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DYNAMICAL (IN)STABILITY OF RICCI-FLAT ALE METRICS ALONG

THE RICCI FLOW

ALIX DERUELLE AND TRISTAN OZUCH

Abstract. We study the stability and instability of ALE Ricci-flat metrics around which a
 Lojasiewicz inequality is satisfied for a variation of Perelman’s λ functional adapted to the
ALE situation and denoted λALE. This functional was introduced by the authors in a recent
work and it has been proven that it satisfies a good enough  Lojasiewicz inequality at least in
neighborhoods of integrable ALE Ricci-flat metrics in dimension larger than or equal to 5.
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Introduction

The understanding of Ricci-flat ALE metrics is a central issue in Riemannian geometry.
These spaces model the formation of singularities of spaces with Ricci curvature bounds
[And90, BKN89] as well as the singularities of 4-dimensional Ricci flow with bounded scalar
curvature [BZ17, Sim20]. They moreover appear as finite-time blow-up limits of some Ricci
flows [App19]. Their stability therefore becomes a crucial question for the Ricci flow.

Our goal here is to study the dynamical stability and instability of these spaces along the
Ricci flow thanks to a functional on suitable neighborhoods of any ALE Ricci-flat metrics
which detects Ricci-flat metrics as its critical points.

An adaptation of Perelman’s λ-functional to the ALE setting. In [DO20], the authors
introduced an adaptation to the ALE setting of the λ-functional from [Per02], this functional
is denoted λALE. More precisely, for any ALE metric g of order τ > n−2

2 (see Definition 1.1)
whose scalar curvature is integrable, we define

λALE(g) := λ0
ALE(g) −mADM(g),

where λ0
ALE(g) := infw

´

N 4|∇gw|2g + Rg w
2 where the infimum is taken among the smooth

functions w with w − 1 compactly supported, and mADM is (up to a constant) the ADM
mass of (N, g). The point of substracting mADM(g) is that the functional now extends to an
analytic function on the classical space of metrics satisfying, for τ > n−2

2 , k ∈ {0, 1, 2, 3} and

a Ricci-flat metric gb, (1+r)τ+k|∇gb,k(g−gb)| ≪ 1 where r is the gb-distance to a given point.
Neither λ0

ALE or mADM can be defined on such a neighborhood without further constraints
since it contains ALE metrics with non integrable scalar curvature.

In [DO20], we moreover showed that λALE detects Ricci-flat ALE metrics as its only critical
points, and the Ricci flow is moreover its gradient flow.

The second variation of λALE at an ALE Ricci-flat metric (Nn, gb) along divergence-free
variations is half the Lichnerowicz operator Lgb

:= ∆gb
+ 2 Rm(gb)∗. This leads us to define

the linear stability of an ALE Ricci-flat metric (Nn, gb) as the non-positivity of the associated
Lichnerowicz operator Lgb

restricted to divergence-free variations. In the integrable case, i.e.
in the case where the space of ALE Ricci-flat metrics in the neighborhood of a fixed ALE
Ricci-flat metric is a smooth finite-dimensional manifold, we have a nice consequence of the
linear stability: any linearly stable and integrable ALE Ricci-flat metric is a local maximum
for the functional λALE. Properties of the ADM mass were deduced thanks to this fact in
[DO20].

A more delicate notion of stability is that of dynamical stability of Ricci-flat metrics
along the Ricci flow. Its study on compact Ricci flat manifolds has been investigated in
[GIK02, Ses06, Has12] and [HM14]. In the non-compact situation, there are several addi-
tional difficulties. A major difference is that 0 is not isolated in the spectrum of the linearized
operator. This prevents an exponential convergence rate as in the case of [Has12] of an inte-
grable Ricci-flat metric on a closed manifold, one only gets a polynomial-in-time convergence.
The dynamical stability of Euclidean space have been considered in [SSS11, App18] and we
refer to the work [DK20] on the dynamical stability of integrable ALE Ricci flat metrics to-
gether with the recent work [KP20] on the dynamical stability of integrable ALE Ricci flat
metrics carrying a parallel spinor.

A weighted  Lojasiewicz inequality for λALE. One tool that has been quite popular to
study the dynamical stability of fixed points of geometric evolution equations is the notion of

2            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

Stability of Ricci-flat ALE metrics along the Ricci flow 3

 Lojasiewicz-Simon inequalities. Its name comes from both the classical work of  Lojasiewicz
[ Lo65] on finite dimensional dynamical systems of gradient type and that of L. Simon [Sim83]
who extended systematically these inequalities to functionals defined on infinite dimensional
spaces. The main geometric applications obtained in [Sim83] concern the uniqueness of tan-
gent cones of isolated singularities of minimal surfaces in Euclidean space together with the
uniqueness of tangent maps of minimizing harmonic maps with values into an analytic closed
Riemannian manifold. These geometric equations have the advantage to be strongly elliptic.
Notice that all these results do not hold true if one drops the assumption on the analyticity
of the data under consideration.

In the compact setting,  Lojasiewicz inequalities have been proved for Perelman’s λ-functional
in the neighborhood of compact Ricci-flat metrics and were the main tool to study the stability
of Ricci-flat metrics in [Has12] in the integrable case, and in [HM14] in the general case.

The main result in [DO20] is that the functional λALE satisfies a weighted  Lojasiewicz
inequality in a neighborhood of any ALE Ricci-flat metric with respect to the topology of
weighted Hölder spaces C2,α

τ , α ∈ (0, 1), with polynomial decay of rate τ ∈ (n−2
2 , n − 2) (see

Definition 1.2). It is weighted since it uses the L2
n
2

+1(gb)-norm which is essentially the space

L2((1 + r)dµgb
) instead of L2(dµgb

). Roughly speaking, the article [DO20] proves that there
is some θ ∈ (0, 1] such that for any metric g in a C2,α

τ -neighborhood of a given ALE Ricci flat
metric, the following  Lojasiewciz inequality holds:

|λALE(g)|2−θ ≤ C‖∇λALE(g)‖2
L2

n
2

+1
(gb). (0.1)

We refer the reader to Theorem 1.12 for a precise statement.
The fact that our spaces are non-compact induces quite a lot of new difficulties. In par-

ticular, the spectrum of the Lichnerowicz operator is not discrete anymore and 0 belongs to
the essential spectrum. This explains the need of considering weighted Sobolev spaces differ-
ent from L2 for which the differential of the gradient ∇λALE at a Ricci-flat ALE metric is
Fredholm. Theorem 1.12 gives an optimal L2

n
2

+1- Lojasiewicz inequality with exponent θ = 1

in the integrable situation. Nonetheless, it seems that inequality (0.1) appears not to be so
useful regarding the study of dynamical stability of the Ricci flow near an ALE Ricci flat
metric. This is essentially due to the L2-variational structure of λALE. For this reason, in the
setting of L2-perturbations, by interpolation, we obtain the following  Lojasiewicz inequality
near any ALE Ricci flat linearly stable and integrable metric in dimension greater than 4: for

τ ∈ (n
2 , n− 2) and 0 < δ < 2τ−(n−2)

2τ−(n−4) , there exists C > 0 such that for all g ∈ BC2,α
τ

(gb, ε),

|λALE(g)|2−θL2 ≤ C‖∇λALE(g)‖2
L2(gb), θL2 := 2 − 1

δ
<

2τ − n

2τ − (n− 2)
. (0.2)

Notice that we cannot reach the usual optimal L2- Lojasiewicz exponent θL2 = 1. This is
consistent with the known fact that the DeTurck-Ricci flow only converges polynomially fast
for perturbations of the Euclidean space: see for instance [SSS11] and [App18]. Indeed, an
exponent θL2 = 1 would imply that the convergence is exponential.

Stability and instability of Ricci-flat ALE metrics. In the present article, we study the
dynamical stability or instability of Ricci-flat ALE metrics along the Ricci flow assuming an
L2- Lojasiewicz inequality such as (0.2) holds true. This should be a quite general scheme of
proof and apply to other stability questions on non-compact spaces along the Ricci flow and
other parabolic geometric flows.

3            
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Theorem 0.1 (Stability of Ricci-flat ALE metrics). Let (Nn, gb) be a Ricci-flat ALE manifold
of dimension n > 4 and n−2

2 < τ < n− 2. There exists α ∈ (0, 1) such that if we assume:

(1) that gb is a local maximum of λALE in the C2,α
τ (gb) topology,

(2) in a C2,α
τ (gb)-neighborhood BC2,α

τ
(gb, εŁ) of gb, an L2- Lojasiewicz inequality is satisfied:

for any metric g in B
C2,α

τ
(gb, εŁ), we have

|λALE(g)|2−θ ≤ C‖∇λALE(g)‖2
L2(gb)

for some θ ∈ (0, 1),

then, for any 0 < τ ′ < τ and 0 < α′ < α, for any metric g sufficiently C2,α
τ (gb)-close to gb,

the Ricci flow starting at g, C2,α′

τ ′ (gb)-converges to a Ricci-flat metric g′
b (which is C2,α

τ (gb)-
close to gb) at a polynomial speed determined by the exponent θ. In particular, the polynomial
convergence rate with respect to the C0-norm is θ

2(1−θ) .

Theorem 0.1 provides Type IIb solutions of the Ricci flow unless the background Ricci flat
metric is the Euclidean metric, i.e. it ensures the existence of immortal solutions (g(t))t≥0

satisfying lim supt→+∞ t supN | Rm(g(t))| = +∞. Notice also that Theorem 0.1 ensures the
convergence to hold in weighted Hölder spaces which we believe are well-suited for gluing
methods. We refer the reader to the article [BK17] for such an illustration. Finally, we
underline the need in Theorem 0.1 of restricting the convergence rate in space below the
threshold value n− 2: we refer the reader to our discussion on previous results of Dai and Ma
[DM07] right after the proof of Proposition 3.18 which links the mass and the mean value of
the scalar curvature along the solutions provided by Theorem 0.1.

A direct consequence of Theorem 1.12 and Theorem 0.1 is the following stability result for
integrable ALE Ricci-flat spaces of dimension at least 5.

Corollary 0.2. Let (N, gb) be a Ricci-flat ALE manifold of dimension n > 5 with integrable
Ricci-flat deformations. Assume that gb is linearly stable, that is: its Lichnerowicz operator
is nonpositive on divergence-free deformations decaying at infinity. Let n−2

2 < τ < n− 2 and
0 < α < 1 be sufficiently small.

Then, for any 0 < τ ′ < τ and 0 < α′ < α, for any metric g sufficiently C2,α
τ (gb)-close to gb,

the Ricci flow starting at g C2,α′

τ ′ (gb)-converges to a Ricci-flat metric g′
b (which is C2,α

τ (gb)-
close to gb) at a polynomial speed. In particular, the polynomial convergence rate with respect
to the C0-norm is 1

4(2τ − n).

Let us observe that in the range τ < n−2, θ
2(1−θ) < 0 in dimension n 6 4 which explains the

restriction n ≥ 5 in Corollary 0.2. Notice also that Corollary 0.2 applies to all known Ricci-
flat ALE metrics in dimension greater than or equal to 5. For instance, it applies to Calabi’s
ALE Ricci-flat Kähler metrics [Cal79] on the total space of the line bundle L−n → CP

n−1,
n ≥ 3, and more generally to Joyce’s ALE Ricci-flat Kähler metrics [Joy00, Chapter 8]. In
particular, this makes precise the results of [CT10] in the ALE case, where the convergence
is established on compact subsets only.

Corollary 0.2 shares some similarities with the work of Kröncke and Petersen [KP20] that
we now explain. In [KP20], the authors investigates the dynamical stability of integrable
ALE Ricci-flat metrics which carry a parallel spinor in dimension greater than or equal to 4.
As they notice, this applies to all know ALE Ricci-flat metrics. Their method is based on a
delicate analysis of the heat kernel of the Lichnerowicz operator in Lp spaces and they apply
it to the DeTurck-Ricci flow with time-dependent background metrics. We emphasize that

4            
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the convergence result they get takes place in the Ck ∩ Lp topology and the corresponding
polynomial convergence rate is sharp whereas Theorem 0.1 (and Corollary 0.2) proves the
convergence of the Ricci flow directly and in weighted spaces at the cost of getting an a priori
non sharp convergence rate. Moreover, they assume the initial condition to be a perturbation
of the ALE Ricci flat background to lie in Lp ∩ L∞ for any p < n. In particular, they allow
initial conditions to decay like r−1−ǫ at infinity while we require a decay rate to be at least
r−(n−2)/2. Another interesting technical fact is that [KP20] considers nearby Ricci-flat metrics
of a given ALE Ricci flat metric with respect to the Bianchi gauge whereas we study such
metrics which are divergence free with respect to a background ALE Ricci-flat metric. In the
setting of Theorem 0.1, we prove that the Bianchi gauge converges to 0 faster then expected:
see Section 3.3 for a precise statement. Therefore, in view of the previous remarks, we ask
whether our methods can be carried to dimension 4 in order to prove a statement similar to
Corollary 0.2. This would apply to all known ALE Ricci-flat metrics in dimension 4.

The next result echoes the work [HM14] on the existence of ancient solutions coming out
of an unstable Ricci-flat metric:

Theorem 0.3 (Instability of Ricci-flat ALE metrics). Let (Nn, gb) be a Ricci-flat ALE man-
ifold of dimension n > 4 and assume for some 0 < α < 1 and τ > n−2

2 :

(1) that gb is a not a local maximum of λALE in the C2,α
τ (gb) topology,

(2) in a C2,α
τ (gb)-neighborhood Ugb

of gb, an L2- Lojasiewicz inequality is satisfied: for any
metric g in Ugb

, we have

|λALE(g)|2−θ ≤ C‖∇λALE(g)‖2
L2(gb),

for some θ ∈ (0, 1).

Then, there exists a non Ricci-flat ancient solution to the Ricci flow (g(t))t∈(−∞,0] which is

uniformly ALE of order τ and C2,α
τ -converges to gb at any polynomial rate less than θ

2(1−θ) .

The rate obtained in Theorem 0.3 is almost sharp in the sense that θ
2(1−θ) is the optimal

rate that one can get in the presence of such a  Lojasiewicz inequality. It is worth mentioning
that it is still an open problem whether there are unstable ALE Ricci flat metrics in dimension
greater than or equal to 4. Also, Theorem 0.3 bears some resemblance with the work [Tak14]
where an ancient solution coming out of the Euclidean Schwarzschild metric is constructed
by hand. It would be an interesting problem to recover Takahashi’s result via a suitable ALF
version of our functional λALE.

Both Theorem 0.1 and Theorem 0.3 rely heavily on Gaussian estimates and estimates in
weighted Hölder spaces for the heat kernel which we believe are of independent interest and
that we describe now.

Heat kernel estimates. We prove that the heat kernel associated to the forward heat
equation acting on functions along a Ricci flow in a suitable neighborhood of a Ricci-flat
ALE metric satisfies uniform-in-time Gaussian bounds in Theorem 2.5. The proof follows the
method of Grigor’yan [Gri97] and that of Zhang [Zha06] in a Ricci flow setting.

These controls are then used on the parabolic equation satisfied by the Ricci curvature
and integrated in time to yield controls on the metric in C2,α

τ for n−2
2 < τ < n − 2 as long

as the Ricci flow stays in a given C2,α
τ -neighborhood of a Ricci-flat metric. Indeed, lemma

2.12 starts with establishing short-time estimates for weighted Hölder norm of the curvature
operator and the Ricci tensor. Its proof already reveals a constraint on the Hölder exponent

5            
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α ∈ (0, 1) in terms of the weight τ . Lemma 2.14 takes care of estimating the distance of
a Ricci flow satisfying mild assumptions from an ALE Ricci flat metric in the weighted C0

τ

norm a priori. Then Lemma 2.15 proves an a priori bound for the weighted C0,α
τ+2 of the Ricci

tensor. Finally, Lemma 2.16 establishes an a priori bound for the distance of a Ricci flow
from an ALE Ricci flat metric in the full weighted Hölder C2,α

τ+2 norm in terms of the weighted
norm of the corresponding Ricci tensor. As expected, it is more tractable to bound the Ricci
tensor than the metric itself along such a Ricci flow.

Outline of paper. In Section 1, we give the main basic definitions of the article and review
the properties of the functional λALE proven in [DO20].

In Section 2, we prove Gaussian bounds for the heat kernel along a Ricci flow in a C2,α
τ -

neighborhood of a Ricci-flat ALE metric and deduce controls on the flow in suitable weighted
Hölder spaces.

In Section 3, using the previous controls on the flow thanks to the heat kernel, we prove
our stability result for metrics which are local maxima of λALE and around which a suitable
L2- Lojasiewicz inequality holds. In Section 3.3, we study the evolution of the Bianchi form
together with that of the scalar curvature and the mass. Section 3.4 discusses and compares
the aforementioned stability results on Euclidean space and ALE Ricci-flat metrics more in
depth.

Finally, in Section 4, we study the case when a metric is not a local maximum of the
functional λALE and prove that if a suitable L2- Lojasiewicz inequality holds around it, then,
there exists an ancient nontrivial Ricci flow coming out of it.

In the Appendix, Section A, we recall some formulas for the first and second variations of
the geometric quantities of interest here.

Acknowledgements. We thank Klaus Kröncke for his suggestions and comments on a pre-
liminary version of this paper. We wish to thank the anonymous referee for pointing out
inaccuracies together with his comments that greatly clarified the exposition of this paper.
The first author is supported by grant ANR-17-CE40-0034 of the French National Research
Agency ANR (Project CCEM).

Data Availability Statements. Authors can confirm that all relevant data are included in
the article and/or its supplementary information files.

1. The functional λALE and its properties

In this section, we recall some of the properties of the functional λALE introduced and
studied in [DO20]. This functional and more precisely its sign in neighborhoods of Ricci-flat
ALE metrics (see Definition 1.1) will determine the dynamical stability or instability of these
Ricci-flat ALE metrics along the Ricci flow.

1.1. First definitions and function spaces.

We start by defining the manifolds as well as the function spaces we will be interested in.

Definition 1.1 (Asymptotically locally Euclidean (ALE) manifolds). We will call a Riemann-
ian manifold (N, g) asymptotically locally Euclidean (ALE) of order τ > 0 if the following
holds: there exists a compact set K ⊂ N , a radius R > 0, Γ a subgroup of SO(n) acting

6            
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freely on S
n−1 and a diffeomorphism Φ : (Rn/Γ)\Be(0, R) → N\K such that, if we denote ge

the Euclidean metric on R
n/Γ, we have, for all k ∈ N0,

ρk
∣

∣∇ge,k(Φ∗g − ge)
∣

∣

e
= O(ρ−τ ),

on
(

R
n/Γ

)

\Be(0, R), where ρ = de(., 0).

We will study ALE metrics in a neighborhood of a Ricci flat ALE metric. Let us start by
defining this neighborhood thanks to weighted norms :

Definition 1.2 (Weighted Hölder norms for ALE spaces). Let (N, g) be an ALE manifold of
dimension n, β > 0, and ρg(x) := max

(

dg(x, p), 1
)

for some point p ∈ N . For any tensor s,

we define the following weighted Ck,α
β -norm :

‖s‖g

Ck,α
β

(N)
:= sup

N
ρβ

g

(

k
∑

i=0

ρi
g|∇g,is|g + ρk+α

g [∇g,ks]Cα

)

,

where, if T is a tensor on N ,

[T ]Cα := sup
x 6= y ∈ M

dg(x,y) < δ(g)

|T (x) − Px, yT (y)|g
dg(x, y)α

.

Here δ(g) denotes the injectivity radius of g and Px, y denotes g-parallel transport along the
unique geodesic joining x and y.

Notice that choosing different base points p ∈ N will lead to equivalent norms. We will
make a constant use of the following compact embedding whose proof can be found for instance
in [CSCB79, Lemme 3]:

Lemma 1.3. Let (Nn, g) be an ALE manifold of dimension n. If k ≥ 0, τ > 0 and α ∈ (0, 1)

then the continuous embeddings Ck,α
τ →֒ Ck,α′

τ ′ are compact for α′ ∈ (0, α) and τ ′ ∈ (0, τ).

The next definition concerns weighted Sobolev norms for ALE spaces:

Definition 1.4 (Weighted Sobolev norms for ALE spaces). Let β > 0, and (N, g) an ALE
manifold of dimension n, and ρg(x) := max

(

dg(x, p), 1
)

for some point p ∈ N . For any tensor

s, we define the following weighted L2
β-norm :

‖s‖g
L2

β
:=
(

ˆ

N
|s|2ρ2β−n

g dµg

)

1
2
.

We moreover define the Hk
β -norm of s as

‖s‖g

Hk
β

:=
k
∑

i=0

‖∇is‖g
L2

β+i
.

Remark 1.5. Since the above definitions do not formally depend on the type of tensor, and
since the metrics we will consider will be equivalent, we will often abusively simply denote
these spaces Ck,α

τ or Hk
β for instance.

7            
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1.2. The functionals λ0
ALE, mADM and λALE.

Next, as in [DM07, LP87, Bar86] let us consider for τ > n−2
2 and α ∈ (0, 1), the following

classical space of metrics,

Mτ :=
{

g is a metric on N | g − gb ∈ C1,α
τ (S2T ∗N) | Rg ∈ L1

}

. (1.1)

1.2.1. Mass of ALE metrics. On Mτ , the mass of an ALE metric is well-defined and only
depends on the metric:

mADM(g) := lim
R→+∞

ˆ

{ρgb
=R}

〈divgb
(g − gb) − ∇gb trgb

(g − gb),n〉gb
dσgb

, (1.2)

where n denotes the outward unit normal of the closed smooth hypersurfaces {ρgb
= R} for

R large.

Remark 1.6. Given gb a Ricci-flat metric, it is clear from the definition that the map h →
mADM(gb + h) is linear.

1.2.2. The functional λ0
ALE. Before defining the functional λ0

ALE, we denote for ε > 0,

M2,α
τ (gb) :=

{

g is a metric on N | g − gb ∈ BC2,α
τ

(gb, ε) , Rg = O(ρ−τ ′

gb
) for some τ ′ > n

}

.

Definition 1.7 (λ0
ALE, a first renormalized Perelman’s functional). Let (Nn, gb) be an ALE

Ricci flat metric and let g ∈ M2,α
τ (gb, ε). Define the FALE-energy by:

FALE(w, g) :=

ˆ

N

(

4|∇gw|2g + Rg w
2) dµg, (1.3)

where w− 1 ∈ C∞
c (N), where C∞

c (N) is the space of compactly supported smooth functions.
The λ0

ALE-functional associated to the FALE-energy is:

λ0
ALE(g) := inf

w
FALE(w, g),

where the infimum is taken over functions w : N → R such that w − 1 ∈ C∞
c (N).

In case g is sufficiently close to gb with respect to the norm C2,α
τ , we prove in [DO20,

Proposition 1.12] that the above infimum is attained by the (unique) solution wg ∈ 1 + C2,α
τ

to the equation

− 4∆gwg + Rg wg = 0. (1.4)

It turns out that wg is a positive function which lets us to consider the potential function
associated to a metric g defined as

fg := −2 lnwg,

which is the unique solution fg ∈ C2,α
τ to

2∆gfg − |∇gfg|2g + Rg = 0. (1.5)
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Stability of Ricci-flat ALE metrics along the Ricci flow 9

1.2.3. Definition of the functional λALE.

The above functionals mADM and λ0
ALE are only well-defined when the scalar curvature is

integrable which is not a convenient assumption as for instance Mτ is not a closed subset of
C2,α

τ for n−2
2 < τ < n− 2. Moreover, mADM and λ0

ALE are not continuous with respect to the

C2,α
τ -topology.

