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Abstract

Data-driven decision-making has become an essential part of modern life by virtue
of the rapid growth in data, the massive improvements in computing power, and
great progress in academic research. The range of techniques used fall broadly on
the spectrum that varies from model-based to applied, depending on the problem
complexity and data availability.

This thesis studies three settings that span the modeling spectrum in the con-
texts of digital agriculture, cell reprogramming, and pandemic policymaking. First,
we investigate the problem of learning good farming practices in the framework of
multi-armed bandits with expert advice. We extend the setting from finitely many
experts to any countably infinite set and provide algorithms that are provably opti-
mal. Second, we explore optimizing perturbations for cell reprogramming in batched
experiments. Building upon multi-armed bandit algorithms, we propose an active
learning approach that integrates deep learning and biology-based analysis. We nu-
merically demonstrate the success of our method on gene expression data. Finally, we
model the impacts of nonpharmaceutical interventions during the coronavirus disease
2019 (COVID-19) pandemic. We develop an agent-based model in order to overcome
the limitations of observational data. We show that the trade-off between COVID-19
deaths and deaths of despair, dependent on the lockdown level, only exists in the so-
cioeconomically disadvantaged population. Our model establishes effective measures
for reducing disparities during the pandemic.

Thesis Supervisor: Munther A. Dahleh
Title: William A. Coolidge Professor
Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Data is everywhere. We leave digital footprints virtually everywhere we go, for every-

thing we do. How we travel, what we like eating, where we live, the way we shop, etc.

Data of the modern world open up new opportunities for companies, organizations,

and governments to make informed decisions. With the help of massive increases in

computing power, a variety of methods have been proposed for data-driven decision-

making. Broadly speaking, the techniques range from entirely theoretical to purely

heuristic, depending on the problem complexity and data availability. In this thesis,

we study three settings that span the modeling spectrum in the contexts of digital

agriculture, cell reprogramming, and pandemic policymaking.

Chapter 2 concerns the problem of multi-armed bandits with expert advice that

we abstract from digital agriculture. Motivated by the need for learning good farm-

ing practices from a multitude of farmers and machine learning algorithms through

sequential experiments, we extend the theoretical setting of the problem from finitely

many experts to any countably infinite set and provide algorithms that have provably

good performance.

In Chapter 3, we study active learning for efficient cell reprogramming, which

has far-reaching implications for human disease modeling, regenerative medicine, and

drug screening. We design an active learning algorithm that addresses the problem

of combinatorial pure exploration under the constraints of batched experiments and

a low signal-to-noise ratio. Although the complexity of this problem prohibits theo-
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retical guarantees on the entire procedure, we propose a principled framework that

is built upon multi-armed bandit algorithms, integrating deep learning and biology-

based analysis. We demonstrate the success of our approach on gene expression data.

In Chapter 4, we investigate the impacts of nonpharmaceutical interventions

(NPIs) during the coronavirus disease 2019 (COVID-19) pandemic which has af-

fected everyone’s life. The research started during the early days of COVID-19 in

an effort to elucidate the differential causal effects of NPIs on different communities.

We develop an agent-based model in order to overcome the limitations of observa-

tional data. Validated by US data, our findings contribute to policy modeling and

evaluation for reducing inequality during a pandemic.

1.1 Summary of Individual Chapters

1.1.1 Nonstochastic Bandits with Infinitely Many Experts

We study the problem of nonstochastic bandits with expert advice, extending the

setting from finitely many experts to any countably infinite set: A learner aims to

maximize the total reward by taking actions sequentially based on bandit feedback

while benchmarking against a set of experts. We propose a variant of Exp4.P that, for

finitely many experts, enables inference of correct expert rankings while preserving

the order of the regret upper bound. We then incorporate the variant into a meta-

algorithm that works on infinitely many experts. We prove a high-probability upper

bound of �̃�
(︀
𝑖*𝐾+

√
𝐾𝑇

)︀
on the regret, up to polylog factors, where 𝑖* is the unknown

position of the best expert, 𝐾 is the number of actions, and 𝑇 is the time horizon. We

also provide an example of structured experts and discuss how to expedite learning in

such case. Our meta-learning algorithm achieves optimal regret up to polylog factors

when 𝑖* = �̃�
(︀√︀

𝑇/𝐾
)︀
. If a prior distribution is assumed to exist for 𝑖*, the probability

of optimality increases with 𝑇 , the rate of which can be fast. We conduct numerical

experiments using synthetic data and simulated agricultural data to complement our

theoretical findings.

20



1.1.2 Active Learning for Efficient Cell Reprogramming

Finding optimal interventions for cell reprogramming is challenging because of the

high-dimensional state and action spaces, which make brute-force search impractical

in general. We present a mathematical formulation of the problem to explain the in-

tricacies of cell reprogramming due to the limitations of experiments. We propose the

first active learning algorithm for efficient cell reprogramming that directly addresses

the problem of combinatorial pure exploration under the constraints of batched exper-

iments and a low signal-to-noise ratio. The framework combines multi-armed bandit

algorithms, which have been proven to balance the exploration-exploitation trade-

off optimally in simplified settings, and deep learning methods, which have enjoyed

marvelous success in recognizing patterns in noisy data. The proposed algorithm

also incorporates analysis based on biological knowledge. We demonstrate the suc-

cess of our approach on gene expression data collected by state-of-the-art large-scale

perturbation screening.

1.1.3 Impacts of COVID-19 Interventions

COVID-19 is exacerbating inequalities in the US. We build an agent-based model to

elucidate the differential causal effects of NPIs on different communities and validate

the results with US data. We simulate viral transmission and the consequent dete-

rioration of economic conditions on socioeconomically disadvantaged and privileged

populations. As found in data, our model shows that the trade-off between COVID-19

deaths and deaths of despair, dependent on the lockdown level, only exists in the so-

cioeconomically disadvantaged population. Moreover, household overcrowding is a

strong predictor of the infection rate. The model also yields new insights that fill in

the gaps of our data analysis. While subsidization narrows the socioeconomic gap in

deaths of despair, the combination of testing and contact tracing alone is effective at

reducing disparities in both types of death. Our results contribute to policy modeling

and evaluation for reducing inequality during a pandemic.
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Chapter 2

Nonstochastic Bandits with Infinitely

Many Experts

2.1 Introduction

Early work on the multi-armed bandit problem commonly studied settings where

the rewards of each arm are stochastically generated from some unknown distribu-

tion [11, 85, 114]. In general, such statistical assumptions are difficult to validate

or inapproriate for some applications such as packet transmission in communication

networks [12, 13]. The problem of nonstochastic bandits, first investigated in [12, 13],

makes no statistical assumptions about how the rewards are generated.

A setting of the nonstochastic bandit problem allows for incorporating expert

advice. The learner interacts with an adversary over a time horizon 𝑇 as follows. At

each time, the adversary sets the rewards for 𝐾 actions and keeps them secret. After

getting every expert’s advice on the probability of choosing each action, the learner

combines the advice and samples an action. Finally, the learner observes only the

reward of the action chosen, and the game repeats. The learner’s goal is to minimize

regret, which is the gap between the total reward gained and the expected total reward

of the best expert 𝑖* who is unknown a priori.

The framework described is a general one. First, there is no assumption about

the generation of rewards except that the adversary is oblivious. In other words, the
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adversary’s choices are independent of the learner’s strategy. Equivalently, all rewards

can be assigned before the game starts, and the learner only observes the rewards of

chosen actions sequentially. Second, we do not restrict or assume knowledge of how

the experts come up with their advice. Third, experts can give deterministic advice.

The problem of bandits with expert advice is not only a natural model for numer-

ous real-world applications, such as selecting and pricing online advertisements [95],

but also important from a theoretical perspective. Contextual bandits can be framed

as a bandits with expert advice problem by introducing policies that map a con-

text to a probability distribution over actions [95, 4]. Bandits with expert advice

are also closely related to online model selection where experts correspond to model

classes [34, 55, 56].

Prior work on nonstochastic bandits with expert advice typically assumes the

number of experts to be finite [12, 13, 95, 22, 101]. The exponential-weight algorithm

for exploration and exploitation using expert advice (Exp4), introduced by [12, 13],

has a regret upper bound of 𝒪
(︀√

𝐾𝑇 ln𝑁
)︀

in expectation, where 𝑁 is the number of

experts. This upper bound almost matches the lower bound Ω(
√︀

(𝐾𝑇 ln𝑁)/ ln𝐾)

derived by [3] for the expected regret when ln𝑁 ≤ 𝑇 ln𝐾. However, Exp4 does not

satisfy a similar regret guarantee with high probability due to the large variance of

its estimates. Algorithms with high-probability guarantees are preferred for domains

that need reliable methods, but such algorithms require delicate analysis [22, 101].

The Exp4.P algorithm, a variant of Exp4 proposed by [22], satisfies a regret upper

bound of 𝒪
(︀√︀

𝐾𝑇 ln (𝑁/𝛿)
)︀

with probability at least 1 − 𝛿. This bound can be

improved by a constant factor by avoiding explicit exploration [101].

We study the problem of nonstochastic bandits with infinitely many experts. Our

main question is: Can the learner perform almost as well as the globally best expert

𝑖* of a countably infinite set while only querying a finite number of experts? This

question is motivated by challenges encountered in practical situations where it is

unfeasible to seek advice from all experts all the time [120]. For search engine adver-

tising, a company may need to choose among a multitude of schemes some of which

also involve hyperparameter tuning [95]. As another example, there are often a myr-
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iad of features that can be used for online recommendation systems. Some features

tend to be more informative than others, but their relevance is normally unknown a

priori. We can transform this problem into bandits with expert advice where each

expert corresponds to a model class in a certain feature space. The number of ex-

perts can be extremely large due to the combinatorial nature. In contrast to the large

number of experts available, it is desirable to query only some of them each time in

consideration of computational constraints.

2.1.1 Problem Formulation

Let Z+ be the set of strictly positive integers. For 𝑁 ∈ Z+, we define [𝑁 ] ,

{1, 2, . . . , 𝑁}. Let 𝑇 ∈ Z+ be the time horizon. Let 𝒜 be a set of actions where

|𝒜| = 𝐾 <∞.

At each time 𝑡 ∈ [𝑇 ], the adversary first sets a reward vector 𝑟(𝑡) ∈ [0, 1]𝐾 where

𝑟𝑎(𝑡) is the reward of action 𝑎. Each expert 𝑖 ∈ Z+ then gives their advice 𝜉𝑖(𝑡), which

is a probability vector over 𝒜. After querying a finite subset of the experts’ advice but

not the rewards, the learner then samples an action 𝑎(𝑡). Finally, the learner receives

the reward 𝑟𝑎(𝑡)(𝑡) and no other information. The game proceeds to time 𝑡 + 1 and

finishes after 𝑇 time steps. The learner’s goal is to combine the experts’ advice such

that the total reward is close to a benchmark, which we will define shortly.

Let 𝑦𝑖(𝑡) ,
∑︀

𝑎∈𝒜 𝜉
𝑖
𝑎(𝑡)𝑟𝑎(𝑡) be the expected reward of expert 𝑖 at time 𝑡. For any

time interval 𝒯 ⊂ Z+ such that |𝒯 | < ∞, we denote the expected total reward of

expert 𝑖 during 𝒯 as 𝑅𝑖(𝒯 ) ,
∑︀

𝑡∈𝒯 𝑦𝑖(𝑡). We define the best expert 𝑖*(ℐ; 𝒯 ) of a

subset ℐ ⊆ Z+ during 𝒯 as the one with the lowest index that has the highest total

reward in expectation,1 namely, 𝑖*(ℐ; 𝒯 ) , min {argmax𝑖∈ℐ 𝑅𝑖(𝒯 )}. The learner’s

regret with respect to 𝑖*(ℐ; 𝒯 ) is

Regret(𝒯 ; ℐ) , 𝑅𝑖*(ℐ;𝒯 )(𝒯 )−
∑︁
𝑡∈𝒯

𝑟𝑎(𝑡)(𝑡).

For simplicity of notation, let Regret(𝑇 ) , Regret([𝑇 ];Z+) and 𝑖* , 𝑖*(Z+; [𝑇 ]). The
1If max𝑖∈ℐ 𝑅𝑖(𝒯 ) does not exist, we define 𝑖*(ℐ; 𝒯 ) =∞ and 𝑅𝑖*(ℐ;𝒯 )(𝒯 ) = sup𝑖∈ℐ 𝑅𝑖(𝒯 ).
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learner’s goal is to minimize Regret(𝑇 ), the regret with respect to the globally best

expert 𝑖* for the time horizon considered.

2.1.2 Contributions

For the general case without any assumption about the experts, we propose an algo-

rithm called Best Expert Search (BEES) and provide theoretical guarantees on its

performance. BEES runs a subroutine called Exp4.R in epochs, an algorithm that we

obtain by modifying Exp4.P. The “R” denotes a feature of Exp4.R: it enables inference

of correct expert rankings with high probability in addition to satisfying a regret up-

per bound of the same order as that proved for Exp4.P. Our main result establishes a

high-probability upper bound of �̃�
(︀
(𝑖*)1/𝛼𝐾+

√
𝛼𝐾𝑇

)︀
on the regret of BEES, hiding

only polylog factors, which adapts to the index of the unknown best expert 𝑖* and

depends on a positive integer-valued parameter 𝛼. The experts can be ordered using

domain knowledge before being input into BEES where the ones that are believed to

perform well get low indices. The regret upper bound shows that domain knowledge

improves the performance of BEES. The bound also illustrates the trade-off, con-

trolled by 𝛼, between exploration and exploitation for the problem of nonstochastic

bandits with infinitely many experts. On the one hand, it is desirable to include

numerous experts per epoch so as to approach 𝑖* at a fast rate. On the other hand,

querying too many experts simultaneously necessitates long epochs, which reduces

the rate at which more experts are included. Although tuning 𝛼 needs the unknown

index 𝑖*, we can simply set 𝛼 = 1. Since we make no statistical assumptions about

the rewards or the experts, the best expert 𝑖* can depend on the time horizon 𝑇 .

Our regret upper bound is optimal up to polylog factors when 𝑖* = �̃�
(︀√︀

𝑇/𝐾
)︀
. This

regime is less restricted than it seems at first sight. If we assume a prior distribution

on 𝑖*, then 𝑖* = �̃�
(︀√︀

𝑇/𝐾
)︀

holds with a probability that increases with 𝑇 , the rate

of which can be fast. Inspired by the problem of finite-time model selection for re-

inforcement learning (RL), we also present an example of structured experts, which

simulates the trade-off between approximation and estimation. We discuss how the

expert ranking property of Exp4.R can be used to expedite learning in such case and

26



demonstrate the improvement in numerical experiments.

2.1.3 Related Work

A natural approach is to consider experts as arms and use methods for infinitely

many-armed bandits such as [20, 80, 118, 32]. However, such work relies on statis-

tical assumptions, whereas our setting is nonstochastic. Our question is also related

to bandits with limited advice, first posed by [120] and subsequently solved by [75],

but their results are restricted to finitely many experts. For the setting considered in

this chapter, existing work either achieves a high-probability regret bound larger than

�̃�
(︀√

𝐾𝑇
)︀

or has worse computational efficiency. When configured correctly, Exp4 has

a regret upper bound of 𝒪
(︀√

𝐾𝑇 ln 𝑖*
)︀

in expectation [56]. However, the algorithm

is computationally unfeasible as it needs to handle infinitely many experts at every

time step. One method of making Exp4 computationally tractable is to truncate the

sequence of experts to a subset of size 𝒪
(︀
𝑒
√
𝐾𝑇
)︀

as any larger set would make the ex-

pected regret superlinear in𝐾 or 𝑇 . Running Exp4 with correct configurations on this

subset of experts has a regret upper bound of 𝒪
(︀
(𝐾𝑇 )3/4 +𝑇∆

)︀
in expectation where

∆ is the infimum upper bound on the suboptimality gaps of the experts considered.

For stochastic contextual bandits, Exp4.P can be used as a subroutine to achieve a

high-probability regret bound of �̃�
(︀√

𝑑𝑇 ln𝑇
)︀

with an infinite set of experts that has

a finite Vapnik–Chervonenkis dimension 𝑑 [22]. Since the regret analysis of Exp4.P

relies on the union bound, the algorithm does not apply to infinitely many experts

in the nonstochastic setting. If we run Exp4.P on a finite subset of experts of size

Θ
(︀
𝛿 exp

(︀√︀
𝑇/(16𝐾)

)︀)︀
, the regret is then bounded from above by 𝒪

(︀
𝐾1/4𝑇 3/4 +𝑇∆

)︀
with probability at least 1 − 𝛿. Running Exp4.P on a subset of 𝑇 experts attains a

high-probability regret bound of �̃�
(︀√

𝐾𝑇
)︀

when 𝑖* ≤ 𝑇 . Although the worst-case

regret guarantee is the same order as that provided by our algorithm for sufficiently

small 𝑖*, considering a subset of experts that is fixed in advance can lead to worse

performance in practice than growing the subset adaptively, as shown in our numeri-

cal experiments. Moreover, the truncation method requires knowing 𝑇 a priori, which

is not necessary for BEES. Since the computational complexity of Exp4.P is linear
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in the number of experts for both space and runtime, running Exp4.P on 𝑇 experts

becomes computationally intensive for large 𝑇 .

2.1.4 Organization of the Chapter

The remainder of this chapter is organized as follows. Section 2.2 presents our main

results. We first introduce Exp4.R for the setting of finitely many experts and prove

that it enables inference of correct expert rankings with high probability. We then

investigate the case of infinitely many experts and propose a meta-algorithm that runs

Exp4.R as a subroutine. We prove a high-probability regret upper bound and give an

example to illustrate how to expedite learning when working with structured experts.

Section 2.3 presents simulation results that complement our theoretical findings. We

conclude this chapter in Section 2.4. Finally, Section 2.5 provides proofs deferred

from the previous sections.

2.2 Main Results

2.2.1 Nonstochastic Bandits with a Finite Number of Experts

We start with a simplified problem where the number of experts is finite. We first

present Exp4.R (Algorithm 1) and provide some intuition for its design. We then

show that Exp4.R not only preserves the regret upper bound of Exp4.P in terms of

order but also enables inference of correct expert rankings with high probability.

Proposed Algorithm

Exp4.R (Algorithm 1) is a slight variant of Exp4.P proposed by [22]. The major

distinction is that Exp4.R calculates a threshold vector 𝜖 which enables inference of

correct expert rankings with high probability. Exp4.R takes four inputs, namely, an

error rate 𝛿 ∈ (0, 1], a time horizon 𝑇 ∈ Z+, the minimum probability 𝜌 ∈ (0, 1/𝐾]

of exploration, and a finite set of experts ℐ ⊂ Z+. Without loss of generality, we

suppose that |ℐ| = 𝑁 .
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Exp4.R first initializes a weight 𝑤𝑖(1) = 1 for each expert 𝑖 ∈ ℐ. At time 𝑡 ∈ [𝑇 ],

normalizing 𝑤(𝑡) gives a probability distribution 𝑞(𝑡) over ℐ. After getting advice

𝜉𝑖(𝑡) from each expert 𝑖, Exp4.R constructs a probability distribution 𝑝(𝑡) over 𝒜

by weighting all advice according to 𝑞(𝑡) and mixing in uniform exploration so that

𝑝𝑎(𝑡) ≥ 𝜌 for all 𝑎 ∈ 𝒜. Specifically, for all 𝑎, let

𝑝𝑎(𝑡) = (1−𝐾𝜌)
∑︁
𝑖∈ℐ

𝑞𝑖(𝑡)𝜉
𝑖
𝑎(𝑡) + 𝜌. (2.1)

Exp4.R subsequently takes action 𝑎(𝑡) sampled according to 𝑝(𝑡) and receives the

reward 𝑟𝑎(𝑡)(𝑡). Time 𝑡 concludes with weight updates as specified below. For 𝑖 ∈ ℐ,

Exp4.R estimates 𝑦𝑖(𝑡) by 𝑦𝑖(𝑡) and calculates an upper bound on the variance of 𝑦𝑖(𝑡)

conditional on history until time 𝑡− 1 as given by

𝑦𝑖(𝑡) =
𝜉𝑖𝑎(𝑡)(𝑡)𝑟𝑎(𝑡)(𝑡)

𝑝𝑎(𝑡)(𝑡)
, 𝑣𝑖(𝑡) =

∑︁
𝑎∈𝒜

𝜉𝑖𝑎(𝑡)

𝑝𝑎(𝑡)
. (2.2)

Exp4.R updates each expert’s weight 𝑤𝑖(𝑡) using

𝑤𝑖(𝑡+ 1) = 𝑤𝑖(𝑡) exp
(︁𝜌

2
[𝑦𝑖(𝑡) + 𝛽𝑣𝑖(𝑡)]

)︁
, (2.3)

where 𝛽 =
√︀

ln(2𝑁/𝛿)/(𝐾𝑇 ). The game ends in 𝑇 time steps and gives two outputs,

namely, the final weight vector 𝑤(𝑇 + 1) and a threshold vector 𝜖, the 𝑖th entry of

which is

𝜖𝑖 =

[︃
1 +

1

𝐾𝑇

𝑇∑︁
𝑡=1

𝑣𝑖(𝑡)

]︃
ln

(︂
2𝑁

𝛿

)︂
.

Properties

We establish in Proposition 1 that, with high probability, Exp4.R not only satisfies a

regret upper bound of the same order as that proved for Exp4.P but also reveals cor-

rect pairwise expert rankings if the corresponding weights are sufficiently separated.

We give some intuition here and provide proofs in Section 2.5.

For simplicity of notation, we denote 𝑅𝑖([𝑇 ]) ,
∑︀𝑇

𝑡=1 𝑦𝑖(𝑡) as 𝑅𝑖(𝑇 ). Updating
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Algorithm 1 Exp4.R
Input: 𝛿 ∈ (0, 1], 𝑇 ∈ Z+, 𝜌 ∈ (0, 1/𝐾], ℐ ⊂ Z+

Output: 𝑤(𝑇 + 1), 𝜖
𝛽 ←

√︀
ln(2𝑁/𝛿)/(𝐾𝑇 ).

𝑤𝑖(1)← 1 for 𝑖 ∈ ℐ.
for 𝑡 = 1, . . . , 𝑇 do

Get 𝜉𝑖(𝑡) for 𝑖 ∈ ℐ.
𝑞𝑖(𝑡)← 𝑤𝑖(𝑡)/

∑︀
𝑖′∈ℐ 𝑤𝑖′(𝑡) for 𝑖 ∈ ℐ.

𝑝𝑎(𝑡)← (1−𝐾𝜌)
∑︀

𝑖∈ℐ 𝑞𝑖(𝑡)𝜉
𝑖
𝑎(𝑡) + 𝜌 for 𝑎 ∈ 𝒜.

Sample action 𝑎(𝑡) from 𝑝(𝑡).
Take action 𝑎(𝑡) and receive reward 𝑟𝑎(𝑡)(𝑡).
for 𝑖 ∈ ℐ do

𝑦𝑖(𝑡)←
𝜉𝑖𝑎(𝑡)(𝑡)𝑟𝑎(𝑡)(𝑡)

𝑝𝑎(𝑡)(𝑡)
,

𝑣𝑖(𝑡)←
∑︁
𝑎∈𝒜

𝜉𝑖𝑎(𝑡)

𝑝𝑎(𝑡)
,

𝑤𝑖(𝑡+ 1)← 𝑤𝑖(𝑡) exp
(︁𝜌

2
[𝑦𝑖(𝑡) + 𝛽𝑣𝑖(𝑡)]

)︁
.

end for
end for
for 𝑖 ∈ ℐ do

𝜖𝑖 ←

[︃
1 +

1

𝐾𝑇

𝑇∑︁
𝑡=1

𝑣𝑖(𝑡)

]︃
ln

(︂
2𝑁

𝛿

)︂
.

end for

weights using (2.3) allows us to construct a confidence bound for each 𝑅𝑖(𝑇 ). For

𝑖 ∈ ℐ, let �̂�𝑖(𝑇 ) ,
∑︀𝑇

𝑡=1 𝑦𝑖(𝑡) and 𝑉𝑖(𝑇 ) ,
∑︀𝑇

𝑡=1 𝑣𝑖(𝑡). For any 𝛿 ∈ (0, 1], let E(𝛿) be

an event defined by

∀𝑖 ∈ ℐ, − ln

(︂
2𝑁

𝛿

)︂√︂
𝐾𝑇

ln𝑁
−
√︂

ln𝑁

𝐾𝑇
𝑉𝑖(𝑇 ) ≤ 𝑅𝑖(𝑇 )− �̂�𝑖(𝑇 )

≤

√︃
ln

(︂
2𝑁

𝛿

)︂(︃
𝑉𝑖(𝑇 )√
𝐾𝑇

+
√
𝐾𝑇

)︃
.

Lemma 1 shows that the estimates �̂�𝑖(𝑇 ) are concentrated around the true values

𝑅𝑖(𝑇 ). The proof relies on a Freedman-style inequality for martingales from [22].
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Assumption 1. The following conditions hold:

(i) max{4𝐾 ln𝑁, ln(2𝑁/𝛿)/[(𝑒− 2)𝐾]} ≤ 𝑇 ,

(ii) and there exists a uniform expert 𝑖 ∈ ℐ such that 𝜉𝑖𝑎(𝑡) = 1/𝐾 for all 𝑎 ∈ 𝒜 and

𝑡 ∈ Z+.

Lemma 1. Under Assumption 1, if we run Exp4.R with 𝜌 =
√︀

ln𝑁/(𝐾𝑇 ), then

P (E(𝛿)) ≥ 1− 𝛿 for all 𝛿 ∈ (0, 1].

Lemma 2 establishes an upper bound on the regret of Exp4.R. Since Lemma 2

is a slight variant of Theorem 2 in [22], the proof is very similar to the original one

and hence omitted. We note that Theorem 2 in [22] holds for a smaller regime than

stated in the original paper. To be specific, the condition 𝑇 = Ω(𝐾 ln𝑁) is essential

for 𝜌 =
√︀

ln𝑁/(𝐾𝑇 ) ≤ 1/𝐾 to be true. We make the correction in Lemma 2.

Lemma 2. Under Assumption 1, for any 𝛿 ∈ (0, 1], if E(𝛿) holds, then Exp4.R with

𝜌 =
√︀

ln𝑁/(𝐾𝑇 ) satisfies that Regret(𝑇 ; ℐ) ≤ 7
√︀
𝐾𝑇 ln (2𝑁/𝛿).

