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ABSTRACT

The use of numerical simulation for prediction of characteristics of chaotic dynamical systems inherently involves unpredictable processes.
In this work, we develop a model for the expected error in the simulation of ergodic, chaotic ordinary differential equation (ODE) systems,
which allows for discretization and statistical effects due to unpredictability. Using this model, we then generate a framework for
understanding the relationship between the sampling cost of a simulation and the expected error in the result and explore the implications
of the various parameters of simulations. Finally, we generalize the framework to consider the total cost—including unsampled spin-up
timesteps—of simulations and consider the implications of parallel computational environments to give a realistic model of the relationship
between wall-clock time and the expected error in simulation of a chaotic ODE system.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0112998

I. INTRODUCTION

Progress in computational processing capabilities and numerical
methods has led to increasing use of unsteady, scale resolving simula-
tion methods for turbulent flows for applied research.1–3 In spite of
advances, the cost of these simulations, particularly large-eddy simula-
tion (LES), remains an obstacle to industrial use. Cost reduction
remains a key research area for these systems, including more aggres-
sive modeling approaches.1,4 On the other hand, advancements in
numerical methods have demonstrated that a stable, high-order solu-
tion of turbulent systems is possible5 with ongoing developments
enabling new efficiencies.6 As these advances approach maturity, a key
outstanding question is how to use them to extract estimates as effi-
ciently as possible when simulations are unsteady and chaotic and dis-
cretization methods are not significantly constrained by explicit
stability limits.

The resolution of the turbulent—and therefore chaotic—nature
of the underlying flows is a primary complication for estimation
using these more complex simulations. For chaotic systems, estima-
tion of long-time behavior is challenging, because the ordinary dif-
ferential equations (ODEs) to which they can be reduced have
limited predictability.7 Of the general class of chaotic systems, a

subset is ergodic systems, whose long-term states are drawn from a
stationary distribution, independent of initial conditions (ICs).8 For
ergodic chaotic problems, we frequently want to quantify the unique
infinite-time average of some instantaneous quantity of interest of
the system

J1 ¼ lim
T!1

1
T

ðT
0
gðuðtÞÞdt; (1)

where g is the instantaneous output functional and the state uðtÞ is
governed by a dynamical system of the form

du
dt
¼ f ðuÞ; (2)

with a given initial condition (IC), uð0Þ ¼ uIC.
Often, the complexity of chaotic systems of interest is high, and

accordingly, the cost of an accurate computational estimate of J1
becomes formidable.9–12 As the scale, cost, and complexity of a com-
putational simulation increase, efficient discretization methods
become critical for accurately estimating quantities of interest.

Understanding the error in approximations of J1 is nontrivial
because statistical errors (errors due to a finite-time approximation)
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and discretization error (error due to a numerical approximation of
solutions) are always simultaneously present. In the largest direct
numerical simulation (DNS) and large eddy simulation (LES) cases,
for example, it is typical to fix the period of simulation time over which
an average is performed at some large number of characteristic times
and validate that discretization error converges as expected, assuming
negligible sampling errors.13–16 A recent work has sought to quantify
the effect of statistical error more robustly, using a turbulent flow the-
ory,17 advanced spatiotemporal statistical post-processing methods,18

statistical windowing techniques,19 or by extending the concept of
Richardson extrapolation to chaotic flows using auto-regressive mod-
els and Bayesian methods.20 The latter work is notable for its use to
estimate the statistical errors in the DNS of a high-< turbulent channel
flow.21

The objective of this paper is to investigate the behavior of statis-
tical and discretization errors as a function of the computational cost
for ergodic systems. Following a similar approach of Oliver et al.,20 we
propose a simple error model for finite-time, discrete approximations
of infinite-time averages on attractors. Using the Lorenz system as an
example, we demonstrate that the discretization error converges as the
time step size decreases. However, if we denote by “sampling time” the
amount of simulation time on which the integral is taken (after dis-
carding spin-up), we show that error does not increase exponentially
with sampling time as might be expected from classical numerical
analysis but rather asymptotes to a constant, time step-dependent
value with respect to the sampling time. Furthermore, for a given com-
putational cost (e.g., the number of timsteps), an optimal choice of dis-
cretization (i.e., time step) exists that minimizes the expected error in
simulation, when accounting for both the effects of discretization error
and sampling error. We show that this optimal choice results in a con-
vergence rate with respect to computational cost that is bounded by
the sampling convergence rate with a minor impact from the discreti-
zation order of accuracy. Finally, we consider the implications of spin-
up time (i.e., unsampled time needed to arrive at the stationary distri-
bution) and parallelism on the optimal error. We develop a method
for estimating transient-related errors and then evaluate optimal
choices incorporating the results.

II. PROPOSED ERROR MODEL ON THE ATTRACTOR

To approximate J1, we compute finite-time, discrete estimates of
the outputs of interest of the true system as

JT;hp ¼
1
Ts

It0þTs
t0 ðghpðuhpðtÞÞÞ; (3)

where the notation Ibað�Þ here represents the quadrature approximation
of the integral

Ð b
a ð�Þdt of a quantity ð�Þ between a and b. Here, we have

made a discrete approximation of the state using an order-p discretiza-
tion with a temporal grid with characteristic size h ¼ Dt, where an
order-p discretization is one for which the discretization error behaves as

max
t2 0;t0þTs½ �

jghpðuhpðtÞÞ � gðuðtÞÞj ¼ OðhpÞ; (4)

when the discretization is applied to a well-posed (non-chaotic) sys-
tem. Then we sample a discrete state over a finite sampling period, Ts,
starting at some initial time t0. We can define the error that is incurred
as

eT;hp ¼ JT;hp � J1: (5)

By introducing a third value,

JT ¼
1
Ts

ðt0þTs

t0

gðuðtÞÞdt; (6)

we can re-write the error using an identity

eT;hp ¼ ðJT;hp � JTÞ þ ðJT � J1Þ ¼ ehp þ eT : (7)

Here, we define the “discretization error” and “sampling error,”
respectively, as

ehp � JT;hp � JT ; (8)

eT � JT � J1: (9)

We can take an absolute value of both sides of (7), followed by a
manipulation using the triangle inequality

jeT;hpj ¼ jehp þ eT j
� jehpj þ jeT j: (10)

Thus, the total error incurred by the approximation is bounded by the
sum of the absolute discretization and sampling errors. Next, we define
the attractor of the operator f, A, as the set of long-term states toward
which all trajectories converge independently of the initial condition.22

