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The objective of this study is to quantify the variability of crop
and soil states due to uncertain climatic inputs and soil properties,
using a mathematical representation of the physiological, biochemical,
hydrological, and physical processes relzted to plant growth. To
achieve this objective we model the soil-crop-climate interactions, we
deal analytically with the problem of multidimensional infiltration in
heterogeneous soils, and we propose new methods for uncertainty propaga-
tion in numerical models of flow and transport in the unsaturated zone.

A state-space deterministic model for the simulation of the season-
al growth of a crop under known climatic inputs, taking into account the
moisture and salinity profiles in the soil, is developed. The three
components of the model are : 1) a plant growth model, representing pro-
cesses like CO2 assimilation, transpiration, growth and maintenance of
biomass, root distribution and water uptake over depth, 2) a moisture
transport model, solving the unsaturated one-dimensional partial differ-
ential equation for flow, and 3) a solute transport model, solving the
advection-dispersion partial differential equation for transport. The
model has been used successfully for evaluating irrigation schemes and
predicting the crop response under different conditions.

The issue whether the one-dimensional soil column model can reason-
ably and locally represent the processes over a field with spatially
varying soil properties is investigated. New analytical solutions to
the one- and two-dimensional unsteady linearized unsaturated flow egua-
tion are derived. The one-dimensional solutions are used to construct
an approximate description of the multidimensioral Zflow problem, which
is compared to the exact solution. A criterion to test the validity
of the one-dimensional approximation is proposed, in terms of parameters
describing the soil type, the uniformity of the boundary conditions, and
the soil heterogeneity in the horizontal and the vertical direction.
Numerical solutions are also developed for general soil formations and
the insight gained from the analytical solutions is tested against more
complex situations. On the basis of the studied exponential and peri-
odic variations, the conclusion is that for uniform irrigation over the
entire field and for moderate scale of variation of the soil properties
in space, the one-dimensional approximation is valid.

to



A linear model for the perturbations of the state and the inputs
around the nominal (first-order mean) values is derived. The 1linear
model is used for second-moment uncertainty propagation in the system
due to fluctuations of the climatic forcing in time and the spatial
variability of the soil properties. The effect of temporal variability
of climatic variables is studied by assuming that the soil properties
are known. The state perturbations are given by a linear time-varying
system with the climatic time series as forcing term. Since the devia-
tions of the climatic variables from their mean values are correlated at
different time steps during a day, an explicit calculation is required
for tre non-vanishing cross terms in the covariance propagation step.
The most important climatic variables affecting crop production are ide-
ntified in a case study. Correlation of climatic inputs between days is
found to increase the crop yield variance. The uncertainty of the the
climatic inputs does not affect significantly the soil state variables:
soll matric potential and salinity.

The effect of spatial variability of soil properties is studied by
assuming that the climatic inputs are known. Since the so0il property
parameters are time-invariant, the state perturbations are given as the
product of a precomputable total sensitivity matrix and the soil parame-
ter perturbations. A method for covariance propagation is used which is
proven more efficient than recursive methods proposed in the past for
studying propagation of uncertainty in groundwater flow systems. The
predictions of the linearized transport model have been compared against
Monte Carlo simulations for infiltration events with good results. The
possibility of second-order prediction of the mean is also studied. The
predictions of the composite soil-crop-climate 1linearized model have
been compared successfully against results using a statistical averaging
procedure, when the saturated hydraulic conductivity is a random vari-
able lognormally distributed. Significant variance reduction is found
in transforming uncertain soil properties to soil state variables and
then to plant state variables. Using the one-dimensional approximation
the covariance function of the plant and soil states over the horizontal
is computed as a linear combination of the covariance functions of the
soil property parameters.

This work quantifies the risk due to uncertain factors affecting
crop and soil variables; it is a guide for more complex physiological
models of crop production; it reveals unknown behavior of the stochastic
differential equations for flow and transport in the unsaturated zone;
it results in a better understanding of the generic properties of the
multidimensional infiltration process; and it provides a framework for
on-line forecasting of the crop state using weather data and for use of
rational decision-making methods in farming activities.
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Title: Professor of Civil Engineering
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CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION - OBJECTIVES

The demand for agricultural products is expected to increase continu-
ously as a result of growing populations and higher incomes. Modern agricul-
ture, a specialized and mechanized industry which transforms solar energy
into useful organic products, is foreseen to increase its output by the
expansion of arable land and, ;ainly, by the intensified use and better
management of the production factors. Developing tactics for efficient use
of resources in agriculture requires a better understanding of the
interactions of the underlying physical processes. From the hydrologist's
point of view, we are interested in agricultural use of water for
irrigation. The main factors that influence farming decisions on scheduling
irrigation are the characteristics of climate, soil, crop, quality and
availability of water, irrigation technology and societal considerations.

The complex interactions of the above factors become even more complicated as
they are affected by uncertainties of varied degree and source.

The objective of this study is to guantify the variability of crop and
soil variables due to uncertain climate inputs and soil parameters, not from
an empirical-statistical point of view, but based on a mathematical represen-
tation of the physiological, biochemical, hydrological and physical processes
that result in plant growth. Such information is necessary for optimal irri-
gation scheduling and for other farming activities. We are pursuing an

analysis that focuses on the hydrological aspects of crop productivity and,
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therefore, other important factors as nutrient supply are assumed to be non-
limiting.

In achieving the above objectives, we address and contribute to several

other issues of hydrologic interest:

e We develop an integrated, comprehensive, and representative model of
the dynamics of the soil-crop-climate system. It is physically based
and analytically tractable. Also, its principles are simple, well
understood and experimentally verifiable.

e We deal with the dynamics o1 water transport in heterogeneous soils,
a topic of active theoretical and field research. We investigate
under which conditions a set of one-dimensional local models can
represent the flow conditions in a spatially variable natural soil,
an approximation that simplifies the modeling effort.

+ We approach the problem of uncertainty propagation in flow and
transport models for the unsaturated zone, assuming that the soil
properties vary randomly in space. These phenomena are very much of
transient nature and we suggest new methods for reliable prediction
of the mean and the variance of the output variables.

e We creatively use state-space linearization methods for second-moment
propagation in systems driven by correlated inputs or by constant-
but-random inputs. We are also innovative in a number of other

computational details and procadures.
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1.1 LITERATURE REVIEW

Theoretical modeling of the climate, soil and vegetation interactions in
a stochastic-analytical framework has been advanced by Eagleson (1978a-g).

In his monumental study he computes the mean and variance of the components
of the annual water balance as functions of soil and climatic variables,
hypothesizing equilibrium vegetation densities. 1In the crop and soil science
literature we find a number of physically based models for dynamically simu-
lating the seasonal growth of a crop as related to moisture and salinity
conditions in the soil (Childs, et al., 1977; 2ur and Jones, 1981; Huck and
Hillel, 1983; Ritchie and Otter, 1985). These models share a common objec-
tive but vary significantly in the degree of detail. All are presented in
the form of simulation computer programs and, therefore, are not suitable for
analytical work.

Studies which review temporal variability of crop yield take the form of
statistical analyses of long records of annual yield for a specific crop and
site. Many researchers have proposed agricultural production functions,
which are reg:iression models trying to correlate the realized yield to the
production factors used. Of interest to hydrologists are production func-
tions that use the total actual evapotranspiration or the total water applied
as a surrogate measure of crop yield (Stewart, et al., 1977; Cordova and
Bras, 1981).

Spatial variability studies of crop yield historically are related to
early results on random fields. Whittle (1956), analyzing crop yield data as

a realization of a stationary stochastic process, discovered that the
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correlation function must fall off relatively slowly at large distances. He
found that power-type correlation functions fitted his data better than
exponential-type functions. He also postulated that common features in
models that provide this type of covariance function are nonlinearity and
time and space dependence. In a later paper Whittle (1962) visualized a
mechanism that can produce this form: the diffusion of water, nutrients and
salts through the three-dimensional soil medium. Diffusion has mixing effect
but cultivation and weather continously introduce new variation. Eventually
a balance is reached between these two effects and this should be evident in
the spatial correlation of the crop yield output. Writing a randomly driven
diffusion equation, Whittle was able to obtain the hypothesized power law.

Recently attention has been paid to the relation between field soil
properties variability and crop spatial variability. The statistical
analysis of Bresler, et al. (1981) finds the auto- and cross-correlations of
soil properties (namely, water content before and after irrigation and
saturated hydraulic conductivity) and yield components (namely, fresh pod
yield, fresh hay yield and total dry yield). Yield components have negative
correlation with saturated hydraulic conductivity. The coefficient of varia-
tion of yield is smaller than that of the soil properties. About 60% of the
yvield variance is assigned to additional random factors (genetic factors,
irrigation uniformity, salinity, etc.). Similar statistical analysis on field
data is reéorted by Russo (1984b), including salinity measurements.

Warrick and Gardner (1983) use a relation between yield Y and water

applied W which is linear for W > Wg and gives maximum yield for W > Wp.
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The authors follow a derived distribution approach and conclude that the more
uncertain the threshold value for optimal yield W, (related indirectly to

the variable soil properties), the less mean yield is obtained. They do not
consider soil salinity, irrigation water salinity, spatial structure of the
s0il properties or any dependence on climate.

Russo (1983) favors a geostatistical modeling approach. From point
measurements on a 5 Ha field the semivariograms of the saturated hydraulic
conductivity, Kg, and of the capillarity index, «, are found and kriging is
employed to estimate their values over the entire field. Then, using locally
a linearized steady state solution for infiltration from a shallow circular
pond, the micway pressure head, ho, between two trickle irrigation emitters
is found and mapped. The spatial structure of log g is much smoother than of
log Kg. The spatial structure of he is highly correlated to that of
log a. A quadratic dependence of crop yield onige is assumed and a map of
relative yield with respect to the yield corresponding to the mean h. is
created. Yield is found to be less variable than he. and with an integral
scale close to the arithmetic mean of the integral scales of Kg and a.

Field experiments (Russo, 1984a) verify the predictions of his model.

Following up on this approach Russo (1986) attempts a more realistic
representation of soil-crop-climate interactions by using simplified water
and solute dynamics and a yield-transpiration model. Using generated
realizations of the soil properties and the crop response model, he studies
the effect of uncertainty and spatial variability of inputs (retention curve,
initial moisture, initial salinity) on the outputs (soil salinity, moisture,

crop yield) by means of conditional simulations.

18



There is no study in the literature investigating the effect of random
climatic inputs and spatially varying soil properties on plant and soil
states and using a detailed, analytical, physically based representation of
the soil-crop-climate interactions. This is precisely the principal

objective of our study.

1.2 THESIS OUTLINE

In Chapter 2 we develop a deterministic state-space model for the
simulation of the seasonal growth of a crop under known climatic inputs and
taking into account the moisture and salinity profiles in the soil. The
three components of the model are: 1) a plant growth model, representing
processes like CO, assimilation, transpiration, growth, and maintenance of
biomass, root distribution and water uptake over depth, 2) a moisture
transport model, solving the unsaturated one-dimensional partial differential
equation for flow, and 3) a solute transport model, solving the advection-
dispersion partial differential equation for transport.

In Chapter 3 we investigate the idea of approximating the soil water
dynamics over a field with spatially varying hydraulic properties by means of
a set of decoupled noninteracting locel soil column models. Analytical
solutions to the one- and two-dimensional unsteady unsaturated flow equation
are derived for a special (exponential) variation of the saturated hydraulic
conductivity in space. The one-dimensional solutions are used to construct
an approximate description of the multidimensional flow problem, which is

compared to the exact solution. A criterion for the validity of the
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one-dimensional approximation is derived, in terms of parameters describing
the soil type, the uniformity of the boundary conditions, and the soil
heterogeneity in the horizontal and the vertical direction. Numerical solu-
tions are also developed for general soil formations and the insight gained
from the analytical solutions is tested against more complex situations. The
conclusion is that for uniform irrigation over the entire field and for the
expected moderate scale of variation of the soil properties in space, the
one-dimensional approximation ;s valid over the time scale of irrigation
events of interest.

In light of the above results, we employ the one-dimensional soil-crop-
climate model as an analytical tool for uncertainty propagation studies. 1In
Chapter 4 we identify two sources of uncertainty in the system, namely, the
fluctuation of the climatic forcing in time and the spatial variability of
the soil properties. Within a second-moment analysis, we want to predict, at
any time, the mean and the variance of the state variables of interest.