Lemma 3 validates the correctness of the inferred expert rankings when the con-

centration event E(𝛿) holds. Corollary 1 shows that the uncertainty gap for ranking

any pair of experts is the sum of their thresholds given by Exp4.R. We can prove

Corollary 1 by first taking the contrapositive of the statement in Lemma 3 and then

switching 𝑖 and 𝑖′.

Lemma 3. Under Assumption 1, for any 𝛿 ∈ (0, 1], if E(𝛿) holds, then Exp4.R with

𝜌 =
√︀

ln𝑁/(𝐾𝑇 ) satisfies that, for all 𝑖, 𝑖′ ∈ ℐ, if ln𝑤𝑖(𝑇 + 1) − ln𝑤𝑖′(𝑇 + 1) > 𝜖𝑖,

then 𝑅𝑖(𝑇 ) > 𝑅𝑖′(𝑇 ).

Corollary 1. Under the conditions of Lemma 3, it holds that, for all 𝑖, 𝑖′ ∈ ℐ,

(i) if ln𝑤𝑖(𝑇 + 1)− ln𝑤𝑖′(𝑇 + 1) > 𝜖𝑖, then 𝑅𝑖(𝑇 ) > 𝑅𝑖′(𝑇 );

(ii) if 𝑅𝑖(𝑇 ) ≥ 𝑅𝑖′(𝑇 ), then ln𝑤𝑖(𝑇 + 1)− ln𝑤𝑖′(𝑇 + 1) ≥ −𝜖𝑖′.
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Finally, we combine the lemmas to obtain Proposition 1. Same as Exp4.P, the

computational complexity of Exp4.R is 𝒪 (𝐾𝑁) for space and 𝒪 (𝐾𝑁𝑇 ) for runtime.

Proposition 1. Under Assumption 1, for any 𝛿 ∈ (0, 1], with probability at least

1− 𝛿, Exp4.R configured with 𝜌 =
√︀

ln𝑁/(𝐾𝑇 ) satisfies that

(i) Regret(𝑇 ; ℐ) ≤ 7
√︀
𝐾𝑇 ln (2𝑁/𝛿);

(ii) for all 𝑖, 𝑖′ ∈ ℐ, if ln𝑤𝑖(𝑇 + 1)− ln𝑤𝑖′(𝑇 + 1) > 𝜖𝑖, then 𝑅𝑖(𝑇 ) > 𝑅𝑖′(𝑇 ).

2.2.2 Selection Among Infinitely Many Experts

In this section, we study the problem of nonstochastic bandits with a countably

infinite set of experts. We make no assumptions about the experts or how they are

indexed. For this general case, we propose a meta-algorithm called Best Expert

Search (BEES, Algorithm 2) that runs Exp4.R as a subroutine and provide a high-

probability upper bound on regret. We also provide an example of structured experts

and discuss how the expert ranking property of Exp4.R can be used to expedite

learning in such case.

BEES takes five inputs including an error rate 𝛿 ∈ (0, 1], the number of epochs

𝐿 ∈ Z+, and three constants 𝛼, 𝑐, 𝐶 ∈ Z+ that control the exponential growth of the

epoch length and the number of experts queried in each epoch. At a high level, BEES

supplies Exp4.R with an increasing (but still finite) number of experts over epochs,

prioritizing those with lower indices. This scheme can be considered as putting a prior

on the experts implicitly where the experts that are believed to perform well are given

low indices. The regret upper bound established in Theorem 1 for BEES adapts to

the unknown difficulty of the problem in the sense that 𝑖* being large corresponds to

a bad implicit prior. Since we make no assumptions about the experts, they can be

ordered using domain knowledge before being input into BEES. Growing the epoch

length and the number of experts at exponential rates allows us to derive a regret

upper bound of the same order as that of Exp4.R when the best expert 𝑖* has a

relatively low index. This idea is similar to, though not the same as, the doubling
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Algorithm 2 Best Expert Search (BEES)
1: Input: 𝛿 ∈ (0, 1], 𝛼 ∈ Z+, 𝐿 ∈ Z+, 𝑐 ∈ Z+, 𝐶 ∈ Z+

2: for epoch 𝑙 = 1, . . . , 𝐿 do
3: 𝑁𝑙 ← 𝑐2𝛼𝑙, 𝑇𝑙 ← 𝐶2𝑙.

4: 𝜌𝑙 ←
√︀

ln𝑁𝑙/(𝐾𝑇𝑙).

5: ℐ𝑙 ← [𝑁𝑙].

6: Exp4.R(𝛿/𝐿, 𝑇𝑙, 𝜌𝑙, ℐ𝑙) .
7: end for

trick [21] as the latter only deals with the epoch length. We need to increase the

number of experts at an appropriate rate relative to the epoch length.

Corollary 2 simplifies the bound in Theorem 1 for specific parameter values. Corol-

lary 2 shows that BEES, when tuned right, satisfies Regret(𝑇 ) = �̃�
(︁

(𝑖*)1/𝛼𝐾 +
√
𝛼𝐾𝑇

)︁
with high probability, where �̃� (·) omits only polylog factors. This upper

bound illustrates the trade-off between exploration and exploitation for the problem

of bandits with infinitely many experts. On the one hand, we want to include nu-

merous experts in each epoch so as to approach 𝑖* fast. On the other hand, querying

too many experts simultaneously necessitates long epochs, which reduces the rate

at which more experts are included. This trade-off is controlled by 𝛼 ∈ Z+. The

term �̃�
(︀
(𝑖*)1/𝛼𝐾

)︀
in the bound is due to not considering 𝑖* sooner. The other term

�̃�
(︁√

𝛼𝐾𝑇
)︁

is the regret that benchmarks against the best expert in each epoch.

Another consideration for not using an arbitrarily large value of 𝛼 is that the min-

imum time horizon required by BEES which is 𝑇 = Ω(𝐶(𝛼, 𝑐,𝐾, 𝛿)) increases with

𝛼. Although tuning 𝛼 needs the unknown index 𝑖* of the best expert, we can sim-

ply set 𝛼 = 1. BEES has space complexity 𝒪 (𝐾(1 + 𝑇/𝐾)𝛼) and time complexity

�̃� (𝐾2(1 + 𝑇/𝐾)𝛼+1).

The regret bound in Theorem 1 matches the lower bound Ω̃(
√
𝐾𝑇 ) derived by [3]

up to polylog factors when 𝑖* = �̃�
(︀√︀

𝑇/𝐾
)︀
. This regime is less restricted than it

seems at first sight. Assuming a prior distribution on 𝑖* shows that the condition on

𝑖* is satisfied with a probability that increases with 𝑇 , the rate of which can be fast.

For simplicity, let 𝛼 = 1 and 𝑐 = 1. In order for Regret(𝑇 ) = �̃�
(︁√

𝐾𝑇
)︁

to hold

with high probability, we need 𝑖* = �̃�
(︀√︀

𝑇/𝐾
)︀
. We denote the complement of this
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event as B. If we suppose that 𝐹 (𝑖) = P (𝑖* > 𝑖) for 𝑖 ∈ Z+ and some non-increasing

function 𝐹 : Z+ → [0, 1], then P (B) decreases with 𝑇 . For example, if 𝐹 (𝑖) ∝ 𝑖−𝑠 for

some 𝑠 > 0, then P (B) is roughly proportional to 𝐾𝑠/2𝑇−𝑠/2. If 𝐹 (𝑖) ∝ 𝑒−𝑠𝑖 for some

𝑠 > 0, then P (B) is roughly proportional to 𝑒−𝑠
√

𝑇/𝐾 .

Although the worst-case regret guarantee of BEES is the same order as that

achieved by running Exp4.P on a subset of 𝑇 experts for sufficiently small 𝑖*, BEES

can be configured to expedite learning by exploiting the expert structure if it is

known. Section 2.3 will show in numerical experiments that growing a subset of

experts adaptively can improve performance in practice in comparison with fixing a

subset of experts a priori. Moreover, the truncation method requires knowledge of

𝑇 , which is not necessary for BEES as we can use sufficiently small 𝛿 instead of 𝛿/𝐿

in the subroutine Exp4.R. Finally, since the computational complexity of Exp4.P is

linear in the number of experts for both space and runtime, running Exp4.P on 𝑇

experts becomes computationally intensive for large 𝑇 .

Before stating Theorem 1, we provide some intuition for the proof. Lemma 1

implies that
∑︀

𝑡∈𝒯𝑙 𝑦𝑖(𝑡) ≈ 𝑅𝑖(𝒯𝑙) for each expert 𝑖 and every epoch 𝑙 with high prob-

ability. For this reason, we can prove an upper bound on the regret with respect to

the best expert in each epoch, namely,
∑︀𝐿

𝑙=1𝑅𝑖*𝑙
(𝒯𝑙) −

∑︀𝑇
𝑡=1 𝑟𝑎(𝑡)(𝑡) = �̃�

(︁√
𝛼𝐾𝑇

)︁
.

We then derive an upper bound on the gap between the globally best expert and the

best expert in each epoch, which is given by 𝑅𝑖*([𝑇 ])−
∑︀𝐿

𝑙=1𝑅𝑖*𝑙
(𝒯𝑙) = �̃�

(︀
(𝑖*)1/𝛼𝐾

)︀
.

Adding the upper bounds, we get Regret(𝑇 ) = �̃�
(︁

(𝑖*)1/𝛼𝐾 +
√
𝛼𝐾𝑇

)︁
.

For simplicity of notation, we suppose that the total number of epochs is 𝐿 =

log2(1 + 𝑇/(2𝐶)) so that 𝑇 =
∑︀𝐿

𝑙=1 𝑇𝑙 where 𝑇𝑙 = 𝐶2𝑙 for 𝑙 ∈ [𝐿]. We use ⌊·⌋ and ⌈·⌉

to denote the floor and ceiling functions, respectively. For the general case of 𝑇 ≥ 2𝐶,

let 𝐿 = ⌊log2(1 + 𝑇/(2𝐶))⌋, 𝑇𝑙 = 𝐶2𝑙 for 𝑙 ∈ [𝐿− 1], and 𝑇𝐿 = 𝑇 −
∑︀𝐿−1

𝑙=1 𝑇𝑙.

Theorem 1. If a uniform expert is available in each epoch, then there exist absolute

constants 𝛼 ∈ Z+ and 𝑐 ∈ Z+ such that, for some 𝐶(𝛼, 𝑐,𝐾, 𝛿) ∈ Z+, BEES satisfies
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that, for any 𝛿 ∈ (0, 1], with probability at least 1− 𝛿, we have

Regret(𝑇 ) < 20

√︃
𝛼𝐾(𝑇 + 2𝐶) ln

(︂
𝑐𝐿(2 + 𝑇/𝐶)

𝛿

)︂
+ 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

.

Corollary 2. Under the conditions of Theorem 1, running BEES with 𝛼 ∈ Z+,

𝑐 ∈ Z+, and 𝐶 = ⌈𝛼𝐾 ln(16𝑐4/𝛿)⌉ satisfies that, for any 𝛿 ∈ (0, 1], with probability at

least 1− 𝛿, Regret(𝑇 ) = �̃�
(︁

(𝑖*)1/𝛼𝐾 +
√
𝛼𝐾𝑇

)︁
.

Proof of Theorem 1. We can show that, for all 𝛿 ∈ (0, 1], 𝛼 ∈ Z+, and 𝑐 ∈ Z+,

there exists 𝐶(𝛼, 𝑐,𝐾, 𝛿) ∈ Z+ such that 4𝐾 ln
(︀
𝑐2𝛼𝑙

)︀
≤ 𝐶2𝑙 and ln

(︀
𝑐2𝛼𝑙+1/𝛿

)︀
≤

(𝑒− 2)𝐶𝐾2𝑙 for all 𝑙 ∈ Z+. For example, we can set 𝐶 = ⌈𝛼𝐾 ln(16𝑐4/𝛿)⌉. Together

with the definitions of 𝑁𝑙 and 𝑇𝑙 in Algorithm 2, we have that, for all 𝛼 ∈ Z+ and

𝑐 ∈ Z+, there exists 𝐶 ∈ Z+ such that 4𝐾 ln𝑁𝑙 ≤ 𝑇𝑙 and ln(2𝑁𝑙/𝛿) ≤ (𝑒− 2)𝐾𝑇𝑙 for

all 𝑙 ∈ Z+. We fix such integers 𝛼, 𝑐, 𝐶 ∈ Z+ for the rest of the proof.

For simplicity of notation, we first consider running Exp4.R(𝛿, 𝑇𝑙, 𝜌𝑙, ℐ𝑙) in each

epoch 𝑙 for any 𝛿 ∈ (0, 1/𝐿] and then apply a change of variables at the end of the

proof. We suppose that a uniform expert is available in each epoch. Assumption 1 is

then satisfied for all epochs. For now, we assume that event E(𝛿) holds for all epochs,

the probability of which will be discussed at the end of the proof. For simplicity of

notation, let 𝑖*𝑙 , 𝑖*(ℐ𝑙; 𝒯𝑙) for 𝑙 ∈ [𝐿].

Let 𝑈𝑙 , 𝛼𝑙 + log2 (2𝑐/𝛿) for 𝑙 ∈ [𝐿]. Recall that 𝒯𝑙 is the time interval of epoch 𝑙

where |𝒯𝑙| = 𝑇𝑙. By Lemma 2,

𝐿∑︁
𝑙=1

𝑅𝑖*𝑙
(𝒯𝑙)−

𝑇∑︁
𝑡=1

𝑟𝑎(𝑡)(𝑡) ≤
𝐿∑︁
𝑙=1

7

√︃
𝐾𝑇𝑙 ln

(︂
2𝑁𝑙

𝛿

)︂
= 7
√
𝐾𝐶 ln 2

𝐿∑︁
𝑙=1

√︀
2𝑙𝑈𝑙

≤ 7
√︀
𝐾𝐶𝑈𝐿 ln 2

𝐿∑︁
𝑙=1

2𝑙/2

< 20
√︀
𝐾𝐶𝑈𝐿

(︀
2𝐿/2 − 1

)︀
.
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Since 𝐿 = log2[1 + 𝑇/(2𝐶)], we have

𝐿∑︁
𝑙=1

𝑅𝑖*𝑙
(𝒯𝑙)−

𝑇∑︁
𝑡=1

𝑟𝑎(𝑡)(𝑡) < 20
√︀
𝐾𝐶𝑈𝐿

(︃√︂
1 +

𝑇

2𝐶
− 1

)︃

< 20

√︃
𝐾

[︂
𝛼𝐿+ 2 ln

(︂
2𝑐

𝛿

)︂]︂(︂
𝐶 +

𝑇

2

)︂
.

(2.4)

We first discuss the case where 𝑖* /∈ ℐ1. Let 𝐿′ be the last epoch such that 𝑖* is not

considered in Algorithm 2. Since |ℐ𝑙| = 𝑁𝑙, we have 𝐿′ = min (𝐿, ⌈𝛼−1 log2(𝑖
*/𝑐)⌉ − 1).

Since 𝑖* /∈ ℐ1, we get 𝐿′ ≥ 1. By the definition of 𝑖*𝑙 , we have 𝑅𝑖*𝑙
(𝒯𝑙) ≥ 𝑅𝑖*(𝒯𝑙) for all

𝑙 > 𝐿′. Thus,

𝑅𝑖*([𝑇 ])−
𝐿∑︁
𝑙=1

𝑅𝑖*𝑙
(𝒯𝑙) ≤

𝐿′∑︁
𝑙=1

(︀
𝑅𝑖*(𝒯𝑙)−𝑅𝑖*𝑙

(𝒯𝑙)
)︀
≤

𝐿′∑︁
𝑙=1

𝑇𝑙 < 𝐶2𝐿′+1 < 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

.

(2.5)

We now consider the case where 𝑖* ∈ ℐ1. It follows from Algorithm 2 that 𝑖* ∈ ℐ𝑙
for all 𝑙. Thus, the definition of 𝑖*𝑙 implies that 𝑅𝑖*𝑙

(𝒯𝑙) ≥ 𝑅𝑖*(𝒯𝑙) for all 𝑙. We define

𝐷 , 𝑅𝑖*([𝑇 ]) −
∑︀𝐿

𝑙=1𝑅𝑖*𝑙
(𝒯𝑙). We then have 𝐷 ≤ 0. However, the definition of 𝑖*

implies that 𝐷 ≥ 0. Therefore, 𝐷 = 0 and (2.5) is satisfied.

Adding (2.4) and (2.5) gives

Regret(𝑇 ) < 20

√︃
𝐾

[︂
𝛼𝐿+ 2 ln

(︂
2𝑐

𝛿

)︂]︂(︂
𝐶 +

𝑇

2

)︂
+ 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

. (2.6)

Using Lemma 1 and the union bound over all 𝐿 epochs, we conclude that (2.6) holds

with probability at least 1− 𝐿𝛿. A change of variables gives that, for any 𝛿 ∈ (0, 1],

with probability at least 1− 𝛿, we have

Regret(𝑇 ) <20

√︃
𝐾

[︂
𝛼𝐿+ 2 ln

(︂
2𝑐𝐿

𝛿

)︂]︂(︂
𝐶 +

𝑇

2

)︂
+ 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

<20

√︃
𝛼𝐾(𝑇 + 2𝐶) ln

(︂
𝑐𝐿(2 + 𝑇/𝐶)

𝛿

)︂
+ 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

.
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Structured Experts

We present an example of structured experts that is inspired by the problem of finite-

time model selection for RL and discuss how the expert ranking property of Exp4.R

can be used to expedite learning in such case.

As RL becomes increasingly integrated into autonomous systems such as agile

robots [68], self-driving vehicles [82], customized fertilizer formulation [24], and per-

sonalized medication dosing [100], it is crucial that the techniques are robust [93].

An aspect of robustness is the capability to detect and adjust for model errors. For

RL, this entails both model selection and parameter estimation. How to achieve both

objectives simultaneously while maintaining provably good performance is an active

area of research [104, 1]. The crux of the problem of online model selection for RL

is to balance approximation and estimation errors in a time-dependent manner. As

an example, we suppose that there is an infinite sequence of nested model classes.

This structure arises naturally when an RL algorithm incorporates increasingly many

features over time. Some new features may also just become obtainable while an RL

algorithm is running. In fact, it is unknown a priori for many applications what is

a minimal feature space that contains an optimal policy. Given an infinite sequence

of model classes, the best class to use depends on the horizon or, equivalently, the

amount of trajectory data that will become available. Although a larger model class

has a smaller approximation error, it tends to have a higher estimation error for a

fixed finite horizon. Moreover, if several classes have the same approximation power,

the simplest one is typically preferred in consideration of time and space complexity.

Inspired by the problem of finite-time model selection for RL, we propose to con-

sider experts structured in a way that simulates the trade-off between approximation

and estimation. In particular, we suppose that the experts are ranked in ascending or-

der of complexity. We propose a variant of BEES which also operates in 𝐿 = 𝒪 (ln𝑇 )

epochs with 𝒯𝑙 being the time interval of epoch 𝑙. Assumption 2 stipulates that the

total reward is weakly unimodal in expectation with respect to the expert index dur-

ing any epoch. In addition, the index of the globally best expert is nondecreasing as
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the epoch increases. See Fig. 2-1 for an illustration. Section 2.3 will demonstrate in

numerical experiments that a noisy unimodal structure can be sufficient in practice.

Assumption 2. For any epoch 𝑙 ∈ [𝐿], if 𝑖 ≤ 𝑖*(Z+; 𝒯𝑙), then 𝑅𝑖−1(𝒯𝑙) ≤ 𝑅𝑖(𝒯𝑙).

Otherwise, 𝑅𝑖(𝒯𝑙) ≥ 𝑅𝑖+1(𝒯𝑙). Moreover, 𝑖*(Z+; 𝒯𝑙) ≤ 𝑖*(Z+; 𝒯𝑙′) if 𝑙 < 𝑙′.

The proposed time-dependent unimodal structure is fundamentally related to or-

acle inequalities in empirical risk minimization [143]. Although the experts’ per-

formance may fluctuate around the proposed structure in practice, solutions to the

stylized setting are of theoretical interest. Unimodal bandits have been previously

studied for the stochastic setting where the expected reward is a unimodal function of

partially ordered arms [43, 151, 41, 42]. Extensions to non-stationary environments

have been proposed for low-frequency abrupt changes [151] and smooth changes [41] in

expected rewards. Our setting is a nonstochastic bandit problem with no assumptions

on the frequency or the magnitude of changes in the unimodal structure.

Under Assumption 2, the outputs of Exp4.R give a threshold rule that allows us to

find a lower bound for 𝑖*, which can accelerate the rate of approaching 𝑖*. We modify

BEES to incorporate lower bound estimation (BEES.LB, Algorithm 3). BEES.LB

runs Exp4.R and Probabilistic Thresholding Search (PTS, Algorithm 4) as subrou-

tines. In each epoch, BEES.LB eliminates experts identified as suboptimal. Lemma 4

shows that the estimated lower bound is correct if the concentration event E(𝛿) holds.

Theorem 2 establishes a high-probability regret upper bound for BEES.LB. The proof

is similar to that of Theorem 1, hence deferred until Section 2.5. PTS has space com-

plexity 𝒪 (𝑁) and time complexity 𝒪 (𝑁2). PTS can be efficiently implemented by

first sorting the input 𝑤. BEES.LB takes the same space 𝒪 (𝐾(1 + 𝑇/𝐾)𝛼) as BEES.

The time complexity of BEES.LB is �̃� (𝐾2(1 + 𝑇/𝐾)𝛼+1 + (1 + 𝑇/𝐾)2𝛼), which re-

duces to the runtime of BEES for sufficiently small 𝛼.

Lemma 4. Under Assumption 2 and the conditions of Lemma 3, if event E(𝛿) holds

for all epochs, then 𝑖𝑙 ≤ 𝑖* for all 𝑙.

Theorem 2. Under Assumption 2, if a uniform expert is available in each epoch, then

there exist absolute constants 𝛼 ∈ Z+ and 𝑐 ∈ Z+ such that, for some 𝐶(𝛼, 𝑐,𝐾, 𝛿) ∈
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Figure 2-1: An illustration of Assumption 2.

Algorithm 3 BEES with Lower Bound (BEES.LB)
1: Input: 𝛿 ∈ (0, 1], 𝛼 ∈ Z+, 𝐿 ∈ Z+, 𝑐 ∈ Z+, 𝐶 ∈ Z+

2: 𝑖1 ← 1.

3: for epoch 𝑙 = 1, . . . , 𝐿 do
4: 𝑁𝑙 ← 𝑐2𝛼𝑙, 𝑇𝑙 ← 𝐶2𝑙.

5: 𝜌𝑙 ←
√︀

ln𝑁𝑙/(𝐾𝑇𝑙).

6: ℐ𝑙 ← {𝑖𝑙, 𝑖𝑙 + 1, . . . , 𝑖𝑙 +𝑁𝑙 − 1}.
7: 𝑤𝑙, 𝜖𝑙 ← Exp4.R(𝛿/𝐿, 𝑇𝑙, 𝜌𝑙, ℐ𝑙) .
8: 𝑖𝑙+1 ← PTS

(︀
𝑤𝑙, 𝜖𝑙, 𝑖𝑙

)︀
.

9: end for

Algorithm 4 Probabilistic Thresholding Search (PTS)

Input: 𝑤 ∈ (0,∞)𝑁 , 𝜖 ∈ (0,∞)𝑁 , 𝑖 ∈ Z+

Output: 𝑖new

𝑗 ← 1.

for 𝑗 = 1, . . . , 𝑁 − 1 do
for 𝑗′ = 𝑗 + 1, . . . , 𝑁 do

if ln𝑤𝑗′ − ln𝑤𝑗 > 𝜖𝑗′ then
𝑗 ← 𝑗 + 1.

end if
end for

end for
𝑖new ← 𝑖+ 𝑗 − 1.
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Z+, BEES.LB satisfies that, for any 𝛿 ∈ (0, 1], with probability at least 1− 𝛿, we have

Regret(𝑇 ) < 20

√︃
𝛼𝐾(𝑇 + 2𝐶) ln

(︂
𝑐𝐿(2 + 𝑇/𝐶)

𝛿

)︂
+ 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

.

The upper bound in Theorem 2 is the same as that for the general case of un-

structured experts because the lower bound from PTS can stay at 1 in the worst

case. A trivial example is that all experts are the same. For cases where the experts’

performance differs by sufficient margins, the actual improvement of BEES.LB over

BEES should become obvious as we will demonstrate in Section 2.3.

If the globally best expert 𝑖* is fixed over time, then we can modify BEES.LB to

additionally estimate an upper bound on 𝑖*, initialized to∞. The modified search sub-

routine can be considered as a probabilistic counterpart of search algorithms such as

the golden-section search [79]. The major difference is that the search subroutine ap-

plies to problems where the function cannot be evaluated directly. We can show that

the confidence interval for 𝑖* contracts over epochs. While the epoch length always

grows exponentially, the set of experts considered in each epoch is data-dependent.

If no upper bound on 𝑖* has been identified, then the number of experts considered

will increase by a factor of 2𝛼 in the next epoch. Otherwise, only the experts in the

non-expanding confidence interval will be considered from now on.

2.3 Experiments

In this section, we present two simulation results that complement our theoretical

findings. The first experiment uses synthetic data to show the advantage of our

proposed algorithm in the context of structured experts. In the second experiment,

we apply our algorithm to crop management in digital agriculture.

We conduct numerical simulations to demonstrate the performance improvement

of BEES.LB in comparison with BEES and Exp4.P when experts are structured. We

consider 𝐾 = 10 actions the rewards of which are binary and nonstochastic. The
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sequence of experts has a weakly unimodal structure that is corrupted with random

noise. The first expert is uniform and the best expert has index 𝑖* = 9. At each

time, every expert’s advice is distorted with an additive 𝐾-vector that consists of

independent zero-mean Gaussian noises with standard deviation 0.01, which may alter

the unimodal structure of the experts. For BEES and BEES.LB, we set 𝛼 = 𝑐 = 1

and 𝐶 as defined in Corollary 2. We implement the version of BEES and BEES.LB

that does not know the number of epochs 𝐿 or the time horizon 𝑇 a priori by using

𝛿 instead of 𝛿/𝐿 in the subroutine Exp4.R. In contrast, we configure the benchmark

algorithm Exp4.P with the correct 𝑇 . Exp4.P is run on the first 𝑇 experts in the

sequence. All algorithms use an error rate 𝛿 = 0.05.

