comparing our selected features to previous work, we find
that we include all 12 time-varying features in the small curated set
of 17 features considered by Purushotham et al. [24] (the other 5 in-
clude two static features we use, age and admission type, and three
diagnosis code features we intentionally omit). We include 13 of the
17 time-varying vitals and labs featured in Harutyunyan et al. [12]’s
recent pipeline (we omit capillary refill rate due to high missing-
ness rates as do all the feature sets surveyed by Purushotham et al.
[24]; we further do not consider the separate eye, motor and verbal
Glascow coma scores, only the total score). Importantly, unlike the
large set of 136 “raw” features advocated by Purushotham et al.
[24], we do not include any prescription drugs such as aspirin —
this is an intentional omission, because of the unclear quality of the
prescription signals in the MIMIC-III database. Without additional
insight into the prescriptions a patient actually took, which may
differ from all prescriptions ordered for a patient, we feel the inclu-
sion of prescriptions can induce significant confounding effects on
the resulting models.

Unit Conversion and Outlier Detection

Sometimes vitals and labs are recorded with different measuring
units in EHR data. Our data pipeline standardizes measurements
into consistent units, including weight into kilograms, height into
centimeters, and temperature into degrees Celsius. This process is
easily extensible if any additional unit-classes are added by down-
stream users which need conversion.

To handle outliers, we make use of a list of clinically reasonable
variable ranges provided in the source code repository of Harutyun-
yan et al. [12],2 which was developed in conversation with clinical
experts, based on their knowledge of valid clinical measure ranges.
Each numerical variable is associated with upper and lower thresh-
olds for detecting unusable outliers. If the raw observed value falls
outside these thresholds, it is treated as missing. Additionally, each
variable is associated with more refined upper and lower thresh-
olds for defining the physiologically valid range of measurements.
Any non-outlier value that falls outside the physiologically valid

Zhttps://github.com/YerevaNN/mimic3-benchmarks/blob/master/
mimic3benchmark/resources/variable_ranges.csv. Accessed 2019-03-29.
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range is replaced with the nearest valid value. In generating the
default cohort, we replace 35,251 (0.05%) measurements classified
as non-valid outliers with nearest valid values and remove 5,402
(0.008%) measurements classified as extreme outliers. Appendix A
lists the proportion of outliers detected at an aggregated feature
level.

At the time of writing, this standardized process of outlier detec-
tion and removal is unique to our benchmarking system. In contrast,
the public pipeline of Harutyunyan et al. [12] does not perform
any outlier detection and replacement®. Similarly, the pipeline of
Purushotham et al. [24] does not use outlier removal for its recom-
mended set of 136 raw features, while for their comparison small
set of 17 features involved in the SAPS score (including 5 non-
time-varying ones) they do remove outliers “according to medical
knowledge” but provide few reproducible details. We emphasize
that updating the outlier handling of either pipeline would be a
labor-intensive change (requiring editing source code).

Hourly Aggregation

The raw data in MIMIC-III provides fine-grained timestamps (with
resolution in units of seconds or finer) for each laboratory mea-
surement and recorded vital sign. However, most measurements
are infrequent (e.g. blood tests of interest may be run every few
hours at most), meaning each variable’s raw time-series is quite
sparse. To obtain a denser representation that is easier to reason
about and readily applied to modern machine learning methods for
time-series that expect discretized time representations, we aggre-
gate the observations from each ICU stay’s time-series into hourly
buckets.

Semantic Grouping of Raw Features into
Clinical Aggregates

Each measurements in the MIMIC-III database is associated with
a unique ItemlID, as specified by the original EHR software. These
raw ItemIDs are not robust to changes in software or human data
entry practices. For example, “HeartRate” may be recorded under
ItemID 211 (using CareVue EHR systems before 2008) or under
ItemID 220045 (using MetaVision EHR software after 2008). We
thus developed a manually curated clinical taxonomy designed
to group semantically equivalent ItemIDs together into more ro-
bust “clinical aggregate” features. These aggregate representations
reduce overall data missingness and the presence of duplicate mea-
sures. Appendix A details the proposed clinical taxonomy about the
MIMIC-Extract featurization. Parallel work by Nestor et al. [22]
shows that aggregating via this kind of clinical taxonomy yields
significant benefits to the robustness of downstream models with
respect to clinical concept drift over time. Our proposed software
pipeline makes this useful taxonomy accessible to researchers and
enables reproducibility.