Monte Carlo and derived distribution methods for propagating uncertainty are
found to be inapplicable for this type of problem. The questions of interest
can only be addressed with linearization methods. The algebraically
intensive step of deriving a linear model for the perturbations of the state
and the inputs around the nominal (first-order mean) values is accomplished
in this chapter.

In Chapter 5 we study the effect of temporal variability of climatic
variables, assuming that the soil properties are known. The state perturba-

tions are given by a linear time-varying system with the climatic time serxies
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as forcing term. Since the deviations of the climatic variables from their
mean value are correlated at different time steps during a day the standard
covariance propagation methods are not sufficient in this case. An explicit
calculation for the non-vanishing cross terms is carried out. In a case
study the most important climatic variables affecting crop production are
identified quantitatively.

In Chapter 6 we study the effect of spatial variability of soil proper-
ties, assuminc that the climat{c inputs are known. Since the soil property
parameters are time-invariant, it tnrns out that the state perturbations are
given as the product of a precomputable 'total sensitivity' matrix, which
summarizes the unforced system dynamics and the specific way that the soil
parameters affect the solution, and the soil parameter perturbations. Based
on this fact, a new method for covariance propagation is used, which is
proved to be mathematically equivalent and computationally more efficient
than recursive methods proposed in the past for studying propagation of
uncertainty in groundwater flow systems. The predictions of the linearized
transport model have been compared against Monte Carlo simulations for an
infiltration event. The possibility of second-order prediction of the mean
using second-moment information is also studied. The predictions of the
composite linearized model have been compared successfully against results
using a statistical averaging procedure.

In Chapter 7 we address the issue of observing the system. First we
review a variety of methods for real-time observations of the state variables

by using in-situ or remote sensing techniques. The derivation of linearized
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models for the dynamics and the observations facilitates the use of a rich
variety of estimation, identification, and control methodologies which we

discuss briefly. In the same chapter we recapitulate our findings and we

suggest directions of future research.
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CHAPTER 2

STATE-SPACE SOIL-CROP-CLIMATE MODEL

2.0 SOIL-PLANT ATMOSPHERE INTERACTIONS

The objective of this chapter is to model the seasonal growth of a crop
under known climatic forcing as a result of the underlying physical, bio-
logical, physiological and hydrological processes. We are particularly
interested in the effect of soi} moisture and salinity concentration on the
crop production. The original development of our simulation model can be
found in Protopapas and Bras (1986), and a review table of other integrated
soil-crop-climate models is given in Protopapas and Bras (1987). The dif-
ference between the previous studies and the presentation herein is that we
want to cast the simulation model in a state-space form so that it can be
used as an analytical tool for uncertainty studies.

Consider a crop growing on a relatively large field (in the order of a
few hectares). A schematic representation of the soil-plant-atmosphere
interactions of this system is shown in Figure 2.1. The dyramics of this
System are summarized as follows: The climatic inputs act on the canopy of
the crop resulting in photosynthesis and transpiration, and on the soil
surface resulting in a water and temperature f£lux from or into the soil. The
photosynthesis process replenishes the plant reserves. The assimilated
products that are stored in a reserve pool as starch are utilized for growth
and maintenance of structural biomass in the shoot and in the root. Climate
also imposes a transpiration demand, which is satisfied by water uptake via
the root system at a rate which depends on the moisture and salinity profiles

in the soil. 1In order to equate demand and uptake, the plant adjusts its
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Figure 2.1 Schematic Representation of the Soil-Plant-Atmosphere
Interactions
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water content, which determines the partitioning of produced biomass in shoot
and root. In the soil column, transport of water, solutes and heat takes
place.

In the following paragraphs we summarize the conceptual framework for
the mathematical description of the above processes as developed in
Protopapas and Bras (1986).

If assimilation controls the transpiration process or, alternatively, if
solar radiation is the factor 1§miting growth, the transpiration rate is com-
puted by the Penman-Monteith equation and is a function of climatic varia-
bles, namely, air temperature, dew point temperature, wind speed and solar
radiation. In the opposite case, that is, if the water status of the plant
is the limiting factor, transpiration is a function of climatic variables and
of the relative water content of the plant.

The photosynthesis is modeled as a COj diffusion process, restricted
however by the hyperbolic light response curve, which gives the photo-
synthesis rate as a function of available photosynthetically active radia-
tion. Since water vapor and CO; follow the same path through the stomata
pores, the photosynthesis and the transpiration are closely related. This
fact is used to compute the leaf resistance.

Absorption of water occurs along gradients of decreasing soil water
potential from the soil to the root system. The existence of solutes in the
soil creates osmotic pressures, which result in more negative potentials in
the soil and thus in a decrease of the uptake rate. By adjusting its water
potential, the plant is able to equate the water loss through transpiration

and the water uptake by the root system.
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The available reserves, the water status of the plant, and the tempera-
ture determine the growth rate of root and shoot. Growth and maintenance are
the two processes utilizing the products of photosynthesis to create and
sustain useful organic matter. The amount of reserves is updated by writing
a mass balance for a conceptual pool of reserves. Inflow is the
photosynthesis rate and outflow is the use of reserves for growth and
maintenance.

The soil moisture profile %s computed numerically by solving the
one-dimensional equation for water transport in an unsaturated-saturated
cropped soil column. A known climatically imposed flux is used as boundary
condition at the soil surface and a known flux or a known matric potential is
used at the bottom of the soil profile. The sink term in this equation is
the uptake rate at each soil depth. To compute this term, a model for the
development of the root system is used in which the produced root biomass is
distributed over depth so that the uptake rate is maximized and simple
biological constraints are satisfied.

The solute concentration profile is computed by solving the one-dimen-
sional equation for solute transport in a soil column, including the effects
of advection, dispersion, adsorption, and chemical activity. A known solute
flux or solute concentration is used as boundary condition at the soil
surface and at the bottom of the soil column. The required water fluxes are
found from the water transport model.

The three components of the integrated model are, therefore, the plant
growth model, the water transport model, and the solute transport model. 1In
the following sections we derive a state-space form of this model, that is,

a set of nonlinear equations fpr the propagation of the state variables.
s
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This form differs drastically from any other soil-crop-climate model and is
desirable because it facilitates analytical work as well as simulation

studies.

2.1 PLANT STATE VARIABLES: THE PLANT GROWTH MODEL

The biological model of plant growth is based on the principles
presented in de Wit, et al. (1978) and in Penning de Vries and van Laar
(1982). Their studies also report extensive controlled experiments to
validate the conceptual description of the underlying individual processes
and to identify the required parameters. Similar concepts and formulation
are used in other models (Childs et al., 1977; Zur and Jones, 1981; Huck and
Hillel, 1983; Ritchie and Otter, 1985). Variables which need to be discussed
are: the weight of reserves, the water status of the plant, the morphology
and weight of the shoot, and the morphology and weight of the root.

Let us introduce a vector of state variables, the use of which will

become clear in the following sections, by writing:

= . .. . .. T
x(k) [(bp RES W_ . RT RT o » RT_,.. RT__ 1 ¢

S . yi yN ¢

T TN I
where x(x) = vector of state variables at time ¢

¢p = plant water potential (in bars)

RES = weight of reserves (in Kg/HA)
Wg = weight of shoot (in Kg/HA)

weight of young roots at node j (in Kg/HA)

'?S

<

.
"

o)

s
(o)
(S

]

weight of old roots at node j (in Kg/HA)
5§ = matric water potential at node j (in cm)

€4 = solute concentration at node j (in mg/%)
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The state vector has dimension (3+4N,1), where N is the number of discreti-
zation nodes over depth, and contains all the necessary information that is
required in order to describe the system at any time in the future given
known inputs. We assume perfect knowledge of the initial state. For

methodological purposes, we further partition the state into plant and soil

state variables

x(k) = [x_(x) : x_(0)]"
P 5

where

Xp(K) = vector of the first 3+2N plant related state variables, and

X5(K) = vector of the rest 2N soil related state variables.

Let us also define a vector of climatic inputs as

T
E(k) =[Rn R, T, T, T_ u r Rs]

where
E(k) = vector of input climatic variables at time ¢ with dimension (8,1)
R, = net absorbed solar radiation (in J/m? s)
R, = net absorbed visible radiation (in J/m? s)
T = air temperature (in °C)
Tg = dew point temperature (in °C)
Ts = soil temperature (in °C)
u = wind speed (in m/s)
r = irrigation or precipitation rate (in cm/day)

Rg = radiation flux reaching the soil surface (in J/m? s).
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The sequences of climatic variables at the simulation time step are
obtained as the output of a weather simulator which uses daily measurements
as input (Chapter 5). The state-space formulation gives the plant state at
time x+l explicitly as a nonlinear function nf the state and the input

climatic variables at time ¢ or

xp(k+1) = fp(xp(K), E(K), xg(K)).

2.1.1 Plant Water Status

The water status of the crop is characterized by the plant water

potential ¢ (in bars). This variable regulates the stomatal behavior when
the plant suffers a water stress. In such cases the transpiration decreases
because of increased leaf resistance to water vapor diffusion.

The net absorbed radiation by the canopy, R,, imposes a transpiration

rate, which can be found by the Penman-Monteith equation

pC
P
A(kIR (k) + (es(x) -ea(K)) T, (k) LAI(k)
LE(k) = 2= (2.1)
Alk) + y(1 + r;(K)]

where

Rn(k) = net absorbed radiation in the canopy in J/m2-soil s

LAI(k) = leaf area index in m2-leaf/m2-soil
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eg(x) = saturated vapor pressure at the current air temperature,
obtained in mbars from

17.4Ta(p<)

239+Ta(K)) (2.2)

es(x) = 6.11 exp (

ea{x) = actual vapor pressure at the current air temperature,
given in mbars from the above expression where T5(k) is

used instead of T;(x)

des(n)

Alx) - EE—T;T slope cf the curve of saturated vapor pressure vs.
a

temperature at the current air temperature, obtained in

mbars/°C from

17.4T (k)
Alk) ='———££§§L§—-2 6.11 exp (ESE:EET—T) (2.3)
(T, (x)+239) a'®

latent heat of vaporization of water = 2390 J/gr

t
[]

E(k) = mass flux of evaporated water or transpiration rate in
gr/mz-soil s

psychrometric constant = 0.67 mbars/°C

=<
"

volumetric heat capacity of the air = 1200 J/m3°C

°Cp
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rp(x) = boundary layer resistance to water vapor diffusion, computed

in s/m from

rb(x) = ay )

where u = wind speed above the canopy in m/s
w = characteristic width of the leaves in the direction of
wind in m
a = empirical constant = 185 in sl/2/m
rg(x) = leaf resistance to water vapor diffusion in s/m which must be

computed by simultaneous consideration of the photosynthesis and
the transpiration process since carbon dioxide and water vapor
follow the same pathways into the intercellular space.

At the same time the absorbed visible radiation by the canopy, Ry(k),
which is Photosynthetically Active, (PAR), determines the net CO,
assimilation rate Fp(x) according to the light response curve. This
hyperbolic function approaches a maximum at high light intensities and is
given by

-ERV(K) LAI(k)
exP(Fm(K) ey * Fal “Sece.

