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Abstract

The organizing principle of this thesis is that human emotion understanding reflects
a model-based solution to a large class of ill-posed inverse problems. To interpret
someone’s expression, or predict how that person would react in a future situation,
observers reason over a logically- and causally-structured intuitive theory of other
minds. For this work, I chose a domain that is perceptually and socially rich, yet
highly constrained: a real-life high-stakes televised one-shot prisoner’s dilemma.

In the first set of studies, I illustrate that forward predictions play a critical role
in emotion understanding. Intuitive hypotheses about what someone is likely to feel
guide how observers interpret and reason about expressive behavior. By simulating
human causal reasoning as abductive inference over latent emotion representations,
a parameter-free Bayesian model captured surprising patterns of social cognition.

In the second set of studies, I formalize emotion prediction as a probabilistic gener-
ative model. Mental contents inferred via the inversion of an intuitive theory of mind
generate the basis for inferring how others will evaluate, or ‘appraise’, a situation.
The Inferred Appraisals model extends inverse planning to simulate how observers
infer others’ reactions, in the terms of utilities, prediction errors, and counterfactuals
on rich social preferences for fairness and reputation. I show that the joint poste-
rior distribution of inferred appraisals provides a powerful method for discovering the
latent structure of the human intuitive theory of emotions.

In the third set of studies, I build a stimulus-computable model of emotion un-
derstanding. This work emphasizes the importance of testing whether computational
models can use emotion-relevant information in service of social cognition. I suggest
that building computer systems that approach human-level emotional intelligence
requires generative models, where inferred appraisals function as latent causal expla-
nations that link behavior, mental contents, and world states.

Thesis Supervisor: Rebecca Saxe
Title: John W Jarve (1978) Professor, Associate Dean of Science

2



Acknowledgments

Still, it would take a whole other book to convey the gratitude I feel
when I look back on this project.

— John Koening, The dictionary of obscure sorrows

Tracing the thread of friends and mentors that leads to this point makes abundantly
clear that there is simply no adequate way to express my gratitude to all those who
deserve it or to the level I feel it. This thesis would not exist without Rebecca Saxe.
While the work that follows is my doctoral thesis, it would be more appropriate to
think of it as a synthesis, because it so fundamentally reflects the dialectic between
Rebecca and me. Rebecca, your unwavering devotion to my development as a scientist
is only paralleled by your kindness towards me. When I started graduate school I
did not imagine I would ever do a project with you but I was inspired by your ability
to find the interface between interesting questions and interesting answers, and was
happy to fabricate opportunities to absorb your scientific approach. My admiration
has only grown in the intervening years. I am beyond lucky to have had so much
time to learn with you.

Josh Tenenbaum, you have shaped the foundations of my scientific philosophy.
The way I conceive of understanding, of meaning, and of progress, reflects your in-
fluence. I am incredibly grateful for how you have supported and encouraged me
as I have navigated epistemology and methodology on the way to finding processes
and projects that speak to me. John Gabrieli, you have helped me stay connected to
my deepest passions in science. I cannot thank you enough for your unconditional
support. You have taught me how to simultaneously aspire to grand ideals and value
incremental progress. I have learned much about enthusiastic perseverance from your
example. Luke Chang, you always see the best in me and my work, even when I do
not.

I’ve had the fortune to work with many incredible people over the course of this
degree. Stefano Anzellotti, thank you for your patience and for being an incredible
teacher and friend. It has been a joy to collaborate with Max Kleiman-Weiner and
Desmond Ong, this work has greatly benefited from your involvement. My gratitude
to the exceptional post-baccalaureate and undergraduate students I have worked with:
Brandon Davis, Riana Hoagland, Antonis Michael, Jimmy Capella, Samuel Liburd
Jr., Schuyler Gaillard, Annmarie Wang, Selena Feng, and others. Thank you to the
past and present members of SaxeLab, CoCoSci, and GabLab, who have helped me
prepare talks, given feedback on papers, and been a constructive sounding board for
many inchoate ideas.

I did not expect to find such dear friends in my cohort. Sarah Schwettmann,
Luke Hewitt, and Maddie Cusimano, you have made the daily work fun, the progress
possible, and the memories deeply fulfilling. Thanks to Matthias Hofer and Tyler
Brooke-Wilson for cultivating a community of play, and Venerable Tenzin Priyadarshi
for cultivating a community of practice.

3



I am grateful to the extraordinary mentors who helped me transition into this line
of work from molecular biology: Jud Brewer, Noopur Amin, Sue Whitfield-Gabrieli,
Daniela Kaufer, Adam Engle, Dustin DiPerna, John Churchill, and Barbara Des
Rochers. You took a chance on me and went far out of your way to help me acquire
skills I needed. Dan Brown and Gretchen Nelson, when I’m with you, what’s most
important in life is crystal clear. Dan, you started me on this path. This thesis is
dedicated to you.

Teresa Yeh, thank you for the joy you bring into my life. I can’t imagine spending
these last years with anyone else. To my parents, Mickey and Judy, there are no
words that can possible approach how grateful I am. You inspire me to live more
fully and love more bravely.

4



Contents

1 Introduction 9

1.1 Research strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 Modeling strategy . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.3 An experimental domain for progress . . . . . . . . . . . . . . 14

1.2 Advancing the modeling enterprise . . . . . . . . . . . . . . . . . . . 15

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Formalizing emotion concepts within a Bayesian model of theory of

mind 22

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Situating emotion concepts within an intuitive theory of mind . . . . 23

2.3 Specificity and development of emotion inference . . . . . . . . . . . . 25

2.4 Ambiguous perception and precise predictions . . . . . . . . . . . . . 27

2.5 Neural representations of fine-grained emotion concepts . . . . . . . . 29

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Reasoning about emotions, expressions, and events 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Spontaneous expressions in a high-stakes social dilemma . . . 37

3.2 Study 1: Observers make nuanced and reliable emotion predictions

based on event descriptions . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5



3.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Study 2: Emotions conveyed by expressions do not discriminate be-

tween event contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Study 3: Expressions are interpreted in light of conceptual knowledge 48

3.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Study 4: Systematic errors in human causal reasoning about the an-

tecedents of expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.3 Confidence accentuates intuitive theory . . . . . . . . . . . . . 58

3.5.4 Collective judgments . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Study 5: Abductive inference over latent emotion representations . . 62

3.6.1 Abductive inference model . . . . . . . . . . . . . . . . . . . . 63

3.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.3 Lesion models . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Generative model of inferred appraisals 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Inverse planning with social values . . . . . . . . . . . . . . . . . . . 90

6



4.3.1 Modeling inverse planning with social values . . . . . . . . . . 92

4.3.2 Comparison to human inverse planning . . . . . . . . . . . . . 94

4.3.3 Second-order preferences: players’ motive to enhance their rep-

utation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Emotion predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Human observers’ emotion predictions . . . . . . . . . . . . . 101

4.4.2 Learning the latent structure of the intuitive theory of emotions 102

4.4.3 Comparing the Inferred Appraisals model to human observers 105

4.4.4 Inverse planning lesion model . . . . . . . . . . . . . . . . . . 107

4.4.5 Social lesion model . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Personalizing emotion predictions . . . . . . . . . . . . . . . . . . . . 111

4.5.1 Simulation of the bias induced by personalizing cues . . . . . . 112

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Stimulus-computable emotion understanding 126

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Task 1: Attribution of emotions to expressions in context . . . . . . . 129

5.2.1 Empirical data . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.4 Discussion and Directions . . . . . . . . . . . . . . . . . . . . 136

5.3 Task 2: Causal inference of antecedent events from expressions . . . . 138

5.3.1 Empirical data . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.4 Perceptual outcome classification . . . . . . . . . . . . . . . . 141

5.3.5 Discussion and Directions . . . . . . . . . . . . . . . . . . . . 142

5.4 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7



5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A Appendix to Chapter 3 156

A.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 Supplementary Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.2.1 Statistics of actual gameplay . . . . . . . . . . . . . . . . . . . 157

A.2.2 Similarity structure of emotion judgments . . . . . . . . . . . 158

A.2.3 PCA of emotion judgments . . . . . . . . . . . . . . . . . . . 159

A.2.4 Reliability of emotion judgments . . . . . . . . . . . . . . . . 161

A.2.5 Conceptual knowledge affects the interpretation of expressions 163

A.2.6 Human causal reasoning . . . . . . . . . . . . . . . . . . . . . 165

A.2.7 Simulation of collective outcome judgments . . . . . . . . . . . 166

A.2.8 Abductive inference model . . . . . . . . . . . . . . . . . . . . 167

B Appendix to Chapter 4 169

B.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.1.1 Mental content attribution prompts . . . . . . . . . . . . . . . 169

B.1.2 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.1.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.1.4 Appraisals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.2 Personalized priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8



Chapter 1

Introduction

Beyond the variegated sensations and the helpful motivations, science
has discovered emotionality’s deeper purpose: the timeworn mecha-
nisms of emotion allow two human beings to receive the contents of
each other’s minds.... This silent reverberation between minds is so
much a part of us that, like the noiseless machinations of the kid-
ney or the liver, it functions smoothly and continuously without our
notice.

— T. Lewis, F. Amini, R. Lannon, A general theory of love

This thesis begins with an aspiration and a problem. The mere shift of a gaze,

or flicker of a smile, can change what we think someone feels. These shifts are often

inconsequential, but can be seismic. What we think about others’ emotions shapes our

understanding of their values, beliefs, intentions, prior experiences, and physiology,

and similarly updates our understanding of the world, informs our self-knowledge,

guides our plans, and affects our own emotional experiences.

The computational framework I present aspires to reverse engineer human emo-

tion understanding: to uncover the mechanisms by which we bridge the space between

minds. People across many fields share the goal of understanding how that bridge is

constructed, when it holds, when it crumbles, and when it takes us somewhere un-

intended. Over the last one hundred years, psychologists, statisticians, philosophers,

and more recently, computer scientists, have tried to distill the essential mechanisms

of emotion understanding from the complexity of everyday experience. These efforts

9



have, on one hand, tended to yield theories that make concrete and specific predic-

tions, but only account for human behavior under narrow experimental conditions.

On the other hand, these efforts have yielded theories that are qualitatively consistent

with a breadth of behavior, but lack the formalism required to quantitatively emu-

late human cognition. The problem is therefore how to model the sophistication,

variability, and generality of human emotion understanding.

This thesis aims to ground the study of human emotion understanding in formal

models and explicit, testable assumptions. The organizing principle of this work is

that human emotion understanding reflects a model-based solution to a large class

of ill-posed inverse problems. This framing argues that emotion-relevant informa-

tion, including expression cues and event context, should be studied in terms of

their functional roles in a logically- and causally-structured intuitive theory of mind.

The present chapter situates the specific contributions of subsequent chapters in the

broader research program.

1.1 Research strategy

1.1.1 Theoretical framework

While emotion understanding is often treated as perceptual pattern matching, a grow-

ing body of work has convincingly challenged some of the foundational assumptions

for this approach (reviewed in Chapter 2). To develop a different theoretical ap-

proach, I propose initializing at a very different set of assumptions. Rather than

expressive behavior inherently signaling rich diagnostic information about someone’s

internal states, what if perception of isolated physical expressions largely supplies

ambiguous, low-dimensional, and noisy information? To compensate, observers make

specific granular emotion predictions based on inferences of how someone interprets

(or “appraises”) external events in relation to her other mental states (goals, beliefs,

moral values, costs, etc.) (de Melo et al., 2012; Gratch & Marsella, 2014). These

inferred appraisals are abstract representations that function as latent causal expla-
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nations: inferred appraisals link expressions, actions, mental contents, and world

states in a causally-structured intuitive theory (Figure 1-1). Situating these variables

in this common latent space provides a way to quantitatively model how contextual

cues and expressive behavior mutually constrain emotion inference.

This framework treats emotion understanding as causal inference over an intuitive

theory. An intuitive theory is a mental model that enables commonsense reasoning

by connecting concepts in a logically-structured ontology (Carey, 2009; Gerstenberg

& Tenenbaum, 2017; Gopnik & Wellman, 2012). In the proposed framework, emotion

concepts reflect computations in the space of inferred appraisals. From the context,

observers predict what emotions someone is likely to experience based on common-

sense reasoning about how she is likely to appraise the situation. From her expression,

observers reason about what emotions and appraisals can explain her expressive be-

havior. In the context of intuitive hypotheses about what experiences someone might

be having, otherwise inconsequential shifts in posture or temporal synchrony could

become laden with meaning. Thus, constraints from emotion predictions can render

expressions conditionally informative: expressions that are ambiguous in one context

might become informative in another.

plans

actions

world

appraisals

emotions

beliefs

target’s
mind

observer
expressions

constraints
costs

modal space

preferences
values
goals

habits
physiology

Figure 1-1: Intuitive theory (see Chapter 2). The schematic represents a scientific hy-
pothesis about the conceptual structure of emotion understanding. Arrows indicate causal
relations. Variables can be inferred via model inversion (e.g. what preferences were likely
to have motivated someone’s action) and simulated from structured priors. The dimension
of time is implicit (variables update and inferences can be made across time). Note that
the intuitive theory need not be introspectively accessible.
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Highlighting the importance of emotion predictions motivates the effort to model

context. Contextual cues affect what emotions we think others are likely to experience

and, correspondingly, how we interpret their expressions. Is a medical doctor currently

volunteering with a global health NGO likely have the same emotional reaction about

being caught in a self-serving lie as the CEO of Exxon? Does the smile of someone

handing you a gift mean the same as the identical muscular conformation on the face

of someone stealing your wallet? To make progress towards capturing the breadth,

flexibility, and nuance of human emotion understanding, we need to model how people

use abstractions of contextual information when reasoning about other minds.

