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Abstract— Self-disclosure is an important part of mental health
treatment process. As interactive technologies are becoming more
widely available, many AI agents for mental health prompt their
users to self-disclose as part of the intervention activities. However,
most existing works focus on linguistic features to classify self-
disclosure behavior, and do not utilize other multi-modal behavioral
cues. We present analyses of people’s non-verbal cues (vocal acoustic
features, head orientation and body gestures/movements) exhibited
during self-disclosure tasks based on the human-robot interaction
data collected in our previous work. Results from the classification
experiments suggest that prosody, head pose, and body postures
can be independently used to detect self-disclosure behavior with
high accuracy (up to 81%). Moreover, positive emotions, high
engagement, self-soothing and positive attitudes behavioral cues
were found to be positively correlated to self-disclosure. Insights
from our work can help build a self-disclosure detection model that
can be used in real time during multi-modal interactions between
humans and AI agents.

I. INTRODUCTION

Mental wellbeing is an important issue given its prevalence
in all ages, where depression and anxiety are considered as the
leading cause of disability worldwide [28]. Especially with the
COVID-19 pandemic, the prevalence of mental health problems
has tripled according to a late study, given the high exposure
to stressors [12]. Digital mental health technologies attempt to
reduce the effect of mental health and its prevalence by increasing
accessibility to interventions and resources to those who need it.
These technologies, such as social media [4], [25], [24], chatbots
[23], [35], and voiced agents [31], have become mediums for
self-disclosure, and can act as a tool for self-expression, while
mitigating the potential risk of disclosing to another person (e.g.
vulnerability, embarrassment, shame, lose of privacy [15]).

Social robots have also been studied as a tool to provide mental
health interventions. In our recent study, we deployed a social
robot that offers seven positive psychology exercises to improve
people’s psycholgical wellbeing in their homes [20]. Several of the
intervention sessions offered opportunities for people to disclose
about themselves, their thoughts, and feelings [20]. However, the
robot had limited capabilities of encouraging, understanding, and
properly addressing self-disclosure events. This limitation led
some of the study participants to feel that the robot was not really
“listening” to them during the intervention activities and frustrated.

§ Equal Contribution

Based on these feedback, we believe that equipping the robot with
automatic self-disclosure detection from verbal and non-verbal
behaviors will improve engagement and rapport with the robot by
enabling the robot to elicit and respond to users’ self-disclosure
with empathy and attentiveness.

Self-disclosure is defined as sharing of personal and intimate
information about oneself. It has a great impact on improving one’s
mental health (e.g. release their stress, depression, and anxiety
[24]). The act of self-disclosing has been shown to benefit people
even when information was not disclosed to another person, e.g.
expressive writing [29].

Most existing works on self-disclosure focus on analyzing
linguistic features (e.g. interaction with text-based chatbots), even
in the context of human-voiced agent interactions [31]. Unlike
text-based chatbots, voiced agents and social robots rely on multi-
modal interactions, often including user’s voiced speech. This
could be advantageous if utilized properly, such as augmenting
self-disclosure analysis with prosody and nonverbal behaviors for
a better interaction policy. Although emotional and self-disclosure
speech often contain prolonged pauses [22], current voiced agents
treat a long pause as an indicator for end of user utterance [31].
This is problematic because it could cause a voice-based agent to
interrupt users while they are self-disclosing. One solution to avoid
agent interruptions is to complement the linguistic self-disclosure
analysis with available modalities (e.g. prosody and nonverbal
behavior). However, research in this solution is scarce.

Therefore, in this work, we investigate the behavioral cues
that indicate self-disclosure beyond the spoken language. Using
our video recordings of the interaction sessions between the
participants and a robotic positive psychology coach, we extract
acoustic and visual behaviors during self-disclosure events. We
model different modalities of behaviors (i.e. vocal, head, and
body expressions) and provide analyses and interpretation of
these behaviors through feature selection, and machine learning
algorithms. The main contributions of this research are as follows:

• This paper explores the broadest array of high-level temporal
behavioral features to date associated with self-disclosure
from speech prosody, head pose, and body gestures.

• This paper is also the first to undertake a detailed and com-
prehensive approach to provide interpretation and insights
into these behaviors to support modeling transparency.

• To the best of our knowledge, we are the first to evaluate
this approach in a human-robot interaction context.978-1-6654-3176-7/21/$31.00 ©2021 IEEE



• We are also the first to analyze body gestures in correlation
to self-disclosure events.

Given that not all modalities can be available during the robot
interaction (e.g. missing audio or video segments, the user is
not speaking or is out of the camera(s) view), we investigate
individual modalities to detect self-disclosure behavior. Moreover,
our focus here is to analyze and extract behaviors to create a
light-weight real-time model to be implemented on the robot with
minimum computational resources.