Time-Varying Treatment Labels

Our code extracts hourly binary indicators of when (if ever) com-
mon treatments were provided to each patient over time. We include

3Note in README: ““*Qutlier detection is disabled in the current version**”
https://github.com/YerevaNN/mimic3-benchmarks/commit/2da632f0d#diff-
04c6e90faac2675aa8%¢2176d2eec7d8
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device treatments such as mechanical ventilation, as well as drug
treatments such as vasopressors and fluid boluses.

We target these interventions because they are commonly used
in the ICU [21, 29] and, despite medical necessity, they can present
notable harms to patients [6, 28]. We include fluid boluses of two
types as interventions, crystalloid and colloid, but do not predict
them because they are often considered less aggressive alternatives
to vasopressors [17]. The output stores binary indicators of whether
an intervention was applied (1) or not applied (0) within a given
hour; any missing data is considered a non-treatment (0).

Note that we extract both individual vasopressors (e.g., adeno-
sine, dopamine, norepinephrine, vasopressin, etc.) and overall va-
sopressor usage, consistent with the MIMIC-III codebase [15]. A
comprehensive list of extracted interventions is provided in Table 3.

Intervention Concept Mean Hours
vent mechanical ventilation 12.20
vaso vasopressor 8.10
adenosine adenosine 0.00
dobutamine dobutamine 0.36
dopamine dopamine 0.95
epinephrine epinephrine 0.60
isuprel isuprel 0.01
milrinone milrinone 0.87
norepinephrine | norepinephrine 2.72
phenylephrine | phenylephrine 4.06
vasopressin vasopressin 0.90
colloid_bolus colloid bolus 0.16
crystalloid_bolus | crystalloid bolus 1.93
nivdurations non-invasive ventilation 25.81

Table 3: Hourly interventions extracted by MIMIC-Extract.
Mean Hours is the average number of hours when the con-
tinuous interventions are on or when the intermittent in-
terventions (colloid bolus and crystalloid bolus) are admin-
istrated, averaged across all patients. We include separate
interventions for 9 distinct vasopressor drugs as well as a
general vasopressor intervention when any one is used.

Extensibility of Data Pipeline

While MIMIC-Extract promotes reproducibility by providing a
default cohort for common benchmark tasks, it is also able to to
extract data tailored to specific research questions. In this section,
we demonstrate four possible modifications and extensions of this
pipeline to enable customized extraction.

Keywords. Functions in MIMIC-Extract use keywords to control
admission cohort and time-varying features selection. Overwriting
default values for the following keywords allows researchers to
modify default extraction:

min_age specifies a floor on patients’ age to be included in the
cohort,

min_duration & max_duration specify restrictions on ICU length
of stay,
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group_by_level2 specifies whether the ‘raw’ or ‘clinically aggre-
gated’ labs and vitals should be extracted, and

min_percent excludes vital and lab variables that contain high
proportions of missing values.

Configurable Resource Files. The extraction code relies on in-
formation in associated resource files for variable grouping and
extraction (itemid_to_variable_map.csv) and outlier correction
(variable_ranges.csv). By modifying these files, researchers can
extract sets of variables that are best suited for specific studies and
adjust custom outlier detection thresholds for their task.

Embedded SQL Queries. Researchers can modify the code or add
SQL queries in the extraction code to include additional static vari-
ables, vitals and labs measurements and treatment labels in the
output tables. For example, acuity score can be queried and added
to the patients table, and treatment fluid amount can be extracted
to the interventions table by querying respective tables in the
MIMIC relational database. We plan to maintain and update this
codebase regularly to reflect additional research needs and improve
the extensibility and ease of adding new SQL queries.