Fig. 2-2 shows that BEES.LB indeed has a lower regret than BEES because of the

expedited learning enabled by Exp4.R. For large 𝑇 , Exp4.P is surpassed by BEES.LB

as querying too many experts can increase the chance of getting bad advice. Fig. 2-

2 demonstrates the advantage of our algorithm in having improved performance by

being able to exploit structural information and query experts adaptively.

In the second experiment, we apply Exp4.R to learn crop management. To be

specific, actions correspond to the frequencies of irrigation and fertilization. Rewards

are the normalized total weight of storage organs. Fig. 2-3 illustrates our pipeline of

data-driven decision making in digital agriculture. We use the world food studies

(WOFOST) model [136] to simulate crop yield dependent on different management

strategies. WOFOST has been an important model for crop monitoring and yield

prediction in Europe for decades [46]. Although the algorithm only gets to observe

the rewards of the actions taken, we can design experts using WOFOST. For example,

a good expert often recommends actions that have high rewards, and a bad expert

tends to suggest actions that give low rewards. The algorithm starts clueless about

the experts and learns their performance through trial and error. Fig. 2-4 shows that

good experts indeed tend to get consulted more over time. Fig. 2-5 corroborates

Proposition 1 that Exp4.R tends to rank experts with big weight gaps correctly.
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Figure 2-2: Comparison of BEES, BEES.LB, and Exp4.P in terms of regret as the
time horizon varies. BEES.LB surpasses BEES and Exp4.P as the time horizon
increases. Lines and shades are the averages and the standard deviations of 10 runs,
respectively.
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Learner

Sensor

Action

Reward

Experts

Advice

Figure 2-3: Illustration of data-driven decision making in digital agriculture.
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Figure 2-4: Exp4.R tends to sample good experts more often over time.

Figure 2-5: Exp4.R tends to rank experts with big weight gaps correctly.
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2.4 Discussion

In this chapter, we have proposed an algorithm for the problem of nonstochastic

bandits with infinitely many experts under the constraint of having access to only a

finite subset of experts. We have established a high-probability upper bound on the

regret of our meta-algorithm BEES, which matches the lower bound up to polylog

factors if the globally best expert has a relatively low index. If we assume that there

exists a prior distribution on the best expert, then the probability that our regret

upper bound is tight will increase with the time horizon, the rate of which can be fast.

The expert ranking property of the subroutine Exp4.R enables learning acceleration if

the structure of the experts is known. We have illustrated this point with an example

that is inspired by the problem of finite-time model selection for RL. One interesting

direction for future work is to obtain instance-dependent upper bounds in terms of

the experts’ suboptimality gaps. Such instance-dependent bounds can be used to

prove the learning acceleration enabled by Exp4.R. It is also worthwhile to design

efficient implementation for specific applications.

2.5 Proofs

Proof of Proposition 1

Let E𝑡 [·] denote the conditional expectation given history until time 𝑡 − 1. We

can show that 𝑦𝑖(𝑡) is a conditionally unbiased estimator for 𝑦𝑖(𝑡). In other words,

E𝑡 [𝑦𝑖(𝑡)] = 𝑦𝑖(𝑡) for all 𝑖 and 𝑡. Lemma 5 shows that 𝑣𝑖(𝑡) is an upper bound on the

conditional variance of 𝑦𝑖(𝑡). Lemma 6 is a Freedman-style inequality for martingales

from [22]. The proof of Lemma 1 relies on Lemmas 5 and 6.

Lemma 5 (From proof of Lemma 3 in [22]). For all 𝑡 ∈ Z+ and 𝑖 ∈ ℐ, we have

E𝑡

[︀
(𝑦𝑖(𝑡)− 𝑦𝑖(𝑡))2

]︀
≤ 𝑣𝑖(𝑡).

Lemma 6 ([22], Theorem 1). Let 𝑋1, . . . , 𝑋𝑇 be a sequence of real-valued random

variables. For any real-valued random variable 𝑌 , we define E𝑡 [𝑌 ] , E [𝑌 | 𝑋1, . . . , 𝑋𝑡−1].
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We assume that, 𝑋𝑡 ≤ 𝐵 and E𝑡 [𝑋𝑡] = 0 for all 𝑡. We define the random variables

𝑆 ,
𝑇∑︁
𝑡=1

𝑋𝑡, 𝑉 ,
𝑇∑︁
𝑡=1

E𝑡

[︀
𝑋2

𝑡

]︀
.

For any fixed estimate 𝑉 ′ > 0 of 𝑉 , and for any 𝛿 ∈ (0, 1], with probability at least

1− 𝛿, we have

𝑆 ≤

⎧⎪⎨⎪⎩
√︁

(𝑒− 2) ln
(︀
1
𝛿

)︀ (︁
𝑉√
𝑉 ′ +

√
𝑉 ′
)︁
, if 𝑉 ′ ≥ 𝐵2 ln(1/𝛿)

𝑒−2
,

𝐵 ln(1/𝛿) + (𝑒− 2)𝑉
𝐵
, otherwise.

Proof of Lemma 1. We now fix any 𝑖 ∈ ℐ and 𝑡 ∈ Z+. By definition, we have 𝑦𝑖(𝑡) ∈

[0, 1]. Using (2.1) and the assumption that 𝜌 ∈ [0, 1/𝐾], we get 𝑝𝑎(𝑡) ≥ 𝜌 for all

𝑎 ∈ 𝒜. Thus, (2.2) implies that 𝑦𝑖(𝑡) ∈ [0, 1/𝜌] almost surely. Let 𝑋𝑡 = 𝑦𝑖(𝑡)− 𝑦𝑖(𝑡).

We then have −1/𝜌 ≤ 𝑋𝑡 ≤ 1 almost surely. We can show that E𝑡 [𝑦𝑖(𝑡)] = 𝑦𝑖(𝑡) and

hence E𝑡 [𝑋𝑡] = 0. We recall that 𝑅𝑖(𝑇 ) =
∑︀𝑇

𝑡=1 𝑦𝑖(𝑡). Applying Lemma 6 to (𝑋𝑡)𝑡

and (−𝑋𝑡)𝑡 respectively and then taking a union bound, we conclude that, for any

𝛿 ∈ (0, 1], with probability at least 1−𝛿/𝑁 , the inequality−𝐵1 ≤ 𝑅𝑖(𝑇 )− �̂�𝑖(𝑇 ) ≤ 𝐵2

holds, where

𝐵1 ,

⎧⎪⎨⎪⎩
√︁

(𝑒− 2) ln
(︀
2𝑁
𝛿

)︀ (︁
𝑉√
𝑉 ′ +

√
𝑉 ′
)︁
, if 𝑉 ′ ≥ ln(2𝑁/𝛿)

(𝑒−2)𝜌2
,

ln(2𝑁/𝛿)
𝜌

+ (𝑒− 2)𝜌𝑉, otherwise,

𝐵2 ,

⎧⎪⎨⎪⎩
√︁

(𝑒− 2) ln
(︀
2𝑁
𝛿

)︀ (︁
𝑉√
𝑉 ′ +

√
𝑉 ′
)︁
, if 𝑉 ′ ≥ ln(2𝑁/𝛿)

(𝑒−2)
,

ln(2𝑁/𝛿) + (𝑒− 2)𝑉, otherwise,

𝑉 ,
𝑇∑︁
𝑡=1

E𝑡

[︀
𝑋2

𝑡

]︀
.

We now fix an arbitrary 𝛿 ∈ (0, 1]. Assumption 1 implies that ln(2𝑁/𝛿) ≤ (𝑒 −

2)𝐾𝑇 . Taking 𝜌 =
√︀

ln𝑁/(𝐾𝑇 ) and 𝑉 ′ = 𝐾𝑇 , we have ln(2𝑁/𝛿)/(𝑒 − 2) ≤ 𝑉 ′ <

ln(2𝑁/𝛿)/[(𝑒− 2)𝜌2]. Lemma 5 implies that 𝑉 ≤ 𝑉𝑖(𝑇 ). Therefore, with probability
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at least 1− 𝛿/𝑁 , we have

− ln

(︂
2𝑁

𝛿

)︂√︂
𝐾𝑇

ln𝑁
−
√︂

ln𝑁

𝐾𝑇
𝑉𝑖(𝑇 ) ≤ 𝑅𝑖(𝑇 )−�̂�𝑖(𝑇 ) ≤

√︃
ln

(︂
2𝑁

𝛿

)︂(︃
𝑉𝑖(𝑇 )√
𝐾𝑇

+
√
𝐾𝑇

)︃
.

Applying the union bound over 𝑖 ∈ ℐ, we conclude that P (E(𝛿)) ≥ 1− 𝛿.

Proof of Lemma 3. We fix an arbitrary 𝛿 ∈ (0, 1] and suppose that event E(𝛿) holds.

We recall that 𝜖𝑖 ,
[︁
1 + 𝑉𝑖(𝑇 )/(𝐾𝑇 )

]︁
ln(2𝑁/𝛿). We assume that ln𝑤𝑖(𝑇 + 1) −

ln𝑤𝑖′(𝑇+1) > 𝜖𝑖 for some 𝑖, 𝑖′ ∈ ℐ. By (2.3) and the initialization condition 𝑤𝑖(1) = 1,

we have

ln𝑤𝑖(𝑇 + 1) =
𝑇∑︁
𝑡=1

ln

(︂
𝑤𝑖(𝑡+ 1)

𝑤𝑖(𝑡)

)︂
=
𝜌

2

(︃
�̂�𝑖(𝑇 ) +

√︂
ln(2𝑁/𝛿)

𝐾𝑇
𝑉𝑖(𝑇 )

)︃
.

Thus,

�̂�𝑖(𝑇 ) =
2

𝜌
ln𝑤𝑖(𝑇 + 1)−

√︂
ln(2𝑁/𝛿)

𝐾𝑇
𝑉𝑖(𝑇 ). (2.7)

Equation (2.7) also holds for 𝑖′. Thus,

�̂�𝑖(𝑇 )− �̂�𝑖′(𝑇 )

=
2

𝜌
ln

(︂
𝑤𝑖(𝑇 + 1)

𝑤𝑖′(𝑇 + 1)

)︂
−
√︂

ln(2𝑁/𝛿)

𝐾𝑇

(︁
𝑉𝑖(𝑇 )− 𝑉𝑖′(𝑇 )

)︁
>

2𝜖𝑖
𝜌
−
√︂

ln(2𝑁/𝛿)

𝐾𝑇

(︁
𝑉𝑖(𝑇 )− 𝑉𝑖′(𝑇 )

)︁
= 2 ln

(︂
2𝑁

𝛿

)︂√︂
𝐾𝑇

ln𝑁
+

√︂
ln(2𝑁/𝛿)

𝐾𝑇
𝑉𝑖′(𝑇 ) + 𝑉𝑖(𝑇 )

√︂
ln(2𝑁/𝛿)

𝐾𝑇

[︃
2

√︂
ln(2𝑁/𝛿)

ln𝑁
− 1

]︃

> 2 ln

(︂
2𝑁

𝛿

)︂√︂
𝐾𝑇

ln𝑁
+

√︂
ln(2𝑁/𝛿)

𝐾𝑇

(︁
𝑉𝑖(𝑇 ) + 𝑉𝑖′(𝑇 )

)︁
.

(2.8)

Event E(𝛿) implies that

𝑅𝑖(𝑇 )− �̂�𝑖(𝑇 ) + �̂�𝑖′(𝑇 )−𝑅𝑖′(𝑇 ) ≥ − ln

(︂
2𝑁

𝛿

)︂√︂
𝐾𝑇

ln𝑁
−
√︂

ln𝑁

𝐾𝑇
𝑉𝑖(𝑇 )

−

√︃
ln

(︂
2𝑁

𝛿

)︂(︃
𝑉𝑖′(𝑇 )√
𝐾𝑇

+
√
𝐾𝑇

)︃
.

(2.9)
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Adding (2.8) and (2.9) and then simplifying the algebra give

𝑅𝑖(𝑇 )−𝑅𝑖′(𝑇 ) > 0.

Proof of Proposition 1. Proposition 1 follows directly from Lemmas 1–3.

Proof of Theorem 2

Proof of Lemma 4. Under the assumption that event E(𝛿) holds for all epochs, we

prove the statement by induction on 𝑙. The base case holds trivially as 𝑖1 = 1. For

the inductive step, we assume that 𝑖𝜄 ≤ 𝑖* for all 𝜄 ≤ 𝑙. If 𝑖𝑙+1 = 𝑖𝑙, then 𝑖* ≥ 𝑖𝑙+1

by the induction hypothesis. If there exists some 𝑗 ≥ 1 such that 𝑖𝑙+1 = 𝑖𝑙 + 𝑗,

then Algorithm 4 implies that ln𝑤𝑗′ − ln𝑤𝑗 > 𝜖𝑗′ for some 𝑗′ > 𝑗 in epoch 𝑙. Using

Assumption 2 and Lemma 3, we get 𝑖* ≥ 𝑖𝑙 + 𝑗 = 𝑖𝑙+1.

Proof of Theorem 2. We can show that, for all 𝛿 ∈ (0, 1], 𝛼 ∈ Z+, and 𝑐 ∈ Z+,

there exists 𝐶(𝛼, 𝑐,𝐾, 𝛿) ∈ Z+ such that 4𝐾 ln
(︀
𝑐2𝛼𝑙

)︀
≤ 𝐶2𝑙 and ln

(︀
𝑐2𝛼𝑙+1/𝛿

)︀
≤

(𝑒− 2)𝐶𝐾2𝑙 for all 𝑙 ∈ Z+. For example, we can set 𝐶 = ⌈𝛼𝐾 ln(16𝑐4/𝛿)⌉. Together

with the definitions of 𝑁𝑙 and 𝑇𝑙 in Algorithm 3, we have that, for all 𝛼 ∈ Z+ and

𝑐 ∈ Z+, there exists 𝐶 ∈ Z+ such that 4𝐾 ln𝑁𝑙 ≤ 𝑇𝑙 and ln(2𝑁𝑙/𝛿) ≤ (𝑒− 2)𝐾𝑇𝑙 for

all 𝑙 ∈ Z+. We fix such integers 𝛼, 𝑐, 𝐶 ∈ Z+ for the rest of the proof.

For simplicity of notation, we first consider running Exp4.R(𝛿, 𝑇𝑙, 𝜌𝑙, ℐ𝑙) in each

epoch 𝑙 of Algorithm 3 for any 𝛿 ∈ (0, 1/𝐿] and then apply a change of variables at

the end of the proof. We suppose that a uniform expert is available in each epoch.

Assumption 1 is then satisfied for all epochs. For now, we assume that event E(𝛿)

holds for all epochs, the probability of which will be discussed at the end of the proof.

For simplicity of notation, let 𝑖*𝑙 , 𝑖*(ℐ𝑙; 𝒯𝑙) for 𝑙 ∈ [𝐿].

Let 𝑈𝑙 , 𝛼𝑙 + log2 (2𝑐/𝛿) for 𝑙 ∈ [𝐿]. Recall that 𝒯𝑙 is the time interval of epoch 𝑙
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where |𝒯𝑙| = 𝑇𝑙. By Lemma 2,

𝐿∑︁
𝑙=1

𝑅𝑖*𝑙
(𝒯𝑙)−

𝑇∑︁
𝑡=1

𝑟𝑎(𝑡)(𝑡) ≤
𝐿∑︁
𝑙=1

7

√︃
𝐾𝑇𝑙 ln

(︂
2𝑁𝑙

𝛿

)︂

=
𝐿∑︁
𝑙=1

7

√︃
𝐾𝐶2𝑙 ln

(︂
𝑐2𝛼𝑙+1

𝛿

)︂

= 7
√
𝐾𝐶 ln 2

𝐿∑︁
𝑙=1

√︀
2𝑙𝑈𝑙

≤ 7
√︀
𝐾𝐶𝑈𝐿 ln 2

𝐿∑︁
𝑙=1

2𝑙/2

< 20
√︀
𝐾𝐶𝑈𝐿

(︀
2𝐿/2 − 1

)︀
.

Since 𝐿 = log2[1 + 𝑇/(2𝐶)], we have

𝐿∑︁
𝑙=1

𝑅𝑖*𝑙
(𝒯𝑙)−

𝑇∑︁
𝑡=1

𝑟𝑎(𝑡)(𝑡) < 20
√︀
𝐾𝐶𝑈𝐿

(︃√︂
1 +

𝑇

2𝐶
− 1

)︃

< 20

√︃
𝐾

[︂
𝛼𝐿+ 2 ln

(︂
2𝑐

𝛿

)︂]︂(︂
𝐶 +

𝑇

2

)︂
.

(2.10)

We first discuss the case where 𝑖* /∈ ℐ1. Let 𝐿′′ be the last epoch such that 𝑖* is not

considered in Algorithm 3. In other words, 𝐿′′ , max { 𝑙 ∈ [𝐿] | 𝑖* /∈ ℐ𝑙 }. Lemma 4

implies that 𝑖* ∈ ℐ𝑙 for all 𝑙 > 𝐿′′. By the definition of 𝑖*𝑙 , we have 𝑅𝑖*𝑙
(𝒯𝑙) ≥ 𝑅𝑖*(𝒯𝑙)

for all 𝑙 > 𝐿′′. Thus,

𝑅𝑖*([𝑇 ])−
𝐿∑︁
𝑙=1

𝑅𝑖*𝑙
(𝒯𝑙) ≤

𝐿′′∑︁
𝑙=1

(︀
𝑅𝑖*(𝒯𝑙)−𝑅𝑖*𝑙

(𝒯𝑙)
)︀
≤

𝐿′′∑︁
𝑙=1

𝑇𝑙 < 𝐶2𝐿′′+1.

We now provide an upper bound on 𝐿′′. By Algorithms 3 and 4, we have |ℐ𝑙| = 𝑁𝑙

and 1 ≤ 𝑖𝑙 ≤ 𝑖𝑙+1 for all 𝑙. Let 𝐿′ be the last epoch such that 𝑖* is not considered in the

worst case where 𝑖𝑙 = 1 for all 𝑙. In other words, 𝐿′ , min (𝐿, ⌈𝛼−1 log2(𝑖
*/𝑐)⌉ − 1).

Under the assumption that 𝑖* /∈ ℐ1, we get 𝐿′ ≥ 1. By the definitions of 𝐿′ and 𝐿′′,
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we have 𝐿′′ ≤ 𝐿′ and hence

𝑅𝑖*([𝑇 ])−
𝐿∑︁
𝑙=1

𝑅𝑖*𝑙
(𝒯𝑙) < 𝐶2𝐿′+1 < 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

. (2.11)

We now consider the case where 𝑖* ∈ ℐ1. It follows from Lemma 4 that 𝑖* ∈ ℐ𝑙
for all 𝑙. Thus, the definition of 𝑖*𝑙 implies that 𝑅𝑖*𝑙

(𝒯𝑙) ≥ 𝑅𝑖*(𝒯𝑙) for all 𝑙. We define

𝐷 , 𝑅𝑖*([𝑇 ]) −
∑︀𝐿

𝑙=1𝑅𝑖*𝑙
(𝒯𝑙). We then have 𝐷 ≤ 0. However, the definition of 𝑖*

implies that 𝐷 ≥ 0. Therefore, 𝐷 = 0 and (2.11) is satisfied.

Adding (2.10) and (2.11) gives

Regret(𝑇 ) < 20

√︃
𝐾

[︂
𝛼𝐿+ 2 ln

(︂
2𝑐

𝛿

)︂]︂(︂
𝐶 +

𝑇

2

)︂
+ 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

. (2.12)

Using Lemma 1 and the union bound over all 𝐿 epochs, we conclude that (2.12) holds

with probability at least 1− 𝐿𝛿. A change of variables gives that, for any 𝛿 ∈ (0, 1],

with probability at least 1− 𝛿, we have

Regret(𝑇 ) <20

√︃
𝐾

[︂
𝛼𝐿+ 2 ln

(︂
2𝑐𝐿

𝛿

)︂]︂(︂
𝐶 +

𝑇

2

)︂
+ 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

<20

√︃
𝛼𝐾(𝑇 + 2𝐶) ln

(︂
𝑐𝐿(2 + 𝑇/𝐶)

𝛿

)︂
+ 2𝐶

(︂
𝑖*

𝑐

)︂ 1
𝛼

.
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Chapter 3

Active Learning for Efficient Cell

Reprogramming

3.1 Introduction

Cell reprogramming, the process of converting one cell type into another, has far-

reaching implications for human disease modeling [97, 106], regenerative medicine [88,

110, 123], and drug screening [14, 63]. Cells can be reprogrammed in various ways

including nuclear transplantation [70], cell fusion [150], and transcription-factor trans-

duction [65]. Experiments have successfully demonstrated that overexpressing certain

transcription factors (TFs) is sufficient to reprogram one particular cell type into an-

other [30, 62, 69, 108, 124, 125, 141, 147]. We are interested in finding the combination

of TFs that can make embryonic stem cells differentiate into hematopoietic stem cells

(HSCs). The capability to drive directed differentiation will provide a scalable source

for HSCs which are important for treating certain types of cancer and immune system

disorders [17, 44].

Finding optimal interventions for gene regulatory networks is challenging because

of the high-dimensional state and action spaces. Although it has been successfully

demonstrated in experiments that cells can be reprogrammed by transduction of

TFs, these discoveries were based on exhaustive testing of plausible TF combinations.

Brute-force search is unscalable as perturbation experiments are time-consuming,
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labor-intensive, and expensive. For example, there are approximately one trillion

possible combinations of four human TFs, and it is impossible to test all possibilities.

Computational approaches can help improve the efficiency of cell reprogramming

protocols [5, 31, 45, 48, 76, 99, 111, 116]. Existing methods typically construct some

types of networks from numerous datasets and then rank TFs according to certain

scores. For example, CellNet [31, 99] infers gene regulatory networks using 3419 gene

expression profiles of various tissues and cell types, which enables the identification

of high-influence TFs. Similarly, Mogrify [111] combines differential expression anal-

ysis and network information based on 700 libraries of gene expression data and two

databases. Such a network-based approach requires a large amount of data and does

not take the sequential design of experiments take into consideration. These chal-

lenges naturally lead to the question if computational approaches can help optimize

perturbations under the constraint of insufficient data except for a few batches of

experiments. We answer the question affirmatively in this chapter.

We propose an active learning framework that directly optimizes over combina-

tions of TFs in a few batches of experiments. Although the complexity of this problem

prohibits theoretical guarantees on the entire procedure, we propose a principled ap-

proach that builds upon multi-armed bandit algorithms. We demonstrate the success

of our approach on gene expression data.

3.2 Problem Formulation

We introduce the mathematical formulation of single-cell perturbation in Section 3.2.1

and explain how batched experiments work in Section 3.2.2. We define the active

learning problem in Section 3.2.3.

3.2.1 Single-Cell Perturbation

Let Z+ be the set of strictly positive integers. For 𝑛 ∈ Z+, we define [𝑛] , {1, 2, . . . , 𝑛}.

Let 𝑝 ∈ Z+ be the number of genes. Let 𝑋 ∈ R𝑝 be the gene expression level

of a source cell where 𝑋𝑖 corresponds to gene 𝑖. Similarly, let 𝑌 target ∈ R𝑝 be
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the gene expression level of a target cell. We know the gene expression distribu-

tion 𝒫 of the source cell type (i.e., 𝑋 ∼ 𝒫) and that of the target cell type, de-

noted by 𝒬 (i.e., 𝑌 target ∼ 𝒬). Let ℐ ⊂ [𝑝] be the set of TF genes that we can

perturb. We describe a perturbation as 𝐴 ∈ {0, 1}𝑝 such that 𝐴𝑖 = 0 whenever

𝑖 /∈ ℐ. Specifically, 𝐴𝑖 = 1 if and only if TFs that overexpress gene 𝑖 are added.

Let 𝑌 , 𝑓(𝑋,𝐴) be the gene expression level of the perturbed cell for some un-

known function 𝑓 : R𝑝 × {0, 1}𝑝 → R𝑝. For intervention 𝐴 = 𝑎, denote 𝒫𝑎 as the

interventional distribution, namely, 𝑌 = 𝑓(𝑋, 𝑎) ∼ 𝒫𝑎.

Given a sparsity parameter 𝑆 ∈ Z+ and some distance function 𝑑, our goal is to

solve the following optimization problem:

min
𝑎

𝑑(𝒫𝑎,𝒬)

s.t. ‖𝑎‖0 ≤ 𝑆

𝑎𝑖 = 0 ∀𝑖 /∈ ℐ.

(3.1)

We call a feasible solution to (3.1) an 𝑆-sparse perturbation and denote the feasible set

by ℱ . Specifically, our goal is to match the direction of the mean gene expression of

the target cell type. In other words, 𝑑(𝒫𝑎,𝒬) , (1− 𝑠 (E𝒫𝑎 [𝑓(𝑋, 𝑎)] ,E𝒬 [𝑌 target])) /2

where 𝑠 is the cosine similarity function.

3.2.2 Batched Experiments

Let 𝑇 ∈ Z+ be the number of batched experiments. Let𝑁 ∈ Z+ be the number of cells

that can be perturbed per batch. We consider a sequencing budget 𝐾 ∈ Z+. In other

words, we can measure the gene expression of 𝐾 cells by single-cell RNA sequencing.

We note that 𝑇 ≪ 𝐾 ≪ 𝑁 . Let 𝑐 : {0, 1}𝑝 → [0, 1] be a function that indicates

lethality of a perturbation. To be specific, perturbation 𝑎 kills a cell with probability

𝑐(𝑎). Let 𝑏 : R𝑝 → {0, 1} be a binary filter that picks out cells which show the partial

success of reprogramming with label 1. In experiment, the filter corresponds to an

enrichment step that identifies marker proteins for the target cell type. In addition to

estimating 𝑑(𝒫𝑎,𝒬) using paired information of perturbation and gene expression, we
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can improve the results with enrichment outcomes. To be specific, perturbations that

move cells close to the target tend to generate enriched cells (i.e, 𝑏 = 1) as illustrated

in Fig. 3-1. For our target cell type being HSC, the enrichment step uses CD34 as the

marker gene. CD34+ cells are essential for human hematopoiesis and are routinely

used clinically as a source for bone marrow transplantation in humans [107].