Contextual abstractions exist at multiple levels. People readily incorporate ex-

plicit event information into their judgments of expressions (Anzellotti et al., 2021;

Ong et al., 2015; Skerry & Saxe, 2014). In the absence of explicit contextual cues,

e.g. in studies that have people judge emotions based exclusively on expressive be-

havior, emotion judgments nonetheless reflect contextual priors, including constraints

inferred from a task’s demand characteristics (Betz et al., 2019; Hoemann et al., 2019)

and acquired over a lifetime of experience (Brooks & Freeman, 2018).

Recent work has illustrated surprising ambiguity of isolated expressions (reviewed

in Chapters 2, 3, and 5), but the malleability of expression interpretation was noted

long before (e.g. Fernberger, 1928; Ruckmick, 1921; Russell, 1994; Wallbott, 1988).

The scientific discourse has predominantly revolved around the degree to which con-

text affects emotion understanding (Barrett et al., 2011; Buck, 1994; Cowen & Kelt-

ner, 2020; Ekman et al., 1972; Le Mau et al., 2021; Russell & Fehr, 1987). Relatively

little attention has been given to developing formal models that can quantitatively

predict how contextual information affects emotion understanding. This is due in no

small part to the challenge of computing the relevant abstractions from contextual

information (Houlihan et al., 2021; Hwang et al., 2021; Lake et al., 2017; Shu et al.,

2021). Heider and Simmel highlight this challenge in the opening of their seminal

1944 paper,
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It is true that there have been studies concerning the inference of
emotions from gestures or facial change. But most of these leave the
reader with a feeling of disappointment and with the conviction that
facial ‘expressions’—at least as taken by themselves—do not play an
important role in the perception of other persons. We are usually
referred to the ‘importance of the situation’; but what features of
the situation are of importance or how the situation influences the
perception are problems which are left unanswered.

Nearly eight decades later, their assessment still rings true. How might we make

progress towards a principled account of what features of a situation are important

and how those features influence the interpretation of perceptual information?

1.1.2 Modeling strategy

It may be possible to learn the necessary representations from vast amounts of data.

Advances in deep learning have recently made progress in capturing behavioral pat-

terns in social cognition tasks (Hwang et al., 2021; Liang et al., 2022; Rabinowitz

et al., 2018). However, it is a challenge to acquire inductive biases that permit more

than surface-level capture of human social reasoning (Stojnic et al., 2022). Richly-

structured generative models evidence better generalization and more granular rea-

soning, even in tasks simple enough for human infants (Shu et al., 2021; Zhi-Xuan

et al., 2022).

This thesis adopts a richly-structured modeling approach (for reviews of related

work, see Houlihan et al., 2021; Ong et al., 2019; Wu et al., 2021) Endowing mod-

els with primitive psychological representations (agents, actions, preferences, beliefs,

relations, etc.) affords interpretability, tunability, and inductive constraints. In con-

junction with a conducive experimental paradigm, this cognitive structure may enable

us to understand how people reason over an intuitive theory of emotions in general.

The overarching research strategy is to leverage experimentally tractable domains

to uncover the computational foundations of emotion understanding. Then, on these

foundations, build increasingly general models that span more naturalistically uncon-

strained domains of social cognition. Advancing the modeling enterprise therefore

requires a theoretical framework, a modeling strategy, and also an experimental do-
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main in which to make modeling progress. In this thesis, I chose a domain that is

perceptually and socially rich, yet highly constrained: a real-life high-stakes televised

one-shot prisoner’s dilemma.

1.1.3 An experimental domain for progress

Every episode of the British gameshow “GoldenBalls” culminates with two contestants

playing a dramatic one-shot instantiation of the prisoner’s dilemma. Each player is

given a choice to “Split” or “Steal” a jackpot (in standard notation, to “Cooperate” or

“Defect”, respectively). The game is emotionally evocative by design. Players negoti-

ate with each other in front of a live audience in an attempt to convince the other to

make a choice that is financially disadvantageous (to cooperate), then simultaneously

reveal their choices.

I generated stimuli from archival footage of the show by artificially separating

contextual information about the events players experienced from perceptual infor-

mation about the players’ expressions. The event that a player experienced is defined

by the rules of the gameshow, the size of the jackpot, which actions the two players

chose, and the resulting financial payoff. I created a 5-second video of each player’s

emotional expression by splicing together footage from the moments surrounding the

climactic reveal.

This experimental paradigm is particularly well-positioned to make progress to-

wards learning the computational basis of emotion understanding. First, segregating

perceptual expression information from contextual information allows the overall in-

tuitive theory (Figure 1-1) to be broken down into modules, which can be studied

independently and in interaction (Figure 1-2). Second, the event context affords

experimental control. Economic games like the prisoner’s dilemma associate social

interactions with quantitative actions and outcomes. This is conducive to building

and fitting models since the context can be experimentally manipulated and separate

events can be parametrically related. Third, the events are salient and social. The

GoldenBalls game involves high-stakes social coordination, trust, betrayal, equity,

and public reputation. Since the goal is to eventually capture the sophistication, nu-
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ance, breadth, and flexibility of the intuitive theory of emotions, it is important that

the experimental domain elicit rich mental state inferences.

Fourth, the expressions were spontaneously produced by real people reacting to

events they actually experienced. In the interest of experimental control, behav-

ioral paradigms commonly use posed expressions or fabricated events. Expression

interpretation is sensitive to experimental demand characteristics (Betz et al., 2019;

Hoemann et al., 2019). If observers believe that an expression is posed, they are

likely to relate to the expression as a symbol with communicative intent. Rather

than treating the expression as information about latent emotional experience of the

target, observers might be biased by inferences of what the experimenter or the tar-

get intends the expression to communicate. This may be a factor in paradigms that

employ canonical expressions of basic emotions, muscular conformations enacted by

computer-generated avatars, or expressions of people acting out a scene. Similarly,

while it is easy for observers to discount posed expressions that seem incongruent

with the event context, I expect that observers engage different cognitive processes

when they believe that they are seeing the real expression someone spontaneously

produced in reaction to an event actually experienced.

1.2 Advancing the modeling enterprise

Chapter 2 outlines the theoretical framework for computationally modeling human

emotion understanding. I argue that emotion understanding should be thought of

as causal reasoning over a richly-structured intuitive theory. This theory-based view

contrasts with alternative “perceptual pattern recognition” views of emotion under-

standing. Drawing on constructivist theories of emotion, appraisal theories, and

inverse planning, I propose how emotion understanding can be formally modeled as a

hierarchical Bayesian theory of mind. The framework points to inferred appraisals as

the core latent space of the intuitive theory of emotions. Inferred appraisals provide

a way to formally model how forward predictions from context and inverse inferences

from expressions mutually constrain emotion understanding. I point out evidence
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Figure 1-2: Contrastive chapter summary. The computational framework proposed in
Chapter 2 is empirically developed in Chapters 3, 4, and 5. Chapter 3 characterizes what
information observers abstract from expressions and from context. A computational model
captures how observers use context to causally reason about expressions. Chapter 4 formal-
izes how observers predict others’ emotions based on contextual information. It illustrates
that a richly-structured generative model of inferred appraisals can learn the computational
basis of the intuitive theory of emotions. Chapter 5 integrates the preceding chapters with
computer vision models to build a stimulus-computable model of social cognition is the
chosen experimental domain.

consistent with this view and neural mechanisms that might support the ability to

reason about others’ emotions.

Chapters 3, 4, and 5 empirically develop this framework in the chosen experimental

domain. I make use of the modular GoldenBalls paradigm to study the cognitive

mechanisms of emotion understanding (Figure 1-2). Each chapter systematically

varies what information people observed, and what judgments they were asked to

report. The datasets used in each chapter are summarized in Table 1.1.

Chapter 3 demonstrates how observers reason about expressions by using emotion

predictions abstracted from contextual cues. I used a combination of behavioral

experiments and a computational model to study how observers interpret the dynamic

expressions players spontaneously produced in the GoldenBalls game. The results

support key theoretical assertions of Chapter 2: (i) in isolation, even perceptually rich
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expressions can be strikingly ambiguous; (ii) observers use intuitive hypotheses about

what someone is likely to experience to causally reason about expressive behavior in

context; (iii) expression interpretation is better explained by intuitive theory-based

causal reasoning than by perceptual pattern matching.

I found that human observers were remarkably poor at recovering what events

players in the GoldenBalls game were reacting to, based on their expressions. Beyond

being simply inaccurate, people’s causal reasoning showed systematic model-based

patterns of errors. To reveal the underlying mechanism, I tested if people’s inferences

could be explained by their latent representations of emotion. I show that people

have a reliable, but not necessarily accurate, intuitive theory of the emotions others

are likely to experience in hypothetical situations. In certain situations, the emotions

people were expected to experience were dramatically different than the emotions they

appeared to experience. Observers’ interpretations of expressions were a function

of conceptual knowledge about what events were possible: inducing a prior over

events that shaped the space of predicted emotions biased how observers interpreted

expressions.

Integrating these behavioral results, I show that latent emotion representations

can explain people’s reasoning about the unseen causes of observed expressions. A

hierarchical Bayesian model simulated human causal reasoning by comparing the

emotions that were inferred from people’s expressions against the emotions they were

predicted to experience in each situation. Abductive inference over this model pro-

vides a close, parameter-free fit to human judgments. This work suggests that hu-

mans interpret others’ expressions in the context of emotion predictions generated by

a causally-structured mental model of other minds.

Chapter 4 formalizes emotion prediction as a probabilistic generative model. The

preceding chapter supported the central role of contextually-based predictions in emo-

tion understanding, but did not address how observers compute emotion predictions

from context. I now show that inferred appraisals, the core of the computational

framework proposed in Chapter 2, naturally capture the fine-grained structure of
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emotion predictions.

Humans readily make forward predictions of what emotions others are likely to

feel based on information about the events they experience. Observers’ systematic

predictions about other people’s reactions to events reflect an intuitive theory about

the causal structure of emotions. Building on inverse planning models, I extend

Bayesian theory of mind into the domain of emotions. The Inferred Appraisals model

simulates how people use event knowledge to reason about others’ nuanced emotional

experiences. The model predicts people’s judgments of both diverse and nuanced

emotions from situation-computable variables. In addition to capturing the effects

of explicit event context, the Inferred Appraisals model is sensitive to how person-

knowledge, a type of abstract contextual information, biases emotion judgments.

This chapter advances the tractability of using event structure in formal mod-

els of human emotion understanding. The richly-structured generative formulation

provides a basis for discovering the representations and computations underlying ob-

servers’ emotion predictions. The latent space of inferred appraisals enables the com-

putational structure of the intuitive theory of emotions to be learned directly from

emotion judgments. Finally, the model points to a strategy for computing emotion-

relevant abstractions from context, and suggests what primitive representations will

be generally required.

Chapter 5 builds a stimulus-computable model of emotion understanding. The

modular experimental paradigm allowed me to model how observers combine emotion

representations abstracted from expressions and context (Abductive Inference model,

Chapter 3), and then model how observers abstract emotion representations from

context (Inferred Appraisals model, Chapter 4). I now use (i) off-the-shelf computer

vision models to abstract emotion representations from expressions, (ii) the Inferred

Appraisals model to abstract emotion representations from context, and (iii) the

Abductive Inference model to simulate causal reasoning about expressions (the target

behavior from Chapter 3) without human involvement. Additionally, I use the same

emotion representations to simulate a separate social cognitive task: inference of
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emotions when expressions and context are jointly observed.

This work offers a benchmark of how well stimulus-computable models can cap-

ture human behavior and identifies the most important areas for development. I

found that performance on both tasks was limited by the computer vision mod-

els, whereas the Inferred Appraisals model supported near human-level performance.