F (k) = {(F_(x)-F )[1 - (2.4)

where
Ry(k) = absorbed visible radiatioun flux (PAR) in J/m2-s0il s
Fno(k) = net CO; assimilation rate irn Kg COy/HA-soil s (expressed
per second)
Fq = net assimilation rate in the dark (dark respiration and thus

negative in sign) in Kg CO,/HA-leaf h (expressed per hour)
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Fp(x) =

fr(x)

fr(x) =

RL(k) =

RL(k) =

efficiency at 1light compensation point in Kg CO3/J or

Kg co2 mz-leaf -]
HA-leaf h J

more practically in

maximum rate of net CO; assimilation at high light

intensities in Kg CO,/HA-leaf h; it is obtained from
F Y g
m(K) = Fm r(oc)

potential net CO_ assimilation rate in Kg Coz/HA-leaf h;

2
reduction factor éue to the feedback. effect of the reserve
level on the assimilation rate, i.e., if a large amount of
reserves is available the potential rate is reduced; this

factor is given by

RL(k) < 0.29
- 20.0 RL(k) 0.20 < RL(k) < 0.25
0.25 < RL(k)

—

o W\ P
.

o O O

the reserve level equal to the ratio of reserve weight over
total existing biomass

RES (k)

RES w RT . R .
(k) + Wo(k) + % ( g6 * OJ(K))

*
Typical values of the parameters Fm y €, Fd for the two main categories

of plants are

given below (Penning de Vries and van lLaar, 1982). C3 plants

are small grains (wheat, barley, oats, rye, rice), temperate grasses (brome,
alfalfa), sugarbeet, potato, etc.; C4 Plants are tropical grasses (maize,

sorghum, millet, sugar cane), halophytes, etc.
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- (Kg coz) e(xg co, mzs) . (Kg ceg)

m \ HA h HA h J dV HA h
c, 15 to 50 0.39 -1.50 to -5.00
c, 30 to 90 0.50 -3.00 to -9.00

Photosynthesis also can be seen as a diffusion process, since CO,
enters the leaf driven by its concentration gradient between the photo-
synthesizing sites and the ambient air. For many plants, such as maize and
bean, experiments indicate that the flux of CO; follows a linear law

(Goudriaan and van Laar, 1978)

Ac LAI(k) c, - ¢ LAI(k)

= = ‘ =

F (k) = {68.4 oy 3600, {68.4 R )} 3600 (2.5)
i (K bk 3 K

where Ac = CO, concentration gradient in vppm (volume parts per

million), i.e., cm3 CO5/m3.
Ce = external COp concentration in vppm = 330 vppm in our study

cy = internal CO, concentration in vppm, given as

*

*
for C, plants: c¢, = min (¢,,0.7 ce) with ci

3 i = 210 vppm

*

*
for C4 plants: ¢, = min (ci,0.6 ce) with c; = 120 vppm

Zrj(k) = total resistance of the leaf to CO, diffusion in s/m

= rb(K) + rx(x). The relation between the resistances to CO2

and water vapor diffusion is
rb(K) = 1,32 rb(x) and rx(x) = 1,66 rx(K) (2.6)

The constant 68.4 is pecessary for dimensional consistency.
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Given the amount of absorbed visible radiation, the net CO,
assimilation rate F,(x) is computed from Equation (2.4) and then rjg(x) is

found from Equation (2.5) as

c -c
e 1 LAI(k)
68.4 Fn(x) 3600. l.32rb(K)

1.66

IX(K) = (2.7)

At the same time the water status of the plant determines a different
value of ry(x), which is a function of the plant water.potential (de Wit et

al., 1978, p. 70)

1
a, ¢p(K) ta,

- 4.055 bars £-¢p <0

r (k) = { (2.8)

10000 s/m ¢p £ = 4.055 bars
where a7 = 3.504 10-3 m/s bar and ay = 14.29 10-3 m/s are empirical
parameters.
Clearly the actual leaf resistance for transpiration is the maximum of
the values resulting from Equations (2.7) and (2.8). If the latter is
greater, then water stress conditions limit CO; assimilation and Fp(k)

must be computed in an inverse way as

c, - ¢ LAI(k)

e
1.66 rl(x) + l.32rb(x)} 3600.

F (k) = {68.4 (2.9)

If the former is greater the biochemical rates of photosynthesis reactions
determine rp(x) and, thus, the rate of transpiration via Equation (2.1).

Two cases therefore need to be considered. We will refer to these cases
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using the following terms:

CASE I: Photosynthesis controls Transpiration (Equation (2.7))

CASE II: Transpiration controls Photosynthesis (Equation (2.8))

The transpiration rate E(x) is the amount of water that the canopy
demands as forced by the atmospheric conditions, the intensity of
photosynthesis, and the water status of the plant. By adjusting the water
potential, the plant is able to equate the water loss by transpiration E(k)
and the water uptake by the root system U(x), which is the sum of the water

uptake rates over the soil compartments in the root zone or

RT (k) + p RT _.(k)
L9l fg (k)
R ¢sj

Ulk) = J U (k) =3 [0

(k) - ¢ (xk+1)]
j 3 3 P

5]

(2.10)

where Uj(x) = water uptake rate at the j soil compartment in gr/m2 s,
3

bgylx) = 0.9804 10” (¢j(x) - 0.581 c,(x)) (2.11)

3
= tne effective water potential in the soil in bars; it
accounts for the osmotic potential due to solute concentration
in the soil, which affects the water uptake by the roots
¢p(g+1) = the water potential in the roots, characterizing the water
status of the plant in bars (1 bar = 1020 cm)

P = the fraction of old roots active in water uptake = 0.30

Kgp = effective conductive ability of the root system

Kg of roots bar mzs
HA gr of 320

per unit weight of roots = 2500

fT(K) = effect of soil temperature on root ccnductance given by
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0.0 T () < 5°C
£.(c) = { 0.0338 - 0.0125 T + 0.0018 T>- 1.94 10> T° 5° < T (k) < 36°C
T 8 8 8 - 8 -
1.0 36° < T_(k)

(2.12)
(the root conductance is monotonically decreased as soil
temperature drops below 36°C (de Wit et al., 1978, p. 30))

£ (k) = effect of soil potential on root conductance given by

bey

-0.02 ¢sj - 50 < ¢sj(x) <0
ftb (x) = { 1.0 . -300 < q,sj(.c) £ - 50 cm
&3 68.0272 10°° ¢, + 1.0204 -15000 < ¢ __ (k) < =300 cm
s8] 8] =

(the root conductance decreases in very dry or in very wet
soil conditions (Feddes et al., 1978)).

Let us now express the dynamics of the plant water potential ¢p(K)
using the above concepts. At time ¢ we know the state Xp(K) and the inputs
E(k). The uptake rate U(k) is given from Equation (2.10) and the
transpiration rate from Equation (2.1), in which the leaf resistance rl(K)
is the maximum of the values computed from Equations (2.7) and (2.8).

In the first case (Case 1), the leaf resistance is a function of
climatic inputs (wind speed through rp and absorbed visible radiation
through F,) and of state variables other than plant water potential (crop
weights through Fp). Thus, equating E(x) and U(x) yields a linear equation

for ¢p(x+l) with solution

RT .(x) + p RT _(«x)
E(k) = ] ¢y 00) —L—p A— g0 £, (0
- - 9 R 57
¢p‘“+l) RT j(K) +p RTOj(K) (2.14)
4 = £.0) £ (k)
j R ey

36



This equation propagates the plant water potential provided that the time
step is sufficiently small. The computation for Case I (Photosynthesis
controls Transpiration) is summarized as follows:

Compute Fn(x) from (2.4); rx(x) from (2.7); E(x) from (2.1);

bplk+l) from (2.14);

1
al¢p(x+l) + a,

Check if indeed r (k) >

L

If this is not true, the leaf resistance must be computed from Equation
(2.8) being a function of the adjusted plant water potential (Case II). In

this case, equating as before E(x) and U(x), we find

RT .(x) + p RT

vi (k)

oJ

Y [o, (k) = ¢ _(x+1)] £.(k) £ (k)
3% P *& R
eC
1 Alk) R (k) + (es(x) - ea(K)) ;;%;T LAI(k)
- T (2.15)
1
Alk) + Y[ + rb(r)(alq,p(g'!-l) + az)]

The above is a quadratic equation on ¢p(K+1), solved in Appendix A. The
computation proceeds as follows:
Compute ¢p(k+1) as the acceptable solution of (2.15);
rg(x) from (2.8);
Check for consistency if indeed the value of leaf resistance from
(2.8) is larger than the value from (2.7);

Compute E(x) from (2.1) and Fy(k) from (2.9).
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Thus, considering the interdependence of the photosynthesis and the
transpiration process and writing a balance equation for the flow of water
from the soil to the atmosphere, we are able to deduce a propagation equuation
for the plant water potential.

At this point let us discuss the computation of the canopy temperature,
which affects the growth and maintenance of the shoot biomass (Section

2.1.2). From the energy balance of the canopy, we have

Rn(k) = LE(k) + H(k) LAI(x)
where H(k) is the sensible heat loss in the canopy in J/m2-1leaf s.

Then the temperature of the canopy is found from

r (k) 1 rb(K)
T (k) = T_(x) + H(k) o = T, () + (R (k) = LE()) 250y o<
(2.16)

with the transpiration rate E(x) computed using the proper value of
leaf resistance in each of the defined cases I or II.

During nighttime period there is no transpiration. We assume that the
plant water potential remains constant

¢p(K+1) = ¢p(K)

The canopy does not photosynthesize, instead it respires at a rate

Fd
Fn(r) = - 3%00. LAI(k)

and the canopy temperature is given by

R (k) rb(x)
LAI(k) pCp

Tc(x) = Ta(x) +
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2.1.2 Shoot and Root Weight

The growth rate of shoot is computed from

Gg(k) = RES(k) r_ g, (T (x)) gp(wp(x+1)) (2.17)
where
rc = relative consumption rate of reserves; for plants that do
not accumulate starch, it is set equal to 1 Kg-biomass/Kg-
starch day, so that reserves are consumed almost entirely
within a day.
gT = effect of temperature growth of shoot using the canopy
temperature T.(x) (Equation (2.16)), given by
0.0 0 < T (k) < 10°C
g (T) = { 66.66 107°1_ + 0.6667 10 < T_(x) < 25°C (2.18)
1.0 25 < TC(K) < 35°C
-0.200 Tc + 8.0 35 < Tc(x) £ 40°C
(growth is optimal in the temperature window 25 to 35°C)
gp = effect of water status on growth of ihoot given by
g (b_) = 0.9965 + 0.21909 ¢_ + 1.9125 10 2 ¢2 + 575.7806 107° ¢3
PP P p P

which accounts for the fact that due to the functional balance
between root and shoot, growth of root is favored at more
negative plant water potentials while shoot growth is favored
at less negative potentials.

The shoot weight is found from
Wo(k+1) = Wo(k) + Gg(k)At = Wo(k) + RES(k) r_ g (T (x)) gp(¢p<.<+1))At

(2.19)

where At = time step of the simulation (in s).
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Similarly, the growth rate of young roots is

Gplx) = RES(k) r_ g,(T_(x)) [2 - gp(¢p(x+l)] (2.20)

where the soil temperature Tg(k) is used in the growth function grp.

For the expression of the root weight, we must consider that the
produced root biomass is distributed over depth St a fraction pj(x) for
each soil compartment, and also that roots suberize and die at time constants

Tg = 5 days and t, = 1 year, respectively (both expressed in s). Then

RT__ (k)
= P 4 R
RT_(k+1) = RT_.(¢) + [pj(K)GR(K) * £, (T (k))] at

RT . (k) RT (k)
() + [ £ (1,00) - —2—] at

+. =
RToj(K 1) RTO
) r

J

where fp(Tg(k)) is the effect of soil temperature on root suberization
given by Equation (2.12). Protopapas and Bras (1987) compute the fractions
pj(x) so that the water uptake rate by the root system is maximized and, at
the same time, certain biological constraints are satisfied. Clearly, any
other model for the development of the root system can be used.

Rearranging terms and using Equation (2.19), we get

At
RT_;(k+1) 1 - :, fT(Ts(K))] RT S(k) +
Py(k) RES(k) T gn(T, (k) [1 - gp(¢p(K+1))] (2.21)
At At
RT 4(k+1) = (1 - Tr) RT (k) + = £1(Tglk)) RT (k) (2.22)
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Equations (2.19), (2.21), and (2.22) propagate the weight of shoot and
of young and old roots at each node respectively. For each of the two
transpiration cases discussed previously the functional dependence of T.(«k)
on state and inputs is different. During the night the equations are the same

with use of the proper expression for the canopy temperature.

2.1.3 Reserve Weight

The products of photosynthesis are used for the growth and maintenance

of the shoot and the root. The starch requirement for growth of shoot and

root is
SS(K) = GS(K) cg = RES(k) r, QT(TC(K)) gp(¢p(r+1)) s (2.23)
sglk) = G (k) e, = RES(k) r_ g, (T_(x))[1 - gp(¢p(x+1))] o (2.24)

where cg = conversion factor of starch to useful organic matter, where the
different components of biomass (proteins, fats, lignin etc.) have
been properly weighted (data from de Wit, et al., 1978)
= 1.41 kg-starch/kg-biomass

The starch reguirement for maintenance of shoot and root is

M (k) = Wolk) c m(Tc(K)) (2.25)

M

Mp(k) = § (Ryj(K) + Roj(x)) Sy m(TS(K)) (2.26)

where cy = starch requirement for maintenance for a unit weight of biomass

= 0.0066 kg-starch/kg-biomass day.
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m(T) = effect of'temperature on maintenance given by

0.1T-2.5

m(T) = Q10

where Q;5 = the augmentation of activity by increasing the temperature 10
degrees from 25° to 35°C, taken as 2
T = related temperature in °C, i.e., canopy temperature for the shoot
and soil temperature for the root.
Having defined the starch requirements for growth and maintenance, the

rate of i1se of reserves in Kg/HA s is

[rate of use of. - [starch requirement] [starch requirement]
reserves for growth for maintenance

We then derive the state propagation equation to time g+l for the reserves

by writing a mass balance equation for the starch in the plant in the form

rate of CO_ assimilation rate of use
I-( 112

+ = <) +
RES(k+1) RES(k) {[ equivalent in starch of reserves

F (k)

RES(k+1) = RES(k) + [Toe55

- (S (k) + 85_(k) + M_(k) + M_(k)] At
S R S R

or
RES(k+1) = RES(k) [ 1 - r_c At g (T (x)) gp((¢p(x+1))

F (k)
¢ n
- T oAt gu(T (k)1 - gpa¢p(K+’))] ]+ T3 0t

- eyt [ Wy (k) m(T (k) + g (RTyj(K) + RToj(K)) m(T_(x)) ] (2.27)

Again the proper expressions for F,(x) and To(k) must be used for each

case (Case I and II).
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Equations (2.14) or (2.15), (2.18), (2.21), (2.22), and (2.27) are the
propegation equations for each plant state variable. As promised in the

introductory section 2.1, these equations can be written in short form as

- ’ ’ 2.2
x (e41) = £ (x (), E(x), x_(x)) (2.28)

where ¥p(k) = vector with the plant state variables at time g
E(k) = vector with the climatic inputs, and

Xg{k) = vector with the soil state variahles, as defined before.