II. BACKGROUND AND RELATED WORK

Social agents have been widely utilized to support the user
to improve their wellbeing and mental health outcomes. With
the increase of such utilization, the actual impact and efficacy
on user’s wellbeing are evaluated based on their adequacy, as
reviewed in [35]. Willingness to self-disclose is considered one
of the measures to assess the rapport between users and the
agent, as well as the social support provided by the agent [35].
For example, the study in [8] showed that participants felt more
rapport and willingness for self-disclosure with a virtual agent
than face-to-face interaction. Contrary to human clinicians, social
agents can provide perceived anonymity [25] and non-judgment
[33], which reduce the stress and lower emotional barriers to
self-disclosing [17]. These characteristics make them a suitable
medium to share personal and sensitive information compare to
sharing with other people. These unique characteristics create
an opportunity for the users to retain the benefits of expressing
themselves (e.g. reduce psychological distress [24]), while
avoiding its risks (e.g. vulnerability and shame [15]).

Analyzing self-disclosure from linguistic attributions attracted
a wide range of research fields (e.g. psychology, linguistics).
Social media provided a platform for users to disclose information
about one-self as studied in [25], where they categorized self-
disclosure in such platforms based on topics (e.g. Tastes and
Interests, Interpersonal Relations and Self-Concept). The results
of their study showed the factors affecting willingness to self-
disclose in social media platforms, which included the level of
topic intimacy, user anonymity, and social ties (i.e. personally
knowing the people in the platform). [31] defined self-disclosure
as “sharing extraneous information voluntarily as opposed to a
direct response to a question” and annotated people’s dialogues
with voiced conversational agents. Their automatic classification of
self-disclosure extracted conversational and linguistic features, and
resulted up to 91.7% accuracy in detecting self-disclosure events.
They also found that people were more like to reciprocate if the
agent exhibited a self-disclosure behavior, and the dialogues that
contain self-disclosure are longer in duration. However, their con-
versational agents rely on Automatic Speech Recognition (ASR),
and inaccurate ASR results led to failures in the agent’s responses.

A text-based chatbot developed by [23] explored strategies
to encourage and elicit users’ self-disclosure. The agent’s
self-disclosure statements were categorized as informational,
thoughts, and feeling, and were further rated as one of the
three levels (no/low/high self-disclosure). They found that
people who interacted with the chatbot that shared low or high
self-disclosure were more liked to reciprocate the behavior as
previously suggested by [31]. Moreover, virtual conversational

agents that express intimacy behaviors (i.e. honesty, positivity, and
mutual comprehension) during tourist counseling elicited positive
emotions in users and enhanced the user experience [30].

We believe that for stronger human-agent rapport and
relationship would enhance the effectiveness in the mental health
interventions the agent provides. Previous findings suggest that an
artificial agent could achieve better rapport with users by engaging
in intimate and engaging self-disclosure interactions. However,
this is a difficult task due to the complexity of the linguistic
understanding, the errors in ASR, and the effect of mistakenly
recognizing end-of-speech signal (i.e. variations in pauses in
emotional or self-disclosing speech). Instead of solely depending
on single modality, we argue that complementing self-disclosure
detection with other available modalities (e.g. vocal and visual
behaviors) could enhance the self-disclosure detection.

To the best of our knowledge, only a few studies investigated
behaviors beyond the language attributes in recognizing self-
disclosure (i.e. analyzing prosody and nonverbal behaviors). One
of the first studies manually annotated the nonverbal behavior
of participants during virtual consular interaction, including eye
gaze, head movement, smiling, and pauses [22]. They analyzed
the association of these behaviors with the level of intimate self-
disclosure (low, medium, and high), where the results showed that
head tilts and nodes behaviors are the strongest in distinguishing
self-disclosure. Another study analyzed verbal and nonverbal
behaviors that are correlated to conversational strategies including
self-disclosure, shared experiences, etc. [36]. The nonverbal behav-
iors, namely eye gaze, smiles, and head nodes, were manually an-
notated, while linguistic and prosody features were extracted using
available tools. The finding showed that nods and mutual gaze are
expressed from the self-disclosing person, while the listener behav-
iors showed nod and avert their gaze during self-disclosing events.

Automatic behavior extraction from linguistic, acoustic, and
nonverbal modalities for the level of self-disclosing estimation was
investigated recently in [34], which is, to the best of our knowledge,
the only one that fully automate the behavior extraction and
estimation of self-disclosure. The dialog interactions with a
tele-operated virtual agent were rated for self-disclosure in 7
levels ranging from -3 to +3 (low-high disclosure), where the
self-disclosing estimation was treated as a regression problem.
They compared the performance of modeling self-disclosure using
handcrafted features (e.g. head nods, shake, and orientation, smiles,
pauses) with deep representations (extracted from pre-trained
models) from the three channels (i.e. text, audio and video)
individually and when fused. On average, the model performance
was not significantly different between handcrafted features and
deep representations in each modality, while handcrafted features
were slightly better with small datasets. Moreover, the performance
of the multimodal fusion was comparable to signal modalities.