Additional Dataframes. By using a consistent cohort for all out-
put dataframes, MIMIC-Extract reduces the workload on subse-
quent data processing in downstream tasks. While it currently ex-
tracts static variables, vital signs, lab measurements, and treatment
interventions, MIMIC-III contains more clinical information such
as prescriptions or diagnostic codes. Researchers can extend the
pipeline to output additional groups of variables. This pipeline can
also be extended to extracting unstructured data such as caregiver
notes to enable multi-modal learning.

COMPARISON TO OTHER EXTRACTION
SYSTEMS

A particular reproducibility challenge that the machine learning for
health community faces is the lack of standardized data preprocess-
ing and cohort specification [19]. We focus here on the three most
similar efforts to ours in addressing this challenge with MIMIC-III:
the benchmarks released recently by Harutyunyan et al. [12], Pu-
rushotham et al. [24], and Sjoding et al. [26]. While all these efforts
have released public code that transforms MIMIC-III into feature
and label sets suitable for supervised machine learning prediction
tasks that take multivariate time-series input, they differ from our
work in several important dimensions, including the following:

e Prediction Target: Which variables (e.g. mortality, LOS) the
task intends to predict.

o Prediction Framework: What format input and output data
take in the prediction task (see Figure 3).

e Patient Cohort: Whether the output cohort is generic or
task-specific.

o Time-varying Feature Representation: What feature repre-
sentation is chosen for the time-varying variables and what
feature transformation is applied.

o Output: The format used for output storage and presentation.

All works also differ with regard to which patient-specific features
are exported and used in prediction, though we do not consider
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these differences in detail here. Table 4 summarizes the compar-
ison of MIMIC-Extract to these works?. As demonstrated in the
comparison, MIMIC-Extract is the only pipeline that generates a
generic cohort that can be directly read as Pandas DataFrame. It is
also the only pipeline that uses clinical aggregation, unit conversion,
and outlier detection on a large set of raw MIMIC-III data.

Prediction Targets. Mortality and length-of-stay (LOS) are very
common targets in relevant benchmark works and are also included
in this work. In addition, MIMIC-Extract is the only work demon-
strating an intervention prediction task through predicting the
onset, offset, stay on, and stay off of mechanical ventilation and
vasopressors. This task requires the model to handle the decisions
needed in a real ICU where subjects may go on and off treatments
throughout their stay using most recently observed data.

While we do not demonstrate phenotype classification, ICD-9
group classification or acute respiratory failure (ARF) and shock
predictions in this work, these prediction targets can be derived ei-
ther using default MIMIC-Extract output or with slight extensions
to the pipeline.

Prediction Framework. A typical clinical prediction task usually
uses one of the two prediction frameworks illustrated in Figure 3:

o Fixed Input, Fixed Target: A fixed period window of obser-
vations is taken from each patient (e.g. the first 24 hours of
ICU) and a single target with a fixed temporal relationship
to the chosen input window is predicted (e.g. in-hospital
mortality or mortality within 30 days).

e Dynamic Input, Dynamic Target: Multiple (potentially over-
lapping) subsequences are taken from each patient (e.g. the
most recent 6 hours). Each input subsequence is used to
predict a target variable at a known temporal delay (e.g. re-
maining LOS, mechanical ventilation onset one hour later).
We will consider subsequences of fixed-length in all dynamic
benchmarks here (e.g. 6 hour windows), but these could be
variable-length in general.

In this work, we profile MIMIC-Extract for both “Fixed Input,
Fixed Target” and “Dynamic Input, Dynamic Target" frameworks.
In particular, we employ three classification tasks: binary mortality
prediction (both in-hospital and in-ICU, given the first 24-hour win-
dow of patient history), binary long length-of-stay (LOS) prediction
(both greater than three and seven days, given the same 24-hour
window), and 4-class hourly intervention onset/offset prediction
(for both mechanical ventilation and vasopressor administration).

The only other pipeline work that also handles “Dynamic Input,
Dynamic Target" prediction is by Harutyunyan et al. [12] where
they predict hourly next-day mortality, which they call decompensa-
tion, and hourly remaining LOS. (Note that they use variable-length
subsequences in both tasks, including at each hour information from
all previous hours). However, since they generated task-specific
cohorts, it is a more involved process to modify their source code
to extract a different dynamic target.