2.2 SOIL STATE VARIABLES: THE TRANSPORT MODELS

The computation of the time-varying moisture and salinity profiles over
depth requires the numerical solution of the relevant moisture and solute
transport particl differential equations. In the following sections, we
summarize the matrix forms, which approximate the solutions of the governing
equations at discrete nodes. The full discretization procedure is presented
in Protopapas and Bras (1985). These matrix forms lead directly to a non-
linear state-space formulation of the transport models in terms of the soil
state variables, namely the soil matric potential and the solute concentra-~
tion at each nodal point, denoted collectively as a vector Xg{k). Again the
matrices depend on the vectors of plaant and soil state variables at the
previous time step x, on the climatic inputs E(x) and on a vector of time-
invariant soil parameters, denoted as [, which are used to parameterize the
soil hydraulic properties, namely the soil hydraulic conductivity and the
soil moisture retention curve. The general form of the system of nonlinear

equations, which propagate the soil state variables is
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A(x_(k), €) x_(k+1) = B(x_(k), €, E(x), xP(K))

2.2.1 Soil Matrix Potential

Assuming a) a heterogeneous and nondeforming soil, and b) one-
dimensional (vertical), transient, one-phase, incompressible and isothermal
flow, the combination of conservation of mass and Darcy's equation for an

unsaturated soil leads to the following governing expression,

2 . 1 3 8, 4 - S
at = (g oz LX) (57 + D] - g3 (2.29)
de -1
where C(y) = EE- = differential soil moisture capacity (in cm )
N
¢ = s50il matric potential, other components such as osmotic and

pneumatic potentials being ignored in the flow problem (in cm)
6 = volumetric soil moisture content, water volume per bulk volume
(in em3/cm3)
t = time (in days)
z = vertical coordinate with origin at the soil surface (in cm)
(positive upwards)
S = volume of water uptaken by the root system per unit bulk volume
of soil and unit time (in cm3/cm3 day; i.e., day~?l)
K(¢) = hydraulic conductivity as a function of matric potential ¢
(in cm/day).
The above is a non-linear partial differential equation with analytical
solution only under certain assumptions (Chapter 3). The numerical solution
of this equation requires the soil properties K(¢) and C(¢), the sink func-

tion S(¢) and a set of boundary and initial conditions.
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Typical soil hydraulic properties can be described by using a small num-
ber of soil parameters (Section 6.1). The sink term S(¢) is simply the water
uptake rate (Equation (2.10)) per unit of depth in consistent units, i.e.,
per day. As initial conditions, either the pressure head ¢ (z) or the soil
moisture §(z) must be specified.

The discretization of the above partial differential equation using an
implicit finite difference scheme as developed in Protopapas and Bras (1986)
leads to a linear system of equations for the unknowns ¢j(x+1) in the form

(the notation ¢§ and ¢j(K) is equivalent)

Az K+l
At C(‘l’ )*A) -2 ¢y
Az K+l
D, e Clep)+A4D, B, D)
Az K+l
- A -2 :
Dy pp CWyIAD, 3 ¢y
D Azz Cc( K )+A +D A K+l
“UN-1 At bno1!BNoa N-l N-1 | [¥N-1
AL K+l
-DN Tt C(op ) N N
= -1 -
bé&i K- Az K . Az A - A22 S(¢K) N
at Y1 9 1 1
2
Az K 2 K
e Gy + Az Dy - Az Ay - Az” S(4))
= i o5 + Az D, - Az A, - AZZ S(05) (2.30)
At 73 j b b ’
az? +Az D_ _-Az A .-pz2 S(¢X .)
At ¥n-1 N-1 N-1 N-1
az? K+ az D_+ Az ¢ - Az2 s(¢5)
At YN N 9, N
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In the

Az

At

C(¢;)

Py

s(¢X)

s(¢§)

above equations we use

= Koy,

number of unsaturated nodes of discretization

step size between nodes in cm

time step of simulation expressed in days

s0il matric potential at node j at time ¢ in cm
differential soil moisture capacity at node j at time g
hydraulic conductivity between nodes j and j-1 in

cm/day which is taken to be the geometric mean, i.e.,

K
Kls.1/2) RS K@)

K K K
K¢S, /p) = VROODIKGWS, )

sink term at node j at time g, i.e., volume of water
uptaken by the root system per unit bulk volume of soil

and unit time in day~l which is

U, (k)
8.64 -
Az
RT _.(x) + p RT (k)
8.64 yJ o
i [bg3(0) = ¢ (k+D)] X £,(k) f¢sj(K)

flux at the soil surface which is defined by the climatic
and the soil conditions. The climatic forcing imposes a

potential flux given as

q*(0,k) = e(k) - r(k)

where e(x) = evaporation flux (cm/day) given from
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pC

- P __
AR (k) + (e_(k) - e (k) 7 (x)
Le(k) = 8.64

Alk) + v

In the above, Rg(k) = net radiation reaching the soil surface in J/m2 g
(k) = boundary layer resistance given in s/m by an

empirical relationship as

1147
u(k)

rb(x) -

r(k) = effective precipitation or irrigation flux (cm/day).
The feasible flux, which is the flux that can be handled by soil,

depends on the moisture conditions in the soil and is found from
K K
by = by

q(0,k) = -K(¢§/2) [-2275-—

+ 1]
where ¢: = soil matric potential at the soil surface (cm).
During infiltration (q*(O.x)‘i 0, q(0,k) < 0)

¢t = 0.0 and q: = max[q(o,n),q*(o,x)]

During evaporation (q*(O,K) > 0, q(0,k) > 0)

by = ¢ and as

min . = min [q(0,x), q*(0,k)]

where ¢min = minimum soil potential corresponding to dry air conditions.

In any other case q: = 0.0.
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q; = flux at the bottom of the soil column, which for the case of free
drainage is equal to the saturated hydraulic conductivity of the
b
bottom compartment Ks.

In short form the system of equations (2.30) can be written

A (4(k) L) olet)) = e(4lx), €, x (k)5 E(k)) (2.31)

where Ag = tridiagonal matrix (subscript f stands for flow)

¢ (k) = vector with the matric potentials at the nodes

T = vector with the goil parameters at the nodes which the parame-
tric soil hydraulic properties K(¢§) and C(¢§), and

xp(K) = vector with the plant state variables at time k, as defined.

2.2.2 Solute Concentration

The equation of conservation of mass of a non-reactive solute under the

assumptions of one-dimensional (vertical) unsaturated, transient flow is

d_ 2. =2 p* e
L (ecrd) + 2z (gc) v [Ds(e,u) az] (2.32)
where 6 = volumetric soil moisture content, solution volume per void volume

¢ = solute concentration, mass of solute per solution volume (in mg/f)
z = vertical coordinate (cm) with origin at the soil surface

(positive upwards)

' Pr¥a
rd = retardation factor found from rd = 1 + 5 ,

Kq = distribution coefficient (in 2/mg),

pp = bulk density of the nondeforming soil (in mg/R),
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q = Darcy flux (cm/day)

u = actual velocity in the pores = %’(cm/day);

D;(B.u) = D;G ta lq, = coefficient of hydrodynamic dispersion (cmz/d)
D; = molecular diffusivity (cm2/day), and

ay, = dispersivity of the soil medium (cm).

Numerical solution of this equation requires knowledge of the fluxes q
and the soil moisture profile 9, which are obtained from the flow model; the
dispersion coefficient D;(e,u);.the soil properties K4 and pp; and a set
of boundary and initial conditions.

As initial condition the concentration profile c(z) is specified. The
boundary condition at. the séil surface and at the bottom either can be known
solute concentration or known solute flux.

The discretization of the above partial differential equation using a

Crank-Nicolson finite difference scheme as developed in Protopapas and Bras

(1986) leads to a linear system of equations in the form

—-— —
-1 -1 cK+l
[ ] L ] 1
eK+l * )
- - - - + + + + K+l
0  -DT ——_ o +D  +0o + 0D - D cX =
Qj b At QJ b QJ b QJ ] J
° o qK -
D+ _E_ _ D+ c|<+l
| N 2Az N N
S 1 T KT
L] [ 1
[ ] eK L] N
- - - + + K
+ D - + - D, - - D - + D c. (2.33)
25 * Py PO Tl T T B 3
[ ] L] K -
D+ El_)_ cK
p— - N 2Az - == N -
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In the above equations

qK+l/2 q<+l/2
- . j=1/2 . PC j+1/2
9 = Tapz - flela T P05 T T
(D*)K+l/2 (D*)K+l/2
o- 8 j=1/2 £ * + 8 j+1/2
= > = £(¢(k), C: ay, Dd) H Dj = >
2Az 2Az
where we approximate (.)§+1/2 = (°)§ for the linearization (Section 4.2.3).

The fluxes between the nodes are given as

o5 - 8
K - - K 3 "J+1
U41/2 Klb3,1,5) [~ 5 + 1]

The above matrix form differs from the detailed development in
Protopapas and Bras (1986) in that we use r3 = 1 and we exclude the
additional term that approximates the second-order time derivatives in the
Taylor series expansion in order to account for numerical dispersion. The
boundary condition at the top is constant solute concentration during
infiltration and zero solute flux otherwise. The boundary condition at
the bottom is known solute flux as determined by the bottom moisture flux
and the existing solutes.

In short form the system of equations (2.33) can be written as

A_(¢(x), T) elk+1) = B_(4(x), L) elk) (2.34)

where Ag = tridiagonal matrix (subscript s stands for solute transport)
c(k+1) = vector of the solute concentrations at the nodes

and the other vectors are as defined previously.

50



2.3 CASE STUDY SIMULATIONS

We have used the composite model developed in the previous sections with
field data for a maize crop in Flevoland (Netherlands, latitude 52°) in 1972
(de wit, et al., 1978). The plant density was 10 plants/m2 and the crop
was harvested to measure crop yield (total shoot weight) and leaf area index
at regular time intervals of 7-14 days.

The weather conditions during the simulations are plotted and discussed
in Section 5.1. A Panoche clay loam soil is assumed with soil properties as
reported in Warrick, et al. (1971) (Figure 6.1, exponential form). The
initial condition for soil moisture is a uniform value of 0.30 down to 50 cm
depth and then a linear increase to a value of 0.37 at 125 cm. The inter-
Anodal spacing was 5 cm and the time step was 900 sec. The simulation starts
on June 25 (day 175) and ends on September 10 (day 253). In Figures 2.2 and
2.3 we present the time trajectories of the state variables for a case of
optimal growth (Photosynthesis controls Transpiration - Case I; initial
salinity c, = 6000 mg/R; irrigation rate r = 32 cm/d for 7 hours every 7
days, that is 9.3 cm of water applied 10 times in the growing season), and
for the opposite case (Transpiration controls Photosynthesis - Case II;

Co = 6000 mg/f; no irrigation). The development of the root system in
these results is modeled so that the uptake rate is maximized.

