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ASUMAN OZDAGLAR, Laboratory for Information & Decision Systems, Massachusetts Institute of

Technology

Certain but important classes of strategic-form games, including zero-sum and identical-interest games, have

the fictitious-play-property (FPP), i.e., beliefs formed in fictitious play dynamics always converge to a Nash

equilibrium (NE) in the repeated play of these games. Such convergence results are seen as a (behavioral)

justification for the game-theoretical equilibrium analysis. Markov games (MGs), also known as stochastic

games, generalize the repeated play of strategic-form games to dynamic multi-state settings with Markovian

state transitions. In particular, MGs are standard models for multi-agent reinforcement learning – a reviving

research area in learning and games, and their game-theoretical equilibrium analyses have also been conducted

extensively. However, whether certain classes of MGs have the FPP or not (i.e., whether there is a behavioral

justification for equilibrium analysis or not) remains largely elusive. In this paper, we study a new variant of

fictitious play dynamics for MGs and show its convergence to an NE in 𝑛-player identical-interest MGs in

which a single player controls the state transitions. Such games are of interest in communications, control, and

economics applications. Our result together with the recent results in [42] establishes the FPP of two-player

zero-sum MGs and 𝑛-player identical-interest MGs with a single controller (standing at two different ends of

the MG spectrum from fully competitive to fully cooperative).
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1 INTRODUCTION
Markov games (MGs), also known as stochastic games, since their introduction in [45], have been

broadly used to model strategic interactions of multiple agents in dynamic environments with

multiple states. The players’ actions affect not only their immediate stage-payoffs, but also the

state transitions, and therefore, their future stage-payoffs.
1
This powerful framework to model

the sequential decision-making of multiple agents finds broad applications in both Engineering

and Economics [3, 37]. Moreover, MGs also serve as the fundamental framework for multi-agent

reinforcement learning [10, 29, 48].

Nash equilibrium (NE) [36], on the other hand, has been broadly used as a solution concept in

game theory. One important justification of NE is that it is the natural outcome of the myopic

learning dynamics of players that take greedy best response actions. Such a perspective has been

extensively studied in strategic-form games (also known as normal-form or one-shot games), for

1
Hereafter, we use players and agents interchangeably.
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best-response and fictitious-play types of learning dynamics [23, 26, 31, 47]. In particular, these non-

equilibrium adaptation dynamics are referred to as being uncoupled/independent, and these games

where fictitious-play dynamics converge are referred to as having fictitious-play-property (FPP)

[34, 35, 41, 44]. For strategic-form games, it is well-known that several important classes of games

enjoy the FPP, ranging from fully competitive to fully cooperative ones, with no modification of the

fictitious play dynamics being used. This is especially a desired property for independent learning

with uncoupled dynamics, where the players are oblivious to the structure of the underlying game

while learning.

In stark contrast, the FPP of MGs remains largely elusive. Limited results have been established

on uncoupled learning dynamics of non-equilibrium adaptation for MGs, as well as using it as the

justifications for the equilibrium therein. Recently, [4, 28, 42] are the first set of results along this

line, with focuses on either zero-sum or identical-interest MGs. Moreover, some learning dynamics

[4, 28] are not fully independent in that all the players track a common set of parameters. This

naturally leads to the following open question we are interested in:

Can we design independent learning dynamics with uncoupled update rules, which enjoy the
fictitious-play-property for more than one class of Markov games?

To shed light on this open problem, we study the same (synchronous- and model-based version)

learning dynamic in [42], an uncoupled fictitious-play dynamic that provably converges for zero-

sumMGs, and investigate its convergence property in an important class of games: identical-interest

MGs with single-controller. We summarize our contributions as follows.

Contributions. We study two-timescale fictitious-play dynamics for MGs, with independent and

uncoupled update rules that combine the classical fictitious-play in the repeated play of strategic-

form games with the 𝑄-learning in solving Markov decision processes. We show that this natural

learning dynamic converges to an NE in both𝑛-player identical-interest MGs (with single-controller)

and two-player zero-sum MGs. In other words, these MGs, standing at two different ends of the MG

spectrum, have the FPP. To the best of our knowledge, this appears to be the first fictitious-play

type learning dynamics for MGs that enjoys this property. To establish the results, we develop

new techniques to handle the challenges due to: 1) non-uniqueness of the NE value and the non-

contracting property of the NE operator in identical-interest games; 2) non-monotonicity of the

value function estimates when studying the discrete-time updates directly; 3) the deviation from

the identical-interest structure of stage-games during learning, caused by the independent and

local updates by each player.

1.1 Related work
We summarize the most related literature as follows.

Fictitious-play dynamics/property. Fictitious-play, a simple and independent learning dynamic

that has been extensively studied for the repeated play of strategic-form games, was first introduced

by [9]. The dynamic has then been shown to converge to an equilibrium in multiple classes of

strategic-form games, including zero-sum [41], identical-interest [35], and certain general-sum

games [6, 7, 34, 44]. Recall that these games are referred to as having the FPP [35].

For MGs, the FPP has not been understood until recently in [4, 28, 42], which are the most related

works to the present one. [28] presents a continuous-time best-response dynamic for zero-sum

MGs and embeds the discrete-time update into a continuous-time one. A single continuation payoff

(common among the players) is maintained by all players, which makes the update rule not fully

decoupled. [42] proposes fictitious play dynamics with uncoupled update rules, also for the zero-

sum setting, where the continuation payoffs are updated locally using each player’s own belief,
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yielding a more natural dynamic. Our learning dynamic is thus also based on that in [42]. Very

recently, [4] studies fictitious play for identical-interest MGs. The learning dynamic also uses a

common continuation payoff, and the discrete-time dynamic with convergence guarantees follows

a single-timescale update rule. It is unclear if the same learning dynamic converges in other types

of MGs. In fact, studying the convergence of two-timescale learning dynamics with local updates

has been posted as an open question in [4], which is one of the main focuses of the present work.

Independent learning in MGs. Besides the fictitious-play dynamics in [4, 28, 42], other independent

learning dynamics have also been proposed for MGs. [1] studies decentralized 𝑄-learning for MGs

by focusing only on stationary pure strategies (saying which pure action to play at which state).

This restriction allows them to transform the underlying MG into a strategic-form game in which

actions correspond to stationary pure strategies (which are finitely many contrary to stationary

mixed strategies). Players can learn the payoffs of the associated strategic-form game (without

observing others’ actions) with coordinated exploration phases in which they do not change their

strategies to create a stationary environment. The dynamic presented can converge to a (stationary

pure-strategy) equilibrium if the associated normal-form game is weakly acyclic with respect to

best (or better) response dynamics. The finite-sample complexity of the algorithm is also established

recently in [20]. In contrast, our learning dynamic can converge to a stationary mixed-strategy

equilibrium, which is essential for a global convergence result across the MG spectrum, as a pure-

strategy equilibrium does not exist in general, e.g., in zero-sum games. [39] develops actor-critic

learning dynamics that are decentralized, for a special class of MGs with a “multistage” structure,

where each state is assumed to be visited at most once. In [13], independent policy gradient

methods with a two-timescale (asymmetric) stepsizes between players have been studied for the

zero-sum setting, with non-asymptotic convergence guarantees. Later, [43] developed decentralized

𝑄-learning dynamic that is symmetric, but with only asymptotic convergence guarantees in the

zero-sum setting. More recently, for Markov potential games, which also includes identical-interest

MGs as an example, such independent policy gradient algorithms are also shown to converge

[15, 19, 25, 49]. For episodic MGs, [24, 30, 46] establish the regret guarantees of decentralized

learning algorithms in the online exploration setting.

MGs with single controller. An important subclass of MGs is the ones with single controller

[17, 38], where one of the players dominates and controls the transitions of the system dynamics

(though the reward functions are still affected jointly by all players). Such a model finds applications

in communications, control, and economics [2, 16]. It also has natural connection with sequential

(or online) learning [12, 21]. Learning in single-controller MGs are mostly focused on the zero-sum

case [8, 21, 40]. [8] studies a model-based approach with polynomial time complexity in achieving

near-optimal return. [21] investigates the relationship between regret minimization and solving

single-controller MGs, by reducing this model to an online linear optimization problem. [40]

develops a policy optimization algorithm based on the idea of fictitious play, with regret guarantees

in the episodic setting. It is unclear yet if these algorithms also converge to an NE in other classes

of MGs.