We can define the expectation EA½/ðu0Þ� for a generic function / as
the expectation taken over all the trajectories that can result from start-
ing from points on the attractor,A,

EA /½ � ¼ 1
jAj

ð
u02A

/ðu0Þdu0: (11)

For the case in question, we will be considering either

/ðu0Þ ¼
1
Ts

����
ðt0þTs

t0

gðuðtÞÞdt � J1

����
or

/ðu0Þ ¼
1
Ts

���� It0þTs
t0 ðghpðuhpðtÞÞÞ �

ðt0þTs

t0

gðuðtÞÞdt
����;

with, for these examples, uðt0Þ ¼ u0 2 A. Given these definitions, we
can now take the expectation of (10), giving

EA jeT;hpj
� �

� EA jehpj
� �

þEA jeT j½ �; (12)

by linearity.
From here, we propose asymptotic forms for the two right-hand

side terms in (12). Consider the definition of eT in (9)

eT ¼
1
Ts

ðt0þTs

t0

gðuðtÞÞdt � J1: (13)

Assuming that we choose t0 such that each u0 is effectively an inde-
pendent sample from the attractor’s stationary distribution, then the
quantity gðuðtÞÞ is a random variable drawn from a stationary distri-
bution. The states of ergodic systems, in general, are not independent
in time, but as long as the system has satisfactorily strongmixing prop-
erties, the central limit theorem (CLT) can be applied to finite time
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averages of its outputs. This is the case whenever the condition of a-
mixing is met,23,24 which has been shown for the Lorenz system.25

Thus, we can write eT as

eT � N 0;

ffiffiffi
p
2

r
A0T

�1=2
s

 !2
0
@

1
A; (14)

with a constant coefficient A0, whereNðl;r2Þ gives the normal distri-
bution with mean l and variance r2. If we take the absolute value of
this random variable, the result is a halfnormal distribution

jeT j � H
ffiffiffi
p
2

r
A0T

�1=2
s

 !2
0
@

1
A; (15)

where Hðr2Þ gives a halfnormal distribution such that jXj � Hðr2Þ
when X � Nð0;r2Þ. The expectation of the half-normal distribution
is well defined, allowing

EA jeT j½ � � A0T
�1=2
s ; (16)

as Ts goes to infinity.
Now consider the use of a time-stepping method to give a dis-

crete approximation uhpðtnÞ of uðtnÞ for each tn ¼ nðDtÞ. Following
the classical analysis,26 we might expect that the discretization error
should take a form

jehpj � Cp
exp ðKTsÞ � 1

K

� �
ðDtÞp: (17)

This analysis is based on bounding the growth of local truncation error
at each time step by the Lipschitz constant, K, of the underlying sys-
tem, with Cp being a constant parameter that depends on the choice of
method. However, Viswanath showed27 that, the global error could be
modeled by a form

jehpj � EðTs; pÞðDtÞp; (18)

where EðTs; pÞ could be bounded by a constant for some nonlinear
but non-chaotic systems that are exponentially stable. While this result
has not been extended to an ergodic system, the expected convergence
onto the attracting set suggests a bound of the form

EA jehpj
� �

� CpðDtÞp: (19)

As our results in Sec. III will show, (19) is a good description of the
expected discretization error.

Thus, taking (12), (16), and (19), we assume a bound of the form

EA jeT;hpj
� �

� emodel ¼ CqðDtÞq þ A0T
�r
s

¼ CqðDtÞq þ A0N
�r
s ðDtÞ

�r ; (20)

that bounds EA½jeT;hpj� when Dt is small enough and Ts is large
enough to satisfy the asymptotic assumptions. Here, we have used
Ts ¼ NsDt, where Ns is the number of timesteps computed for sam-
pling; additionally, q refers to the observed discretization convergence
behavior, which, in practice, may differ from p due to numerical can-
celations or if the solutions of the system are insufficiently regular.
Similarly, r is an observed sampling convergence rate coefficient,
which we expect to be 1/2 asymptotically under the CLT.

III. EVALUATION OF THE PROPOSED ERROR MODEL
ON THE LORENZ SYSTEM

In this section (Sec. III), we will fit numerical results for the Lorenz
system to determine q, r, Cq, and A0 and show that this model is repre-
sentative of the observed behavior. The Lorenz system is given by:28

du
dt
¼ f ðu; aÞ ¼

a0ðu1 � u0Þ
u0ða1 � u2Þ � u1
u0u1 � a2u2

0
B@

1
CA; (21)

where u ¼ ½u0; u1; u2�> and a ¼ ½a0; a1; a2�>. The Lorenz system is
known to be chaotic for the classic Lorenz parametrization:29

a ¼ ½10; 28; 8=3�, which is used everywhere in this text. For the out-
put, we choose gðuÞ ¼ u2. We consider a set of explicit methods: for-
ward Euler (FE, p¼ 1), third-order Runge–Kutta (RK3, p¼ 3), and
fourth-order Runge–Kutta (RK4, p¼ 4). In all of these methods, we
expect asymptotic convergence of JT;hp to JT to be at least OðDtpÞ for
non-chaotic systems.30 The stability limit for each of these methods is
Dt � 10�1, which is above the limits of asymptotic convergence for all
of the methods here; tests with implicit methods indicated similar
error trends at higher cost and are, therefore, omitted.

For any given discrete instance, we will start the simulation at an
initial state at t¼ 0 that is sampled randomly from a normal
distribution

uinit �
Nð1:0; 5:02Þ
N ð1:0; 5:02Þ
N ð1:0; 5:02Þ

0
B@

1
CA: (22)

To guarantee that the initial sampling state u0 at t0 is on the attrac-
tor (as well as further guaranteeing the independence from the
other Monte Carlo instances), we evolve the state of any given
Lorenz system discretization from its starting state uinit for t0 ¼ 100
before proceeding to the sample; we refer to the process of evolving
the solution until it is on the attractor as “spin-up.” Then, we
evolve the state over the next Ts, during which we integrate and
compute (3) using the same numerical integration scheme that was
used for the state itself.

To approximate eT;hp, we must first estimate J1 by a reference
value Jref . Jref is calculated using an ensemble mean of JT;hp over
Mens ¼ 5122 instances of the Lorenz system. Each instance is started
from a different uinit as given in (22) and simulated using RK4 with
Dt ¼ 17:7	 10�6 and Ts ¼ 6646:9. The resulting Jref is

Jref ¼ 23:549 9166 0:000 074; (23)

with a 95% confidence estimate based on the ensemble mean
estimator.