Extending on prior work, we extract an extensive array of
acoustic and nonverbal behaviors from head and body gestures.
We focused our investigation to handcrafted features modeled
with traditional discriminative models (multi-layer perceptron
and SVMs) for the following reasons: (1) our dataset is relatively
small for deep modeling, (2) according to [34], deep features
and deep models were not significantly higher in accuracy than
traditional ones, (3) we aim to provide a transparent and objective
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Fig. 1: A portable station that integrates a social robot, a tablet,
and a Raspberry Pi with a wide-angle USB camera.

interpretation of self-disclosure behavior, and (4) we wish to
create a lightweight model suitable for robot implementation with
minimum computational resources to work on real-time.

III. METHODOLOGY

A. Robotic Positive Psychology Coach

In our previous study [20], we deployed a social robot in
participants’ homes intending to improve their mental health
through positive psychology sessions.

A portable station was used for this purpose that integrated
Jibo robot1 with a tablet, which provides an interface for extra
resources, as well as recording the sessions through its camera,
and also integrated with a Raspberry Pi for recording the sessions
through a wide-angle USB web camera (see Fig. 1).

The commercial robot is equipped with useful skills (e.g.
weather report) that participants interact with. To extend the
skills in the robot, we implemented a Wellness skill to coach the
participants for the positive psychology sessions. To activate the
Wellness skill, the robot asks the participant if they would like
to start, or by participant’s request. Once the Wellness skill is
activated, audio and video recording of the session starts from
both the tablet camera and the USB camera.

B. Human-Robot Interaction Study

We recruited thirty five undergraduate students living in on-
campus dormitories at jeong2020robotic to participate in our study
(age M=18.94, SD=1.43; 27 female, 7 male, and 1 other). Once
the student signed a consent form, a robot station was delivered
to the him/her dormitory room and a set of questionnaires were
administered to measure their personality traits (Mini-IPIP) [9],
psychological wellbeing (Ryff’s Psychological Wellbeing Scale
[21]), mood (Brief Mood Introspection Scale [26]) and readiness
to change for better wellbeing (Readiness Ruler [18]).

Participants were instructed on the overall study procedure, as
well as how to use the robot’s wake word (“Hey, Jibo”), how to
start/stop the robot’s positive psychology skill, and how to make
the robot go to sleep or turn around for their privacy. We asked
our participants to use the robot’s wellness skill daily at any time
during the day they found suitable.

Seven wellness sessions were 5-10 minute each and
were designed based on evidence-based positive psychology
interventions [32]. They included contents about (1) the

1https://www.jibo.com/

introduction to positive psychology, (2) character strengths (CS),
(3) using your signature strength in a new way (SS), (4) practicing
the three good things exercise (TGT), (5) writing a gratitude letter
(GL), (6) savoring (S), and (7) overall reviews. Each session was
video/audio recorded through the Android tablet camera and the
external USB camera on the station.

During each session, the robot first greeted the participants
and asked them about how their day was going – small talk task
(ST). Then, the robot introduced the intervention content for the
day. All of the intervention sessions (except for the introduction
session on the first day) included at least one questions/prompts
for participants to share their reflections and feelings based on the
intervention procedures. In some sessions, they were asked to ver-
bally express their reflections on the previous session. In total, the
robot asked fourteen open-ended questions. Seven of them were
small talk (ST) tasks, and the other seven were intervention specific
questions, e.g. “can you tell me three things you are grateful for
today and why they went well?” for the three good things (TGT)
exercise, “how did [gratitude letter recipient] react and how did
it make you feel?” for the gratitude letter (GL) exercise, etc. The
robot used rule-based parsers to classify the participants’ intent.

At the end of the study, participants filled out surveys on their
psychological wellbeing, mood, readiness to change behavior
and working alliance with the robot, and participated in a semi-
structured interview for more open-ended feedback on their
experience living with the robot. For further details about the
protocol, please refer to our paper [20].

C. Self-Disclosure Annotation

The audio recordings were manually transcribed, where we
manually annotate for self-disclosure statements. However, due to
some technical issues (e.g. lost communication between devices),
out of the 245 sessions, the audio recordings of 13 sessions were
not available. Therefore, the total number of audio-recorded
sessions included in this study is 232 sessions. Given the unique
interaction and context in our robot coach study, we used a
customized self-disclosure definition adopted from [2] rather
than utilizing the self-disclosure definitions used in previous
studies (described in Section II). We define self-disclosure and
non-self-disclosure in this context as:

Self-disclosure:: The participant reveals information about
themselves to the agent. The information can be descriptive or
evaluative and can include thoughts, feelings, aspirations, goals,
failures, successes, fears, and dreams, as well as one’s likes,
dislikes, and favorites. Typical conversations you might share with
a friend. An example statement: “Well, I value close relationships
with people so...for example, yesterday I went to Waltham with
my friend to spend a few hours with him.”.