1.2 Organization
The rest of the paper is organized as follows. We provide a formulation of MGs (with single

controller) in §2 and describe the fictitious play dynamic in MGs in §3. We present the main

convergence results and the proof of convergence in §4. We conclude the paper in §5 with some

remarks.
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2 MARKOV GAMESWITH SINGLE CONTROLLER
Consider an 𝑛-player MG described by a tuple ⟨𝑆,𝐴, {𝑟 𝑖 }𝑖∈[𝑛], 𝑝, 𝛾⟩.2 The game has finitely many

states and 𝑆 denotes the set of states. At each state 𝑠 ∈ 𝑆 , each player 𝑖 can take an action 𝑎𝑖 from a

finite action set 𝐴𝑖
, and 𝐴 =

>
𝑖 𝐴

𝑖
denotes the set of action profiles 𝑎 = (𝑎𝑖 )𝑖∈[𝑛] .3 Over discrete-

time 𝑘 = 0, 1, 2, . . ., the state of the game, 𝑠 , transitions to a state 𝑠 ′ according to the transition

probability 𝑝 (𝑠 ′ |𝑠, 𝑎) depending only on the current state 𝑠 and action profile 𝑎. At each stage 𝑘 ,

each player 𝑖 receives a stage-payoff 𝑟 𝑖 (𝑠, 𝑎) depending only on the current state 𝑠 and action profile

𝑎 while the players take actions simultaneously. Their objective is to maximize the discounted sum

of their expected stage-payoffs over infinite horizon with the discount factor 𝛾 ∈ [0, 1).
MGs can be viewed as an extension of Markov decision processes to multi-agent settings. [45]

(and later [18]) showed that there always exists a Markov stationary equilibrium in two-player

zero-sum (and 𝑛-player general-sum) MGs such that players take actions according to stationary

(possibly mixed) strategies depending only on the current state.
4
We denote the stationary mixed-

strategy of player 𝑖 by 𝜋𝑖
: 𝑆 → Δ(𝐴𝑖 ).5 Correspondingly, 𝜋 = (𝜋𝑖 )𝑖∈[𝑛] denotes the strategy profile

and Π denotes the space of strategy profiles, i.e., 𝜋 ∈ Π. We define

𝑢𝑖 (𝑠;𝜋) := E

{ ∞∑︁
𝑘=0

𝛾𝑘𝑟 𝑖 (𝑠𝑘 , 𝑎𝑘 )
��� 𝑠0 = 𝑠

}
, ∀𝑠 ∈ 𝑆 and 𝜋 ∈ Π, (1)

where (𝑠𝑘 , 𝑎𝑘 ) denotes the state and action profile at stage 𝑘 , and the expectation is taken with

respect to the randomness induced from the stochastic state transitions and mixed strategies of

players. With slight abuse of notation, we let 𝑢𝑖 (𝜋) := E{𝑢𝑖 (𝑠0, 𝜋)}, where the expectation is taken

with respect to the initial state distribution. Therefore, 𝑢𝑖 (𝜋) corresponds to the discounted sum of

expected stage-payoffs of player 𝑖 under strategy profile 𝜋 .

Definition 1 (Markov Stationary Nash Equilibrium). We say that strategy profile 𝜋∗ ∈ Π is a

Markov stationary Nash equilibrium of the 𝑛-player MG provided that

𝑢𝑖 (𝜋∗) ≥ 𝑢𝑖 (𝜋𝑖 , 𝜋−𝑖
∗ ), ∀𝜋𝑖

and 𝑖 = 1, . . . , 𝑛. (2)

Hereafter, NE refers to Markov stationary Nash equilibrium. We say that an MG has zero-sum or

identical-interest structure if
∑

𝑖 𝑟
𝑖 (𝑠, 𝑎) = 0 or 𝑟 𝑖 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) for all (𝑠, 𝑎) for some 𝑟 : 𝑆 ×𝐴 → R,

respectively. In this paper, we focus on single-controller MGs where state transitions probabilities

depend on the actions of a single player, e.g.,

𝑝 (𝑠 ′ |𝑠, 𝑎) = 𝑝 (𝑠 ′ |𝑠, 𝑎𝑖 ), ∀(𝑠, 𝑎, 𝑠 ′). (3)

Note that since the reward functions, 𝑟 𝑖 (𝑠, 𝑎)’s, are affected by the joint action of all players, the

accumulated expected payoff of player 𝑖 still depends on the joint strategy of all players. Hence,

when the strategy of other players changes over time, the environment faced by one player is still

non-stationary. This is the key challenge in establishing the convergence of learning in MGs.

Indeed, single-controller MGs are common models in the literature [17, 38], and find broad

applications in communications [16] and traveling inspector problems [17, Chapter 6]. They also

have natural connections with regret minimization for sequential (or online) learning [12, 21].

2
For easy referral, we set player 𝑖 as the typical player while −𝑖 := { 𝑗 ∈ [𝑛] | 𝑗 ≠ 𝑖 } corresponds to the set of players other

than player 𝑖 .
3
The formulation can be extended to state-dependent action sets straightforwardly.

4
Such equilibrium is also referred to as Markov perfect equilibrium [32, 33].

5
We denote the probability simplex over the set 𝐴 by Δ(𝐴) .
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3 FICTITIOUS PLAY IN MARKOV GAMES
Within an MG, stage-wise interactions among players can be viewed as they are playing auxiliary
stage-games specific to each state whenever the associated state gets visited. In each stage-game,

players simultaneously take actions while they can mix their actions independently. Players observe

the joint action of all players and receive the associated immediate stage-payoff. However, the

payoffs of these stage-games consist of immediate stage-payoffs and continuation payoffs (due to

the objectives (1) defined over infinite horizon). The players can compute the continuation payoff

based on the observations they make. We focus on the question that whether non-equilibrium
adaptation of learning agents can converge to a stationary (mixed-strategy) equilibrium of the

underlying MG or not if they adopt learning dynamics similar to the ones studied for strategic-form

games with repeated play, such as fictitious play and its variants.

Formally, if player 𝑖 knew that players −𝑖 would play according to 𝜋−𝑖
starting from the next

stage, player 𝑖’s payoff in the auxiliary stage-game associated with state 𝑠 , denoted by 𝑄𝑖 (𝑠, 𝑎;𝜋−𝑖 )
and called Q-function, would satisfy the following fixed-point equation

𝑄𝑖 (𝑠, 𝑎;𝜋−𝑖 ) = 𝑟 𝑖 (𝑠, 𝑎) + 𝛾 ·
∑̃︁
𝑠

𝑝 (𝑠 |𝑠, 𝑎) max

�̃�𝑖 ∈𝐴𝑖
E�̃�−𝑖∼𝜋−𝑖 (𝑠)

{
𝑄𝑖 (𝑠, 𝑎;𝜋−𝑖 )

}
∀(𝑠, 𝑎). (4)

This follows from the backward induction principle that player 𝑖 would always take the actions

maximizing her expected utility in (1). Correspondingly, the value of state 𝑠 , denoted by 𝑣𝑖 (𝑠 ;𝜋−𝑖 )
and called value function, would be given by

𝑣𝑖 (𝑠;𝜋−𝑖 ) = max

𝑎𝑖 ∈𝐴𝑖
E𝑎−𝑖∼𝜋−𝑖 (𝑠)

{
𝑄𝑖 (𝑠, 𝑎;𝜋−𝑖 )

}
, ∀𝑠 . (5)

Furthermore, if player 𝑖 also knew that players −𝑖 would play according to 𝜋−𝑖
in the current

auxiliary game, she would take the best response action, denoted by 𝑎𝑖∗ : 𝑆 → 𝐴𝑖
, satisfying

𝑎𝑖∗ (𝑠) ∈ argmax

𝑎𝑖 ∈𝐴𝑖

E𝑎−𝑖∼𝜋−𝑖 (𝑠)
{
𝑄𝑖 (𝑠, 𝑎;𝜋−𝑖 )

}
, ∀𝑠 . (6)

Neither the opponent’s strategy nor the 𝑄-function are directly available to player 𝑖 in these

auxiliary games. Therefore, each player 𝑖 can form beliefs on every other player’s stationary (mixed)

strategy and her (local) 𝑄-function based on an erroneous assumption that they are stationary

as in the classical fictitious play. Then, they can update these beliefs independently based on the

observations they make within the underlying MG. For the ease of exposition, we consider that

every player follow the same learning dynamic with the same learning rates (or step sizes) and

initializations. Hence, all players −𝑖 form the same belief on the stationary strategy of player 𝑖 . We

denote this belief by 𝜋𝑖
𝑘

: 𝑆 → Δ(𝐴𝑖 ) at stage 𝑘 . Similarly, we denote the belief of player 𝑖 on her

𝑄-function at stage 𝑘 by 𝑄𝑖
𝑘

: 𝑆 ×𝐴 → R. For notational convenience, we also introduce the value

function estimates given by

𝜐𝑖
𝑘
(𝑠) := max

𝑎𝑖 ∈𝐴𝑖
E𝑎−𝑖∼𝜋−𝑖

𝑘
(𝑠) {𝑄𝑖

𝑘
(𝑠, 𝑎𝑖 , 𝑎−𝑖 )} (7)

and the best response action given by

𝑎𝑖
𝑘
(𝑠) ∈ argmax

𝑎𝑖 ∈𝐴𝑖

E𝑎−𝑖∼𝜋−𝑖
𝑘

(𝑠) {𝑄𝑖
𝑘
(𝑠, 𝑎𝑖 , 𝑎−𝑖 )}. (8)

Correspondingly, we have 𝜐𝑖
𝑘
(𝑠) = E𝑎−𝑖∼𝜋−𝑖

𝑘
(𝑠) {𝑄𝑖

𝑘
(𝑠, 𝑎𝑖

𝑘
(𝑠), 𝑎−𝑖 )}.