We describe batched experiments as follows: for each batch 𝑡 = 1, . . . , 𝑇 ,

i (Perturbation decision) Decide on a subset of lentiviruses and their concentrations

as described by 𝜆(𝑡) ∈ R𝑝. Specifically, 𝜆𝑖(𝑡) is the multiplicity of infection (MOI)

of lentiviruses that carry gene 𝑖, where 𝜆𝑖(𝑡) = 0 if and only if we do not add

lentiviruses that carry gene 𝑖. Since we only perturb TF genes, we call 𝜆 ∈ R𝑝 an

MOI vector if 𝜆𝑖 ≥ 0 for all 𝑖 ∈ ℐ and 𝜆𝑖 = 0 otherwise.

ii (Viral infection) Add 𝜆(𝑡) to a plate of 𝑁 source cells the gene expression of which

can be considered as independent and identically distributed random variables

𝑋1(𝑡), . . . , 𝑋𝑁(𝑡) drawn from the distribution 𝒫 . For 𝑛 ∈ [𝑁 ], let 𝐴𝑛(𝑡) ∈ {0, 1}𝑝

be the indicator vector of the TFs that cell 𝑛 has received. We can show that

the average fraction of cells which have received lentiviruses that overexpress gene

𝑖 ∈ [𝑝] is equal to E
[︁
𝑁−1

∑︀𝑁
𝑛=1𝐴

𝑛
𝑖 (𝑡)

]︁
= 1− 𝑒−𝜆𝑖(𝑡).

iii (Cell death) Trigger cell death by sampling from Bernoulli distributions with

success probabilities {𝑐(𝐴𝑛(𝑡))}𝑛∈[𝑁 ]. Let 𝒮(𝑡) ⊆ [𝑁 ] denote the subset of cells

that have survived.

iv (Transcription) Generate 𝑌 𝑛(𝑡) , 𝑓𝜖𝑛(𝑡)(𝑋
𝑛(𝑡), 𝐴𝑛(𝑡)) for 𝑛 ∈ 𝒮(𝑡) where 𝑓𝜖𝑛(𝑡) is

a noisy version of 𝑓 that is corrupted by a random measurement error 𝜖𝑛(𝑡) ∈ R𝑝.

(We note that 𝒮(𝑡) and {𝐴𝑛(𝑡), 𝑌 𝑛(𝑡)}𝑛∈𝒮(𝑡) are hidden so far.)

v (Sequencing) Sample uniformly at random without replacement from 𝒮(𝑡) and call

the subset sampled ℛ(𝑡). Further sample uniformly at random without replace-

ment from CD34+ cells and call the subset 𝒩 (𝑡). We note that ℛ(𝑡) ∩ 𝒩 (𝑡) = ∅

and 𝑏
(︁
𝑌 𝑛(𝑡)

)︁
= 1 for all 𝑛 ∈ 𝒩 (𝑡). Fig. 3-2 illustrates the differential sampling

process. Measure 𝐴𝑛(𝑡) and 𝑌 𝑛(𝑡) for 𝑛 ∈ 𝒩 (𝑡) ∪ℛ(𝑡).
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Figure 3-1: Enrichment helps optimize perturbations by identifying cells that are
close to the target cell type. The gene expression distributions of the source cell type
and the target cell type are denoted by 𝒫 and 𝒬, respectively. The interventional
distribution of perturbation 𝑎 is 𝒫𝑎. If 𝑑(𝒫𝑎,𝒬) is sufficiently small, then 𝑏(𝑌 ) = 1
with high probability for 𝑌 ∼ 𝒫𝑎.

Figure 3-2: Differential sampling of enriched cells. An unbiased subset ℛ is first sam-
pled uniformly at random without replacement from all surviving cells. Among the
remaining cells, a subset𝒩 is then sampled uniformly at random without replacement
from CD34+ cells.

Fact. If we define MOI as the ratio of the number of virions to the number of cells

that are present in a cell-culture dish, then the probability that a cell will receive

exactly 𝑚 ∈ {0}∪Z+ virions when inoculated with an MOI of 𝜆0 > 0 can be modeled

as a Poisson distribution with mean 𝜆0. Thus, the average fraction of cells in a

population that are each infected by exactly 𝑚 virions is 𝜆𝑚0 𝑒−𝜆0/(𝑚!). We assume

that the Poisson distributions of different lentiviruses are mutually independent. For

any perturbation 𝑎, the probability that a cell is perturbed by exactly 𝑎 is given by

𝜂(𝑎, 𝜆) ,
∏︁

𝑖: 𝑎𝑖=1

(︀
1− 𝑒−𝜆𝑖

)︀ ∏︁
𝑖′: 𝑎𝑖′=0

𝑒−𝜆𝑖′ . (3.2)

Therefore, the average fraction of cells that are perturbed by exactly 𝑎 is 𝜂(𝑎, 𝜆).
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Figure 3-3: Schematic diagram of active learning and perturbation experiment inte-
gration.

3.2.3 Goal

We address in this chapter the question if it is possible to use active learning for

choosing perturbation MOIs (step i in Section 3.2.2) so that we find a close-to-optimal

solution to (3.1) at the end of the batched experiments. Our answer is affirmative.

In order to state the question precisely, we introduce some definitions. For

notational simplicity, we assume that (3.1) has a unique solution 𝑎*. Let ∆𝑎 ,

𝑑(𝒫𝑎,𝒬)− 𝑑(𝒫𝑎* ,𝒬) be the suboptimality gap of perturbation 𝑎. Let 𝐴 be the per-

turbation recommended by the active learning algorithm at the end of the batched

experiments. We then have

E [∆𝐴] =
∑︁
�̸�=𝑎*

P (𝐴 = 𝑎) ∆𝑎 ≤ P (𝐴 ̸= 𝑎*) , (3.3)

where the last step follows from the fact that the normalized cosine distance has a

bounded codomain [0, 1]. Equation (3.3) shows that minimizing the probability of

misidentifying 𝑎* helps finding close-to-optimal perturbations. For this reason, we

will focus on minimizing P (𝐴 ̸= 𝑎*) under the constraint of 𝑇 batched experiments.

This setting is known as pure exploration with a fixed budget in multi-armed ban-

dit problems. Fig. 3-3 summarizes how active learning can integrate with batched

perturbation experiments to achieve an efficient protocol.
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3.3 Active Learning Algorithm

In this section, we propose an active learning algorithm (Algorithm 5) that integrates

experimental design, deep learning, and biological analysis.

Let 1ℐ : [𝑝] → {0, 1} be an indicator function such that 1ℐ(𝑖) = 1 if and only

if 𝑖 ∈ ℐ. We use ⌊·⌋ to denote the floor function. For 𝑡 ∈ [𝑇 ], let ℋ(𝑡) denote

the history of experimental data observed before batch 𝑡. To be specific, we define

𝒟(𝑡) ,
(︁
𝒩 (𝑡),ℛ(𝑡), {𝐴𝑛(𝑡), 𝑌 𝑛(𝑡)}𝑛∈𝒩 (𝑡)∪ℛ(𝑡)

)︁
as the data observed in batch 𝑡. We

then have ℋ(𝑡) , {𝒟(𝜏)}𝜏<𝑡. Let 𝑤𝑖(𝑡) be the number of cells that have received

lentiviruses carrying gene 𝑖 before batch 𝑡. We call 𝑤(𝑡) an observation frequency

vector. Let 1 ≤𝑀init ≪ 𝐾 be the minimum number of cells that we want to measure

for each lentivirus type in the first batch of experiments.

Algorithm 5 Combinatorial Pure Exploration in Batched Experiments
1: Input: 𝐾 ∈ Z+, 𝑀init ∈ Z+, 𝑇 ∈ Z+

2: Output: 𝐴
3: ℋ(1)← ∅. ◁ Initialization
4: 𝑤𝑖(1)← 0 for 𝑖 ∈ [𝑝].
5: 𝜆𝑖(1)← 1ℐ(𝑖) ln(𝐾/(𝐾 −𝑀init)) for 𝑖 ∈ [𝑝].
6: for 𝑡 = 1, . . . , 𝑇 do
7: Experiment with 𝜆(𝑡) and record data ◁ Perturbation experiment

𝒟(𝑡)←
(︁
𝜆(𝑡),𝒩 (𝑡),ℛ(𝑡), {𝐴𝑛(𝑡), 𝑌 𝑛(𝑡)}𝑛∈𝒩 (𝑡)∪ℛ(𝑡)

)︁
.

8: ℋ(𝑡+ 1)← ℋ(𝑡) ∪ 𝒟(𝑡).
9: 𝑤𝑖(𝑡+ 1)← 𝑤𝑖(𝑡) +

∑︀
𝑛∈𝒩 (𝑡)∪ℛ(𝑡)𝐴

𝑛
𝑖 (𝑡) for 𝑖 ∈ ℐ.

10: 𝜌(𝑡+ 1)← Analyzer (ℋ(𝑡+ 1)). ◁ Frequency analysis
11: 𝑑(𝑡+ 1)← Model (ℋ(𝑡+ 1)). ◁ Distance estimation
12: 𝐽(𝑡+ 1)← Oracle

(︁
𝜌(𝑡+ 1), 𝑑(𝑡+ 1), 𝑤(𝑡+ 1)

)︁
. ◁ TF scoring

13: 𝜆(𝑡+ 1)← Solver (𝐽(𝑡+ 1)). ◁ MOI optimization
14: end for
15: 𝐴← argmin𝑎∈ℱ 𝜌(𝑇 + 1)(𝑎)𝑑(𝑇 + 1)(𝑎). ◁ Perturbation recommendation
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3.3.1 Initialization

We use the first batch of experiments as an initialization step where we add all

lentiviruses at the same MOI, which implies that each type of lentiviruses infects

the same number of cells in expectation. Since we hope to estimate the perturbation

effects of all lentiviruses to similar accuracy during initialization, we perturb𝐾 cells in

the first batch of experiments and sequence all these cells without the enrichment step.

Other batches of experiments are conducted as described in steps ii–v in Section 3.2.2

with CD34 enrichment and differential sampling. In order to measure at least 𝑀init

cells in expectation for each type of lentiviruses during initialization where𝑀init ≪ 𝐾,

we need
(︀
1− 𝑒−𝜆𝑖(1)

)︀
𝐾 ≥ 𝑀init for 𝑖 ∈ ℐ, which simplifies to 𝜆𝑖(1) ≥ ln(𝐾/(𝐾 −

𝑀init)). We can show that the probability of a cell receiving more than one virion

increases with the MOI of each lentivirus. Hence, minimizing the average fraction

of multi-perturbed cells subject to the constraint of getting at least 𝑀init cells in

expectation for each lentivirus type gives 𝜆𝑖(1) = 1ℐ(𝑖) ln(𝐾/(𝐾 − 𝑀init)) for 𝑖 ∈

[𝑝]. Let Λ > 0 be an upper bound on the total MOI
∑︀

𝑖∈ℐ 𝜆𝑖 to prevent cells from

generally dying due to excessive perturbation. Solving
∑︀

𝑖∈ℐ 𝜆𝑖 ≤ Λ, we get 𝑀init ≤

𝐾
(︀
1− 𝑒−Λ/|ℐ|)︀.

3.3.2 Frequency Analysis

Let Analyzer be a subroutine that infers the desirability of a perturbation from its

frequency in experimental data. To be specific, let 𝜌 : {0, 1}𝑝 → [0, 1] be a penalty

function constructed by Analyzer. We assume that, for any perturbation 𝑎, we have

𝜌(𝑎) ≈ 0 if E𝒫𝑎 [𝑏(𝑓(𝑋, 𝑎))] ≈ 1 and 𝜌(𝑎) ≈ 1 if 𝑐(𝑎) ≈ 1.1 Intuitively, the penalty of

𝑎 is high if 𝑎 often kills cells and the penalty is low if 𝑎 tends to induce the partial

success of reprogramming.

We estimate cell death using the difference between predicted and actual cell

counts. For example, the lethality penalty for the combination of TFs that overexpress

genes 𝑖 and 𝑖′ ̸= 𝑖 is given by P (𝐴𝑖 = 1)P (𝐴𝑖′ = 1) − P (𝐴𝑖 = 1, 𝐴𝑖′ = 1). Under
1The conditions E𝒫𝑎 [𝑏(𝑓(𝑋, 𝑎))] ≈ 1 and 𝑐(𝑎) ≈ 1 cannot be satisfied simultaneously by any

perturbation because cell death precedes transcription as described in Section 3.2.2.
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the assumption that the Poisson distributions of different lentiviruses are mutually

independent, the lethality penalty equals 0 if the combination is nontoxic and positive

otherwise. In principle, the penalty is an increasing function of the lethality of a

perturbation. We estimate the penalty considering one batch of experiments at a

time and average over all experiments with weights being proportional to the total

cell counts of each experiment.

One method of incorporating enrichment information into the penalty is subtract-

ing the relative frequency of each perturbation within the enriched set from its lethal-

ity penalty. Intuitively, the more often we observe a perturbation in CD34+ cells,

the more likely it can reprogram cells to the target cell type, and hence it should

have a lower penalty. With the aforementioned example, the penalty now becomes

P (𝐴𝑖 = 1)P (𝐴𝑖′ = 1)− P (𝐴𝑖 = 1, 𝐴𝑖′ = 1)− 𝑃 (𝐴𝑖 = 1, 𝐴𝑖′ = 1 | 𝑏(𝑓(𝑋,𝐴)) = 1). Af-

ter computing the weighted average penalty over all experiments, we normalize the

values to [0, 1].

3.3.3 Distance Estimation

We use Model to represent a deep learning model that maps experimental data to an

estimator 𝑑 of 𝑑. In other words, we have 𝑑(𝑎) ≈ 𝑑(𝒫𝑎,𝒬) for any 𝑆-sparse perturba-

tion 𝑎. There are numerous machine learning methods that can serve this purpose,

including the neural tangent kernel (NTK) [112] and the compositional perturbation

autoencoder (CPA) [90]. We use CPA for distance estimation in this chapter as it

learns an interpretable linear model in the latent space where the effect of overexpress-

ing a combination of genes is equal to the sum of the effects of perturbing each gene

separately. The approach represents each TF as an embedding in the latent space,

which allows us to predict cell behavior subject to novel combinations. We measure

cosine similarity and hence the distance function 𝑑 using perturbation embeddings.

Fig. 3-4 provides an example of distance estimation in the CPA latent space. We

show numerically in Section 3.4 that CPA outperforms benchmarks and provides TF

embeddings that are consistent with biology. We defer the model assumptions, the

mathematical formulation, and implementation details of CPA to Section 3.6.
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Figure 3-4: Example of distance estimation in the two-dimensional latent space of
CPA for a pair of TFs.

3.3.4 TF Scoring

Having learned the penalty function 𝜌 and the cost function 𝑑, we call a process

named Oracle to rate TF genes, which will determine the MOI vector for the next

batch of experiments. To be precise, Oracle evaluates the cost function 𝐽 : ℐ → R

given by

𝐽(𝑖) , min
𝑎∈ℋ: 𝑎𝑖=1

𝜌(𝑎)𝑑(𝑎)− 𝑢(𝑎*(𝑖), 𝑤), (3.4)

where 𝑎*(𝑖) , argmin𝑎∈ℋ: 𝑎𝑖=1𝜌(𝑎)𝑑(𝑎). With slight abuse of notation, we denote the

output of Oracle by 𝐽 in Algorithm 5. For computational efficiency, we restrict

the evaluation of 𝜌 and 𝑑 to the history of experimental data where 𝑎 ∈ ℋ means

that perturbation 𝑎 has been observed in past experiments. Given an observation

frequency vector 𝑤, we introduce a term 𝑢(𝑎, 𝑤) > 0 for each perturbation 𝑎 that

measures estimation uncertainty which decreases with the number of times that the

genes overexpressed by 𝑎 have been sequenced. Intuitively, we should overexpress a

TF gene in the next batch of experiments if at least one of the following conditions is

satisfied: (i) there is insufficient data about this TF; (ii) perturbations that include

this TF rarely cause cell death and can drive the cell identity close to the target cell

type. These two conditions embody the importance of exploration and exploitation,

respectively. Inspired by the multi-armed bandit model, a simple yet powerful frame-

work for sequential decision making under uncertainty [11, 85, 86, 114], we propose

to balance the exploration–exploitation trade-off using Equation (3.4).
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In the literature of combinatorial bandits [35, 36, 57, 83, 84, 96, 142, 144, 148, 152],

the uncertainty term is defined for combinatorial actions as well as single actions.

For example, 𝑢reg(𝑎, 𝑤) = 𝛽
√︀

ln (𝑡𝐾)/𝑎⊤𝑤 with some constant coefficient 𝛽 > 0 re-

sembles the confidence radius of the combinatorial upper confidence bound (CUCB)

algorithm [36]. CUCB is optimal in terms of cumulative regret for combinato-

rial multi-armed bandit problems with general reward functions [36, 84]. For the

non-combinatorial pure exploration problem (equivalently, 𝑆 = 1), the upper con-

fidence bound exploration (UCB-E) algorithm using an uncertainty term similar to

𝑢exp(𝑎, 𝑤) = 𝛽
√︀

(𝑇𝐾 − |ℐ|)/𝑎⊤𝑤 achieves optimal probability of error, namely, the

probability that the recommendation at the end of exploration is suboptimal [10].

Although the optimality of UCB-E requires 𝛽 to depend on the unknown hardness of

the problem, tuning 𝛽 empirically works well in practice [10]. For the combinatorial

pure exploration problem (equivalently, 𝑆 ∈ Z+), the combinatorial lower-upper con-

fidence bound (CLUCB) algorithm also uses a confidence radius similar to 𝑢exp(𝑎, 𝑤)

and achieves optimality for many action sets [35]. Similar to UCB-E, CLUCB needs

an unobserved hardness measure of the problem, which can be resolved by tuning 𝛽

empirically. The uncertainty term 𝑢 controls the level of exploration of the active

learning algorithm. The pure exploration problem needs more exploration than the

setting of cumulative regret minimization [10, 29]. In the limit of 𝑢 → ∞, the algo-

rithm reduces to uniform sampling which is suboptimal for the regime studied in this

chapter where the action set is large yet the time horizon is short [10, 29]. Although

the conditions under which multi-armed bandit algorithms are studied, such as the

monotonicity of the reward function, are unrealistic for biological applications, we

demonstrate how the core idea of balancing exploration and exploitation can help

design active learning algorithms for efficient experimentation.

The active learning problem considered in this chapter can be described as com-

binatorial fixed-budget pure exploration of batched bandits with incomplete informa-

tion, which has not been investigated in the literature. However, parts of this topic

have been well studied separately. We hope that our work underlines the importance

of addressing the aforementioned challenges simultaneously. Since our setting is a
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pure exploration problem, we use an uncertainty term similar to 𝑢exp(𝑎, 𝑤), defined

as 𝑢(𝑎, 𝑤) = 𝛽
√︀

(𝑇𝐾 − |ℐ|)/(𝑎⊤𝑤 + 1) for measuring estimation uncertainty. The

only difference is that we add 1 to the frequency sum 𝑎⊤𝑤 so that 𝑢(𝑎, 𝑤) < ∞.

In contrast to the ideal bandit setting where one always observes the rewards of the

actions taken, a perturbation can be missing in experimental data due to cell death

and random sampling. For this reason, we modify the uncertainty term to make it

bounded.

3.3.5 MOI Optimization

Given a constant 𝛼 ∈ R, we can find an optimal MOI vector by solving the following

optimization problem:

min
𝜆

∑︁
𝑖∈ℐ

(𝜆𝑖 + 𝐽(𝑖)− 𝛼)2

s.t.
∑︁
𝑖∈ℐ

𝜆𝑖 ≤ Λ

𝜆𝑖 ≥ 0 if 𝑖 ∈ ℐ

𝜆𝑖 = 0 otherwise.

(3.5)

At a high level, the better a TF gene is according to Equation (3.4), the higher we want

to set the MOI of the corresponding lentivirus. We define 𝛾 ∈ R𝑝 as 𝛾𝑖 = 1ℐ(𝑖)(𝛼 −

𝐽(𝑖)) for 𝑖 ∈ [𝑝]. We can consider the optimization problem (3.5) as projecting 𝛾 on a

set of MOI vectors that satisfy the upper bound Λ. Since the feasible set is nonempty,

closed, and convex, and the Euclidean norm is strictly convex, we conclude that, for

any {𝐽(𝑖)}𝑖∈ℐ and 𝛼, (3.5) has a unique optimal solution [27]. We can also show

that the projection is a continuous function [27]. Lemma 7 provides the closed-form

solution to (3.5), which can be constructed efficiently as discussed in the proof. Fig. 3-

5 illustrates Lemma 7 with randomly generated Gaussian costs.

Lemma 7. If
∑︀

𝑖∈ℐ max (𝛼− 𝐽(𝑖), 0) ≤ Λ, then 𝜆*𝑖 = 1ℐ(𝑖) max (𝛼− 𝐽(𝑖), 0) for

𝑖 ∈ [𝑝]. Otherwise, there exists a nonempty subset ℐ0 ⊆ ℐ such that the solution

62



Figure 3-5: Example of the MOI optimization problem (3.5) with Gaussian cost. a,
Costs of 800 TFs are independently sampled from the Gaussian distribution with a
mean of 0 and a standard deviation of 4. b, Optimal MOI vectors are solved for
different values of the hyperparameter 𝛼. c, The optimal MOI vector increases with
𝛼. For a fixed 𝛼, the lower the cost of a TF, the higher the optimal MOI.

to (3.5) is given by, for 𝑖 ∈ [𝑝],

𝜆*𝑖 = 1ℐ0(𝑖)

[︂
Λ +

∑︀
𝑖′∈ℐ0 𝐽(𝑖′)

|ℐ0|
− 𝐽(𝑖)

]︂
. (3.6)

Proof. If
∑︀

𝑖∈ℐ max (𝛼− 𝐽(𝑖), 0) ≤ Λ, then max (𝛾, 0) is feasible and hence 𝜆* =

max (𝛾, 0).2 For the rest of the proof, we assume that max (𝛾, 0) is infeasible and

2Maximization is applied element-wise.
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solve (3.5) using the Karush–Kuhn–Tucker (KKT) conditions. For simplicity of no-

tation, we drop the equality constraint in (3.5) and optimize over the |ℐ|-dimensional

subspace of [0,∞)𝑝 that corresponds to TF genes. The simplified problem with 𝜆𝑖 = 0

for 𝑖 /∈ ℐ is equivalent to (3.5) and hence a convex optimization problem. The KKT

conditions are necessary and sufficient for the optimality of convex optimization prob-

lems [27]. Thus, we use KKT conditions to find the unique globally optimal solution

to (3.5).

Let 𝜈 ∈ R|ℐ|+1 be the Lagrange multiplier vector associated with the inequality

constraints. By KKT conditions, 𝜆* and 𝜈* are primal and dual optimal if and only

if the following equations are satisfied simultaneously:

∑︁
𝑖∈ℐ

𝜆*𝑖 ≤ Λ, (3.7)

𝜆*𝑖 ≥ 0, 𝑖 ∈ ℐ, (3.8)

𝜈*𝑖 ≥ 0, 𝑖 ∈ {0} ∪ ℐ, (3.9)

𝜈*0

[︃(︃∑︁
𝑖∈ℐ

𝜆*𝑖

)︃
− Λ

]︃
= 0, (3.10)

𝜈*𝑖 𝜆
*
𝑖 = 0, 𝑖 ∈ ℐ, (3.11)

2(𝜆*𝑖 + 𝐽(𝑖)− 𝛼) + 𝜈*0 − 𝜈*𝑖 = 0, 𝑖 ∈ ℐ. (3.12)

Equations (3.7) and (3.8) represent primal feasibility. Equation (3.9) is dual feasi-

bility. Equations (3.10) and (3.11) correspond to complementary slackness. Equa-

tion (3.12) indicates stationarity of the Lagrangian. Equation (3.12) gives

𝜆*𝑖 =
𝜈*𝑖 − 𝜈*0

2
− 𝐽(𝑖) + 𝛼, 𝑖 ∈ ℐ. (3.13)

Using Equations (3.11) and (3.13), we get

𝜈*𝑖

(︂
𝜈*𝑖 − 𝜈*0

2
− 𝐽(𝑖) + 𝛼

)︂
= 0, 𝑖 ∈ ℐ. (3.14)

We define ℐ0 ⊆ ℐ as ℐ0 , { 𝑖 ∈ ℐ | 𝜈*𝑖 = 0 }.
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We first assume that 𝜈*0 = 0 and derive a contradiction. Equation (3.14) implies

that 𝜈*𝑖 = 0 or 𝜈*𝑖 = 2(𝐽(𝑖) − 𝛼) for all 𝑖 ∈ ℐ. We fix any 𝑖 ∈ ℐ. If 𝐽(𝑖) ≤ 𝛼,

then dual feasibility (Equation (3.9)) indicates that 𝜈*𝑖 = 0. If 𝐽(𝑖) > 𝛼, then primal

feasibility (Equation (3.8)) together with Equation (3.13) requires that 𝜈*𝑖 = 2(𝐽(𝑖)−

𝛼). Hence, we have 𝜆* = max (𝛾, 0), which contradicts our assumption that max (𝛾, 0)

is infeasible.

We now assume that 𝜈*0 ̸= 0. If ℐ0 = ∅, then Equation (3.11) gives 𝜆*𝑖 = 0

for all 𝑖 ∈ ℐ. It follows that 𝜈*0
[︀(︀∑︀

𝑖∈ℐ 𝜆
*
𝑖

)︀
− Λ

]︀
= −𝜈*0Λ ̸= 0, which contra-

dicts Equation (3.10). Thus, ℐ0 ̸= ∅. We define 𝜒 ,
(︀
Λ +

∑︀
𝑖∈ℐ0 𝐽(𝑖)

)︀
/ |ℐ0|. By

Equations (3.10), (3.13), and (3.14), we get 𝜈*0 = 2(𝛼 − 𝜒). Together with Equa-

tion (3.14), we get 𝜈*𝑖 = 1ℐ∖ℐ0(𝑖)(2𝐽(𝑖) − 2𝜒) for 𝑖 ∈ ℐ. Using Equation (3.13), we

have 𝜆*𝑖 = 1ℐ0(𝑖)(𝜒−𝐽(𝑖)) for 𝑖 ∈ ℐ. Since 𝜈*0 ̸= 0, Equation (3.10) implies that Equa-

tion (3.7) is satisfied. Primal feasibility (Equation (3.8)) requires 𝜒 ≥ max𝑖∈ℐ0 𝐽(𝑖).

Dual feasibility (Equation (3.9)) needs 𝜒 ≤ 𝛼 and 𝜒 ≤ min𝑖∈ℐ∖ℐ0 𝐽(𝑖). Since (3.5) has

a unique optimal solution, there exists a unique subset ℐ0 ⊆ ℐ such that

max
𝑖∈ℐ0

𝐽(𝑖) ≤ 𝜒 ≤ min

(︂
𝛼, min

𝑖∈ℐ∖ℐ0
𝐽(𝑖)

)︂
. (3.15)

The threshold conditions of Equation (3.15) allow us to search for ℐ0 efficiently.