Remark 1.8. Another finer topology for Mτ is obtained by adding the L1-norm of the scalar
curvature. We will see in the rest of the present article that there are Ricci flows of ALE
metric with nonvanishing (or even infinite) mass C2,α

τ -converging to a Ricci-flat ALE metric.
This implies that the scalar curvature does not converge in an L1-sense by [DM07, Corollary
3].

In order to solve these problems, we define for g in a small C2,α
τ -neighborhood of a Ricci-flat

ALE metric gb and in Mτ , the functional

λALE(g) := λ0
ALE(g) −mADM(g).

The advantage is that λALE extends as an analytic function on a whole C2,α
τ -neighborhood of

any Ricci-flat ALE metric, see [DO20, Proposition 3.4]. Moreover, by denoting wg the solution
to (1.4), which is well-defined without assuming that the scalar curvature is integrable, we
have

λALE(g) = lim
R→+∞

(

ˆ

{ρgb
≤R}

(

|∇gfg|2g + Rg

)

e−fgdµg

−
ˆ

{ρgb
=R}

〈divgb
(g) − ∇gb trgb

(g),ngb
〉gb

dσgb

)

.

(1.6)

It is worth noting from [DO20, Example 3.1] that for most perturbations, none of the above
integrals converge as R → ∞, but their difference always does if g is sufficiently C2,α

τ -close to
gb for τ > n

2 − 1.

1.3. Main properties of λALE.

We now list some of the properties of λALE proven in [DO20].

1.3.1. Variations of λALE.

We have the following first variation for λALE: see [DO20, Propositions 3.4] for a proof.
Notice that these formulas recover the variational formulas from the compact setting as proved
for instance in [Per02, Section 1].

Proposition 1.9 (First variation of λALE). Let (Nn, gb) be an ALE Ricci flat metric as-
ymptotic to R

n/Γ, for some finite subgroup Γ of SO(n) acting freely on S
n−1, and let τ ∈

(n−2
2 , n− 2).
The first variation of λALE on a neighborhood of BC2,α

τ
(gb, ε) at g in the direction h is:

δgλALE(h) = −
ˆ

N
〈h,Ric(g) + ∇g,2fg〉g e

−fgdµg. (1.7)
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10 Alix Deruelle and Tristan Ozuch

and the tensor Ric(g) + ∇g,2fg is weighted divergence free, i.e.

divfg

(

Ric(g) + ∇g,2fg

)

= 0, (1.8)

where divfg T := divg T − T (∇gfg) for a symmetric 2-tensor T .
Moreover, if (g(t))t∈[0,T ) is a solution to the Ricci flow on N lying in BC2,α

τ
(gb, ε), then we

have the following monotonicity formula,

d

dt
λALE(g(t)) = 2‖ Ric(g(t)) + ∇g(t),2fg(t)‖2

L2

(

e
−fg(t)dµg(t)

) ≥ 0. (1.9)

We next consider the second variations of λALE.

Definition 1.10. Let (Nn, g) be a Riemmanian manifold. Then the Lichnerowicz operator
associated to g acting on symmetric 2-tensors, denoted by Lg, is defined by:

Lgh := ∆gh+ 2 Rm(g)(h) − Ric(g) ◦ h− h ◦ Ric(g), h ∈ C2
loc(S

2T ∗N), (1.10)

where ∆g = −∇∗
g∇g and where Rm(g)(h)(X,Y ) := h(Rm(g)(ei,X)Y, ei) for an orthonormal

basis (ei)
n
i=1 with respect to g. In particular, if (Nn, gb) is an ALE Ricci flat metric, then,

Lgh := ∆gh+ 2 Rm(g)(h), h ∈ C2
loc(S

2T ∗N). (1.11)

The following result recalls the second variation of λALE at a Ricci flat metric. This formula
is consistent with that in the compact case as proved for instance in [Has12, Introduction].

Proposition 1.11 (Second variation of λALE at a Ricci flat metric). Let (Nn, gb) be an ALE
Ricci flat metric asymptotic to R

n/Γ, for some finite subgroup Γ of SO(n) acting freely on
S

n−1, and let τ ∈ (n−2
2 , n − 2). Then the second variation of λALE at gb along a divergence

free variation h ∈ S2T ∗N such that h ∈ BC2,α
τ

(gb, ε) is:

δ2
gb
λALE(h, h) =

1

2
〈Lgb

h, h〉L2 . (1.12)

1.3.2. A  Lojasiewicz inequality.

As explained in the introduction of this paper, in [DO20, Theorem 0.3], we moreover proved
that in a C2,α

τ -neighborhood of any Ricci-flat ALE space, a  Lojasiewicz inequality holds for
λALE.

Theorem 1.12 ([DO20]). Let (Nn, gb) be an ALE Ricci-flat manifold of dimension n ≥ 4.
Let α ∈ (0, 1) and τ ∈ (n−2

2 , n − 2). Then there exist a neighborhood B
C2,α

τ
(gb, ε) of gb, a

constant C > 0 and θ ∈ (0, 1] such that for any metric g ∈ BC2,α
τ

(gb, ε), we have the following

L2
n
2

+1- Lojasiewicz inequality,

|λALE(g)|2−θ ≤ C‖∇λALE(g)‖2
L2

n
2

+1
(gb). (1.13)

Moreover, if (Nn, gb) has integrable infinitesimal Ricci-flat deformations, then θ = 1.
In particular, if n ≥ 5, one has the following L2- Lojasiewicz inequality for integrable Ricci-

flat ALE metrics: if τ ∈ (n
2 , n − 2) then for any 0 < δ < 2τ−(n−2)

2τ−(n−4) , there exists C > 0 such

that for all g ∈ B
C2,α

τ
(gb, ε),

|λALE(g)|2−θL2 ≤ C‖∇λALE(g)‖2
L2(gb), θL2 := 2 − 1

δ
=

2τ − n

2τ − (n− 2)
. (1.14)

10            
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Stability of Ricci-flat ALE metrics along the Ricci flow 11

Here ∇λALE denotes the gradient of λALE in the L2(g) sense.

2. Preliminary estimates for short and large time

2.1. Heat kernel Gaussian bounds.

In this section, we fix an ALE Ricci flat metric (Nn, gb) once and for all. Let (g(t))t∈[0,T )

be a solution to the Ricci flow with g(0) ∈ B
C2,α

τ
(gb, ε) with τ ∈ (n−2

2 , n − 2). The main aim

of this section is to establish Gaussian bounds for the heat kernel acting on functions along
the Ricci flow.

As explained in the introduction, we follow the same strategy adopted by Grigor’yan [Gri97]
and Zhang [Zha06].

We denote the heat kernel based at (y, s) ∈ N × [0, T ) associated to the forward heat
equation by K(·, ·, y, s):



























∂tK(·, ·, y, s) = ∆g(t)K(·, ·, y, s), t ∈ (s, T ),

∂tg = −2 Ric(g(t)),

limt→s+ K(·, t, y, s) = δy.

(2.1)

This heat kernel always exists and is positive: see [Gue02].
We also consider its conjugate heat equation: if (x, t) ∈ N × (0, T ) is fixed, then K(x, t, ·, ·)

is the heat kernel based at (x, t) associated to the conjugate backward heat equation,



























∂sK(x, t, ·, ·) = −∆g(s)K(x, t, ·, ·) + Rg(s) K(x, t, ·, ·), s ∈ (t, T ),

∂sg = −2 Ric(g(s)),

lims→t− K(x, t, ·, s) = δx.

(2.2)

We start with the following proposition that estimates the L1 norms of both forward and
backward heat kernels:

Proposition 2.1 (L1-bound). With the setting and notations introduced above, if 0 ≤ s ≤
t < T ,

e−
´ t

s ‖ Rg(t′) ‖C0 dt′ ≤
ˆ

N
K(x, t, y, s) dµg(t)(x) ≤ e

´ t
s ‖ Rg(t′) ‖C0 dt′

, y ∈ N, (2.3)

1 =

ˆ

N
K(x, t, y, s) dµg(s)(y), x ∈ N. (2.4)

Proof. Let (Ωj)j≥0 be an increasing sequence of domains of N with smooth boundary ex-
hausting the manifold N . Let Kj(·, ·, y, s) be the heat kernel based at (y, s) associated to
(2.1) on Ωj with Dirichlet boundary condition. Then, one can prove that (Kj(·, ·, y, s))j≥0 is
an increasing sequence converging locally uniformly to K(·, ·, y, s). By integrating by parts,

11            
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12 Alix Deruelle and Tristan Ozuch

one gets, for some fixed (y, s) ∈ N × [0, T ),

∂t

ˆ

Ωj

Kj(x, t, y, s) dµg(t)(x) =

ˆ

Ωj

∆g(t)Kj(x, t, y, s) − Rg(t)(x)Kj(x, t, y, s) dµg(t)(x)

=

ˆ

∂Ωj

〈

∇g(t)
x Kj(x, t, y, s),n

〉

dσj,g(t)(x)

−
ˆ

Ωj

Rg(t)(x)Kj(x, t, y, s) dµg(t)(x)

≤ −
ˆ

Ωj

Rg(t)(x)Kj(x, t, y, s) dµg(t)(x)

≤ ‖ Rg(t) ‖C0

ˆ

Ωj

Kj(x, t, y, s) dµg(t)(x),

where dσj,g(t) is the induced measure on ∂Ωj by dµg(t). Here, we have used the positivity of
Kj(·, ·, y, s) on the interior of Ωj together with the Dirichlet boundary condition in the third
line. Therefore, by Grönwall’s inequality:

ˆ

Ωj

Kj(x, t, y, s) dµg(t)(x) ≤ e
´ t

t′ ‖ Rg(s) ‖C0 ds

ˆ

Ωj

Kj(x, t
′, y, s) dµg(t′)(x),

for any t ≥ t′ > s. Let j large enough so that y ∈ Ωj and let t′ go to s to get:
ˆ

Ωj

Kj(x, t, y, s) dµg(t)(x) ≤ e
´ t

s ‖ Rg(t′) ‖C0 dt′

,

for any t > s. By letting j tending to +∞, we get a half of the first estimate (2.3), i.e.
ˆ

N
K(x, t, y, s) dµg(t)(x) ≤ e

´ t
s ‖ Rg(t′) ‖C0 dt′

. (2.5)

On the other hand, let (φk)k be any sequence of smooth cut-off functions approximating the

constant function 1 with values into [0, 1] such that limk→+∞ ‖∇g(t′),kφk‖C0 = 0 for k = 1, 2
and uniformly in t′ ∈ [s, t]. Then

∂t

ˆ

N
φk(x)K(x, t, y, s) dµg(t)(x) = −

ˆ

N
∆g(t)φk(x)K(x, t, y, s) dµg(t)(x)

−
ˆ

N
φk(x) Rg(t)(x)K(x, t, y, s) dµg(t)(x)

≥ −e
´ t

s
‖ Rg(t′) ‖C0 dt′

sup
supp(φk)

|∆g(t)φk|

− ‖Rg(t)‖C0

ˆ

N
φk(x)K(x, t, y, s) dµg(t)(x).

Here, we have used (2.5) in the second inequality. Again, by Grönwall’s inequality:
ˆ

N
φk(x)K(x, t, y, s) dµg(t)(x) ≥ e−

´ t
s

‖ Rg(t′) ‖C0 dt′

(

1 − C

ˆ t

s
sup

supp(φk)
|∆g(t′)φk| dt′

)

,

which implies the expected estimate by letting k go to +∞.
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Stability of Ricci-flat ALE metrics along the Ricci flow 13

The second estimate (2.4) is proved similarly: indeed, remark that Kj(x, t, ·, ·) satisfies
(2.2) with Dirichlet boundary condition and the scalar curvature term is absorbed by the
variation of the Riemannian measure.

�

Remark 2.2. In particular, Proposition 2.1 tells us that the heat semigroup associated to
∆g(t) is a bounded operator when interpreted as an operator on L1 and L∞. By interpolation,
one gets for any p ∈ [1,+∞],

‖ut‖Lp(dµg(t)) ≤ e
1
p

´ t
s ‖ Rg(t′) ‖C0 dt′

‖us‖Lp(dµg(s)), t > s,

ut(x) := K(x, t, ·, s) ∗ us.

The next proposition concerns an on diagonal upper bound for the forward heat kernel
along the Ricci flow.

Proposition 2.3 (On diagonal upper bound: L2 → L∞ bound). Let (Nn, gb) be an ALE
Ricci flat metric. Let (g(t))t∈[0,T ) be a solution to the Ricci flow such that g(t) ∈ BC0(gb, ε)
for all t ∈ [0, T ) and such that

ˆ t

s
‖ Rg(t′) ‖C0 dt′ ≤ 1

2
.

Then,

0 < K(x, t, y, s) ≤ C

(t− s)
n
2

, 0 ≤ s < t, x, y ∈ N,

where C = C(n, gb, ε) is a time-independent positive constant.

We start with the following lemma that is crucial to prove Proposition 2.3:

Lemma 2.4 (L1 mean value inequality). Let (Nn, gb) be an ALE Ricci flat metric. Let
(g(t))t∈[0,T ) be a solution to the Ricci flow such that g(t) ∈ BC0(gb, ε) for all t ∈ [0, T ). Then
any nonnegative subsolution u of the heat equation along such a Ricci flow, i.e.

∂tu ≤ ∆g(t)u, on N × (0, T ),

satisfies, for η ∈ (0, 1) and r2 < t such that
´ t

t−r2 ‖ Rg(s) ‖C0 ds ≤ 1
2 ,

sup
P (x,t,ηr)

u ≤ C

 

P (x,t,r)
u dµg(s)ds,

for some positive constant C = C(n, gb, ε, η) and where

P (x, t, r) :=
{

(y, s) ∈ N × [0, T ) | s ∈ (t − r2, t], y ∈ Bgb
(x, r)

}

.

The proof of Lemma 2.4 is inspired by that of Zhang [Zha06, Theorem 5.1] in a Ricci
flow setting. This was already noticed in [DL17] in the context of expanding gradient Ricci
solitons. Therefore, we only sketch a proof of Lemma 2.4 for the convenience of the reader.

Sketch of proof of Lemma 2.4. Let p ∈ [1,+∞). Then the function up is a sub-solution to the
heat equation, i.e.

∂tu
p ≤ ∆g(t)u

p, (2.6)
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on N × (0, T ). Consider any smooth space-time cutoff function ψ supported in P (x, t, r) and
multiply (2.6) by ψ2up and integrate by parts as follows:

ˆ t′

t−r2

ˆ

N
|∇g(s)(ψup)|2g(s) − |∇g(s)ψ|2g(s)u

2p dµg(s)ds =

ˆ t′

t−r2

ˆ

N
|∇g(s)(ψup)|2g(s) − up〈∇g(s)(ψup),∇g(s)ψ〉g(s) + ψup〈∇g(s)ψ,∇g(s)up〉g(s) dµg(s)ds =

ˆ t′

t−r2

ˆ

N
〈∇g(s)(ψup), ψ∇g(s)up〉g(s) + ψup〈∇g(s)ψ,∇g(s)up〉g(s) dµg(s)ds =

ˆ t′

t−r2

ˆ

N
〈∇g(s)(ψ2up),∇g(s)up〉g(s) dµg(s)ds = −

ˆ t′

t−r2

ˆ

N
ψ2up∆g(s)u

p dµg(s)ds,

(2.7)

for any t′ ∈ (t− r2, t]. Now, thanks to (2.6),

−
ˆ t′

t−r2

ˆ

N
ψ2up∆g(s)u

p dµg(s)ds ≤ −
ˆ t′

t−r2

ˆ

N
ψ2up∂su

p dµg(s)ds

= −1

2

ˆ t′

t−r2

ˆ

N
ψ2∂su

2p dµg(s)ds

=
1

2

ˆ t′

t−r2

ˆ

N

(

∂sψ
2 − Rg(s) ψ

2
)

u2p dµg(s)ds− 1

2

ˆ

N
ψ2u2p dµg(t′),

(2.8)

for any t′ ∈ (t− r2, t]. Here we have integrated by parts in time in the third line and we have
used the fact that ψ vanishes at t′ = t− r2.

Hence, combining (2.7) and (2.8) leads to:

ˆ t′

t−r2

ˆ

N
|∇g(s)(ψup)|2g(s) dµg(s)ds+

1

2

ˆ

N
ψ2u2p dµg(t′) ≤

ˆ t′

t−r2

ˆ

N

(

∂sψ
2

2
+ |∇g(s)ψ|2g(s) +

1

2
‖ Rg(s) ‖C0ψ2

)

u2p dµg(s)ds ≤
ˆ t′

t−r2

ˆ

N

(

∂sψ
2

2
+ |∇g(s)ψ|2g(s)

)

u2p dµg(s)ds

+
1

2

ˆ t′

t−r2

‖ Rg(s) ‖C0 ds sup
s∈(t−r2,t′]

ˆ

N
ψ2u2p dµg(s) ≤

ˆ t′

t−r2

ˆ

N

(

∂sψ
2

2
+ |∇g(s)ψ|2g(s)

)

u2p dµg(s)ds+
1

2

ˆ t

t−r2

‖ Rg(s) ‖C0 ds sup
s∈(t−r2,t′]

ˆ

N
ψ2u2p dµg(s).

(2.9)

Notice in particular that (2.9) implies, if
´ t

t−r2 ‖ Rg(s) ‖C0 ds ≤ 1
2 ,

sup
s∈(t−r2,t′]

ˆ

N
ψ2u2p dµg(s) ≤ 4

ˆ t′

t−r2

ˆ

N

(

∂sψ
2

2
+ |∇g(s)ψ|2g(s)

)

u2p dµg(s)ds. (2.10)
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Let τ, σ ∈ (0,+∞) such that τ ≥ σ and τ+σ < r. In particular, P (x, t, τ) ⊂ P (x, t, τ+σ) ⊂
P (x, t, r). Now, choose two smooth functions φ : R+ → [0, 1] and η : R+ → [0, 1] such that

supp(φ) ⊂ [0, τ + σ], φ ≡ 1 in [0, τ ], φ ≡ 0 in [τ + σ,+∞), −c/σ ≤ φ′ ≤ 0,

supp(η) ⊂ [t − (τ + σ)2,+∞), η ≡ 1 in [t − τ2,+∞),

η ≡ 0 in (t− r2, t− (τ + σ)2], 0 ≤ η′ ≤ c/σ2.

Define ψ(y, s) := φ(dgb
(x, y))η(s), for (y, s) ∈ N × (0, T ). Then,

|∇g(s)ψ|g(s) ≤ C

σ
, |∂sψ| ≤ C

σ2
,

for some time-independent positive constant C. Here we have used the fact that g(t) is ε C0-
close to gb. Now, (Nn, g(t))t∈(0,T ) satisfies the following Euclidean Sobolev inequality since

(Nn, gb) does by [Chapter 3, [SC02]] and the fact that g(t) is ε C0-close to gb: there exists
C = C(gb) > 0 such that

(
ˆ

N
(ψup)

2n
n−2 dµg(t)

)
n−2

n

≤ C

ˆ

N
|∇g(t)(ψup)|2g(t) dµg(t), (2.11)

for any t ∈ [0, T ). We are now in a position to follow the proof of [DL17, Proposition 4.3]
very closely: if αn := 1 + 2/n, one gets by Hölder’s inequality together with (2.11),

ˆ

P (x,t,τ)

(

u2p
)αn

dµg(s)ds ≤
ˆ

P (x,t,r)
(ψup)2αn dµg(s)ds

≤
ˆ t

t−r2

(
ˆ

N
(ψup)

2n
n−2 dµg(s)

)
n−2

n
(
ˆ

N
(ψup)2 dµg(s)

)
2
n

ds

≤C sup
s∈(t−r2,t]

(
ˆ

N
(ψup)2 dµg(s)

)
2
n
ˆ

P (x,t,r)
|∇g(s)(ψup)|2g(s) dµg(s)

≤C 1

σ2αn

(

ˆ

P (x,t,τ+σ)
u2p dµg(s)

)αn

,

for some time-independent positive constant C. Here, we have used (2.9) and (2.10) in the
last line together with the fact that ψ is compactly supported in P (x, t, τ + σ). It is now
sufficient to iterate the previous inequality for suitable sequences (pi)i, (ri)i and (τi)i, (σi)i

to reach the desired conclusion.
�

We are in a position to give a proof of Proposition 2.3.

Proof of Proposition 2.3. It suffices to apply Lemma 2.4 together with Proposition 2.1 to the
nonnegative (sub)solution

u(x, t) := K(x, t, y, s),
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for some fixed (y, s) ∈ N × [0, T ) with r2 = (t− s)/2:

K(x, t, y, s) ≤ sup

P

(

x,t, 1
2

√

t−s
2

)

K(·, ·, y, s)

≤ C

(t− s)
n+2

2

ˆ

P (x,t,
√

t−s
2

)
K(x′, t′, y, s) dµg(t′)(x

′)dt′

≤ C

(t− s)
n
2

e
´ t

s
‖ Rg(t′) ‖C0 dt′

,

for some positive constant C = C(n, gb, ε). This ends the proof of the expected estimate since
´ t

s ‖ Rg(t′) ‖C0 dt′ ≤ 1
2 .

�

We now state the main result of this section:

Theorem 2.5 (Gaussian estimate). Let (Nn, gb) be an ALE Ricci flat metric. Let (g(t))t∈[0,T )

be a solution to the Ricci flow such that g(t) ∈ BC0(gb, ε) for all 0 6 s 6 t < T and such that
ˆ t

s
‖ Ric(g(t′))‖C0 dt′ ≤ 1

2n
. (2.12)

Then the heat kernel associated to (2.1) satisfies the following Gaussian estimate:

|K(x, t, y, s)| ≤ C

(t− s)
n
2

exp

{

−
d2

g(s)(x, y)

D(t− s)

}

, 0 ≤ s < t, x, y ∈ N, D > D0, (2.13)

where C = C(n, gb, ε,D) and D0 = D0(n, gb, ε) are time-independent positive constants.

Remark 2.6. The Gaussian weight in (2.13) could be stated in terms of the distance dg(t)(x, y)
instead thanks to Proposition A.2.

Proof. Again, we follow closely the presentation of [DL17, Theorem 5.14]. Define the following
integral quantities for a positive constant D to be chosen later:

E1
D(s, t, z) :=

ˆ

N
|K(x, t, z, s)|2e

2d2
g(t)

(x,z)

D(t−s) dµg(t)(x), s < t, z ∈ N,

E2
D(s, t, z) :=

ˆ

N
|K(z, t, y, s)|2e

2d2
g(s)

(z,y)

D(t−s) dµg(s)(y), s < t, z ∈ N.