The players always take the best response (8) according to the beliefs they form and they update

their beliefs according to an update rule combining the classical fictitious play and 𝑄-learning
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together. From player 𝑖’s viewpoint, the update rule is given by

𝜋
𝑗

𝑘+1
(𝑠) = 𝜋

𝑗

𝑘
(𝑠) + 𝛼𝑘

(
𝑎
𝑗

𝑘
(𝑠) − 𝜋

𝑗

𝑘
(𝑠)

)
, ∀𝑗 ≠ 𝑖 and 𝑠 ∈ 𝑆, (9a)

𝑄𝑖
𝑘+1

(𝑠, 𝑎) = 𝑄𝑖
𝑘
(𝑠, 𝑎) + 𝛽𝑘

(
𝑟 𝑖 (𝑠, 𝑎) + 𝛾

∑̃︁
𝑠

𝑝 (𝑠 |𝑠, 𝑎)𝜐𝑖
𝑘
(𝑠) −𝑄𝑖

𝑘
(𝑠, 𝑎)

)
, ∀(𝑠, 𝑎), (9b)

where {𝛼𝑘 , 𝛽𝑘 ∈ (0, 1)}𝑘≥0 are step sizes and the beliefs are initialized as, e.g., 𝜋 𝑗 (𝑠) = 1

|𝐴 𝑗 |1 and

𝑄𝑖
0
(𝑠, 𝑎) = 0 for all (𝑠, 𝑎).6 In (9a), 𝜋

𝑗

𝑘
gets updated to a convex combination of the current action

and the previous belief. On the other hand, in (9b), 𝑄𝑖
𝑘
gets updated to a convex combination of the

𝑄-function realized (according to one step iteration of the fixed-point equation (4) based on the

value function estimate (7)) and the previous belief. The weights of the new observations in these

convex combinations are determined according to the step sizes {𝛼𝑘 , 𝛽𝑘 }𝑘≥0.

Note that if there was a single state, then the underlying MG would reduce to the repeated play

of a strategic-form game, and correspondingly, (9) would reduce to (9a) for which𝑄𝑖
𝑘
≡ 𝑟 𝑖 , which is

indeed the classical fictitious play dynamic. On the other hand, if there was a single player, then

the MG would reduce to a Markov decision process, and correspondingly, (9) would reduce to

(9b), which is indeed the 𝑄-value iteration with smoothing updates (whose model-free version is

known as 𝑄-learning). The learning dynamic in (9) combines them together with different step

sizes {𝛼𝑘 , 𝛽𝑘 }𝑘≥0 for learning in MGs.

Remark 2 (Comparison to existing related learning dynamics). The learning dynamic in (9)
is a synchronous and model-based version of the fictitious play dynamics in [42] focusing on learning
in zero-sum MGs.7 Two important features of the learning dynamic are: 1) the belief update and the
Q-function update are performed in a two-timescale fashion; 2) each player maintains her own local
estimates of the Q-functions, which are generally not common among players. In contrast, in the
closely related recent works [4, 28], a single continuation payoff (common among players) is assumed
to be maintained during learning. This way, the stage-games encountered during learning are always
zero-sum [28] or identical-interest [4], and some implicit coordination among the players is required.
Our learning dynamic is coordination-free and completely uncoupled, and are thus believed to be more
natural. In fact, studying this two-timescale learning dynamic with independent 𝑄-function updates
has been posted as an interesting open question in [4], with non-trivial technical challenges to address.
Finally, another motivation of studying (9) is to find a unified learning dynamic that converges for
both zero-sum and identical-interest MGs, i.e., being agnostic to the types of games, a desired property
of uncoupled dynamics.

4 CONVERGENCE RESULTS AND PROOFS
Recall that the classical fictitious play is known to converge to an NE in certain but important

classes of strategic-form games played repeatedly, such as zero-sum and identical-interest ones. The

following theorem shows that the two-timescale fictitious-play dynamic in Eq. (9) possesses similar

universality by converging to an NE in both two-player zero-sum and multi-player identical-interest

MGs with single controller. The proof is provided later in §4.1.

6
Consider actions as pure strategies, i.e., 𝑎𝑖 ∈ 𝐴𝑖 ⊂ Δ(𝐴𝑖 ) .

7
The update (9) is more like a computational method similar to the ones in [4, 28] contrary to [42] since players play the

auxiliary stage-game associated with each state at every stage. This yields a relaxation on the convergence guarantees by

not requiring the underlying Markov chain to ensure infinitely often visit at every state.

 
Session 7C: Learning to Play ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

924



Theorem 3. The update (9) converges to an NE, described in Definition 1, in single-controller MGs
with two-player zero-sum or multi-player identical-interest structure provided that the step sizes satisfy
the usual two-timescale learning conditions that

(i) Vanishing rates: 𝛼𝑘 → 0 and 𝛽𝑘 → 0, as 𝑘 → ∞,
(ii) Sufficiently slow decay:

∑
𝑘≥0

𝛼𝑘 = ∞ and
∑

𝑘≥0
𝛽𝑘 = ∞,

(iii) Sufficiently fast decay:
∑

𝑘≥0
𝛼2

𝑘
< ∞,

(iv) Two-timescale rates: 𝛼𝑘 ≥ 𝛽𝑘 for all 𝑘 ≥ 0 and 𝛽𝑘/𝛼𝑘 → 0, as 𝑘 → ∞.

Particularly, there exists 𝑄∗ : 𝑆 ×𝐴 → R such that

lim

𝑘→∞
𝑄𝑖
𝑘
(𝑠, 𝑎) = 𝑄∗ (𝑠, 𝑎) ∀(𝑖, 𝑠, 𝑎)

and 𝑄∗ corresponds to the 𝑄-function associated with some stationary equilibrium 𝜋∗ = (𝜋𝑖
∗)𝑖∈[𝑛] of

the underlying game and

lim

𝑘→∞
𝜋𝑖
𝑘
(𝑠) = 𝜋𝑖

∗ (𝑠), ∀(𝑖, 𝑠).

We emphasize that the conditions listed are sufficient to ensure convergence of the update

(9) in both classes of games. For example, the dynamic in (9) can converge to an equilibrium in

two-player zero-sum MGs without Assumption (𝑖𝑖𝑖) on sufficiently fast decay of 𝛼𝑘 . On the other

hand, (9) can converge to an equilibrium in identical-interest MGs with single controller also in the

single-timescale scheme where 𝛼𝑘 = 𝛽𝑘 .

The following corollary to Theorem 3 shows that the convergence result can be generalized to

the case where the stage-payoffs satisfy the following potential-game-like condition similar to the

case in one-shot games. The proof is deferred to Appendix E.

Corollary 4. Suppose that the step sizes satisfy the conditions listed in Theorem 3 and the stage-
payoff functions satisfy

𝑟 𝑗 (𝑠, 𝑎 𝑗 , 𝑎−𝑗 ) − 𝑟 𝑗 (𝑠, 𝑎) = 𝑟 𝑖 (𝑠, 𝑎 𝑗 , 𝑎−𝑗 ) − 𝑟 𝑖 (𝑠, 𝑎), ∀(𝑠, 𝑎), 𝑎 𝑗 , and 𝑗 ≠ 𝑖 (10)

given that player 𝑖 is the single controller. Then, the update (9) converges to an equilibrium in single-
controller MGs. Particularly, there exists 𝑄𝑖

∗ : 𝑆 ×𝐴 → R for each 𝑖 , which is not necessarily common
now, such that

lim

𝑘→∞
𝑄𝑖
𝑘
(𝑠, 𝑎) = 𝑄𝑖

∗ (𝑠, 𝑎) ∀(𝑖, 𝑠, 𝑎).

and {𝑄𝑖
∗}𝑖∈[𝑛] correspond to the 𝑄-functions associated with some stationary equilibrium 𝜋∗ =

(𝜋𝑖
∗)𝑖∈[𝑛] of the underlying game and

lim

𝑘→∞
𝜋𝑖
𝑘
(𝑠) = 𝜋𝑖

∗ (𝑠), ∀(𝑖, 𝑠).