Let 𝜋 ∈ Z|ℐ|
+ be a permutation of ℐ such that 𝐽(𝜋1) ≤ 𝐽(𝜋2) ≤ · · · ≤ 𝐽(𝜋|ℐ|). A

necessary condition for Equation (3.15) is

max
𝑖∈ℐ0

𝐽(𝑖) ≤ min
𝑖∈ℐ∖ℐ0

𝐽(𝑖). (3.16)

Thus, we can initialize ℐ̂0 = {𝜋1} and include 𝜋2, 𝜋3, 𝜋4, . . . one at a time until

Equation (3.15) is satisfied.

3.3.6 Perturbation Recommendation

After 𝑇 batches of experiments, Algorithm 5 recommends the best perturbation based

on the data collected. For this purpose, we minimize the exploitation term of the
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Oracle cost function (Equation (3.4)) using penalty and distance estimated on all

experimental data. In other words, the recommended perturbation is given by

𝐴 , argmin𝑎∈ℱ 𝜌(𝑇 + 1)(𝑎)𝑑(𝑇 + 1)(𝑎). (3.17)

Since recommendation is an exploitation step, there is no need to account for estima-

tion uncertainty in Equation (3.17). We provide numerical experiments in Section 3.4

to validate recommendation results with gene expression data.

3.4 Experiments

In this section, we conduct numerical experiments using a private dataset collected by

the Zhang laboratory of the Broad Institute of MIT and Harvard. The Perturb-seq

technique [47, 71, 113] was used to gather single-cell RNA sequencing data together

with perturbation information. The dataset includes ten experiments, totaling 155501

cells and 31915 genes. We use the subset of the data that does not correspond to

colony-forming units, which comprises 132578 cells from nine experiments. Within

this subset, one experiment includes 4776 target cells. Fig. 3-6 summarizes the other

eight experiments that contain source cells and perturbed cells.

3.4.1 Distance Estimation

In this section, we present the results of applying CPA to the screen data. We show

that CPA outperforms benchmarks in terms of prediction accuracy. In addition, we

verify that CPA learns TF embeddings that are consistent with biology.

We remove batch effects by setting the sample label as the covariate. During

data preprocessing, we keep only 4914 differentially expressed (DE) genes that best

distinguish the target cell type from the source cell type. These DE genes include 13

target identity genes in addition to top DE genes that are common to the screen data

and the human cell landscape dataset [64]. We also remove labels with insufficient

data. Moreover, we subsample source and target cells to balance class sizes by label.
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Figure 3-6: The distribution of the number of TFs received at the single-cell level by
experiment. Except for 773F_v1, each experiment has two samples, one corresponding
to an unbiased sample of the cell population (called normal) and the other mainly
consisting of enriched cells (referred to as enriched). The 773F_v1 experiment only
has a normal sample.

We use several TF combinations as the out-of-distribution (OOD) set, which are

excluded from the training set and the test set. The OOD set allows us to evaluate

the extrapolation capability of CPA. After removing the OOD set, we randomly

partition the rest of the data into a training set (80%) and a test set (20%). We use

eleven train-test-OOD splits for cross-validation. The preprocessed data consists of

50220 cells with 410 unique perturbations.

We consider four benchmarks for evaluating the accuracy of mean prediction by

CPA:

• Mean: Predicting mean gene expression of all cells.

• Mean by TF: Predicting mean gene expression of all TFs that comprise the given

perturbation.

• Mean by sample: Predicting mean gene expression of the given sample.

• Mean by sample and TF: Predicting mean gene expression of all TFs that com-

prise the given perturbation, restricted to the given sample.

Fig. 3-7 shows that CPA outperforms all benchmarks on training, test, and OOD sets
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Figure 3-7: CPA outperforms all benchmarks on training, test, and OOD sets in
terms of mean prediction accuracy. Bars correspond to a 95% confidence interval. a,
The 𝑅2 score on all genes. b, The 𝑅2 score on top DE genes.

in terms of mean prediction accuracy. Table 3.1 lists the mean prediction accuracy

of CPA and the benchmarks across splits. Although mean by sample runs a close

second due to batch effects, this benchmark cannot serve the purpose of predicting

perturbation effects. Fig. 3-7 implies that the advantage of CPA over mean by sample

and TF which ranks third is statistically significant.

Next, we demonstrate that the TF embeddings learned by CPA are consistent

with biology. We rank perturbations by their mean cosine similarity with the goal

direction over all splits in the latent space, where the goal direction is the vector

going from the source cell type to the target cell type. Due to the huge space of

possible combinations, we only show top and bottom single TFs and pairs of TFs

in Fig. 3-8. As shown in Fig. 3-8, qualitative results are consistent for top and

bottom perturbations across different splits. In particular, the cosine similarity with

the goal direction of top perturbations tends to exceed their mean cosine similarity

with other perturbations, which indicates statistical significance. The TF that best

aligns with the goal overexpresses TAL1, which is an identity gene for the target cell

type. Similarly, the cosine similarity with the goal of bottom perturbations tends to

be lower than their mean cosine similarity with other perturbations. We will give

further evidence that the CPA embeddings agree with biology in Section 3.4.2.
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Table 3.1: CPA outperforms all benchmarks on training, test, and OOD sets in terms
of mean prediction accuracy.

Split Model All genes Top DE genes

Training

Mean 0.847 0.788
Mean by TF 0.845 0.810
Mean by sample 0.971 0.988
Mean by sample and TF 0.943 0.970
CPA 0.976 0.990

Test

Mean 0.844 0.714
Mean by TF 0.839 0.797
Mean by sample 0.971 0.989
Mean by sample and TF 0.920 0.952
CPA 0.975 0.990

OOD

Mean 0.853 0.680
Mean by TF 0.831 0.662
Mean by sample 0.961 0.981
Mean by sample and TF 0.920 0.935
CPA 0.966 0.983

Figure 3-8: Ranking of single TFs and pairs of TFs by cosine similarity with the goal
direction.
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3.4.2 TF Scoring

In this section, we validate our proposed approach to scoring TFs. To be specific, we

evaluate Equation (3.4) without the uncertainty term for each TF. This can be con-

sidered as running Algorithm 5 for one step. We hold out enriched samples and only

use them for validation. Thus, the penalty only takes cell death into consideration.

Fig. 3-9 implies that, among TFs that do not kill cells, the more likely a TF leads to

enrichment, the lower the score. Similarly, there is an inverse relationship between

(i) enrichment and distance, (ii) enrichment and penalty. In summary, our proposed

approach can detect TFs that tend to lead to the partial success of reprogramming.

The results can be further improved by replacing CPA with deep learning models that

have increased prediction accuracy. The modularity of Algorithm 5 enables changing

the deep learning component with ease.
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Figure 3-9: Controlling for cell survival, the more likely a TF leads to enrichment,
the lower the score. Each point is a TF. The 𝑥-axis is the relative frequency in the
enriched sample. From top to bottom, the 𝑦-axis are distance, penalty, and the TF
score equal to the product, respectively. Color denotes cell survival, with higher cell
counts in the normal sample being darker. Columns correspond to experiments. a,
Both axes on a linear scale. b, Both axes on a symmetric logarithmic scale with a
small linear interval around zero.
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3.5 Discussion

In this chapter, we have formulated a framework to study the problem of optimiz-

ing perturbations for cell reprogramming in batched experiments. We have pro-

posed an active learning algorithm that directly optimizes over combinations of TFs.

Our method combines deep learning-based distance estimation and biology-based

frequency analysis into one model. Although the complexity of the problem pro-

hibits theoretical guarantees on the entire procedure, our approach is built upon

multi-armed bandit algorithms which are optimal under certain conditions. We have

demonstrated the success of our approach on data collected using large-scale per-

turbation screening that is pushing the frontiers of genetics research. Numerical

experiments show that our method can identify TFs that are promising for successful

reprogramming.

Our work has opened up several exciting directions for future research. First, it

is valuable to demonstrate the ability of our approach to recommend good combina-

tions of TFs beyond one-step experiments. This can be achieved through designing

numerical experiments that simulate the algorithm for a few batches. Second, it is

important to formulate the MOI optimization in a way that makes the sparsity of the

solution depend explicitly on the number of batches. Third, benchmarking our algo-

rithm against some commonly used heuristics can give insights into the value added

by the combination-based active learning approach. In addition, it is important to

develop deep learning models that are empirically and provably good. Finally, the

ultimate goal is to successfully deploy the proposed approach in laboratories.
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3.6 Supplementary Information

3.6.1 Compositional Perturbation Autoencoder

Model Assumptions

CPA needs a dataset of single-cell measurements. Let 𝑎 ∈ {0, 1}𝑝 be the perturbation

to a cell. Let 𝑦 ∈ R𝑝 be the gene expression level of the cell subject to perturbation.

Let 𝑘 ∈ Z+ be the number of experiments conducted. We use a one-hot vector

𝑣 ∈ {0, 1}𝑘 to represent the experiment of the cell measurement. The covariate 𝑣

allows CPA to control for batch effects due to variation in experimental procedures.

Given a collection of tuples 𝒞 , {(𝑦, 𝑎, 𝑣)}, CPA assumes the dataset to be produced

by an unknown generative model described as

𝑧 = 𝑧basal + 𝑉 pert𝑎+ 𝑉 cov𝑣,

𝑦 ∼ P (· | 𝑧) .
(3.18)

The key assumption of CPA is that there exists an 𝑟-dimensional latent space such

that perturbation effects can be linearly disentangled from inherent stochasticity in

gene expression and batch effects. Although this assumption remains to be validated,

CPA outperforms benchmarks on our screen data as shown in Section 3.4.1 and hence

the model is reasonable. The basal latent state 𝑧basal ∈ R𝑟 captures the inherent

stochasticity in gene expression of the source cell. The matrices 𝑉 pert ∈ R𝑟×𝑝 and

𝑉 cov ∈ R𝑟×𝑘 describe perturbation response and batch effects, respectively. CPA

assumes that 𝑧basal is independent of 𝑎 and 𝑣. Conditional on the latent state 𝑧, the

gene expression level 𝑦 of the perturbed cell is sampled from an unknown decoding

distribution P (· | 𝑧). The only observations of Equation (3.18) are (𝑦, 𝑎, 𝑣).

The general setting of CPA allows continuous perturbations such as a combination

of different drugs at various doses [90]. Moreover, it is straightforward to consider

more than one covariate [90]. In this section, we have introduced a simplified version

of CPA as described by Equation (3.18), which is sufficient for distance estimation.
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Figure 3-10: The prediction procedure of CPA.

Prediction

CPA learns the model (Equation (3.18)) to make counterfactual predictions, namely,

what would the gene expression be if the cell were given a different perturbation un-

der some other condition? In order to answer this question, CPA first encodes the

observed gene expression 𝑦 into a basal latent state 𝑧basal and then estimates the per-

turbed latent state 𝑧. Let 𝜇(𝑧) and 𝜎2(𝑧) be the mean and variance vectors of P (· | 𝑧)

where the 𝑖th entry corresponds to gene 𝑖 in 𝑦. In other words, we have 𝜇(𝑧) =

(𝜇1(𝑧), . . . , 𝜇𝑝(𝑧)) where 𝜇𝑖(𝑧) , E [𝑌𝑖 | 𝑧]. Similarly, 𝜎2(𝑧) =
(︀
𝜎2
1(𝑧), . . . , 𝜎2

𝑝(𝑧)
)︀

where 𝜎2
𝑖 (𝑧) , Var (𝑌𝑖 | 𝑧). Finally, CPA decodes 𝑧 to estimate the mean and vari-

ance vectors �̂� and �̂�2 for the queried perturbation 𝑎′ and covariate 𝑣′. Let 𝑔enc be the

encoder. We use 𝑔dec
𝜇 and 𝑔dec

𝜎2 to denote the decoders for mean and variance, respec-

tively. Let 𝑉 pert be the estimate for 𝑉 pert. We define 𝑉 cov similarly. The prediction

procedure can be summarized as follows and illustrated in Fig. 3-10:

𝑧basal = 𝑔enc(𝑦),

𝑧 = 𝑧basal + 𝑉 pert𝑎′ + 𝑉 cov𝑣′,

�̂� = 𝑔dec
𝜇 (𝑧),

�̂�2 = 𝑔dec
𝜎2 (𝑧).

(3.19)

We will discuss how the estimates in Equation (3.19) are optimized during training

in the next section.
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Training

In order to accurately reproduce the observed gene expression, CPA minimizes a

reconstruction loss defined as the Gaussian negative log-likelihood given by

𝐿recon
(︁
𝑉 pert, 𝑉 cov, 𝑔enc, 𝑔dec

𝜇 , 𝑔dec
𝜎2

)︁
,

∑︁
(𝑦,𝑎,𝑣)∈𝒞

1

𝑝

𝑝∑︁
𝑖=1

[︃
1

2
ln 𝜁

(︀
�̂�2
𝑖

)︀
+

(𝑦𝑖 − �̂�𝑖)
2

2𝜁 (�̂�2
𝑖 )

]︃
,

where 𝜁 (�̂�2
𝑖 ) , ln (exp (�̂�2

𝑖 + 10−3) + 1) ≈ �̂�2
𝑖 guarantees positivity of the variance

and improves numerical stability.

The key assumption of CPA to extrapolate unseen combinatorial responses is that

perturbation effects can be separated from inherent stochasticity in gene expression

and batch effects. To this end, two adversaries are introduced, referred to as ℎ̂pert :

R𝑟 → R|ℐ| and ℎ̂cov : R𝑟 → R𝑘. Specifically, one adversary predicts the likelihood of

perturbation 𝑞pert , ℎ̂pert
(︀
𝑧basal

)︀
from the estimated basal latent state, where 𝑞pert

𝑖

is the estimated probability that gene 𝑖 is overexpressed in the cell queried. The

other adversary predicts the covariate likelihood 𝑞cov , ℎ̂cov
(︀
𝑧basal

)︀
with 𝑞cov being a

probability vector over all experiments. The goal of these adversaries is to minimize

the cross-entropy loss given by

𝐿adv
(︁
ℎ̂pert, ℎ̂cov, 𝑔enc

)︁
,

1

|𝒞|
∑︁

(𝑦,𝑎,𝑣)∈𝒞

1

|ℐ|
∑︁
𝑖∈ℐ

[︀
−𝑎𝑖 ln 𝑞pert

𝑖 − (1− 𝑎𝑖) ln
(︀
1− 𝑞pert

𝑖

)︀]︀
+

1

|𝒞|
∑︁

(𝑦,𝑎,𝑣)∈𝒞

− ln 𝑞cov
argmax𝑗𝑣𝑗

.

In contrast to the adversaries, the autoencoder wants to disentangle perturbation

effects and hence maximize the adversarial loss. The rivalry between the autoencoder

and the adversaries can be considered as max𝑔enc minℎ̂pert, ℎ̂cov 𝐿adv.

The autoencoder achieves gene expression reconstruction and perturbation effect

disentanglement simultaneously by minimizing a weighted average of both losses,

namely,

𝐿 , 𝐿recon − 𝜅𝐿adv, (3.20)
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where 𝜅 > 0 is a parameter that balances the adversarial loss and the reconstruction

loss. CPA is trained by iterating between optimizing the autoencoder and optimizing

the adversaries:

i (Autoencoder optimization) With
(︁
ℎ̂pert, ℎ̂cov

)︁
fixed, sample 𝒞 and find

𝑉 pert, 𝑉 cov, 𝑔enc, 𝑔dec
𝜇 , 𝑔dec

𝜎2 = argmin
(︀
𝐿recon − 𝜅𝐿adv)︀ .

ii (Adversary optimization) With
(︁
𝑉 pert, 𝑉 cov, 𝑔enc, 𝑔dec

𝜇 , 𝑔dec
𝜎2

)︁
fixed, sample 𝒞 and

find

ℎ̂pert, ℎ̂cov = argmin𝐿adv.

Evaluation

In this section, we first present the mathematical derivations for the statistics used in

CPA evaluation. We then provide pseudocode for computing the 𝑅2 scores of mean

and variance prediction in Algorithm 6.

We start with explaining the method of evaluating mean prediction. Conditional

on a pair of perturbation and covariate (𝑎, 𝑣), the distribution of the latent state 𝑧

is that of the basal latent state 𝑧basal shifted by a constant vector which depends on

(𝑎, 𝑣). Let 𝑧basal,1, . . . , 𝑧basal,𝑁 be independent and identically distributed samples of

𝑧basal. Let 𝜇(𝑎, 𝑣) , 𝑁−1
∑︀𝑁

𝑛=1 𝜇(𝑧𝑛) where 𝑧𝑛 , 𝑧basal,𝑛 + 𝑉 pert𝑎 + 𝑉 cov𝑣. It then

follows that

E [𝑦 | 𝑎, 𝑣] = E [E [𝑦 | 𝑧] | 𝑎, 𝑣]

= E [𝜇(𝑧) | 𝑎, 𝑣]

=

∫︁
𝜇(𝑧)P

(︀
𝑧basal)︀ 𝑑𝑧basal

≈ 𝜇(𝑎, 𝑣).

Thus,

�̂�(𝑎, 𝑣) ≈ 𝜇(𝑎, 𝑣) ≈ E [𝑦 | 𝑎, 𝑣] = E [𝑦(𝑎, 𝑣) | 𝑎, 𝑣] . (3.21)
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We now derive the formula for the assessment of variance prediction. Let 𝜎2(𝑎, 𝑣) ,

𝑁−1
∑︀𝑁

𝑛=1 𝜎
2(𝑧𝑛). We define a vector 𝜔(𝑎, 𝑣) ∈ R𝑝 where

𝜔𝑖(𝑎, 𝑣) ,
1

𝑁

𝑁∑︁
𝑛=1

(︀
�̂�𝑖(𝑧

𝑛)− �̂�𝑖(𝑎, 𝑣)
)︀2
,

for 𝑖 ∈ [𝑝]. Thus,

Var (𝜇𝑖(𝑧) | 𝑎, 𝑣) = E
[︀
(𝜇𝑖(𝑧)− E [𝜇𝑖(𝑧) | 𝑎, 𝑣])2

⃒⃒
𝑎, 𝑣
]︀

=

∫︁
(𝜇𝑖(𝑧)− E [𝜇𝑖(𝑧) | 𝑎, 𝑣])2P

(︀
𝑧basal)︀ 𝑑𝑧basal

≈ 1

𝑁

𝑁∑︁
𝑛=1

(𝜇𝑖(𝑧
𝑛)− 𝜇𝑖(𝑎, 𝑣))2

≈ 1

𝑁

𝑁∑︁
𝑛=1

(︀
�̂�𝑖(𝑧

𝑛)− �̂�𝑖(𝑎, 𝑣)
)︀2

= 𝜔𝑖(𝑎, 𝑣).

Moreover,

Var (𝑦𝑖 | 𝑎, 𝑣) = E [Var (𝑦𝑖 | 𝑧) | 𝑎, 𝑣] + Var (E [𝑦𝑖 | 𝑧] | 𝑎, 𝑣)

= E
[︀
𝜎2
𝑖 (𝑧)

⃒⃒
𝑎, 𝑣
]︀

+ Var (𝜇𝑖(𝑧) | 𝑎, 𝑣) ,

and

E
[︀
𝜎2
𝑖 (𝑧)

⃒⃒
𝑎, 𝑣
]︀

=

∫︁
𝜎2
𝑖 (𝑧)P

(︀
𝑧basal)︀ 𝑑𝑧basal ≈ 𝜎2

𝑖 (𝑎, 𝑣).

We get that

Var (𝑦𝑖 | 𝑎, 𝑣) ≈ 𝜎2
𝑖 (𝑎, 𝑣) + 𝜔𝑖(𝑎, 𝑣).

Therefore,

�̂�2
𝑖 (𝑎, 𝑣) ≈ 𝜎2

𝑖 (𝑎, 𝑣) ≈ Var (𝑦𝑖 | 𝑎, 𝑣)− 𝜔𝑖(𝑎, 𝑣) ≈ E
[︀
𝑠2𝑖 (𝑎, 𝑣)

⃒⃒
𝑎, 𝑣
]︀
− 𝜔𝑖(𝑎, 𝑣). (3.22)

Finally, we present pseudocode for computing the 𝑅2 scores of mean and variance

prediction in Algorithm 6, which is used for benchmarking in Section 3.4.1. At a high

77



level, CPA first computes 𝑅2 scores of mean and variance prediction controlling for

covariate and perturbation, and then averages each score over all groups. We recall

that the autoencoder is defined by
(︁
𝑉 pert, 𝑉 cov, 𝑔enc, 𝑔dec

𝜇 , 𝑔dec
𝜎2

)︁
. For simplicity of nota-

tion, we use autoencoder to represent the model in Algorithm 6. By Equation (3.21),

given any (𝑎, 𝑣), there should be a good correlation between �̂�(𝑎, 𝑣) and 𝑦(𝑎, 𝑣) and

hence lines 12 and 13 of Algorithm 6 are justified. Similarly, Equation (3.22) explains

lines 14 and 15. We note that lines 14 and 15 correct the evaluation in [90] that

mistakenly uses 𝑠2(𝑎, 𝑣) and �̂�2(𝑎, 𝑣) to calculate the 𝑅2 scores for variance. The

output of Algorithm 6 comprises the 𝑅2 score of mean using all genes (𝑅2
mean), the

𝑅2 score of mean using top DE genes (𝑅2
mean,DE), the 𝑅2 score of variance using all

genes (𝑅2
var), and the 𝑅2 score of variance using top DE genes (𝑅2

var,DE).

Algorithm 6 𝑅2 Scores of Mean and Variance Prediction by CPA
1: Input: autoencoder, cellsperturbed, cellssource
2: Output: 𝑅2

mean, 𝑅2
mean,DE, 𝑅2

var, 𝑅2
var,DE

3: for (𝑎, 𝑣) ∈ cellsperturbed do
4: 𝒞(𝑎, 𝑣)← { cell ∈ cellsperturbed | cell received (𝑎, 𝑣) }.
5: if |𝒞(𝑎, 𝑣)| > 30 then
6: for 𝑦 ∈ cellssource do
7: �̂�(𝑦, 𝑎, 𝑣), �̂�2(𝑦, 𝑎, 𝑣)← autoencoder(𝑦, 𝑎, 𝑣).

8: end for
9: Compute sample means �̂�(𝑎, 𝑣) and �̂�2(𝑎, 𝑣) of predictions.

10: Compute entrywise variance 𝜔(𝑎, 𝑣) of {�̂�(𝑦, 𝑎, 𝑣)}𝑦∈cellssource .
11: Compute sample mean 𝑦(𝑎, 𝑣) and sample variance 𝑠2(𝑎, 𝑣) of 𝒞(𝑎, 𝑣).
12: Compute 𝑅2

mean(𝑎, 𝑣) for 𝑦(𝑎, 𝑣) and �̂�(𝑎, 𝑣) using all genes.
13: Compute 𝑅2

mean,DE(𝑎, 𝑣) for 𝑦(𝑎, 𝑣) and �̂�(𝑎, 𝑣) using top DE genes.
14: Compute 𝑅2

var(𝑎, 𝑣) for 𝑠2(𝑎, 𝑣) and �̂�2(𝑎, 𝑣) + 𝜔(𝑎, 𝑣) using all genes.
15: Compute 𝑅2

var,DE(𝑎, 𝑣) for 𝑠2(𝑎, 𝑣) and �̂�2(𝑎, 𝑣)+𝜔(𝑎, 𝑣) using top DE genes.
16: end if
17: end for
18: Compute sample means 𝑅2

mean, 𝑅2
mean,DE, 𝑅2

var, and 𝑅2
var,DE over all (𝑎, 𝑣) ∈

cellsperturbed.
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Hyperparameters

Table 3.2 lists the hyperparameters of CPA used in experiments.

Table 3.2: CPA hyperparameters used in experiments.

Group Hyperparameter Value

General
Embedding dimension 256
Batch size 64
Learning rate decay in epochs 25

Nonlinear scalers

Hidden neurons per layer 32
Hidden layers 1
Learning rate 2.2× 10−3

Weight decay 3.9× 10−8

Encoder and decoder

Hidden neurons per layer 256
Hidden layers 8
Learning rate 1.3× 10−3

Weight decay 1.7× 10−5

Adversary

Hidden neurons per layer 512
Hidden layers 3
Regularization strength 2000
Gradient penalty 2.4× 10−2

Learning rate 4.2× 10−3

Weight decay 10−7

Number of learning steps 3
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Chapter 4

Impacts of COVID-19 Interventions

4.1 Introduction

As the world continues to battle coronavirus disease 2019 (COVID-19), growing evi-

dence indicates that the pandemic is exacerbating inequalities in the US [15, 109, 60,

137, 78, 26, 81, 119, 146]. Many studies have focused on racial and ethnic disparities

in health outcomes [15, 109, 60, 137, 78, 26, 81]. For example, non-Hispanic African

American patients were more than twice likely to be hospitalized than non-Hispanic

white patients in a large health care system in California [15]. Overrepresentation of

Non-Hispanic black patients among COVID-19 hospitalizations has also been found

in Louisiana [109] and Georgia [60]. Not only are racial and ethnic minorities at

increased risk of comorbidities that are associated with severe illness [74, 130, 54, 7],

but also they are disadvantaged by structural factors such as residential segregation

and employment in essential services [137].

In addition to minority status, COVID-19 case and death rates are often higher

in urban counties that rank lower in socioeconomic status, housing, and transporta-

tion [78]. According to studies of New York City, the test positivity rate was high in

neighborhoods that were characterized by poverty, big households, and a large non-

Hispanic black or immigrant population [26, 119]. Similar conclusions were drawn

about Massachusetts [81]. The high positivity rate was partially explained by in-

sufficient testing that was available to people in poverty and minority groups [89].
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Moreover, poorer areas across the US exhibited less physical distancing [146, 72].

This is particularly disturbing because adequate testing and quarantining have been

shown to effectively stop the spread of the disease [50].

The growing body of evidence that the COVID-19 pandemic is worsening inequal-

ities in the US stresses the importance of understanding how public policy influences

different communities [8]. Socioeconomically disadvantaged regions not only tend

to have higher COVID-19 death rates but also are less resilient to economic dis-

tress [137, 78, 59, 91]. The latter, which can be manifested in unemployment, may

further lead to deaths of despair from suicide, drug overdose, and alcoholism [33, 126].

This link between economic hardship and deaths of despair suggests a possible trade-

off between recession-related deaths and COVID-19 deaths.