4While the comparisons to Harutyunyan et al. [12] and Purushotham et al. [24] are
based on full journal papers, the comparison to Sjoding et al. [26] is based on a one-page
abstract due to publication availability at the time of writing.
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MIMIC-Extract | Harutyunyan et al. [12] ‘ Purushotham et al. [24] ‘ Sjoding et al. [26]

Prediction Mortality Y Y Y Y
Target Length—of—Stay (LOS) Y Y Y
Phenotyping (ICD code) Y Y
Physiological Shock Y
Acute Respiratory Failure (ARF) Y
Ventilator intervention Y
Vasopressor intervention Y
Fluid Bolus intervention Y
Prediction Fixed Input, Fixed Target Y Y Y Y
Framework Dynamic Input, Dynamic Target Y Y
Generic Y
Cohort Task-Specific Y Y Y
Raw Features 269 n/a 136 ?
Time-Varying | Clinical Aggregate Features 104 17 12 ?
Feature Unit Conversion Y Y not for raw ?
Representation | Qutlier Detection Y disabled not for raw ?
Missingness Thresholding Y Y Y Y
Format .h5 .cSV .npy .npz
Output Presentation Cohort Patient Cohort Cohort

Table 4: Comparisons of public MIMIC-III data pipelines. “Y” indicates a “yes”. Purushotham et al. [24] used clinical aggrega-
tion and outlier detection only in their “Feature Set A” which only considered the 17 variables (12 time-varying, 5 static) used
to calculate SAPS-II risk score. Similarly, these processing steps only apply to a hand-selected set of 17 variables in Harutyun-
yan et al. [12]. Due to limited published resources available about Sjoding et al. [26], some features are difficult to assess at

present.
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Figure 3: Common Time-Series Prediction Frameworks.

In addition, to the best of our knowledge Harutyunyan et al.’s
work does not employ greater-than-zero gap times when structur-
ing in-hospital mortality prediction, risking temporal leakage of
label information when training models. For example, with fixed
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48-hour input windows, suppose a patient died at hour 48.5. It
is likely that some signals of imminent decline (e.g. last-minute
aggressive treatments) would be present before hour 48 and thus
included as input, leading the predictor to identify what the care
team obviously already knows about the patient’s poor health. This
is a limitation of these tasks; in this work, all tasks presented use a
non-zero temporal gap to ensure no such label leakage.

Cohort. Our system exports a single cohort, which can be used
in a variety of ways under different paradigms for various tasks.
In other words, MIMIC-Extract’s raw output does not specify the
prediction input features or targets and do not impose task-specific
inclusion criteria. All other three works establish either task-specific
inclusion criteria or task-specific cohorts with different input fea-
tures. As a result of producing a generic cohort, MIMIC-Extract is
more extensible and easily adapted to different prediction tasks. The
absence of task-specific inclusion criteria can also lead to more ro-
bust models. Lastly, by focusing more on the general data pipeline
workflow rather than task specifics, MIMIC-Extract presents a
framework that can be used by machine learning researchers using
other clinical datasets.

Time-varying Feature Representation. Our system exports two
possible featurizations: “raw” features which match the input rep-
resentation schema of MIMIC (at the ItemID level), and “clinical
aggregate” features, where outputs are grouped together according
to a manual taxonomy based on clinical knowledge (see Appen-
dix A). This representation induces a robustness to underlying
temporal concept drift in the representation space [22]. Note that
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even though both Harutyunyan et al. [12] and Purushotham et al.
[24] used ‘processed’ feature sets that involves clinical aggregation,
unit conversion and outlier detection, they only considered a lim-
ited set of features for such transformation. MIMIC-Extract uses
these processing techniques to a more comprehensive set of labs
and vitals listed in Appendix A.

Output. Other than Harutyunyan et al. [12], all pipelines gen-
erate cohort-level DataFrames or arrays that are easier for data
exploration and visualization. MIMIC-Extract’s output can be read
directly into a Pandas DataFrame that offers greater readability and
easier querying.