The computation of Jref allows us to estimate errors
eT;hp � JT;hp � Jref . For a given Dt, Ts pair, we then approximate
EA½jeT;hpj� using a Monte Carlo method over M ¼ 10 000 indepen-
dent instances of the discrete system, each started from initial states
drawn from (22) and spun-up to independent sampling starting points
on the attractor uðmÞ0 ,

E jeT;hpj
� �

� 1
M

XM
m¼1

����JT;hp uðmÞ0

� 	
� Jref

����: (24)
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In Figs. 1–3, we compare the results of simulations with the FE,
RK3, and RK4 discretizations with different values of Ns. In these fig-
ures, Ts scales with Dt for a given Ns, so the Ts values on the x-axis will
vary between lines on the plot. The fits shown are computed with
truncated data in order to attempt to eliminate non-convergent data
at small Ts or large Dt; the limits used for truncation are found in
Table I. The results of the nonlinear least squares fits for Ns ¼ 104,
105, and 106 are given in Table II. In the table, we observe that r !
1=2 as the discretization error is reduced, either by increasing Ns or by
pushing p higher. These figures demonstrate that (19) has explanatory
value, as the errors in the discretization-dominated region collapse
independently of Ts. It is also worth noting that Table II demonstrates
higher-than-expected discretization error convergence rates for FE
and RK4. In Fig. 4, we can examine the sampling error behavior
between discretization methods for a single shared choice of Ns. Here,
we can see that the sampling error effects on the left-hand side of the
plot collapse independently of the discretization method. This indi-
cates that the statistical effects are properties of the dynamical system,
not artifacts of the discretization, as we might expect in the limit as

Dt ! 0. We note that Table II shows some Ns-dependence in the fit
values of r; we expect that this is an artifact of the fit process, in which
discretization effects and statistical effects are intermingled. As Ns or q
become small, the region in which the convergent CLT behavior is
the dominant effect becomes smaller, and for these cases, the value of r
detected is subject to error and deviation from the expected rate r¼ 1/2.

FIG. 2. Expected relative error as a function of Dt for RK3 discretization of the
Lorenz equations. Nonlinear least squares fit based on Ns ¼ 106 data.

FIG. 1. Expected relative error as a function of Dt for forward Euler discretization of
the Lorenz equations. Nonlinear least squares fit based on Ns ¼ 106 data.

FIG. 3. Expected relative error as a function of Dt for RK4 discretization of the
Lorenz equations. Nonlinear least squares fit based on Ns ¼ 106 data.

TABLE I. Fit boundaries for nonlinear least squares fits.

Method Dtmax Ts;min

FE 5:0	 10�3 1.0
RK3 5:0	 10�2 1.0
RK4 9:0	 10�2 1.0

TABLE II. Values of error model coefficients computed from nonlinear least squares
fits to Monte Carlo study data.

FE RK3 RK4

(a) Ns ¼ 104

A0 2.19 1.74 1.63
r 0.975 0.721 0.683
Cq 4995 942 85 900
q 1.65 2.70 4.83

(b) Ns ¼ 105

A0 1.94 1.50 1.41
r 0.820 0.648 0.620
Cq 1410 1310 96 100
q 1.40 2.76 4.84

(c) Ns ¼ 106

A0 1.52 0.978 0.918
r 0.693 0.553 0.538
Cq 714.6 2740 165 000
q 1.273 2.96 5.02
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Finally, we attempt to compare the computational costs across
the various discretizations. In this case, the number of timesteps Ns is
not a good proxy for fixed cost, since the computation time for a time
step will vary between methods. Instead, we now fix Us, the total num-
ber of evaluations of the right-hand side f used in sampling timesteps.
For the explicit schemes used in this work, we will have p right-hand
side evaluations (e.g., forward Euler has p¼ 1 right-hand side evalua-
tions) and, thus, Us ¼ pNs. In Fig. 5, we can see the effect of changing
Dt at fixed sampling cost Us across discretizations. The error that can
be achieved with the Runge–Kutta methods is lower than that of the
forward Euler scheme, a factor of 4.8 improvement in the error from
FE to RK4. However, the best-case improvement for going from third-
order to fourth-order Runge–Kutta schemes is the only factor of about
1.4. Moreover, the results show that to achieve the lowest possible

error, the optimal time step will be discretization dependent. We
investigate this further in Sec. IV.

IV. OPTIMAL TIMESTEPPING ON THE ATTRACTOR

We now study the implications of the error model (20), specifi-
cally seeking to understand the convergence of the error with respect
to computational effort. In this analysis, we will assume that r¼ 1/2.

Consider a non-dimensional form of the error model in which
the error is normalized by the standard deviation of the instantaneous
output rg, and the timescales Dt and Ts are normalized by decorrela-
tion time Td. The decorrelation time relates the amount of variance
from independent draws from the distribution on the attractor and
the amount of variance in the finite-time mean estimators based on
the correlated output signal, given by the relation:31

Var JT½ � ¼
Td

Ts
r2
g : (25)

Furthermore, combining (15) and (25) allows us to write

A0 ¼
ffiffiffi
2
p

r
rgT

1=2
d : (26)

In general, Td is hard to estimate accurately; this is a crux of the work
of Oliver et al.20 In our formulation of the error model, we identify A0,
which avoids outright estimation of Td. However, for the purpose of
understanding the behavior of the error, Td is an intrinsic timescale,
which can be used to normalize Dt and Ts.

The resulting non-dimensional form of the error model is

emodel

rg
¼ CqT

q
d

rg

Dt
Td

� �q

þ
ffiffiffi
2
p

r
Ts

Td

� ��1
2

: (27)

We can also write the optimizers and optimal value of (27) in
terms of the non-dimensional variables. These are given by

Dt
Td

� �
opt
¼ 1

2p

� � 1
2qþ1 qCqT

q
d

rg

 !� 2
2qþ1

N
� 1

2qþ1
s ;

Ts

Td

� �
opt

¼ 1
2p

� � 1
2qþ1 qCqT

q
d

rg

 !� 2
2qþ1

N
2q

2qþ1
s ;

emodel

rg

� �
opt

¼ 1
2p

� � q
2qþ1

2þ 1
q

� �
qCqT

q
d

rg

 ! 1
2qþ1

N
� q

2qþ1
s :

(28)

In terms of convergence with respect to sampling costs, the error
model will scale at best as

emodel

rg

� �
opt

� N
� q

2qþ1
s :

In the limit as q!1, the rate q=ð2qþ 1Þ ! 1=2: the CLT limits the
convergence rate. Table III gives the rates of convergence (28) for vari-
ous values of q.