The motivation for introducing such quantities follows from the next crucial observation:
by the semi-group property and the triangular inequality,

K(x, t, y, s) =

ˆ

N
K(x, t, z, τ) ·K(z, τ, y, s) dµg(τ)(z)

≤
ˆ

N
K(x, t, z, τ)e

d2
g(τ)

(x,z)

D(t−τ) K(z, τ, y, s)e
d2

g(τ)
(z,y)

D(τ−s) dµg(τ)(z)e
−

d2
g(τ)

(x,y)

D(t−s)

where s < τ := t+s
2 < t. Therefore, by Cauchy-Schwarz inequality, we get the following

”universal” inequality:

|K(x, t, y, s)| ≤ C
√

E1
D(s, τ, y)E2

D(τ, t, x) exp

{

−
d2

g(τ)(x, y)

D(t − s)

}

. (2.14)
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Stability of Ricci-flat ALE metrics along the Ricci flow 17

We claim the following:

Claim 2.7.

E1
D(s, t, ·) + E2

D(s, t, ·) ≤ C

(t − s)n/2
, s < t, D > D0, (2.15)

for some time-independent positive constants C = C(n, gb, ε,D) and D0 = D0(n, gb, ε).

The proof of Claim 2.7 is essentially based on Proposition 2.3 implied by (2.12) and is
virtually identical to the proof of [DL17, Theorem 5.8]: it will therefore be omitted.

Now, thanks to (2.14) together with (2.15) from Claim 2.7, one obtains the expected
Gaussian estimate:

|K(x, t, y, s)| ≤ C

(t − s)
n
2

exp

{

−
d2

g(τ)(x, y)

D(t − s)

}

≤ C

(t − s)
n
2

exp

{

−
d2

g(s)(x, y)

e
1
n ·D(t− s)

}

, 0 ≤ s < t, x, y ∈ N,

for some positive constant C = C(n, gb, ε,D) and any D ≥ D0(n, gb, ε). Here we have used
Proposition A.2 to estimate from below the distance dg(τ)(x, y) in terms of the distance
dg(s)(x, y).

�

2.2. L2 − C0 estimate.

We start by checking that the L2-norms of the Ricci tensor and the Hessian of the potential
function satisfying (1.5) are controlled from above by that of the associated Bakry-Émery
tensor.

Proposition 2.8 (A priori L2 estimate for the Ricci flow). Let (Nn, gb) be an ALE Ricci flat
metric. Let g be a metric in B

C2,α
τ

(gb, ε). Then,

‖ Ric(g)‖L2(e−fg dµg) + ‖∇g,2fg‖L2(e−fg dµg) ≤ C
(

‖ Ric(g) + ∇g,2fg‖L2(e−fg dµg)

)

, (2.16)

for some positive constant C = C(n, gb, ε).

Proof. Let g be a metric in BC2,α
τ

(gb, ε). Then observe that from the Euler-Lagrange equation

(1.5) satisfied by the potential function fg, one gets:

∆gfg − ∇g
∇gfg

fg = −∆gfg − Rg = − trg

(

Ric(g) + ∇g,2fg

)

. (2.17)

Let us apply the Bochner formula to the smooth metric measure space (Nn, g,∇gfg): see
[CLN06, Lemma 1.36] for instance. To do so, let us recall the definition of the weighted
laplacian associated to such a triple (Nn, g,∇gfg) acting on functions:

∆fgu := ∆gu− ∇g
∇gfg

u, u ∈ C2
loc(N).
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18 Alix Deruelle and Tristan Ozuch

With this definition in hand, one gets:

∆fg |∇gfg|2g =2|∇g,2fg|2g + 2
(

Ric(g) + ∇g,2fg

)

(∇gfg,∇gfg)

+ 2〈∇gfg,∇g∆fgfg〉g

=2|∇g,2fg|2g + 2
(

Ric(g) + ∇g,2fg

)

(∇gfg,∇gfg)

− 2
〈

∇gfg,∇g trg

(

Ric(g) + ∇g,2fg

)〉

g
.

Here, we have used (2.17) in the second line. By integrating by parts (with respect to the
weighted measure e−fgdµg) the previous identity, one ends up with:

2‖∇g,2fg‖2
L2(e−fg dµg) = −2

〈

∆fgfg, trg

(

Ric(g) + ∇g,2fg

)〉

L2(e−fg dµg)

− 2

ˆ

N

(

Ric(g) + ∇g,2fg

)

(∇gfg,∇gfg) e−fgdµg

= 2
∥

∥

∥trg

(

Ric(g) + ∇g,2fg

)∥

∥

∥

2

L2(e−fg dµg)

− 2

ˆ

N

(

Ric(g) + ∇g,2fg

)

(∇gfg,∇gfg) e−fgdµg

≤ 2
∥

∥

∥trg

(

Ric(g) + ∇g,2fg

)∥

∥

∥

2

L2(e−fg dµg)

+ ‖ρ2
gb

(

Ric(g) + ∇g,2fg

)

‖C0‖ρ−1
gb

∇gfg‖2
L2(e−fg dµg)

≤ 2
∥

∥

∥trg

(

Ric(g) + ∇g,2fg

)∥

∥

∥

2

L2(e−fg dµg)

+ C(n, gb)‖ρ2
gb

(

Ric(g) + ∇g,2fg

)

‖C0‖∇g,2fg‖2
L2(e−fg dµg).

(2.18)

Here we have used (2.17) in the second line, and Hardy’s inequality from [Min09] is invoked in
the last inequality. In particular, if g lies in a sufficiently C2,α

τ small neighborhood of gb such
that C(n, gb)‖ρ2

gb
(Ric(g)+∇g,2fg)‖ ≤ 1 then the last term on the righthand side of (2.18) can

be absorbed by the lefthand side so that,

‖∇g,2fg‖2
L2 ≤ 2

∥

∥

∥trg

(

Ric(g) + ∇g,2fg

)∥

∥

∥

2

L2
. (2.19)

This ends the proof of the estimate on the Hessian term in (2.16). The bound on the L2-norm
of the Ricci curvature follows by the triangular inequality. �

The next proposition lets us get an a priori C0 estimate on the distance from a Ricci flow
to the origin given by an ALE Ricci flat metric:

Proposition 2.9 (A priori L2 −C0 estimate for the Ricci flow). Let (Nn, gb) be an ALE Ricci
flat metric. Let (g(t))t∈[0,T ) be a solution to the Ricci flow such that g(t) ∈ BC0(gb, ε) and
with bounded curvature for all t ∈ [0, T ).

For t ∈ (0, T ) and 0 < r2 < t, if
´ t

t−r2 ‖ Rg(s) ‖C0 ds ≤ 1
2 and Ric(g(s)) ∈ L2, s ∈ [t − r2, t],

then,

‖ Ric(g(t))‖C0 ≤ Cr− n
2 exp

(

c(n)

ˆ t

t−r2

‖ Rm(g(s))‖C0 ds

)

‖ Ric(g(t − r2)‖L2 , (2.20)
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Stability of Ricci-flat ALE metrics along the Ricci flow 19

for some positive constant C = C(n, gb, ε).

Proof. Thanks to the evolution equation [(A.6), Lemma A.3] satisfied by the Ricci tensor, one

gets that the function u(t) := exp
(

−c(n)
´ t

0 ‖ Rm(g(s))‖C0 ds
)

| Ric(g(t)|2g(t) is a subsolution

to the heat equation, i.e. ∂tu ≤ ∆g(t)u.

Thanks to Lemma 2.4, if r2 < t ≤ T and x ∈ N , one is led to:

sup
Bgb

(x, r
2

)
e−c(n)

´ t
0 ‖ Rm(g(s))‖C0 ds| Ric(g(t))|2g(t) ≤

C

rn+2

ˆ t

t−r2

ˆ

Bgb
(x,r)

e−c(n)
´ s

0 ‖ Rm(g(s′))‖C0 ds′ | Ric(g(s))|2 dµg(s)ds,

where C = C(n, gb, ε) is a positive constant which is independent of space and time variables.
In particular, we find

sup
Bgb

(x, r
2

)
| Ric(g(t))|2g(t) ≤ C

rn+2
ec(n)

´ t
t−r2 ‖ Rm(g(s))‖C0 ds

ˆ t

t−r2

ˆ

Bgb
(x,r)

| Ric(g(s))|2 dµg(s)ds.

(2.21)

This being said, estimate (2.21) implies in particular that

‖ Ric(g(t))‖C0 ≤ C(n, gb, ε)

r
n
2

ec(n)
´ t

t−r2 ‖ Rm(g(s))‖C0 ds sup
t−r2≤s≤t

‖ Ric(g(s))‖L2 . (2.22)

Now, Proposition A.6 gives:

sup
t−r2≤s≤t

‖ Ric(g(s))‖L2 ≤ ec(n)
´ t

t−r2 ‖ Rm(g(s))‖C0 ds‖ Ric(g(t − r2))‖L2 . (2.23)

Combining this fact with (2.22) finally gives

‖ Ric(g(t))‖C0 ≤ C(n, gb, ε)

r
n
2

ec(n)
´ t

t−r2 ‖ Rm(g(s))‖C0 ds‖ Ric(g(t − r2))‖L2 . (2.24)

Then (2.24) establishes the desired estimate (2.20). �

We end this section by an estimate on the decay of the C0-norm of the Ricci tensor along
a Ricci flow satisfying some mild assumptions:

Proposition 2.10. Let (Nn, gb) be an ALE Ricci flat metric. Let (g(t))t∈[0,T ) be a solution
to the Ricci flow such that g(t) ∈ BC0(gb, ε) and with bounded curvature for all t ∈ [0, T ) and
such that

ˆ t

0
‖ Ric(g(t′))‖C0 dt′ ≤ 1

2n
. (2.25)

Then, if p ≥ 1, 0 < s < t < T and Ric(g(s)) ∈ Lp,

‖ Ric(g(t))‖C0 ≤ C

(t − s)
n
2p

‖ Ric(g(s))‖Lp + C sup
t′∈[0,T )

‖ Rm(g(t′))‖C0

ˆ t

s
‖ Ric(g(t′))‖C0 dt′,

(2.26)
for some time-independent positive constant C = C(n, gb, ε, p).

Remark 2.11. Proposition 2.10 will be most useful in case p > n
τ+2 since we will ultimately

consider a solution (g(t))t∈[0,T ) to the Ricci flow such that Ric(g(t)) = O(ρ−τ−2
gb

) for each time
t ∈ [0, T ).
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Proof. The assumptions legitimate the use of Theorem 2.5 through Duhamel’s formula as we
now explain.

According to the evolution equation satisfied by the Ricci curvature along the Ricci flow
given by Lemma (A.3) together with Duhamel’s formula, one can write:

Ric(g(t))(x) =

ˆ

N
〈K(x, t, ·, s),Ric(g(s))〉 dµg(s)

+

ˆ t

s

ˆ

N

〈

K(x, t, ·, t′),Rm(g(t′)) ∗ Ric(g(t′))
〉

dµg(t′) dt
′,

(2.27)

where K(x, t, y, s) denotes the heat kernel associated to the rough Laplacian acting on sym-
metric 2-tensors associated to the one-parameter family of metrics (g(t))t∈[0,T ).

Now, by Kato’s inequality, the operator norm of K(x, t, y, s) is bounded by the heat kernel
acting on functions, i.e.

‖K(x, t, y, s)‖Hom(S2T ∗

y N,S2T ∗

x N) ≤ K(x, t, y, s), (x, y) ∈ N ×N, t > s ≥ 0, (2.28)

where K(x, t, y, s) denotes the heat kernel acting on functions with respect to the family of
metrics g(t) introduced and studied in Section 2.1. In particular, [(2.13), Theorem 2.5] ensures
(once we fix D = D0) that

‖K(x, t, ·, s)‖q
Lq ≤ C(n, gb, ε, q)

(t− s)
nq
2

ˆ

N
exp

{

−q
d2

g(s)(x, y)

D0(t− s)

}

dµg(s)(y)

≤ C(n, gb, ε, q)

(t− s)
nq
2

ˆ

N
exp

{

−q
d2

gb
(x, y)

2D0(t− s)

}

dµgb
(y)

=
C(n, gb, ε, q)

(t− s)
nq
2

ˆ +∞

0
exp

{

−q r2

2D0(t − s)

}

Agb
(x, r) dr,

(2.29)

for 0 < s < t < T, where Agb
(x, r) denotes the (n− 1)-dimensional Hausdorff measure of the

geodesic sphere with respect to the metric gb centered at x of radius r and where C(n, gb, ε, q)
denotes a positive constant that may vary from line to line. Here we have used d2

g(s)(x, y) ≥
1
2d

2
gb

(x, y) for all x, y ∈ N in the last line since by assumption g(s) ∈ BC0(gb, ε). Bishop-

Gromov’s inequality applied to the Ricci-flat metric gb implies that Agb
(x, r) ≤ nωnr

n−1 for
all r > 0 where ωn denotes the n-dimensional Hausdorff measure of the unit ball of Euclidean
space. In particular, a change of variable in the last integral of (2.29) shows that:

‖K(x, t, ·, s)‖q
Lq ≤ C(n, gb, ε, q)

(t − s)
n(q−1)

2

.

Therefore, one gets by Hölder’s inequality and (2.27):

‖ Ric(g(t))‖C0 ≤ sup
x∈N

‖K(x, t, ·, s)‖Lq ‖ Ric(g(s))‖Lp

+ sup
t′∈[0,T )

‖ Rm(g(t′))‖C0

ˆ t

s
‖K(x, t, ·, s)‖L1 ‖ Ric(g(t′))‖C0 dt′

≤ C(n, gb)

(t − s)
n
2p

‖ Ric(g(s))‖Lp + C sup
t′∈[0,T )

‖ Rm(g(t′))‖C0

ˆ t

s
‖ Ric(g(t′))‖C0 dt′,
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Stability of Ricci-flat ALE metrics along the Ricci flow 21

where p, q ≥ 1 are such that p−1 + q−1 = 1 and where C is a positive constant independent
of time. Here we have invoked Proposition 2.1 in the last line.

�

2.3. Weighted estimates.

In this section, we consider an ALE Ricci flat metric (Nn, gb) and prove an a priori C0

estimate on the distance of a Ricci flow (g(t))t∈[0,T ) lying in a small neighborhood BC0(gb, ε)
starting from a metric g(0) ∈ BC2,α

τ
(gb, ε).

To do so, we essentially use the Gaussian estimates proved in Theorem 2.5 via Duhamel’s
formula. We will distinguish short-time from large-time estimates. Recall that from [Shi89a,
Theorem 1.1], if g0 is a complete Riemannian metric on N with curvature bounded by
C0 > 0, then there exists T (n,C0) > 0 such that there exists a smooth complete Ricci
flow (g(t))t∈[0,T (n,C0)] satisfying the conclusions of Proposition A.5. From now on, we define
TShi := T (n,C0).

Lemma 2.12 (Short-time estimates). Let (Nn, gb) be an ALE Ricci flat metric. Let τ ∈
(n−2

2 , n− 2), α ∈ (0,min{1, n − 2 − τ}) and let (g(t))t∈[0,T ) be a solution to the Ricci flow in
a neighborhood BC0(gb, ε) such that g(0) ∈ B

C2,α
τ

(gb, ε) and
ˆ t

0
‖ Ric(g(t′))‖C0 dt′ ≤ 1

2n
. (2.30)

Then for t ∈ [0, T ) ∩ [0, TShi],

‖ Rm(g(t))‖C0,α
τ+2

≤ C(n, gb, ε)e
C(n,gb,ε)·t‖ Rm(g(0))‖C0,α

τ+2
, (2.31)

‖ Ric(g(t))‖
C0,α

τ+2
≤ C(n, gb, ε)e

C(n,gb,ε)·t‖ Ric(g(0))‖
C0,α

τ+2
. (2.32)

Remark 2.13. The proof of Lemma 2.12 uses Theorem 2.5 which explains the assumption
(2.30). Using the maximum principle and suitable barriers in the same spirit as it is done in
[Li18] would have led to the same result without assuming (2.30).

Proof. According to (A.14) from Proposition A.5, the curvature operator is uniformly bounded
on [0, T ) ∩ [0, TShi]. Thanks to the evolution equation satisfied by the curvature operator

[(A.5), Lemma A.3], this implies that the function e−c(n)‖ Rm(g(0))‖C0 ·t| Rm(g(t))|g(t) is a sub-
solution to the heat equation along the Ricci flow in the smooth sense whenever | Rm(g(t))|g(t)

does not vanish. In order to circumvent the case where | Rm(g(t))|g(t) does vanish, we consider

a regularization of the form
√

| Rm(g(t))|2g(t) + ǫ2 for ǫ > 0 and it can be shown that for all

ǫ > 0, the function e−c(n)‖ Rm(g(0))‖C0 ·t
√

| Rm(g(t))|2g(t) + ǫ2 is a subsolution to the heat equa-

tion along the Ricci flow in the smooth sense. In particular, by Duhamel’s formula together
with the maximum principle,

e−c(n)‖ Rm(g(0))‖C0 ·t
√

| Rm(g(t))|2g(t)(x) + ǫ2 ≤
ˆ

N
K(x, t, y, 0)

√

| Rm(g(0))|2g(0)(y) + ǫ2 dµg(0)(y).

By letting ǫ go to 0, the Lebesgue dominated convergence theorem ensures that:

| Rm(g(t))|g(t)(x) ≤ ec(n)‖ Rm(g(0))‖C0 ·t

ˆ

N
K(x, t, y, 0)| Rm(g(0))|g(0)(y) dµg(0)(y)

≤ eCt

ˆ

N
K(x, t, y, 0)| Rm(g(0))|g(0)(y) dµg(0)(y)
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for some positive constant C = C(n, gb, ε) by assumption on g(0). By assumption, [(2.13),
Theorem 2.5] holds true and we get (once we fix D = D0),

| Rm(g(t))|g(t)(x) ≤ C

t
n
2

ˆ

N
exp

{

−
d2

g(0)(x, y)

D0t

}

| Rm(g(0))|g(0)(y) dµg(0)(y)

≤ C‖ Rm(g(0))‖C0
τ+2

ˆ

N
t−

n
2 exp

{

−
d2

gb
(x, y)

2D0t

}

ρ−τ−2
gb

(y) dµgb
(y),

(2.33)

where we have used d2
g(0)(x, y) ≥ 1

2d
2
gb

(x, y) for all x, y ∈ N in the last line. By splitting the

integral on the righthand side of (2.33) in two parts, whether y ∈ Bgb
(p, dgb

(p, x)/2) or not
for some fixed point p ∈ N , one gets:

ˆ

N
t−

n
2 exp

{

−
d2

gb
(x, y)

2D0t

}

ρ−τ−2
gb

(y) dµgb
(y) ≤

t−
n
2 exp

{

−
d2

gb
(p, x)

8D0t

}

ˆ

Bgb
(p,dgb

(p,x)/2)
ρ−τ−2

gb
(y) dµgb

(y)

+
C

(dgb
(p, x) + 1)τ+2

ˆ

Bc
gb

(p,dgb
(p,x)/2)

t−
n
2 exp

{

−
d2

gb
(x, y)

2D0t

}

dµgb
(y).

(2.34)

Now, since τ + 2 < n, the co-area formula together with Bishop-Gromov’s inequality give:

ˆ

Bgb
(p,dgb

(p,x)/2)
ρ−τ−2

gb
(y) dµgb

(y) ≤ C(n)

ˆ dgb
(p,x)/2

0

rn−1

(max{r, 1})τ+2
dr

≤ C(n)
dgb

(p, x)n

(dgb
(p, x) + 1)τ+2

,

(2.35)

where C(n) is a positive constant that may vary from line to line. Combining estimate (2.34)
and the previous integral estimate, one gets:

ˆ

N
t−

n
2 exp

{

−
d2

gb
(x, y)

2D0t

}

ρ−τ−2
gb

(y) dµgb
(y)

≤ C

(

d2
gb

(p, x)

t

)
n
2

exp

{

−
d2

gb
(p, x)

8D0t

}

(dgb
(p, x) + 1)−τ−2 +

C

(dgb
(p, x) + 1)τ+2

≤ C

(dgb
(p, x) + 1)τ+2

,

(2.36)

for some positive constant C independent of time t > 0 that may vary from line to line.
Estimates (2.33) and (2.36) lead to the expected result (2.31) at the level of the C0-norm:

‖ Rm(g(t))‖C0
τ+2

≤ CeC·t‖ Rm(g(0))‖C0
τ+2

, (2.37)

for some positive constant C = C(n, gb, ε).
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Regarding the Cα-seminorm, by a similar reasoning considering difference quotients to-
gether with Duhamel’s formula , one gets schematically if α ∈ (0,min{1, n − 2 − τ}):

ρτ+2+α
gb

[Rm(g(t))]Cα ≤CeC·t‖ρτ+2+α
gb

[Rm(g(0))]Cα ‖C0

+C

ˆ t

0
‖ Rm(g(t′)) ∗ [Rm(g(t′))]Cα ‖C0

τ+2+α
dt′

≤CeC·t‖ Rm(g(0))‖C0,α
τ+2

+CeC·t‖ Rm(g(0))‖C0

ˆ t

0
‖ Rm(g(t′))‖

C0,α
τ+2

dt′,

(2.38)

where we used classical (local) controls of the Cα-norm of a product:

‖fg‖Cα 6 C (‖f‖C0‖g‖Cα + ‖f‖Cα‖g‖C0)

for C > 0, and the multiplicative property of weighted Hölder norms.
Concatenating (2.38) together with (2.37) leads to (2.31) by invoking Grönwall’s inequality.
The proof of (2.32) goes along the same lines by using (A.6) together with (2.31). �

The next lemma takes care of a priori integral-in-time estimates for the weighted C0
τ -norm

of the Ricci curvature.

Lemma 2.14 (A priori large-time C0 estimate). Let (Nn, gb) be an ALE Ricci flat metric.
Let τ ∈ (n−2

2 , n − 2) and let (g(t))t∈[0,T ) be a solution to the Ricci flow in a neighborhood
BC0(gb, ε) such that supt∈[0,T ) ‖ Rm(g(t))‖C0

τ+2
≤ C(n, gb) and

ˆ t

0
‖ Ric(g(t′))‖C0 dt′ ≤ 1

2n
. (2.39)

Then we have

ˆ t

s
‖ Ric(g(t′))‖C0

τ
dt′ ≤ C

(

‖ Ric(g(s))‖C0
τ+2

+

ˆ t

s
‖ Ric(g(s′))‖C0 ds′

)

, 0 ≤ s < t < T,

(2.40)

for some time-independent positive constant C = C(n, gb, ε). In particular, one gets the
following a priori C0 estimate:

‖g(t) − g(s)‖C0
τ

≤ C

(

‖ Ric(g(s))‖C0
τ+2

+

ˆ t

s
‖ Ric(g(s′))‖C0 ds′

)

, 0 ≤ s < t < T. (2.41)

Proof. By arguing as in the proof of Proposition 2.10, one ensures with the help of Duhamel’s
formula that for x ∈ N and t ≥ s ≥ 0,

| Ric(g(t))|g(t)(x) ≤
ˆ

N
K(x, t, ·, s)| Ric(g(s))|g(s) dµg(s)

+

ˆ t

s

ˆ

N
K(x, t, ·, t′)| Rm(g(t′)) ∗ Ric(g(t′))|g(t′) dµg(t′) dt

′.