OUTPUT COHORT CHARACTERIZATION

Our pipeline produces a cohort of 34,472 patients by default with
diverse demographic and admission coverage, as summarized in
Table 5. Alternative definitions of desired cohort properties (mini-
mum age, etc.) can yield different cohorts. More details about the
distribution of various features over this cohort can also be found in
Appendix A, which details, among other things, the relative rates of
missingness for both the individual raw ItemIDs and the grouped
clinical aggregates over this cohort.

BENCHMARK TASKS AND MODELS

In this section, we profile several benchmark tasks, ranging in com-
plexity, across several types of models using data extracted with
MIMIC-Extract, in an effort to both provide meaningful bench-
marks and baseline results for the community, as well as to demon-
strate the utility of this extraction system. Code to run these bench-
marks is available in the form of accompanying Jupyter Notebooks.

We specifically endeavor to highlight tasks of varying complexity,
each with a broad clinical intervention surface. Accordingly, we
categorize our benchmarks as two low complexity tasks and one
high complexity task. Our low complexity tasks are both static,
binary classification tasks, each broken into two variants: mortality
prediction (either in-hospital or in-ICU) and long length-of-stay
(LOS) prediction (either > 3 day or > 7 day). Our high complexity
task is the hourly prediction of the onset, offset, stay on and stay
off of various interventions, as performed in, e.g., Suresh et al. [27].

Notably, we do not include any tasks based on billing code pre-
diction; while such tasks were included as benchmarks by Haru-
tyunyan et al. [12], and are commonly used as a target [4, 5, 16],
we argue that predicting diagnosis code is of minimal value clini-
cally, given the lack of temporal association linking a diagnosis to
a particular point in the record, and the fact that such codes are
more associated with the billing of a patient than the treatment of
said patients [1].

We use a non-zero time gap between the most recent feature
measurement time and a relevant forecasted event in all tasks. A
gap is needed to allow practitioners time to respond to a predicted
risk; suddenly warning that a patient is in instant critical need is not
viable in medical practice. Additionally, time is needed to assemble
care teams or fetch necessary drugs or equipment.

Mortality and Length-of-stay (LOS) Predictions

Risk prediction tasks like mortality and long LOS predictions are
highlighted as benchmark tasks in both Purushotham et al. [24]

228

ACM CHIL ’20, April 2-4, 2020, Toronto, ON, Canada

and Harutyunyan et al. [12]. Though common, they are known to
be relatively easy prediction tasks, with performance saturating
given only minimal data and even under relatively modest models,
such as random forests [3, 22]

Task Definitions. We consider several varieties of these tasks, includ-
ing in-ICU mortality, in-hospital mortality, LOS > 3 days prediction,
and LOS > 7 days prediction. For all tasks, we use clinically grouped
time-varying labs and vitals features alone to predict these targets
as binary classification task. In all cases, we use the first 24 hours
of a patient’s data, only considering patients with at least 30 hours
of present data. This 6 hour gap time is critical to prevent temporal
label leakage, and must be included in any valid benchmark.

Data Pre-processing. Values were mean centered and scaled to unit
variance, then missing data was imputed using a variant of the
“Simple Imputation” scheme outlined in Che et al. [3], in which we
represent each variable via a mask (1 if the value is present at this
timestep, 0 otherwise), the imputed variable, and the time since
the last observation of this feature (with values which have never
been observed being given a sentinel large value). In particular,
variable values are first forward filled and then set to individual-
specific mean if there are no previous values. If the variable is never
observed for a patient, its value is set to training set global mean.

Models Benchmarked. For all tasks, we profiled logistic regression
(LR), random forest (RF), and gated recurrent unit with delay (GRU-
D) [3] models. As the point of this work is not to make strong
statements about the workings or efficacy of these models, but
rather to introduce our extraction pipeline and demonstrate its use
on benchmark tasks, we will not discuss the details of these models
here, but refer the reader to external sources for more model details.

Models were tuned using random hyperparameter search [2]
under broad parameter distributions, with 60 hyperparameter sam-
ples for RF and LR models, and a variable number of samples for
GRU-D (less than 60 in all cases) as GRU-D is significantly more
computationally intensive. Note that this likely induces a small bias
against GRU-D in these baseline results.