Importantly, the computer vision models could be coerced to yield relatively good

fits to the target emotion representations (human emotion judgments of isolated ex-

pressions). Both social cognition tasks amplified the errors of the computer vision

models. In other words, objective functions should target social understanding and

explanation: within-domain losses (e.g. on emotion judgments of expressions) can

belie cognitive relevance. This emphasizes the importance of testing whether models

can use emotion-relevant information in service of social cognition. Based on these

results, I highlight specific but interconnected challenges in processing expressions

and event context. Finally, I suggest directions for building computer systems that

approach the emotional intelligence of humans.

1.3 Summary

This thesis develops a framework for computationally recapitulating human emotion

understanding. I argue that expression cues and contextual information mutually

constrain inference over an intuitive theory of mind. Emotion concepts reflect com-

putations in the space of inferred appraisals. Inferred appraisals function as latent

causal explanations that link others’ expressions, actions, preferences, beliefs, costs,

and world states across time.

This work aims to demonstrate how theory, formal models, and experimentally

tractable domains can make progress towards quantitatively capturing social cog-

nition and building machines with human-like emotional intelligence. While the

GoldenBalls paradigm is the present domain, the intellectual progress is not spe-

cific to prisoner’s dilemma, gameshows, the expressions of these particular players, or

the population of observers who contributed empirical data. The main contribution

19



of this thesis is a framework for learning the computational foundations of the human

intuitive theory of emotions.

In my view, advancing the broader research program requires generative models

of how humans causally reason about the variety of perceptually-available expression

cues and the dauntingly unconstrained domain of contextual cues that we natural-

istically encounter. How to learn and build generative probabilistic programs that

capture the breadth and nuance of emotion understanding remains an open problem.

So, in a way, this thesis ends where it began: with an aspiration and a problem. But

also, hopefully, a deeper understanding of the reverberations between minds.

• A version of Chapter 2 was published as: Saxe, R., & Houlihan, S. D. (2017).

Formalizing emotion concepts within a Bayesian model of theory of mind. Cur-

rent Opinion in Psychology.

• A version of Chapter 3 was published as: Houlihan, S. D., Ong, D., Cusimano,

M., & Saxe, R. (2022). Reasoning about the antecedents of emotions: Bayesian

causal inference over an intuitive theory of mind. Proceedings of the 44th Annual

Conference of the Cognitive Science Society.
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Data Dependent Independent Veridical Contextual Chap
Set Variables (DV) Variables (IV) IV Frame

(i) 𝑒𝑎𝑑𝑗 𝑎1, 𝑎2, 𝑝𝑜𝑡 ✓ GoldenBalls 3, 5
(ii) 𝑒𝑎𝑑𝑗 𝑥 N/A no-context 3, 5
(iii) 𝑒𝑎𝑑𝑗 𝑥, pot ✓ GoldenBalls 3, 5

(iv-a) 𝑎𝑠𝑒𝑙𝑓
1 , 𝑎𝑠𝑒𝑙𝑓

2 𝑥, pot ✓ GoldenBalls 3, 5
(iv-b) 𝑎𝑜𝑡ℎ𝑒𝑟𝑠

1 , 𝑎𝑜𝑡ℎ𝑒𝑟𝑠
2 𝑥, pot ✓ GoldenBalls 3, 5

(v) 𝜔base, 𝜋𝑎2 𝑎1, pot ✗ 𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝐺𝑎𝑚𝑒 4, 5
(vi) 𝜔base, 𝜔repu, 𝜋𝑎2 𝑎1, pot, SpecificPlayer ✗ GoldenBalls 4, 5
(vii) 𝑒𝑛𝑜𝑢𝑛 𝑎1, 𝑎2, pot ✗ GoldenBalls 4
(viii) 𝑒𝑛𝑜𝑢𝑛 𝑎1, 𝑎2, pot, SpecificPlayer ✗ GoldenBalls 4
(ix) 𝑒𝑎𝑑𝑗 𝑥, 𝑎1, 𝑎2, pot ✓ GoldenBalls 5
(x) 𝑓𝐴𝑧𝑢𝑟𝑒 𝑥 N/A no-context 5
(xi) 𝑓𝑅𝑒𝑘𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑥 N/A no-context 5

Table 1.1: Empirical Data Sets (i-ix). Human participants made judgments of the
Dependent Variables (DV) based the Independent Variables (IV). When multiple IV are
given, the Veridical IV column indicates whether the IV reflect true values and pairing
(based on the GoldenBalls footage) or have been manipulated. The Contextual Frame
indicates what background information observers were given during the training phase of
the experiment: observers were told the rules of GoldenBalls and watched an example of two
players negotiating in the lead up to revealing their decisions (GoldenBalls)†; observers were
told that the game was anonymous, rather than a gameshow with a negotiation between
the players (𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝐺𝑎𝑚𝑒); observers were given no information about the provenance
of the expressions (no-context). The stimulus variables are: the 5-second silent expression
video showing the dynamic expression spontaneously produced by the focal player (𝑥);
the focal player’s action (𝑎1∈{C, D}); the opponent’s action (𝑎2∈{C, D}); the size of the
jackpot (pot). In Chapter 4, observers were also given a description of a player’s occupation
(SpecificPlayer). The DV include: the intensities of 20 emotions, rated on continuous scales
(𝑒𝑎𝑑𝑗 - adjective label set, 𝑒𝑛𝑜𝑢𝑛 - noun label set); each player’s action, rated on a 3-point
confidence scale (𝑎𝑠𝑒𝑙𝑓

1 , 𝑎𝑠𝑒𝑙𝑓
2 ); judgments about what inferences other participants are likely

to make about the players’ actions (𝑎𝑜𝑡ℎ𝑒𝑟𝑠
1 , 𝑎𝑜𝑡ℎ𝑒𝑟𝑠

2 ); the focal player’s first-order and second-
order preference weights, rated on continuous scales (𝜔base and 𝜔repu , respectively); what
decision the focal player thinks the opponent will make, rated on a 3 point confidence scale
(𝜋𝑎2). Participants were always shown a static photo of the focal player, which was taken
before the players revealed their actions.
Computer Vision Data Sets (x,xi). Microsoft Azure Emotion Detector and Amazon
Rekognition returned confidence rating time series of 8 emotions (𝑓𝐴𝑧𝑢𝑟𝑒 and 𝑓𝑅𝑒𝑘𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛)
based on an expression video.
† The GoldenBalls contextual frame is referred to in Chapter 3 as “broad-context”, in
Chapter 4 as “Public Game”, and in Chapter 5 as parameterization “𝑐”.
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Chapter 2

Formalizing emotion concepts

within a Bayesian model of theory

of mind

“I’d rather write an encyclopedia about common emotions,” he ad-
mitted. “From A for ‘Anxiety about picking up hitchhikers’ to E for
‘Early risers’ smugness’ through to Z for ‘Zealous toe concealment,
or the fear that the sight of your feet might destroy someone’s love
for you.’ ”

— Nina George, The little Paris bookshop

2.1 Introduction

If your friend is experiencing early risers’ smugness, how would you know? From a

quick glance at her face and posture, you see she is experiencing a low-arousal positive

emotion. To refine this attribution, though, you would need knowledge of the context

and cause of the emotion. She is more likely to feel smug, you know intuitively, if she

chose to wake up early (rather than being woken involuntarily by a screaming baby)

and if she used those extra hours to her relative advantage (rather than wasting them

counting sheep). As this example illustrates, human observers can recognize and

reason about highly-differentiated, or fine-grained, emotions. Here we propose that
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fine-grained emotion concepts are best captured in a Bayesian hierarchical generative

model of the intuitive theory of other minds.

The role of concepts in emotion has been extensively disputed (Adolphs, 2016;

Barrett, 2014; Moors, 2014; Tracy, 2014). This question is particularly hard for

first person emotions: when I myself feel anxious, what is the role of my concept of

“anxiety” in the construction of my experience? Here, we selectively tackle an easier

problem: the problem of other minds. We recognize anxiety in our friends, distinguish

their anxiety from their disappointment or regret, and try to respond in appropriate

ways (Zaki & Williams, 2013); but how do we make such specific and accurate emotion

attributions to another person? In order to formally address that question, we situate

emotion concepts in a computational model of the intuitive theory of mind (Baker

et al., 2017; Lake et al., 2017).

2.2 Situating emotion concepts within an

intuitive theory of mind

Initial scientific descriptions of an “intuitive theory of mind” focused on its applica-

tion to predicting others’ intentional actions (Wellman, 2014). Minimally, intentional

actions can be predicted (and explained) as consequences of the agent’s beliefs and

desires, and modeled as inverse planning (Baker et al., 2009). Note that intuitive

(or “lay”) theories are causally structured, but generally not explicit, declarative, or

introspectively accessible (Murphy & Medin, 1985). Subsequent models have consid-

erably extended this basic premise to capture causal relations between other kinds of

mental states. For example: Greg’s choices additionally depend on (what he believes

about) the costs of his actions (Jara-Ettinger et al., 2015); his beliefs update in re-

sponse to new evidence (Baker et al., 2017); his actions are influenced by his habits

(Gershman et al., 2016); and so on. A hierarchical Bayesian model of this intuitive

causal theory can explain both observers’ forward inferences (predicting Greg’s ac-

tions given his beliefs and desires) and inverse inferences (inferring Greg’s beliefs and
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Figure 2-1: A graphical simplification of part of the intuitive causal theory of other minds.
Beliefs are hierarchical and recursive (indicated by a self-referential arrow) and mediate
knowledge of the world. Constraints include evaluations of the costs of actions, the modal
manifold (what is possible and probable), what is controllable, etc. Preferences include
both local goals and intentions, and also long-term values like morals, relationships, and
status. Expressions reflect emotions, but not exclusively. Observers know that people can
intentionally modulate expressions, enhancing cues of experienced emotions, suppressing
expressions to mask internal states, and pragmatically effecting conformations for commu-
nicative purposes. In addition, observers know that people use their musculature for more
than expressions, and readily filter for desired information using contextual knowledge about
acts (he is blowing out a candle), habits (she smiles when nervous), and physiological influ-
ences (he has diminished expressions owing to Parkinson’s). At the core of the model is the
inferred appraisal process: interpreting external events through the lens of their relevance
for one’s goals, beliefs, costs, and so on. Inferred appraisals cause emotions (internal states)
which cause expressions (observable behaviors). An observer can therefore predict emotions
based on inferred appraisals (following the causal arrows) or from the observed expressions
(inverse of the causal arrows). The dimension of time is implicit (variables update and
inferences can be made across time). Compare similar models in Böhm and Pfister (2015),
Ong et al. (2015), and Wu et al. (2018).

desires given his actions) (Baker et al., 2009).

People readily incorporate emotions in their intuitive reasoning about other minds

(Ong, Zaki, & Goodman, 2016) but only recently have computational models of the-

ory of mind been elaborated to include emotion concepts. Minimally, in the intuitive

theory, emotions (or emotional reactions) are caused by how the person interprets

(or “appraises”) external events in relation to his other mental states (goals, beliefs,

moral values, costs, traits, etc.; Figure 2-1). For example, Greg’s emotional reactions

will depend on whether (according to Greg) external events fulfill his goals, contradict
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his beliefs, reduce the constraints or costs of his preferred actions, violate his values,

and so on. As with intentional actions, the same intuitive theory also supports in-

verse inferences. In the intuitive theory, emotions (which are internal mental states)

cause emotional expressions (which are externally observable behaviors), so observers

can use perceived emotional behaviors to infer underlying emotions (i.e. perform

an inverse inference from observed effects to unobserved cause). Situating emotion

concepts within the intuitive theory of mind in this way may seem obvious, but has

many implications for building models of human emotion understanding.

2.3 Specificity and development of emotion

inference

First, this approach offers a natural, systematic way to formalize highly-differentiated

predictions of others’ emotions, and the links between those predictions and the rest

of our sophisticated reasoning about other minds. Although no existing model has

yet fulfilled this promise, parts of the intuitive theory of mind have already been well-

described in Bayesian generative causal models (Jara-Ettinger et al., 2016; Moutoussis

et al., 2014). Capitalizing on this progress, the same formalizations can be used to

model (some) human emotion predictions. For example, in a simple lottery context,

two parameters of the target’s appraisal could be inferred directly from a descrip-

tion of the event — his overall reward, and his prediction error — and combined

to capture in quantitative detail the emotions that observers predicted (Ong et al.,

2015). Relatedly, Wu et al. (2018) showed participants simple moral scenarios, in

which Grace puts white powder in another girl’s coffee. The powder turns out to be

poison, and the girl dies. Participants use Grace’s smiling facial expression to infer

both that Grace knew the powder was poison, and that she wanted the girl to die.

These inferences could be precisely described as inverse inferences in the participants’

intuitive theory of mind (Wu et al., 2018). In the real world, observers make similarly

momentous inverse inferences based on emotional reactions (Armstrong et al., 2016;
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“The Weeping Oscar Pistorius and a Final Question: Has It All Been an Act?”, 2014).