(2.42)
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By invoking [(2.13), Theorem 2.5] (once we fix D = D0), the first term on the righthand
side of (2.42) can be estimated as follows:

K(x, t, ·, s) ∗ | Ric(g(s))|g(s) :=

ˆ

N
K(x, t, ·, s)| Ric(g(s))|g(s) dµg(s)

≤ C

(t− s)
n
2

ˆ

N
exp

{

−
d2

g(s)(x, y)

D0(t− s)

}

| Ric(g(s))|g(s)(y) dµg(s)(y)

≤ C‖ Ric(g(s))‖C0
τ+2

ˆ

N
(t− s)− n

2 exp

{

−
d2

gb
(x, y)

2D0(t − s)

}

ρ−τ−2
gb

(y) dµgb
(y),

(2.43)

where we have used d2
g(s)(x, y) ≥ 1

2d
2
gb

(x, y) for all x, y ∈ N in the last line together with the

fact that g(t) ∈ BC0(gb, ε) for all t ∈ [0, T ).
Observe that for x 6= y, and n ≥ 3,

ˆ +∞

s
(t− s)− n

2 exp

{

−
d2

gb
(x, y)

2D0(t − s)

}

dt ≤ Cd−n+2
gb

(x, y). (2.44)

Indeed, two changes of variable, translating first the variable ”τ = t − s” then rescaling the
variable ”r := τ

d2
gb

(x,y)”, show that:

ˆ +∞

s
(t− s)− n

2 exp

{

−
d2

gb
(x, y)

2D0(t − s)

}

dt =

ˆ +∞

0
τ− n

2 exp

{

−
d2

gb
(x, y)

2D0τ

}

dτ

=

(

ˆ +∞

0
r− n

2 exp

{

− 1

2D0r

}

dr

)

d−n+2
gb

(x, y)

= Cd−n+2
gb

(x, y).

In particular, by Fubini’s theorem,

ˆ t

s
K(x, t′, ·, s) ∗ | Ric(g(s))|g(s) dt

′ ≤ C‖ Ric(g(s))‖C0
τ+2

ˆ

N
d−n+2

gb
(x, y)ρ−τ−2

gb
(y) dµgb

(y).

(2.45)

By considering regions of the type Bgb
(p, dgb

(p, x)/2), Bgb
(p, 2dgb

(p, x)) \ Bgb
(p, dgb

(p, x)/2)
and N \Bgb

(p, 2dgb
(p, x)) for a point x ∈ N and a fixed point p ∈ N , one gets:

ˆ

Bgb
(p,dgb

(p,x)/2)
d−n+2

gb
(x, y)ρ−τ−2

gb
(y) dµgb

(y)

≤ C(n)d−n+2
gb

(p, x)

ˆ

Bgb
(p,dgb

(p,x)/2)
ρ−τ−2

gb
(y) dµgb

(y)

≤ C(n)ρgb
(x)−τ .

Here we have used the triangular inequality in the first line to ensure that 2dgb
(x, y) ≥

dgb
(p, x) together with estimate (2.35) from the proof of Lemma 2.12. Similarly, since on the

annulus Bgb
(p, 2dgb

(p, x)) \Bgb
(p, dgb

(p, x)/2), one has dgb
(x, y) ≤ 3dgb

(p, x) by the triangular
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inequality, one gets:
ˆ

Bgb
(p,2dgb

(p,x))\Bgb
(p,dgb

(p,x)/2)
d−n+2

gb
(x, y)ρ−τ−2

gb
(y) dµgb

(y)

≤ C(n)d−n+2
gb

(p, x)ρ−τ−2
gb

(x)

ˆ

Bgb
(p,2dgb

(p,x))\Bgb
(p,dgb

(p,x)/2)
dµgb

(y)

≤ C(n)d2
gb

(p, x)ρ−τ−2
gb

(x) ≤ C(n)ρ−τ
gb

(x),

where C(n) is a positive constant that may vary from line to line. Finally,
ˆ

N\Bgb
(p,2dgb

(p,x))
d−n+2

gb
(x, y)ρ−τ−2

gb
(y) dµgb

(y)

≤ C(n)

ˆ

N\Bgb
(p,2dgb

(p,x))
d−n+2

gb
(p, y)ρ−τ−2

gb
(y) dµgb

(y)

≤ C(n)

ˆ +∞

2dgb
(p,x)

r−n+2 (max{r, 1})−τ−2Agb
(p, r) dr

≤ C(n)

ˆ +∞

2dgb
(p,x)

r (max{r, 1})−τ−2 dr

≤ C(n)ρgb
(x)−τ ,

where C(n) denotes a positive constant that may vary from line to line. Here we have used the
triangular inequality in the first line together with the co-area formula and Bishop-Gromov’s
inequality in the antepenultimate line. Combining the three previous basic inequalities lead
to an a priori estimate on the following C0

τ -norm by multiplying across (2.45) by the weight
ρτ

gb
:

ˆ t

s
‖K(x, t′, ·, s) ∗ | Ric(g(s))|g(s)‖C0

τ
dt′ ≤ C‖ Ric(g(s))‖C0

τ+2
. (2.46)

Notice that we heavily use the restriction τ < n− 2 here. We proceed similarly to handle
the second term on the righthand side of (2.42):

ˆ t

s

ˆ t′

s

ˆ

N
K(x, t′, ·, s′)| Rm(g(s′)) ∗ Ric(g(s′))| dµg(s′) ds

′dt′ ≤

C

ˆ t

s

ˆ

N

(

ˆ t

s′

K(x, t′, y, s′) dt′
)

| Rm(g(s′))|(y) dµg(s′)(y)‖ Ric(g(s′))‖C0 ds′

≤ C

(

ˆ t

s
‖ Ric(g(s′))‖C0 ds′

)

ˆ

N
dgb

(x, y)−n+2ρgb
(y)−τ−2 dµgb

(y)

≤ C

(

ˆ t

s
‖ Ric(g(s′))‖C0 ds′

)

ρgb
(x)−τ .

(2.47)

Here, we have used Fubini’s theorem in the second line together with the assumption on
the curvature tensor Rm(g(s′)), s′ ∈ [0, T ) in the penultimate line which implies that the
curvature tensor Rm(g(s′)) decays as fast as ρ−τ−2

gb
uniformly in time.
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Based on (2.42), estimates (2.46) and (2.47) lead directly to the desired estimate (2.40).
Finally, (2.41) is proved with the help of (2.40) by noticing that:

‖g(t) − g(s)‖C0
τ

≤
ˆ t

s
‖ Ric(g(t′))‖C0

τ
dt′.

�

The following lemma proves an a priori weighted C0,α estimate on the Ricci tensor of a
solution of the Ricci flow C2,α

τ -close to a stable ALE Ricci flat metric.

Lemma 2.15 (A priori weighted C0,α estimate on Ricci curvature). Let (Nn, gb), n ≥ 4, be
an ALE Ricci flat metric. Let τ ∈ (n−2

2 , n − 2), α ∈ (0, 1) and let (g(t))t∈[0,T ) be a solution
to the Ricci flow in a neighborhood BC2,α

τ
(gb, ε) with uniformly bounded covariant derivatives,

i.e. ‖∇g(t),k Rm(g(t))‖C0 ≤ Ck, k ≥ 1 and such that
ˆ t

0
‖ Ric(g(t′))‖C0 dt′ ≤ 1

2n
. (2.48)

Then we have the following estimate,

‖ Ric(g(t))‖C0
τ+2

≤ C

(

‖ Ric(g(s))‖C0
τ+2

+

ˆ t

s
‖ Ric(g(t′))‖C0 dt′

)

, 0 ≤ s < t < T, (2.49)

for some time-independent positive constant C = C(n, gb, ε).
Moreover, if α ∈ (0,min{1, n − 2 − τ}) then for any η ∈ (0, 1):

‖ Ric(g(t))‖C0,α
τ+2

≤ Cη

(

‖ Ric(g(s))‖C0,α
τ+2

+

ˆ t

s
‖ Ric(g(t′))‖1−η

C0 dt′
)

, 0 ≤ s < t < T. (2.50)

Proof. Similarly to the beginning of the proof of Lemma 2.14, we use Duhamel’s formula as
described in (2.27) to estimate the C0

τ+2 norm of the Ricci curvature along such a Ricci flow.
As in (2.42) in the proof of Lemma 2.14, using the Gaussian bounds (2.13) from Theorem

2.5 with D = D0 fixed once and for all together with the semigroup domination property
(2.28) leads us to:

∣

∣

∣

∣

ˆ

N
〈K(x, t, ·, s),Ric(g(s))〉 dµg(s)

∣

∣

∣

∣

g(t)

≤ C

(t− s)
n
2

ˆ

N
exp

{

−
d2

g(0)(x, y)

D0(t− s)

}

| Ric(g(s))|g(s)(y) dµg(s)(y)

≤ C‖ Ric(g(s))‖C0
τ+2

ˆ

N
(t− s)− n

2 exp

{

−
d2

gb
(x, y)

2D0(t − s)

}

ρ−τ−2
gb

(y) dµgb
(y).

(2.51)

Here we have used the fact that gb and g(0) are uniformly equivalent (due to their ε close-
ness). By splitting the integral on the righthand side of (2.51) in two parts, whether y ∈
Bgb

(p, dgb
(p, x)/2) or not for some fixed point p ∈ N as in the proof of (2.34), one gets:

ˆ

N
(t− s)− n

2 exp

{

−
d2

gb
(x, y)

2D0(t− s)

}

ρ−τ−2
gb

(y) dµgb
(y) ≤ C

(dgb
(p, x) + 1)τ+2

, (2.52)

for some positive constant time-independent C that may vary from line to line. Here, we have
used the fact that τ + 2 < n.
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Concatenating estimates (2.51) and (2.52) give the following estimates in terms of the initial
data:

∥

∥

∥

∥

ˆ

N
〈K(x, t, ·, s),Ric(g(s))〉 dµg(s)

∥

∥

∥

∥

C0
τ+2

≤ C‖ Ric(g(s))‖C0
τ+2

, t > s ≥ 0. (2.53)

This estimate holds for any one-parameter family of tensors lying in C0
τ+2. We proceed

similarly to estimate the second term on the right hand side of (2.42):

∥

∥

∥

∥

∥

ˆ t

s

ˆ

N

〈

K(x, t, ·, t′),Rm(g(t′)) ∗ Ric(g(t′))
〉

dµg(t′) dt
′

∥

∥

∥

∥

∥

C0
τ+2

≤ C

ˆ t

s
‖ Rm(g(t′)) ∗ Ric(g(t′))‖C0

τ+2
dt′

≤ C sup
t′∈[s,t]

‖ Rm(g(t′))‖C0
2

ˆ t

s
‖ Ric(g(t′))‖C0

τ
dt′

≤ C

(

‖ Ric(g(s))‖C0
τ+2

+

ˆ t

s
‖ Ric(g(t′))‖C0 dt′

)

.

(2.54)

Here, we apply (2.53) to the family of tensors Rm(g(t′)) ∗ Ric(g(t′)) in the first line and we
use the fact that g(t) is close to gb in the C2

τ -topology in the penultimate line which implies
in particular that the curvature tensor Rm(g(s)) decays as fast as ρ−2

gb
uniformly in time.

Finally, [(2.40), Lemma 2.15] is invoked in the last line. Notice that we have not used the
whole strength of the decay of the curvature tensor. The proof of (2.49) is now completed.

The proof of the a priori estimate (2.50) on the C0,α
τ+2 norm of the Ricci tensor goes along

the same lines as the C0
τ+2 a priori estimate we just proved by using difference quotients under

the restriction on α ∈ (0, 1) so that τ + 2 + α < n.
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Indeed, under this restriction on α, we get schematically:

ρτ+2+α
gb

[Ric(g(t))]Cα ≤C‖ρτ+2+α
gb

[Ric(g(s))]Cα ‖C0 + C

ˆ t

s
‖ Rm(g(t′)) ∗ [Ric(g(t′))]Cα‖C0

τ+2+α
dt′

+ C

ˆ t

s
‖[Rm(g(t′))]Cα ∗ Ric(g(t′))‖C0

τ+2+α
dt′

≤C‖ Ric(g(s))‖
C0,α

τ+2
+ C

ˆ t

s
‖ Rm(g(t′)) ∗ [Ric(g(t′))]Cα‖C0

τ+2+α
dt′

+ C sup
t′∈[s,t]

‖ρα
gb

[Rm(g(t′))]Cα ‖C0
2

ˆ t

s
‖ Ric(g(t′))‖C0

τ
dt′

≤C‖ Ric(g(s))‖C0,α
τ+2

+ C

ˆ t

s
‖ Rm(g(t′)) ∗ [Ric(g(t′))]Cα‖C0

τ+2+α
dt′

+ C

(

‖ Ric(g(s))‖C0
τ+2

+

ˆ t

s
‖ Ric(g(t′))‖C0 dt′

)

≤C‖ Ric(g(s))‖
C0,α

τ+2
+ C

ˆ t

s
‖ Rm(g(t′)) ∗ [Ric(g(t′))]Cα‖C0

τ+2+α
dt′

+ C

ˆ t

s
‖ Ric(g(t′))‖C0 dt′.

(2.55)

Here we have used Lemma 2.14 in the third inequality.
In order to handle the penultimate integral on the righthand side of (2.55), we proceed as

follows: by interpolation together with Hölder inequality,

ˆ t

s
ρgb

(x)α[Ric(g(t′))]Cα(x) dt′ ≤ Cα

ˆ t

s
‖ Ric(g(t′))‖1−α

C0 ‖∇g(t′) Ric(g(t′))‖α
C0

1
dt′

≤Cα

(

ˆ t

s
‖ Ric(g(t′))‖C0 dt′

)1−α

·
(

ˆ t

s
‖∇g(t′) Ric(g(t′))‖C0

1
dt′
)α (2.56)

for some time-independent positive constant Cα. Now, by interpolation inequalities from
Lemma A.8, we have for any k ≥ 2:

‖∇g(t′) Ric(g(t′))‖C0
1

≤ Ck‖ Ric(g(t′))‖1− 1
k

C0
k

k−1

,

since we assume all the covariant derivatives of the curvature tensor to be bounded uniformly
in time.

Therefore, by Hölder’s inequality, if k ≥ 2 is sufficiently large so that 1 − 1
τ >

1
k ,

ˆ t

s
‖∇g(t) Ric(g(t′))‖C0

1
dt′ ≤Ck

ˆ t

s
‖ Ric(g(t′))‖1− 1

k

C0
k

k−1

dt′

≤Ck

(

ˆ t

s
‖ Ric(g(t′))‖C0

τ
dt′
)

1
τ
(

ˆ t

s
‖ Ric(g(t′))‖

1− τ
k(τ−1)

C0 dt′
)1− 1

τ

.

(2.57)
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Now, by Lemma 2.14 together with (2.56) and (2.57), one gets:
ˆ t

s
ρgb

(x)α[Ric(g(t′))]Cα (x) dt′ ≤Ck,α

(

‖ Ric(g(s))‖C0
τ

+

ˆ t

s
‖ Ric(g(t′))‖C0 dt′

)

+ Ck,α

ˆ t

s
‖ Ric(g(t′))‖

1− τ
k(τ−1)

C0 dt′,

(2.58)

which implies the expected estimate (2.50) and ends the proof. �

We end this section by establishing an a priori C2,α
τ -estimate on g(t) − gb, t ∈ [0, T ) as long

as g(t) ∈ BC2,α
τ

(gb, ε).

Lemma 2.16 (A priori weighted C2,α
τ estimate). Let (Nn, gb), n ≥ 4, be an ALE Ricci

flat metric. Let τ ∈ (n−2
2 , n − 2), α ∈ (0, 1) and let (g(t))t∈[0,T ) be a solution to the

Ricci flow in a neighborhood BC2,α
τ

(gb, ε) with uniformly bounded covariant derivatives, i.e.

supt∈[0,T ) ‖∇g(t) Rm(g(t))‖C0 ≤ Ck, k ≥ 1, and such that
ˆ t

0
‖ Ric(g(t′))‖C0 dt′ ≤ 1

2n
. (2.59)

Then for η ∈ (0, 1) and α ∈ (0,min {1, τ − 1, n− 2 − τ}):

‖g(t) − g(s)‖C2,α
τ

≤ Cη

(

‖ Ric(g(s))‖C0,α
τ+2

+

ˆ t

s
‖ Ric(g(t′))‖1−η

C0 dt′
)

, 0 ≤ s < t < T,

(2.60)

for some time-independent positive constant Cη = C(n, gb, ε, η).

Proof. By elliptic regularity, it is sufficient to establish an a priori bound on the C0,α
τ+2-norm

of ∆gb
(g(t)−gb) or equivalently ∆g(t)(g(t)−gb) since g(t) is ε-close to gb in the C2,α

τ -topology.
Indeed, observe that if h(t) := g(t) − gb, then schematically,

∆g(t)h(t) − ∆gb
h(t) = ∇gb,2h(t) ∗ h(t) + ∇gbh(t) ∗ ∇gbh(t),

which implies

‖∆gb
h(t)‖C0,α

τ+2
≤ ‖∆g(t)h(t)‖C0,α

τ+2
+ c(n)‖h(t)‖C2,α

τ
‖h(t)‖C1 .

In particular, (A.21) from the proof of Lemma A.7 leads to the following estimate on the
C0

τ+2 estimate:

‖∆g(t)(g(t) − g(s))‖C0
τ+2

≤ 2‖ Ric(g(s))‖C0
τ+2

+ 2‖ Ric(g(t))‖C0
τ+2

+ sup
t′∈[s,t]

‖ Rm(g(t′))‖C0
2

ˆ t

s
‖ Ric(g(t′))‖C0

τ
dt′

+
2
∑

k=0

ˆ t

s
‖∇g(t′),k(g(t′) − g(s))‖C0

2
‖∇g(t′),2−k Ric(g(t′))‖C0

τ
dt′.

(2.61)

Invoking Lemmata 2.14 and 2.15, the proof of (2.60) with α = 0 ends provided τ ≥ 2.

Indeed, in order to bound the norms ‖∇g(t′),k(g(t′) − g(s))‖C0
2
, k = 0, 1, 2, uniformly in time,

this requires either n ≥ 6 or n = 5 by restricting τ accordingly.
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Arguing as in (2.61) leads to the desired expected estimate on ‖∆g(t)(g(t) − gb)‖C0,α
τ+2

by

using Lemma (A.7) instead. Indeed, we arrive at the following estimate:

‖∆g(t)(g(t) − g(s))‖C0,α
τ+2

≤C

(

‖ Ric(g(s)‖C0,α
τ+2

+ ‖ Ric(g(t))‖C0,α
τ+2

)

+ C sup
s≤t′≤t

‖ Rm(g(t′))‖C0,α
τ+2

ˆ t

s
‖ Ric(g(t′))‖C0,α dt′

+ C sup
s≤t′≤t

‖∇g(t′),2(g(t′) − g(s))‖
C0,α

τ+2

ˆ t

s
‖ Ric(g(t′))‖C0,α dt′

+ C sup
s≤t′≤t

‖∇g(t′)(g(t′) − g(s))‖
C0,α

τ+1

ˆ t

s
‖∇g(t′) Ric(g(t′))‖

C0,α
1

dt′

≤Cη

(

‖ Ric(g(s))‖C2,α
τ+2

+

ˆ t

s
‖ Ric(g(t′))‖1−η

C0 dt′
)

+ C

ˆ t

s
‖∇g(t′) Ric(g(t′))‖C0,α

1
dt′,

(2.62)

if α ∈ (0,min{1, n − 2 − τ}) and η ∈ (0, 1). Here we have invoked Lemma 2.15 in the second
inequality which explains the restriction on α. Now, if α ∈ (0,min{1, τ − 1}), a similar
reasoning that led to (2.58) in the proof of Lemma 2.15 gives an estimate of the last integral

on the righthand side of (2.62) as follows if γ ∈
(

0, 1 − 1+α
τ

)

and x ∈ N :

ρgb
(x)1+α

ˆ t

s
|[∇g(s) Ric(g(s))]Cα |(x) ds ≤ Cα,γ

ˆ t

s
‖ Ric(g(t′))‖

1+α
τ

C0
τ

‖ Ric(g(t′))‖1−γ− 1+α
τ

C0 dt′

≤Cα,γ

(

ˆ t

s
‖ Ric(g(t′))‖C0

τ
dt′
)

1+α
τ

·
(

ˆ t

s
‖ Ric(g(t′))‖1−γ τ

τ−1−α

C0 dt′
)1− 1+α

τ

.

The case α = 0 is handled similarly. Therefore, if η ∈ (0, 1), an application of Lemma 2.14
leads us to,

ˆ t

s
‖∇g(t′) Ric(g(t′))‖C0,α

1
dt′ ≤Cα,η

(

‖ Ric(g(s))‖C0
τ

+

ˆ t

s
‖ Ric(g(t′))‖C0 dt′

)

+ Cα,η

ˆ t

s
‖ Ric(g(t′))‖1−η

C0 dt′

≤Cα,η

(

‖ Ric(g(s))‖C0
τ

+

ˆ t

s
‖ Ric(g(t′))‖1−η

C0 dt′
)

in case α ∈ (0,min{1, n − 2 − τ, τ − 1}) and this ends the proof of the desired estimate.
�

3. Stability of Ricci-flat ALE metrics

3.1. A stability result.

Let us now use the  Lojasiewicz inequality (0.2) to study the stability of Ricci-flat ALE
metrics.
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Stability of Ricci-flat ALE metrics along the Ricci flow 31

Definition 3.1. A Ricci-flat ALE metric (Nn, gb) is stable if it is a local maximizer of λALE.
A Ricci-flat ALE metric (Nn, gb) is unstable if it is not stable.

From now on, we make the following assumption.

In a C2,α
τ (gb)-neighborhood B

C2,α
τ

(gb, εŁ) of gb, an L2- Lojasiewicz inequality is satisfied: for

any metric g in B
C2,α

τ
(gb, εŁ), we have

|λALE(g)|2−θ ≤ C‖∇λALE(g)‖2
L2(gb), (3.1)

for some θ ∈ (0, 1).
The purpose of this section is to give a proof of the following stability result: in the stable

case, just like in [Has12, HM14] or [KP20], the Ricci flow converges to a Ricci-flat metric at
a particular rate.

Theorem 3.2. Let n ≥ 4 and τ ∈ (n−2
2 , n − 2). Let α ∈ (0,min {1, τ − 1, n − 2 − τ}). Let

(Nn, gb) be a stable Ricci-flat ALE metric such that inequality (3.1) holds on a neighborhood
B

C2,α
τ

(gb, εŁ) with exponent θ ∈ (0, 1).

Then for every ε ∈ (0, εŁ), there exists δ > 0 such that the Ricci flow starting at any metric
in BC2,α

τ
(gb, δ) stays in BC2,α

τ
(gb, ε) and converges to a Ricci-flat metric g∞ in BC2,α

τ
(gb, ε) in

the C2,α′

τ ′ -topology for any τ ′ ∈ (n−2
2 , τ) and α′ ∈ (0, α).