Zero-sum games and identical-interest games stand at the two extreme ends of the game spectrum

from fully competitive to fully cooperative. They possess distinct features. For example, the equilib-

rium value of a zero-sum (strategic-form) game is unique even though there may exist multiple

equilibria. Furthermore, minimax value of a game is a non-expansive function like the maximum

value. Therefore, [45] could introduce a contraction operator for two-player zero-sum MGs as a

counterpart of the Bellman operator in Markov decision processes. Later [28, 42] showed that the

contraction property in the evolution of the value function estimates could be approximated with

asymptotically negligible error also in non-equilibrium learning dynamics through a two-timescale

learning scheme.
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4.1 Proof of Theorem 3
The proof of Theorem 3 for two-player zero-sum MGs (with single controller) follows from the

identical steps in [42, Theorem 4.3] where the convergence properties of the asynchronous version

of (9) is characterized. On the other hand, equilibrium values of an identical-interest game are not

necessarily unique. In the absence of powerful non-expansiveness and correspondingly contraction

property, we need a different technical tool to characterize its convergence properties.

The main premise behind the proof for 𝑛-player identical-interest case is that the limiting

differential inclusion of the (9a) is the continuous-time best response dynamic in an identical-

interest game due to the two-timescale framework. Therefore, the maximum expected values of

auxiliary stage games are monotonically non-decreasing in this continuous-time approximation.

Correspondingly, if the value function estimates were monotonically non-decreasing in the original

discrete-time updates, then the 𝑄-function estimates would also be monotonically non-decreasing.

Hence, we could have concluded their convergence since they are bounded by the update rule (9b).

However, the discrete-time dynamic does not necessarily lead to an increase in the value function

estimates across subsequent stages in general. To address this challenge, we consider the deviation

from the monotonicity across multiple stages rather than just subsequent ones, as in [4].

Remark 5 (Challenge due to Independent 𝑄-update). Similar to the zero-sum case in [42],
another challenge arises due to the deviation from the identical-interest structure in the auxiliary
stage-games since players update their beliefs on the 𝑄-function according to (9b) via the maximum
expected continuation payoff they believe they would get, as described in (7). This challenge would
not be observed if players had a common 𝑄-function estimates, i.e., 𝑄𝑖

𝑘
≡ 𝑄

𝑘
for all 𝑖 for some 𝑄𝑘 . For

example, [4] uses an update similar to

𝑄𝑖
𝑘+1

(𝑠, 𝑎) = 𝑄𝑖
𝑘
(𝑠, 𝑎) + 𝛽𝑘

(
𝑟 (𝑠, 𝑎) + 𝛾

∑︁
𝑠′

𝑝 (𝑠 ′ |𝑠, 𝑎)E𝑎′∼𝜋𝑘 (𝑠′) {𝑄𝑖
𝑘
(𝑠 ′, 𝑎′)} −𝑄𝑖

𝑘
(𝑠, 𝑎)

)
, (11)

for all (𝑖, 𝑠, 𝑎), rather than (9b). Such an update guarantees that each auxiliary stage game has
identical-interest structure provided that 𝑄𝑖

0
= 𝑄

0
for all 𝑖 . However, (11) is still prone to deviation

from the identical-interest structure without a common initialization. Furthermore, computation of
E𝑎′∼𝜋𝑘 (𝑠′) {𝑄𝑖

𝑘
(𝑠 ′, 𝑎′)} by player 𝑖 implies that player 𝑖 forms belief 𝜋𝑖 on her own strategy as if she is

playing according to a stationary mixed-strategy even though she always takes (greedy) best response
actions against her opponents. Therefore, the independent 𝑄-update (9b) contrary to the coupled
one (11) is a relatively more natural dynamic for practical applications. The characterization of its
convergence properties can provide a stronger justification for equilibrium analysis in MGs. To address
this challenge, we focus on single-controller MGs, where the auxiliary stage games are strategically
equivalent to identical-interest games if the beliefs on 𝑄-functions are initialized the same and become
strategically equivalent to identical-interest games at a sufficiently fast rate if they do not have common
initialization.

Given the update (9b), we define

Υ𝑖
𝑘
(𝑠, 𝑎) := 𝑟 (𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎)𝜐𝑖
𝑘
(𝑠 ′) −𝑄𝑖

𝑘
(𝑠, 𝑎), ∀(𝑖, 𝑠, 𝑎) (12)

such that

𝑄𝑖
𝑘+1

(𝑠, 𝑎) = 𝑄𝑖
𝑘
(𝑠, 𝑎) + 𝛽𝑘Υ

𝑖
𝑘
(𝑠, 𝑎) ∀(𝑖, 𝑠, 𝑎). (13)

Note that 𝑄𝑖
𝑘
(𝑠, 𝑎), for each (𝑖, 𝑠, 𝑎), is bounded from above by

1

1−𝛾 max(𝑠,𝑎) 𝑟 (𝑠, 𝑎) by the definition

of the update (9b) and (7) since the step size {𝛽𝑘 ∈ (0, 1)}𝑘≥0.
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The following proposition provides a monotonicity-like condition on the changes of the estimates

accumulated across multiple stages (not just the subsequent ones) to prove the convergence of

{𝑄𝑖
𝑘
(𝑠, 𝑎)}𝑘≥0. The proof is deferred to Appendix A.

Proposition 6. Consider a (real-valued) bounded sequence {𝑄𝑖
𝑘
(𝑠, 𝑎)}𝑘≥0 for each (𝑖, 𝑠, 𝑎) ∈ [𝑛] ×

𝑆 ×𝐴 (with 𝑛 < ∞ and |𝑆 ×𝐴| < ∞) evolving according to

𝑄𝑖
𝑘+1

(𝑠, 𝑎) = 𝑄𝑖
𝑘
(𝑠, 𝑎) + 𝛽𝑘Υ

𝑖
𝑘
(𝑠, 𝑎), ∀(𝑖, 𝑠, 𝑎) (14)

for some {Υ𝑖
𝑘
(𝑠, 𝑎)}𝑘≥0 for each (𝑖, 𝑠, 𝑎) and step size 𝛽𝑘 ≥ 0. If we have

lim inf

𝑘1→∞
inf

𝑘2≥𝑘1

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘Υ
𝑖
𝑘
(𝑠, 𝑎) ≥ 0, ∀(𝑖, 𝑠, 𝑎), (15)

then there exists 𝑄𝑖
∗ : 𝑆 ×𝐴 → R such that

lim

𝑘→∞
𝑄𝑖
𝑘
(𝑠, 𝑎) = 𝑄𝑖

∗ (𝑠, 𝑎), ∀(𝑖, 𝑠, 𝑎). (16)

Henceforth, we focus on proving (15) (through a more tractable lower bound) to conclude the

convergence of (9b). To this end, we define an auxiliary parameter bounding Υ𝑖
𝑘
(𝑠, 𝑎) for each (𝑠, 𝑎)

from below as

𝑢𝑖
𝑘

:= min

(𝑠,𝑎)

{
𝑟 (𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎)E𝑎′∼𝜋𝑘 (𝑠) {𝑄𝑖
𝑘
(𝑠 ′, 𝑎′)} −𝑄𝑖

𝑘
(𝑠, 𝑎)

}
, (17)

i.e., we have 𝑢𝑖
𝑘
≤ Υ𝑖

𝑘
(𝑠, 𝑎) for all (𝑠, 𝑎), since 𝜐𝑖

𝑘
(𝑠 ′) − E𝑎′∼𝜋𝑘 (𝑠) {𝑄𝑖

𝑘
(𝑠 ′, 𝑎′)} ≥ 0 for each 𝑠 ′ by the

definition of 𝜐𝑖
𝑘
, as described in (7). Instead of (15), we can, now, focus on proving the asymptotic

non-negativity of the more tractable lower bound:

lim inf

𝑘1→∞
inf

𝑘2≥𝑘1

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘𝑢
𝑖
𝑘
≥ 0 . (18)

If we could have shown that there exists some 𝜅 such that 𝑢𝑖
𝑘
≥ 0 for all 𝑘 ≥ 𝜅, then we would

have concluded (18). We do not necessarily have it. On the other hand, showing the asymptotic

non-negativity of 𝑢𝑖
𝑘
would not be sufficient to conclude (18). Hence, we look for some stronger

conditions. The following lemma provides a characterization of the evolution of {𝑢𝑖
𝑘
}𝑖≥0 (from

below) in terms of some absolutely summable sequence. The proof is deferred to Appendix B.

Lemma 7. Given that players follow the dynamic described in (9) in an identical-interest MG with
single controller 𝑖 , the evolution of 𝑢𝑖

𝑘
, described in (17), satisfies the following inequality:

𝑢𝑖
𝑘+1

≥ 𝑢𝑖
𝑘
(1 − (1 − 𝛾)𝛽𝑘 ) + 𝑒

𝑘
(19)

for all 𝑘 ≥ 0 and for some absolutely summable sequence {𝑒
𝑘
}𝑘≥0.