Using the reference simulation, we can also find

Var JT½ � � Var JT;hp½ � ¼ 1:1692	 10�4;

r2
g � r̂2

g ¼ 74:348 046 0:000 18;
(29)

FIG. 4. Expected relative error as a function of Dt for discretizations of the Lorenz
equations.

FIG. 5. Expected percent error as a function of Dt for discretizations of the Lorenz
equations at a number of sampling residual evaluations. All fits evaluated at
Us ¼ 1:2	 106.
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where r̂g is an estimate of the standard deviation of g. Together, these
allow us to estimate

Td � 1:0170	 10�2;

rg � 8:6225:
(30)

With these values, we can plot the non-dimensional error model with
fixed r¼ 1/2, which is given for Ns ¼ 105 in Fig. 6.

We now consider the implications of these results for increas-
ing Ns. To focus solely on control of the discretization error,
increases in Ns can be used to refine Dt ¼ Ts=Ns, with Ts fixed. On
the other hand, to focus solely on controlling the sampling error,
Ts ¼ NsDt can be increased, holding Dt fixed. In Fig. 7, the two
approaches are compared with the optimal use of resources. In
orange is the discretization error control strategy. In this approach,
the simulations converge at a high-order rate in Ns toward the opti-
mal error behavior; once the error reaches this optimum, however,
it asymptotes to a constant: statistical errors limit the estimation of
JT;hp. On the other hand, the sampling error control approach is
shown in blue. In this approach, the central limit convergence rate
of 1/2 is initially achieved until the error asymptotes to a constant:
discretization errors limit the estimation of JT;hp. In other words,
this latter case represents having increasingly many significant fig-
ures of certainty about an answer that is significantly offset from
the true quantity of interest, J1. In the literature for large simula-
tions, discussed in the introduction, simulations tend to be planned
using either the discretization or statistical error control approach.
What (20) implies and Fig. 7 demonstrates is that, in fact, there is a

particular optimal scheme in which Dt and Ts are simultaneously
varied that will extract the most accurate estimate of J1 as Ns

increases.

V. INVESTIGATION OF THE GLOBAL DISCRETIZATION
ERROR MODEL

In this section, we show that our simulations of chaotic, ergodic
ODEs are consistent with a bounded relationship between the local
and global discretization errors. Consider an estimate of the global
error based on Ns timesteps

ehp �
1
Ns

XNs

n¼0

XNs

g¼n
Gðtg; tnÞ 
 eðnÞLT;p; (31)

where

eðnÞLT;p � uhpðtnþ1Þ � u?ðtnþ1Þ; (32)

and u?ðtnþ1Þ is the exact solution integrated from uhpðtnÞ through Dt

u?ðtnþ1Þ ¼ uhpðtnÞ þ
ðtnþ1
tn

f ðu?ðtÞÞdt: (33)

In (31), we have assumed that the error from any given local state per-
turbation is propagated forward in time by the dynamics, before being
transformed into an error in the output; this process is captured by an
operator G. Because the effect of local error propagates forward and
not backward in time, Gðt; tnÞ ¼ 0 for t < tn, and moreover, we
assume that due to ergodicity Gðt; tnÞ ¼ 0 when t � tn �Td , where
Td is the decorrelation time associated with the attractor. This allows
us to write

ehp �
1
Ns

XNs

n¼0

XnþTd=Dt

g¼n
Gðtg; tnÞ 
 eðnÞLT;p: (34)

Now, we assume that a constant Gmax exists such that

jGðtg; tnÞ 
 vj � Gmaxjjvjj1; (35)

TABLE III. Convergence rates for combined error with respect to sampling timesteps
implied in (28) at common high-order discretization error convergence rates.

q 1 2 3 4 5 � � � 1
q

2qþ1 1/3 2/5 3/7 4/9 5/11 � � � 1/2

FIG. 6. Expected non-dimensional error as a function of the non-dimensional time
step for discretizations of the Lorenz equations. r¼ 1/2 assumed.

FIG. 7. Refinement study comparison for fixed Dt, fixed Ts, and optimized Dt and
Ts using RK3 discretization to compute the expectation of the Lorenz system output
g¼ u2.
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for all tn; tg 2 R, and v 2 BðuðtnÞÞ � Rd , where BðuÞ is the set of
states possible by perturbation of u that remain in the basin of attrac-
tion of the attractor A of f. When this is the case, we can create a
bound on the magnitude of ehp

jehpj �
Td

Dt
Gmax

1
Ns

XNs

n¼0
jjeðnÞLT;pjj1

� Td

Dt
GmaxmaxnjjeðnÞLT;pjj1: (36)

We now attempt to bound the value of Gmax for the Lorenz
system by approximating the local truncation error. To make an
estimate, we compute both the solution at the next time step as well
as a surrogate for the true solution at each time step: uhpðtnþ1Þ and
~u?ðtnþ1Þ, where the former is computed with one time step of the
method of interest and the latter is always computed with the high-
est available accuracy method, RK4, and subdividing t 2 ½tn; tnþ1�
into ten consecutive timesteps rather than one. Both uhpðtnþ1Þ and
~u?ðtnþ1Þ are always advanced from uhpðtnÞ. This allows us to esti-

mate eðnþ1ÞLT;p locally

eðnþ1ÞLT;p � ~eðnþ1ÞLT;p ¼ uhpðtnþ1Þ � ~u?ðtnþ1Þ: (37)

In Fig. 8, we characterize the convergence of local error estimates.
Computations are run with Ts¼ 100 and t0 ¼ 100 fixed, varying Dt.
At each time step, the local truncation error is estimated by computing
(37). The figure shows the computed maxnjj~eðnÞLT;pjj1 and demon-
strates that the expected rate of ðpþ 1Þ is nearly exactly achieved.