Even children’s earliest understanding of others’ emotions implies (simple) inferred

appraisals. Based on an agent’s observed motion path (and a principle of rational

action), preverbal infants can infer the agent’s goal (e.g. to get over the wall); then,

relative to that goal, infants can distinguish between outcomes that the agent would

appraise as goal-consistent or not (Gergely & Csibra, 2003). Critically, by 10 months

old, infants also appear to predict a relevant emotion (or affective state) that causes

subsequent expressions (laughing or crying) and are surprised if the agent whose goal

was fulfilled then shows a negative-valence behavior, crying (Repacholi et al., 2016;

Skerry & Spelke, 2014). During development, children’s intuitive theory of mind

becomes more sophisticated, and their third-person emotion attributions follow suit

(Harrison et al., 2020; Nelson et al., 2012; O’Brien et al., 2011; Ong, Asaba, & Gweon,

2016; Ornaghi & Grazzani, 2013; Ronfard & Harris, 2014; Weimer et al., 2012). Note

that while some developmental psychologists reserve the term “theory of mind” for a

meta-representational understanding of beliefs, e.g. O’Brien et al., here the Bayesian

model of theory of mind is a generative causal theory, encompassing goals and actions

as well as beliefs, costs, and values (Baker et al., 2009; Ong, Asaba, & Gweon, 2016).

The long-term goal, however, is not just to capture one or two components of

observers’ emotion knowledge; rather, it is to develop a formal model that captures

all of the same inferred appraisals as human observers do. Promising for this line

of work, when given human labels for the target’s appraisals, computational models

can already capture a relatively wide and differentiated range of human emotion

predictions. Two recent studies provide converging evidence. Using human ratings

for 25 appraisal features, a model correctly chose an emotion label (out of 14) for

51% of 6000 real-life events; only 10% of the model’s choices were judged “wrong” by

human observers (Scherer & Meuleman, 2013). Similarly, using human ratings for 38

inferred appraisals, a simple model correctly chose the emotion label (out of 20) for

57% of 200 short stories; human accuracy on the same test was 63% (Skerry & Saxe,

2015). These models do not yet capture the link from the event to the target’s values,

goals, beliefs, and costs, and thus to inferred appraisals. Still, the models’ success
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suggests that once these links are included, the intuitive theory of mind will capture

a substantial portion of shared human knowledge about emotions.

2.4 Ambiguous perception and precise

predictions

Second, our proposal offers novel insight into predictions based on combinations of

inferred appraisals (forward inference) and perceived emotional expressions (inverse

inference). People intuit that faces contain the most revealing information about

others’ emotions (Aviezer et al., 2012b; Bonnefon et al., 2013). Perhaps surprisingly,

mounting scientific evidence shows that human emotion attribution from faces is ac-

tually uncertain, noisy, and low-dimensional (Bartlett et al., 2014; Hassin et al., 2013;

Russell, 2016). Many different emotions can be attributed to the same facial configu-

ration (Aviezer et al., 2015; Russell et al., 1993; Wenzler et al., 2016; Widen & Russell,

2010); and the space of emotions perceived in faces can be captured in just a handful

of dimensions (Dobs et al., 2014; Mehu & Scherer, 2015). Even the valence of the

event (goal-congruent or not) is not reliably perceived in high-intensity faces: the ex-

act same facial configuration can be attributed to extreme joy (the unexpected return

of a child from military service), extreme distress (witnessing a terrorist attack), ex-

treme pleasure (orgasm), or extreme pain (unanesthetized nipple piercing) with equal

plausibility (Aviezer et al., 2012b). To disambiguate these emotions, observers rely

on body posture (open arms, lifted chest; Martinez et al., 2015) or inferred appraisals

of the event (“he won the race”; Kayyal et al., 2015).

Although both body posture and event information are known to disambiguate

emotion recognition (Aviezer et al., 2012b; Hassin et al., 2013; Kayyal et al., 2015;

Zaki, 2013), our model makes a novel distinction between inverse inferences (from

bodies) and forward inferences (from event-appraisals). On one hand, observers intu-

itively infer a common cause (an underlying emotion) of observable face, body, and

vocal cues. Thus, integrating facial and body configuration, as well as vocal tone,
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can improve the reliability and specificity of inverse inferences (de Gelder et al., 2015;

Martinez et al., 2015; Schlegel et al., 2012). Postural information is less ambigu-

ous than facial configuration when perceived at high intensity, from a distance, etc.

(Martinez et al., 2015); similarly, vocal bursts are more informative for distinguishing

among positive emotions (Simon-Thomas et al., 2009). As a result, depending on

the context, the modality with the most reliable information will appear to dominate

emotion attributions (Ong et al., 2015; Zaki, 2013); when one cue is ambiguous, cues

from other modalities can “sharpen” the inferred cause by shifting attributions among

similar, or nearby, emotions (Hassin et al., 2013). On the other hand, event informa-

tion is intuitively relevant to the cause of the emotion, rather than its consequences.

Additional event information can make emotion attributions more reliable not only

by continuously shifting among similar emotions, but also by selecting among sep-

arated possibilities (Ma et al., 2009), because partial event knowledge can generate

predictions of distinct (dissimilar, non-overlapping) alternative emotions (e.g. how

will he feel after he asks his crush on a first date?). This difference between forward

and inverse inferences has been obscured in prior research that confused postural

and event-context cues: for example, a photograph of nipple piercing (Aviezer et

al., 2012b) contains mainly event information supporting inferred appraisals, not an

emotional posture.

Relatedly, we can distinguish between two ways that “dynamic” facial expressions

contain more information than static ones (Krumhuber & Scherer, 2016). On the

one hand, dynamic change can more precisely differentiate expressive from structural

facial features (e.g. a person with dark brows from a person making an angry expres-

sion) (Goren & Todorov, 2009; Hehman et al., 2015; Todorov & Porter, 2014; Todorov

et al., 2015). Dynamic change can also provide more clarity on mixed expressions, by

separating the mixture in time (Jack et al., 2014). In these ways, dynamic expressions

may lead to more specific or more confident inverse inferences (though observers can

also be surprisingly insensitive to dynamic information per se; Wenzler et al., 2016;

Widen and Russell, 2015). On the other hand, when temporal change in the face

coincides with temporal change in the external event structure, dynamics support
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forward inference by highlighting the emotionally-relevant aspect of an event (Mu-

menthaler & Sander, 2015). For example, observers are generally quite insensitive to

elements of surprise (“wide-eyed”) in mixed expressions (Mehu & Scherer, 2015; Wu

et al., 2018). When a change of expression is temporally coincident with an event

outcome, though, observers accurately infer that the information was unexpected and

change their inferred appraisals accordingly (Wu et al., 2018). The temporal sequence

of emotions can further constrain inferred appraisals; if people intuit that cognitive

processes occur at different speeds then the order of expressions can indicate which

hidden mental variable is associated with which emotion.

Third, we propose that there is a key asymmetry between forward and inverse in-

ferences of emotion. The forward inference depends on inferred appraisals which are

highly differentiated and granular. However, people’s intuitive theory of mind is also

biased and based on simplifying heuristics, inducing systematic errors (Saxe, 2005).

We assume people share our desires, values, norms (Coleman, 2016). We underesti-

mate people’s ability to cope, recover, and rebound from significant events (Cooney

et al., 2014; Miloyan & Suddendorf, 2015). These biases in the intuitive theory of

mind translate into systematic errors in predictions of emotions. By contrast, in-

verse inference from emotional expressions is uncertain and low-dimensional, but also

relatively accurate and unbiased. Combining both sources is therefore uniquely pow-

erful: forward inferences from inferred appraisals can suggest highly specific, granular,

differentiated predictions of another person’s emotions; perception of that person’s

expressions can confirm or contradict these predictions, allowing for rapid correction

within a reduced possibility space.

2.5 Neural representations of fine-grained

emotion concepts

Finally, situating emotion concepts within the intuitive theory of mind fits well with

recent neuroscientific evidence. Highly-differentiated representations of others’ emo-
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tions are almost exclusively found in brain regions associated with theory of mind,

especially in temporo-parietal and medial frontal cortex (Ferrari et al., 2016; Se-

bastian et al., 2012; Skerry & Saxe, 2015). These representations are abstract and

amodal, generalizing across emotions inferred from stories, events, and expressions

(Skerry & Saxe, 2014, 2015). By contrast, perception of emotional expressions, and

even integration of those expressions across modalities, depends on distinct brain re-

gions, especially the superior temporal sulcus (Kotz et al., 2012; Lee & Siegle, 2014;

Srinivasan et al., 2016; Watson et al., 2014; Wegrzyn et al., 2015). These two pro-

cesses are dissociable in individual differences (Anderson et al., 2015; Rice & Redcay,

2015; Rice et al., 2014), and in neurodegenerative disorders (Lindquist et al., 2014).

Taken together, these lines of evidence strongly support the link between emotion

concepts and the rest of an observer’s intuitive theory of mind.

2.6 Conclusion

Two lines of scientific research have made substantial progress in parallel, and now

stand to make even more progress in concert. On the one hand, formal computational

models have begun to capture the core of people’s intuitive theory of mind. These

models can accurately model inferences over continuous quantitative variables, within

abstract hierarchical structures. As of yet, however, these models have made limited

progress in the domain of emotion understanding. On the other hand, the conceptual

act theory of emotion attribution identifies the powerful influence of emotion con-

cepts on emotion attribution (though emotion concepts are usually operationalized

as words, or labels; Lindquist et al., 2015; Lindquist and Gendron, 2013). Appraisal

theory describes some of the content of shared knowledge about emotional events

(though as a hand-picked and manually-coded list, rather than a generative causal

model; Scherer and Meuleman, 2013). Using the intuitive theory of mind as a frame-

work to formalize observers’ inferences about a target’s appraisals offers a powerful

tool to capture, and even recreate in a computer (Gratch & Marsella, 2014), our

detailed knowledge of how others feel.
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Chapter 3

Reasoning about emotions,

expressions, and events

To achieve accurate knowledge of others, if such a thing were pos-
sible, we could only ever arrive at it through the slow and unsure
recognition of our own initial optical inaccuracies. However, such
knowledge is not possible: for, while our vision of others is being
adjusted, they, who are not made of mere brute matter, are also
changing; we think we have managed to see them more clearly, but
they shift; and when we believe we have them fully in focus, it is
merely our older images of them that we have clarified, but which
are themselves already out of date.

— Marcel Proust, In Search of Lost Time

3.1 Introduction

Imagine watching your friend, Luke, listen to a voicemail. As he listens, his facial

expression remains fairly neutral, then he looks up at you with a mild smile. What

just happened, and how does Luke feel about it? Intuitively, it is hard to be sure,

but what makes this problem hard? One possibility is that this scenario describes

a perceptual problem. In this view, often called “emotion recognition” or “emotion

perception,” emotions are signaled by patterns of expressive behavior (Keltner et al.,

2019; Shariff & Tracy, 2011). To correctly recognize Luke’s experience, observers
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use perceptual pattern matching to interpret the dynamics of Luke’s musculature in

detail.

In this view, observers make nuanced and high dimensional inferences by observ-

ing others’ richly informative expressions, because expressions can signal someone’s

current emotional state, intentions, and assessments of the eliciting situation (Keltner

et al., 2019). Thus, with perceptual access to the relevant expression cues, observers

should be able to reliably identify others’ emotions (Cowen & Keltner, 2020). This

“emotion recognition” view aligns with people’s lay intuitions. For example, observers

expect that intensely positive and intensely negative experiences should lead to highly

distinctive facial expressions (Aviezer et al., 2012b). This view assumes (often im-

plicitly) that observers’ emotion knowledge is encoded as a network of transitive

statistical associations between events, emotions, and expressions. For example, it is

argued that observers can reliably map between expressions, emotions, and situations.

Observers may be given a photo and asked to identify what events evoked the expres-

sion (Haidt & Keltner, 1999), or label the expression with an emotion word (Tracy &

Robins, 2004). Similarly, observers may be given a description of events and asked to

select which expression matches that situation (Cordaro et al., 2020). The theories

and assumptions of emotion recognition have heavily influenced psychological study

of how people understand others’ emotions (for recent reviews, see Barrett et al.,

2019; Keltner et al., 2019), as well as machine learning efforts to engineer artificial

systems that rival human emotion understanding (B. Martinez et al., 2019; Dupré

et al., 2020; Krumhuber et al., 2021; Yu & Zhang, 2015).

Here we propose a different idea, which we call “emotion reasoning”: that ob-

servers make sense of the expressions they see, in terms of their conceptual knowl-

edge. Emotion reasoning treats emotion understanding as causal inference over a

hierarchical mental model, rather than as a transitive network of statistical associa-

tions. Recent work has proposed that lay people use richly structured mental models

to reason about others’ emotions (Anzellotti et al., 2021; de Melo et al., 2014; Ong

et al., 2015; Saxe and Houlihan, 2017; Wu et al., 2021; for review, see Ong et al.,

2019). These “intuitive theories” are abstract causal models that enable commonsense
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reasoning (Gerstenberg & Tenenbaum, 2017; Gopnik & Wellman, 1994).