Remark 8. We emphasize that the single-controller identical-interest structure plays an important
role in ensuring that there exists such an absolutely summable sequence.

Given that {𝑒
𝑘
}𝑘≥0 are absolutely summable, we can next invoke the following lemma showing

that {𝑢𝑖
𝑘
}𝑘≥0 satisfying (19) also satisfies (18). Hence, it can also be of interest on its own. The proof

is deferred to Appendix C.

Lemma 9. Given step sizes {𝛽𝑘 ∈ (0, 1)}𝑘≥0 vanishing, i.e., 𝛽𝑘 → 0 as 𝑘 → ∞, sufficiently slowly
such that

∑
𝑘≥0

𝛽𝑘 = ∞, consider a sequence {𝑢𝑖
𝑘
}𝑘≥0 satisfying (19) for some discount factor 𝛾 ∈ [0, 1)

and some absolutely summable error term 𝑒
𝑘
, i.e.,

∑
𝑘≥0

|𝑒
𝑘
| < ∞. Then, we have (18).

 
Session 7C: Learning to Play ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

927



Lemmas 7 and 9 imply (18), and therefore, (15) by the definition of 𝑢𝑖
𝑘
, as described in (17).

Hence, Proposition 6 yields that {𝑄𝑖
𝑘
}𝑖∈[𝑛] , i.e., (9b), is convergent. In other words, there exists

some 𝑄𝑖
∗ : 𝑆 ×𝐴 → R such that

lim

𝑘→∞
𝑄𝑖
𝑘
(𝑠, 𝑎) = 𝑄𝑖

∗ (𝑠, 𝑎). (20)

On the other hand, for players other than the controller, say player 𝑗 ≠ 𝑖 , the payoff in the auxiliary

stage game 𝑄
𝑗

𝑘
(𝑠, 𝑎) is always strategically equivalent to 𝑄𝑖

𝑘
(𝑠, 𝑎), as shown in the proof of Lemma

7. Note that we have not characterized the limit of 𝑄𝑖
𝑘
yet.

Lastly, we can conclude that the update (9) indeed converges to an equilibrium based on the

following lemma (which can be viewed as a corollary to [27, Theorem 4]). This lemma characterizes

the limit set of the fictitious-play in terms of its limiting continuous-time best response dynamic

for the cases where the underlying game becomes stationary asymptotically. Hence, it can also be

of interest on its own. The proof is deferred to Appendix D.

Lemma 10. Given step sizes {𝛼𝑘 ∈ (0, 1)}𝑘≥0 vanishing, i.e., 𝛼𝑘 → 0 as 𝑘 → ∞, sufficiently slowly
such that

∑
𝑘≥0

𝛼𝑘 = ∞, consider the update of 𝜋𝑖 ∈ Δ(𝐴𝑖 ) for each 𝑖 ∈ [𝑛] and finite set 𝐴𝑖 , given by

𝜋𝑖
𝑘+1

= 𝜋𝑖
𝑘
+ 𝛼𝑘

(
𝑎𝑖
𝑘
− 𝜋𝑖

𝑘

)
, ∀𝑖, (21)

where 𝑎𝑖
𝑘
∈ Δ(𝐴𝑖 ) satisfies

𝑎𝑖
𝑘
∈ argmax

𝑎𝑖 ∈𝐴𝑖

E𝑎−𝑖∼𝜋−𝑖
𝑘
{𝑄𝑖

𝑘
(𝑎𝑖 , 𝑎−𝑖 )}. (22)

Suppose that 𝑄𝑖
𝑘
(𝑎) → 𝑄𝑖

∗ (𝑎) for all (𝑖, 𝑎) as 𝑘 → ∞ for some 𝑄𝑖
∗ : 𝐴 → R. Then, the limit set of (21)

is a connected internally chain-recurrent set of the following best response differential inclusion

¤𝜋𝑖 + 𝜋𝑖 ∈ argmax

𝑎𝑖 ∈𝐴𝑖

E𝑎−𝑖∼𝜋−𝑖 {𝑄𝑖
∗ (𝑎𝑖 , 𝑎−𝑖 )}. (23)

Based on (20) and the strategic equivalence of 𝑄
𝑗

𝑘
for each 𝑗 ≠ 𝑖 to 𝑄𝑖

𝑘
, Lemma 10 yields that

the limit set of (9a) is contained in the connected internally chain-recurrent set of the differential

inclusion

¤𝜋 𝑗 (𝑠) + 𝜋 𝑗 (𝑠) ∈ argmax

𝑎 𝑗 ∈𝐴 𝑗

E𝑎−𝑗∼𝜋−𝑗 (𝑠) {𝑄𝑖
∗ (𝑠, 𝑎 𝑗 , 𝑎−𝑗 )}, ∀𝑗, (24)

which is the continuous-time best response dynamic in an identical-interest game with the payoff

𝑄𝑖
∗ (𝑠, ·). [5, Theorem 5.5 and Remark 5.6] yield that the limit set of every solution of (24), and

therefore (9a), is a connected set of equilibria along which E𝑎∼𝜋 (𝑠) {𝑄𝑖
∗ (𝑠, 𝑎)} is constant. In other

words, the beliefs {𝜋𝑖
𝑘
(𝑠)}𝑖∈[𝑛] converge to an equilibrium, for each 𝑠 . Given the convergence of

these beliefs, the update (9b) yields that the 𝑄-function estimates of every player also converge to

the 𝑄-function associated with the equilibrium strategies and

lim

𝑘→∞
𝑄

𝑗

𝑘
(𝑠, 𝑎) = 𝑄𝑖

∗ (𝑠, 𝑎), ∀(𝑠, 𝑎) and 𝑗 ≠ 𝑖 . (25)

This completes the proof. □

5 DISCUSSIONS AND CONCLUSIONS
In this paper, we investigated the convergence properties of a new variant of fictitious play dynamics

for 𝑛-player identical-interest MGs with single controller. Together with the fact that the same

learning dynamic also converges to an equilibrium in two-player zero-sum MGs, we established,

to the best of our knowledge, the first universal-type fictitious-play-property for more than one

class of MGs. The results have thus further justified (Markov stationary) NE in MGs as an outcome

of myopic non-equilibrium adaptation. We believe our results have opened up fruitful research

directions for future work.
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• Fictitious-play-property for other classes of MGs. Our results illustrate the promise of

our two-timescale fictitious-play dynamic in achieving universal-type convergence in more

than one class of MGs. It is interesting to further expand the types of MGs that enjoys the

fictitious-play-property, mirroring the results for strategic-form games (cf. [6, 7, 34, 44]).

• Model-free learning with asynchronous updates.With a focus on the uncoupled learning

dynamics with independent 𝑄-updates, we studied the synchronous-update rule with the

knowledge of the transition dynamics. As a standard model for multi-agent reinforcement

learning, it is imperative to investigate the convergence of our dynamics in the model-free

asynchronous setting. Note that with common 𝑄-updates and single-timescale update-rule,

[4] has studied the asynchronous update case with small enough discount factor 𝛾 . The

model-free learning for fictitious-play in MGs beyond the zero-sum case remains largely

open.

• Convergence rate characterization & faster rates. It is known that in the worse-case,

fictitious play can have exponentially-slow rate when learning in strategic-form games [14].

It would be interesting to understand and compare the convergence rates of the two-timescale

fictitious-play in our work and [42], with that of the single-timescale one in [4]. It is also

worth exploring the effectiveness of regularization to accelerate convergence of fictitious

play dynamics, as in strategic-form games [12].
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A PROOF OF PROPOSITION 6
Note that if Υ𝑖

𝑘
(𝑠, 𝑎) ≥ 0, then {𝑄𝑖

𝑘
(𝑠, 𝑎)}𝑘≥0 would form a non-decreasing bounded sequence, which

implies the existence of its limit. However, we do not necessarily have Υ𝑖
𝑘
(𝑠, 𝑎) ≥ 0. As in [4], we

can check monotonicity across multiple stages (from 𝑘1 to 𝑘2 + 1). For example, we have

𝑄𝑖
𝑘2+1

(𝑠, 𝑎) −𝑄𝑖
𝑘1

(𝑠, 𝑎) =
𝑘2∑︁

𝑘=𝑘1

𝛽𝑘Υ
𝑖
𝑘
(𝑠, 𝑎), ∀(𝑖, 𝑠, 𝑎), (26)

where the right-hand side is still not necessarily non-negative. Showing the difference goes to

zero as 𝑘1 → ∞ would imply that {𝑄𝑖
𝑘
(𝑠, 𝑎)}𝑘≥0 forms a Cauchy sequence, and therefore, it is

convergent in the underlying Banach space. A relatively mild alternative (aligned with the intuition

on monotonicity) is to show that the right-hand side becomes non-negative asymptotically as

𝑘1 → ∞ for any 𝑘2 ≥ 𝑘1, i.e.,

lim inf

𝑘1→∞
inf

𝑘2≥𝑘1

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘Υ
𝑖
𝑘
(𝑠, 𝑎) ≥ 0 ⇒ lim inf

𝑘1→∞

(
inf

𝑘2≥𝑘1

𝑄𝑖
𝑘2+1

(𝑠, 𝑎) −𝑄𝑖
𝑘1

(𝑠, 𝑎)
)
≥ 0, (27)

for all (𝑖, 𝑠, 𝑎). Then, (27) yields that for any 𝜖 > 0, there exists 𝜅 such that

𝑄𝑖
𝑘
(𝑠, 𝑎) ≥ 𝑄𝑖

𝜅 (𝑠, 𝑎) − 𝜖, ∀𝑘 ≥ 𝜅, (28)

for each (𝑖, 𝑠, 𝑎).8 This completes the proof due to the boundedness of the estimates.