Using (36), we can estimate a bounding value for Gmax by

Gmax �
E jehpj
� �

maxnjjeðnÞLT;pjj1

Dt
Td
¼ CqDtq

cpDtpþ1
Dt
Td
; (38)

where cp is the leading truncation error coefficient fit in Fig. 8 and Cq

and q are taken from Table II. Of course when q > qtheory ¼ p, there
will be Dt dependence. However, as (38) requires that the discretiza-
tion error has an asymptotic behavior, we will only consider Dt in the
asymptotic convergence regions given in Table I to compute Gmax. In

Fig. 9, we show the values of the right-hand side quantity in (38),
which allow us to make an estimate

Gmax � 4:3: (39)

Next, we use classical truncation error estimates26 to relate the
discretization error to properties of the solution. We will assume that
the local truncation error is bounded by a form

maxnjjeðnÞLT;pjj1 �
CLT

ðpþ 1Þ!





 dpþ1udtpþ1






1

Dtpþ1; (40)

where CLT is a local truncation constant term dependent on the
numerical method and the jj � jj1 in this context refers to the maxi-
mum value in time of the inf-norm of a vector-valued, time-dependent
quantity ð�Þ. The derivatives of uðtÞ can be computed by evaluating
f ðuÞ and its derivatives using solutions from a reference RK4 solution
of the Lorenz system with Ts¼ 1000, t0 ¼ 100, and Dt ¼ 10�4.
Norms of the derivatives are shown in Fig. 10. The resulting values of
CLT that can now be derived by fitting the asymptotic behavior in
Fig. 8 can be found in Table IV. The result of these estimates is that we

FIG. 8. Convergence of estimated local truncation error with respect to Dt. Fits to
cpDtpþ1 shown (with offset for presentation).

FIG. 9. Estimation of bounding value Gmax.

FIG. 10. Norm of analytic derivatives of u computed on the attractor of f. State u
computed with RK4 at Dt ¼ 10�4 and Ts¼ 1000 after discarding t0 ¼ 100.
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can reliably bound the global error of a dynamical system as an accu-
mulation of the local errors over a region of correlation.

We now want to consider how the global error behavior demon-
strated here might extrapolate to more complicated systems by evalu-
ating the spectral behavior of the Lorenz system. Using a discrete
Fourier transform (DFT) with a Hann window function,32 we perform
a spectral analysis on the states of the Lorenz system with sampling
time Ts¼ 1000, t0 ¼ 100, and Dt ¼ 10�3. The resulting spectrum can
be found in Fig. 11. The Lorenz system tends to have the most content
in the frequencies with f � 101 with a region of exponential decay in
the range 1� f � 300. On scales with f � 300, machine precision pla-
teaus are observed and omitted here.

The fact that the Lorenz spectrum is an exponentially decreasing
function of frequency f makes the use of high-order methods theoreti-
cally appealing for the spectral convergence of hp-refinement strate-
gies.33 Unfortunately, the effect of statistical error in (28) limits the
impact of this exponential decay, such that the benefits of higher-order
discretization methods are limited compared to their steady-state and
non-chaotic application. The convergence to the central limit rates can
be seen in Fig. 12, which shows the convergence of (28) with the total
sampling cost. The effect of increasing order improves the convergence
rate in (28) toward the CLT-implied asymptotic rate of �1=2, as well
as decreasing the value of the leading constant and the error never
achieves the spectral rates possible with hp-refinement in the steady
case. Nevertheless, the cost to achieve a given amount of error in
expectation—in terms of function evaluations—is significantly less

with higher-order methods. Managing to achieve 1% non-dimensional
error in expectation is possible with RK4 at a cost ten times less than
would be possible using FE; this factor grows larger than 100 when the
tolerance is tightened to 10�4.

VI. IMPACT OF ENSEMBLE AVERAGING AND SPIN-UP

In this section, we will consider how the error behaves when
ensemble averaging (over multiple parallel instances) and when spin-
up effects are present.

A. Ensemble averaging on the attractor

Sampling error can be reduced at a fixed wall clock time by
ensemble averaging across multiple parallel processes.34 Consider a
Monte Carlo approach to approximate J1 with a set of Mens indepen-
dent realizations

JMC ¼
1

Mens

XMens

m¼1
JðmÞT;hp: (41)

We can write a modified version of (20) to approximate the error
that we expect in the Monte Carlo estimator in (41)

E jJMC � J1j½ � � emodel;MC ¼ CqðDtÞqMC þ
A0ffiffiffiffiffiffiffiffiffi
Mens
p T�rs;MC; (42)

with an equivalent non-dimensional version, assuming r ! 1=2

emodel

rg

� �
MC

¼ CqT
q
d

rg

Dt
Td

� �q

þ
ffiffiffi
2
p

r
M
�1

2
ens

Ts

Td

� ��1
2

; (43)

and an optimum given by

emodel

rg

� �
MC;opt

¼ 1
2p

� � q
2qþ1

2þ 1
q

� �
qCqT

q
d

rg

 ! 1
2qþ1

M
� q

2qþ1
ens N

� q
2qþ1

s ;

(44)

at

TABLE IV. Rate and coefficient fit for convergence of local truncation error of the dis-
crete Lorenz system. CLTk d

pþ1u
dtpþ1 k1 estimated by cpðpþ 1Þ! using cp fit from Fig. 8.

p
rate

(observed) CLTk d
pþ1u
dtpþ1 k1 CLT

1 2.00 7:61	 103 7.33
3 4.02 3:28	 106 156
4 4.93 4:50	 107 76.5

FIG. 11. Fourier spectrum of uðtÞ. Computed with DFT using the Hann window func-
tion on data from RK4 discretization of the Lorenz system with Ts¼ 1000, t0 ¼ 100,
and Dt ¼ 10�3. Gray dashed line: fit assuming jûðf Þj � exp ð�af þ bÞ with
a¼ 0.872 and b¼ 2.58.

FIG. 12. Convergence of optimal error with sampling costs for FE, RK3, and RK4
discretizations of the Lorenz output g¼ u2. Asymptotic �1=2 rate implied by the
central limit theorem is shown.
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Dt
Td

� �
opt
¼ 1

2p

� � 1
2qþ1 qCqT

q
d

rg

 !� 2
2qþ1

M
� 1

2qþ1
ens N

� 1
2qþ1

s (45)

and

Ts

Td

� �
opt

¼ 1
2p

� � 1
2qþ1 qCqT

q
d

rg

 !� 2
2qþ1

M
� 1

2qþ1
ens N

2q
2qþ1
s : (46)

Equation (44) shows that, for finite values of q, the Monte Carlo
method will have a mitigated return compared to its purely stochastic
application as in Ref. 34; the optimal error scales as M�q=ð2qþ1Þens as
opposed toM�1=2ens . However, parallelization can achieve perfect scaling
in the expected error, in the sense that the effect of running Mens

ensembles with Ns sampling timesteps each will have an equivalent
error in expectation to simulateMensNs timesteps in series. As Mens is
varied on the set of optimal solutions, (45) and (46) indicate that the
time step and sampling time should be adjusted with the same factor
M�1=ð2qþ1Þens to achieve perfect scaling.