Although obtaining a clear definition of vulnerability amid the pandemic remains

elusive [128, 40], it is clear that certain features correlate with bad outcomes. Our

analysis of census, mobility, and COVID-19 data of the US confirms disparities in both

COVID-19 deaths and deaths of despair. The strongest predictors for the regional

COVID-19 death rate are income, age, race, and household overcrowding. Moreover,

we find that regions with worse health outcomes also tend to have higher unemploy-

ment and eviction rates. We further investigate the effects of income and household

overcrowding on health and economic outcomes. Our analysis confirms the widely

believed trade-off between COVID-19 deaths and economic distress-related deaths as

the level of lockdown changes [128, 19, 139, 23]. However, we find that this trade-

off only exists among socioeconomically disadvantaged counties. Furthermore, the

percent of overcrowded households and the COVID-19 death rate are positively cor-

related. Although our data analysis is inconclusive on whether the identified effects

are causal, we answer this question affirmatively by reproducing similar results using

agent-based modeling.

While it is crucial that government interventions reduce inequality during the

pandemic, designing good interventions is challenging [8, 128, 19]. First, multiple

criteria, such as health and economic impacts, can be used for policy evaluation,

which may give conflicting advice [19, 139]. Second, it is often hard to estimate
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the causal effects of a single intervention from data [146]. We can consider society

fighting a pandemic as a complex system that has time-varying nonlinear interactions.

Moreover, multiple interventions are usually at work simultaneously [66, 53]. Third,

data only exists for the policies that have been implemented [139]. Finally, granular

data needed for definitive conclusions are sometimes scarce and incomplete [9].

In order to overcome the limitations of observational data, we develop an agent-

based model that simulates the transmission of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) and the consequent rise in deaths of despair. The model

incorporates key elements including socioeconomic status, age-dependent risks, house-

hold transmission, asymptomatic transmission, and hospital capacity. Agent-based

modeling enables analysis of causal links between various policies and metrics of

interest [6, 149, 98, 49, 52, 121]. We investigate the effects of four nonpharmaceuti-

cal interventions (NPIs) on inequality, namely, lockdown, testing along with contact

tracing, government subsidization, and housing provision. We use the COVID-19

death number to measure health outcomes and deaths of despair as a proxy for

economic consequences. Our model generates a stylized population that comprises

socioeconomically disadvantaged and privileged people, referred to as poor and rich,

respectively, for brevity. As shown with US data, we find that the trade-off between

COVID-19 deaths and deaths of despair, hinging on the lockdown level, only exists in

the poor community. While subsidization narrows the socioeconomic gap in deaths of

despair, the combination of testing, contact tracing, and home isolation alone is effec-

tive at reducing disparities in both types of death. Similar to our data findings, our

model also suggests a strong link between household overcrowding and the COVID-19

infection rate, which we quantify with mathematical analysis.

Our simulation not only reflects patterns observed in US data but also yields new

insights that fill in the gaps of our data analysis. Our findings demonstrate the im-

portance of targeted intervention design to relieve both health-related and economic

pressure on socioeconomically disadvantaged populations. Our model suggests a mod-

erate lockdown, adequate testing combined with contact tracing and home isolation,

sufficient targeted subsidies, and mitigation of overcrowding in housing. Our results
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contribute to policy modeling and evaluation for reducing inequalities during a pan-

demic. The paper focuses on the US, but our approach and results can be extended

to other regions in the world.

4.2 Main Results

4.2.1 Data Analysis

We start by building a decision tree to identify the strongest predictors for the re-

gional COVID-19 death rate. A decision tree is a predictive model that sequentially

partitions an input dataset into subsets so that prediction accuracy improves after

each split [25]. Decision tree learning provides a natural method of feature selection

by quantifying the contribution of each feature to the prediction task [77]. We use

census [135, 39] and eviction data [103] from 2019, and COVID-19 death data [102]

from 2020 in New York City by ZIP Code Tabulation Area (ZCTA). The census

data contains many factors including household overcrowding, the percent of 65-and-

older population, the percent of home-based workers, commuting, health insurance

coverage, median income, and race.

Fig. 4-1a shows a pruned tree that is fitted to the ZCTA-level data (see the com-

plete decision tree in Fig. 4-5 of Section 4.5). The top scatterplot contains all ZCTAs

in the dataset. Income is identified as the feature that best splits the set with a

threshold at US$122, 200. The percent of 65-and-older population is the best variable

to further split the lower-income group (at 17.85%), whereas the percent of household

overcrowding is chosen to divide the higher-income group (at 3.72%). The decision

tree is built iteratively this way. Although our goal with the dataset is to evalu-

ate feature importance rather than predict the death rate, the decision tree sheds

light on the link between regional characteristics and local health outcomes. High

COVID-19 death rates are often associated with low income, a large population of

seniors and racial minorities, lack of health insurance, high eviction rates, household

overcrowding, commuting, and uncommonness of working from home. An excep-
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Figure 4-1: Regional features associated with local COVID-19 death rates. a, We
build a decision tree that predicts the COVID-19 death rate of New York City by
ZCTA. We show a pruned tree here to illustrate the method and provide the full
tree in Fig. 4-5 of Section 4.5. The 𝑥 and 𝑦-axes of each scatterplot are the feature
used for the split and the number of deaths per 100, 000 people, respectively. ZCTAs
are divided into two subsets at the vertical lines so that the death rates are close
to the average (marked by horizontal lines) within each group. b, We compute the
importance of a feature in the decision tree as the normalized total reduction of the
mean squared error that is attributable to the feature.

tion to this pattern is the first appearance of overcrowding in the decision tree as

shown in Fig. 4-1a. Surprisingly, the ZCTAs with more household overcrowding had

lower death rates. It turns out that these ZCTAs are mostly in Lower and Midtown

Manhattan where single young professionals with high salaries tend to live.

We also compare the best and worst segments in the decision tree and find eco-

nomic inequality in addition to health disparities. Not only did the worst segment

have a higher unemployment rate (3.03%) than the best one (2.88%) in 2019, but

the former group also had a steeper increase (5.69%) in 2020 than the best segment

(4.22%). The 2020 unemployment rates are projected at the ZCTA level by calcu-

lating the percent change in unemployment of the county containing the ZCTA and

applying this change to the ZCTA level data from 2019. The unemployment gap co-

incides with the differential eviction rates, which are 0.37% and 0.30% for the worst

and the best segments, respectively.

Having learned a decision tree, we then compute the importance of a feature as the
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Figure 4-2: Lockdown and social distancing measures that are meant to curb the
spread of COVID-19 can exacerbate inequalities. We compare the richest (a) and
poorest (b) counties in the US as measured by median income. a, Affluent counties
are resilient to the economic shock of lockdown and social distancing measures. b, In
contrast, poor counties face the dilemma of whether to die from COVID-19 infection
or economic distress. c, Combining estimates from both regression reveals the health
and economic trade-off for poor counties.

normalized total reduction of the mean squared error in estimating the COVID-19

death rate of a ZCTA that is attributable to the feature. As shown in Fig. 4-1b,

the highest-scoring features are income (0.50), the percent of 65-and-older population

(0.24), the percent of non-white population (0.13), and household overcrowding (0.06).

We further investigate the effects of income on regional health and economic out-

comes. We compare the poorest and richest counties in the US as measured by median

income and find that the widely believed health and economic trade-offs of lockdowns

only exist in poor counties (Fig. 4-2). The annual median personal income is less than

US$70, 000 for the poorest counties, in contrast to above US$80, 000 for the richest

counties. For this analysis, we combine datasets that measure median income, the

unemployment rate, the size of the labor force, the percent change from baseline of

people staying at home (as a measure of lockdown severity), and COVID-19 death

counts [135, 134, 61, 67].

One puzzle presented by the data is that the level of lockdown appears to be

positively correlated with the COVID-19 death rate. Our hypothesized reason is that

locations with the most severe outbreaks responded with the most drastic measures.

After accounting for disease progression and reporting delays, we observe that stricter

policies correspond to lower death rates in poor counties whereas the correlation

is weak for rich counties, with the latter possibly due to residual effects from the

first wave of COVID-19 (Fig. 4-2a,b). Specifically, we perform linear regression of
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the logarithmic transformation of the COVID-19 death rate on the mobility change,

delaying the death data by 62 days. Fig. 4-2a,b indicate that there is indeed a damping

effect of lockdown and social distancing measures on COVID-19 transmission, which

is consistent with conclusions in [66, 16, 105, 58].

In order to compare economic impacts with health outcomes, we project ex-

cess deaths caused by economic downturns. Prior work has shown that unemploy-

ment increases an individual’s mortality hazard by at least 73% [127]. Although

the aggregate mortality effects of economic stagnation are open to question, the

increased hazard of death associated with individual joblessness has been well es-

tablished [127, 115, 117, 23]. Using the individual risk inferred in [127], we project

the one-year death count attributable to the pandemic-related unemployment shock

(Fig. 4-2a,b). Specifically, we estimate the total number of newly unemployed workers

in each county using the size of the labor force and the increase in the unemployment

rate in 2020 compared to 2019. We then use the all-cause mortality rate from 2019 of

each county to calculate the mortality rate of the newly unemployed workers. Finally,

we perform linear regression of the projected death rate associated with unemploy-

ment on the mobility change. As shown in Fig. 4-2a,b, the unemployment shock

affects poor counties more than the rich ones. One explanation is that the reduction

in mobility was significantly more in wealthier areas than poorer areas during the

pandemic [146], which indicates that the affluent can weather the economic repercus-

sions of lockdowns partially because their jobs allow for flexibility in terms of working

remotely. Prior work has drawn similar conclusions that excess mortality is dispro-

portionately high in disadvantaged groups such as African Americans and people with

low educational attainment [94, 23].

Fig. 4-2a,b suggest that the widely believed health and economic trade-offs of

lockdowns only exist in poor counties. Fig. 4-2c illustrates this trade-off by summing

regression estimates of COVID-19 deaths and projected excess deaths attributable

to unemployment. Our findings confirm marked differences in the way that social

distancing and lockdown measures impact different groups.

We also explore the association between household overcrowding and regional
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Figure 4-3: The COVID-19 death rate is positively correlated with household over-
crowding in urban counties. California, Florida, New Jersey, and New York are the
largest four states for the number of counties of which at least 95% of the population
live in urban areas. For each state, the solid line and the shaded area represent robust
linear regression that downweights outliers with a 95% confidence interval.

health outcomes. Household overcrowding is the condition where there is more

than one person per room [132], which may accelerate the spread of respiratory dis-

eases such as COVID-19. We use the Comprehensive Housing Affordability Strategy

(CHAS) data prepared by the US Census Bureau for the 2013–2017 period [132]. We

focus on the largest four states for the number of urban counties, which are California,

Florida, New Jersey, and New York. A county is urban if at least 95% of the popu-

lation live in urban areas. The rurality data is published by the US Census Bureau

for the year 2010 [131]. We restrict the death data [67] to the end of July 2020 to

take into account roughly the first six months since the first recorded US case. The

qualitative results remain the same as the time window considered changes. Fig. 4-3

indicates a positive correlation between the percent of household overcrowding and

the COVID-19 death rate. However, data of rural areas appears particularly noisy

(Fig. 4-6 of Section 4.5). This may be explained by several reasons including low pop-

ulation density, large regional variations in infection patterns, and disease outbreaks

at different times.

Our findings imply an underlying mechanism at play that causes worse health and

economic outcomes for poorer communities. Although our data analysis is inconclu-

sive on whether the identified effects are causal, we answer this question affirmatively

by reproducing similar results using agent-based modeling.
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4.2.2 Model

We develop an agent-based model that simulates the transmission of SARS-CoV-2 and

the consequent rise in deaths of despair. The model takes into account key factors such

as socioeconomic status, age-dependent risks, household transmission, asymptomatic

transmission, and hospital capacity. We examine the effects of four NPIs on inequality,

which are lockdown, testing along with contact tracing, government subsidization,

and housing provision. We overview the model in this section, providing details in

Section 4.4.

The model initializes a population where each individual has their own attributes

that influence their state transitions during simulation. We sample each individual’s

age from the distribution as specified by the US Census Bureau’s 2019 national popu-

lation estimates [133]. Our stylized model considers people under age 20 as students,

those aged 20 to 69 years as workers, and people aged over 69 as retirees. Moreover,

everyone is economically active at the start of a simulation. An active individual’s

output is the sum of the personal output and the connection output, the latter being

a measure of the benefits of staying connected to society. Once infected, an individ-

ual progresses stochastically from asymptomatic or presymptomatic, to symptomatic,

hospitalized, admitted to the ICU, and deceased, with the possibility of recovery at

any stage if not deceased (Fig. 4-7a of Section 4.5). Epidemiological parameters and

their sources [37, 129, 51, 87, 140] are in Fig. 4.1 of Section 4.5. An individual is eco-

nomically inactive during hospitalization and at death. Moreover, an individual loses

connection output while in quarantine or staying home (Fig. 4-7a of Section 4.5).

Taking into account factors that vary across communities such as the comorbidity

rate and health care quality [15, 137, 78], we assume that a small fraction of the

population are vulnerable to severe illness, exclusive to the poor community. Once

infected, vulnerable people are more likely to experience worsening symptoms than

an average person.

We incorporate in our model random graphs to simulate virus transmission and

economic activities. In consideration of the high transmission rate in households [37,
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92], we construct a collection of complete graphs to represent households where any

pair of members in the same household are connected. To capture socioeconomic dis-

parities, we assume that 90% of the population are poor and the rest are rich in expec-

tation. A rich person is characterized by a high output and a small household size. In

addition, we overlay the household network with an economic network that represent

economic activities which rely on in-person contact (Fig. 4-7b of Section 4.5). We

generate economic networks using the Watts–Strogatz random graph [145], a classic

model that produces the small-world phenomenon as observed in many real-world

networks.

Our model considers dynamics at both household and aggregate levels, which in-

clude deaths of despair, recession, and undertreatment. We take into consideration

deaths of despair that are linked to financial stressors. Specifically, the probabil-

ity that an individual dies from despair is a function that decreases with per capita

output in the household. At the aggregate level, with government subsidies taken

into account, a drop in the total output leads to more workers becoming economi-

cally inactive. In addition, our model incorporates the scenario in which hospitals

are overwhelmed and poor patients are undertreated. Undertreatment increases the

chance of deterioration in patients.

4.2.3 Impacts of NPIs on Inequality

It has been widely accepted by now that there is a trade-off between saving lives

from the pandemic and saving lives from recession. What has been less scrutinized,

however, is how this trade-off varies in different communities and under various poli-

cies [19, 139, 23]. As we have observed in US data, poorer counties not only have

had more COVID-19 deaths but also will see more recession-induced deaths. We

investigate the effects of four NPIs on inequality, which are lockdown, testing along

with contact tracing, government subsidization, and housing provision. Our model

suggests that, for most NPIs considered, the poor community suffers significantly

more than the rich counterpart in terms of both types of death.

Unless stated otherwise, we simulate the dynamics within the population for 180
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days, initializing the percent of infections to 0.1%. We assume that retirees stay at

home in all simulations, as this policy has been commonly recommended for reducing

COVID-19 hospitalizations and deaths [2]. In order to unravel the causal effects of

NPIs on inequality, we design experiments so that only one NPI is altered at a time.

The baseline setting comprises a lockdown starting on the sixth day at the 0.4 level,

a daily testing rate of 0.00145 (0.145% of the population), contact tracing with a

success rate of 0.7, need-based subsidies of 0.1, and maximum sizes of rich and poor

households at 3 and 5, respectively. We are interested in the potentials of testing,

contact tracing, and home isolation, so we set aside lockdown and subsidies while

varying the testing rate.

For a lockdown level of 0 ≤ 𝜓 ≤ 1, each worker stays at home with probability 𝜓,

independently of the others. Fig. 4-4a shows that the trade-off between COVID-19

deaths and deaths of despair, dependent on the lockdown level, is specific to the

poor community, which is consistent with our conclusion from US data (Fig. 4-2).

Tightening lockdown from mild (𝜓 = 0, only retirees staying at home) to moderate

(𝜓 = 0.4) significantly reduces COVID-19 deaths for both groups. With further

lockdown restrictions, marginal health benefits decline, while more poor people die

from despair. By contrast, the rich community has almost no deaths of despair and

only benefits from a strict lockdown.

Our model uses reverse transcription polymerase chain reaction (RT-PCR) tests

with 90% sensitivity and 100% specificity [138]. Given a testing rate, we conduct

random testing among susceptible, asymptomatic, and presymptomatic individuals.

Once someone tests positive, the person will self-isolate at home until recovery. The

person’s household members and other contacts will subsequently be prioritized in

testing, with the latter being found by contact tracing with a probability of 0.7.

Fig. 4-4b suggests that, even without any other NPI, the combination of testing,

contact tracing, and home isolation alone is effective at reducing disparities in both

types of death. Our findings corroborate the conclusion in [38] that increased testing

and contact tracing capacity enables reopening at a larger scale.

We consider government subsidies that are given to anyone in need regardless
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Figure 4-4: Impacts of COVID-19 NPIs on socioeconomic inequality. The fatality rate
is calculated within each socioeconomic group. Since the rate of death of despair is
close to zero for the rich community, we only show COVID-19 deaths for this group. a,
The trade-off between COVID-19 deaths and deaths of despair only exists in the poor
community. b, The combination of testing and contact tracing alone is sufficient for
eliminating socioeconomic disparities in both types of death. c, Increasing subsidies
effectively reduces the gap in deaths of despair. d, For the strategy of prioritizing the
neediest people for subsidies, a larger budget narrows disparities in the total death rate
and enables stricter lockdown before economic consequences exceed marginal health
benefits. Since the rate of death of despair is almost the same for the rich community
at all budget levels, we only show this group’s results at a budget level of 0.9. e,
Household overcrowding exacerbates COVID-19 in the poor community. f, The effect
of household overcrowding can be explained by mean-field approximation. Curves
and shades are the averages and the standard deviations of 100 trials, respectively.

of socioeconomic status. On each day of simulation, the model looks for and gives

money to low-output people who may die from despair. The subsidy is measured

as a fraction of an economically active poor individual’s personal output. Fig. 4-4c

indicates that need-based subsidies no less than 0.3 effectively eliminate the gap in

deaths of despair. We also explore the efficacy of greedy subsidization subject to

budget constraints. Specifically, given a budget, individuals with the lowest outputs

are the ones that are most likely to be impacted by economic volatility and hence

prioritized for payment. The budget level is measured as the fraction of the population

that can be supported if each subsidy is 0.3. Fig. 4-4d suggests that increasing the
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budget level reduces disparities in the total death rate and enables stricter lockdown

before economic consequences exceed marginal health benefits.

We investigate the effects of household overcrowding by varying the maximum size

of poor households. The configurations of rich households are kept at a maximum

size of three and 10% of the population. For ease of mathematical analysis, lockdown

starts at initialization, and simulation runs for 60 days. As shown in Fig. 4-4e, a larger

difference in household size leads to higher inequality in COVID-19 deaths. This result

confirms the causal link between household overcrowding and the COVID-19 death

rate suggested by US data (Fig. 4-3). Inspired by [50], we quantify the dependence

of the infection rate on household size using mean-field approximation. We denote

the average size of poor and rich households by 𝑛𝑝 and 𝑛𝑟, respectively. Let 𝐼0 be the

number of infections at initialization. Let 𝐼𝑝𝑡 be the number of newly infected poor

individuals at time step 𝑡. We define 𝐼𝑟𝑡 similarly. Let 𝜂𝑡 be the estimated susceptible

fraction of the population at time step 𝑡. Let 𝜖 be the secondary attack rate. We

use Φ to represent the power of secondary infections that originate from economic

connections. We can derive mean-field approximation by

E [𝐼𝑝𝑡 ] ≈ 𝑛𝑝𝐼0 [𝜂𝑡Φ (1 + 𝜖𝜂𝑡Φ)]𝑡 , E [𝐼𝑟𝑡 ] ≈ 𝑛𝑟

𝑛𝑝

E [𝐼𝑝𝑡 ] . (4.1)

We provide detailed derivation in Section 4.4. It is noteworthy that the ratio between

poor and rich communities’ infection rates is almost equal to the ratio of average

household size. Fig. 4-4f shows that Eq. 4.1 approximates simulation results well.

Since no definitive conclusions have been drawn about the possible link between

intergenerational coresidence and the fatality rate [49, 9], we test the robustness

of our results against transmission within multigenerational households by letting

household members be in the same age group. All qualitative observations remain

the same (Fig. 4-8 of Section 4.5).
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4.3 Discussion

Although medical science has advanced by leaps and bounds since a century ago when

the 1918 influenza pandemic claimed tens of millions of lives worldwide, many chal-

lenges remain in the face of a pandemic respiratory illness [122, 28]. It is crucial that

we learn from the past and the present in order to prepare for future pandemics. In

this paper, we have focused on modeling and evaluating NPIs during the initial stage

of a pandemic, taking into account the specifics of COVID-19. We have investigated

the differential causal effects of NPIs on different communities using both US data

and agent-based modeling. We have identified a socioeconomic gap in both health

and economic measures in most situations. Both our data analysis and our simula-

tions have demonstrated that the widely believed health and economic trade-offs of

lockdowns only exist in the socioeconomically disadvantaged population. Moreover,

household overcrowding leads to increased rates of infection. We have further shown

using mean-field approximation that the ratio between two communities’ infection

rates is almost equal to the ratio of average household size. Our model has suggested

that, even without any other NPI, the combination of testing, contact tracing, and

home isolation alone is effective at reducing disparities in COVID-19 and recession-

related deaths. Our simulations have also shown the efficacy of targeted subsidies in

mitigating the negative economic effects of strict lockdowns, which disproportionately

impact disadvantaged groups.

There are several important implications from this work. Our results underline the

importance of intervention design in a pandemic as socioeconomically disadvantaged

populations bear the brunt of suboptimal policies, which will worsen existing inequal-

ities. Our findings suggest that an effective methodology for confronting COVID-19

is a combination of a moderate lockdown with targeted and sufficient subsidies to

mitigate the economic consequences, adequate testing along with contact tracing and

home isolation, and easing overcrowding in housing. These measures should be coordi-

nated in order to reduce inequalities under fiscal and logistical constraints. Although

we have focused on the US in this paper, our approach and results can be extended
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to other regions in the world. For example, the deaths of despair phenomenon in

the US can be instead considered as mortality associated with food deprivation in

low-income countries. Based on the estimates of [73], 22% of the adult population in

Ethiopia, Malawi, Nigeria, and Uganda face severe food insecurity during the pan-

demic, with higher prevalence in poorer households. Understanding the differential

impacts of NPIs on various demographic groups continues to be a pressing issue for

low-income countries as COVID-19 vaccine shortages are expected to persist in these

regions. Another contribution of this study is to identify factors that make a com-

munity more vulnerable to COVID-19 and elucidate their effects under various NPIs,

which is closely related to the work on defining vulnerability indices. There is a

growing number of vulnerability indices that help guide resource allocation during

a pandemic, which, however, may give divergent recommendations [40]. In order to

determine an appropriate index, it is essential to understand how policies impact

communities differently.

Our study has several limitations. First, the conclusions drawn from our anal-

ysis rely on aggregate data at the ZCTA and county levels. Ideally, comprehensive

data at the individual or household level which encompass many aspects such as so-

cioeconomic status, medical conditions, and behavior in response to COVID-19 are

used to infer the differential causal effects of NPIs on different demographic groups.

In practice, such granular data rarely exist due to challenges in collection and pri-

vacy. The limitations of the data are partially addressed by our work on agent-based

modeling. Second, our simulations are based on a stylized model that captures key

elements to the topic studied, including socioeconomic status, age-dependent risks,

and household transmission, but leaves out other details. We have chosen to build

a medium-sized model in order to obtain qualitative insights. Detailed agent-based

models that typically require high-performance computing are needed for drawing

quantitative conclusions. Finally, we have only considered lockdowns and testing

that are conducted uniformly across the population. In reality, low-income areas

across the US have faced obstacles to testing and physical distancing [89, 146, 72].

For this reason, the socioeconomic gap in COVID-19 deaths identified by our model
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is a conservative estimate.

There are several interesting directions for future research. One extension is to

investigate interventions that are adjusted over time according to feedback and how

such adaptive measures affect inequalities. Another interesting avenue of research is

exploring how to incentivize safe behavior that can lessen the need for drastic lock-

downs. Given the national variations in the vaccine rollout strategy, it is also urgent

to understand how to design vaccine programs that reduce inequalities. Addition-

ally, it is important to take into consideration fiscal and logistical constraints for the

task of policy evaluation. These questions are not only of much practical relevance

to COVID-19 but also fascinating research problems that call for multidisciplinary

efforts. Progress towards these goals will have a lasting impact on policy responses

to future pandemics.

4.4 Methods

4.4.1 Vulnerable Group

We assume that, on average, 1% of the population are at increased risk for severe

illness from SARS-CoV-2, all of whom are poor. We define a vulnerability factor 𝑣 > 0

as the extent to which a vulnerable person is more likely to experience worsening

symptoms than the average rate. For example, let 𝜇 be the hospitalization rate for

people in their 50s who are infected and symptomatic. The probability that someone

symptomatic in this age group needs to be hospitalized is (1 + 𝑣)𝜇 if the person is

vulnerable. For non-vulnerable individuals, the probability is (1−𝑣/99)𝜇. In general,

a vulnerable person, once infected, is more likely to move through the disease stages

of symptoms, hospital admission, ICU admission, and death by a factor of 𝑣 than the

age-specific average rate.
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4.4.2 Networks

Let 𝑚𝑝 be the maximum number of people living in a poor household. Similarly,

we define 𝑚𝑟 as the maximum size of a rich household. Unless stated otherwise,

we use 𝑚𝑝 = 5 and 𝑚𝑟 = 3 in simulations. Let ℎ𝑝 and ℎ𝑟 be the number of poor

and rich households, respectively. To construct a household network, we generate

ℎ𝑝 complete graphs where the number of nodes in each complete graph is sampled

uniformly at random between 1 and 𝑚𝑝. Similarly, we create ℎ𝑟 rich households.

We set ℎ𝑟 = 34000 and calculate ℎ𝑝 such that poor people constitute 90% of the

population on average. We subsequently use the Watts–Strogatz random graph [145]

to generate an economic network on the nodes of the household network. Intuitively,

the nodes are first arranged into a ring, and then each node is connected with its

𝑘 nearest neighbors. Finally, each edge in the economic network is rewired with

probability 𝑝, independently of other edges. Networks constructed as such are known

to exhibit the small-world phenomenon [145]. Unless stated otherwise, we use 𝑘 = 20

and 𝑝 = 0.5 in simulations.