B PROOF OF LEMMA 7
For the ease of notation, we define

𝑌 𝑖
𝑘
(𝑠, 𝑎) := 𝑟 (𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎)𝑢𝑖
𝑘
(𝑠 ′) −𝑄𝑖

𝑘
(𝑠, 𝑎), (29)

where 𝑢𝑖
𝑘
(𝑠 ′) := E𝑎′∼𝜋𝑘 (𝑠′) {𝑄𝑖

𝑘
(𝑠 ′, 𝑎′)}. Then, we have 𝑢𝑖

𝑘
= min(𝑠,𝑎) {𝑌 𝑖

𝑘
(𝑠, 𝑎)} for all 𝑖 . Due to this

dependence, it is instructive to examine the evolution of 𝑌 𝑖
𝑘
(𝑠, 𝑎), given by

𝑌 𝑖
𝑘+1

(𝑠, 𝑎) − 𝑌 𝑖
𝑘
(𝑠, 𝑎) = 𝛾

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎) (𝑢𝑖
𝑘+1

(𝑠 ′) − 𝑢𝑖
𝑘
(𝑠 ′)) − (𝑄𝑖

𝑘+1
(𝑠, 𝑎) −𝑄𝑖

𝑘
(𝑠, 𝑎))

= 𝛾
∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎) (𝑢𝑖
𝑘+1

(𝑠 ′) − 𝑢𝑖
𝑘
(𝑠 ′)) − 𝛽𝑘Υ

𝑖
𝑘
(𝑠, 𝑎)

= 𝛾
∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎) (𝑢𝑖
𝑘+1

(𝑠 ′) − 𝑢𝑖
𝑘
(𝑠 ′)) − 𝛽𝑘

(
𝑌 𝑖
𝑘
(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎)Δ𝑖
𝑘
(𝑠 ′)

)
= 𝛾

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎) (𝑢𝑖
𝑘+1

(𝑠 ′) − 𝑢𝑖
𝑘
(𝑠 ′) − 𝛽𝑘Δ

𝑖
𝑘
(𝑠 ′)) − 𝛽𝑘𝑌

𝑖
𝑘
(𝑠, 𝑎), (30)

8
We can have a uniform 𝜖 > 0 since there are only finitely many (𝑖, 𝑠, 𝑎) triples.
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where Δ𝑖
𝑘
(𝑠 ′) := 𝜐𝑖

𝑘
(𝑠 ′) − 𝑢𝑖

𝑘
(𝑠 ′) ≥ 0 for each 𝑠 ′. By the definition of 𝑢𝑖

𝑘
, the difference term in the

parenthesis can be written as

𝑢𝑖
𝑘+1

(𝑠 ′) − 𝑢𝑖
𝑘
(𝑠 ′) = E𝑎∼𝜋𝑘+1 (𝑠′) {𝑄𝑖

𝑘+1
(𝑠 ′, 𝑎)} − E𝑎∼𝜋𝑘 (𝑠′) {𝑄𝑖

𝑘
(𝑠 ′, 𝑎)}

(𝑎)
= E𝑎∼𝜋𝑘+1 (𝑠′) {𝑄𝑖

𝑘
(𝑠 ′, 𝑎)} − E𝑎∼𝜋𝑘 (𝑠′) {𝑄𝑖

𝑘
(𝑠 ′, 𝑎)} + 𝛽𝑘E𝑎∼𝜋𝑘+1 (𝑠′) {Υ𝑖𝑘 (𝑠

′, 𝑎)}

(𝑏)
= 𝛼𝑘

(
Δ𝑖
𝑘
(𝑠 ′) +

∑︁
𝑖≠𝑗

Γ𝑖 𝑗
𝑘
(𝑠 ′)

)
+𝑂 (𝛼2

𝑘
) + 𝛽𝑘E𝑎∼𝜋𝑘+1 (𝑠′) {Υ𝑖𝑘 (𝑠

′, 𝑎)}, (31)

where (𝑎) follows from the update of𝑄𝑖
𝑘
, as described in (9b), (𝑏) follows from the update of 𝜋

𝑗

𝑘
for

each 𝑗 ∈ [𝑛], as described in (9a), and we define

Γ𝑖 𝑗
𝑘
(𝑠 ′) := E𝑎∼𝜋𝑘 (𝑠′) {𝑄𝑖

𝑘
(𝑠 ′, 𝑎 𝑗

𝑘
(𝑠 ′), 𝑎−𝑗 ) −𝑄𝑖

𝑘
(𝑠 ′, 𝑎)}, ∀𝑗 ≠ 𝑖 . (32)

Note that 𝑢𝑖
𝑘
≤ 𝑌 𝑖

𝑘
(𝑠, 𝑎) ≤ Υ𝑖

𝑘
(𝑠, 𝑎)} for each (𝑠, 𝑎). Therefore, combining (30) and (31), we obtain

𝑌 𝑖
𝑘+1

(𝑠, 𝑎) ≥ 𝑢𝑖
𝑘
(1 − (1 − 𝛾)𝛽𝑘 ) + 𝛾

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎)𝑒𝑖
𝑘
(𝑠 ′), (33)

where we define

𝑒𝑖
𝑘
(𝑠 ′) := 𝛼𝑘

((
1 − 𝛽𝑘

𝛼𝑘

)
Δ𝑖
𝑘
(𝑠 ′) +

∑︁
𝑖≠𝑗

Γ𝑖 𝑗
𝑘
(𝑠 ′)

)
+𝑂 (𝛼𝑘 (𝑠 ′)2) . (34)

If we can find an absolutely summable lower bound on 𝑒𝑖
𝑘
(·), then the inequality (33) yields (19).

Next, we formulate an absolutely summable lower bound on 𝑒𝑖
𝑘
(·) based on the single-controller

property of the underlying MG. Since 𝑎𝑖
𝑘
, as described in (8), is a best response action, we can write

Δ𝑖
𝑘
(𝑠 ′) = 𝜐𝑖

𝑘
(𝑠 ′) − 𝑢𝑖

𝑘
(𝑠 ′) also as

Δ𝑖
𝑘
(𝑠 ′) = E𝑎∼𝜋𝑘 (𝑠′) {𝑄𝑖

𝑘
(𝑠 ′, 𝑎𝑖

𝑘
(𝑠 ′), 𝑎−𝑖 ) −𝑄𝑖

𝑘
(𝑠 ′, 𝑎)}. (35)

We highlight the differences between Δ𝑖
𝑘
(𝑠) ≥ 0, as described in (35), and Γ𝑖 𝑗

𝑘
(𝑠 ′), as described

in (32). In particular, 𝑎
𝑗

𝑘
is a best response of player 𝑗 according to her payoff function 𝑄

𝑗

𝑘
in the

associated auxiliary stage-game and her belief 𝜋
−𝑗
𝑘

about her opponents’ strategies. Therefore, Γ𝑖 𝑗
𝑘

is

not necessarily non-negative quite contrary to Δ𝑖
𝑘
≥ 0 if we do not have 𝑄𝑖

𝑘
≡ 𝑄

𝑗

𝑘
(e.g., see Remark

5).