B. Spin-up transient modeling

So far, we have considered the error and cost on the attractor,
neglecting the impact of spin-up from t¼ 0 to t¼ t0. This spin-up is nec-
essary because simulations of ergodic systems invariably need some time
for the state to proceed onto the attractor from the initial condition.

Consider uðtÞ, a solution of the ergodic chaotic system f from an
arbitrary initial condition uð0Þ ¼ uIC in the basin of attraction of an
attractor,A. The existence of the attractor implies the nonlinear stabil-
ity of the system, such that all uIC will converge to trajectories on
the attractor A. Denote by uAðtÞ a trajectory that is on the attractor
for all t and to which uðtÞ collapses as t !1. The perturbation
duAðtÞ � uðtÞ � uAðtÞ that describes the IC, therefore, exists in a sta-
ble subspace of perturbations to uA and can be associated with the
negative Lyapunov exponents of the system. Thus, we can assume that
such perturbations are governed asymptotically by

jjduAðtÞjj� exp � t
Tk

� �
; (47)

with Tk being a characteristic time associated with the stable Lyapunov
modes. In practice, we are interested in averages of quantities on the
attractor gðuAðtÞÞ, but we can only calculate quantities gðuðtÞÞ that will
include some effect—if small—of the spin-up transient.

Next, we seek to quantify the effect of this gap on estimates
JT � J1. Consider the computation of JT. In (7), we have effectively
found an estimate of

JAT ¼
1
Ts

ðt0þTs

t0

gðuAðtÞÞdt; (48)

by choosing t0 sufficiently large. We now want to consider an error
model of the form

eT;hp ¼ ðJT;hp � JTÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ehp

þðJT � JAT Þ|fflfflfflfflffl{zfflfflfflfflffl}
ek

þðJAT � J1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
eT

; (49)

where a new error ek is introduced, associated with the spin-up tran-
sient. The model for eT in (9) will apply without modification, while

the model for ehp will be subject to slightly different assumptions,
where in (8), Cq was bounded by the value on the attractor,A, here we
must assume that Cq is bounded from t¼ 0 to t ¼ t0 þ Ts, including
both the attractor and the transient part of the trajectory. We only
require that the transient part be in the basin of attraction ofA; BðAÞ.
We assume that a model of the form used in (8) applies in expectation
when the transient component is included.

Next, we concentrate on ek,

JT � JAT ¼
ðt0þTs

t0

gðuðtÞÞ � gðuAðtÞÞ
� 


dt: (50)

We now assume that, like u, g will decay exponentially in t as (47),
such that

gðuðtÞÞ � gðuAðtÞÞ � dgAðtÞ � Ak exp � t
Tk

� �
(51)

will apply for t 2 ½0;1Þ, with Ak being a constant that can be related
to the deviation between gðuð0ÞÞ and gðuAð0ÞÞ.

From this assumption,

ek ¼
1
Ts

ðt0þTs

t0

gðuðtÞÞ � gðuAðtÞÞdt

� 1
Ts

ðt0þTs

t0

Ak exp � t
Tk

� �
dt

¼ Ak
Tk

Ts
exp � t0

Tk

� �
1� exp � Ts

Tk

� �� �
: (52)

Taking the absolute value, we can find a bounding model

jekj ¼ jAkj
Tk

Ts
exp � t0

Tk

� �
: (53)

As before, manipulation of (49) allows

jeT;hpj ¼ jehp þ ek þ eT j (54)

� jehpj þ jekj þ jeT j: (55)

Now, we take an expectation of the absolute value of eT;hp,

E jeT;hpj
� �

� EBðAÞ jehpj
� �

þEIC jekj½ � þEA jeT j½ �; (56)

where EBðAÞ gives the expectation on the basin of attraction of A.
Here, the expectation of jeT;hpj does not reduce to an expectation on
the attractor. The statistical term is handled on the attractor as before,
and we have assumed that the discretization error is bounded by the
same form in expectation on BðAÞ as onA. Finally, the expectation of
jekj is taken on the set of initial conditions used. This allows us to take
the expectation of (53) to complete (56). Because we anticipate Tk will
be bounded by a constant for a given system, this is given by

EIC jekj½ � ¼ EIC jAkj½ �Tk

Ts
exp � t0

Tk

� �
: (57)

If a Ak and Tk can be identified by observation of gðuðtÞÞ given an ini-
tial condition uIC; jekj is no longer stochastic and the E½jeT;hpj�
! jeT;hpj as in (53).

Putting all the pieces together, we can now give an error model
that incorporates the effects of spin-up and ensemble estimation
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emodel;MC ¼ ~Ak
Tk

Ts;MC
exp � t0

Tk

� �
þ CqðDtÞqMC þ

A0ffiffiffiffiffiffiffiffiffi
Mens
p T�rs;MC;

(58)

where ~Ak can be either estimated on an instance-by-instance basis or
by estimating the expectation on the family of initial conditions.
Under this model, ek will scale with the exponent of a large negative
value when t0 
 Tk. Even when t0/Tk, (53) suggests that the decay-
induced error term will still scale with T�1s , faster than the expected
CLT rate of T�1=2s , and thus, it will be dominated it as Ts 
 1. This
implies two “paths” to control spin-up errors: either choosing t0 long
enough to shrink the mean offset error from t0 or choosing Ts long
enough so that the mean offset contribution to the simulation error is
small in spite of the error at t¼ t0.