4.4.3 Individual Output

For simplicity, we assume that all the income inequality in society is explained by

differences in individual productivity. Other sources of inequality are not addressed.

For a poor individual who is economically active, let 𝑥𝑝 be the output per economic

connection and 𝑦𝑝 be the personal output. Thus, the average output of an active

poor individual is 𝑂𝑝 = 𝑦𝑝 + 𝑘𝑥𝑝 at initialization. Similarly, we define 𝑥𝑟, 𝑦𝑟, and

𝑂𝑟 for rich individuals. Let 𝜆 be the rich-to-poor output ratio where 𝑥𝑟 = 𝜆𝑥𝑝 and

𝑦𝑟 = 𝜆𝑦𝑝. To capture the wealth inequality in the US [18], we suppose that rich

people account for only 0 < 𝜃 ≪ 1 of the population but 45% of the total output. In

other words, 𝜃𝑂𝑟 = 0.45[𝜃𝑂𝑟 + (1 − 𝜃)𝑂𝑝]. For 𝜃 = 0.1, solving the equation gives

𝜆 = 81/11. For an economic connection to be counted in an individual’s output, we

require both persons to be (i) economically active, (ii) not staying at home because of

lockdown, and (iii) not in isolation due to COVID-19 symptoms. Assuming that half
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of the workers staying at home leads to a drop in the total output by 15%, we can

get 𝑦𝑝 = 4𝑘𝑥𝑝. Without loss of generality, we let 𝑦𝑝 = 1 and calculate other variables

as discussed.

4.4.4 Deaths of Despair

Taking into consideration deaths caused by financial stress, we suppose that a house-

hold with a low per capita output is at increased risk for death of despair. Let 𝑂

be the per capita output in a household, including subsidies received and excluding

members who are hospitalized or deceased. Let 𝑧 = 𝑂𝑝−𝑂 be the difference between

the household’s per capita output and the average value for poor individuals at ini-

tialization. For a despair coefficient 0 < 𝛿 ≪ 1, we define the probability of death

of despair by a generalized logistic function 𝑞(𝑧) = 𝛿[1 + 𝜈𝑧/𝜔]−1/𝜈 where 𝜔 = 𝑘𝑥𝑝/2

and 𝜈 = 0.001 set the inflection point at 𝑧 = 𝑘𝑥𝑝/2, which equals a poor individual’s

output loss if economic connections are halved. We use 𝛿 = 5.5×10−5 in simulations.

Fig. 4-9 of Section 4.5 plots the probability of death of despair with respect to output

loss. On each day, we calculate 𝑞 for every household. Each member of the household

then dies from despair on the day with probability 𝑞, independently of each other.

4.4.5 Recession

Let 𝑂0 be the total output at initialization. Let 𝑂𝑡 be the total output on day 𝑡,

taking into account subsidies distributed on the day. We define 0 < 𝛽 ≪ 1 as an

inactive coefficient. If 𝑂𝑡 < 𝑂0, then we assume that a worker becomes economically

inactive on day 𝑡 with probability 𝛽(1−𝑂𝑡/𝑂0), independently of each other. We use

𝛽 = 0.01 in simulations.

4.4.6 Undertreatment

If the number of people hospitalized with COVID-19 exceeds the hospital capacity,

then hospitalized patients will be at increased risk for severe illness. Let 0 < 𝛾 ≤ 1 and

𝜆 ≥ 0 be the coefficients of hospital capacity and undertreatment effects, respectively.
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We denote the population size by 𝑁 and the current number of COVID-19-associated

hospitalizations by 𝐻. If 𝐻 > 𝛾𝑁 , then hospitalized poor patients will be more likely

to be admitted to the ICU and possibly die later by a factor of 𝜆[𝐻/(𝛾𝑁)− 1] than

their age-specific risks. By contrast, we assume that rich patients are not affected by

overwhelmed hospitals. We use 𝛾 = 0.0025 and 𝜆 = 0.5 in simulations.

4.4.7 Mean-Field Approximation

We denote the average size of poor and rich households by 𝑛𝑝 = (1 + 𝑚𝑝)/2 and

𝑛𝑟 = (1 + 𝑚𝑟)/2, respectively. Since the majority of the population are poor, our

approximation first assumes that all households are poor and then considers rich

households at the end.

Let 𝑑 be the average number of days that an infected person is asymptomatic

or pre-symptomatic. Since only a small fraction of infections lead to hospitalization

and more severe outcomes, we ignore these cases in our approximation. The same as

in simulation, we assume that anyone symptomatic quarantines at home. In other

words, 𝑑 ≈ 𝑎𝑑𝑎 + (1 − 𝑎)𝑑𝑠, where 𝑎 is the asymptomatic infection rate, 𝑑𝑎 is the

average number of days of illness until recovery for asymptomatic patients, and 𝑑𝑠 is

the average number of days of illness until symptom onset for symptomatic patients.

We define one time step as 𝑑 days.

Let 𝐼0 be the number of infections at initialization. Let 𝐼𝑝𝑡 be the number of newly

infected poor individuals at time step 𝑡. We suppose that, each day, an infected person

who has no symptoms spreads the virus to any of her connections from a different

household with probability 𝜌 > 0. Given the high risk of household transmission,

we suppose that, once someone is infected, everyone else in the same household is

immediately infected. Thus, the effective number of initial infections is 𝑛𝑝𝐼0. We

consider that everyone stays at home with probability 1 − 𝛼, independently of any

other event. In order for an infected person to infect someone from a different house-

hold, both persons need to leave home, which occurs with probability 𝛼2. Under the

assumption that each person’s economic connections are from different households,

every infected individual spreads the disease to 𝛼2𝑘𝜌𝑑 economic connections in one
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time step on average. Infected connections then immediately infect their household

members. Moreover, we suppose that a fraction 0 < 𝜖 < 1 of these new infections

further spread the disease to their economic connections and hence their household.

Thus, 𝐼𝑝1 is roughly equal to 𝑛𝑝𝐼0Φ(1 + 𝜖Φ) on average where Φ = 𝑛𝑝𝛼
2𝑘𝜌𝑑. Several

assumptions such as immediate household transmission and uniqueness of economic

connections’ households make our estimated number of infections an overestimation,

which becomes more marked as time goes on. We adjust for the error by taking into

account the susceptible population that shrinks over time. Let 𝜂𝑡 = 1−
∑︀𝑡−1

𝜏=0 E [𝐼𝑝𝜏 ] /𝑁

be the estimated susceptible fraction of the population at time step 𝑡. We then have

E [𝐼𝑝1 ] ≈ 𝑛𝑝𝐼0𝜂1Φ(1 + 𝜖𝜂1Φ). By induction on time, we have

E [𝐼𝑝𝑡 ] ≈ 𝑛𝑝𝐼0 [𝜂𝑡Φ (1 + 𝜖𝜂𝑡Φ)]𝑡 .

Let 𝐼𝑟𝑡 be the number of newly infected rich individuals at time step 𝑡. The probability

that someone from a rich household gets infected can be approximated by 𝑛𝑟/𝑛𝑝 times

the infection rate of poor people. Therefore,

E [𝐼𝑟𝑡 ] ≈ 𝑛𝑟

𝑛𝑝

E [𝐼𝑝𝑡 ] .
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4.5 Supplementary Information

< ≥

Figure 4-5: A decision tree that predicts the COVID-19 death rate of New York City
by ZCTA. The 𝑥 and 𝑦-axes of each scatterplot are the feature used for the split and
the number of deaths per 100, 000 people, respectively. ZCTAs are divided into two
subsets at the vertical lines so that the death rates are close to the average (marked
by horizontal lines) within each group.
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Figure 4-6: The relationship between household overcrowding and the COVID-19
death rate are unclear in rural counties. Potential reasons include low population
density, large regional variations in infection patterns, and disease outbreaks at dif-
ferent times. a, The largest four states for the number of counties of which the percent
of the population living in rural areas is between 45% and 55%. b, The largest four
states for the number of completely rural counties where the whole population live in
rural areas. For each state, the solid line and the shaded area represent robust linear
regression that downweights outliers with a 95% confidence interval.
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a

b

Figure 4-7: Schematic diagrams of the agent-based model. a, Once infected, an
individual progresses stochastically from asymptomatic or presymptomatic, to symp-
tomatic, hospitalized, admitted to the ICU, and deceased, with the possibility of
recovery at any stage if not deceased. While staying at home, a susceptible individ-
ual may still be infected by people in the same household. Once symptomatic, the
infected individual quarantines at home until recovery unless hospitalization becomes
necessary. An individual is economically inactive during hospitalization and at death.
Moreover, an individual loses connection output while in quarantine or staying home.
b, Each blue circle corresponds to a complete graph that represents a household. The
economic network is generated using the Watts–Strogatz random graph.

103



Table 4.1: Epidemiological parameter definitions, baseline values, and sources. Time
between different stages of infection is sampled uniformly at random from the corre-
sponding intervals listed.

Definition Baseline value Source

Asymptomatic rate 35% [129]

Probability of hospitalization conditional on symptomatic infection

≤ 9 years: 0.001
10–19 years: 0.003
20–29 years: 0.012
30–39 years: 0.032
40–49 years: 0.049 [51]
50–59 years: 0.102
60–69 years: 0.166
70–79 years: 0.243
≥ 80 years: 0.273

Probability of ICU admission conditional on hospitalization

≤ 39 years: 0.05
40–49 years: 0.063
50–59 years: 0.122 [51]
60–69 years: 0.274
70–79 years: 0.432
≥ 80 years: 0.709

Probability of mortality conditional on ICU admission

≤ 19 years: 0.615
20–39 years: 0.769
40–49 years: 0.748
50–59 years: 0.742 [51]
60–69 years: 0.744
70–79 years: 0.747
≥ 80 years: 0.739

Pre-symptomatic period 2–10 days [129]

Time from symptom onset to hospitalization 1–12 days [129]

Time from hospitalization to ICU admission ≤ 14 days [87]

Time from ICU admission to mortality ≤ 14 days [87]

Time from symptom onset to recovery 7–28 days [140]

Probability of infection transmission per contact per day Household: 0.25 [37]
Others: 0.005
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Figure 4-8: Robustness tests for impacts of COVID-19 NPIs on socioeconomic in-
equality. Each household comprises members from the same age group. All qualitative
observations remain the same as those with multigenerational households (Fig. 4-4).
The fatality rate is calculated within each socioeconomic group. Since the rate of
death of despair is close to zero for the rich community, we only show COVID-19
deaths for this group. a, The trade-off between COVID-19 deaths and deaths of de-
spair only exists in the poor community. b, The combination of testing and contact
tracing alone is sufficient for eliminating socioeconomic disparities in both types of
death. c, Increasing subsidies effectively reduces the gap in deaths of despair. d,
Household overcrowding exacerbates COVID-19 in the poor community. Curves and
shades are the averages and the standard deviations of 100 trials, respectively.
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Figure 4-9: Probability of death of despair. The probability that an individual dies
from despair increases with per capita output loss in the household.

105



106



Bibliography

[1] Yasin Abbasi-Yadkori, Aldo Pacchiano, and My Phan. Regret balancing for
bandit and RL model selection. arXiv preprint arXiv:2006.05491, 2020.

[2] Daron Acemoglu, Victor Chernozhukov, Iván Werning, and Michael D. Whin-
ston. Optimal targeted lockdowns in a multi-group SIR model. Working
Paper 27102, National Bureau of Economic Research, 2020. Available at:
https://www.nber.org/papers/w27102 [Accessed December 30, 2020].

[3] Alekh Agarwal, Miroslav Dudik, Satyen Kale, John Langford, and Robert E.
Schapire. Contextual bandit learning with predictable rewards. In International
Conference on Artificial Intelligence and Statistics, pages 19–26, 2012.

[4] Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E. Schapire.
Corralling a band of bandit algorithms. In Conference on Learning Theory,
pages 12–38, 2017.

[5] Sara Aibar, Carmen Bravo González-Blas, Thomas Moerman, Vân Anh Huynh-
Thu, Hana Imrichova, Gert Hulselmans, Florian Rambow, Jean-Christophe Ma-
rine, Pierre Geurts, Jan Aerts, Joost van den Oord, Zeynep Kalender Atak,
Jasper Wouters, and Stein Aerts. SCENIC: single-cell regulatory network in-
ference and clustering. Nature Methods, 14(11):1083–1086, 2017.

[6] Alberto Aleta, David Martín-Corral, Ana Pastore y Piontti, Marco Ajelli, Maria
Litvinova, Matteo Chinazzi, Natalie E. Dean, M. Elizabeth Halloran, Ira M.
Longini Jr, Stefano Merler, Alex Pentland, Alessandro Vespignani, Esteban
Moro, and Yamir Moreno. Modelling the impact of testing, contact tracing and
household quarantine on second waves of COVID-19. Nature Human Behaviour,
4(9):964–971, 2020.

[7] Kamyar Arasteh. Prevalence of comorbidities and risks associated with COVID-
19 among Black and Hispanic populations in New York City: An examination
of the 2018 New York City community health survey. Journal of Racial and
Ethnic Health Disparities, pages 1–7, 2020.

[8] Patrick J. Arena, Monica Malta, Anne W. Rimoin, and Steffanie A. Strathdee.
Race, COVID-19 and deaths of despair. EClinicalMedicine, 25:100485, 2020.

107

https://www.nber.org/papers/w27102


[9] Bruno Arpino, Valeria Bordone, and Marta Pasqualini. No clear association
emerges between intergenerational relationships and COVID-19 fatality rates
from macro-level analyses. Proceedings of the National Academy of Sciences,
117(32):19116–19121, 2020.

[10] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identifica-
tion in multi-armed bandits. In Proceedings of the 23rd Conference on Learning
Theory, pages 13–26, Haifa, Israel, 27–29 Jun 2010.

[11] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2):235–256, 2002.

[12] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gam-
bling in a rigged casino: The adversarial multi-armed bandit problem. In IEEE
36th Annual Foundations of Computer Science, pages 322–331, 1995.

[13] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48–77,
2002.

[14] Yishai Avior, Ido Sagi, and Nissim Benvenisty. Pluripotent stem cells in dis-
ease modelling and drug discovery. Nature Reviews Molecular Cell Biology,
17(3):170–182, 2016.

[15] Kristen M. J. Azar, Zijun Shen, Robert J. Romanelli, Stephen H. Lockhart,
Kelly Smits, Sarah Robinson, Stephanie Brown, and Alice R. Pressman. Dis-
parities in outcomes among COVID-19 patients in a large health care system
in California. Health Affairs, 39(7):1–10, 2020.

[16] Hamada S. Badr, Hongru Du, Maximilian Marshall, Ensheng Dong, Mari-
etta M. Squire, and Lauren M. Gardner. Association between mobility patterns
and COVID-19 transmission in the USA: a mathematical modelling study. The
Lancet Infectious Diseases, 20(11):1247–1254, 2020.

[17] José Gabriel Barcia Durán, Raphaël Lis, and Shahin Rafii. Haematopoietic
stem cell reprogramming and the hope for a universal blood product. FEBS
Letters, 593(23):3253–3265, 2019.

[18] Michael Batty, Jesse Bricker, Joseph Briggs, Sarah Friedman, Danielle Nem-
schoff, Eric Nielsen, Kamila Sommer, and Alice Henriques Volz. The Distri-
butional Financial Accounts of the United States. University of Chicago Press,
March 2020.

[19] Itai Bavli, Brent Sutton, and Sandro Galea. Harms of public health interven-
tions against covid-19 must not be ignored. BMJ, 371:m4074, 2020.

[20] Donald A. Berry, Robert W. Chen, Alan Zame, David C. Heath, and Larry A.
Shepp. Bandit problems with infinitely many arms. Ann. Statist., 25(5):2103–
2116, 1997.

108



[21] Lilian Besson and Emilie Kaufmann. What doubling tricks can and can’t do
for multi-armed bandits. arXiv preprint arXiv:1803.06971, 2018.

[22] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E.
Schapire. Contextual bandit algorithms with supervised learning guarantees. In
International Conference on Artificial Intelligence and Statistics, pages 19–26,
2011.

[23] Francesco Bianchi, Giada Bianchi, and Dongho Song. The long-term impact
of the COVID-19 unemployment shock on life expectancy and mortality rates.
Working Paper 28304, National Bureau of Economic Research, 2020. Available
at: https://www.nber.org/papers/w28304 [Accessed March 15, 2021].

[24] Jonathan Binas, Leonie Luginbuehl, and Yoshua Bengio. Reinforcement learn-
ing for sustainable agriculture. CCAI Workshop at the 36th International Con-
ference on Machine Learning, 2019.

[25] Christopher Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[26] George J. Borjas. Demographic determinants of testing incidence and Covid-
19 infections in New York City neighborhoods. Covid Economics, Vetted and
Real-Time Papers, 3:12–39, 2020.

[27] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[28] Aisha Bradshaw. Lessons from the past. Nature Human Behaviour, 4(5):448,
2020.

[29] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-
armed bandits problems. In Ricard Gavaldà, Gábor Lugosi, Thomas Zeugmann,
and Sandra Zilles, editors, Proceedings of the 20th International Conference
on Algorithmic Learning Theory, pages 23–37, Porto, Portugal, 3–5 Oct 2009.
Springer Berlin Heidelberg.

[30] Yosef Buganim, Dina A. Faddah, and Rudolf Jaenisch. Mechanisms and models
of somatic cell reprogramming. Nature Reviews Genetics, 14(6):427–439, 2013.

[31] Patrick Cahan, Hu Li, Samantha A. Morris, Edroaldo Lummertz da Rocha,
George Q. Daley, and James J. Collins. CellNet: Network biology applied to
stem cell engineering. Cell, 158(4):903–915, 2014.

[32] Alexandra Carpentier and Michal Valko. Simple regret for infinitely many
armed bandits. In International Conference on Machine Learning, pages 1133–
1141, 2015.

[33] Anne Case and Angus Deaton. Deaths of Despair and the Future of Capitalism.
Princeton University Press, 2020.

109

https://www.nber.org/papers/w28304


[34] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cam-
bridge University Press, 2006.

[35] Shouyuan Chen, Tian Lin, Irwin King, Michael R. Lyu, and Wei Chen.
Combinatorial pure exploration of multi-armed bandits. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014.

[36] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit:
General framework and applications. In Sanjoy Dasgupta and David McAllester,
editors, Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research, pages 151–159, At-
lanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[37] Hao-Yuan Cheng, Shu-Wan Jian, Ding-Ping Liu, Ta-Chou Ng, Wan-Ting
Huang, Hsien-Ho Lin, and the Taiwan COVID-19 Outbreak Investigation Team.
Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and
risk at different exposure periods before and after symptom onset. JAMA In-
ternal Medicine, 180(9):1156–1163, 2020.

[38] Weihsueh A. Chiu, Rebecca Fischer, and Martial L. Ndeffo-Mbah. State-level
needs for social distancing and contact tracing to contain COVID-19 in the
United States. Nature Human Behaviour, 4(10):1080–1090, 2020.

[39] City University of New York. New York City census data: Neighborhood pro-
files. Data file, 2020.

[40] Columbia Center for Spatial Research and Yale Global Health Partnership.
Mapping the new politics of care. https://newpoliticsofcare.net/, 2020.

[41] Richard Combes and Alexandre Proutiere. Unimodal bandits: Regret lower
bounds and optimal algorithms. In International Conference on Machine Learn-
ing, pages 521–529, 2014.

[42] Richard Combes, Alexandre Proutiere, and Alexandre Fauquette. Unimodal
bandits with continuous arms: Order-optimal regret without smoothness. Proc.
ACM Meas. Anal. Comput. Syst., 4(1), 2020.

[43] Eric W. Cope. Regret and convergence bounds for a class of continuum-armed
bandit problems. IEEE Transactions on Automatic Control, 54(6):1243–1253,
2009.

[44] Edward A. Copelan. Hematopoietic stem-cell transplantation. New England
Journal of Medicine, 354(17):1813–1826, 2006.

[45] Ana C. D’Alessio, Zi Peng Fan, Katherine J. Wert, Petr Baranov, Malkiel A. Co-
hen, Janmeet S. Saini, Evan Cohick, Carol Charniga, Daniel Dadon, Nancy M.

110

https://newpoliticsofcare.net/


Hannett, Michael J. Young, Sally Temple, Rudolf Jaenisch, Tong Ihn Lee, and
Richard A. Young. A systematic approach to identify candidate transcription
factors that control cell identity. Stem Cell Reports, 5(5):763–775, 2015.

[46] Allard de Wit, Hendrik Boogaard, Davide Fumagalli, Sander Janssen, Rob
Knapen, Daniel van Kraalingen, Iwan Supit, Raymond van der Wijngaart, and
Kees van Diepen. 25 years of the WOFOST cropping systems model. Agricul-
tural Systems, 168:154–167, 2019.

[47] Atray Dixit, Oren Parnas, Biyu Li, Jenny Chen, Charles P. Fulco, Livnat Jerby-
Arnon, Nemanja D. Marjanovic, Danielle Dionne, Tyler Burks, Raktima Ray-
chowdhury, Britt Adamson, Thomas M. Norman, Eric S. Lander, Jonathan S.
Weissman, Nir Friedman, and Aviv Regev. Perturb-seq: Dissecting molecular
circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell,
167(7):1853–1866.e17, 2016.

[48] Gabrielle A. Dotson, Charles W. Ryan, Can Chen, Lindsey Muir, and Indika
Rajapakse. Cellular reprogramming: Mathematics meets medicine. WIREs
Mechanisms of Disease, 13(4):e1515, 2021.

[49] Albert Esteve, Iñaki Permanyer, Diederik Boertien, and James W. Vaupel. Na-
tional age and coresidence patterns shape COVID-19 vulnerability. Proceedings
of the National Academy of Sciences, 117(28):16118–16120, 2020.

[50] Sarah C. Fay, Dalton J. Jones, Munther A. Dahleh, and A. E. Hosoi. Simple
control for complex pandemics, 2020.

[51] Neil M. Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie
Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma Cu-
cunubá, Gina Cuomo-Dannenburg, Amy Dighe, Ilaria Dorigatti, Han Fu, Katy
Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Lucy C Okell, Sabine van
Elsland, Hayley Thompson, Robert Verity, Erik Volz, Haowei Wang, Yuanrong
Wang, Patrick G. T. Walker, Caroline Walters, Peter Winskill, Charles Whit-
taker, Christl A. Donnelly, Riley, Steven, Azra C. Ghani, and Imperial College
COVID-19 Response Team. Impact of non-pharmaceutical interventions (NPIs)
to reduce COVID-19 mortality and healthcare demand. Report 9, WHO Col-
laborating Centre for Infectious Disease Modelling, MRC Centre for Global
Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and
Emergency Analytics, Imperial College London, 2020. Available at: https:
//www.imperial.ac.uk/mrc-global-infectious-disease-analysis/
covid-19/report-9-impact-of-npis-on-covid-19/ [Accessed June 4,
2020].

[52] Josh A. Firth, Joel Hellewell, Petra Klepac, Stephen Kissler, CMMID COVID-
19 Working Group, Adam J. Kucharski, and Lewis G. Spurgin. Using a
real-world network to model localized COVID-19 control strategies. Nature
Medicine, 26(10):1616–1622, 2020.

111

https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/


[53] Seth Flaxman, Swapnil Mishra, Axel Gandy, H. Juliette T. Unwin, Thomas A.
Mellan, Helen Coupland, Charles Whittaker, Harrison Zhu, Tresnia Berah, Jef-
frey W. Eaton, Mélodie Monod, Pablo N. Perez-Guzman, Nora Schmit, Lu-
cia Cilloni, Kylie E. C. Ainslie, Marc Baguelin, Adhiratha Boonyasiri, Olivia
Boyd, Lorenzo Cattarino, Laura V. Cooper, Zulma Cucunubá, Gina Cuomo-
Dannenburg, Amy Dighe, Bimandra Djaafara, Ilaria Dorigatti, Sabine L.
van Elsland, Richard G. FitzJohn, Katy A. M. Gaythorpe, Lily Geidelberg,
Nicholas C. Grassly, William D. Green, Timothy Hallett, Arran Hamlet, Wes
Hinsley, Ben Jeffrey, Edward Knock, Daniel J. Laydon, Gemma Nedjati-Gilani,
Pierre Nouvellet, Kris V. Parag, Igor Siveroni, Hayley A. Thompson, Robert
Verity, Erik Volz, Caroline E. Walters, Haowei Wang, Yuanrong Wang, Oliver J.
Watson, Peter Winskill, Xiaoyue Xi, Patrick G. T. Walker, Azra C. Ghani,
Christl A. Donnelly, Steven Riley, Michaela A. C. Vollmer, Neil M. Ferguson,
Lucy C. Okell, Samir Bhatt, and Imperial College COVID-19 Response Team.
Estimating the effects of non-pharmaceutical interventions on COVID-19 in
Europe. Nature, 584(7820):251–261, 2020.

[54] Katherine M. Flegal, Deanna Kruszon-Moran, Margaret D. Carroll, Cheryl D.
Fryar, and Cynthia L. Ogden. Trends in obesity among adults in the United
States, 2005 to 2014. JAMA, 315(21):2284–2291, 2016.

[55] Dylan J. Foster, Satyen Kale, Mehryar Mohri, and Karthik Sridharan.
Parameter-free online learning via model selection. In Advances in Neural In-
formation Processing Systems, pages 6020–6030, 2017.

[56] Dylan J. Foster, Akshay Krishnamurthy, and Haipeng Luo. Model selection
for contextual bandits. In Advances in Neural Information Processing Systems,
pages 14741–14752, 2019.

[57] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network opti-
mization with unknown variables: Multi-armed bandits with linear rewards and
individual observations. IEEE/ACM Transactions on Networking, 20(5):1466–
1478, 2012.

[58] Edward L. Glaeser, Caitlin Gorback, and Stephen J. Redding. How much does
COVID-19 increase with mobility? Evidence from New York and four other
U.S. cities. Working Paper 27519, National Bureau of Economic Research,
2020. Available at: https://www.nber.org/papers/w27519 [Accessed March
15, 2021].

[59] Dana A. Glei, Noreen Goldman, and Maxine Weinstein. A growing socioeco-
nomic divide: Effects of the Great Recession on perceived economic distress in
the United States. PLoS One, 14(4):e0214947, 2019.