In line with this proposal, we suggest that human observers generate hypothe-

ses about what Luke might be reacting to, based on a mental model of the causal

relationships between events, emotions, and expressions. Contextual knowledge can

dramatically influence which hypotheses are generated (Scherer & Meuleman, 2013;

Skerry & Saxe, 2015). If the message is from an advertising company, Luke is likely

to find the content dull. If the message is from a college Luke applied to, then the

message likely contains momentous news, either good or bad. From hypotheses about

the content of the message, observers predict how Luke would feel and what expres-

sions he would make, in each case. Finally, observers match these predictions to their

observations to get a posterior probability over the hypotheses: that is, an inference

of which message, and which emotional reaction, best explain Luke’s expressions. In

this variety of emotion recognition, where observers’ emotion knowledge is encoded

as a common network of statistical associations, the distribution of emotions that

observers predict a situation to elicit match the distribution of emotions that people

appear to express in that situation.

Some varieties of emotion recognition grant that the emotions people are predicted

to experience in a situation might differ from the emotions they appear to express.

This view predicts that expressions are inherently informative independent of context.

Observers might expect Luke to be disappointed and sad if he was rejected from his

dream school, but if he was in fact happy (because he now had an opportunity to

travel, for instance), his expressions would communicate his experience to observers,

leading them to discount their predictions in favor of the unambiguous signals of

relief and joy from his expressions. Observers’ emotion predictions should only be

relevant to their emotion understanding when the perceptual information is degraded

or unavailable. For instance, Cowen and Keltner (2020) scraped a large corpus of

images from Google and found that removing non-expression information (e.g. what

activities people were engaged in) had minimal effect on which emotions were ascribed

to pictured expressions. Since expressions are assumed to be inherently informative

independent of context, emotion recognition research programs treat expressions as
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the primary source of emotion information and have largely ignored the role of emotion

predictions in how observers interpret expressions.

Other work that has investigated how observers integrate expressions and event

context does not support the view that expression information dominates emotion

predictions (Kayyal et al., 2015). When given simultaneous access to expressions and

to event context, observers incorporated both sources of information into emotion

judgments1 (Anzellotti et al., 2021; Ong et al., 2015). Consistent with these findings,

emotion reasoning predicts that human observers interpret expressions by reasoning

about what causal explanation jointly maximizes the probability of events, emotions,

and expressions. In the case of Luke, when the observer does not know where the

voicemail is coming from, the smile could be interpreted any number of different ways.

However, if the observer perhaps overhears the initial portion of the voicemail and

realizes it’s from Luke’s dream school, this context constrains the potential causes of

Luke’s reaction—a mild smile might reveal profound disappointment.

Like emotion recognition, emotion reasoning theories that posit expressions are

inherently informative grant that the emotions people are predicted to experience in

a situation might differ from the emotions they appear to express. However, emotion

recognition and emotion reasoning make different predictions about how observers

integrate conflicting information. Whereas emotion recognition assumes that infor-

mation signaled by inherently informative expressions will dominate emotion predic-

tions, emotion reasoning assumes that the interpretation of expressions is an ill-posed

problem that observers solve by constraining the space of possible meanings with pre-

dictions about which explanations are likely. In other words, the emotions observers

predict someone is likely to experience shape what emotions they infer to be the

cause of expressions. Thus, observers can incorporate useful contextual cues into the

interpretation of expressions, which is advantageous when even perceptually rich ex-

pressions are ambiguous (Israelashvili et al., 2019), or when people do not produce
1One limitation is that these studies used static images of isolated facial expressions, including

computer-generated faces, leaving open the possibility that if observers had access to perceptually
richer expression information the contribution of predictions to emotion judgments would be reduced
or obviated.
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the expected expressions (Durán & Fernández-Dols, 2021).

These differing accounts of what and how expression information is used during

emotion understanding lead emotion recognition and emotion reasoning to make con-

trasting predictions about the source and structure of errors. Emotion recognition

frames emotion understanding as accurate signal detection where observers can ac-

curately make nuanced and high dimensional inferences by observing others’ richly

informative expressions. The common assumption that inferences from expressions

are accurate with regard to ground truth (Buck, 1994; Nakamura et al., 1990; Newen

et al., 2015; Shariff & Tracy, 2011; Witkower et al., 2020) leads machine learning re-

search to train models on human annotations and takes this as a proxy for the target’s

emotional experience. Similarly, in psychology, researchers often ascribe ground-truth

value to canonical expressions and measure how accurately people identify the pre-

scribed label. In this view, errors occur because judgments may be noisy, especially

if the perceptual signal is degraded because an expression is partially occluded, low

resolution, or changes rapidly.

Framed as a perceptual problem, observers would need to perceive the dynam-

ics of Luke’s musculature in detail in order to correctly recognize Luke’s experience.

The more sensitively observers detect subtle changes or brief flickers of muscle tone—

crinkled eyebrows, dilated pupils, flushed cheeks, a hunched shoulder—the more accu-

rately they can understand Luke’s experience (Ekman, 1992; Matsumoto & Hwang,

2018). Because access to better perceptual information should enable better emo-

tion recognition, observers should be more accurate if they can see bodily postures

in addition to facial conformations (Aviezer et al., 2012a; Lecker et al., 2020) and

the temporal dynamics of expressions rather than the static expression of a single

moment captured by a photo (Ambadar et al., 2005; Goldenberg et al., 2022; Jack

et al., 2014; Krumhuber et al., 2013; Sowden et al., 2021). Observers should make

accurate high-confidence judgments about expressions that convey strong signals, and

should make noisy low-confidence judgments about expressions that convey weak sig-

nals. This should produce judgments that are noisy, but accurate. The level of noise

should be related to the ambiguity of the expression but non-specific, meaning that
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the pattern of errors does not depend on the content of the signaled information.

By contrast, emotion reasoning is likely to exhibit peaked failure modes rather

than non-specific noise. To generate hypotheses about how a person will feel in vari-

ous plausible contexts, observers must rely on inferences about what a person wants

and expects. Yet our intuitive theory of what other people want and expect is notori-

ously biased (Gopnik, 1993; Kruger & Gilovich, 1999; Saxe, 2005) and poorly reflects

the properties of the world, resulting in model-based errors: systematic interactions

between the content of observations and the mental model (Gopnik & Wellman, 1994).

An inaccurate intuition about the emotions someone is likely experiencing might pro-

duce forward errors; for instance, expecting that Luke will be sad following a rejection

from a college might lead us to seek confirmatory evidence and interpret his expres-

sions as corroborating the hypothesized mental state, even when his expressions are

ambiguous or incongruent (Anzellotti et al., 2021; Aviezer et al., 2012b; Kayyal et al.,

2015). An inaccurate intuition about expression production might also produce back-

ward errors; for instance, believing that Duchenne smiles imply subjectively positive

experiences could lead us to infer that Luke was accepted when he was in fact rejected

(Crivelli et al., 2015; Lei & Gratch, 2019; Sen et al., 2018).

This chapter argues for emotion reasoning as a theory of human emotion under-

standing. A central premise of this framework is that contextually-informed emo-

tion predictions shape observers’ interpretations of expressions and inferences of an-

tecedent events. By contrast, emotion recognition treats emotion predictions as an-

cillary, or even irrelevant, to the understanding of expressions. Emotion recognition

research programs vary in their specific assumptions, predictions, and aims, but they

share the theoretical assumption that expressions are the primary source of informa-

tion observers use to understand others’ experiences. Because perceptual patterns of

expressive behavior are the central focus of emotion recognition research programs,

these theoretical frameworks and modeling efforts only coarsely articulate, or omit

entirely, the function of emotion predictions. A general contribution of the emo-

tion reasoning framework is that it enables one to quantitatively assess different hy-

pothesized functions of emotion predictions, including what information predictions
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contain, how predictions interact with expression information, and how predictions

influence other social cognitive processes.

The theoretical basis is similar in spirit to other work that treats emotion under-

standing as inference over an intuitive theory of psychology (Barrett, 2017; de Melo

et al., 2014; Freeman & Ambady, 2011; Ong et al., 2015; Wu et al., 2017). We extend

this work by introducing a computational model that captures how observers reason

over latent emotion representations to make abductive inferences. To our knowledge,

this is the first formal model of abductive inference over emotions.

3.1.1 Spontaneous expressions in a high-stakes social

dilemma

There are several requirements of a paradigm that aims to compare the emotion recog-

nition and the emotion reasoning accounts of human emotion understanding. The

expression stimuli should provide perceptually rich veridical information (as opposed

to isolated static faces of posed expressions or computer-generated avatars). The

design should afford an objective measure of ground truth accuracy (so that ‘errors’

are well defined) and the task should allow noisy judgments arising from perceptually

ambiguous stimuli to be differentiated from systematically incorrect judgments.

We generated experimental stimuli designed to meet these criteria by artificially

separating the perceptual information from context information in recordings of a

televised British gameshow called GoldenBalls. Every episode of GoldenBalls culmi-

nates with two contestants playing a dramatic one-shot instantiation of the Prisoner’s

Dilemma (PD). Each player is given a choice to “Split” or “Steal” a jackpot (in stan-

dard Prisoner’s Dilemma notation, to “Cooperate” or “Defect”, respectively). If both

decide to “Cooperate”, they each receive half of the jackpot. If one player instead

chooses “Defect”, that player wins the entire jackpot and the other player who chose

“Cooperate” leaves with nothing. If both players choose “Defect”, both get nothing2.
2Rapoport (1988) defines this payoff structure as a Weak Prisoner’s Dilemma because the CD

payoff confers the same monetary reward ($0) to player 1 as the DD payoff. Thus, with respect to a
player’s first-person financial payout, defecting is never harmful, but is only conditionally beneficial.
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Players negotiate with each other in front of a live audience in an attempt to convince

the other to make a choice that is financially disadvantageous (to cooperate). Each

player makes a decision in private, then they simultaneously reveal their choices, all

while being filmed.

The game is emotionally evocative by design. When the choices are revealed, play-

ers discover whether they have won or lost real, and often substantial, sums of money,

and whether they have successfully cooperated, successfully duped, been duped by,

or failed to dupe the other player. The TV cameras capture their spontaneous un-

scripted dynamic expressions, including changes of posture and expression of players’

faces, shoulders, upper bodies, and hands.

The public nature of the gameshow is a defining characteristic of the event con-

text in this paradigm. Players were fully aware that they were being observed by the

opposing player, the show’s host, the live studio audience, and a remote TV audience.

Knowing they were observed, players may have muted, exaggerated, or otherwise reg-

ulated their expressions (Buck et al., 1992; Chovil, 1991; Crivelli et al., 2015; Ekman,

1993; Fridlund, 1991; Hess et al., 1995, 2005; Parkinson, 2005; Williams et al., 2021).

We consider the public nature of the expressions to be a feature of our paradigm, not

a bug. Emotion recognition and emotion reasoning are competing accounts of human

emotion understanding in real social interactions. Much of the adaptive advantage

ascribed to emotion recognition stems from being able to decode behaviorally relevant

signals, and respond effectively, in ecologically relevant contexts of real social inter-

actions (Shariff & Tracy, 2011; Tracy, 2014). Thus, a valid test of these competing

accounts is how well they predict human understanding of spontaneous reactions in

a salient social situation.
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Figure 3-1: In Studies 1, 2, and 3, observers judged the intensity that players would feel 20
fine-grained emotions (𝑒) on continuous scales. Observers rated all 20 emotions during every
trial. Three example emotions (disappointment, guilty, and joyful) are shown here (boxplot
notches indicate the 95% bootstrap confidence interval of the median). In Study 1, observers
predicted a player’s emotions based on a description of the game outcome. The two players
each decided whether to Cooperate (C), by choosing the ball with Split written inside, or
to Defect (D) by choosing the ball with Steal written inside. The actions (𝑎) of the player
dyad determine how the available jackpot is paid out to the two players. In the example
shown, the focal player Cooperated and her opponent Defected. Thus, the game outcome is
CD and the relative payoff is (0, 1) to the focal and opposing players, respectively. In Study
2, observers watched a 5-second video of a player’s spontaneous expression (𝑥no−context)
without being told anything about the broad-context of the gameshow or what events
transpired. In Study 3, observers watched a player’s dynamic expressions, knowing that the
person was a player on a gameshow and the rules of the GoldenBalls game (𝑥). In Study
4, observers guessed what actions the players chose (𝑎) given the same information as in
Study 3. Solid bars are correct judgments, hatched bars are incorrect judgments. Error
bars give the 95% bootstrap CI of the mean proportion of judgments (n=22 videos per true
outcome). Inter-rater reliability was calculated as the Pearson correlation between a single
observer’s judgments and the population mean across all stimuli.
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3.2 Study 1: Observers make nuanced and

reliable emotion predictions based on event

descriptions

Emotion recognition and emotion reasoning ascribe different importance and functions

to the role of emotion predictions in human emotion understanding. Emotion recog-

nition emphasizes the importance of expressions, which are assumed to convey rich

discriminative information. In most cases, the emotions someone is predicted to expe-

rience should reflect convergent information (i.e. the emotions people are expected to

experience are similar to the emotions they appear to express). When predicted emo-

tions conflict with observed expressions, then observers will discount them in favor

of the rich and reliable information from expressions. Thus, the emotions someone is

expected to experience in a situation will only factor into observers’ emotion under-

standing when expression information is degraded or unavailable. Emotion reasoning

posits that emotion predictions are central to human emotion understanding, as they

constrain the ill-posed problem of inferring what mental states are likely explana-

tions of the perceived expressions. In this first study, we began by measuring what

emotions the GoldenBalls games were predicted to elicit, and if the outcomes were

expected to evoke different reactions.