Moreover there exists a positive constant C = C(n, gb, ε, θ) such that

‖g(t) − g∞‖C0 ≤ Ct
− θ

2(1−θ) , t ≥ 1, (3.2)

and
ˆ +∞

0
‖ Ric(g(s))‖C0 + ‖ Ric(g(s))‖L2 ds ≤ C(n, gb, ε, θ)

(

δ + |λALE(g(0))| θ
2

)

. (3.3)

Remark 3.3. The convergence in which Theorem 3.2 takes place is reminiscent of the con-
vergence result obtained in [Li18, Theorem 5.1]. However, unless the background Ricci flat
metric (Nn, gb) is flat, the solution (Nn, g(t))t≥0 we provide is Type IIb, i.e.

lim sup
t→+∞

t| Rm(g(t))|g(t) = +∞.

Because of this fact, it is unclear if one can get a convergence for all rescaled covariant
derivatives of the metric as in [Li18, Theorem 5.1].

To end this section, let us discuss the need for Gaussian bounds on the heat kernel given by
Theorem 2.5. In Proposition 3.6, we start by proving an a priori C0 estimate on the distance
of a Ricci flow (g(t))t∈[0,T ) to the origin gb lying in a small neighborhood BC2,α

τ
(gb, ε).

At this stage, one is tempted to use appropriate interpolation inequalities together with
the a priori L2 bound on Ric(g(t)), t ∈ [0, T ), established in Lemma 3.7 to get such a time-
independent a priori C0

τ bound on g(t) − gb, t ∈ [0, T ). Let us apply the Gagliardo-Nirenberg
interpolation inequalities [Aub82, Theorem 3.70, Chapter 3] which can be adapted to (Nn, gb),
to the tensor ∂tg with p = ∞, j = 0, r = ∞, q = 2 and m ≥ 1 to get:

ρgb
(x)τ ‖∂tg‖C0(Bgb

(x,ρgb
(x)/4)) ≤ C(n, gb)‖∂tg‖1−a

L2 · ‖∂tg‖a
Cm

τ+2
· ρgb

(x)τ−a(m+τ+2),

where a ∈ (0, 1) is such that (2m + n)a = n and if (g(t))t∈[0,T ) is assumed to stay in a fixed

neighborhood B
Cm+2,α

τ
(gb, ε) of gb for which ∂tg = −2 Ric(g(t)) ∈ L2. This estimate already
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32 Alix Deruelle and Tristan Ozuch

shows that it asks for too much regularity of the solution. Moreover, one needs to ensure the
exponent τ − a(m+ τ + 2) to be non-positive which constrains τ to lie below n

2 · m+2
m . Worse,

the application of Lemma 3.7 requires the exponent η (which equals a here) to be strictly less
than θ

2−θ , this in turn restricts the range of the exponent θ in the  Lojasiewicz inequality from
Theorem 1.12 which is uncheckable in general.

For all these reasons, we somewhat proceed more directly by using the heat kernel estimates
from Section 2.1 via Duhamel’s formula.

3.2. Proof of Theorem 3.2.

We first show that given ε as in the statement of Theorem 3.2, there exists δ > 0 such that
the Ricci flow starting at any metric g(0) in B

C2,α
τ

(gb, δ) stays in B
C2,α

τ
(gb, ε) and exists for

all time.
Let g(0) ∈ BC2,α

τ
(gb, δ) with δ < ε to be constrained later and let (Nn, g(t))t∈[0,TShi] be Shi’s

solution [Shi89a, Theorem 1.1] with

TShi :=
ε(n)

supN | Rm(g(0))|g(0)
≥ ε(n)

C(n, gb, ε)
=: T (n, gb) > 0, (3.4)

which exists since g(0) is ε-close to gb in the C2,α
τ -topology.

We define the maximal time of existence of this solution to the Ricci flow with respect to
the C2,α

τ -topology as follows:

Tmax := sup
{

T > 0 | g(t) ∈ BC2,α
τ

(gb, ε), ∀t ∈ [0, T )
}

.

We start with the following proposition:

Proposition 3.4. There exists δ(n, gb, ε) > 0 such that for 0 < δ ≤ δ(n, gb, ε), one has
Tmax ≥ T (n, gb) > 0 and the set

{

T > 0 | ∀t ∈ [0, T ), g(t) ∈ B
C2,α

τ
(gb, ε)

}

,

is open.

Remark 3.5. The proof of Proposition 3.4 does not use the stability of (Nn, gb).

Proof of Proposition 3.4. We only prove the fact that Tmax ≥ T (n, gb), since the proof of the
openness of the set of solutions is very similar and will therefore be omitted. All along this
proof, the constant C(n, gb) may change from line to line, but only depends on n and gb.

According to Propositions A.5 and A.6,

‖ Rm(g(t))‖C0 ≤ 2‖ Rm(g(0))‖C0 ≤ C(n, gb),

‖ Ric(g(t))‖C0 ≤ eC(n,gb)·t‖ Ric(g(0))‖C0 ≤ C(n, gb)δ,
(3.5)

for t ∈ [0, TShi]. In particular, if t ∈ [0, T (n, gb)],

‖g(t) − gb‖C0 ≤ 2

ˆ t

0
‖ Ric(g(s))‖C0 ds+ ‖g(0) − gb‖C0 ≤ C(n, gb)δ < ε,

if δ is chosen small enough. Moreover, we choose δ small enough so that
´ t

0 ‖ Ric(g(s))‖C0 ds ≤
1

2n . Thanks to this choice, Lemma 2.12 is applicable and gives us ‖ Ric(g(t))‖C0,α
τ+2

≤ C(n, gb)δ

for t ∈ [0, T (n, gb)]. By integrating in time this inequality and by reducing δ once more if
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necessary, one gets for t ∈ [0, T (n, gb)] that ‖g(t) − gb‖C0
τ
< ε (we actually get a stronger

decay in space but we do not use this fact as it will not be preserved for large time).
Finally, we invoke Lemma A.7 to get an a priori bound on the full C2,α

τ -norm. Indeed, with
0 =: s < t ≤ T (n, gb), Lemma A.7 leads to:

‖∆g(t)(g(t) − g(0))‖C0,α
τ+2

≤ ‖ Ric(g(0))‖C0,α
τ+2

+ ‖ Ric(g(t))‖C0,α
τ+2

+

ˆ t

0
‖ Rm(g(t′))‖

C0,α
τ+2

‖ Ric(g(t′))‖C0,α dt′ +

ˆ t

0
‖∇g(t′) Ric(g(t′))‖

C0,α
1

‖g(t′) − g(0)‖
C2,α

τ
dt′

+

ˆ t

0
‖ Ric(g(t′))‖C0,α ‖g(t′) − g(0)‖

C2,α
τ

dt′

≤ ‖ Ric(g(0))‖
C0,α

τ+2
+ C(n, gb, ε)e

C(n,gb,ε)·t‖ Ric(g(0))‖
C0,α

τ+2

+ C(n, gb, ε)

ˆ t

0
eC(n,gb,ε)·t′‖ Rm(g(0))‖C0,α

τ+2
‖ Ric(g(0))‖C0,α

τ+2
dt′

+

ˆ t

0
‖∇g(t′) Ric(g(t′))‖C0,α

1
‖g(t′) − g(0)‖C2,α

τ
dt′

+ C(n, gb, ε) sup
t′∈[0,t]

‖g(t′) − g(0)‖C2,α
τ

ˆ t

0
eC(n,gb,ε)·t′‖ Ric(g(0))‖C0,α

τ+2
dt′

≤C(n, gb, ε)

(

1 + sup
t′∈[0,t]

‖g(t′) − g(0)‖
C2,α

τ

)

‖ Ric(g(0))‖
C0,α

τ+2

+ sup
t′∈[0,t]

‖g(t′) − g(0)‖
C2,α

τ

ˆ t

0
‖∇g(t′) Ric(g(t′))‖

C0,α
1

dt′

≤C(n, gb, ε)

(

1 + sup
t′∈[0,t]

‖g(t′) − g(0)‖C2,α
τ

)

δ

+ sup
t′∈[0,t]

‖g(t′) − g(0)‖C2,α
τ

ˆ t

0
‖∇g(t′) Ric(g(t′))‖C0,α

1
dt′.

Here we have used Lemma 2.12 in the second inequality and t 6 T (n, gb) and the inequality
‖ · ‖C0,α 6 ‖ · ‖C0,α

τ+2
together with the fact that ‖ Ric(g(0))‖C0,α

τ+2
≤ C(n, gb)δ. Observe that

thanks to [(A.15), Proposition A.5],

ˆ t

0
‖∇g(t′) Ric(g(t′))‖C0

1
dt′ ≤C

ˆ t

0

‖ Ric(g(0))‖C0
1√

t′
dt′

≤C‖ Ric(g(0))‖C0
τ+2

≤C‖g(0) − gb‖C2,α
τ
,

(3.6)

for some positive constant C = C(n, gb, ε) that may vary from line to line.
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Similarly,
ˆ t

0
ρ1+α

gb
[∇g(t′) Ric(g(t′))]Cα dt′

≤C

ˆ t

0
ρ1+α−(τ+2)

gb
‖∇g(t′) Ric(g(t′))‖1−α

C0
τ+2

‖∇g(t′),2 Ric(g(t′))‖α
C0

τ+2
dt′

≤C‖ Ric(g(0))‖C0
τ+2

ˆ t

0

1

t′
1−α

2
+α

dt′

≤C‖ Ric(g(0))‖C0
τ+2

≤C‖g(0) − gb‖C2,α
τ
,

(3.7)

for some positive constant C = C(n, gb, ε) that may vary from line to line. Here we have used
that 1 + α− (τ + 2) ≤ 0 since 0 < α < 1 and τ is positive.

Therefore, as an intermediate conclusion, we obtain:

‖∆g(t)(g(t) − g(0))‖C0,α
τ+2

≤C(n, gb, ε)δ

(

1 + sup
t′∈[0,t]

‖g(t′) − g(0)‖C2,α
τ

)

. (3.8)

Now, observe that if h(t) := g(t) − g(0), then schematically,

∆g(t)h(t) − ∆g(0)h(t) = ∇g(0),2h(t) ∗ h(t) + ∇g(0)h(t) ∗ ∇g(0)h(t),

which implies

‖∆g(0)h(t)‖C0,α
τ+2

≤ ‖∆g(t)h(t)‖C0,α
τ+2

+ C(n, gb)‖h(t)‖C2,α
τ

‖h(t)‖C1 . (3.9)

Plugging (3.8) in the previous estimate (3.9) leads to:

‖∆g(0)h(t)‖
C0,α

τ+2
≤ C(n, gb, ε)δ

(

1 + sup
t′∈[0,t]

‖h(t′)‖
C2,α

τ

)

+ C(n, gb)‖h(t)‖
C2,α

τ
‖h(t)‖C1 .

According to elliptic Schauder estimate applied to the background initial metric g(0), one

gets ‖h(t)‖C2,α
τ

≤ C(n, gb, ε)

(

‖∆g(0)h(t)‖C0,α
τ+2

+ ‖h(t)‖C0
τ

)

which leads to:

‖h(t)‖C2,α
τ

≤ C(n, gb, ε)δ

(

1 + sup
t′∈[0,t]

‖h(t′)‖C2,α
τ

)

+ C(n, gb)‖h(t)‖C2,α
τ

‖h(t)‖C1 . (3.10)

Notice that (3.6) and (3.7) imply a C1,α-estimate on g(t) − g(0) by integrating over
[0, T (n, gb)]: supt′∈[0,T (n,gb)] ‖h(t′)‖C1,α ≤ C(n, gb, ε)δ.

We are then in a position to conclude since this previous fact combined with (3.10) imply
if δ ≤ δ(n, gb, ε):

‖h(t)‖
C2,α

τ
≤ C(n, gb, ε)δ

(

1 + sup
t′∈[0,t]

‖h(t′)‖
C2,α

τ

)

, t ∈ [0, T (n, gb)]. (3.11)

Considering the function in time supt′∈[0,t] ‖h(t′)‖
C2,α

τ
, one gets, by choosing δ ≤ δ(n, gb, ε)

sufficiently small that ‖h(t)‖C2,α
τ

≤ C(n, gb, ε)δ for all t ∈ [0, T (n, gb)] which by the triangular

inequality leads to the expected result, i.e. g(t) − gb ∈ BC2,α
τ

(gb, ε) for all t ∈ [0, T (n, gb)]. �

The next result consists in showing a priori estimates on the C2,α
τ -norm of our solution

which are time-independent. This is where the  Lojasiewciz inequality comes into play.
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Proposition 3.6. The set

{

T > 0 | ∀t ∈ [0, T ), g(t) ∈ B
C2,α

τ
(gb, ε)

}

,

is closed. More precisely, there exist time-independent positive constants C = C(n, gb, ε, θ)

and C = C(n, gb, ε, θ, η), η ∈
(

0, θ
2−θ

)

, such that for t ∈ [0, T ):

ˆ t

0
‖ Ric(g(t′))‖C0 dt′ ≤ C(n, gb, ε, θ)

(

δ + |λALE(g(0))| θ
2

)

, (3.12)

‖g(t) − g(0)‖C0
τ

≤ C(n, gb, ε, θ)
(

δ + |λALE(g(0))| θ
2

)

, (3.13)

‖g(t) − g(0)‖C2,α
τ

≤ C(n, gb, ε, θ, η)
(

δ1−η + |λALE(g(0))| θ
2

(1+η)−η
)

. (3.14)

Before we prove Proposition 3.6, we establish one more crucial lemma which gives an a
priori L2 control on the distance of a Ricci flow from the origin given by a stable Ricci flat
ALE metric:

Lemma 3.7 (A priori L2 estimate for the Ricci flow). Let (Nn, gb) be a stable ALE Ricci
flat metric such that inequality (3.1) holds on a neighborhood B

C2,α
τ

(gb, εŁ) with exponent

θ ∈ (0, 1). Let (g(t))t∈[0,T ) be a solution to the Ricci flow in BC2,α
τ

(gb, ε), ε < εŁ. Then, one

has the following decay in time:

C−1

ˆ t

s
‖ Ric(g(t′)) + ∇g(t′),2fg(t′)‖2

L2

(

e
−f

g(t′)dµg(t′)

) dt′ ≤ |λALE(g(s))|

≤ |λALE(g(0))|
(1 + C|λALE(g(0))|1−θ · s)1+βθ

, 0 ≤ s < t < T, βθ :=
θ

1 − θ
,

(3.15)

for some positive constant C = C(n, gb, ε, θ) independent of time.
In particular, one has the following uniform energy bound if 0 ≤ s < t < T :

ˆ t

s
‖ Ric(g(t′))‖2

L2 + ‖∇g(t′),2fg(t′)‖2
L2 dt′ ≤ C|λALE(g(0))|

(1 + C|λALE(g(0))|1−θ · s)1+βθ
. (3.16)

Finally, if η ∈
[

0, θ
2−θ

)

, one has

ˆ t

s
‖ Ric(g(t′))‖1−η

L2 + ‖∇g(t′),2fg(t′)‖1−η
L2 dt′ ≤ C|λALE(g(s))| θ

2
(1+η)−η , 0 ≤ s < t < T,

(3.17)

for some positive constant C = C(n, gb, ε, θ, η).

Remark 3.8. The righthand side of (3.16) also tends to 0 as s → ∞ for some negative
values of θ. Recall that up to a second order error, we have λALE(g) ∼ ‖g − gb‖2

H1
n/2−1

if

g − gb ⊥ kerL2 Lgb
. A natural question would be: can the Ricci flows considered in the proof

of Theorem 3.2 still converge in H1
n/2−1 if a sufficiently good L2- Lojasiewicz inequality does

not hold?
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Proof. Observe first that by definition of the Ricci flow together with the first variation of
λALE computed in [(1.9), Proposition 1.9], one has for t > s ≥ 0,

2

ˆ t

s
‖ Ric(g(t′)) + ∇g(t′),2fg(t′)‖2

L2(e
−fg(t)dµg(t))

dt′ = λALE(g(t)) − λALE(g(s))

≤ −λALE(g(s)) ≤ |λALE(g(0))|.
(3.18)

Here, we have used the fact that 0 = λALE(gb) ≥ λALE(g) for all g ∈ BC2,α
τ

(gb, ε) since gb

is a local maximizer of λALE by assumption. This proves the first part of (3.15) since the

measures e−fg(t)dµg(t) and dµg(t) are uniformly equivalent in time and space.
By using the  Lojasiewicz inequality for ALE metrics given by inequality (3.1) with exponent

θ, one gets:

d

dt
(−λALE(g(t))) ≤ −C(−λALE(g(t)))2−θ , t ∈ (0, T ), (3.19)

for some positive constant C independent of time.
Integrating this differential inequality leads to:

(−λALE(g(t))) ≤ |λALE(g(0))|
(1 + C|λALE(g(0))|1−θ · t)

1
1−θ

, 0 ≤ t < T, (3.20)

for some positive constant C independent of time. This gives us the full estimate (3.15).
The a priori L2-estimate (3.16) follows by invoking the previous bound (3.15) together with
Proposition 2.8.

Now, on the one hand, consider the function t → (−λALE(g(t)))γ for some positive constant
γ to be constrained later. Observe as in [HM14] that if η ∈ [0, θ/(2 − θ)) for some θ ∈ [0, 1):

d

dt
(−λALE(g(t)))γ = −γ(−λALE(g(t)))γ−1 d

dt
λALE(g(t))

= −2γ(−λALE(g(t)))γ−1‖ Ric(g(t)) + ∇g(t),2fg(t)‖2
L2

= −2γ(−λALE(g(t)))γ−1‖ Ric(g(t)) + ∇g(t),2fg(t)‖(1+η)+(1−η)
L2

≤ −Cγ(−λALE(g(t)))γ−1+(1+η)(1− θ
2 )‖ Ric(g(t)) + ∇g(t),2fg(t)‖1−η

L2

= −Cγ‖ Ric(g(t)) + ∇g(t),2fg(t)‖1−η
L2 ,

(3.21)

if

γ :=
θ

2
(1 + η) − η > 0.

Here we have used the  Lojasiewicz inequality for ALE metrics given by inequality (3.1) with
exponent θ in the fourth line.

Integrating (3.21) in time, one gets the expected result, i.e.
ˆ t

s
‖ Ric(g(t′)) + ∇g(t′),2fg(t′)‖1−η

L2 dt′ ≤ 1

Cγ
|λALE(g(s))|γ , t > s ≥ 0. (3.22)

This holds true whenever this function is differentiable, i.e. as long as λALE(g(t)) is not
zero. Otherwise, one can adapt this reasoning by considering t → (−λALE(g(t)) + ε̃)γ

with ε̃ small and then we let ε̃ go to 0. This concludes the proof of (3.17) by invoking
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Proposition 2.8 once more. Indeed, the control of ‖ Ric(g(t′))‖1−η
L2 + ‖∇g(t′),2fg(t′)‖1−η

L2 by
(

‖ Ric(g(t′))‖L2 + ‖∇g(t′),2fg(t′)‖L2

)1−η
comes from the concavity of x 7→ x1−η on R+.

�

We are now in a good position to prove Proposition 3.6.

Proof of Proposition 3.6. We proceed by establishing successive claims which lead to the ex-
pected result. It is sufficient to prove the corresponding estimates for large time, i.e. if

t ≥ T (n,gb)
2 .

Claim 3.9. For t ∈ [0, T ), (3.12) and the a priori C0
τ estimate (3.13) hold true.

Proof of Claim 3.9. Let us check that the assumptions of Lemma 2.14 are satisfied. It is suf-
ficient to check condition (2.39) since we assume g(t) ∈ BC2,α

τ
(gb, ε). Since g(t) ∈ BC2,α

τ
(gb, ε)

for all t ∈ [0, T ) then if r2 := T (n,gb)
2 , it is straightforward to check that

´ t
t−r2 ‖ Rg(s) ‖C0 ds ≤ 1

2
by considering ε small enough. Indeed, this may be obtained from a “toy version”of Section 2,
namely: one can use the evolution (∂t−∆g(t)) Rg(t) = 2| Ric(g(t))|2g(t) together with Duhamel’s

formula and the heat kernel estimates of Section 2. This fact lets us to use Proposition 2.9

to get for 0 < r2 := T (n,gb)
2 < t:

‖ Ric(g(t))‖C0 ≤C(n, gb, ε) exp

(

c(n)

ˆ t

t−r2

‖ Rm(g(s))‖C0 ds

)

‖ Ric(g(t − r2)‖L2

≤C(n, gb, ε) exp
(

C(n, gb, ε)r
2
)

‖ Ric(g(t − r2)‖L2

≤C(n, gb, ε)‖ Ric(g(t − r2)‖L2 .

(3.23)

Now, (3.23) and [(3.17), Lemma 3.7] with s := 0 < T (n,gb)
2 ≤ t < T and η = 0 imply:

ˆ t

0
‖ Ric(g(t′))‖C0 dt′ ≤

ˆ

T (n,gb)

2

0
‖ Ric(g(t′))‖C0 dt′ + C(n, gb, ε, θ)|λALE(g(0))| θ

2

≤C(n, gb)‖ Ric(g(0))‖C0 + C(n, gb, ε, θ)|λALE(g(0))| θ
2

≤C(n, gb, ε, θ)
(

δ + |λALE(g(0))| θ
2

)

,

(3.24)

where we have used Proposition A.6 in the second inequality. In particular, if δ (and therefore
|λALE(g(0))|) is chosen small enough, then (2.39) is satisfied.

Applying [(2.41), Lemma 2.14] to s := 0 < t < T gives:

‖g(t) − g(0)‖C0
τ

≤C(n, gb)

(

‖ Ric(g(0))‖C0
τ+2

+

ˆ t

0
‖ Ric(g(s′))‖C0 ds′

)

≤C(n, gb, ε, θ)
(

δ + |λALE(g(0))| θ
2

)

,

where we have used (3.24) in the second line. This concludes the proof of Claim 3.9.
�

Claim 3.10. For t ∈ [0, T ) and η ∈
(

0, θ
2−θ

)

, we have the control (3.14), that is:

‖g(t) − g(0)‖C2,α
τ

≤ C(n, gb, ε, θ, η)
(

δ1−η + |λALE(g(0))| θ
2

(1+η)−η
)

. (3.25)
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Proof of Claim 3.10. It is sufficient to prove this claim if t ≥ T (n,gb)
2 . Indeed, if t ∈ [0, T (n,gb)

2 ],
the proof of Proposition 3.4 shows that if δ ≤ δ(n, gb, ε) is sufficiently small then ‖g(t) −
g(0)‖C2,α

τ
≤ C(n, gb, ε)δ for all t ∈ [0, T (n, gb)]. This proves (3.25) for this time interval.

In order to use Lemma 2.16, we first check that for each k ≥ 1, there exists some time-
independent positive constant Ck = C(n, k, gb, ε) such that ‖∇g(t),k Rm(g(t))‖C0 ≤ Ck for t ≥
T (n,gb)

2 . Since g(t) ∈ B
C2,α

τ
(gb, ε) for all t ∈ [0, T ) by assumption, supt∈[0,T ) ‖ Rm(g(t))‖C0 ≤

C(n, gb, ε). In particular, Proposition A.5 implies that ‖∇g(t),k Rm(g(t))‖C0 ≤ Ck for t =
T (n,gb)

2 . Therefore, Lemma A.4 applies and guarantees that such uniform-in-time bounds on

the covariant derivatives of the curvature tensor hold true for t ≥ T (n,gb)
2 .