[60] Jeremy A. W. Gold, Karen K. Wong, Christine M. Szablewski, Priti R. Pa-
tel, John Rossow, Juliana da Silva, Pavithra Natarajan, Sapna Bamrah Morris,

112

https://www.nber.org/papers/w27519


Robyn Neblett Fanfair, Jessica Rogers-Brown, Beau B. Bruce, Sean D. Brown-
ing, Alfonso C. Hernandez-Romieu, Nathan W. Furukawa, Mohleen Kang,
Evans Mary E., Nadine Oosmanally, Melissa Tobin-D’Angelo, Cherie Drenzek,
David J. Murphy, Julie Hollberg, James M. Blum, Robert Jansen, David W.
Wright, William M. Sewell III, Jack D. Owens, Benjamin Lefkove, Frank W.
Brown, Deron C. Burton, Timothy M. Uyeki, Stephanie R. Bialek, and Bren-
dan R. Jackson. Characteristics and clinical outcomes of adult patients hos-
pitalized with COVID-19 — Georgia, March 2020. Morbidity and Mortality
Weekly Report, 69(18):545–550, 2020.

[61] Google LLC. Google COVID-19 community mobility reports. Data file, 2020.

[62] Thomas Graf and Tariq Enver. Forcing cells to change lineages. Nature,
462(7273):587–594, 2009.

[63] Marica Grskovic, Ashkan Javaherian, Berta Strulovici, and George Q. Daley.
Induced pluripotent stem cells — opportunities for disease modelling and drug
discovery. Nature Reviews Drug Discovery, 10(12):915–929, 2011.

[64] Xiaoping Han, Ziming Zhou, Lijiang Fei, Huiyu Sun, Renying Wang, Yao Chen,
Haide Chen, Jingjing Wang, Huanna Tang, Wenhao Ge, Yincong Zhou, Fang
Ye, Mengmeng Jiang, Junqing Wu, Yanyu Xiao, Xiaoning Jia, Tingyue Zhang,
Xiaojie Ma, Qi Zhang, Xueli Bai, Shujing Lai, Chengxuan Yu, Lijun Zhu, Rui
Lin, Yuchi Gao, Min Wang, Yiqing Wu, Jianming Zhang, Renya Zhan, Saiy-
ong Zhu, Hailan Hu, Changchun Wang, Ming Chen, He Huang, Tingbo Liang,
Jianghua Chen, Weilin Wang, Dan Zhang, and Guoji Guo. Construction of a
human cell landscape at single-cell level. Nature, 581(7808):303–309, 2020.

[65] Jacob H. Hanna, Krishanu Saha, and Rudolf Jaenisch. Pluripotency and cellular
reprogramming: Facts, hypotheses, unresolved issues. Cell, 143(4):508–525,
2010.

[66] Nils Haug, Lukas Geyrhofer, Alessandro Londei, Elma Dervic, Amélie Desvars-
Larrive, Vittorio Loreto, Beate Pinior, Stefan Thurner, and Peter Klimek.
Ranking the effectiveness of worldwide COVID-19 government interventions.
Nature Human Behaviour, 4(12):1303–1312, 2020.

[67] Hopkins Population Center. COVID-19 SES data hub. Data file, 2020.

[68] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor
skills for legged robots. Science Robotics, 4(26), 2019.

[69] Masaki Ieda, Ji-Dong Fu, Paul Delgado-Olguin, Vasanth Vedantham, Yohei
Hayashi, Benoit G. Bruneau, and Deepak Srivastava. Direct reprogramming of
fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3):375–
386, 2010.

113



[70] Rudolf Jaenisch and Richard Young. Stem cells, the molecular circuitry of
pluripotency and nuclear reprogramming. Cell, 132(4):567–582, 2008.

[71] Diego Adhemar Jaitin, Assaf Weiner, Ido Yofe, David Lara-Astiaso, Hadas
Keren-Shaul, Eyal David, Tomer Meir Salame, Amos Tanay, Alexander van
Oudenaarden, and Ido Amit. Dissecting immune circuits by linking CRISPR-
pooled screens with single-cell RNA-seq. Cell, 167(7):1883–1896.e15, 2016.

[72] Jonathan Jay, Jacob Bor, Elaine O. Nsoesie, Sarah K. Lipson, David K. Jones,
Sandro Galea, and Julia Raifman. Neighbourhood income and physical dis-
tancing during the COVID-19 pandemic in the United States. Nature Human
Behaviour, 4(12):1294–1302, 2020.

[73] Anna Josephson, Talip Kilic, and Jeffrey D. Michler. Socioeconomic impacts of
COVID-19 in low-income countries. Nature Human Behaviour, 2021.

[74] Rafi Kabarriti, N. Patrik Brodin, Maxim I. Maron, Chandan Guha, Shalom
Kalnicki, Madhur K. Garg, and Andrew D. Racine. Association of race and
ethnicity with comorbidities and survival among patients with COVID-19 at
an urban medical center in New York. JAMA Network Open, 3(12):e2019795,
2020.

[75] Satyen Kale. Multiarmed bandits with limited expert advice. In Conference on
Learning Theory, pages 107–122, 2014.

[76] Kenji Kamimoto, Christy M. Hoffmann, and Samantha A. Morris. CellOracle:
Dissecting cell identity via network inference and in silico gene perturbation.
bioRxiv, 2020.

[77] S. Jalil Kazemitabar, Arash A. Amini, Adam Bloniarz, and Ameet S. Talwalkar.
Variable importance using decision trees. In I Guyon, U V Luxburg, S Ben-
gio, S Wallach, R Fergus, S Vishwanathan, and R Garnett, editors, Advances
in Neural Information Processing Systems, volume 30, pages 425–434. Curran
Associates, Inc., 2017.

[78] Rohan Khazanchi, Evan R. Beiter, Suhas Gondi, Adam L. Beckman, Alyssa
Bilinski, and Ishani Ganguli. County-level association of social vulnerability
with COVID-19 cases and deaths in the USA. Journal of General Internal
Medicine, 35(9):2784–2787, 2020.

[79] J. Kiefer. Sequential minimax search for a maximum. Proceedings of the Amer-
ican Mathematical Society, 4(3):502–506, 1953.

[80] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in
metric spaces. In ACM Symposium on Theory of Computing, pages 681–690,
2008.

114



[81] Nancy Krieger, Pamela D. Waterman, and Jarvis T. Chen. COVID-19 and
overall mortality inequities in the surge in death rates by zip code characteris-
tics: Massachusetts, January 1 to May 19, 2020. American Journal of Public
Health, 110(12):1850–1852, 2020.

[82] Markus Kuderer, Shilpa Gulati, and Wolfram Burgard. Learning driving styles
for autonomous vehicles from demonstration. In IEEE International Conference
on Robotics and Automation, pages 2641–2646, 2015.

[83] Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriks-
son. Matroid bandits: Fast combinatorial optimization with learning. In Pro-
ceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence,
UAI’14, pages 420–429, Arlington, Virginia, USA, 2014. AUAI Press.

[84] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret
bounds for stochastic combinatorial semi-bandits. In Guy Lebanon and S. V. N.
Vishwanathan, editors, Proceedings of the Eighteenth International Conference
on Artificial Intelligence and Statistics, volume 38 of Proceedings of Machine
Learning Research, pages 535–543, San Diego, California, USA, 9–12 May 2015.
PMLR.

[85] T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation
rules. Adv. Appl. Math, 6(1):4âĂŞ22, 1985.

[86] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University
Press, 2020.

[87] Joseph A. Lewnard, Vincent X. Liu, Michael L. Jackson, Mark A. Schmidt,
Britta L. Jewell, Jean P. Flores, Chris Jentz, Graham R. Northrup, Ayesha
Mahmud, Arthur L. Reingold, Maya Petersen, Nicholas P. Jewell, Scott Young,
and Jim Bellows. Incidence, clinical outcomes, and transmission dynamics of se-
vere coronavirus disease 2019 in California and Washington: prospective cohort
study. BMJ, 369:m1923, 2020.

[88] Hedong Li and Gong Chen. In vivo reprogramming for CNS repair: Regener-
ating neurons from endogenous glial cells. Neuron, 91(4):728–738, 2016.

[89] Wil Lieberman-Cribbin, Stephanie Tuminello, Raja M. Flores, and Emanuela
Taioli. Disparities in COVID-19 testing and positivity in New York City. Amer-
ican Journal of Preventive Medicine, 59(3):326–332, 2020.

[90] Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Yuge Ji,
Ignacio L. Ibarra, F. Alexander Wolf, Nafissa Yakubova, Fabian J. Theis, and
David Lopez-Paz. Learning interpretable cellular responses to complex pertur-
bations in high-throughput screens. bioRxiv, 2021.

[91] Anna Macintyre, Daniel Ferris, Briana Gonçalves, and Neil Quinn. What has
economics got to do with it? The impact of socioeconomic factors on mental

115



health and the case for collective action. Palgrave Communications, 4(1):1–5,
2018.

[92] Zachary J. Madewell, Yang Yang, Ira M. Longini, M. Elizabeth Halloran, and
Natalie E. Dean. Household transmission of SARS-CoV-2: A systematic review
and meta-analysis. JAMA Network Open, 3(12):e2031756, 2020.

[93] Nikolai Matni, Alexandre Proutiere, Anders Rantzer, and Stephen Tu. From
self-tuning regulators to reinforcement learning and back again. In IEEE Con-
ference on Decision and Control, pages 3724–3740, 2019.

[94] Ellicott C. Matthay, Kate A. Duchowny, Alicia R. Riley, and Sandro Galea.
Projected all-cause deaths attributable to COVID-19-related unemployment in
the United States. American Journal of Public Health, 111(4):696–699, 2021.

[95] H. Brendan McMahan and Matthew Streeter. Tighter bounds for multi-armed
bandits with expert advice. In Conference on Learning Theory, 2009.

[96] Nadav Merlis and Shie Mannor. Tight lower bounds for combinatorial multi-
armed bandits. In Jacob Abernethy and Shivani Agarwal, editors, Proceedings
of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of
Machine Learning Research, pages 2830–2857. PMLR, 9–12 Jul 2020.

[97] Jerome Mertens, Maria C. Marchetto, Cedric Bardy, and Fred H. Gage. Eval-
uating cell reprogramming, differentiation and conversion technologies in neu-
roscience. Nature Reviews Neuroscience, 17(7):424–437, 2016.

[98] Seyed M. Moghadas, Meagan C. Fitzpatrick, Pratha Sah, Abhishek Pandey,
Affan Shoukat, Burton H. Singer, and Alison P. Galvani. The implications of
silent transmission for the control of COVID-19 outbreaks. Proceedings of the
National Academy of Sciences, 117(30):17513–17515, 2020.

[99] Samantha A. Morris, Patrick Cahan, Hu Li, Anna M. Zhao, Adrianna K. San
Roman, Ramesh A. Shivdasani, James J. Collins, and George Q. Daley. Dis-
secting engineered cell types and enhancing cell fate conversion via CellNet.
Cell, 158(4):889–902, 2014.

[100] Shamim Nemati, Mohammad M. Ghassemi, and Gari D. Clifford. Optimal
medication dosing from suboptimal clinical examples: A deep reinforcement
learning approach. In Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pages 2978–2981, 2016.

[101] Gergely Neu. Explore no more: Improved high-probability regret bounds for
non-stochastic bandits. In Advances in Neural Information Processing Systems,
pages 3168–3176, 2015.

[102] New York City Department of Health and Mental Hygiene. COVID-19: Data
by ZIP. Data file, 2020.

116



[103] New York University, School of Law, Furman Center for Real Estate and Urban
Policy. Eviction filings by ZIP Code. Data file, 2020.

[104] Chengzhuo Ni and Mengdi Wang. Maximum likelihood tensor decomposition
of Markov decision process. In IEEE International Symposium on Information
Theory, pages 3062–3066, 2019.

[105] Pierre Nouvellet, Sangeeta Bhatia, Anne Cori, Kylie E. C. Ainslie, Marc
Baguelin, Samir Bhatt, Adhiratha Boonyasiri, Nicholas F. Brazeau, Lorenzo
Cattarino, Laura V. Cooper, Helen Coupland, Zulma M. Cucunuba, Gina
Cuomo-Dannenburg, Amy Dighe, Bimandra A. Djaafara, Ilaria Dorigatti,
Oliver D. Eales, Sabine L. van Elsland, Fabricia F. Nascimento, Richard G.
FitzJohn, Katy A. M. Gaythorpe, Lily Geidelberg, William D. Green, Ar-
ran Hamlet, Katharina Hauck, Wes Hinsley, Natsuko Imai, Benjamin Jeffrey,
Edward Knock, Daniel J. Laydon, John A. Lees, Tara Mangal, Thomas A.
Mellan, Gemma Nedjati-Gilani, Kris V. Parag, Margarita Pons-Salort, Manon
Ragonnet-Cronin, Steven Riley, H. Juliette T. Unwin, Robert Verity, Michaela
A. C. Vollmer, Erik Volz, Patrick G. T. Walker, Caroline E. Walters, Haowei
Wang, Oliver J. Watson, Charles Whittaker, Lilith K. Whittles, Xiaoyue Xi,
Neil M. Ferguson, and Christl A. Donnelly. Reduction in mobility and COVID-
19 transmission. Nature Communications, 12(1):1090, 2021.

[106] Alejandro Ocampo, Pradeep Reddy, Paloma Martinez-Redondo, Aida Platero-
Luengo, Fumiyuki Hatanaka, Tomoaki Hishida, Mo Li, David Lam, Masakazu
Kurita, Ergin Beyret, Toshikazu Araoka, Eric Vazquez-Ferrer, David Donoso,
Jose Luis Roman, Jinna Xu, Concepcion Rodriguez Esteban, Gabriel NuÃśez,
Estrella NuÃśez Delicado, Josep M. Campistol, Isabel Guillen, Pedro Guillen,
and Juan Carlos Izpisua Belmonte. In vivo amelioration of age-associated hall-
marks by partial reprogramming. Cell, 167(7):1719–1733.e12, 2016.

[107] Yutaka Okuno, Hiromi Iwasaki, Claudia S. Huettner, Hanna S. Radomska,
David A. Gonzalez, Daniel G. Tenen, and Koichi Akashi. Differential regulation
of the human and murine CD34 genes in hematopoietic stem cells. Proceedings
of the National Academy of Sciences, 99(9):6246–6251, 2002.

[108] Ulrich Pfisterer, Agnete Kirkeby, Olof Torper, James Wood, Jenny Nelander,
Audrey Dufour, Anders Björklund, Olle Lindvall, Johan Jakobsson, and Ma-
lin Parmar. Direct conversion of human fibroblasts to dopaminergic neurons.
Proceedings of the National Academy of Sciences, 108(25):10343–10348, 2011.

[109] Eboni G. Price-Haywood, Jeffrey Burton, Daniel Fort, and Leonardo Seoane.
Hospitalization and mortality among black patients and white patients with
Covid-19. New England Journal of Medicine, 382:2534–2543, 2020.

[110] Li Qian, Yu Huang, C. Ian Spencer, Amy Foley, Vasanth Vedantham, Lei Liu,
Simon J. Conway, Ji-dong Fu, and Deepak Srivastava. In vivo reprogramming of
murine cardiac fibroblasts into induced cardiomyocytes. Nature, 485(7400):593–
598, 2012.

117



[111] Owen J. L. Rackham, Jaber Firas, Hai Fang, Matt E. Oates, Melissa L. Holmes,
Anja S. Knaupp, Harukazu Suzuki, Christian M. Nefzger, Carsten O. Daub,
Jay W. Shin, Enrico Petretto, Alistair R. R. Forrest, Yoshihide Hayashizaki,
Jose M. Polo, Julian Gough, and The FANTOM Consortium. A predictive
computational framework for direct reprogramming between human cell types.
Nature Genetics, 48(3):331–335, 2016.

[112] Adityanarayanan Radhakrishnan, George Stefanakis, Mikhail Belkin, and Car-
oline Uhler. Simple, fast, and flexible framework for matrix completion with
infinite width neural networks. Proceedings of the National Academy of Sci-
ences, 119(16):e2115064119, 2022.

[113] Joseph M. Replogle, Reuben A. Saunders, Angela N. Pogson, Jeffrey A.
Hussmann, Alexander Lenail, Alina Guna, Lauren Mascibroda, Eric J. Wag-
ner, Karen Adelman, Gila Lithwick-Yanai, Nika Iremadze, Florian Oberstrass,
Doron Lipson, Jessica L. Bonnar, Marco Jost, Thomas M. Norman, and
Jonathan S. Weissman. Mapping information-rich genotype-phenotype land-
scapes with genome-scale Perturb-seq. Cell, 185(14):2559–2575.e28, 2022.

[114] Herbert Robbins. Some aspects of the sequential design of experiments. Bull.
Amer. Math. Soc., 58(5):527–535, 1952.

[115] David J. Roelfs, Eran Shor, Aharon Blank, and Joseph E. Schwartz. Mis-
ery loves company? A meta-regression examining aggregate unemployment
rates and the unemployment-mortality association. Annals of Epidemiology,
25(5):312–322, 2015.

[116] Scott Ronquist, Geoff Patterson, Lindsey A. Muir, Stephen Lindsly, Haiming
Chen, Markus Brown, Max S. Wicha, Anthony Bloch, Roger Brockett, and
Indika Rajapakse. Algorithm for cellular reprogramming. Proceedings of the
National Academy of Sciences, 114(45):11832–11837, 2017.

[117] Christopher J. Ruhm. Recessions, healthy no more? Journal of Health Eco-
nomics, 42:17–28, 2015.

[118] Paat Rusmevichientong and John N. Tsitsiklis. Linearly parameterized bandits.
Mathematics of Operations Research, 35(2):395–411, 2010.

[119] Stephanie Schmitt-Grohé, Ken Teoh, and Martín Uribe. Covid-19: Testing
inequality in New York City. Covid Economics, Vetted and Real-Time Papers,
8:27–43, 2020.

[120] Yevgeny Seldin, Koby Crammer, and Peter Bartlett. Open problem: Adversar-
ial multiarmed bandits with limited advice. In Conference on Learning Theory,
pages 1067–1072, 2013.

[121] Petrônio C. L. Silva, Paulo V. C. Batista, Hélder S. Lima, Marcos A. Alves,
Frederico G. Guimarães, and Rodrigo C. P. Silva. COVID-ABS: An agent-based

118



model of COVID-19 epidemic to simulate health and economic effects of social
distancing interventions. Chaos, Solitons and Fractals, 139:110088, 2020.

[122] George A. Soper. The lessons of the pandemic. Science, 49(1274):501–506,
1919.

[123] Deepak Srivastava and Natalie DeWitt. In vivo cellular reprogramming: The
next generation. Cell, 166(6):1386–1396, 2016.

[124] Kazutoshi Takahashi, Koji Tanabe, Mari Ohnuki, Megumi Narita, Tomoko
Ichisaka, Kiichiro Tomoda, and Shinya Yamanaka. Induction of pluripotent
stem cells from adult human fibroblasts by defined factors. Cell, 131(5):861–
872, 2007.

[125] Kazutoshi Takahashi and Shinya Yamanaka. Induction of pluripotent stem cells
from mouse embryonic and adult fibroblast cultures by defined factors. Cell,
126(4):663–676, 2006.

[126] Takanao Tanaka and Shohei Okamoto. Increase in suicide following an initial
decline during the COVID-19 pandemic in Japan. Nature Human Behaviour,
5(2):229–238, 2021.

[127] José A. Tapia Granados, James S. House, Edward L. Ionides, Sarah Burgard,
and Robert S. Schoeni. Individual joblessness, contextual unemployment, and
mortality risk. American Journal of Epidemiology, 180(3):280–287, 2014.

[128] The Lancet. Redefining vulnerability in the era of COVID-19. The Lancet,
395(10230):1089, 2020.

[129] The United States Centers for Disease Control and Prevention and
the Office of the Assistant Secretary for Preparedness and Response.
COVID-19 pandemic planning scenarios. Technical Report May 20,
2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/
planning-scenarios-archive/planning-scenarios-2020-05-20.pdf [Ac-
cessed June 4, 2020].

[130] Matthew J. Townsend, Theodore K. Kyle, and Fatima Cody Stanford. Out-
comes of COVID-19: Disparities in obesity and by ethnicity/race. International
Journal of Obesity, 44(9):1807–1809, 2020.

[131] United States Census Bureau. Percent urban and rural in 2010 by state and
county. Data file, 2012.

[132] United States Census Bureau. 2013–2017 CHAS data. Data file, 2020.

[133] United States Census Bureau. Annual estimates of the resident population by
single year of age and sex for the United States: April 1, 2010 to July 1, 2019
(NC-EST2019-AGESEX-RES). Data file, 2020.

119

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios-archive/planning-scenarios-2020-05-20.pdf
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios-archive/planning-scenarios-2020-05-20.pdf


[134] United States Census Bureau. Comparative economic characteristics, 2019
American Community Survey 1-year estimates. Data file, 2020.

[135] United States Census Bureau. Selected economic characteristics, 2015–2019
American Community Survey 5-year estimates. Data file, 2020.

[136] C. A. van Diepen, J. Wolf, H. van Keulen, and C. Rappoldt. WOFOST: A
simulation model of crop production. Soil Use and Management, 5(1):16–24,
1989.

[137] Aaron van Dorn, Rebecca E. Cooney, and Miriam L. Sabin. COVID-19 exac-
erbating inequalities in the US. Lancet, 395(10232):1243–1244, 2020.

[138] Puck B. van Kasteren, Bas van der Veer, Sharon van den Brink, Lisa Wijsman,
Jørgen de Jonge, Annemarie van den Brandt, Richard Molenkamp, Chantal
B. E. M. Reusken, and Adam Meijer. Comparison of seven commercial RT-
PCR diagnostic kits for COVID-19. Journal of Clinical Virology, 128:104412,
2020.

[139] Tyler J. VanderWeele. Challenges estimating total lives lost in COVID-19 de-
cisions: Consideration of mortality related to unemployment, social isolation,
and depression. JAMA, 324(5):445–446, 2020.

[140] Robert Verity, Lucy C. Okell, Ilaria Dorigatti, Peter Winskill, Charles Whit-
taker, Natsuko Imai, Gina Cuomo-Dannenburg, Hayley Thompson, Patrick
G. T. Walker, Han Fu, Amy Dighe, Jamie T. Griffin, Marc Baguelin, Sangeeta
Bhatia, Adhiratha Boonyasiri, Anne Cori, Zulma Cucunubá, Rich FitzJohn,
Katy Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Daniel Laydon,
Gemma Nedjati-Gilani, Steven Riley, Sabine van Elsland, Erik Volz, Haowei
Wang, Yuanrong Wang, Xiaoyue Xi, Christl A. Donnelly, Azra C. Ghani, and
Neil M. Ferguson. Estimates of the severity of coronavirus disease 2019: a
model-based analysis. The Lancet Infectious Diseases, 20(6):669–677, 2020.

[141] Thomas Vierbuchen, Austin Ostermeier, Zhiping P. Pang, Yuko Kokubu,
Thomas C. Südhof, and Marius Wernig. Direct conversion of fibroblasts to
functional neurons by defined factors. Nature, 463(7284):1035–1041, 2010.

[142] Andrew Wagenmaker, Julian Katz-Samuels, and Kevin Jamieson. Experimental
design for regret minimization in linear bandits. In Arindam Banerjee and Kenji
Fukumizu, editors, Proceedings of The 24th International Conference on Artifi-
cial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pages 3088–3096. PMLR, 13–15 Apr 2021.

[143] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic View-
point. Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, 2019.

120



[144] Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits.
In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 5114–5122. PMLR, 10–15 Jul 2018.

[145] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442, 1998.

[146] Joakim A. Weill, Matthieu Stigler, Olivier Deschenes, and Michael R. Spring-
born. Social distancing responses to COVID-19 emergency declarations strongly
differentiated by income. Proceedings of the National Academy of Sciences,
117(33):19658–19660, 2020.

[147] H. Weintraub, S. J. Tapscott, R. L. Davis, M. J. Thayer, M. A. Adam, A. B.
Lassar, and A. D. Miller. Activation of muscle-specific genes in pigment, nerve,
fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of
the National Academy of Sciences, 86(14):5434–5438, 1989.

[148] Zheng Wen, Branislav Kveton, and Azin Ashkan. Efficient learning in large-scale
combinatorial semi-bandits. In Francis Bach and David Blei, editors, Proceed-
ings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 1113–1122, Lille, France, 7–9
Jul 2015. PMLR.

[149] Bryan Wilder, Marie Charpignon, Jackson A. Killian, Han-Ching Ou, Aditya
Mate, Shahin Jabbari, Andrew Perrault, Angel N. Desai, Milind Tambe, and
Maimuna S. Majumder. Modeling between-population variation in COVID-19
dynamics in Hubei, Lombardy, and New York City. Proceedings of the National
Academy of Sciences, 117(41):25904–25910, 2020.

[150] Shinya Yamanaka and Helen M. Blau. Nuclear reprogramming to a pluripotent
state by three approaches. Nature, 465(7299):704–712, 2010.

[151] Jia Yuan Yu and Shie Mannor. Unimodal bandits. In International Conference
on International Conference on Machine Learning, pages 41–48, 2011.

[152] Raymond Zhang and Richard Combes. On the suboptimality of Thompson
sampling in high dimensions. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 8345–8354. Curran Associates, Inc., 2021.

121


	Introduction
	Summary of Individual Chapters
	Nonstochastic Bandits with Infinitely Many Experts
	Active Learning for Efficient Cell Reprogramming
	Impacts of COVID-19 Interventions


	Nonstochastic Bandits with Infinitely Many Experts
	Introduction
	Problem Formulation
	Contributions
	Related Work
	Organization of the Chapter

	Main Results
	Nonstochastic Bandits with a Finite Number of Experts
	Selection Among Infinitely Many Experts

	Experiments
	Discussion
	Proofs

	Active Learning for Efficient Cell Reprogramming
	Introduction
	Problem Formulation
	Single-Cell Perturbation
	Batched Experiments
	Goal

	Active Learning Algorithm
	Initialization
	Frequency Analysis
	Distance Estimation
	TF Scoring
	MOI Optimization
	Perturbation Recommendation

	Experiments
	Distance Estimation
	TF Scoring

	Discussion
	Supplementary Information
	Compositional Perturbation Autoencoder


	Impacts of COVID-19 Interventions
	Introduction
	Main Results
	Data Analysis
	Model
	Impacts of NPIs on Inequality

	Discussion
	Methods
	Vulnerable Group
	Networks
	Individual Output
	Deaths of Despair
	Recession
	Undertreatment
	Mean-Field Approximation

	Supplementary Information