Results. Results for these models are shown in Table 6. Our AUROCs
are very much in line with the literature for these tasks, showing
robustly high performance for GRU-D and RF models, as expected.
One interesting observation is that random forest models often have
poor F1 scores, even while maintaining competitive AUPRC scores.
This may indicate that these models are more sensitive to the initial
choice of threshold than are other models. Similarly, GRU-D often
displays stronger performance under the AUPRC metric than the
AUROC metric relative to other models, which likely speaks in its
favor here given the strong rates of class imbalance in these tasks.

Clinical Intervention Prediction

We also use MIMIC-Extract for intervention prediction tasks. Well-
executed intervention prediction can alert caregivers about admin-
istrating effective treatments while avoiding unnecessary harms
and costs [10, 11]. In a high-paced ICU, such decision-support sys-
tems could be a fail-safe against catastrophic errors. We argue that
tasks like intervention prediction have a stronger time-series focus
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Gender Total
F M

Ethnicity Asian 370 472 842 (2%)
Hispanic 4438 689 1,137 (3%)

Black 1,448 1,219 2,667 (8%)

Other 2,061 3,122 5,183 (15%)

White 10,651 13,992 24,643 (71%)

Age <30 748 1,084 1,832 (5%)
31-50 2,212 3277 5489 (16%)

51-70 4,888 8,054 12,942 (38%)

>70 7,130 7,079 14,209 (41%)

Insurance Type  Self Pay 125 352 477 (1%)
Government 402 6438 1,050 (3%)

Medicaid 1,186 1,596 2,782 (8%)

Private 4,415 7,431 11,846 (34%)

Medicare 8,850 9,467 18,317 (53%)

Admission Type Urgent 409 528 937 (3%)
Elective 2,282 3,423 5,705 (17%)

Emergency 12,287 15,543 27,830 (81%)

First Careunit TSICU 1,777 2,725 4,502 (13%)
CCU 2,185 3,008 5,193 (15%)

SICU 2,678 2,842 5,520 (16%)

CSRU 2,326 4,724 7,050 (20%)

MICU 6,012 6,195 12,207 (35%)

Total

14,978 (43%)

19,494 (57%) 34,472 (100%)

Table 5: Default Cohort Summary by Static Demographic and Admission Variables.

Task Model AUROC AUPRC Accuracy F1
LR 88.7 46.4 93.4% 38.4
In-ICU Mortality RF 89.7 49.8 93.3% 12.6
GRU-D 89.1 50.9 94.0% 43.1
LR 85.6 49.1 91.1% 42.1
In-Hospital Mortality = RF 86.7 53.1 90.7% 19.6
GRU-D 87.6 53.2 91.7% 44.8
LR 71.6 65.1 68.6% 59.4
LOS > 3 Days RF 73.6 68.5 69.5% 59.5
GRU-D 73.3 68.5 68.3% 62.2
LR 72.4 18.5 91.9% 7.2
LOS > 7 Days RF 76.4 19.5 923% 0.0
GRU-D 71.0 17.9 91.2% 10.7

Table 6: Performance Results on In-ICU Mortality, In-
Hospital Mortality, > 3 Day LOS, and > 7 Day LOS. Classi-
fication threshold used for computing accuarcy and F1 is set
to 0.5. (Note that due to their additional computational over-
head, GRU-D models were undersampled during hyperpa-
rameter turning as compared to LR and RF models.)

and are clinically actionable. Following prior work on clinical in-
tervention prediction [10, 11, 27], we present models for predicting
two target interventions, mechanical ventilation and vasopressors.
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Task Definitions. To make clinically meaningful predictions, we
extract from MIMIC-Extract clinically aggregated outputs a sliding
window of size 6 hours as input features, then predict intervention
onset/offset within a 4 hour prediction window offset from the
input window by a 6 hour gap window. For each intervention at
each prediction window, there are 4 possible outcomes:

Onset When the intervention begins off and is turned on.
Stay On When the intervention begins on and stays on.
Wean When the intervention begins on and is stopped.
Stay Off When the intervention begins off and stays off.