On the other hand, by (32) and (35), the term Γ𝑖 𝑗
𝑘

can be written as

Γ𝑖 𝑗
𝑘
(𝑠) = Δ 𝑗

𝑘
(𝑠) + E𝑎∼𝜋𝑘 (𝑠) {𝛿𝑄

𝑖 𝑗

𝑘
(𝑠, 𝑎 𝑗

𝑘
(𝑠), 𝑎−𝑗 ) − 𝛿𝑄

𝑖 𝑗

𝑘
(𝑠, 𝑎)}, (36)

where the first term on the right hand side is non-negative and we define 𝛿𝑄
𝑖 𝑗

𝑘
(𝑠, 𝑎) := 𝑄𝑖

𝑘
(𝑠, 𝑎) −

𝑄
𝑗

𝑘
(𝑠, 𝑎) for all (𝑠, 𝑎). We can show that

E𝑎∼𝜋𝑘 (𝑠) {𝛿𝑄
𝑖 𝑗

𝑘
(𝑠, 𝑎 𝑗

𝑘
(𝑠), 𝑎−𝑗 )−𝛿𝑄𝑖 𝑗

𝑘
(𝑠, 𝑎)} = 0 ⇒ Γ𝑖 𝑗

𝑘
≡ Δ 𝑗

𝑘
≥ 0, ∀𝑗 ≠ 𝑖 . (37)

in MGs with single controllers. Particularly, the update (9b) yields that
9

𝑄𝑖
𝑘+1

(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎)
𝑘∑︁
𝑙=0

𝛽𝑙

(
𝑘∏

𝑚=𝑙+1

(1 − 𝛽𝑚)
)
+ 𝛾

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎)
𝑘∑︁
𝑙=0

𝜐𝑖
𝑙
(𝑠 ′)𝛽𝑙

(
𝑘∏

𝑚=𝑙+1

(1 − 𝛽𝑚)
)
, (38)

9
We use the convention that

∏𝑘
𝑚=𝑙

𝑐𝑚 = 1 if 𝑘 < 𝑙 .
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for all 𝑘 ≥ 0, since the beliefs are initialized by 𝑄𝑖
0
(𝑠, 𝑎) for all (𝑖, 𝑠, 𝑎). This implies that

𝛿𝑄
𝑖 𝑗

𝑘
(𝑠, 𝑎) = 𝛾

∑︁
𝑠′∈𝑆

𝑝 (𝑠 ′ |𝑠, 𝑎)
𝑘−1∑︁
𝑙=0

(𝜐𝑖
𝑙
(𝑠 ′) − 𝜐

𝑗

𝑙
(𝑠 ′))𝛽𝑙

(
𝑘−1∏

𝑚=𝑙+1

(1 − 𝛽𝑚)
)
. (39)

Recall that if player 𝑖 is the single controller, then we have

𝑝 (𝑠 ′ |𝑠, 𝑎 𝑗 , 𝑎−𝑗 ) − 𝑝 (𝑠 ′ |𝑠, 𝑎) = 𝑝 (𝑠 ′ |𝑠, 𝑎𝑖 ) − 𝑝 (𝑠 ′ |𝑠, 𝑎𝑖 ) = 0, ∀𝑎, 𝑎 𝑗 and 𝑗 ≠ 𝑖 . (40)

Hence, (39) and (40) yield (37). Correspondingly, we have

𝛾
∑︁
𝑠′

𝑝 (𝑠 ′ |𝑠, 𝑎)𝑒𝑖
𝑘
(𝑠 ′) ≥ 𝑂 (𝛼2

𝑘
) =: 𝑒

𝑘
. (41)

Note that {𝛼2

𝑘
}𝑘≥0 is absolutely summable by Assumption (𝑖𝑖𝑖) listed in Theorem 3. Hence, (33)

and (41) lead to (19). This completes the proof. □

C PROOF OF LEMMA 9
Given (19), we can formulate a lower bound on 𝑢𝑖

𝑘
in terms of 𝑢𝑖

0
and {𝑒

𝑘
}:

𝑢𝑖
𝑘
≥ 𝑢𝑖

𝑘−1
(1 − ˜𝛽𝑘−1) + 𝑒

𝑘−1

≥ 𝑢𝑖
𝑘−2

(1 − ˜𝛽𝑘−2) (1 − ˜𝛽𝑘−1) + 𝑒
𝑘−2

(1 − ˜𝛽𝑘−1) + 𝑒
𝑘−1

. . .

≥ 𝑢𝑖
0

𝑘−1∏
𝑙=0

(1 − ˜𝛽𝑙 ) +
𝑘−1∑︁
𝑙=0

𝑒
𝑙

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚), (42)

where
˜𝛽𝑘 := (1 − 𝛾)𝛽𝑘 for notational convenience. We can incorporate the lower bound (42) on 𝑢𝑖

𝑘

into the summation in (18) as

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘𝑢
𝑖
𝑘
≥

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘

(
𝑢𝑖

0

𝑘−1∏
𝑙=0

(1 − ˜𝛽𝑙 ) +
𝑘−1∑︁
𝑙=0

𝑒
𝑙

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚)
)

≥ −
𝑘2∑︁

𝑘=𝑘1

𝛽𝑘

(
|𝑢𝑖

0
|
𝑘−1∏
𝑙=0

(1 − ˜𝛽𝑙 ) +
𝑘−1∑︁
𝑙=0

|𝑒
𝑙
|

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚)
)

= −
|𝑢𝑖

0
|

1 − 𝛾

𝑘2∑︁
𝑘=𝑘1

˜𝛽𝑘

𝑘−1∏
𝑙=0

(1 − ˜𝛽𝑙 ) −
1

1 − 𝛾

𝑘2∑︁
𝑘=𝑘1

𝑘−1∑︁
𝑙=0

|𝑒
𝑙
| ˜𝛽𝑘

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚). (43)

By changing the order of summation at the second term, we have:

− 1

1 − 𝛾

𝑘2∑︁
𝑘=𝑘1

𝑘−1∑︁
𝑙=0

|𝑒
𝑙
| ˜𝛽𝑘

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚) = − 1

1 − 𝛾

𝑘1−2∑︁
𝑙=0

|𝑒
𝑙
|

𝑘2∑︁
𝑘=𝑘1

˜𝛽𝑘

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚)

− 1

1 − 𝛾

𝑘2−1∑︁
𝑙=𝑘1−1

|𝑒
𝑙
|

𝑘2∑︁
𝑘=𝑙+1

˜𝛽𝑘

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚). (44)
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We are interested in proving (18) and

lim inf

𝑘1→∞
inf

𝑘2≥𝑘1

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘𝑢
𝑖
𝑘
≥ lim inf

𝑘1→∞
inf

𝑘2≥𝑘1

(
−

|𝑢𝑖
0
|

1 − 𝛾

𝑘2∑︁
𝑘=𝑘1

˜𝛽𝑘

𝑘−1∏
𝑙=0

(1 − ˜𝛽𝑙 )
)

+ lim inf

𝑘1→∞
inf

𝑘2≥𝑘1

(
− 1

1 − 𝛾

𝑘1−2∑︁
𝑙=0

|𝑒
𝑙
|

𝑘2∑︁
𝑘=𝑘1

˜𝛽𝑘

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚)
)

+ lim inf

𝑘1→∞
inf

𝑘2≥𝑘1

(
− 1

1 − 𝛾

𝑘2−1∑︁
𝑙=𝑘1−1

|𝑒
𝑙
|

𝑘2∑︁
𝑘=𝑙+1

˜𝛽𝑘

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚)
)
. (45)

Therefore, showing the non-negativity of each term at the right-hand side implies (18). To this end,

the following lemma enables us to rewrite the inner summations in (43) and (44) as a difference of

two partial products.

Lemma 11. We have

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘

𝑘−1∏
𝑙=𝑘0

(1 − 𝛽𝑙 ) =
𝑘1−1∏
𝑙=𝑘0

(1 − 𝛽𝑙 ) −
𝑘2∏
𝑙=𝑘0

(1 − 𝛽𝑙 ) (46)

and

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘

𝑘0∏
𝑙=𝑘+1

(1 − 𝛽𝑙 ) =
𝑘0∏

𝑙=𝑘1+1

(1 − 𝛽𝑙 ) −
𝑘0∏
𝑙=𝑘2

(1 − 𝛽𝑙 ). (47)

Proof. By adding and subtracting one to the term 𝛽𝑘 , we obtain

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘

𝑘−1∏
𝑙=𝑘0

(1 − 𝛽𝑙 ) =
𝑘2∑︁

𝑘=𝑘1

(1 − (1 − 𝛽𝑘 ))
𝑘−1∏
𝑙=𝑘0

(1 − 𝛽𝑙 )

=

𝑘2∑︁
𝑘=𝑘1

(
𝑘−1∏
𝑙=𝑘0

(1 − 𝛽𝑙 ) −
𝑘∏

𝑙=𝑘0

(1 − 𝛽𝑙 )
)

=

𝑘1−1∏
𝑙=𝑘0

(1 − 𝛽𝑙 ) −
𝑘2∏
𝑙=𝑘0

(1 − 𝛽𝑙 ), (48)

and

𝑘2∑︁
𝑘=𝑘1

𝛽𝑘

𝑘0∏
𝑙=𝑘+1

(1 − 𝛽𝑙 ) =
𝑘2∑︁

𝑘=𝑘1

(1 − (1 − 𝛽𝑘 ))
𝑘0∏

𝑙=𝑘+1

(1 − 𝛽𝑙 )