C. Identification of the spin-up transient model

We will now develop a method to fit the error model. In order to
do so, consider observations gn � gðtnÞ and gAn � gAðtnÞ for tn in
ft0; t0 þ NskipDt;…; t0 þ Tsg. We will assume that Nskip is large
enough that the solution at each tn is effectively independent. If this is
the case, then we can assume that each gAn will be an independent and
identically distributed (i.i.d.) draw from a bounded, stationary distri-
bution with mean J1. The distributions of gAðuðtÞÞ and gðuðtÞÞ, in
general, are not known. In order to facilitate an estimate of the mean
behavior, we will assume gAn are i.i.d. drawn from a normal distribu-
tion with mean value J1. Then, we have

gn � NðJ1 þ dgAðtnÞ;r2
gÞ; (59)

where the relationship between gn and gAn is taken from (51).
In order to understand the implications of this model, we can use

a set of reference RK4 simulations of the Lorenz system withNt ¼ 105

timesteps sampled without spin-up over a period T¼ 100 from initial
conditions similar to those given in (22) with a scaled-up standard
deviation of 100 in all three variables to highlight the initial transient.
In order to treat each of J1, rg, Ak, and Tk in (59) as unknowns, we
use Hamiltonian Monte Carlo with the likelihood function implied in
(59). We discard from t¼ 0 to t¼ 5 and then take 10 000 equispaced
samples from t¼ 5 to t¼ 100. For prior models, we start by comput-
ing na€ıve estimators of the mean and standard deviation of the trace, ~J
and ~r using the downsampled trace signal fgng and then use

J1 � Nð~J ; ~r2Þ;
rg � Cðar; brÞ;

Ak � Nð0;maxðghpÞ �minðghpÞÞ;
Tk � CðaT ;bTÞ;

(60)

where

ðar; brÞ ( lr ¼ ~r;rr ¼
~r
10

� �
;

ðaT ; bTÞ ( lT ¼ 10:0; rT ¼ 10:0ð Þ:

It should be noted that in this specification, the Bayesian fit only
requires a user-supplied prior for the decay time and for the uncer-
tainty in the standard deviation, assumptions upon which the fitting
method only requires to be reasonable.

A sample fit and trace are found in Fig. 13, for which the maxi-
mum a posteriori (MAP) estimate gives Tk ¼ 0:312 and
Ak ¼ �0:925. For the Lorenz system, the initial transient onto the
attractor is very rapid, almost negligible. Applying the Bayesian fit pro-
cedure to an ensemble of 1000 runs generated in the same way as Fig.
13, we can find maximum a posteriori (MAP) estimates of the varia-
bles Tk and jAkj in the decay model. In Figs. 14 and 15, histograms of
these variables are shown, which are needed to determine (53). We
can see that the fit procedure identifies values

Tk < 4:03;

jAkj < 38:7;
(61)

for greater than 97% of initial conditions, up to two standard
deviations above the mean. Using these values as a conservative esti-
mate for the mean offset, we can now model the effect of the transient
behavior.

FIG. 13. g ¼ u2ðtÞ trace in the transient region with Bayesian method fit.

FIG. 14. MAP estimate Tk for Lorenz system transient. Collected over 1000 Lorenz
trajectories with Dt ¼ 10�2, Ts¼ 100, and randomized uIC. Outliers truncated,
greater than 97% of data in the pictured range.
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VII. OPTIMAL TIME-STEPPING INCLUDING SPIN-UP

Now we can consider how the cost and error impact of spin-up is
incorporated into the model for error at a fixed cost. The spin-up time
requires the use of N0 timesteps

N0 ¼
t0

ðDtÞMC

� �
� t0
ðDtÞMC

; (62)

with N being the total number of timesteps used, given by

N ¼ N0 þ NMC ¼
t0

ðDtÞMC

þ NMC; (63)

where NMC is the number of timesteps during sampling for t0 to t0
þTs on a given instance.

By normalizing (58) then substituting (63), we arrive at a
transient-inclusive non-dimensional model for the error

emodel

rg

� �
MC

¼
~Ak

rg

Tk

Td
N

Dt
Td

� �
MC
� t0
Td

 !�1
exp � t0=Td

Tk=Td

� �

þ
CqT

q
d

rg

Dt
Td

� �q

MC
þ

ffiffiffi
2
p

r
M
�1

2
ens N

Dt
Td

� �
MC
� t0
Td

 !�1
2

:

(64)

Using this result, we can solve numerically for ðDtÞMC;opt and eMC;opt

via (64).
Consider a Lorenz simulation on which a budget of U ¼ pN

¼ 1:2	 106 right-hand side evaluations are available on each of Mens

parallel processors. We start by studying the error under (64) as Dt
and t0 vary with a conservative estimate for the transient behavior
using the bounding values in (61). In Fig. 16, we show emodel for for-
ward Euler at a fixed cost of U ¼ 1:2	 106. (The optimum is denoted
by a red star.) Moving to the right, discretization error becomes the
dominant factor as Dt 
 Td . The diagonal boundary gives the region
of feasibility at which, under the cost constraint, sampling no longer
occurs (Ts¼ 0). Moving from the optimum toward the bottom left,

t0 ! 0; Ts ! 0, and Dt � Td ; thus the transient error and sampling
error become dominant. Similar plots for RK3 and RK4 are found in
Figs. 17 and 18. The optimal errors and optimizing simulations are
described in Table V. We can see from these results that, at a fixed
budget with U ¼ 1:2	 106, the effect of increasing the discretization
order makes a smaller error possible with a larger time step, which
means fewer timesteps to traverse the spin-up time. These two effects
combine to allow for an increase in the sampling time available Ts,
allowing significantly less sampling error for RK3 compared to FE,
and an additional—albeit smaller—benefit moving from RK3 to RK4,
holding cost fixed.

In Fig. 19, we take another perspective on these results for RK3
by varying Dt and plotting the optimal t0, Ts, and emodel. As Dt gets
large, the optimal choice of t0 has logarithmic growth, and when
Dt=Td � 1, the optimal choice of t0 rapidly falls to zero.

FIG. 15. MAP estimate jAkj for Lorenz system transient. Collected over 1000
Lorenz trajectories with Dt ¼ 10�2, Ts¼ 100, and randomized uIC. Outliers trun-
cated, greater than 97% of data in the pictured range.

FIG. 16. Dependence of normalized error expectation emodel;MC=rg on normalized
time step Dt=Td and normalized spin-up time t0=Td with total cost set at U
¼ 1:2	 106 for forward Euler. Red star denotes optimum, and dashed line indi-
cates optimal t0 given Dt.