In the first case (Figure 2.2) the plant water potential is maintained
close to zero for most of the time. Starting at a very negative value due to
the high initial salinity, immediately after the first irrigation, the
potential takes its optimal values. In the period between two irrigations,

it is again reduced. This variable shows a clear diurnal pattern with

51



(ponuyluod) (Aep/ud zg¢ = x ‘¥/Bm 0009 = ©o :I 8seD) sarqeyIeA 33EIS JO UOTINTOAZ BWTL Z°CZ @aanbid

UVD 3MI1L
OBZ OUZ ONZ O0VZ OBR OUR O%RZ OWZ O OUR OWE O0UX 0%yl OUN OBy 0% 0%l OWp
NA A AANAAAAA A A AAAN Y IS A N DOLO NG y , e
mm?ﬁmm&\ o
uoom\ ﬁ
2
s
[-]
J00yg
> 5
N\ 300us Teiel fepjud zg = 1 ajey uoyIedyaal o
do1p Teiox ¥/8u 0009 = °>  A3yuires Teyatul A
°
4
AUVD MIL
O%Z_OUZ OWE oWe OWR ODR OWX O0UR OTR OV OWE 0K 0wl 0N oW\ oUn oWl  owy
! | | | | | I | ! | | | °
H
°

[

0% 0%

2%

VD WIINRLIOd WUV INVd

(]

2 3pte VTP IR &0

52



d. Young Roots

P WOOTS 1R/
L]

2

£

X . £
AN e gn- e. 014 Roots

= = e

-]

'/
R

b. Solute Concentration

f. Active Roots

PCTIVE RDOTS 1XGev)

c. Cunulative Uptake

Figure 2.2 Time Evolution of State Variables
(Case I: c, = 6000 mg/%, r = 32 cm/day)
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minimum value around noon time. The same pattern is also observed for the
weight of reserves, since the absorbed visible radiation has its maximum at
noon. Since the crop does not suffer a water stress most of the photosynthe-
tically produced biomass is allocated to shoot growth. After an initial
period of slow growth, the shoot weight increases almost linearly with time.
The soil moisture (equivalent to the soil matric potential) shows the wetting
of the soil profile immediately after each irrigation and the subsequent
draining of the soil column to the field capacity level (about 0.20). The
initial high concentration of salts gradually disappears after seven
irrigations, as the solutes are leached below the soil profile. The root
zone reaches the depth of 75 cm. The root system is asymmetric with more
active part at about 60 cm.

In the second case (Figure 2.3) the plant water potential at night drops
continuously to more negative values and the crop is under water stress
throughout the growing season. The limited products of photosynthesis are
equally distributed to root and shoot and the nonlinear response of the crop
weights in time is apparent. The soil moisture profile dries continuously,
while solutes are accumulated in the root zone due to water extraction by the
root system. The roots develop deeper and more uniformly than in the previous
case to a depth of 90 cm. Additional discussion and applications can be

found in Protopapas and Bras (1985).

2.4 SUMMARY - COMMENTS

In this chapter we developed a dynamic conceptual model of the soil-

crop-climate interactions in state-space form. In Section 2.1 we provided
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the conceptual framework for crop simulation. 1In Section 2.2 we presented in
detail the three components of the model, namely: 1) the plant growth model,
representing processes such as CO, assimilation, transpiration, growth and
maintenance of biomass, root distribution and watier uptake over depth; 2) the
moisture transport model, solving the unsaturated one-dimensional partial
differential equation for flow; and 3) the solute transport model, solving
the advection-dispersion equation for transport. In Section 2.3 we demon-
strated the application of the.composite model in two different cases.

The integrated soil-crop-climate model in the state-space form is a use-
ful analvtical tool for studying the links and interconnections of the physi-
cal processes above and below the soil surface. We intend to build on this
idea in Chapters 5 and 6. Although there is need for additional overall
testing of such models in the field along the lines of the work of Hoogenboom
et al.,(1987), the concerts used in this chapter for both the plant growth
and the transport processes have been the object of numerous validation
studies in controlled environments and, therefore, are well documented. The
integrated approach helps one to see the whole picture and to understand the
relative importance of soil and climatic factors. The sensitivity of the
model predictions to the biological parameters also requires further study.

The model is also useful for evaluating irrigation practices. For exam-
ple, we have used the model presented here to predict the crop production
function, i.e., the crop response in time for different initial conditions
and different irrigation policies. In our study we find that after a point
the marginal contribution of additional irrigation to crop yield is minimal

(Protopapas and Bras, 1986).
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CHAPTER 3

MULTIDIMENSIONAL INFILTRATION IN HETEROGENEOUS SOILS

3.0 INTRODUCTION

In situations, such as irrigated farming or runoff generation, in which
a relatively uniform application of water over a field has to be modeled, a
ocne-dimensional approximation of the flow is commonly employed. If the soil
medium is homogeneous this conceptualization is fully valid. In reality,
however, field hydraulic properties vary in space (Nielsen et al., 1973; and
many others). Nevertheless, the one-dimensional approximation has been
commonly used without much investigation of its accuracy. If the approxima-
tion is justified for the moisture transport problem, we can argue that the
one-dimensional soil-crop-climate model of the previous Chapter 2 is a good
description of the processes at local areas over the field.

In this chapter we attempt to check the error introduced by modeling a
heterogeneous soil as a set of noninteracting soil columns. In Section 3.1
we give the general formulation of the approach used in assessing the
significance of lateral fluxes ir multidimensional infiltration. In Section
3.2 we develop the three-dimensional water transport equation within a
deterministic-analytical framework, but with soil properties varying in
space. We defer to Appendix B a review and discussion of various other
methodologies that have been used to study the same problem. In Section 3.3,
we summarize analytical solutions for one- and itwo-dimensional problems for a
special form of the variation of saturated hydraulic conductivity in space,
giving the details of the derivation in Appendix C. The results indicate

that for a time period, which depends on the the uniformity of the imposed
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infiltrating source and the scale of the fluctuations of the saturated
hydraulic conductivity, the one-dimensional approximation is accurate. 1In
Section 3.4 numerical studies are carried out for more complicated soil
formations and are used to test the ideas gained from the analytical
solutions. The material in this chapter is quite independent from the other
chapters and the reader should be alert to the sometimes identical and

confusing notation used for otherwise unrelated variables.

3.1 GENERAL FORMULATION

When studying multidimensional infiltration in heterogeneous soils, we
are concerned about the significance of the lateral fluxes. The reasons for
lateral flow can be identified as:

o soil heterogeneity and anisotropy;

. topographic nonuniformity on the surface; and

. lateral moisture gradients due to localized boundary conditions.

In studying runoff generation mechanisms and its sensitivity to soil
hydraulic parameters several researchers have proposed different models.
Milly and Eagleson (1982) give a hierarchy of increasingly simplified such
models, which deal with the two- and three-dimensional flow problem.
Apparently direct solution of the three-dimensional boundary value problem
with spatially varying soil properties and including the dynamics of overland
flow is the most general approach. Unfortunately at this stage numerical
solutions of this problem are not available. Assuming uniformity in one
lateral direction the two-dimensional cross-sectional model can be used as a
substitute (Zaslavsky and Sinai, 1981). Further assuming that lateral flows

are negligible, the two-dimensional problem reduces to a number of one-
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dimensional vertical problems in neighboring non-interacting soil columns.
Using such a model, Hillel and Hornberger (1979) study the sensitivity of
runoff to clay/loam fraction and relative location on a hillslope. A further
simplifying step is to use a simple lumped infiltration model instead of the
partial differential equation, but still using a model for the overland flow
in the horizontal direction, as in the previous cases. Freeze (1980) relaxes
also this last constraint. He studied storm surface runoff from a hillslope,
assuming that precipitation that cannot infiltrate where it falls is simply
drained. He uses stochastic fields for storm parameters, soil properties,
topography, and initial conditions.

Many authors have employed the one-dimensional approximation of the soil
system (Milly and Eagleson, 1982; Russo and Bresler, 1981; Dagan and Bresler,
1983) but its justification in the literature is very limited. It is not
known whether it is equally good for all types of soil or whether it is
invalid due to soil heterogeneity or nonuniform boundary conditions at the
soil surface. We address these questions in the present chapter.

Our approach is to consider the soil medium as a set of decoupled soil
columns with cifferent soil properties and derive solutions to the flow prob-
lem for each one of them in a dimensionless form. Then for any realization
of soil properties in space the one-dimensional solution can be used to
obtain an approximation for the multidimensional flow problem. Finally, we
also solve the multidimensional flow equation and compare the approximation
to the exact solution. We limit our study only to variations of saturated
hydraulic conductivity in space.

The problem of water transport in an unsaturated porous medium has been

studied by analytical or numerical techniques in a deterministic or
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a stochastic framework. In this chapter we adopt the deterministic-analytical
viewpoint to check our hypothesis. The analytical method requires restrictive
assumptions, the hydraulic conductivity must be an exponential function of
the pressure head and a linear function of the soil moisture. With these
assumptions the multidimensional flow equation can be linearized and solved
(Raats, 1971; Philip, 1972; Warrick and Lomeﬁ, 1976; Batu, 1982). The
numerical method can solve problems with complex soil formations and
different boundary conditions (?erréns and Watson, 1977; U. S. Nuclear

Regulatory Commision, 1983; many others).

3.2 THE THREE-DIMENSIONAL WATER TRANSPORT EQUATION

Consider the problem of water transport in an unsaturated porous medium
with spatially varying hydraulic properties. Under the assumptions of:

a. heterogeneous, nondeforming and isotropic soil, and

b. transient, one-phase, incompressible and isothermal flow,

the conservation of mass equation in a soil column is:

38

where § = volumetric soil moisture content, water volume per bulk volume

(cm3/cm3);
t = time (days);

s0il moisture flux (cm/day),

el
L}

Darcy's equation gives
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q = -K(x,$)9 = -K(z,$)V + K(x,¢)Vz (3.2)

where K(r,¢) = hydraulic conductivity (cm/day),
¢ = hydraulic head (cm), which is assumed to be the sum of the
matric potential ¢ and the gravitational potential z, other
components like osmotic and pneumatic potential being
negligible (the vertical coordinate z has been assumed
positive downwards), and
r = vector of spatial coordinates = [x y z]T = [rx ry rz]T.

Substituting Equation (3.2) in Equation (3.1) we find

8.3 By , B By, 3 B _
at = ox (K(Z0) 32) + o= (K(zye) 32) + o7 (K(ze) (57 - 1) (3.3)
and using C(r,¢) = %% where C((¢) is the differential moisture capacity

(cm'l), we obtain the governing flow equation

% 8 2y L, 8 dy L B &
Clz, ) 3% = 3% (K(z,¢) ax) * oy (K(z,¢) ay) * 57 (K(_r_,d;)(az 1)) (3.4)

with initial condition ¢(x,0)= ¢(r) known.

For the infiltration problem the boundary condition at the soil surface

is defined as £ollows:

. the climatic forcing or irrigation practice imposes a potential flux

*
v (E,t) z=0"®
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. the feasible flux, i.e., the flux that can be handled by the soil,
the ability of which to transmit water depends on the soil moisture

conditions, is

z=0

- o _
”(E't)‘z-o K(£,¢) (52 - 1)

During infiltration the fluxes are positive and the actual flux is

vt(z’t)lz-o = min [u*(g,t)tz_o, u(g.t)lz_o]

In this case the surface is saturated, implying that ¢(r,t) z=0 = 0.0 in the

region of the infiltrating source and ¢(r,t) = -o outside this region.

z=0

The boundary conditions far away from the sources are

(r,t) + - « and LI + 0 as x2 + y2 + zz + .
¢4 ™
i

The deterministic-analytical study of Equation (3.4) is based on the
fact that the transformation 0 = f_i K(r,¢)d¢ linearizes the flow equation
for heterogeneous isotropic media provided that an exponential dependence of
the hydraulic conductivity on the pressure head holds, K(x,¢) = Ks(g)e“¢,
where Kg(r) = saturated hydraulic conductivity (cm/day), and

a = capillarity index (ecm~l), ¢ > 0. Then,

K (r)e™  x(z,¢)

ol(x,¢) = f_i Ks(g)ea¢d¢ = K_(r) ]-i ea¢d¢ - £ - - -
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By direct differentiation of above result we get

20 al\s (xr) emb

- _SP_
bri v + K(x,¢)

i

The gradient of @ is then expressed as

ve(r,¢) = K(x,¢)Vp + vxs(g)e(g.q») = K(x,¢)V¢ + vxnxs(g) o(x,¢) (3.5)

1
K (x)

Using Equation (3.5) in Equation (3.2), and then substituting in (3.1) yields

26 dK(x,¢)
el ve[vO(x,¢) - vanK_(x) e(x,¢)] - —r
Y e(r . d4nK_ 30(x,¢) i 3K _ 80(x,¢)
ot ¢ ox  ox oy oy
dLnK_ d0(x,¢) 5
- (57— ) 5z -V anK_(z)e(z,¢)

If we adopt a deterministic exponential variation of the saturated hydraulic
conductivity in space in the form K (r) = K - - -

y je) n s(_) oexp{ hxlx, hy'yl Azz}, where
Ax» ky. Az > O can be interpreted as length constants showing hdw fast

the conductivity decreases in each physical direction away from a region of

94nK
high conductivity at the origin, we can verify that or Z - -Ai, (x,y,z2 > 0)
i
62V1nKs
and — = 0, resulting in
26 20 Jol¢] 29
2t ve(r¢)+ ax+)‘yay+“‘ )az
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Clearly the steady state problem has already been linearized. For the
unsteady problem we write (dropping for a moment the dependence of the

involved variables on the spatial coordinates r)

ot oK ot oK ot oK ot
If we introduce %g = u, where p > 0, implyirg that the hydraulic conductivity

increases linearly with soil moisture, we get

K=p)6m= Ks(g)ead’ or § = —'1- Ks(g)ead’ = es(:_r_)ead’

This assumption means that the dependence of both K and 6§ on the matric
potential is identical and the spatial variation of porosity is similar (with
a proportionality factor 1/p) to that of saturated hydraulic conductivity.
The validity of the above assumption is discussed in Ben-Asher et al.,

(1978). Then

20 w2y, Moo Moo, Pa T W ee (3.6)
3t « a dx a dy a dz :
while the most general form of the above equation is
(2020 2, Tese M5 a9 21 ) 2 - v¥nk_ o (3.7)
3K at N dx  Bdx dy dy \ 2z dz s )
K(x,¢) 0
Notice that since O = -—7;——- -'E; , the variables §,0 are related

through a soil dependent proportionality factor.