=

𝑘2∑︁
𝑘=𝑘1

(
𝑘0∏

𝑙=𝑘+1

(1 − 𝛽𝑙 ) −
𝑘0∏
𝑙=𝑘

(1 − 𝛽𝑙 )
)

=

𝑘0∏
𝑙=𝑘1+1

(1 − 𝛽𝑙 ) −
𝑘0∏
𝑙=𝑘2

(1 − 𝛽𝑙 ), (49)

where (48) and (49) follow from telescoping the series. □
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Based on Lemma 11, the first term on the right-hand side of (45) is non-negative because the

summation is bounded from below by

−
|𝑢𝑖

0
|

1 − 𝛾

𝑘2∑︁
𝑘=𝑘1

˜𝛽𝑘

𝑘−1∏
𝑙=0

(1 − ˜𝛽𝑙 ) = −
|𝑢𝑖

0
|

1 − 𝛾

(
𝑘1−1∏
𝑙=0

(1 − ˜𝛽𝑙 ) −
𝑘2∏
𝑙=0

(1 − ˜𝛽𝑙 )
)

≥ −
|𝑢𝑖

0
|

1 − 𝛾

𝑘1−1∏
𝑙=0

(1 − ˜𝛽𝑙 ), (50)

which does not depend on 𝑘2 and goes to zero as 𝑘1 → ∞ due to Assumption (𝑖𝑖) listed in Theorem

3. Similarly, the second term is also non-negative because the summation is bounded from below by

− 1

1 − 𝛾

𝑘1−2∑︁
𝑙=0

|𝑒
𝑙
|

𝑘2∑︁
𝑘=𝑘1

˜𝛽𝑘

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚) = − 1

1 − 𝛾

𝑘1−2∑︁
𝑙=0

|𝑒
𝑙
|
(
𝑘1−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚) −
𝑘2∏

𝑚=𝑙+1

(1 − ˜𝛽𝑚)
)

≥ − 1

1 − 𝛾

𝑘1−2∑︁
𝑙=0

|𝑒
𝑙
|
𝑘1−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚), (51)

which does not depend on 𝑘2 and goes to zero as 𝑘1 → ∞. Particularly, the absolute summability

of {𝑒
𝑘
} and Assumption (𝑖𝑖) yields that {𝑒

𝑘
} decays faster than {𝛽𝑘 } and there exists 𝑘0 such that

|𝑒
𝑘
| ≤ 𝛽𝑘 for all 𝑘 ≥ 𝑘0. Therefore, for 𝑘1 ≥ 𝑘0, we have

− 1

1 − 𝛾

𝑘1−2∑︁
𝑙=0

|𝑒
𝑙
|
𝑘1−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚) = − 1

1 − 𝛾

(
𝑘1−1∏
𝑚=𝑘0

(1 − ˜𝛽𝑚)
)
𝑘0−1∑︁
𝑙=0

|𝑒
𝑙
|
𝑘0−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚)

− 1

1 − 𝛾

𝑘1−2∑︁
𝑙=𝑘0

|𝑒
𝑙
|
𝑘1−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚), (52)

where the first-term goes to zero as 𝑘1 → ∞ due to Assumption (𝑖𝑖), and based on Lemma 11, the

second term is bounded from below by

− 1

1 − 𝛾

𝑘1−2∑︁
𝑙=𝑘0

|𝑒
𝑙
|
𝑘1−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚) ≥ − 1

1 − 𝛾

𝑘1−2∑︁
𝑙=𝑘0

˜𝛽𝑙

𝑘1−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚)

=

𝑘1−1∏
𝑙=𝑘0+1

(1 − ˜𝛽𝑙 ) −
𝑘1−1∏
𝑙=𝑘1−2

(1 − ˜𝛽𝑙 )

≥
𝑘1−1∏
𝑙=𝑘0+1

(1 − ˜𝛽𝑙 ), (53)
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which goes to zero as 𝑘1 → ∞ by Assumption (𝑖𝑖). Finally, the third term is also non-negative

because the summation is bounded from below by

− 1

1 − 𝛾

𝑘2−1∑︁
𝑙=𝑘1−1

|𝑒
𝑙
|

𝑘2∑︁
𝑘=𝑙+1

˜𝛽𝑘

𝑘−1∏
𝑚=𝑙+1

(1 − ˜𝛽𝑚) = − 1

1 − 𝛾

𝑘2−1∑︁
𝑙=𝑘1−1

|𝑒
𝑙
|
(

𝑙∏
𝑚=𝑙+1

(1 − 𝛽𝑙 ) −
𝑘2∏

𝑚=𝑙+1

(1 − 𝛽𝑙 )
)

≥ − 1

1 − 𝛾

𝑘2−1∑︁
𝑙=𝑘1−1

|𝑒
𝑙
|

≥ − 1

1 − 𝛾

∞∑︁
𝑙=𝑘1−1

|𝑒
𝑙
|, (54)

which goes to zero as 𝑘1 → ∞ since {𝑒
𝑘
} is absolutely summable. This completes the proof. □

D PROOF OF LEMMA 10
The proof follows from [27, Theorem 4]. Particularly, we can view (21) as a weakened fictitious

play dynamic in a game with payoffs 𝑄𝑖
∗ (·) for each 𝑖 since the action 𝑎𝑖

𝑘
satisfies

E𝑎−𝑖∼𝜋−𝑖
𝑘
{𝑄𝑖

𝑘
(𝑎𝑖

𝑘
, 𝜋−𝑖

𝑘
)} = max

𝑎𝑖 ∈𝐴𝑖
E𝑎−𝑖∼𝜋−𝑖

𝑘
{𝑄𝑖

𝑘
(𝑎𝑖 , 𝑎−𝑖 )} ≥ max

𝑎𝑖 ∈𝐴𝑖
E𝑎−𝑖∼𝜋−𝑖

𝑘
{𝑄𝑖

∗ (𝑎𝑖 , 𝑎−𝑖 )} − 𝜖𝑘 (55)

for some 𝜖𝑘 → 0 as 𝑘 → ∞ since 𝑄𝑖
𝑘
(𝑎) → 𝑄𝑖

∗ (𝑎) for all (𝑖, 𝑎) as 𝑘 → ∞. The asymptotic

negligibility of the error term follows since����max

𝑎𝑖 ∈𝐴𝑖
E𝑎−𝑖∼𝜋−𝑖

𝑘
{𝑄𝑖

𝑘
(𝑎𝑖 , 𝑎−𝑖 )} − max

𝑎𝑖 ∈𝐴𝑖
E𝑎−𝑖∼𝜋−𝑖

𝑘
{𝑄𝑖

∗ (𝑎𝑖 , 𝑎−𝑖 )}
����

≤ max

𝑎𝑖 ∈𝐴𝑖

���E𝑎−𝑖∼𝜋−𝑖
𝑘
{𝑄𝑖

𝑘
(𝑎𝑖 , 𝑎−𝑖 ) −𝑄𝑖

∗ (𝑎𝑖 , 𝑎−𝑖 )}
��� (56)

and the right-hand side goes to zero due to the convergence of 𝑄𝑖
𝑘
to 𝑄𝑖

∗. This completes the proof.

□

E PROOF OF COROLLARY 4
The proof follows from the observation that based on (38) and (40), Γ𝑖 𝑗

𝑘
, as described in (32), can be

written as

Γ𝑖 𝑗
𝑘
(𝑠) = E𝑎∼𝜋𝑘 (𝑠) {𝑟 𝑖 (𝑠, 𝑎

𝑗

𝑘
(𝑠), 𝑎−𝑗 ) − 𝑟 𝑖 (𝑠, 𝑎)}

𝑘∑︁
𝑙=0

𝛽𝑙

(
𝑘∏

𝑚=𝑙+1

(1 − 𝛽𝑚)
)

+ 𝛾
∑︁
𝑠′∈𝑆
E𝑎∼𝜋𝑘 (𝑠) {𝑝 (𝑠 ′ |𝑠, 𝑎𝑖 ) − 𝑝 (𝑠 ′ |𝑠, 𝑎𝑖 )}

𝑘∑︁
𝑙=0

𝜐𝑖
𝑙
(𝑠 ′)𝛽𝑙

(
𝑘∏

𝑚=𝑙+1

(1 − 𝛽𝑚)
)

(57)

= E𝑎∼𝜋𝑘 (𝑠) {𝑟 𝑗 (𝑠, 𝑎
𝑗

𝑘
(𝑠), 𝑎−𝑗 ) − 𝑟 𝑗 (𝑠, 𝑎)}

𝑘∑︁
𝑙=0

𝛽𝑙

(
𝑘∏

𝑚=𝑙+1

(1 − 𝛽𝑚)
)
≥ 0. (58)

This completes the proof. □
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