Lemma 2.16 is therefore applicable: if η ∈ (0, 1),

‖g(t) − g(0)‖C2,α
τ

≤
∥

∥

∥

∥

g(t) − g

(

T (n, gb)

2

)∥

∥

∥

∥

C2,α
τ

+

∥

∥

∥

∥

g

(

T (n, gb)

2

)

− g(0)

∥

∥

∥

∥

C2,α
τ

≤C‖g(0) − gb‖C2,α
τ

+ Cη

(

∥

∥

∥

∥

Ric

(

g

(

T (n, gb)

2

))
∥

∥

∥

∥

C0,α
τ+2

+

ˆ t

T (n,gb)

2

‖ Ric(g(t′))‖1−η
C0 dt′

)

.

(3.26)

The control
∥

∥

∥g
(

T (n,gb)
2

)

− g(0)
∥

∥

∥

C2,α
τ

6 C‖g(0) − gb‖C2,α
τ

is obtained thanks to the short time

curvature controls of Lemma 2.12 together with the control of Lemma 2.16, where one controls
‖ Ric(g(0))‖C0,α

τ+2
6 C‖g(0) − gb‖C2,α

τ
.

Now, a similar argument based on [(3.17), Lemma 3.7] as in the proof of Claim 3.9 leads
to:

‖g(t) − g(0)‖C2,α
τ

≤ Cδ +Cη

(

δ1−η + |λALE(g(0))| θ
2

(1+η)−η
)

,

under the restriction that η ∈
(

0, θ
2−θ

)

. This ends the proof of Claim 3.10. �

Claim 3.10 ends the proof of this proposition by choosing δ (and therefore λALE(g(0))) so
small so that the righthand side of (3.25) is less than ε

2 , say. �

Notice that Propositions 3.4 and 3.6 prove that Tmax = +∞, i.e. the solution to the Ricci
flow considered at the beginning of this Section 3.2 is immortal.

The last step to prove Theorem 3.2 is summarized in the following proposition.

Proposition 3.11. Let (Nn, gb) be a stable Ricci-flat ALE metric such that inequality (3.1)
holds on a neighborhood BC2,α

τ
(gb, εŁ) with exponent θ ∈ (0, 1). Let (g(t))t∈[0,+∞) be a solution

to the Ricci flow in BC2,α
τ

(gb, ε), ε < εŁ. Then there exists an ALE Ricci flat metric g∞ ∈
B

C2,α
τ

(gb, ε) such that:

‖g(t) − g∞‖C0 ≤ Ct
− θ

2(1−θ) , t ≥ 1, (3.27)

for some positive constant C = C(n, gb, ε, θ).

Remark 3.12. The decay in time for the C2,α′

τ ′ -norms, τ ′ ∈ [0, τ), α′ ∈ [0, α), can be obtained
by interpolation between the C0 and C2,α

τ norms together with (3.27). The proof of such
interpolation inequalities for Hölder norms can be found for instance in [Kry96, Chapter 3,
Theorem 3.2.1].
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Proof of Proposition 3.11. Let us show first that there exists a unique limit metric g∞ ∈
BC2,α

τ
(gb, ε) in the C2,α′

τ ′ -topology for any τ ′ ∈ [0, τ) and α′ ∈ [0, α).

First of all, since we assume (g(t))t≥0 to lie in BC2,α
τ

(gb, ε), compactness of the embed-

ding C2,α
τ →֒ C2,α′

τ ′ , for α′ ∈ [0, α), τ ′ ∈ [0, τ) ensured by Lemma 1.3, there is a sequence

(g(ti))i converging to a 2-tensor g∞ in BC2,α
τ

(gb, ε) in the C2,α′

τ ′ -topology for any τ ′ ∈ [0, τ)

and α′ ∈ [0, α). The limit 2-tensor is a Riemannian metric since it is ε-close to gb.

Now, if t ≥ ti ≥ 1, (3.23) in the proof of Claim 3.9 with r2 = 1/2 6 ti/2, together with
[(3.17), Lemma 3.7] applied to η = 0 gives the expected decay in time for the C0 norm:

‖g(t) − g(ti)‖C0 ≤ 2

ˆ t

ti

‖ Ric(g(s))‖C0 ds ≤ Ct
− θ

2(1−θ)

i . (3.28)

where we used the control |λALE(g(t))| 6 Ct−
1

1−θ for t > 1/2 from (3.20).
Inequality (3.28) shows that the limit metric g∞ is unique, i.e. it does not depend on the

sequence (ti)i. This also proves (3.27).

In order to estimate the decay in time for the C0-norm of the Ricci tensor, we make use of
Proposition 2.10 with s := t

2 , t := t and p > n
τ+2 to get:

‖ Ric(g(t))‖C0 ≤Ct−
n
2p

∥

∥

∥

∥

Ric

(

g

(

t

2

))∥

∥

∥

∥

Lp
+ C sup

t′∈[0,T )
‖ Rm(g(t′))‖C0

ˆ t

t
2

‖ Ric(g(t′))‖C0 dt′

≤Ct−
n
2p

∥

∥

∥

∥

Ric

(

g

(

t

2

))∥

∥

∥

∥

Lp
+ C

ˆ t

t
2

‖ Ric(g(t′))‖C0 dt′

≤Ct−
n
2p

∥

∥

∥

∥

Ric

(

g

(

t

2

))∥

∥

∥

∥

Lp
+ Ct

− θ
2(1−θ) ,

(3.29)

where C = C(n, gb, ε, θ, p) is a time-independent positive constant that may vary from line
to line. Now, if p := 2 > n

τ+2 by the choice of τ in the previous estimate, Proposition A.6

together with [(3.17), Lemma 3.7] applied to η = 0 and (3.20) lead to:

∥

∥

∥

∥

Ric

(

g

(

t

2

))∥

∥

∥

∥

L2
≤C

ˆ t
2

t
2

−1
‖ Ric(g(t′))‖L2 dt′

≤Ct
− θ

2(1−θ) ,

(3.30)

if t is large enough for some positive constant C = C(n, gb, ε, θ).
Therefore, (3.29) and (3.30) imply the following decay for the C0 norm of the Ricci tensor

for ti large enough:

‖ Ric(g(t))‖C0 ≤ Ct
− θ

2(1−θ) . (3.31)

Moreover, (3.31) shows that Ric(g∞) = 0, i.e. g∞ is a Ricci flat metric in BC2,α
τ

(gb, ε). In

particular, by [BKN89], g∞ is an ALE Ricci flat metric.
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Now, the estimate (3.28) ensures that Lemma 2.14 is applicable and for t ≥ ti ≥ 1,

‖g(t) − g(ti)‖C0
τ

≤C(n, gb, ε)

(

‖ Ric(g(ti))‖C0
τ+2

+

ˆ t

ti

‖ Ric(g(t′))‖C0 dt′
)

≤C(n, gb, ε)
(

‖ Ric(g(ti))‖C0
τ+2

+ |λALE(g(ti))|
θ
2

)

,

(3.32)

where C = C(n, gb, ε, θ) is a time-independent positive constant. Here we have used [(3.15),
Lemma 3.7] in the fourth line.

�

3.3. Evolution of the Bianchi form, the scalar curvature and the mass.

In this section, we investigate the evolution of the Bianchi one-form together with that of
the scalar curvature along a Ricci flow (Nn, g(t))t≥0 satisfying the assumptions of Theorem
3.2. Let us denote g∞ the limit ALE Ricci-flat metric of the solution g(t) as t tends to +∞.

Recall that the Bianchi one-form B(t) of g(t) and g∞ is defined by

B(t)i :=
1

2
g(t)kl (∇g∞

k g(t)il + ∇g∞

l g(t)ik − ∇g∞

i g(t)kl

)

, i = 1, ..., n. (3.33)

Notice that the Bianchi one-formB(t) coincides with the quantity denoted by Bian(g(t),∇g∞ , g(t))
as introduced in [Kot17, Section 2].

Remark 3.13. Notice that the difference between the Bianchi one-form of g(t) and g∞ in-
troduced by Kotschwar following Hamilton and deTurck, and the Bianchi operator defined in
(A.2) is neglectible in the sense that if h(t) := g(t) − g∞,

B(t)i −Bg(t)(h(t))i =B(g(t),∇g∞ , g(t))i −Bg(t)(g(t) − g∞)i

=
1

2
g(t)kl (∇g∞

k g(t)il + ∇g∞

l g(t)ik − ∇g∞

i g(t)kl

)

− divg∞
(h(t))i +

1

2
∇g∞ trg∞

h(t)i

=
1

2
g(t)kl (∇g∞

k h(t)il + ∇g∞

l h(t)ik − ∇g∞

i h(t)kl

)

− divg∞
(h(t))i +

1

2
∇g∞ trg∞

h(t)i

=
1

2

(

g(t)kl − gkl
∞

)

(

∇g∞

k h(t)il + ∇g∞

l h(t)ik − ∇g∞

i h(t)kl

)

.

Therefore, B(t)−Bg(t)(h(t)) = g(t)−1∗h(t)∗g−1
∞ ∗∇g∞h(t) is quadratic in h and its derivatives.

Next, we recall the evolution equation satisfied by the Bianchi gauge along the Ricci flow
with a Ricci flat background metric g∞ given in [Kot17, Lemma 5]:

Lemma 3.14 (Kotschwar). Let (Nn, g∞) be a Ricci flat metric and let (g(t))t∈[0,T ) be a Ricci
flow on N . Then, the evolution equation satisfied by B is schematically:

∂tB = g(t)−1 ∗B(t) ∗ Ric(g(t)) + g(t)−1 ∗ g(t)−1 ∗ ∇g∞(g(t) − g∞) ∗ Ric(g(t)), (3.34)

where, if S and T are two tensors on N , S ∗ T means some weighted sum of contractions
of the tensor product of S and T with respect to the background metric gb with coefficients
bounded by universal constants.
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Our main result is the following proposition on the decay of the Bianchi one-form in space-
time coordinates:

Proposition 3.15. Let n ≥ 4 and τ ∈ (n−2
2 , n − 2). Let α ∈ (0,min {1, τ − 1, n − 2 − τ}).

Let (Nn, gb) be a stable Ricci-flat ALE metric. Let (g(t))t∈[0,+∞) be a solution to the Ricci
flow in BC2,α

τ
(gb, ε), for some ε > 0 which satisfies the conclusion of Theorem 3.2 and let

g∞ ∈ BC2,α
τ

(gb, ε) be its limit Ricci-flat metric g∞. Then for any positive η small enough and

any k ≥ 0, we have

‖∇g∞,kB(t)‖C0 ≤ Cη,k t
− θ

1−θ
+η, t ≥ 1, (3.35)

for some positive constant C = C(n, gb, ε, θ, η, k).

Remark 3.16. In [Proposition 6.9, [KP20]], the decay of the Bianchi one-form obtained in
Proposition 3.15 is improved if the perturbation lies in Lp ∩ L∞ for p < n small enough.

Proof. From now on, the symbol . (respectively &) means ” less than or equal” (respectively
” larger than or equal”) up to a positive multiplicative constant that depends on n, gb, k, α
and ε only. All the norms are understood with respect the metric g∞. For the sake of clarity,
we omit the dependence of the Levi-Civita connection on g∞. By (3.34), the norm of the
Bianchi gauge B(t) satisfies in the weak sense:

∂t|B| & −| Ric(g(t))||B(t)| − |∇h(t)|| Ric(g(t))|, t > 0.

By Grönwall’s inequality, one gets pointwise in space:

|B(t)| & |B(s)| exp

{

−
ˆ t

s
| Ric(g(t′))| dt′

}

−
ˆ t

s
exp

{

−
ˆ t

t′

| Ric(g(s′))| ds′

}

|∇h(t′)|| Ric(g(t′))| dt′, t > s > 0.

This implies, once we let t tend to +∞:

|B(s)| .
ˆ +∞

s
exp

{

ˆ t′

s
| Ric(g(s′))| ds′

}

|∇h(t′)|| Ric(g(t′))| dt′

. exp

{

ˆ +∞

s
| Ric(g(s′))| ds′

}

ˆ +∞

s
|∇h(t′)|| Ric(g(t′))| dt′

.

ˆ +∞

s
|∇h(t′)|| Ric(g(t′))| dt′.

(3.36)

where C = C(n, gb, ε, θ) is a time-independent positive constant. Here, we have used Propo-
sition 3.6 in the last inequality.

Now, according to the conclusion of Theorem 3.2, ‖g(t) − g∞‖C0 ≤ Ct
− θ

2(1−θ) if t ≥ 1.

Since for any k ≥ 0 and t ≥ 1, |∇g(t),k Rm(g(t))|g(t) ≤ Ck, for some time-independent positive
constant Ck by Lemma A.4, standard interpolation inequalities show that the same decay in
time holds true for higher covariant derivatives of g(t) − g∞ at the expense of an arbitrary
small error: for any positive η small enough and any k ≥ 0, one gets ‖∇k(g(t) − g∞)‖C0 ≤
Ct

− θ
2(1−θ)

+η
.
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Therefore, (3.36) leads to the expected estimate (3.35) for s ≥ 2:

‖B(s)‖C0 . s
− θ

2(1−θ)
+η

ˆ +∞

s
‖ Ric(g(t′))‖C0 dt′

.Cηs
− θ

2(1−θ)
+η|λALE(g(s − 1))| θ

2

.Cηs
− θ

(1−θ)
+η
,

for any η > 0 small enough. Here we have used Proposition 2.9 with 0 < r2 := 1 < t together
with [(3.17), Lemma 3.7]. The corresponding decay in time on the covariant derivatives of
B(t) are obtained by interpolation.

�

We continue by estimating the decay in time of the C0-norm of the scalar curvature. In case
the scalar curvature at time t = 0 is integrable, we also show this property is preserved: this
echoes the result of [DM07, Theorem 1, part B]. Our proof is based on heat kernel estimates
established in Section 2.1.

Proposition 3.17. Let n ≥ 4 and τ ∈ (n−2
2 , n−2). Let α ∈ (0,min {1, τ − 1, n − 2 − τ}). Let

(Nn, gb) be a stable Ricci-flat ALE metric such that inequality (3.1) holds on a neighborhood
B

C2,α
τ

(gb, εŁ) with exponent θ ∈ (0, 1). Let (g(t))t∈[0,+∞) be a solution to the Ricci flow in

BC2,α
τ

(gb, ε), ε < εŁ, which satisfies the conclusion of Theorem 3.2 and let g∞ ∈ BC2,α
τ

(gb, ε)

be its limit Ricci-flat metric.
Then,

‖ Rg(t) ‖C0 ≤ C

(

t
− θ

2(1−θ)
− n

4 + t−
1

1−θ

)

, t ≥ 1, (3.37)

for some time-independent positive constant C = C(n, gb, ε, θ). Moreover, if Rg(0) ∈ L1 then

Rg(t) ∈ L1 for every t ≥ 0 and,

‖ Rg(t) ‖L1 ≤ C
(

‖ Rg(0) ‖L1 + |λALE(g(0))|
)

, t ≥ 0, (3.38)

some time-independent positive constant C = C(n, gb, ε, θ).

Proof. According to the evolution equation satisfied by the scalar curvature given in [(A.7),
Lemma A.3] together with Duhamel’s formula:

Rg(t)(x) =

ˆ

N
K(x, t, y, s) Rg(s)(y) dµg(s)(y)

+

ˆ t

0

ˆ

N
K(x, t, y, s)| Ric(g(s))|2g(s)(y) dµg(s)(y)ds, t ≥ 0, x ∈ N.

(3.39)
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In particular, if 2 ≤ s := t
2 < t, Theorem 2.5 ensures that,

‖ Rg(t) ‖C0 ≤ sup
x∈N

∥

∥

∥

∥

K

(

x, t, ·, t
2

)
∥

∥

∥

∥

L2
‖ Rg( t

2) ‖L2 +

ˆ t

t
2

‖ Ric(g(t′))‖2
C0 dt

′

≤ C

t
n
4

‖ Rg( t
2 ) ‖L2 +

ˆ t

t
2

‖ Ric(g(t′))‖2
C0 dt

′

≤ C

t
n
4

‖ Rg( t
2 ) ‖L2 + C

ˆ t

t
4

‖ Ric(g(t′))‖2
L2 dt

′

≤ C

t
n
4

‖ Rg( t
2 ) ‖L2 + Ct−

1
1−θ .

(3.40)

The second line is justified by Proposition 2.9 applied to 0 < r2 := 1 < t which implies that
t
2 − 1 ≥ t

4 since t ≥ 4. The last line is obtained thanks to [(3.16), Lemma 3.7].
Now, Proposition A.6 together with [(3.17), Lemma 3.7] applied to η = 0 lead to:

‖ Rg( t
2 ) ‖L2 ≤n

∥

∥

∥

∥

Ric

(

g

(

t

2

))∥

∥

∥

∥

L2

≤C

ˆ t
2

t
2

−1
‖ Ric(g(t′))‖L2 dt′

≤Ct
− θ

2(1−θ) ,

(3.41)

if t ≥ 2 is large enough, for some time-independent positive constant C = C(n, gb, ε, θ). Esti-
mates (3.40) and (3.41) end the proof of (3.37).

In order to prove (3.38), we observe that by considering (3.39), one obtains:

‖ Rg(t) ‖L1 ≤
ˆ

N
| Rg(t)(x)| dµg(t)(x)

≤ sup
y∈N

‖K(·, t, y, 0)‖L1 ‖ Rg(0) ‖L1

+

ˆ t

0
sup
y∈N

‖K(·, t, y, s)‖L1

ˆ

N
| Ric(g(s))|2g(s)(y) dµg(s)(y)ds

≤ e
´ t

0
‖ Rg(s) ‖C0 ds

(

‖ Rg(0) ‖L1 +

ˆ t

0
‖ Ric(g(s))‖2

L2 ds

)

≤Ce
´+∞

0 ‖ Rg(s) ‖C0 ds
(

‖ Rg(0) ‖L1 + |λALE(g(0))| ds
)

≤C
(

‖ Rg(0) ‖L1 + |λALE(g(0))| ds
)

,

for some time-independent positive constant C = C(n, gb, ε, θ).
Here, we have used [(2.3), Proposition 2.1] in the third inequality together with [(3.16),

Lemma 3.7] in the penultimate line. Finally, [(3.3), Theorem 3.2] is invoked in the last line
since ‖ Rg(s) ‖C0 ≤ n‖ Ric(g(s))‖C0 . We could have alternatively used (3.37) to justify this
step.

�
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The next proposition establishes a link between the integral of the scalar curvature and
the ADM-mass along a suitable solution to the Ricci flow whenever the scalar curvature is
assumed to decay fast enough initially.

Proposition 3.18. Let n ≥ 4 and τ ∈ (n−2
2 , n − 2). Let α ∈ (0,min {1, τ − 1, n − 2 − τ}).

Let (Nn, gb) be a stable Ricci-flat ALE manifold. Let (g(t))t∈[0,+∞) be a solution to the Ricci
flow in BC2,α

τ
(gb, ε) for some ε > 0 satisfying the conclusion of Theorem 3.2 and let g∞ ∈

BC2,α
τ

(gb, ε) be its limit Ricci-flat metric.

If Rg(0) = O(ρ−q
gb

) for some q > n then

mADM(g(0)) = lim
t→+∞

ˆ

N
Rg(t) dµg(t), (3.42)

where mADM(g(0)) is the mass of the initial metric g(0) defined in (1.2).

Remark 3.19. Formula (3.42) is inspired by the work [Li18] where the same identity is proved
in the context of asymptotically flat immortal Ricci flows with non-negative scalar curvature
on R

n.

Proof. Let us prove formula (3.42). Recall by linearizing the scalar curvature around the limit
metric g∞ based on [(A.3), Lemma A.1] that:

∣

∣

∣

∣

∣

Rg(t) − divg(t)

(

divg(t)(g(t) − g∞) − ∇g∞ trg∞
(g(t) − g∞)

)

∣

∣

∣

∣

∣

≤ C(n, g∞)
(

|g(t) − g∞|
∣

∣

∣∇g∞,2(g(t) − g∞)
∣

∣

∣ + |∇g∞(g(t) − g∞)|2
)

.

In particular, by the definition of the ADM mass introduced in (1.2), one gets by integration
by parts that:

∣

∣

∣

∣

∣

mADM(g(t)) −
ˆ

N
Rg(t) dµg(t)

∣

∣

∣

∣

∣

≤C

ˆ

N

(

|g(t) − g∞|
∣

∣

∣∇g∞,2(g(t) − g∞)
∣

∣

∣+ |∇g∞(g(t) − g∞)|2
)

dµg(t)

≤C‖g(t) − g∞‖2
C2

τ ′

,

(3.43)

for τ ′ ∈ (0, τ) such that 2τ ′ + 2 > n which justifies the second inequality ensuring the

integrability of ρ−2τ ′−2
gb

.
As a first conclusion, Theorem 3.2 implies that the righthand side of (3.43) converges to 0

as t tends to +∞.
If Rg(0) = O(ρ−q

gb
) for some q > n then the mass mADM(g(·)) is constant in time, according

to [DM07, Theorem 1]. Therefore, one gets the expected result:

0 = lim
t→+∞

(

mADM(g(t)) −
ˆ

N
Rg(t) dµg(t)

)

=mADM(g(0)) − lim
t→+∞

ˆ

N
Rg(t) dµg(t)

.

�
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In [DM07, Theorem 2], it is shown that if (g(t))t≥0 is a solution to the Ricci flow which is
ALE for each time and such that the scalar curvature is integrable, then in case this solution
converges to a limit ALE metric g∞ in the C1,α

τ -topology, τ > n−2
2 , one has

lim
t→+∞

mADM(g(t)) = mADM(g∞),

provided that,

lim
t→+∞

‖ Rg(t) − Rg∞
‖L1 = 0. (3.44)

In the setting of Proposition 3.18, the convergence (3.44) is unlikely to hold true and it
explains the restriction on τ to lie below n− 2.

Indeed, on the contrary, one would get mADM(g(0)) = mADM(g∞) = 0 since g∞ is an ALE
Ricci flat metric. On the other hand, there are small perturbations in the C2,α

τ -topology of
any given ALE Ricci flat metric with non-zero ADM mass: see for instance the discussion at
the beginning of [DO20, Section 3]. This leads to a contradiction for stable Ricci-flat ALE
spaces (such as all known examples).

3.4. A discussion on previous stability results.

In this section, we compare our stability result given by Theorem 3.2 together with its
proof and previous results on the same topic.

In [SSS11, Theorem 1.4] and [App18, Theorem 1.2], stability of Euclidean space (Rn, ge)
along the DeTurck Ricci flow is investigated for small perturbations in L∞ of the Euclidean
metric ge lying in Lp, p ≥ 1. In [SSS11], their argument is based on the Lyapunov function
t ∈ R+ →

´

Rn |g̃(t) − ge|2 dµge where (g̃(t))t>0 denotes a solution to DeTurck Ricci flow
whereas [App18] uses estimates based on Duhamel’s formula. Both methods lead to the
same solution (g(t))t>0 which is of Type III: in [App18, Theorem 1.2], the curvature and its

covariant derivatives satisfy |∇g̃(t),k Rm(g̃(t))|g̃(t) = O(t
− n

2p
−1− k

2 ) for all k ≥ 0 uniformly in
space.