Data Pre-processing. Time-varying lab and vital data are prepro-
cessed in a manner similar to that used in the mortality and LOS
prediction, except that the “time since last measure” column is also
centered and rescaled as this is found to improve performance for
our neural models. We also include 5 static variables (gender, age
bucket, ethnicity, ICU type, and admission type) and time-of-day
as additional features.

Models Benchmarked. We profile LR, RF, convolutional neural net-
work (CNN) models, and Long Short-Term Memory (LSTM) models
for this task. Hyperparameters for RF and LR models were tuned
via random search, whereas for CNN and LSTM models, parameters
were replicated from prior work by Suresh et al. [27].

Results. Model performance is summarized in Table 7.
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RF LR CNN LSTM
Vent. Vaso. | Vent. Vaso. | Vent. Vaso. | Vent. Vaso.
Onset AUROC 87.1 71.6 | 719 684 | 722 69.4 | 70.1 71.9
Wean AUROC 940 942 | 932 939 | 939 940 | 93.1 93.9

Stay On AUROC | 98.5 985 | 984 982 | 986 984 | 983 983
Stay Off AUROC | 99.0 983 | 983 985 | 984 981 | 984 981

Macro AUROC

946 907 | 904 898 | 90.8  90.0| 90.0 90.1

|
Accuracy | 797 838 785 729 | 618 776 | 843 826
Macro F1 | 481 489 | 477 451 | 444 444 501 481
Macro AUPRC | 427 420 | 431 402 | 424 389 | 444 417

Table 7: Performance Results on Mechanical Ventilation and
Vasopressor Prediction.

We find that CNN and LSTM models perform very similarly to
prior studies—this is notable given we do not include notes, whereas
many prior studies do [27]. RF models perform surprisingly well,
outperforming CNN and LSTM models and prior results reported
in the literature.

DESIGN CHOICES AND LIMITATIONS

While MIMIC-Extract aims to be flexible in supporting a wide
range of machine learning projects using MIMIC-III, we make sev-
eral design choices that may render MIMIC-Extract less relevant to
tasks that differ significantly from the benchmark tasks presented
in this paper.

Most notable among these designed choices are the features
we exclude. Notable such categories include prescriptions, cer-
tain labs and vitals, various treatments/interventions, and notes.
Many of these features can be externally extracted and joined to
our pipeline’s output (as we demonstrate in ‘Extensibility of Data
Pipeline’ Section for notes), and others we exclude intentionally
due to concerns about their robustness (prescriptions), but other
parties may wish to extend the pipeline to enable extraction of
these features.

In addition, our time-series coarsening into hourly buckets can
also be limiting for certain tasks. By bucketing data into hourly
aggregates, we lose out on a level of granularity present in the raw
data and force the irregular medical timeseries into a artificially
regular representation. We also lose all granularity with regards to
time-of-day, which has known effects on care delivery [1]. Similarly,
our clinical groupings, while highly performant, are also manually
curated and limit the extensibility of the pipeline to new labs and
vitals.

CONCLUSION

MIMIC-Extract is an open source cohort selection and pre-processing
pipeline for obtaining multivariate time-series for clinical prediction
tasks. The system produces a single, large cohort and represents
time-varying data according to manually-defined, clinically mean-
ingful groupings. This representation shows strong performance
and robustness to care practice drift. We demonstrate that this
pipeline can be used in a diverse range of clinical prediction tasks.
We hope its focus on usability, reproducibility, and extensibility will
help spur development of machine learning methodology via clini-
cally relevant and reproducible benchmark tasks. Ultimately, we

230

ACM CHIL ’20, April 2-4, 2020, Toronto, ON, Canada

hope MIMIC-Extract will enable easier and faster development of
effective machine learning models that might drive improvements
in delivering critical care.

CODE AVAILABILITY

The full MIMIC-EXTRACT pipeline code, including SQL queries and
configurable resource files, as well as Jupyter Notebooks walking
through benchmark tasks and models are available at https://github.
com/MLforHealth/MIMIC_Extract.
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