3.2.1 Methods

A group of English-speaking adults (N=164, 74 female) were shown descriptions of

12 out of the 88 games, then asked to predict emotions that the focal player expe-

rienced. After watching an introductory video that explained the rules of the game,

observers predicted the emotions experienced by players on the gameshow. In each

trial, observers were shown the size of the jackpot, the choice made by the focal

player, the choice made by the opposing player, how much money each player won,

and a still photo of the focal player taken before the players’ choices were revealed.
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Players may have chosen to Cooperate or to Defect, leading to four possible outcomes

for a player dyad, which are denoted CC, CD, DC, DD. For instance, CD indicates that

the focal player Cooperated, while the opposing player Defected. All the information

given on a trial reflected what actually happened on the gameshow. See Figure 3-1

for a summary of the experimental design of each study. Observers predicted the

focal player’s emotional experience, using continuous scales to report the intensity of

20 different emotions. We hypothesized that observers would make systematic and

specific predictions of what emotions players in the GoldenBalls game experienced.

3.2.2 Results and Discussion

Overall, observers expected more positive emotions when a player won money (CC and

DC outcomes) and more negative emotions when a player left with no money (CD and

DD outcomes). Mean emotion judgments are shown in Figure 3-2a and Figure 3-3.

Observers also predicted distinct emotions based on which choice (C or D) a player

made. Players were expected to feel more guilty and embarrassed when they won

money by defecting (DC), but more relieved and grateful when they won money by

cooperating (CC). Observers predicted players would feel jealous when they received

no reward because they were duped by their opponents (CD), and disappointed and

guilty when they received no reward because they attempted to take advantage of

their opponents unsuccessfully (DD).

Independent observers tended to agree about what emotions specific players were

likely to experience. We estimated inter-rater reliability by comparing the emotion

predictions of one observer with the mean emotions that other observers predicted

for the same players (Figure 3-1). Across emotions and players, the median Pearson

correlation and 95% bootstrap confidence interval (CI) was 𝑟 = 0.66 [0.62, 0.70],

indicating that independent observers made similar predictions of players’ emotion

experiences.

Ratings of the individual emotions were also highly reliable across observers.

When the same analysis was repeated for each emotion separately, the median corre-

lation exceeded 𝑟 = 0.75 for multiple emotions, indicating that independent observers
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made consistent predictions about how annoyed, disappointed, and joyful the various

players would be (Appendix Figure A-3). The emotions with the lowest reliabil-

ity were apprehensive, terrified, and surprised, but still showed inter-rater reliability

above the 95% chance level. We conducted the reliability analysis within player

(across emotion) and found greater agreement on players who decided to Cooperate

than on players who decided to Defect (Appendix Figure A-5). The size of the jackpot

had little effect on inter-rater reliability in these data (Figure A-4).

In addition to readily differentiating outcomes, the patterns of predicted emotions

are nuanced with complex dependencies. For instance, players were predicted to be

joyful when they won money, but the amount of money players won was less impor-

tant to the predictions than how the players won (by Cooperating or by Defecting).

By contrast, how disappointed a player was predicted to feel showed little dependence

on the player’s choice, instead reflecting whether the player won anything and, if

not, the amount of money the player could have won. Players’ experiences of fury

were predicted to depend heavily on which decisions their opponents made, but un-

like disappointment, the intensity of fury was predicted to be greater for players who

Cooperated than for players who Defected. Predictions of jealousy reflect how much

an opponent won at a focal player’s expense. Predictions of guilt depended predom-

inantly on whether a player decided to Cooperate or to Defect and were relatively

insensitive to the player’s objective payoff. The only scenario in which a player was

predicted to avoid embarrassment was by mutually Cooperating with an opponent

(CC); deceiving an opponent (DC) was predicted to be embarrassing, being duped into

the sucker’s payoff (CD) was predicted to be even more embarrassing, and failing to

deceive an opponent (DD) more embarrassing still.

While there is evidence that emotion expressions can be captured by two orthogo-

nal bases (Kuppens et al., 2013; Russell, 1980), we find that these emotion predictions

are of higher dimensionality. Even though observers generated these emotion predic-

tions based only on event descriptions of simple games that reflect two binary choices

and the size of the jackpot, four principal components are needed to capture predic-

tions of emotions like guilty and embarrassed (see Appendix Figure A-2).
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Emotions predicted by observers support classification of players’ actions. We

trained a linear multinomial support vector machine (SVM) to classify the game’s

outcome from an observer’s twenty-dimensional emotion rating. The outcome results

from the combination of which action (C or D) the two players in a dyad chose. When

tested on held-out data, the classification accuracy achieved was 0.70 for held-out

game descriptions, and 0.70 for held-out observers, both well above chance (0.25).

These results indicate that the pattern of emotions predicted is highly distinct between

games of different outcome categories, and that the pattern holds at the level of

individual stimuli and at the level of individual observers.

Given the separability of emotion predictions based on players’ actions, it is not

surprising that the emotion predictions also differentiated players who won money

from players who did not, and differentiated players who Cooperated from players

who Defected. In left-out games, a linear SVM classified whether the focal player won

money with 0.86 accuracy, and classified the focal player’s action with 0.79 accuracy,

where chance = 0.5.

3.2.3 Summary

Observers generated rich and reliable predictions of how players are likely to feel

in different contexts. Emotion reasoning proposes that these predictions arise from

a shared intuitive theory of other minds: a causally-structured conceptual network

connecting world knowledge, theory of mind, event appraisals, and emotion concepts.

Such predictions fundamentally shape how observers make sense of related perceptual

information. By contrast, emotion recognition assumes observers preferentially rely on

expressions to understand other’s experiences, largely discounting emotion predictions

when there is rich perceptual access to expressive signals. In Study 2, we assess what

players’ expressions convey to observers in the absence of context.
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Figure 3-2: Expected intensity judgments. Legend indicted the colors and relative
playoffs of the four outcome categories: green - players split the pot CC (focal player gets
0.5 pot, opponent gets 0.5 pot); blue - focal player was stolen from CD (focal 0, opponent
1); red - focal player stole from opponent DC (focal 1, opponent 0); black - both players
tried to steal and got nothing DD (focal 0, opponent 0). Error bars indicate 95% bootstrap
CI of the mean between stimuli. Connecting lines are for display purposes only, to aid in
the visual grouping of related data; emotion labels are categorical so intermediate values
between labels have no meaning.

3.3 Study 2: Emotions conveyed by expressions

do not discriminate between event contexts

In Study 1, we established that observers expect players to experience substantially

different emotions in response to the four outcome categories. In this study, we as-

sess the patterns of emotions observers inferred when perceiving players’ dynamic

expressions, by measuring the emotions observers attributed to the dynamic expres-

sions that the players produced. Under the assumption that spontaneous expressions

signal players’ emotions, as suggested by emotion recognition, observers’ judgments

should reflect the structure of emotional experiences evoked by the different outcomes.

Therefore, players’ expressions should reveal what emotions the games elicited. If the
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outcomes tended to evoke different emotional reactions (as observers in Study 1 pre-

dicted), then the emotions attributed to players’ expressions should be a function of

the outcomes. Alternatively, the expressions might reveal that the outcomes evoked

different emotional experiences in players. For instance, perhaps players’ emotions

were only a function of whether they won money or not, and were not a function of

how they won money (cooperatively or at their opponents’ expense).

By contrast, emotion reasoning does not assume that rich emotion information

is conveyed by players’ isolated expressions. Rather, emotion reasoning predicts ob-

servers have an intuitive theory about the generative process of expressions, which

allows them to infer what mental states are likely the causes of someone’s expressions.

In this view, contextually-informed hypotheses constrain the inference of emotions

from expressions. Thus, good hypotheses can render expression cues informative.

However, without hypotheses of what emotions are contextually likely, isolated per-

ceptual patterns of expressive behavior might be quite uninformative, ambiguous, or

misleading.

3.3.1 Methods

An independent group of English-speaking adults (N=136, 55 female) saw the same

players as observers in Study 1, but rather than being told what events the players

experience, observers watched videos of the players’ spontaneous reactions. Each

video was 5-seconds and depicted the focal player’s expressions using footage spliced

together the moments surrounding the climactic reveal. Observers were given no

information about the provenance of the videos: they were not told that the people

featured in the videos were playing a televised game, the nature of the game, or the

game’s possible outcomes. Observers who reported familiarity with the footage were

excluded from analysis. Given only the visible facial and bodily reactions, observers

judged how much a player was experiencing each of the twenty different emotions.
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3.3.2 Results and Discussion

In sharp relief to the emotion predictions that observers made given descriptions of

the event context, the emotions that observers attributed to players given expressions

were strikingly similar between the four outcome categories (Figure 3-2b). Across

outcome categories, observers rated the players high on joyful, excited, surprised and

apprehensive. Slightly more positive emotions were attributed to players that ex-

perienced mutual cooperation (CC) and mutual defection (DD) outcomes, and more

negative emotions to players in the asymmetric outcomes (CD, DC) where a dyad made

opposing decisions. The overall similarity between outcome categories is surprising

in light of observers’ intuitive hypotheses: observers predict that players’ emotions

should readily distinguish which outcomes they experienced.

As in Study 1, observers’ emotion judgments were highly reliable across emotions

and videos, with a median correlation of 𝑟 = 0.62 [0.60, 0.64] between one observer’s

judgments and the average of other observers’ judgments of the same videos and emo-

tions (Figure 3-1). However, the pattern of inter-rater reliability differs substantially

between these studies at the level of individual emotions (Appendix Figure A-3). In

particular, compared to the emotions predicted by observers given descriptions of the

event context (Study 1), observers of expressions showed greater inter-rater reliability

in their judgments of surprise, but less reliability in their judgments of furious and

guilty, in addition to jealous. The overall inter-rater reliability of emotion judgments

demonstrates that observers are sensitive to perceptual cues present in individual

players’ dynamic expressions.

The videos that observers viewed in this study presented the dynamic face and

body expressions that 88 different players spontaneously produced during monetarily

and socially salient events. In comparison, the event descriptions that observers

viewed in Study 1 were extremely sparse, consisting of two binary choices, the size of

the jackpot, and a static photo of one player from before the choices were revealed.

Despite this clear difference, the same number of orthogonal bases (four) were required

to capture the emotion judgments of players’ dynamic expressions, as were required
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to capture the emotion judgments of the event descriptions (Appendix Figure A-2).

To confirm that the cues that observers reliably detect do not support classification

of which actions players chose, we trained a linear multinomial SVM to classify the

outcome of a game from the twenty-dimensional emotion attribution made by an

observer. In contrast to Study 1, emotions judged from expressions support relatively

poor discrimination between the four outcome categories. The classification accuracy

achieved was 0.41 for held-out expression videos, and 0.41 for held-out observers

(chance = 0.25).

We then tested whether a linear SVM could perform a simpler task: classifying

whether or not a player won money. The classifier performed near chance, achieving

an accuracy of only 0.55 (chance = 0.5). We similarly did not find evidence that

emotions attributed based on players’ expressions could support discrimination be-

tween players that chose to Cooperate and players that chose to Defect: the accuracy

achieved for held-out players was 0.53 (chance = 0.5).

Visual inspection of the mean intensities shown in Figure 3-2 instead suggests that

the structure of interpreted emotions maps onto whether or not the two players in

a dyad made matching decisions. This observation is supported by the exploratory

finding that a linear SVM could decode whether opposing players made matching

choices (either CC or DD) versus different choices (either CD or DC), from the emotions

attributed to the focal player (accuracy = 0.70, chance = 0.5).