Moreover, these two articles obtain a corresponding solution (g(t))t>0 to the Ricci flow by
pulling back the solution to the DeTurck Ricci flow by a one-parameter family of diffeomor-
phisms (ψt)t>0, i.e. g(t) := ψ∗

t g̃(t). This family of diffeomorphisms is generated by minus the
evolving Bianchi one-form Bian(g(t),∇ge , g(t)) introduced in (3.33):

∂tψt := − Bian(g(t),∇ge , g(t)) ◦ ψt, ψt|t=0 = IdRn .

The article [SSS11, Theorem 9.2] shows in detail that there exists a limit diffeomorphism ψ∞

which is the pointwise limit of ψt as t tends to +∞ and such that g(t) converges to ψ∗
∞ge in

Ck
loc.
In contrast, Theorem 3.2 gives a Type IIb solution (g(t))t>0 to the Ricci flow and our

functional λALE plays the role of a Lyapunov functional. The use of the DeTurck Ricci flow
is delicate here in the sense that the limit metric of the flow is not known a priori.

However, the work [DK20] proves that one can choose a time-dependent gauge to show
that a suitable DeTurck Ricci flow converges to a nearby ALE Ricci flat metric in the setting
of integrable and linearly stable ALE Ricci flat metrics. In [DK20], the convergence is shown
to hold in the L2 ∩ L∞ topology. No convergence rate in time was obtained. This rate has
been established in the work [KP20] in case the background Ricci flat metric carries a parallel
spinor.
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Coming back to the setting and notations of Theorem 3.2, the possibility of making sense
of the DeTurck Ricci flow with respect to the background limit metric g∞ is not taken for
granted in general as the decay in time [(3.35), Proposition 3.15] suggests. Indeed, in order
to justify the existence of a diffeomorphism ψ∞ of N as the limit of the one-parameter fam-
ily of diffeomorphisms generated by Bian(g(t),∇g∞ , g(t)), [(3.35), Proposition 3.15] asks the
 Lojasiewicz exponent θ to be close to 1 enough. More precisely, if θ > 1

2 then it is not too
difficult to show the existence of ψ∞ and as a result, the corresponding DeTurck Ricci flow
converges to ψ∗

∞g∞ in Ck
loc, k ≥ 0. Whether this convergence holds true in weighted Hölder

norms is not straightforward and in light of the proof of Proposition 3.15, it would require an
even more stringent condition on the exponent θ.

Finally, let us notice that in case the background ALE Ricci flat metric gb is integrable and
linearly stable (which includes the Euclidean metric on R

n) then [DO20, Proposition 7.15]
shows that θ = 2τ−n

2τ−(n−2) . In particular, the criterion θ > 1
2 is equivalent to τ > n+2

2 . As τ is

constrained to lie in (n
2 − 1, n − 2), the condition τ > n+2

2 is non empty for n > 6.

4. Instability of Ricci-flat ALE metrics

Similarly to [Has12], we prove that there exists an ancient solution to the Ricci flow starting
at any unstable ALE Ricci-flat metric (Nn, gb) that satisfies inequality (3.1) and which flows
away in the C2,α

τ topology.

4.1. A priori energy estimates in the unstable case.

Let us start by proving that a Ricci flow starting in a given C2,α
τ -neighborhood of an

unstable ALE Ricci flat metric, where a suitable  Lojasiewicz inequality is satisfied, escapes a
possibly larger neighborhood in finite time.

Lemma 4.1. Let (Nn, gb) be an unstable ALE Ricci flat metric such that inequality (3.1) holds
on a neighborhood BC2,α

τ
(gb, εŁ) with exponent θ ∈ (0, 1). Let g0 be a metric in BC2,α

τ
(gb, ε),

ε < εŁ, and let (g(t))t∈[0,T ) be Shi’s solution to the Ricci flow starting at g0. If λALE(g0) > 0
then there exists a finite positive time T (g0) defined by

T (g0) = min
{

t > 0 | ∀s ∈ [0, t), ‖g(s) − gb‖C2,α
τ

< ε and ‖g(t) − gb‖C2,α
τ

= ε
}

.

Moreover, there exists a positive constant C = C(n, gb, ε, θ) such that T (g0) < 1
Cλ1−θ

ALE(g0)
and,

λALE(g(t)) ≥ λALE(g(s))

(1 − Cλ1−θ
ALE(g(s))(t − s))

1
1−θ

, 0 ≤ s < t ≤ T (g0). (4.1)

Finally, there exists δ(n, gb, ε) > 0 such that if δ ∈ (0, δ(n, gb, ε)), and g0 ∈ BC2,α
τ

(gb, δ) then

T (g0) > T (n, gb) > 0.

Proof. The fact that T (g0) exists and is positive comes from Proposition 3.4 together with Re-
mark 3.5. The existence of δ(n, gb, ε) > 0 such that if δ ∈ (0, δ(n, gb, ε)), and g0 ∈ BC2,α

τ
(gb, δ)

then T (g0) > T (n, gb) > 0 is also due to that same Proposition 3.4.
Let us now prove that T (g0) is finite. As long as g(t) stays in BC2,α

τ
(gb, ε), we can integrate

the  Lojasiewicz inequality for ALE metrics given by inequality (3.1) with exponent θ to get
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d

dt
λALE(g(t)) ≥ CλALE(g(t))2−θ , t ∈ (0, T (g0)), (4.2)

for some positive constant C independent of time.
Integrating this differential inequality leads to:

λALE(g(t)) ≥ λALE(g0)

(1 −CλALE(g0)1−θ · t)
1

1−θ

, 0 ≤ t ≤ T (g0), (4.3)

for some positive constant C independent of time. This gives us the full estimate (4.1).
The righthand side of (4.3) blows up as t tends to 1

Cλ1−θ
ALE

(g0)
, and since λALE(g(t)) depends

continuously on ‖g(t) − gb‖C2,α
τ

as recalled in Section 1.2.3, we have T (g0) < 1
Cλ1−θ

ALE
(g0)

.

�

The following lemma is the analogous statement to Lemma 3.7 for unstable ALE Ricci flat
metrics.

Lemma 4.2 (A priori L2 estimate for the Ricci flow : positive λALE). Let (Nn, gb) be an
unstable ALE Ricci flat metric such that inequality (3.1) holds on a neighborhood B

C2,α
τ

(gb, εŁ)

with exponent θ ∈ (0, 1). Let g0 be a metric in BC2,α
τ

(gb, ε), ε < εŁ, such that λALE(g0) > 0

and let T (g0) > 0 be defined as in Lemma 4.1. Then one has the following estimate:

ˆ T (g0)

0
‖ Ric(g(t))‖2

L2 +‖∇g(t),2fg(t)‖2
L2 dt ≤ CλALE(g(T (g0))), (4.4)

for some time-independent positive constant C = C(n, gb, ε, θ).

Finally, if η ∈
[

0, θ
2−θ

)

, one has

ˆ T (g0)

0
‖ Ric(g(t))‖1−η

L2 + ‖∇g(t),2fg(t)‖1−η
L2 dt ≤ CλALE(g(T (g0)))

θ
2

(1+η)−η , (4.5)

for some positive constant C = C(n, gb, ε, θ, η).

Proof. Observe first that by definition of the Ricci flow together with the first variation of
λALE computed in [(1.9), Proposition 1.9],

2

ˆ T (g0)

0
‖ Ric(g(t)) + ∇g(t),2fg(t)‖2

L2

(

e
−fg(t)dµg(t)

) dt = λALE(g(T (g0))) − λALE(g0)

≤ λALE(g(T (g0))).

(4.6)

This proves (4.4) once we invoke Proposition 2.8 and the fact that the measures e−fg(t)dµg(t)

and dµg(t) are uniformly equivalent in time and space.
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Now, on the one hand, consider the function t → λALE(g(t))γ for some positive constant γ
to be constrained later. Observe as in [HM14] that if η ∈ [0, θ/(2 − θ)) for some θ ∈ [0, 1):

d

dt
λALE(g(t))γ = γλALE(g(t))γ−1 d

dt
λALE(g(t))

= 2γλALE(g(t))γ−1‖ Ric(g(t)) + ∇g(t),2fg(t)‖2
L2

= 2γλALE(g(t))γ−1‖ Ric(g(t)) + ∇g(t),2fg(t)‖(1+η)+(1−η)
L2

≥ CγλALE(g(t))γ−1+(1+η)(1− θ
2 )‖ Ric(g(t)) + ∇g(t),2fg(t)‖1−η

L2

= Cγ‖ Ric(g(t)) + ∇g(t),2fg(t)‖1−η
L2 ,

(4.7)

if

γ :=
θ

2
(1 + η) − η > 0.

Here we have used the  Lojasiewicz inequality for ALE metrics given by inequality (3.1) in the
fourth line.

Integrating (4.7) in time, one gets the expected result, i.e.

ˆ T (g0)

0
‖ Ric(g(t)) + ∇g(t),2fg(t)‖1−η

L2 dt ≤ 1

Cγ
λALE(g(T (g0)))γ . (4.8)

This concludes the proof of (4.5) by invoking Proposition 2.8 once more.
�

4.2. A digression on λALE.

By Perelman’s work [Per02, Proof of Proposition 1.2], recall that for a closed Riemannian
manifold (Mn, g),

‖ Ric(g) + ∇g,2f‖2
L2(e−fg dµg)

≥ λ(g)2

n
, (4.9)

where λ(g) denotes Perelman’s energy.
In the non-compact situation, a similar inequality holds generally if the metric stays at

bounded C2,α
τ -distance for τ > n− 2.

Proposition 4.3. Let τ > n − 2 and α ∈ (0, 1). Let (Nn, gb) be a Ricci flat ALE metric.
Then we have the following inequality for the λALE-functional: for any metric g ∈ BC2,α

τ
(gb, ε),

there exist δ = δ(τ) > 2 and C = C(n, ε) such that we have

‖ Ric(g) + ∇g,2fg‖2
L2(e−fg dµg)

≥ C|λALE(g)|δ , (4.10)

for δ = δ(τ) > 2.

Remark 4.4. We underline the fact that Proposition 4.3 is not useful in our setting since the
convergence rate τ is assumed to be larger than n − 2. However, we decide to keep it here
since it has its own interest.

Proof. Let us consider a Ricci-flat ALE manifold (Nn, gb), and a Riemannian metric g satis-
fying ‖g − gb‖C2,α

τ
≤ ε for some τ > n− 2 and α ∈ (0, 1).
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By assumption and the definition of fg ∈ C2,α
τ , see Section 1.2.2, we have the following

decay rates, | Rg | + |∆gfg| ≤ C(n)C
(

(1 + ρg)−τ−2
)

. Let γ ∈
(

n
τ+2 , 1

)

, so that
ˆ

N
(1 + ρg)−γ(τ+2)e−fgdµg < +∞,

and define δ := 2−γ
1−γ . Similar to the proof of inequality (4.9), | Ric(g)+∇g,2fg|2g ≥ 1

n |Rg+∆gfg|2
pointwise on N which implies after integration on N the existence of a constant c = c(γ, τ, δ) >
0 such that,
ˆ

N
| Ric(g) + ∇g,2fg|2g e−fgdµg

≥ 1

n

ˆ

N
|Rg + ∆gfg|2 e−fgdµg

=
1

n

ˆ

N
|Rg + ∆gfg|2(1 + ρg)γ(τ+2)((1 + ρg)−γ(τ+2) e−fgdµg

)

≥ c

n

{

ˆ

N
|Rg + ∆gfg| 2

δ (1 + ρg)
γ(τ+2)

δ
(

(1 + ρg)−γ(τ+2) e−fgdµg
)

}δ

≥ c

n

{

ˆ

N
|Rg + ∆gfg|

2
δ

+γ(1− 1
δ

)
g

[

|Rg + ∆gfg|(1 + ρg)(τ+2)
]−γ(1− 1

δ
)
e−fgdµg

}δ

≥ c

n

[

C(n)C
]γ( 1

δ
−1)
{

ˆ

N
|Rg + ∆gfg|g e−fgdµg

}δ

≥ c

n

[

C(n)C
]γ( 1

δ
−1)
∣

∣

∣

ˆ

N

(

Rg + ∆gfg

)

e−fgdµg

∣

∣

∣

δ

=
c

n

[

C(n)C
]γ( 1

δ
−1)
∣

∣

∣

1

2

ˆ

N

(

Rg + |∇gfg|2g
)

e−fgdµg

∣

∣

∣

δ
,

by Jensen inequality in the fourth line and thanks to (1.5) in the last line. Here, we have used

the fact that 2
δ − γ

(

1
δ − 1

)

= 1 in the fifth inequality. �

Notice that inequality (4.10) with a constant C independent of ‖g − gb‖C2,α
τ

would imply

that for any Ricci flow starting with a positive λALE, λALE blows up in finite time. Indeed,
this fact would follow from integrating the differential inequality d

dtλALE(g(t)) ≥ cλδ
ALE(g(t))

satisfied by λALE(g(t)) along a given Ricci flow. This is reminiscent of [Per02, Proof of
Proposition 1.2]. This is not true in general.

Indeed, Feldman, Ilmanen and Knopf [FIK03] have constructed complete expanding gra-
dient Kähler-Ricci solitons on the total space of the tautological line bundles L−k, k > n
over CP

n−1. These solutions on L−k are U(n)-invariant and are asymptotic to the cone
C(S2n−1/Zk) endowed with the Euclidean metric 1

2 i∂∂ | · |2, where Zk acts on C
n diagonally.

The curvature tensor of these solitons decay exponentially fast to 0 at infinity, in particular
these metrics are ALE and their mass vanish. On the other hand, the scalar curvature of
these metrics is positive everywhere.

If gFIK denotes one of the Feldman-Ilmanen-Knopf metrics, then λ0
ALE(gFIK) > 0. Now, for

any t > 0, we have λ0
ALE(gFIK(t)) = t

n
2

−1λ0
ALE(gFIK) > 0 as we noticed in [DO20, Remark 8.3],

since gFIK is an expanding soliton. Again, this is in contrast with the compact situation where
a Ricci-flow starting at a metric with positive λ-functional necessarily develops a finite-time
singularity.
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4.3. An instability result.

In this section, the main result is the corresponding statement to Theorem 3.2 in the
presence of an unstable ALE Ricci flat metric.

Theorem 4.5 (unstable case - ancient Ricci flows coming out of Ricci-flat ALE spaces). Let
n ≥ 4 and τ ∈ (n−2

2 , n−2). Let α ∈ (0,min {1, τ − 1, n− 2 − τ}). Let (Nn, gb) be an unstable
Ricci-flat ALE metric such that inequality (3.1) holds on a neighborhood B

C2,α
τ

(gb, εŁ) with

exponent θ ∈ (0, 1).
Then there exists a non Ricci-flat ancient solution to the Ricci flow (g∞(t))t∈(−∞,0] with

positive scalar curvature that converges in C2,α
τ to gb as t → −∞. More precisely, if η ∈

(

0, θ
2(1−θ)

)

and ε ∈ (0, εŁ) then there exists a positive constant C = C(n, gb, ε, θ, η) such that

for t ≤ 0,

‖g∞(t) − gb‖C2,α
τ

≤ C

(1 + C|t|)
θ

2(1−θ)
−η
. (4.11)

Finally, the solution g∞(t) is ALE of order τ uniformly in time in the sense that,

ρ2+τ+k
gb

|∇g∞,k Rm(g∞(t))|g∞(t) ≤ Ck, k ≥ 0, t ≤ 0. (4.12)

Proof. Let us consider gb a Ricci-flat ALE metric which is not a maximizer of λALE. This
means that there exists a sequence (gi)i of metrics converging to gb in C2,α

τ with λALE(gi) > 0.
By Lemma 4.1, the Ricci flow (gi(t))t starting at gi(0) = gi leaves B

C2,α
τ

(gb, ε) in finite time

and we can consider the first time Ti := T (gi) for which ‖gi(Ti) − gb‖C2,α
τ

= ε.

We start by proving the following positive uniform lower bound λALE(gi(Ti)):

Claim 4.6.

0 < C−1 ≤ lim inf
i→+∞

λALE(gi(Ti)) ≤ lim sup
i→+∞

λALE(gi(Ti)) ≤ C, (4.13)

for some positive constant C = C(n, gb, ε, θ).

Proof of Claim 4.6. The upper bound in (4.13) is due to the continuity of the functional λALE

on a C2,α
τ -neighborhood of gb for τ ∈

(

n
2 − 1, n − 2

)

and α ∈ (0, 1) together with the fact that
gi(Ti) ∈ B

C2,α
τ

(gb, ε).

The lower bound is more subtle to prove and relies on a priori weighted estimates established
in Section 2.3 that we now explain. The proof is very similar to that of Claim 3.10 in the
proof of Proposition 3.6.

First, let us check that the assumptions of Lemma 2.16 are satisfied. Since Ti > T (n, gb)
by Lemma 4.1, the covariant derivatives of Rm(g(T (n, gb)/2)) are uniformly bounded in
space by Proposition A.5. Since gi(t) ∈ BC2,α

τ
(gb, ε) for all t ∈ [0, Ti] by assumption,

supt∈[0,Ti] ‖ Rm(gi(t))‖C0 ≤ C(n, gb, ε). Therefore, Lemma A.4 applies and guarantees that
uniform-in-time bounds on the covariant derivatives of the curvature tensor hold true for
t ≥ T (n,gb)

2 .

Let us check condition (2.39). Since gi(t) ∈ B
C2,α

τ
(gb, ε) for all t ∈ [0, Ti] then if r2 :=

T (n,gb)
2 , it is straightforward to check that

´ t
t−r2 ‖ Rgi(s) ‖C0 ds ≤ r2 sups∈[0,Ti] ‖ Rgi(s) ‖C0 ≤

T (n,gb)
2 ‖gi(s) − gb‖C2 ≤ C(n, gb)ε ≤ 1

2 by considering ε small enough. This fact lets us to use
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Proposition 2.9 to get for 0 < r2 := T (n,gb)
2 < t:

‖ Ric(gi(t))‖C0 ≤C(n, gb, ε) exp

(

c(n)

ˆ t

t−r2

‖ Rm(gi(s))‖C0 ds

)

‖ Ric(gi(t− r2)‖L2

≤C(n, gb, ε) exp
(

C(n, gb, ε)r
2
)

‖ Ric(gi(t − r2)‖L2

≤C(n, gb, ε)‖ Ric(gi(t− r2)‖L2 .

(4.14)

Now, (4.14) and [(4.5), Lemma 4.2] with s := 0 < T (n,gb)
2 ≤ t ≤ Ti and η = 0 imply:

ˆ Ti

0
‖ Ric(gi(t

′))‖C0 dt′ ≤
ˆ

T (n,gb)

2

0
‖ Ric(gi(t

′))‖C0 dt′ +C(n, gb, ε, θ)λALE(gi(Ti))
θ
2

≤C(n, gb)‖ Ric(gi(0))‖C0 + C(n, gb, ε, θ)λALE(gi(Ti))
θ
2

≤C(n, gb, ε, θ)
(

δi + λALE(gi(Ti))
θ
2

)

,

(4.15)

where we have used Proposition A.6 in the second inequality and where δi := ‖gi(0)−gb‖C2,α
τ

.

In particular, if ε is chosen small enough, (4.15) ensures that [(2.39), Lemma 2.16] holds true.
By Lemma 2.16 and using [(4.5), Lemma 4.2] as in the proof of (4.15), we have for any

η ∈
(

0, θ
2−θ

)

,

‖gi(Ti) − gi‖C2,α
τ

≤C

(

‖ Ric(gi)‖C0,α
τ+2

+

ˆ Ti

0
‖ Ric(gi(t

′))‖1−η
C0 dt′

)

≤C

(

‖gi − gb‖C2,α
τ

+

ˆ Ti

0
‖ Ric(gi(t

′))‖1−η
C0 dt′

)

≤C
(

δi + δ1−η
i + λALE(gi(Ti))

θ
2

(1+η)−η
)

≤C
(

δ1−η
i + λALE(gi(Ti))

θ
2

(1+η)−η
)

,

(4.16)

for some time-independent positive constant C = C(n, gb, ε, θ, η). By the triangular inequality
together with (4.16) and the very definition of Ti,

ε = ‖gi(Ti) − gb‖C2,α
τ

≤ lim inf
i→+∞

(‖gi(Ti) − gi‖C2,α
τ

+ δi)

≤ lim inf
i→+∞

C
(

δ1−η
i + λALE(gi(Ti))

θ
2

(1+η)−η
)

=C lim inf
i→+∞

λALE(gi(Ti))
θ
2

(1+η)−η .

This ends the proof of Claim 4.6. �

We continue by proving the following

Claim 4.7. The sequence (Ti)i is unbounded.

Proof of Claim 4.7. Assume on the contrary that there exists a bounded subsequence, still
denoted by (Ti)i, which converges to a finite positive number T∞, and up to considering
another subsequence, we may assume that Ti/2 < 3T∞/4 < Ti. In particular, this implies
that the Ricci flows (gi(t))t are well-defined on [0, 3T∞/4] hence on [0, Ti/2]. Since gi(0) = gi

is assumed to converge to gb in the C2,α
τ -topology and since gi(t) ∈ BC2,α

τ
(gb, ε) for any

t ∈ [0, 3T∞/4], Hamilton’s compactness theorem [Ham95, Main Theorem 1.2] ensures that
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gi(t) converges locally smoothly to a smooth Ricci flow g∞ as i tends to +∞ on N×[0, 3T∞/4].
Since the initial metric is the Ricci-flat gb, the limit is gb. We can indeed invoke Hamilton’s
compactness theorem since the C2,α

τ -proximity ensures that the injectivity radius and sectional
curvatures are bounded as needed. Moreover, the property that gi(t) ∈ B

C2,α
τ

(gb, ε) for all

indices i ≥ 0 together with Lemma 1.3 ensure that the convergence of gi(t), t ∈ [0, 3T∞/4],

to gb holds in the C2,α′

τ ′ -topology for any τ ′ ∈ (0, τ) and α′ ∈ (0, α).
Now, for the same reasons, since (gi(Ti))i ⊂ B

C2,α
τ

(gb, ε), Lemma 1.3 implies that there

is a subsequence, still denoted by (gi(Ti))i, that converges in the C2,α′

τ ′ -topology, for τ ′ < τ

and α′ ∈ (0, α) to a metric g∞ ∈ C2,α
τ . By continuity of the functional λALE on a C2,α′

τ ′ -
neighborhood of gb for τ ′ ∈

(n
2 − 1, τ

)

and α′ ∈ (0, α), Claim 4.6 leads in particular to

λALE(g∞) > 0. (4.17)

On the other hand, by Proposition A.6 applied between times Ti
2 and Ti,

∥

∥

∥

∥

gi(Ti) − gi

(

Ti

2

)
∥

∥

∥

∥

C0
≤ 2

ˆ Ti

Ti
2

‖ Ric(gi(t))‖C0 dt

≤CeCTi

∥

∥

∥

∥

Ric

(

gi

(

Ti

2

))∥

∥

∥

∥

C0
→ 0, as i → +∞.