FIG. 17. Dependence of normalized error expectation emodel;MC=rg on normalized
time step Dt=Td and normalized spin-up time t0=Td with total cost set at U
¼ 1:2	 106 for third-order Runge–Kutta. Red star denotes optimum, and dashed
line indicates optimal t0 given Dt.
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Parallelization has a small but non-zero effect on the optimal choice of
sample time. The sampling time also has a small effect from paralleli-
zation, in this case constrained to a small region. Outside that Dt
region, Ts scales with Dt both as Dt ! 0 and as Dt !1.

The bottom plot of Fig. 19 shows the variation of error with Dt.
In this plot, we can see three distinct regions. For Dt=Td 
 10�2, dis-
cretization error is the dominating error, and the convergence goes
with the discretization error rate. Approaching the optimum, sampling
error becomes the dominant error contribution, starting at Dt
� 2	 10�2 until Dt � 10�3. In this region, the convergence is around
the CLT-implied 1/2 rate, and the effect of parallelization is clearly
seen. For Dt�10�3, however, the spin-up error becomes the dominant
error contribution. The optimal choice of t0 begins to fall rapidly, as
the sampling and spin-up must compete for computational resources
under the budget. Once the spin-up error dominates, the paradigm by
which (53) is controlled shifts from the exp ð�t0Þ term to the T�1s
term as Dt=Td ! 0, since resolving Ts delivers both spin-up and sam-
pling error control.

This interdependence will evidently have an effect on the overall
scaling between cost and error, which we now seek to understand.
Here, we study the variation of emodel;MC with U under the optimal
choices and evaluate how well emodel;MC approximates experimental
data for E½jJMC � J1j�. In Fig. 20, the variation of emodel;MC computed
via (64) as a function ofMens and U is shown. From this figure, we can
see that, in the limit of small error, the sampling costs dominate and
the best possible rate is given by the estimate in (44), limited by the
CLT. On the other hand, when the cost is more moderate, scaling of

the error is close to the discretization error convergence rate in (19). In
this region, the spin-up costs are significant, and high-order discretiza-
tion brings the state more efficiently to the start of sampling. In the
spin-up dominated region, the effect of the parallel ensemble approach
is minimal since spin-up must be overcome on each processor.

Now, we validate the total error model for the Lorenz system by
a final numerical experiment. At each choice ofMens and U, we gener-
ate 1000 individual realizations of JMC at the computed ðDtÞMC;opt and
NMC;opt and using the model fit given in Table II. In Figs. 21–23, we
show the predictions and the results of Monte Carlo estimates of
E½jJMC � J1j� for our three discretizations. These results validate the
model with significant discrepancies only when the asymptotic
assumptions—Dt small and Ts large—do not hold, due to budget limi-
tations in the limit of small U.

VIII. CONCLUSIONS AND FORTHCOMING WORK

In this manuscript, we have developed a theoretical framework
for the total error incurred by the discrete sampling of mean outputs

FIG. 18. Dependence of normalized error expectation emodel;MC=rg on normalized
time step Dt=Td and normalized spin-up time t0=Td with total cost set at U
¼ 1:2	 106 for fourth-order Runge–Kutta. Red star denotes optimum, and dashed
line indicates optimal t0 given Dt.

FIG. 19. Dependence of normalized spin-up time t0=Td , sampling time Ts=Td , and
model error emodel=rg on normalized time step Dt=Td with total cost set at U
¼ 1:2	 106 for third-order Runge–Kutta.

TABLE V. Optimal Lorenz simulations for output g¼ u2 under budget of U
¼ 1:2	 106 right-hand side evaluations using Mens ¼ 1.

Method p emodel Dt t0 Ts

FE 1 0.0502 2:54	 10�4 30.2 275
RK3 3 0.0130 8:52	 10�3 35.5 3370
RK4 4 8:89	 10�3 0.0224 36.7 6670
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of ergodic ODEs. These findings are validated by Monte Carlo studies
of the Lorenz system using Runge–Kutta methods. We incorporate
effects of parallelization and spin-up and validate that the models
match observed results in experiments. Using these models, we are
able to develop a comprehensive understanding of the relationship
between the wall-clock cost of a simulation and the amount of error in
expectation that it might achieve.

The first result of these studies is to demonstrate the central limit
theorem that gives a lower limit of �1=2 on the convergence rate of
error with respect to sampling cost in a simulation. The effect of dis-
cretization error is to penalize the observed convergence rate away
from this limiting convergence rate, causing a higher convergence rate
than the�1=2 rate for the central limit theorem. In order to minimize
the error that might be expected in a given simulation, there exists a
specific choice of Ts ¼ NsDt that achieves the minimum in expecta-
tion given a number of timesteps Ns available for computation.

In addition to this finding, we show that ensemble simulations
reduce the sampling error, albeit with a similar penalty for discrete
simulations. Moreover, the effect of spin-up costs—assuming optimal
choices—is to increase the error at a given amount of the total simula-
tion cost, which cannot be reduced by parallelization. The effect of
spin-up, however, is negligible in the limit of infinite costs, but the
results suggest it should be considered in cost-constrained contexts.

A key problem with the applicability of this research presented in
this paper is the expense of identifying the parameters of the error
model. In order to overcome this, we believe that leveraging a
Bayesian approach as in Oliver et al.20 can allow us to approximate the
model in (20) at relatively small cost, and then exploit the result to
conduct a high-fidelity simulation at (approximately) optimal discreti-
zations. Furthermore, the framework must be extended to handle cha-
otic partial differential equation systems as opposed to ordinary
differential equation systems. Thoughmany discrete partial differential
equation (PDE) systems are discretized in a form that reduces to an
ODE system, a rigorous model for the error and cost of a PDE system
should account for the contributions of both temporal discretization
and spatial discretization. These will be the primary concerns of our
forthcoming work. Finally, for the most expensive systems, it is likely

FIG. 21. Total cost model and Monte Carlo validation as a function of total cost U
for FE.

FIG. 22. Total cost model and Monte Carlo validation as a function of total cost U
for RK3.

FIG. 23. Total cost model and Monte Carlo validation as a function of total cost U
for RK4.

FIG. 20. Optimal non-dimensional error under model as a function of total cost U
for RK3. Theory totem on the left-hand side: discrete convergence rate, 1=q; on
right-hand side: 2ðqþrÞq rate from (44).
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that cost constraints will make simulations that reside comfortably
inside the asymptotic convergence region prohibitively expensive.
Further investigation of the convergence behavior as Dt leaves the
asymptotic region or at the convergence limit is left to future research.
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