3.3.3 Summary

Study 1 showed that predicted emotions reflect the structure of the veridical outcomes:

the within-outcome similarity of emotion judgments was high whereas the between-

outcome similarity was low. Given the emotions that one player was predicted to

experience, the actions of both players in the dyad could be linearly decoded. In other

words, observers predicted that each of the game’s four outcome categories elicited

distinct emotional experiences. However, in the present study, the expressions that

players actually produced during the same games led observers to infer that players

from different outcome categories were having highly similar emotional experiences.
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The judgments of the emotions players appeared to experience were insensitive to ma-

jor components of the events players actually experienced, including whether players

received a monetary reward or nothing and whether players made a prosocial or a

deceptive choice. Importantly, the inter-rater reliability was comparable for emotions

predicted given descriptions of event context and emotions attributed given dynamic

expressions (Study 1: 𝑟 = 0.66 [0.62, 0.70]; Study 2: 𝑟 = 0.62 [0.60, 0.64]). Taken

together, these two studies show that players who were expected, from contextual in-

formation alone, to experience dissimilar emotions, instead spontaneously produced

expressions that were interpreted as emotionally similar.

Finding that the emotions attributed to perceptually rich expressions differ dra-

matically from the emotions the players were predicted to experience does not in-

herently argue against emotion recognition. However, the pattern of judgments is

not easily reconciled with the emotion recognition view. Although we do not know

what emotions the players actually experienced, it seems unlikely that players who

successfully won the entire pot (DC players) would, on average, be approximately as

disappointed as their opponents who tried to split the pot and thus won nothing (CD

players). Or that DD players, who won nothing, would be on average nearly as proud,

grateful, and joyful as CC players, who successfully cooperated with their opponents

and split the pot evenly.

3.4 Study 3: Expressions are interpreted in light

of conceptual knowledge

In our view, the inference of emotions from expressions is an ill-posed problem that

observers solve using a richly-structured intuitive theory. Hypotheses about what

someone is likely to be feeling shape the inference of what emotional experiences are

likely explanations for someone’s expressive behavior. In Study 3, we test contrasting

predictions about the effect of broad contextual knowledge on the interpretation of

players’ dynamic expressions. We repeated Study 2, this time informing observers
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that the videos showed the reactions of players on the GoldenBalls gameshow. Intro-

ducing the broad context of the gameshow is a relatively subtle experimental manip-

ulation, in that observers were still given no information about the decisions players

made or the rewards they received.

Emotion recognition asserts that, with perceptual access to the relevant expression

cues, observers should be able to reliably identify others’ emotions independent of con-

text (Cowen & Keltner, 2020). In other words, given players’ spontaneous dynamic

expressions, observers’ emotion attributions should be conditionally independent of

situational information. If observers’ emotion attributions are conditionally indepen-

dent of the broad situational cues given players’ expressions, the attributions should

not systematically differ from the emotion attributions in Study 2, where observers

were given no situational cues. Emotion reasoning makes the contrasting prediction:

that contextual cues constrain the space of hypotheses and shape the inference of

emotions from expressions (Anzellotti et al., 2021). Thus, knowing what events are

possible will induce priors over what emotions the players are likely to be expressing,

and observers will make different emotion attributions than the observers in Study 2.

3.4.1 Methods

An independent group of English-speaking adults (N=135, 58 female) saw the same

5-second videos as in Study 2. Observers began the experiment by watching the same

introductory video as in Study 1, which introduced the rules of the game and the

possible outcome categories. Each trial provided the pot size but not the players’

actions. Observers judged how much the focal player was experiencing each of the

twenty different emotions. Observers who reported any familiarity with the footage

were excluded from analysis.

3.4.2 Results and Discussion

Overall, the emotion attributions observers made knowing the broad-context of play-

ers’ expressions were much more similar to interpretations of players’ expressions
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made without this context (Study 2) than to the predictions based on players’ ac-

tions (Study 1). Figure 3-3 illustrates the effect of different sources of information

on emotion judgments3. Where the patterns of judgments in this study diverge from

those in Study 2, observers who knew the broad context judged players’ emotions as

higher intensity than observers given no context information. The effect of context

information is selective–the elevation pattern is a function of the emotion label and

the outcome.

In the absence of context, players’ reactions to the CC and DD outcomes tended

to be interpreted as low in negative emotions and high in positive emotions such as

relieved, joyful, proud, grateful, and content. Inclusion of the broad-context magnifies

these attributions, with the expressions being interpreted as even more positive. For

CC videos, this tends to result in the emotion attributions shifting closer to the pre-

dicted values (collected in Study 1). For DD videos, the shift caused by context moves

the emotion attributions further from the predicted values.

Some emotions do not seem to be signaled by expressions alone. In Study 2,

observers were cued to guilty and jealous as possible interpretations and still reliably

judged that the expressions did not convey these emotions. Knowing that the players

might have lied and stolen a large sum of money (DC), or might have been deceived and

fleeced (CD), led observers to interpret certain expressions as conveying experiences

of guilt or jealousy.

We find that context shows complex interactions with expression information.

Furious, for example, is not reliably attributed to players’ expressions in the absence

of context. When the broad-context is known, furious is reliably attributed to the

expressions of players from CD games, but not from any other outcome. This pattern

is not easily explained in terms of what was predicted and what was attributed. In
3In Figure 3-2, the question of interest is how representative the stimuli sampled are of the

population, i.e. how the point estimate should generalize to other expressions/descriptions in a
given outcome. Thus, the 95% bootstrap confidence interval (CI) for an outcome was estimated
by resampling point estimates of the stimuli. In Figure 3-3, the question of interest is how broad
contextual knowledge about the situation affected observers’ judgments of the specific stimuli that we
tested. The CI should therefore give the uncertainty in the mean of these specific stimuli, generalizing
to the population of observers. Thus, the 95% bootstrap CI for an outcome was estimated by
resampling observers’ emotion judgments within stimulus.
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both CD and DD games, furious was strongly predicted and not attributed, yet the

broad-context led to higher attributions of furious for only CD expressions.

Thus, while the emotion ratings of expressions are largely similar whether or not

observers are cued to what types of experiences are broadly possible, the fine-grained

differences reveal complex, contextually-dependent emotion reasoning. The effect of

context is not simple modulation, where context increases the attributed intensity in

proportion to a baseline. The effect of context is also not the consequence of a simple

interaction between the prediction and the attribution. Rather, the effect of context

suggests that conceptual knowledge of the broad-context shapes the hypothesis space

from which observers generate emotion predictions. As a result, observers reason

about what emotions are conveyed by expression cues in light of what experiences

are predicted to be likely.

As in Studies 1 and 2, observers’ emotion judgments were highly reliable across

emotions and videos, with a median correlation of 𝑟 = 0.66 [0.64, 0.69] between

one observer and the mean of other observers’ attributions to the same players (Fig-

ure 3-1). Inclusion of the broad-context increased the reliability of most individual

emotions. Notably, guilty, jealous, and furious were judged much more reliably when

the broad-context was known (Appendix Figure A-3).

Emotion attributions made by observers that knew the broad-context of the

gameshow (this study) supported only slightly better classification of the outcome

than attributions made by observers who were given no context information (Study

2). The classification accuracy achieved was 0.44 for held-out expression videos, and

0.45 for held-out observers (chance = 0.25). The confusability pattern for emotions

attributed to broadly contextualized expressions is also similar to those attributed in

uncontextualized expressions in Study 2. Namely, emotions attributed to CC expres-

sions are not readily discriminated from emotions attributed to DD expressions, and

emotions attributed to CD expressions are not readily discriminated from emotions

attributed to DC expressions. Whereas, emotions attributed to players who made

symmetric decisions (CC and DD outcomes) are discriminable from players who made

asymmetric decisions (CD and DC outcomes).
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Figure 3-3: Effect on contextual knowledge in the interpretation of perceptual
information. The point estimates in this figure are identical to Figure 3-2, but the different
experiments are juxtaposed by the four outcomes. Rows show the expected judgment inten-
sity for the four outcomes. No Context Shaded lines show the emotions interpreted from
expressions when observers were given no information about the rules of the game (Study
2). Broad Context Dotted lines with shading are emotions interpreted from expressions
when observers knew the rules of the game but not what specific events players experienced
(Study 3). Error bars show the 95% bootstrap CI of the mean between judgments, within
stimulus (note that the CI are different than Figure 3-2). Stars indicate non-overlapping
CI. Connecting lines are for display purposes only.

3.4.3 Summary

Inclusion of broad contextual knowledge produced fine-grained differences in the in-

terpretation of perceptual information. For instance, even though emotions like guilty

and jealous were judged as absent from the expressions in Study 2, they were reliably

attributed to players when observers could draw on conceptual knowledge to constrain

the space of likely emotion experiences. While knowing the gameshow context did
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bias attributions of emotions to the players’ expressions, it did not appear to render

the expressions more diagnostic of the events players experienced. In subsequent sec-

tions, we demonstrate the effect of broad-context on the interpretation of perceptual

expression information is crucial to capturing how observers use expressions to make

causal inferences.

3.5 Study 4: Systematic errors in human causal

reasoning about the antecedents of

expressions

The preceding studies raise the question of how observers make sense of players’ ex-

pressions in a naturalistic emotion understanding task: inferring the cause of another

person’s emotional expressions. In the view of emotion recognition, observers’ emo-

tion knowledge reflects a common network of associations. Rich perceptual access

to expressions should allow observers to make accurate, albeit noisy, inferences of

emotions, intentions, and eliciting situations. However, Studies 1 and 2 showed a

striking disconnect between the emotions observers predicted would be elicited by a

situation and the emotions they interpreted from players’ expressions, indicating that

observers will not be able to accurately match the perceptual patterns of expressive

behavior to the eliciting situations. Moreover, while observers predicted that the four

game outcomes should elicit distinct emotions (Study 1), players’ dynamic expression

do not appear to convey discriminative information about which outcome elicited

their reactions (Studies 2 and 3). This suggests that expressions alone convey less

situational information than emotion recognition posits. It is nonetheless possible

that expressions do convey diagnostic information and that our measurements simply

failed to capture the discriminative information communicated to observers, leading

to poor SVM outcome classification from the emotion judgments of the expressions.

For instance, the diagnostic information might not be represented as emotion knowl-

edge, or observers might not be able to report the information they decode from
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expressions. It is also possible that the emotion scales we used did not query the

relevant knowledge4. In Study 4 we specifically test if expressions convey diagnos-

tic situational information by asking observers to directly infer game outcomes from

players’ expressions.

Observers were informed of the game’s rules, viewed dynamic expressions, and in-

ferred which outcome elicited each player’s reaction. This paradigm mirrors Study 3,

except that observers judged what situation evoked players’ expressions rather than

what emotions evoked players’ expressions. Each expression video is veridically asso-

ciated with an outcome of the GoldenBalls Prisoner’s Dilemma. The outcomes (CC,

CD, DC, DD) are determined by the decisions of the player dyad, so players’ actions

provide a ground-truth measure of the accuracy of observers’ outcome judgments.

Testing how observers recover the veridical causes of players’ dynamic expressions

enables a strong comparison of the behavioral predictions of emotion recognition and

of emotion reasoning.

In the view of emotion recognition, where outcome judgments reflect perceptual

pattern matching, errors should reflect perceptual ambiguity. Accordingly, incor-

rect judgments should statistically arise when high perceptual uncertainty forces an

observer to choose between multiple competing judgments. The probability that a

judgment is correct should be higher when a strong signal leads an observer to be

confident in their assessment. Errors that do occur should reflect non-specific judg-

ment noise. Judgment noise might be random and unbiased, or might show simple

response bias, where the decisions have different prior probabilities (e.g. observers

may be more likely to respond CC than DD). In both cases, the probability of an er-

ror depends on the strength of the perceptual signal, but the identity of the error is

non-specific, meaning that it does not reflect complex interactions with the content

of information signaled. Thus, judgment errors should arise from the noisy detec-

tion of ambiguous perceptual signals, but errors should not systematically arise in

association with content of stimuli.
4This is potentially mitigated by the scope of emotion judgments we collected (continuous ratings

of 20 nuanced emotions) which are far less restrictive than the most popular emotion scales.
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Emotion reasoning posits that observers can additionally make systematic model-

based errors. In the view of emotion reasoning, where outcome judgments are hypoth-

esized to reflect model-based reasoning, certain expressions might lead independent

observers to reliably and confidently endorse specific incorrect outcome judgments.

Accordingly, incorrect judgments should arise when the mental model makes strong

predictions that do not align with the true generative process in the world. Whereas

non-specific noise (unbiased random noise and simple response biases) should be posi-

tively associated with the ambiguity of expression cues, systematic model-based errors

should be inversely associated with cue ambiguity. For errors that reflect model-based

misinterpretation of expressions (rather than perceptual ambiguity), observers might

be highly confident in certain incorrect judgments.