(4.18)

The limit in the last line is justified by Ti
2 < 3T∞/4 and the convergence of gi(t), t ∈ [0, 3T∞/4],

to gb in the C0 topology (and actually C2,α′

τ ′ ). In particular, by the triangular inequality and
the previous estimate (4.18), limi→+∞ ‖gi(Ti) − gb‖C0 6 limi→+∞ ‖gi(Ti) − gi(Ti/2)‖C0 +
‖gi(Ti/2) − gb‖C0 = 0 which identifies g∞ with gb by uniqueness of the limit: this leads to a
contradiction with (4.17).

�

Consider now the Ricci flow g̃i(t) := gi(t + Ti) obtained by translating time. It is defined
on [−Ti, 0] and satisfies

• for −ti ≤ t ≤ 0,

‖g̃i(t) − gb‖C2,α
τ

≤ ε, (4.19)

• there exists a positive constant C = C(n, gb, ε, θ) such that for all indices i ≥ 0,

0 < C−1 ≤ λALE(g̃i(0)) ≤ C, (4.20)

• and

lim
i→+∞

‖g̃i(−Ti) − gb‖C2,α
τ

= 0. (4.21)

After passing to a subsequence if necessary, Hamilton’s compactness theorem [Ham95] ensures
that (g̃i(t))t∈[−Ti,0] converges smoothly on compact time intervals to an ancient Ricci flow g̃∞

defined on (−∞, 0]. Moreover, the property (4.19) together with Lemma 1.3 imply that the

convergence holds in the C2,α′

τ ′ -topology for any τ ′ ∈ (0, τ) and α′ ∈ (0, α). The continuity of

the functional λALE on a C2,α′

τ ′ -neighborhood of gb for τ ′ ∈
(

n
2 − 1, τ

)

together with the lower
bound (4.20) imply λALE(g̃∞(0)) > C > 0. This fact alone shows that the solution (g∞(t))t≤0

is therefore nontrivial, i.e. non Ricci-flat.
There remains to prove that g̃∞(t) converges to gb as t tends to −∞ in the C2,α

τ -topology.
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According to the triangular inequality,

‖g̃i(t) − gb‖C2,α
τ

≤ ‖g̃i(t) − g̃i(−Ti)‖C2,α
τ

+ ‖g̃i(−Ti) − gb‖C2,α
τ

≤C
(

‖g̃i(−Ti) − gb‖1−η

C2,α
τ

+ λALE(g̃i(t))
θ
2

(1+η)−η
)

+ ‖g̃i(−Ti) − gb‖C2,α
τ

≤C
(

‖g̃i(−Ti) − gb‖1−η

C2,α
τ

+ λALE(g̃i(t))
θ
2

(1+η)−η
)

,

(4.22)

if η ∈
(

0, θ
2−θ

)

, for some time-independent positive constant C = C(n, gb, ε, θ, η). Here we

have essentially used Lemma 2.16 together with [(4.5), Lemma 4.2] in the second line.
Now, according to [(4.1), Lemma 4.1] applied between times Ti +t and Ti with −Ti ≤ t ≤ 0,

λALE(g̃i(t))

(1 − Cλ1−θ
ALE(g̃i(t))|t|)

1
1−θ

≤ λALE(g̃i(0)),

which leads to:

λALE(g̃i(t)) ≤ λALE(g̃i(0))

(1 + Cλ1−θ
ALE(g̃i(0))|t|)

1
1−θ

≤ C

(1 + C|t|)
1

1−θ

,

(4.23)

if −Ti ≤ t ≤ 0, for some time-independent positive constant C = C(n, gb, ε, θ) which may
vary from line to line. Here, we have used the uniform upper bound in (4.20) in the second
line.

Therefore, if −Ti ≤ t ≤ 0, estimates (4.22) together with (4.23) lead to:

lim sup
i→+∞

‖g̃i(t) − gb‖C2,α
τ

≤ C

(1 +C|t|)
θ

2(1−θ)
−η
, (4.24)

for any positive η sufficient small and where C = C(n, gb, ε, θ, η)>0. Since (g̃i(t))t∈[−Ti,0] con-
verges to (g∞(t))t≤0 smoothly locally on compact time intervals, (4.24) implies the expected
result:

‖g∞(t) − gb‖C2,α
τ

≤ C

(1 + C|t|)
θ

2(1−θ)
−η
, t ≤ 0.

The fact that (g∞(t))t≤0 satisfies (4.12) is a direct application of Shi’s estimates for ancient
solutions to the Ricci flow: see [CLN06, Chapter 6] for instance.

�
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Appendix A. First and second variations of geometric quantities

In this appendix, we collect first and second derivatives of various geometric quantities.
We start by recalling the first variations of the Ricci and scalar curvature:

Lemma A.1. Let (Nn, g) be a Riemannian manifold. Let h ∈ S2T ∗N be a smooth symmetric
2-tensor on N . Then,

δg(−2 Ric)(h) = ∆gh+ 2 Rm(g)(h) − Ric(g) ◦ h− h ◦ Ric(g) − LBg(h)

= ∆L,gh− LBg(h),
(A.1)

where ∆L,g denotes the Lichnerowicz operator as defined in introduced in Definition 1.10 and
where Bg(h) denotes the linearized Bianchi gauge defined by:

Bg(h) := divg h− 1

2
g (∇g trg h, ·) . (A.2)

In particular, the first variation of the scalar curvature along a variation h ∈ S2T ∗N is:

δg R(h) = divg divg h− ∆g trg h− 〈h,Ric(g)〉g (A.3)

A proof of this lemma can be found for instance in [CLN06, Chapter 2].
We state without proof distortion bounds on distances along the Ricci flow which are a

straightforward consequence of the Ricci flow equation:

Proposition A.2. Let (Nn, g(t))t∈[0,T ) be a solution to the Ricci flow. Then, for any 0 ≤
s ≤ t < T , and x, y ∈ N ,

e−
´ t

s ‖ Ric(g(t′))‖C0 dt′

dg(t)(x, y) ≤ dg(s)(x, y) ≤ e
´ t

s ‖ Ric(g(t′))‖C0 dt′

dg(t)(x, y). (A.4)

We continue by recalling the evolution equation satisfied by the Ricci tensor along the Ricci
flow:

Lemma A.3. Let (Nn, g(t))t∈[0,T ) be a smooth Ricci flow. Then, on N × (0, T ),

∂t Rm(g(t)) = ∆g(t) Rm(g(t)) + Rm(g(t)) ∗ Rm(g(t)), (A.5)

∂t Ric(g(t)) = ∆L,g(t) Ric(g(t)), (A.6)

∂t Rg(t) = ∆g(t) Rg(t) +2| Ric(g(t))|2g(t). (A.7)

We next give a global version of Shi’s estimates when the initial metric is smooth:

Lemma A.4. Let (Nn, g(t))t∈[0,T ) be a complete smooth Ricci flow such that

sup
N

|∇g(0),k Rm(g(0))|g(0) ≤ Ck, (A.8)

for any k ≥ 0, where Ck is a positive constant. If C̃0 := supt∈[0,T ) | Rm(g(t))|g(t) is finite then

sup
N

|∇g(t),k Rm(g(t))|g(t) ≤ C̃k, t ∈ [0, T ), (A.9)

for some time-independent positive constant C̃k = C̃k(n, C̃0, (Ci)1≤i≤k).

Proof. This is essentially due to the maximum principle applied to the evolution equation
satisfied by the kth-covariant derivatives of the curvature tensor which is derived in [Ham82,
Theorem 13.2]. Indeed, let us recall the proof if k = 1, the cases k ≥ 2 can be handled
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similarly. The covariant derivative ∇g(t) Rm(g(t)) satisfies schematically once we differentiate
[(A.5), Lemma A.3] :

∂t∇g(t) Rm(g(t)) = ∆g(t)∇g(t) Rm(g(t)) + ∇g(t) Rm(g(t)) ∗ Rm(g(t)).

Notice that:

∂t| Rm(g(t))|2g(t) ≤ ∆g(t)| Rm(g(t))|2g(t) − 2|∇g(t) Rm(g(t))|2g(t)

+ c(n)| Rm(g(t))|g(t)| Rm(g(t))|2g(t),

∂t|∇g(t) Rm(g(t))|2g(t) ≤ ∆g(t)|∇g(t) Rm(g(t))|2g(t) − 2|∇g(t),2 Rm(g(t))|2g(t)

+ c(n)| Rm(g(t))|g(t)|∇g(t) Rm(g(t))|2g(t).

Then, based on Shi’s approach to Bernstein’s estimates [Shi89a], one considers the function
F := a| Rm(g(t))|2g(t) + |∇g(t) Rm(g(t))|2g(t) for some positive constant a to be specified later

which satisfies:

∂tF ≤ ∆g(t)F + (c(n)C̃0 − 2a)|∇g(t) Rm(g(t))|2g(t) + ac(n)C̃3
0

≤ ∆g(t)F − c(n)C̃0|∇g(t) Rm(g(t))|2g(t) + ac(n)C̃3
0

≤ ∆g(t)F − c(n)C̃0F + 2ac(n)C̃3
0 ,

(A.10)

if a := c(n)C̃0. Notice that in case N is closed, the maximum principle applied to (A.10)
gives the expected result. If (Nn, g(t))t∈[0,T ] is non-compact there exists a smooth positive

exhaustion function ψ satisfying ∆g(t)ψ ≤ C(n, C̃0, T ) and c1(1 + dg(0)(p, x)) ≤ ψ(x) ≤
c1(1+dg(0)(p, x)) for all x ∈ N , for some point p ∈ N and some positive constants c1, c2. The
existence of such a function is due to [Shi89b, Lemmata 4.2, 4.3].

Now, for γ > 0, consider the function F − γψ and observe that:
(

∂t − ∆g(t)

)

(F − γψ) ≤ −c(n)C̃0(F − γψ) + c(n)C̃4
0 + γC(n, C̃0, T ). (A.11)

Since for each t ∈ [0, T ) and each γ > 0, F (·, t) − γψ(·, t) is unbounded from below so that it
attains its maximum on N . Moreover, notice that for every γ > 0,

sup
N

(F (·, 0) − γψ(·, 0)) ≤ sup
N
F (·, 0) ≤ C(n, C̃0, C1). (A.12)

If F − γψ attains its maximum at an interior point (t0, x0) ∈ (0, T ) ∈ N then the maximum
principle applied to (A.11) implies that

F (x0, t0) − γψ(x0, t0) ≤ c(n)C̃3
0 + γC(n, C̃0, T ), (A.13)

where c(n) and C(n, C̃0, T ) are constants that may vary from line to line. This fact together
with (A.12) implies for every (x, t) ∈ N × [0, T ):

F (x, t) ≤ γψ(x, t) + max

{

F (x0, t0) − γψ(x0, t0), sup
N
F (·, 0) − γψ(·, 0)

}

≤ γψ(x, t) + max
{

c(n)C̃3
0 + γC(n, C̃0, T ), C(n, C̃0, C1)

}

.

By sending γ to 0, one gets the expected result, i.e. supN |∇g(t) Rm(g(t))|g(t) ≤ C(n, C̃0, C1).
for all t ∈ [0, T ).

�
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We recall classical Shi’s estimates on the curvature tensor and state the corresponding local
Shi’s estimate on the Ricci tensor.

Proposition A.5. Let (Nn, g(0)) be a complete Riemannian metric with bounded curvature,
i.e. | Rm(g(0))| ≤ C0 on N . Let (g(t))t∈[0,TShi] be Shi’s solution to the Ricci flow starting
from g(0) where TShi = T (n,C0). Then, for t ∈ [0, TShi],

‖ Rm(g(t))‖C0 ≤ 2‖ Rm(g(0))‖C0 , t
k
2 ‖∇g(t),k Rm(g(t))‖C0 ≤ Ck, k ≥ 0, (A.14)

where Ck = C(n, k,C0).
Moreover, the following local Shi type estimates hold true: for each k ≥ 0, there exist

positive constants Ck = C(n, k,C0) and r0 = r(n, injg(0)(N)) such that for r < r0 and x ∈ N ,

sup
Bg(0)(x,r)

t
k
2 |∇g(t),k Ric(g(t))|g(t) ≤ Ck sup

Bg(0)(x,2r)
| Ric(g(0))|g(0) , t ∈ [0, TShi]. (A.15)

Proof. Estimates (A.14) are due to Shi [Shi89a, Lemma 7.1].
Estimates (A.15) can be proved along the same lines by using Shi’s estimates (A.14) on

the curvature tensor inductively. �

The following proposition establishes a priori rough C0 and L2 estimates on the Ricci
curvature along a solution to the Ricci flow.

Proposition A.6. Let (Nn, g(t))t∈[0,T ) be a complete Ricci flow with bounded curvature, i.e.
supN | Rm(g(t))| < +∞ for each t ∈ [0, T ).

Then for 0 ≤ s ≤ t ≤ T ,

‖ Ric(g(t))‖C0 ≤ ec(n)
´ t

s ‖ Rm(g(t′))‖C0 dt′‖ Ric(g(s))‖C0 . (A.16)

Furthermore, if Ric(g(t)) ∈ L2 for each t ∈ [0, T ) then, for 0 ≤ s ≤ t < T ,

‖ Ric(g(t))‖L2 ≤ ec(n)
´ t

s ‖ Rm(g(t′))‖C0 dt′‖ Ric(g(s))‖L2 . (A.17)

Proof. Estimate (A.16) is a straightforward application of the maximum principle.
Indeed, using the evolution equation [(A.6), Lemma A.3] satisfied by the Ricci tensor

together with the previous bound on the curvature tensor, one gets:

∂t| Ric(g(t))|2g(t) ≤∆g(t)| Ric(g(t))|2g(t) + c(n)| Rm(g(t))|g(t)| Ric(g(t))|2g(t)

≤∆g(t)| Ric(g(t))|2g(t) + c(n) sup
t′∈[s,t]

‖ Rm(g(t′))‖C0 | Ric(g(t))|2g(t).
(A.18)

In particular, the function e−c(n)
´ t

s ‖ Rm(g(t′))‖C0 dt′ | Ric(g(t))|2g(t) is a subsolution of the heat

equation along the Ricci flow on N × [0, T ). The maximum principle implies that

‖ Ric(g(t))‖C0 ≤ ec(n)
´ t

s
‖ Rm(g(t′))‖C0 dt′‖ Ric(g(s))‖C0 ,

for any 0 ≤ s ≤ t ≤ T .
If Ric(g(t)) ∈ L2, t ∈ [0, T ], the proof is the L2 counterpart of the proof of the C0 estimate

(A.16). By differentiating in time and using the evolution equation [(A.6), Lemma A.3]
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satisfied by the Ricci tensor:

d

dt
‖ Ric(g(t))‖2

L2 =

ˆ

N
2
〈

Ric(g(t)),∆g(t) Ric(g(t)) + Rm(g(t)) ∗ Ric(g(t))
〉

g(t)
dµg(t)

−
ˆ

N
Rg(t) | Ric(g(t))|2g(t)

≤ − 2‖∇g(t) Ric(g(t))‖2
L2 + c(n)‖ Rm(g(t))‖C0 ‖ Ric(g(t))‖2

L2

≤ c(n)‖ Rm(g(t))‖C0 ‖ Ric(g(t))‖2
L2 .

Here we have used integration by parts in the second line which can be justified by using
suitable cut-off functions. The expected estimate follows by Grönwall’s inequality applied to
the previous differential inequality. �

We continue by establishing a general pointwise formula linking the Laplacian along the
Ricci flow of the difference of the solution at two different time:

Lemma A.7. Let (Nn, g(t))t∈[0,T ) be a smooth Ricci flow. Then, for 0 ≤ s ≤ t < T , the

following formula holds pointwise if h(t′) := g(t′) − g(s), t′ ∈ [s, t]:

∆g(t)(g(t) − g(s)) =
[

2 Ric(g(t′)) − Ric(g(t′)) ◦ h(t′) − h(t′) ◦ Ric(g(t′))
]t
t′=s

+

ˆ t

s
2 Ric(g(t′)) ◦ Ric(g(t′)) + Rm(g(t′)) ∗ Ric(g(t′)) dt′

+

ˆ t

s
∇g(t′) Ric(g(t′)) ∗ ∇g(t′)(g(t′) − g(s)) dt′

+

ˆ t

s
Ric(g(t′)) ∗ ∇g(t′),2(g(t′) − g(s)) dt′.

(A.19)

Proof. Observe first that:

∆g(t)(g(t) − g(s)) =

ˆ t

s

d

dt′
∆g(t′)(g(t

′) − g(s)) ds, (A.20)

Now, for t′ ∈ [0, T ),

d

dt′
∆g(t′)(g(t

′) − g(s)) =

(

d

dt′
∆g(t′)

)

(g(t′) − g(s)) + ∆g(t′)(∂t′g(t′))

= − 2∆g(t′) Ric(g(t′)) +

(

d

dt′
∆g(t′)

)

(g(t′) − g(s))

= − 2∂t′ Ric(g(t′)) + Rm(g(t′)) ∗ Ric(g(t′))

+
2
∑

k=0

∇g(t′),2−k Ric(g(t′)) ∗ ∇g(t′),k(g(t′) − gb).

Here, we have used Lemma A.3 in the third line. As a first conclusion:

∆g(t)(g(t) − g(s)) =2 Ric(g(s)) − 2 Ric(g(t)) +

ˆ t

s
Rm(g(t′)) ∗ Ric(g(t′)) dt′

+

ˆ t

s

2
∑

k=0

∇g(t′),2−k Ric(g(t′)) ∗ ∇g(t′),k(g(t′) − g(s)) dt′.

(A.21)
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We are half way from the proof of (A.19): we refine the computation of
(

∂
∂t′ ∆g(t′)

)

(g(t′)−g(s))
as follows. Notice that we only need to identify the zeroth order term (g(t′) − g(s)).

For doing so, recall the following evolution equation satisfied by the Christoffel symbols
along the Ricci flow as given for instance in [CLN06, Chapter 2]:

∂

∂t
Γ(g(t))k

ij = −g(t)kl
(

∇g(t)
i Ric(g(t))jl + ∇g(t)

j Ric(g(t))il − ∇g(t)
l Ric(g(t))ij

)

. (A.22)

In particular, if h(t) := g(t) − g(s), the zeroth order term of
(

∂
∂t∆g(t)

)

(g(t) − g(s)) is:

g(t)ij∇g(t)
i

(

∂

∂t
∇g(t)

j

)

h(t)pq = −g(t)ij∇g(t)
j

(

∂tΓ(g(t))k
ip

)

h(t)kq − g(t)ij∇g(t)
j

(

∂tΓ(g(t))k
iq

)

h(t)pk

= ∆g(t) Ric(g(t))pkh(t)kq + h(t)pk∆g(t) Ric(g(t))kq

+
[

g(t)ij∇g(t)
j ∇g(t)

p Ric(g(t))ik − g(t)ij∇g(t)
j ∇g(t)

k Ric(g(t))ip

]

h(t)kq

+
[

g(t)ij∇g(t)
j ∇g(t)

q Ric(g(t))ik − g(t)ij∇g(t)
j ∇g(t)

k Ric(g(t))iq

]

h(t)pk

=
(

∆g(t) Ric(g(t)) ◦ h(t) + h(t) ◦ ∆g(t) Ric(g(t))
)

pq

+
[

∇g(t)
p divg(t) Ric(g(t))k − ∇g(t)

k divg(t) Ric(g(t))p

]

h(t)kq

+
[

∇g(t)
q divg(t) Ric(g(t))k − ∇g(t)

k divg(t) Ric(g(t))q

]

h(t)pk

+ Rm(g(t)) ∗ Ric(g(t)) ∗ h(t)pq

= (∂t Ric(g(t)) ◦ h(t) + h(t) ◦ ∂t Ric(g(t)))pq

+ (Rm(g(t)) ∗ Ric(g(t)) ∗ h(t))pq .

Here, we have used the traced Bianchi identity in the last line to cancel the terms involving the
divergence divg(t) Ric(g(t)) together with the evolution equation satisfied by Ric(g(t)) given
by Lemma A.3. To conclude, we have obtained schematically:
(

∂

∂t′
∆g(t′)

)

(g(t′) − g(s)) =∂t′ Ric(g(t′)) ◦ h(t′) + h(t′) ◦ ∂t′ Ric(g(t′)) + Rm(g(t′)) ∗ Ric(g(t′))

+ ∇g(t′) Ric(g(t′)) ∗ ∇g(t′)(g(t′) − g(s))

+ Ric(g(t′)) ∗ ∇g(t′),2(g(t′) − g(s)).
(A.23)

With (A.23) in hand, we are in a position to conclude. Indeed, by integrating by parts with
respect to time,

∆g(t)(g(t) − g(s)) =2 Ric(g(s)) − Ric(g(s)) ◦ h(s) − h(s) ◦ Ric(g(s))

− 2 Ric(g(t)) + Ric(g(t)) ◦ h(t) + h(t) ◦ Ric(g(t))

+

ˆ t

s
2 Ric(g(t′)) ◦ Ric(g(t′)) + Rm(g(t′)) ∗ Ric(g(t′)) dt′

+

ˆ t

s
∇g(t′) Ric(g(t′)) ∗ ∇g(t′)(g(t′) − g(s)) dt′

+

ˆ t

s
Ric(g(t′)) ∗ ∇g(t′),2(g(t′) − g(s)) dt′,

(A.24)

58            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

Stability of Ricci-flat ALE metrics along the Ricci flow 59

as expected.
�

We finally recall a special case of the Gagliardo-Nirenberg interpolation inequalities essen-
tially proved by Aubin as the main theorem of [Aub81] in this Riemannian setting that we
will make use of:

Lemma A.8 (Interpolation inequalities for asymptotically conical metrics). Let (Mn, g) be a
complete Riemannian metric. Then, the following interpolation inequalities hold true for any
integer m ≥ 0:

sup
M

|∇g,jT |g ≤ C(n, injg(x)) sup
M

|T |1− j
m

g · sup
M

|∇g,mT |
j
m
g , (A.25)

where T is any tensor on M with compact support in B(x, injg(x)/2), x ∈ M and 0 ≤ j ≤ m.

In particular, if the curvature tensor decays quadratically with derivatives, i.e. if

Ak(g) := sup
M

r2+k
p |∇g,k Rm(g)|g < +∞,

for all k ≥ 0 and if injg(x) ≥ ιrp(x) from some positive constant ι and p ∈ M uniform in
x ∈ M , then

sup
Bg(x,ιrp(x)/4)

rp(x)j |∇g,jT |g ≤ C · sup
Bg(x,ιrp(x)/2)

|T |1− j
m

g · sup
Bg(x,ιrp(x)/2)

( m
∑

k=0

rp(x)k|∇g,kT |g
)

j
m

,

(A.26)
where C = C(n, ι, (Ak(g))0≤k≤m).

59            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

60 Alix Deruelle and Tristan Ozuch

References

[And90] Michael T. Anderson. Convergence and rigidity of manifolds under ricci curvature bounds. Inven-
tiones mathematicae, 102(1):429–445, Dec 1990.

[App18] Alexander Appleton. Scalar curvature rigidity and Ricci DeTurck flow on perturbations of Euclidean
space. Calc. Var. Partial Differential Equations, 57(5):Art. 132, 23, 2018.

[App19] Alexander Appleton. Eguchi-hanson singularities in u(2)-invariant ricci flow. 2019.
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