Non-Self-disclosure :: The participant may still reveal some
amount of information about themselves. This information is typi-
cally inconsequential and something that any person would be com-
fortable sharing with a complete stranger. An example statement:
“Um, I’m on a basketball team so I regularly work with a group of
people and contribute to the team environment and team success.”.

Even though this self-disclosure definition might not bring the
full psychological benefit covered in Section II, it allowed us to
categorize utterances that reveal personal and intimate information



TABLE I: Number of Samples in each Modality Used for
Analysis and Classification

Modality Acoustic Head Pose Body Gestures
(mic) (Tablet’s cam) (Webcam)

Self-disclosure 56 52 53
Non Self-disclosure 196 179 189
Total 252 231 242
* Sample sizes differ between modalities due to missing recording
from the recording device caused by communication failure.

that can potentially deepen the rapport and relationship [3] from
utterances that only share superficial and factual information.
We annotated the open-ended responses, described above, since
these responses have high chances of participants sharing their
reflections and feelings. Responses to yes/no or confirmation
questions were excluded from the annotation task. This process
results in a total of 420 annotated statements, where only 95
statements are identified as self-disclosure. From these annotated
statements, we further excluded very short utterances (e.g. “I will
read a book”) to ensure a fair comparison between self-disclosure
and non-self-disclosure, since most self-disclosure statements tend
to be longer. The final count of statements used in this analysis is
252, of which 56 are self-disclosure utterances (see Table I).

D. Behavioral Feature Extraction

We manually synchronized the audio and video signals from
the Tablet and Raspberry Pi recordings as a pre-processing step.
The aligned signals (audio, video, and text transcripts) were then
segmented for the annotated self-disclosure to extract the vocal
and nonverbal behaviors.

For the acoustic signal, we segmented the session audio signal
using the transcription timestamps to extract the participant’s
clean speech (i.e. not contaminated with the robot’s speech or
other speakers). To account for the different duration between
audio segments, the speech utterances are summarized through
extracting high-level functional (statistical) acoustic features using
OpenSmile [14]. Research in detection emotions from speech
showed a high performance using the minimalistic feature set
carefully selected features [13]. We extract 88 parameters, that
includes Frequency parameters (Pitch, Jitter, and Formants),
Energy parameters (Shimmer, loudness, and Harmonic to Noise
Ratio (HNR)), and Spectral parameters (including Mel-Frequency
Cepstral Coefficients(MFCC).

As mentioned earlier, we video-record the sessions using two
cameras; the tablet camera and the wide-angle USB camera. We
used these videos to extract nonverbal behaviors from head pose
and body gestures. Given the different views of the cameras
(Fig. 2 illustrate an example of the cameras’ views), we used the
wide-angle camera for analyzing body gestures, and the tablet
camera for analyzing head pose.

To extract the head orientation, we first extracted facial
landmarks in an estimated 3D space [6], as shown in Fig. 2a. At
every frame, head orientation (yaw, pitch, and roll) is calculated by
solving the Direct Linear Transform (DLT) followed by Levenberg-
Marquardt optimization from the 3D facial landmarks. Similar
to the speech signal, we summarize the head orientation through
statistical functions to account for different duration of segments,

(a) Tablet Camera View

(b) Wide Angle USB Webcam View

Fig. 2: An example of detected upper body joints and facial
landmarks from both Tablet and USB cameras’ Views.

which is performed at the utterance level. For this summary, we
calculate 10 functional features from each of the 3 low-level head
orientation features and their derivatives (i.e. speed and accelera-
tion), which are: minimum (min), maximum (max), range, average,
standard deviations (std), variance (var), skewness, kurtosis, peaks,
and valleys. This process produced a total of 90 functional features
(10 functional x 3 signal and derivatives x 3 low-level head pose).
The number of samples of head pose was less than those of audio
samples due to missing or corrupted video recording from the
tablet, and in a few instances out-of-view participant. The final
number of samples with head features used in this work is 231,
where 52 are classified as self-disclosure (see Table I).