The fluxes are computed as:
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K(x,¢)
u--K(r,d:)(%%-l) -- (284, —) + Kz = -2+ (@ -2 e

- 0z z
K(x,¢)
- - 1y 2¢ - _ (29 i - _ 20 _
u K(x,¢) Bx (ax * Ay a ) dx Mg ©
K(x,¢)
- - eI} = - (28 - = . 00 _
w Kz, ¢) oy (ay Ay ) oy "My ©

where y = vertical moisture flux (cm/day), and
u,w = horizontal moisture fl;xes (cm/day) .

This method to linearize the heat equation with conductivities dependent
on the unknown variable dates back to the studies of Kirchoff. Equation
(3.6) is applicable in the problems of steady state infiltration from point
and line sources in a homogeneous soil (Raats, 1971) or in a heterogeneous
soil in the vertical direction (Philip, 1972; Philip and Forester, 1975).
Other related studies deal with unsteady infiltration from strip sources in
homogeneous soils (Warrick and Lomen, 1976; Batu, 1982). We should emphasize
that only Philip(1972) deals with the one-dimensional infiltration in a
vertically heterogeneous soil. Equations (3.6) and (3.7) have not been
derived in the literature.

In the next section new one- and two-dimensional analytical solutions
are presented for infiltration in heterogeneous soils, using the linearized
Equation (3.6). Technically Equation (3.6) is an advection-dispersion equa-
tion, which has been studied in different context. Solutions are reported in
Cleary and Ungs (1978) (one-, two- and th-ee-dimensional) and in van
Genuchten and Alves (1982) (one-dimensional).

In Appendix B we present the deterministic-numerical and the
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stochastic~analytical and numerical approaches used by other investigators to
study the issue of multidimensional unsaturated flow in porous media. There
we summarize their findings about the extent of lateral versus vertical flow

during infiltration events.

3.3 INFILITRATION IN HETEROGENEOUS SOILS: NEW ANALYTICAL SOLUTIONS

3.3.1 Unsteady One-Dimensional Unsaturated Flow

If the soil is heterogeneous in the vertical direction, the governing

one-dimensional version of Equation (3.6) is

2 -
%0 _p28@ + (Kz e 20 (3.8)
ot a az2 a 3z
with initial condition
6(z,0) = 0 (3.9)
and boundary conditions
9(z,t) » O as z +» ® (3.10)
v = - 28 + (¢ -2 )0 = v (known flux) (3.11a)
dz z z=0 o
Ko
6(0,t) = — (known ¢(0,t) = 0) (3.11b)

In these equations the parameters g and A, are positive. The z axis is

positive downwards.
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Introducing the dimensionless variables

>

- 2Z - aX - qut - =2
Z 5 X 5 T 2’ Sz .

we derive in Appendix C the following solutions:

A. Known Flux Boundary Condition

The final result in terms of the dimensionless variable &¢ is

2
o (z,1) = 2 f’T [2 expt{z(1-s)) - (1-s)° g% - 2
o — 4&
%3
- 28(1-S) exp{2z(1-5 )} erfc {%E + (1-s )E]ag (3.12)

Gx _ (/T
. (2,T) 2u, fo h (Z,E)dE

where hg(Z,f) is the function inside the large brackets in Equation (3.12).

B. Known Matric Potential at Saturation a2t the Surface

In terms of the dimensionless variable Qp, we get the result

2

2.2 2
2 (2,1) = ET' f [-——-;E exp {(1-s )z - (1-5)“ ¢° - :g;}] azg

2,(z,T) = a j/T h_(2,E) 4t (3.13)
K_ p
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The behavior of the one-dimensional solutions in Equations (3.12) and (3.13)

is shown in Figure 3.1 for S; = 0, 0.5 and 1.0 and for different times.

3.3.2 Unsteady Two-Dimensional Unsaturated Flow

If the soil is heterogeneous in both the vertical and the horizontal

direction with different length constants, Equation (3.6) takes the form:

Ap (A _-alp
20 _p o2, , X 230 z 20
ot p Vo + . ” + " oz (3.14)
with initial condition
0(x,z,0) =0 (3.15)
and boundary conditions
6(x,z,t) - 0 as x2 + 22 » o (3.16)
oix) = = 4 (gaada] =y (x) (3.17a)
0z z z=0 o
or
Ks(x)
o(x,0,t)= { for x in R (3.17b)
0 otherxrwise

where 2 is the length of the infiltrating source. In these equations, the

parameters a, Ay, Az are positive. Also z > 0 and -» < X < o,
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Figure 3.1 One-Dimensional Unsteady Infiltration Solutions with Constant
Matric Potential at Saturation (left) and Constant Flux (right)
Boundary Condition at the Surface.
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The application of the known flux boundary condition deserves special
attention. For heterogeneous soils in the x direction, the use of an
arbitrary but known flux y*(x,0,t) is not appropriate. For example, in
regions of low hydraulic condurtivity the imposed flux may not be physically
realizable and the solution can not represent the actual flow. In such cases
the matric potential boundary condition should be used with ¢(x,0,t) = 0.0
(at saturation underneath the sources). In Appendix C we derive the solution
to the known flux boundary con&ition problem for a localized flux at the
origin, which is a valid case, and for a known constant flux of finite length
which is correct only for a homogeneous soil in the horizontal (S = 0).

The cases for known matric potential at saturation are also derived.

A. Known Flux Boundary Condition

i. Delta function flux at x = 0

A
Using the dimensionless variables defined previously and Sxa ;5

the solution for x > 0 (since @ is even in X, the solution is symmetric) is

= 2
a_ _ _1 /T 1 2,2 X .
. (X,2,T) = 27 — [y he(2,8) : exp{-5_E 5} exp{~s x} d¢  (3.18)
o V= 4

where hge(Z,f) is the same function as in Equation /3.12).
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The behavior of this solution is shown in Figure 3.2 for the cases of a
homogeneous soil, a heterogeneous in x soil with Sy = 1.0, S, = 0.0 and a
heterogeneous in z soil with S, = 0.0, S, = 1.0. In this and in the
following figures the background gray tones become darker as the saturated
hydraulic conductivity Kg; decreases. Only the lower part (corresponding to

later time) illustrates the shacding.

ii. Uniform Flux of Finite Length

The solution takes the form, using the dimensionless source length L = 95&

Oa 1 /T
®.(X,2,T) == =3

3 17T netnie) explxsy)

[exp{-xsx}[erf{sxg - %E} - erf{sx§ - %gz}] + exp{xsx}[erf{sxg + %E ]

L-X 1 7T X
- erf{sxg - EE-}]]dg = E'IO hf(z,g)[exp{-zxsx}[erf{sxg - EE}

=X P X _ o L=X
erf{sxg - % }1 + [er;{sxg + 25} erf{sxg 2% }1]ag (3.19)
B. Known matric potential at saturation
i.Infiltrating point source at the origin
0 2 /T 1 2.2 x°
O.(X,2,T) = == = —— h (2,8) < exp{-s.£° - =] exp{-s_x}ar (3.20)
£ Ko Jn 0 p £ x 452 x
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Figure 3.2a Line Source at the Origia (Delta Function Flux)
a. Homogenec.as Soil (Sy=0.0, S;=0.0)
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Figure 3.2b Line Source at the Origin (Delta Function Flux)
b. Heterogeneous in x Soil (Sy=1.0, S;=0.0)
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Figure 3.2c Line Source at the Origin (Delta Function Flux)
c. Heterogeneous in z Soil (Sy=0.0, S;=1.0)
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ii. Infiltrating source of finite length

fa _1 /T
O (X,Z,T) = (" = Jo

X
] hp(Z.g) exp{-sxx} [exp{-xsx}[—erf{sxg - =}

2g

+ erf(s E + 325}] + exp(Xs_}[-erf{s ¢ +'§€} + erfls g + %gf}]]dg

T L-X
- %.IST hp(Z.g)[exp{-zxsx][-erf{sxg - %E} + erf{s g + EE—}]

+ [-erf{sxg + %E} + erf{sxg + %%5}]]d§ (3.21)

This solution for a single strip source of length 0.5, centered at the
origin, is shown in Figure 3.3 for the cases Sx = Sz = 0.0; Sx = 0.0,

S =1.0and s = 1.0, S = 0.0.
z x z

3.3.3 Discussion of the Analytical Solutions

In the collection of analytical solutions to the one-dimensional
advection-dispersion equation by van Genuchten and Alves(1982) the solutions
given by Equations (3.12) and (3.13) are reported in closed form as follows:

Known Flux Boundary Condition

/T
Oa 1 Z — Z —\2
®.(2,T) = 3= = ——— erfc {—— - (1-5_) /T} + — exp{-(—— - (1-5_)vyT)7}-
£ 2, 401-8,) 2/T z /n 2/T z

1 2 2 =
) [1+2(1-5_)Z + 4(1-5,) Tlexp{2(1-5,)2z}erfc{—— + (1-5,)/T}

4(1-s 2/T
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Known Matric Potential at Saturation at the Surface

_fa _ 1 - . _ Z_ - T
@p(Z,T) = "2 exp{z(1 Sz)} Lexp{z(1 Sz)}erfC{sz +(1 Sz)/T} +

=~

exp{-z(1-sz)}erfc{—g: - (1-82)75}]
2/T

The equivalence of the above forms to the integral forms of the solutions
(Equations (3.12) and (3.13)) c;n be proved by direct differentiation.
However, since our objective is to relate one- and two-dimensional solutions
the integral forms facilitate this task, as it is shown in the next section.
We have not found in the literature two-dimensional solutions of the
transport equation with equivalent boundary conditions as in the infiltration
problem (except for the homogeneous soil case). Several published solutions
to the problem of linearized infiltration can be easily identified as special

cases of our two-dimensional results. This comparison is summarized as

follows:

Philip 1968 ss. homog. 2-D 1line Soln(3.18) with Sx=sz=0, T+
1971 ss. heterog. 2-D 1line Soln(3.18) with sx=0 , T»o

Lomen 1974 td. homog. 2-D 1line Soln(3.18) with S_=S =0

— X z

& Warrick

1976 td. homog. 2-D strip Soln(3.19) with sx=sz=0

Batu 1977 ss. homog. 2-D strip Soln(3.21) with Sx=sz=0, To
1978 ss. homog. 2-D strip Soln(3.19) with sx=sz=0, T

1982 td. homog. 2-D strip(s) Soln(3.21) with Sx=sz=0

where ss: steady state and td: time dependent.
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The derived golutions hold also for negative values of the soil hetero-
geneity parameters S, and S, i.e., in the case where the hydraulic con-
ductivity Kg increases exponentially with the spatial coordinates x and
z. Although the hypothesized functional form of Kg, which allows for
analytical treatment of the equations, is restrictive, our results are useful
in providing insight on the importance of soil heterogeneity and uniformity
of boundary conditions on the solutions of the infiltration problem. This

topic is investigated in the next section.

3.4 THE MARGIN OF VALIDITY OF THE ONE-DIMENSIONAL APPROXIMATION

Our stated objective is to check under what conditions a set of non-
interacting soil columns accurately represents the process of infiltration in
a heterogeneous soil. In this section we use the derived analytical solu-
tions of the linearized infiltration equation (for a special functional form
of the saturated hydraulic conductivity in space), in order to derive a
criterion for the margin of validity of the one-dimensional approximation.
Since the known flux boundary condition is physically meaningful only for
uniform soils in the x direction, we focus on the known matric potential case
(Equations (3.13) and (3.21).

The one-dimensional approximation uses the one-dimensional solutions in
order to derive solutions for the two-dimensional flow problem. Consider a

two-dimensional heterogeneous profile in the vertical and horizontal direc-

tion. Then
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K_(x) exp{ap} K £(X)exp{ay}
62D(X.Z.T) =

= or
a a

K(x,¢) -
a

GzD(X,Z,T) = GID(Z,T) £(X) and

QZD(X’Z'T) = QlD(z'T) £(X)

~

where the subscripts denote the dimensionality, stands for an approximation
and f(X) is the dependence of K5 on the coordinate X, for example, in the
studied case f£(X) = exp{-2S4X}.

To study the validity of the one-dimensional approximation when the
soil is heterogeneous in the horizontal direction, Sy # 0, we want to use
Equation (3.13) to recover the behavior of Equation (3.21). If the appro-
ximation is possible, it has to hold for X = 0.0. Solution (3.21) for X = 0.0
reads

L

$(0,2,T) = ng h,(Z,E) [erf{s g + EE} - erf{s g} ]ag

The term in brackets is plotted in Figure 3.4 for different values of L and
Sx. The closer this term is to one the more accurate is the one-dimen-
sional approximation. For a uniform soil (Sy=0) increasing the source
length makes the approximation valid for a longer time. In a heterogeneous
soil (S,#0) the same is true but the larger the heterogeneity parameter

Sy, the larger the source required to majntain one-dimensional behavior for

the same time period.
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Figure 3.4 Effect of Soil Heterogeneity (Sx) and Source Length (L)
Parameters on the One~Dimensional Approximation

83



Clearly, since erf{x} takes values in the interval zero to one and
increases monotonically with x, the term in brackets can only be positive and
less than one (for Sy#0 and finite source). Therefore, Solution (3.13) and
Solution (3.21) cannot match exactly. We can only seek conditions under
which they are close enough for the particular problem of interest. Let us
at this point make the assumption that Sy £ << L/2E, which is to be checked
later with typical soil parameters. Then, for a certain level of accuracy,
represented by the parameter e.> 0, the requirement of maximum (closer to
one) value for the term in brackets is equivalent to making the difference
between terms as large as possible. This translates to the following

conditions (since £ in [0,/T])

L -—

erf{sxg + %E} = erf {%Ej > l-g or %E'l X1-¢ °F 3 > /T
l-¢

X -

erf {s E} <eor st < ¥, or S_E > VT
x

where ¢ > 0 is a small number which represents the tolerance limit of the
one-dimensional approximation and xs’ X1 . re the values of the
argument of the error function corresponding to values of error function

equal to ¢ and l-g, respectively. Combining the above conditions

Xe —
y 51 2 /T (3.22)

x1-e b

min{2
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or in terms of physical variables

2
2 4ay
min{-2— | —E} > ¢ (3.23)
duxy e Ay

where q = capillarity or sorptive constant (in meters~1)
p = slope of the linear relation between K and 6 (in m/day)

L = length of infiltrating source (in m)
A = length colnstant of Ks variation, i.e., at x = 1/)\x

the Kg has dropped to the l/e value of the value at the
origin (in m~1)
Xe'X3og = values of the argument of the err.. function corresponding to
values of error function equal to ¢ and l-g, respectively.
L,SX,T = dimensionless variables defined in the previous section
The above expressions are a criterion for the validity of the one-dimensional
approximation, expressed in terms of the soil pcrameters a and p, the bound-
ary condition parameter % and the soil heterogeneity parameter A,.
We then expect, the one-dimensional approximaticn to be better
a. As o increases, i.e., for coarse soils;
b. as p decreases, i.e., for less variation of conductivity with
s0ill moisture (again coarse soils);
c. as % increases, i.e., for more uniform boundary condition at the
soil surface;

d. as )\, decreases, i.e., for less variation of conductivity in

the horizontal, i.e., for more homogeneous soil formations.
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Therefore, the time interval for which the approximation is valid is the
subject of a trade-off between the uniformity of the boundary condition at
the surface and the soil heterogeneity in the horizontal direction. Increas-
ing L or reducing S, increases the validity of the one-dimensional approxi-
mation. Consequently, the same quality approximation results for an infi-

nite number of combinations of % and Ly, which are given by
l)»x = 4xex1_€ or LSx = 2x€x1_€

We row use typical values of the soil parameters as reported in the
literature to demonstrate the implications of the above results. The capil-
lary index q varies from 5.0 to 0.2 m~1 for coarse to fine soils respec-
tively. The accuracy is fixed by e=0.05 (XE'O'OS? X1_€‘1-5°)' The infiltra-

tion time is fixed at t = 10 hr.

a. Parameters from Warrick and Lomen (1976)

Clay loam g = 2 m-1 (per meter) p =1.3 - 0.13 m/day

Then X = oax x = X (lengths are equal to the dimensionless value in m)

2

T~ %E, £ o407 hr (4 = 1.3 u/day)

t
n

400T hr (p = 0.13 m/day)

ulm/day]|tlhrl]| T /T L 2lm] | s Ay (m™'1] xlm)
1.3 10 [0.25 | 0.5 | >1.5 | »1.5 | <0.10/ < 0.2 | > 5.0
0.13 |10 [0.025| 0.16 | >0.48 | >0.48| <0.31| < 0.62 | > 1.6
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For p = 1.3 m/day, these values suggest that if the infiltrating source is
not localized (£ > 1.5 m) and the saturated hydraulic conductivity is not
varying drastically in the horizontal (;.l 5.0 m), the one-dimensional
approximation is valid for the considered infiltration events. For m = 0.13
m/day the one-dimensional approximation is valid for sources oflength greater
than 0.45 m and for horizontal variability in Kg such that the hydraulic
conductivity is reduced by a factor of e = 2.72 (from its maximum value at

the origin; at a distance greafer than 1.60 m.

b. Parameters from Philip (1987)

a=4ml | = 2.7 10"2n/day

ax X
Then X > X > (m)

T = 5%: > t = 37T hr

plm/dayl|tlhe]| T l /T I L

2.7E-2 |10 o.z7| 0.52 I 1.5 l >1.5 I ip.lO' < 0.40 | > 2.5

Ir typical field cases the length of the infiltrating source and the scale
over which the soil saturated conductivity is varying slowly are much larger
than is required for the validity of the 1-D approximation over the

infiltration period. It is also obvicus that the assumption used
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SE < S /T <« —
X X 2/T

is correct.

3.5 THE GENERAL CASE: NUMERICAL SOLUTIONS

The general governing equation for infiltration in heterogeneous soils,
with the saturated hydraulic conductivity Kg being a function of the space

coordinates, is

@20 g2, _ ___ 82 ____ 83 _ (__s 20 _ g2

Y Ve % ox 3y oy ( =t a) oz = 7 Ank 0 (3.24)
with initial condition

o(x,y,z,0) = 0.0 (3.25)

and boundary conditions (constant matric potential at saturation at z = 0.0)

o(x,y,z,t) > 0 as x2 + y2 + 22 > (3.26)
Ks(x»YnO)
for x < % (3.27)
0(x,y,0,t) = {
0 otherwise

Using the dimensionless variables

apt az ax
=S Xmg

as suggested by the analytical solutions of the previous section, Equation

(3.24) takes the form (assuming uniformity along the y coordinate):
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gﬁﬁﬂ-ﬁzﬁv%_iﬁgﬁg@_(Mnxsg+ ,.quég
pa OT 4 a 4 dX 2 a 2 dX 2z 2 Y 2% B>z
2 K
a 2 _o
- % v ans " «]
which reduces to the dimensionless form
04nkK 04AnK

e _ 2. _ 5 00 _ 8 1 2 _ 2

ot =V ® - 3% 3% 2(_az 5 + 1) oz ~ 7 AnK 2 (3.28)
with initial condition

&5(X,2,T) = 0.0 (3.29)

and boundary conditions (X > 0, Z > 0)

5(X,Z,T) » 0 as X2 + 22 » o

KS(X,O)
-;i:-“—— for X < L
&(x,0,T) = {
0 otherwise
22 -
2% | x=0 0.0

Further we define the functions

bans
X

Pix(X¥) = -

P._(2) = -2 (

r.Y.S

(3.30)

(3.31)

(3.32)

(3.33)




alamk_  dank_ ,
Py(X,2) = - (5= +———) = - AnK (3.34)
X Y

So that Equation (3.28) is written

30 _ 2 22 22
Vo + Plx(x) X + Plz(z) Y + Pz(x.Z) o (3.35)

oT

subject to the same initial and, boundary conditions.

In the following sections the one- and two-dimensional versions of
Equation (3.35) are discretized and solved numerically for a general
functional form of Kg. Solutions are shown for periodic soil media and a

generalization of the results of the analytical approach is suggested.

3.5.1 One-Dimensional Numerical Solution in the General Case

The governing equation to be solved is:

2
28 _ 2% 20
AT S+ plz(z) 52 + 92(2)@ (3.36)
Y4
Subject to
&(z2,0) = 0.0 (3.37)
»(Z2,T) » 0 as 2 » o (3.38)
K (0)
$(0,T) = (3.39)
(e}
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The discretization of the partial derivatives is:

¢K+1_ ¢K
(Q@)K*‘l/i’ - ! I
oT’j AT
x+l/2 K+1/2 _k+l K k+1 K
(gg)x+1/2 - —at1 Qj - ¢j+1 * ¢j+1 Qj Qj
Y2 AZ 2AZ

(Qfg)g+l/2 DL [B)kH/2 _ (a0ykeL/2y
az2 3 2z L\8z) 34172 = ozl 3-1/2

Kk+1/2 K+1/2 K+l/2 K+1/2

- - + &,
a9 %5 ®3-1
A22
K+l K+l K+l K K K
_ %5 - 28y e s R
2AZ
where we have used ®;+l/2 = —%— (¢§+1+ @?)

So that the discretized form of Equation (3.36) is:

K+l K K+l K+l K+l K K K
.- sy =280 T+ B, 4O . - 28 +
% 5 - By % ®ie1 T G5n e IR
LT 2p2°
+1 +1
gi] * @, - ol - el
+ P _(Z)) ] J
12735 2AZ 2

Separating unknowns and gathering terms gives:
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AT } K+l AT AT AT k+l
-{=le +{1+2—"S+=p . -=P .} o
2A22 j-1 2A22 2AZ " 12j 2 2j j
AT AT K+l
-+ ) 0
anz2 | 26z 1zl Ty
- aK AT K K K AT .k  _ K AT K
oy ¢ 2nz? (5.1 - 205 *+ @5,y) * 3az (8] - @3) * 3~ Pyy &
where
Pizg = Pig(Zy) and Py, = P(2)) and  j=2,...,N-1

with N the number of nodes.

At the boundary nodes we use the boundary conditions to find additional

equations
¢x+l - fgle)
1 K
o
K+l
QN 0.0

The previous set of equations takes the matrix form

B k+l

® E
1 1. 1
'Cz. P2, Az. 2, E,
[ ] [ ) [ ] ¢ +1 *
K -
-c B -2 ¥ E, (3.40)
J J 3 ] 2j
° ¢ e :
L K
* By LQN =
| - d LN
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where

c, -A% §=2,...,N-1; Cg = 0.0; C = 0.0;
A2
AT AT
A, = + L2 p jm2,...,N=1; A_ = 0.0; A_ = 0.0;
N
b 2pz2 22713 1
B, =1+4,+c, -2p j=2 N-1; B, = 1.0; B_ = 1.0;
j j . 2 2j g e ey 2 l Y ’ N . ’
= &K AT K _ oxK .. xK AT (xK %K AT K
By =2y onz? (@51 - 285 + ®5,,) * 357 Przy Byar - B3) T3 Pay O
K (2.)
. s 1
j=2,...,N-1; Bt E, = 0.0.

To solve this tridiagonal system we used the algorithm described in

Protopapas and Bras (1986), Appendix B, once the functional form of Kg is

specified.