Furthermore, we analyze body movement and gestures
through extracting body joints using the wide-angle view since it
is suitable for capturing the upper body gestures (see Fig. 2b). To
locate the body joints, OpenPose [7] was utilized, which locates
25 body joints with an estimated 3D space using bottom-up joint
detection through multi-stage CNN-based network architecture.
From these joints, body orientation (yaw, pitch, and roll) as well as
touching behaviors, such as touching the face, the other hand, or
the upper body are extracted from both hands. Following the same
process as with head pose features, body gestures are summarized
by calculating the 10 functional features from each body behavior
and its first and second derivatives. The length of the body gesture
feature vector is 240 for each sample (10 functional x 3 signal
and derivatives x 8 low-level body gestures). Worth noting that the
videos recorded from the USB camera had some missing sessions,
and therefore, the number of samples is not always aligned to the
recordings from the tablet and the audio recordings. The sample
size used for the body gestures is 242, of which 53 are identified
as self-disclosure (see Table I).



E. Feature Selection for Interpretation

The feature spaces for the extracted features from acoustic (88),
head pose (90), and body gestures (240) modalities are relatively
large (in comparisons to the sample size), which could hinder the
explainability of specific behaviors associated with self-disclosure.
A recent study proposed a feature selection framework (FSF),
where it aggregates several feature selection methods to system-
atically identify the most representative features of an independent
variable [1]. We utilized the FSF in this work to facilitate the
interpretation of behaviors associated to identify self-disclosure
and to support modeling transparency. For a binary classification
problem, the FSF employs statistical-based methods (e.g. t-test for
single-variate analysis, Correlation-based Feature Selection (CFS)
for multivariate analysis), machine-learning-based methods (e.g.
genetic algorithms), and data structure-based methods (e.g. random
forest), and then aggregate their results to narrow the feature space
to the most meaningful set. Through this process, the framework
not only analyze the features independently but also analyzing the
relationship between the them (e.g. removing redundant features,
finding a combination of features that correlate together, etc.).

Using the FSF, we selected the top 10% of the behavioral
features for each modality that are highly correlated to self-
disclosure, through a 10-fold cross-validation process and with
two runs to measure the stability of the selected features from
the framework. We run the FSF on each channel’s feature space
to interpret each modality behaviors separately. The selected
features are then analyzed for interpretation, as well as used for
classification to be compared when using the full feature space. For
interpretation purposes, we conduct a Point-Biserial Correlation
analysis to get the direction of the correlation of the selected
feature with the self-disclosure classes. Moreover, identifying
a minimal feature space without compromising the accuracy of
detecting self-disclosure behavior helps in creating a lightweight
real-time model with minimum computational resources.

F. Classification

To equip the robot with the ability to identify behaviors
associated with self-disclosure (or the lack of), we run several
experiments for modeling the self-disclosure. Such capability will
allow the robot to adjust its interaction to encourage self-disclosure
and respond properly to self-disclosure events. To this end,
we implemented a modeling pipeline to select the best model
and parameters for this task. Given the nature of the extracted
behavioral features, we believe that discriminative models such
as multilayer perceptron (MLP) and Support Vector Machines
(SVMs) are suitable for the task, especially given our small dataset
and our goal of creating a lightweight model. Therefore, we model
the feature space for each modality using MLP with one hidden
layer and SVMs with linear and radial kernels for comparisons.

Since the self-disclosure sample size is small compared to the
non-self-disclosure samples, we compare different methods of
data augmentation and sampling. This is performed to mitigate
the model bias toward the overrepresented class. We compare
oversampling (randomly duplicated samples from self-disclosure
class) and undersampling (randomly removed samples from non-
self-disclosure class), where both classes have the same number of
samples for training. Moreover, to mitigate the small sample size,

we used 10-fold cross-validation, where each fold the samples
are randomly split into a stratified 75%/25% training set and
testing set respectively. The testing set is then normalized (using
min-max) based on the training set values to avoid contamination.

For the models’ hyperparameter tuning, a grid search on the
training set is utilized using further 10-fold cross-validation, which
split the training set into sub-training and validation sets. For MLP
Model parameters, we used 150 epochs or until convergence (when
loss improves by less than 1e-4 per iteration), and 144 for batch
size, which was optimized using stochastic gradient descent with
a learning rate of 0.1, and log-loss for loss function. Worth noting,
that none of the MLP experiments reached the 150 training epoch.
For SVM parameters, we used linear and radial basis function
(RBF) kernels, where their parameters (cost and cost& gamma,
respectively) were optimized by the grid search described above.

The model performance is measured by the average of the
balanced accuracy (BAcc.) across the 10-folds on the testing
sets. We use the balanced accuracy rather than accuracy to
account for the imbalanced samples from the self-disclosure
classes. Furthermore, we also measure the model performance
using Matthews Correlation Coefficient (MCC) score, which is
considered a reliable result for classification performance. MCC
produces high scores only if all elements in the confusion matrix
had good results, accounting for imbalanced samples between
classes [37]. With MCC, the closer the score is to 0, the closer
the model to random-level, while the closer it is to 1, the more
perfect the classification results are. MCC can also be negative,
which indicates a high confusion in model performance.

Finally, to compare the model results with that of a random
chance, we randomly shuffled the original labels while keeping
the feature vectors as is. The results reported on all models
(including the random shuffle models) are the best-performing
combinations of models and sampling methods. Furthermore,
we performed a two-tailed T-test for two samples to analyze the
significant differences between models’ performances, assuming
equal variances and p=0.05.

IV. RESULTS AND DISCUSSION

A. Self-disclosure Behavior Classification Results

Table II shows the classification results of the best-performing
classifiers and its sampling method of each modality using full
features, selected features and randomly shuffled labels. To ensure
a fair reporting of the model performance given the imbalanced
sample sizes between the self-disclosure classes, we measure and
compare model performances using balanced accuracy (BAcc.)
and MCC. Comparing modeling from full feature space and
the features selected based on the FSF, showed performances
significantly higher than that acquired by chance (modeling with
randomly shuffled labels) for each of the behavioral signals. This
indicates that the extracted behavioral features are representative to
the task of recognizing self-disclosure behavior. Interestingly, the
performance when using the top 10% features from the FSF in all
modalities outperforms that when using full feature space. Even
though the performance differences between the full features and
the selected features are not significant, it confirms that selecting
meaningful features for modeling can reduce the computational
resources without compromising the model accuracy [1]. The



TABLE II: Results of Best-performing Classifier in Terms of Balanced Accuracy and MCC of Detecting Self-disclosure Behavior
from Different Modalities Comparing Different Feature Spaces with Randomly Shuffled Labels

Modality Prosody Head Pose Body Gestures
Features (#) All (88) FS (9) Random (88) All (90) FS (8) Random (90) All (240) FS (16) Random (240)

Sampling oversample oversample undersample undersample undersample none undersample none undersample

Best model SVM
(linear)

SVM
(linear) MLP SVM

(radial)
SVM

(radial)
SVM

(radial) MLP SVM
(radial) MLP

avg. BAcc. 0.706 0.716 0.551 0.770 0.805 0.504 0.776 0.777 0.527
std. BAcc. 0.055 0.046 0.056 0.053 0.055 0.012 0.047 0.090 0.069
avg. MCC 0.376 0.371 0.086 0.495 0.600 0.025 0.483 0.597 0.045

best performing models using the FSF features for each of the
modalities were linear kernel SVM for prosody features and radial
kernel SVM for head and body behaviors. This implies that the
selected features are easily separable between classes and that
they hold good discriminative power in identifying self-disclosure.

Comparing modalities using the FSF features, head pose
followed by the body gestures significantly outperformed
the prosody features (p = 0.0007 and p = 0.04 respectively).
However, there are no statistically significant differences between
the performance of head pose and body gestures modalities.
Interestingly, body behaviors showed a high performance in
recognizing self-disclosure, which could not be possible without
the wide-angle camera (see Fig. 2b). Worth noting that in some
instances when the participant was out of the tablet camera view
(e.g. due to station location), the wide-angle camera was able to
capture the participant. This could justify adding such cameras in
designing the setting for human-robot interaction, where analyzing
body gestures could enhance the interaction. Nonetheless, since
the signals might not be available during the entire session (e.g.
user is not speaking or out of camera view, or missing/corrupted
signal), it is valuable to be able to utilize the available signals for
detecting self-disclosure behavior from different modalities.

In summary, the results showed that the selected behavioral
features are suitable to the task, therefore, they accurately identified
self-disclosure behavior even with simple classification algorithms.
Moreover, the similarity in the accuracy results from the multi-
modal approach used in this work emphasizes the need for
redundant/complementary information from different channels.
That is, given the complexity of recording environments in real-
world interactions, and the possibility of missing data from
different sensory devices, designing recording setting and analysis
protocols should take into account the inclusion of different
modalities for reliable modeling and enhanced user interaction
experience.

B. Self-disclosure Behavior Interpretation

As mentioned in Section III-E, a feature selection framework
was utilized in this work to serve as (1) reducing the feature
space by selecting the most meaningful features, (2) reduce
the computational resources to create a lightweight model for
self-disclosure, and (3) provide interpretation of the prosody
and nonverbal behaviors associated with self-disclosure. Using
the framework, we reduce the full feature space to the top 10%
features that are systematically aggregated using a variety of
feature selection methods (e.g. statistical and AI methods).