3.5.2 Two-Dimensional Numerical Solution in the General Case

The governing equation to be solved is (Equation (3.35)):

28

2’0 , 2%
2 04

8o, (&

+ P__(2)
X az2 1X X 1Z

+ pz(x,z) o) (3.41)

subject to the initial and boundary conditions (3.29), (3.30) and (3.31).

The discretization of the partial derivatives is:

K+l K
@eyerr/z  Fua " %y
oT’1,3 AT
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K+l K K+l K

. .+ - .-
(gg)x+1/2 - Q1+I,J cI):l+l,j ¢1,3 ¢ilj
0X’1,3 2AX
K+l K K+l K
+ - -
(gg)g+1/2 - q>i,j+1 Qi,j+1 Qi,j i,5
82’1i,3 2AZ
K+l K+l K+l K K K
2 .- 2 .+ .+ . - 2 + &, .
20y c+1/2 Pie1,3 ~ 3% s T T Yy
axZ i,j 2Ax2
K+l K+ K+l K K K
2 s - 2 + . . + . -2, .+ &, .
(Q_Q Kk+1/2 _ Q1,3+1 Qi,j <I).1.,3--1. ¢1,3+1 °1,3 i,9-1
az2 i3 2A22
which lead to the following discretized form,
K+l K K+l K+l K+l K K K
- - + + - 2 .+ O, .
S T UE S/ T U0 Rt Y M P U B £ V0 Ml T M T 05,
AT 2Ax2
K+l k+1l K+l K K K
LS S U il VO U V0 L Bt VR B O I
2A22
K+l K k+1l K
v b (x) Arl.] iv1,3 " P13 7 %5y
1X 2AX
TR ST LA
+ P (2.) i,j+1 i,j+1 i,J i,3
12'%5 2AZ
K+l K

4

&, .+, |
i,j i.:
pz(xi.zj) )

Separating unknowns and gathering terms (keeping some redundant factors to

make this step clearer) gives
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_{;iiz} Qiti,j + {1+ 2 ;ﬁi; + Eﬁi Pleg * 2 ;ﬁi; + Eﬁg Prgy " f& Pzij} QET;
- {;fii * 3%% lxi} Q:Ii,j - {;iii} Q:T;-l - {;iiz ¥ 3%5 PlZJ'} ®:T3+l

= {;ifz}Q:-l,j +{1-2 22:2 -2 22:2 - 22§ Pixi ~ 3§% Pizy * %2 PZij}Q:.j

* {;fii * 3%% 1xi) °:+1,j * {;i§3} Q:,j-l * {;f§5 ¥ 3§§ 173 ¢:,j+1'

where

P .. = plx(xi), P

= P
1Xi P1z(zj)’

= pz(xi,zj) and j=2,...,N-1

123 2ij

At the soil surface (2 = 0), the boundary condition gives

K (x.,0)
s i X
B —— for i=1,...,1
K L
K+l - { o
@i,l 0 for i = i_+1,...,N

L

At infinity the boundary conditions are approximated by specifying

K+l
®. . = 0.0 for all j
N, j J
K+l .
Qi,N = 0.0 for all i

The boundary condition at X = 0 accounts for the symmetry of the solution

around the Z axis. To implement this condition we introduce an imaginary

node 0, symmetric to node 1 with respect to the X = 0 boundary. Then the

approximation of the zero flux boundary condition is
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30| k+1/2
ax|1,3

-0 = —2ud

The discretized equation still holds and therefore,

) {zﬁii}QgT; *le fffi * 3ax Pax(®) * ;2:2 * 7az Pz - G R D)e t;
- {;iif + 22§ 1x(l)} ,; - {;ﬁii}Q:T;-1 - {;fii * 22: 1z(j)} KT;+1
= {;f§§}¢g’j + {l = ii 2" 22.2 - gZx Plx(l)- —§%Z Plz(j)+ A% P2( ’J)} 1,3
* {;fii * 22§ Pg(1)} @ 4+ {;iii} e 5o {;iii * 225 PG ) B NN

+
Substituting for @g ; from the previous equation and doing the algebra yields
]

AT . AT _AT . AT AT R KFL
{1+ ;Z;- * A% Po(1) + 2 == 2Azz * Sz P (3 -3 P2(1,;1)}<:[>1’j
AT AT K+l AT K+l AT AT . K+l
-5 o PV, L - (e, - RS 5 B3V )9)
2AX2 2AX 1x 2,3 2AZ2 1,3-1 2A22 2AZ 1Z 1, j+1
AT 4,k AT AT AT AT AT
{2A22}®1,j-1+ {1 - aax? | 2BX Pix(d) -2 2122 Zaz T1z¢3* 37 Bp(L Nte] 1,3
N S TN o (AT, AT, (1)}
l s 3
2AZ2 2AZ "1z 1, 3+1 2AX2 2AX lX 2,3
valid for j=2,...,N-1 and i=l.
K+l k+l _k+l K+l _k+1l K+l K+l Kk+14T
Let & (01, 81, +++By ®p1v++®ay v+ Byy--Bgy ) Pe 2

vector(Nz, 1) of the unknowns of the above set of equations which has the

following matrix form (for N = 3):
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. . K+l_
1 . . q’u X
o o K+l
X X X X : 87 X
. . K+l
1. : 2,5 0
. . k+1l
10 : 25 X
0 X 0. X X X: 0 X 0 o<tt = X
: : 22
. . K+l
: 1. 223 0
. . K+l
: P 0 0 o5 X
. . K+l
: : 1 23, X
: : 1 @ggl 0
— ) ) —I l— - —

This five diagonal form is characteristic of two-dimensional problems solved
by finite differences. An iterative successive-over-relaxation (SOR) method
was used to solve for gﬁ*l. An equally sgpaced square grid of size 2.0 x

2.0 with AX = AZ = 0.02, AT = 5E-3 was used. 1In Figure 3.5 we compare the
two-dimensionalnumerical solution for a homogeneous soil to the analytical
one (Equation (3.21) with Sy=S,= 0.0). We notice an effect of the dry

soil boundary condition imposed at the right side of the finite numerical
grid, while the analytical solutions assume dry soil at infinity. Otherwise

the solutions agree very well.

5.3 Application for Periodic Soil Formations

We solved the two-dimensional problem with the same grid and time step

for ths following three forms of variation of Kg:
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1. @

MAX 7. 39006
MIN o
CONTOURS
- 4
1 3. 00 17
4 2. 00
3 1. 0O
4 . 300
s . 010
14. 89
12. 4
10
7. 82
S. Oa
2. 87
10E~0O1
« 1
109. ©
MA X 7. 38806
MIN o
CONTOURS
7. 4
1 3. 0O !
2 2. 00
3 .. DO
4 . SO0
S . 010
14, G
12. 4
10
7. S2
—e L m
2. 87
10E-

Fi¢ure 3.5 T

T

n

1

i

=

2. 87

)
S. 04

A

1

) N 1 . 1 4 L . 1 s

1

2. 87

s. 0a 7. 32 10 1e. v 4.8 17. 4

10E-01

‘Tr0.1)
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Case A:

K_(X,2) = X, exp{cos(zwxx) + cos(2wzz)}
anB(x,z) = xnxo + cos(2wXX) + cos(zwzz)

axnxs
X

= - sin(2wxX)2wx Plx(X) = 2wx sin(2mxX)

3AnK
02

- - sin(2mzz) sz ) Plz(z) = 2wz sin(zmzz) -2

2
b ans

2

= - cos(zmxx) 4wi
oX

2
0 AnK_

2

= - cos(2w 2Z) 4w2 P (X,2) = 4m2cos(2w X) + 4w2cos(2w Z)
32 z z 2 X X z z

Case B:

KB(X,Z) = KO exp{cos(zwxx) - stx + cos(2wzz)}

XnKx(x.Z) = £nK° + cos(2wxx) - 2sxx + cos(2wzz)

3XnKs

A% = - sin(2wxX)2wx - 2Sx Plx(x) = 2wain(2wxX) + ZSx
alnks

Y = - sin(2sz)2wz Plz(Z) = 2wzsin(2sz) -2



2
0 ,QnK8

2

- - cos(zwxx) 4w:
oX

bzknx

2

2 2 2
-z - cos(2wzz) 4mz Pz(x,z) = 4wx cos(zwxx) + 4wz cos(zsz)

Case C:

Ks(x,z) = K exp{cos(zwxx).+ cos(w X) + cos(2wzz)-1}
ans(x.Z) = 1nK°-1 + cos(zwxx) + cos(mxx) - cos(2wzz)

04nK

8
5% = - sin(zmxx)zmx - sin(wxx)wx Plx(x) - 2wxsin(2wxx) +mxsin(mXX)
bans
22 = - sin(2wzz)2wz Plz(z) = 2wzsin(2wzz) -2
azxnxs 2 2
ax2 = o cos(zwxx) 4mx -cos(wxx)wx
62£nKs 2
> = - cos(szZ) 4wz
leY4

2 2 2
Pz(x,Z) - 4wx cos(2wxx) + cos(mxx)wx + 4wz cos(2wzz)

In Figure 3.6 a periodic soil (Case A) with wy = 0.0 and w,; = 27 is
irrigated with a strip source of length L = 1.0, symmetric with respect to
the origin. This situation corresponds to stratified soil formations. The

solution contours, which can be interpreted as soil moisture contours (up to
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MA X 7.33
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10E~01
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S. 04

Figure 3.6 Strip Source; One-Dimensional Approximation vs. Two-Dimensional
Solution (Case A; wy=0.0, wz=2m; T=0.1)



a proportionality constant) show the preferential wetting of the more
conductive layers. Underneath the source the one-dimensional approximation
(upper part) gives exactly the same location of the contours, while at the
edges of the source the two-dimensional characteristics of the flow cannot be
captured. These features are found to hold for any variational form of Kg
in 2, for any time period, as long as the soil is homogeneous in X. It is
also implied that in such soils questions of practical interest, such as how
far a tracer has been propagated towards the water table by advection, can be
answered correctly by iust solving the much easier one-dimensional problem.
It is also not surprising that in the case of stratified soils the vertical
movement of water is much slower than in homogeneous soils (Figure 3.5). The
less conductive lavers obstruct the penetration of the moisture front and
tend to spread water laterally. The extent of the lateral flow is greatly
related to the imposed boundary condition. Underneath the source, the flow
is essentially one-dimensional.

We now want to address the issue of heterogeneity in the X direction.
From the analytical solutions we find that the soil heterogeneity parameter
Sx plays an important role in limiting the validity of the one-dimensional
approximation only during early times, if the hydraulic conductivity varies
rapidly in X. Consider the case of Kg varying arbitrarily in X. If we
define local coordinate systems at the local maximum values of Kg and place
an infiltrating source at each origin, at early times the flow problem in
each system will be approximately the same with those already studied analy-
tically. Therefore in each of the local problems for a certain time period

the one-dimensional approximation is valid (at a given level of accuracy) and
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depends on the length of the source and the scale of variation of the
saturated hydraulic conductivity. Increasing the source length (since we are
interested in problems where the boundary condition at the soil surface is
uniform), the critical value of time is determined entirely by the soil
heterogeneity parameters. It is desirable to find a sufficient parameter
describing the heterogeneity in the X coordinate (equivalent to the Sy
parameter in the exponential case) and use this parameter in order to decide
on the validity of the one-dimensional approximation.

In Figure 3.7 a soil with wy = w, = 21 (Case A) is studied under the
same conditions of Figure 3.6. Again the one-dimensional approximation
(upper part) recovers the two-dimensional solution (lower part) very
accurately underneath the source. The same is not observed in Figure 3.8 for
a soil with Sy = 1.0, wy = wz= 2n (Case B), where even at early time
(T=0.1) the 0.5 contour penetrates deeper in the upper figure. Figure 3.9
where wy = 21, w; = 0.0 (Case C) shows similar behavioriof the 0.5
contour. In Figure 3.10a,b,where wy, = w; = 2n (Case C), the discrepancy
is observed for *he 0.01 contour at early time (T=0.1) and for all contours
at later time (T=0.5).

These numerical investigations indicate that the characteristic length
scale is related not to the variation of Kg itself, but to the variation of
its extreme values in space. As long as the Kg values are bounded within a
uniform envelope of maximum and minimum values, as in the case of Figure 3.7,
the one-dimensional approximation remains wvalid. In the opposite case the
length constant of the spatial variation of this envelope should define S,,
which then should be used as a sufficient parameter in the derived criterion

(Equation (3.22)) to obtain the critical time for the one-dimensional
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