For speech prosody modality, 9 features out of the extracted 88

features were selected. To analyze the direction of the correlation
of these features with the self-disclosure classes, we conducted
a Point-Biserial Correlation analysis. The results show a positive
correlation in the variation of pitch, and a fast power spectrum
change, for self-disclosing speech, which is expected for speech
that contains positive emotions [5]. Besides recognizing vowel
frequencies, the third formant of speech also indicates a high-
quality natural speech [19]. In our analysis, the third formant
showed a positive correlation with expressing self-disclosure, indi-
cating spontaneous and natural speech in these segments. On the
other hand, non-self-disclosure speech showed high jitter values
indicating roughness, breathiness, or hesitation in the voice [27].

From the head pose behavioral features, only 8 features were
selected out of the 90 features. In line with previous work, 4 of
these features indicated maximum angle, faster movement, and
more frequent head tilting in self-disclosure behavior [22], [36].
Moreover, a positive correlation was found between the frequency
of looking to the left (toward the robot) and the maximum angle of
looking up, which could indicate positive engagement during the
self-disclosure event. On the other hand, looking down and slow
head pitch movement was correlated with non-self-disclosure
segments, which could indicate disengagement or distractions (e.g.
playing with a phone).

Finally, body gestures selected features were 16 out of 240.
Even though we set the final selected features for the top 10% (i.e.
24 features), the framework eliminated “weakly voted” features
during the aggregation phase to ensure a strong and representative
final feature set. Interestingly, 15 of these selected features were
related to face and hand touching, where fast, frequent and short
duration of touching behaviors were positively correlated with
self-disclosure behavior, which could indicate a self-soothing
behavior [11]. Moreover, a slow movement of the torso leaning
forward was positively correlated with self-disclosure behavior,
indicating positive attitudes toward the disclosing content [16].

C. Other factors Impacting Self-disclosure

We further investigated factors that can contribute to people’s
tendency to self-disclosure by analyzing participants’ personality
traits and rapport with the robot. We first calculated the frequency
of self-disclosure behaviors for each participant by dividing the
number of total self-disclosure response by the total number of
open-ended prompts available in the study (14 prompts in total).
Pearson’s correlation coefficients were calculated between this
self-disclosure frequency metric and participants’ self-reported
personality traits (Mini-IPIP) and working alliance with the robot
(WAI-SR).



TABLE III: Percentage of Self-disclosure Statements in each
Session/Part of Interaction

Description Percentage of Occurrences
Responses w/ self disclosure 22.6%
responses Jibo interrupted 3.6%
interruptions with self disclosure 0.48%
interruptions with no self disclosure 3.10%
ST Disclosure 2.4%
CS Disclosure 58.8%
SS Tomorrow Disclosure 78.8%
TGT Disclosure 45.2%
GL Disclosure 0.0%
GL Post Disclosure 52.6%
Savoring Plan Disclosure 26.5%
Savoring Post Disclosure 37.9%

The total WAI score (mean of three WAI sub-component scores)
showed marginally positive correlation with participant’s self-
disclosure frequency (p=0.059,r=0.322). However, participants’
agreement about the intervention tasks (WAI-SR Task) was
significantly correlated with self-disclosure (p=0.043,r=0.343).
In addition, self-disclosure was positively correlated with two
of the personality traits: openness (p = 0.026,r = 0.374) and
agreeableness (p=0.008,r=0.440). These results are in line with
the findings by [10].

Types of interaction and questions could also influence people’s
willingness to self-disclose. Thus, we measured the ratio of
self-disclosure responses per each open-ended prompts (Table III).
Overall participants’ self-disclosure during the intervention was
limited. This could be due to the robot presenting itself as a coach
and not disclosing about itself during the interactions. Studies
on self-disclosure reciprocity suggests that human interlocutors
will be more likely to self-disclose if an artificial agent exhibit
self-disclosure behavior [31]. In our follow-up study, we plan
to study the effect of robot’s self-disclosure on the people’s
engagement and rapport with the robot.

Another factor that could have contributed to the low
self-disclosure frequency is the robot’s unintended interruption
during participants’ open-ended response. During the post-study
interview, several participants noted that the robot interrupted
them while they were still responding and moved on to the next
part of the interaction. This type of behavior is commonly found
with voiced agents [31] because most voice user interfaces takes
a pause as an end-of-speech signal. Such interruption, when
repeated, could have refrained participants from self-disclosing in
the later interaction sessions, which was reflected in participants’
behavior during the Small Talk (ST) task with only 2% of
self-disclosure. After realizing the robot tends to interrupt during
long responses, some participants gave only short and simple
answers, e.g. “Good”, “It’s going okay”, “It was horrible.”, etc.

No participant self-disclosed during the Gratitude Letter (GL)

session. This was not surprising given that the question asked was
“Who would you write the gratitude letter to?” and could be an-
swered in one or two word answer. However, the follow-up prompt
(GL Post) showed a higher rate of self-disclosure since the partic-
ipants were asked to reflect on their experience after sending the
gratitude letter. Similarly, Character Strength (CS) and Signature
Strength (SS) sessions were more likely to elicit self-disclosure,
58.8% and 78.8% respectively. These sessions prompted partici-
pants to share their personal goals and plans to utilize one of their
strengths. It is worth noting that some participants did not complete
the tasks given as a “homework”, and did not have anything to
share in the follow-up session (GL-post and Savoring-Post).

These results suggest that giving users the space to talk, showing
interest in what they are talking about with follow-up questions
could potentially increase people’s willingness to self-disclose.
We hope to implement these strategies in our future work and
positively impact their wellbeing and rapport with the robot.

V. CONCLUSIONS

This paper explores how non-verbal behaviors can be used to
detect whether people are self-disclosing or not during positive psy-
chology intervention interactions with a social robot. Unlike most
existing works that only used linguistic features, we analyzed both
acoustic and visual features during people’s self-disclosure behav-
iors. Our classification experiments and feature selection method
showed that non-verbal cues alone without linguistic features can
detect self-disclosure behaviors with high accuracy (72% to 81%).
This finding is significant because it shows that an AI agent can
leverage multiple modalities to infer human interlocutors’ self-
disclosing intention. Human-agent interactions in the real world
are messy, and often times one or more input modalities might not
be available, e.g. soft speaking, user not in being in the camera
view, etc. Based on our results, we plan to build a classifier that can
classify people’s self-disclosure behavior in real time during multi-
modal human-machine interactions. Moreover, we found that
spontaneous and positive emotions related features from speech,
high engagement behaviors from head pose, and self-soothing and
positive attitudes cues from body gestures are positively correlated
to self-disclosure. Investigating other factors contributing to
people’s self-disclosure behavior, personality traits (openness and
agreeableness) were found to have significant impact on the ten-
dency to self-disclose. Qualitative feedback from the participants
suggest that the failure to correctly detect end-of-speech led the
robot to unintentionally interrupt people’s response and negatively
affected the willingness to self-disclose. These suggest that a robust
self-disclosure detection using both verbal and non-verbal cues
could improve AI agents’ ability to build rapport and therapeutic
alliance with their users, and potentially result enhance the
outcomes of mental health intervention they offer. Besides investi-
gating implementing multimodal self-disclosure detection in future



studies, we plan to study the effect of robot’s self-disclosure on the
people’s self-disclosure, engagement and rapport with the robot.
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of alexythimia as a dispositional deficit in self-disclosure and psychological
health. Journal of Personality and Social Psychology, 77(3):630, 1999.

[30] D. Potdevin, C. Clavel, and N. Sabouret. A virtual tourist counselor
expressing intimacy behaviors: A new perspective to create emotion in
visitors and offer them a better user experience? International Journal of
Human-Computer Studies, 150:102612, 2021.

[31] A. Ravichander and A. W. Black. An empirical study of self-disclosure
in spoken dialogue systems. In Proceedings of the 19th Annual SIGdial
Meeting on Discourse and Dialogue, pages 253–263, Melbourne, Australia,
July 2018. Association for Computational Linguistics.

[32] M. E. Seligman, T. A. Steen, N. Park, and C. Peterson. Positive psychology
progress: empirical validation of interventions. American psychologist,
60(5):410, 2005.

[33] M. Skjuve and P. B. Brandtzæg. Chatbots as a new user interface for
providing health information to young people. Youth and news in a digital
media environment–Nordic-Baltic perspectives, 2018.

[34] M. Soleymani, K. Stefanov, S.-H. Kang, J. Ondras, and J. Gratch.
Multimodal analysis and estimation of intimate self-disclosure. In 2019
International Conference on Multimodal Interaction, ICMI ’19, page 59–68,
New York, NY, USA, 2019. Association for Computing Machinery.

[35] M. M. C. van Wezel, E. A. J. Croes, and M. L. Antheunis. “i’m here for
you”: Can social chatbots truly support their users? a literature review. In
A. Følstad, T. Araujo, S. Papadopoulos, E. L.-C. Law, E. Luger, M. Goodwin,
and P. B. Brandtzaeg, editors, Chatbot Research and Design, pages 96–113,
Cham, 2021. Springer International Publishing.

[36] R. Zhao, T. Sinha, A. Black, and J. Cassell. Automatic recognition of
conversational strategies in the service of a socially-aware dialog system.
In Proceedings of the 17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 381–392, Los Angeles, Sept. 2016.
Association for Computational Linguistics.

[37] H. Zou, I. Jakovlić, R. Chen, D. Zhang, J. Zhang, W.-X. Li, and G.-T. Wang.
The complete mitochondrial genome of parasitic nematode camallanus cotti:
extreme discontinuity in the rate of mitogenomic architecture evolution
within the chromadorea class. BMC genomics, 18(1):1–17, 2017.