Emotion recognition and emotion reasoning make contrasting predictions about

the source and structure of outcome judgment errors. We therefore examined three

sources of errors in observers’ outcome judgments—random unbiased noise, simple re-

sponse bias, and systematic errors—and evaluate observers’ self-reported confidence

in their responses. In this section (Study 4), we show that observers reliably and con-

fidently made causal judgment errors not explained as random unbiased judgment

noise or simple response biases. In the subsequent section, we will show that ob-

servers’ casual judgments can be explained as model-based reasoning that produced

systematic errors.

3.5.1 Methods

An independent group of English-speaking adults (N=93, 46 female) judged which

outcome elicited players’ dynamic expressions. As in Studies 1 and 3, observers

first watched an introductory video explaining the rules of the game. Then, over 88

trials, they were shown each 5-second expression video from Study 2 along with the

corresponding pot size. For every video, observers guessed which decision (Cooperate

or Defect) the two players in that game had made. Observers reported confidence

in the judgment of each player’s action on a 3-point scale (“not confident”→ 0.0,

“somewhat confident”→ 0.5, and “very confident”→ 1.0). We used the product of the
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confidence ratings of the two players’ actions as a summary confidence of the overall

outcome judgment. Thus, if an observer reported that she was “not confident” in her

judgment of one player’s action, the summary confidence in her outcome judgment

would be 0.0, regardless of her confidence in her judgment of the other player’s action.

An outcome judgment would receive the maximum confidence rating of 1.0 only when

an observer reported maximum confidence in her judgments of both players’ actions.

Observers also estimated how other observers would judge the outcomes of each video.

3.5.2 Results

On average, observers performed above chance but strikingly poorly, inferring the

correct outcome for an average of 36.6% [35.0, 38.1] of the videos (95% bootstrap CI

estimated by resampling observers). This corresponds to a median F-score (macroav-

eraged across the four outcome categories) of 0.350 [0.335, 0.361], which is low but

significantly greater than chance (two-sided Wilcoxon signed-ranks test, 𝑧 = 7.945,

𝑝 < 0.001). The population null distribution was estimated using the scores expected

from shuffling judgments within observers. This approach compares each observers’

performance to the performance expected if responses were generated by an observer-

specific simple response bias. The mean ROC-AUC (macroaveraged across outcomes)

was 0.58 [0.57, 0.59]. We estimated reliability in a fashion similar to the previous

studies, by correlating each observer’s judgments with the population mean (the cat-

egorical outcome judgments were expressed as one-hot encoded vectors). Across all

expression videos, observers’ outcome judgments showed a median correlation of 0.50

[0.48, 0.51].

Observers’ classification performance was highly heterogeneous across outcomes

and items. Figure 3-4 shows how well observers classified the expression videos,

grouped by the outcome that players actually experienced. See Appendix Table A.1

for the numerical classification metrics and statistics. Figure 5-7 in Chapter 5 shows

the item-wise outcome judgments for each expression video. When the two players

had, in reality, chosen to Split the pot (CC), observers accurately classified 54.1%

[50.6, 57.5] of videos on average (median F-score and Wilcoxon test: 0.517 [0.491,
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Figure 3-4: Poor outcome recovery from expressions. (a) F-scores of observers strat-
ified by the true outcome. Notches indicate 95% bootstrap CI, dashed lines give the median
chance performance for each outcome, based on observers’ response biases. (b) Judgments
are collapsed across observers. Error bars are binomial standard error and colors corre-
spond to the actual outcome of the games. All Judgments gives the population F-scores,
Confident gives the F-scores of the maximally confident judgments, Collective gives the
F-scores of the modal judgment for each expression. The legend gives the four possible
outcomes as associated monetary rewards. An outcome (𝑎) comprises the actions chosen by
player 1 and player 2 (𝑎1 and 𝑎2) and the associated monetary rewards (𝑟1 and 𝑟2 indicate
the proportion of the jackpot paid to player 1 and player 2).

0.540], 𝑧 = 8.224, 𝑝 < 0.001). By contrast, when both players had, in reality, tried to

Steal the pot (DD), on average observers accurately classified only 15.9% [13.2, 18.8]

of videos, substantially below chance (F-score = 0.146 [0.121, 0.182], 𝑧 = −4.041,

𝑝 < 0.001). The classification of DD videos was similarly below the level of uniform

random chance (𝑧 = −5.910, 𝑝 < 0.001). We tested if observers’ outcome judgments

differentiated players who had won money from players who had not: from the focal

player’s dynamic expression, observers classified the opposing player’s action (𝑎2),

with accuracy = 58.4% [57.4, 59.5], and ROC-AUC = 0.58 [0.57, 0.59].

Some observers were better at this task than others. Individual differences in

accuracy were stable across iterative splits of the videos (Pearson 𝑟 and 95% bootstrap

CI = 0.557 [0.412, 0.632]). Yet, even the best observers misclassified true events from

simultaneously recorded emotional expressions almost half of the time. Of all N=93

observers who completed this task, the highest proportion of correct judgments from

any participant was 52.3%.
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Figure 3-5: Self-reported confidence in outcome judgments. For each expression
video, observers reported how confident they were about the two players’ decisions. We
calculated a summary confidence for the outcome judgment by taking the normalized prod-
uct of the two confidence ratings. For CC and CD videos, observers tended to report higher
confidence in their correct judgments. By contrast, for DD videos, observers were more
confident about their incorrect CC judgments than in their correct DD judgments. This is
consistent with the view that errors arise from model-based reasoning, and argues against
the possibility that errors arise from DD videos being weakly informative. Colors indicate
the true outcome associated with the expression videos and the x-axis indicates which out-
comes observers inferred. Correct judgments are indicated with asterisks and are shown as
solid bars. Incorrect judgments are shown as hatched bars.

3.5.3 Confidence accentuates intuitive theory

A summary of observers’ confidence ratings is given in Figure 3-5. Observers tended

to be more confident in their correct judgments of CC and CD expression videos, but

this was not the case for DC and DD expression videos. For DD expressions, observers

reported higher confidence in their incorrect CC judgments (mean and 95% bootstrap

CI = 0.456 [0.398, 0.516]) than in their correct DD judgments (0.341 [0.296, 0.387]).

Responses in which observers were ‘very confident’ in their inferences of both

players’ actions (30.9% of all judgments) yielded better classification of the expressions

of players from CC and CD games. However, confidence trended in the direction of

worse classification of expressions from DC and DD games. Thus, when observers were

maximally-confident in their assessment about what events were causally implicated

by a player’s expressions, they trended towards better inferences of the outcomes that

tended to be correctly identified, but worse inferences of the outcomes that tended

to be misidentified. Figure 3-4a shows the classification performance of the videos by

outcome.

Between observers, we found no correlation between high confidence and classi-
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fication performance (number of maximally confident judgments and macroaveraged

F-score; Spearman 𝑟𝑠 = −0.013, 𝑝 = 0.899). Within observer, maximally confident

judgments were associated with better performance when players were reacting to CC

and CD games (two-sided Wilcoxon test, CC: 𝑧 = 7.127, 𝑝 < 0.001; CD: 𝑧 = 6.302,

𝑝 < 0.001). Confidence was not related to performance for DC outcomes (𝑧 = −1.700,

𝑝 = 0.089). For DD outcomes, however, confidence was inversely related to perfor-

mance (𝑧 = −4.515, 𝑝 < 0.001). Observers’ greater confidence in their mistakes

suggests that these mistakes are not due to perceptual noise or simple response bi-

ases.

3.5.4 Collective judgments

In many domains, aggregating non-expert judgments into a population average can

improve accuracy. When individual judgments are independent, noisy, and unbiased

estimates of a true value, pooling judgments increases the collective accuracy (King &

Cowlishaw, 2007). We tested if observers showed better collective performance than

individual performance by taking the most popular (modal) outcome judgment for

every video. Pooling individual outcome judgments and taking the modal judgment

should reduce random unbiased judgment noise, yielding fewer errors and better clas-

sification. Collective outcome classification performance is shown in Figure 3-4b, and

in Appendix A.2.7. Collective judgments resulted in better classification of DC videos,

but pooling did not improve classification of DD videos at all.

3.5.5 Summary

Human observers performed poorly when asked to recover the true antecedents that

elicited nonverbal expressions. A critical strength of this task is that accuracy is

straightforward to measure and does not depend on experimenters’ normative as-

sumptions: it is simply how often observers inferred what actually happened from

players’ spontaneous emotional reactions. Observers performed poorly despite view-

ing stimuli that, according to the emotion recognition account, should be most in-
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formative: spontaneous, dynamic facial and bodily expressions recorded in a real,

high-stakes situation. No observer correctly classified more than 53% of the expres-

sion videos and the expressions of players from DD games were correctly classified

well below chance. These results strongly oppose the emotion recognition account

of human emotion understanding, which argues that perceiving players’ expressions

should allow observers to successfully infer players’ experiences.

This study extends prior work measuring how accurately observers infer event

antecedents from genuine spontaneous expressions. Albanie and Vedaldi (2016) had

human observers view dynamic facial expressions spontaneously produced during a

high-reward televised gameshow (“Deal or No Deal”). Based on a player’s expression,

observers judged whether the eliciting event had been financially good or bad (binary

classification). The dynamic expressions were more limited than the present study,

framing only the face, which can be ambiguous with regard to valence (Israelashvili et

al., 2019; Wenzler et al., 2016). Albanie and Vedaldi found that, in the binary forced

choice, observers achieved 62% classification accuracy on average, corresponding to an

average ROC-AUC of 0.71 [0.66, 0.76]. Despite having visual access to face and body

dynamics, observers in our present study were not more successful at inferring event

antecedents. In a binary classification that resembles the previous work, observers

in the present study were largely unable to differentiate the expressions of players

who won money from the expressions of players who did not5 (accuracy = 58.4%

[57.4, 59.5], binary ROC-AUC = 0.58 [0.57, 0.59]). This is consistent with the idea

that improving perceptual access is insufficient for improving observers’ ability to

interpret and use expression information. Observers’ successes and failures might

depend more on whether or not cues from the context induce useful priors, than on

better perceptual access per se.

Prior work used a binary choice between events of opposing valance, where the

first-person financial reward defines the event structure (Albanie & Vedaldi, 2016),

which makes detecting systematic classification errors difficult. The present study’s
5In Study 2, emotions attributed these same expressions supported the SVM classification of

players who won money (CC, DC) from players who did not (CD, DD) with comparable but somewhat
lower accuracy of 0.55
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relatively richer event structure enabled deeper insight into the cognitive processes

involved in reasoning about the antecedents of expressions. A key characteristic of

the current experimental paradigm is that it affords analysis of a complex pattern of

causal inferences (a 4 × 4 matrix of inferred × veridical outcomes) where errors are

objectively defined. The event categories are distinguished not only by valence, but

by the interpersonal relations. The event structure evokes complex theory of mind

considerations by combining selfish monetary rewards, social utility, prosocial moti-

vations, intentional decisions of self and other, and deception. Since the four outcome

categories differed along these dimensions, they were associated with strikingly differ-

ent response profiles, evident in the between-outcome heterogeneity of performance,

confidence, and patterns of errors.

We leveraged the event structure to test if observers’ outcome judgments resemble

perceptual pattern matching or model-based reasoning. Pooling independent unbi-

ased judgments should reduce judgment noise and improve classification performance.

We found that pooling judgments improved the classification of DC expressions but did

not improve the classification of DD expressions. This indicates that random unbiased

judgment noise alone cannot account for observers’ causal judgment errors (see Col-

lective in Figure 3-4b and Appendix A.2.7). Simple response biases (the tendency to

make certain judgments over others) should shift judgments towards the prior prob-

ability of a judgment in inverse proportion to the informativeness of an expression,

but should not produce complex logical reinterpretations of the content. We found

that simple response biases do not fully account for the pattern of errors in observers’

outcome judgments. The F-scores indicate that classification of DD expressions was

significantly below the level expected when individual simple response biases were

taken into account (Figure 3-4a). Additionally, if the low classification performance

of DD videos resulted from the expressions being perceptually ambiguous, observers

should be expected to report less confidence in their judgments. We found the oppo-

site trend: for DD expression videos, observers reported greater confidence when they

incorrectly judged that the videos were from CC games than when they judged the

videos correctly (Figure 3-5).
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The observed pattern of errors with respect to ground-truth is inconsistent with

the predictions of emotion recognition and the idea that observers match patterns of

expressive behavior to eliciting events using a single system of statistical associations

between expressions, emotions, and situational antecedents. The pattern of errors

is not explained by random unbiased noise and simple response biases alone, and

observers reliably and confidently misinterpreted players’ spontaneous expressions.

In the next section (Study 5), we show that the pattern of correct and incorrect

judgments can be explained as model-based reasoning.

3.6 Study 5: Abductive inference over latent

emotion representations

The preceding sections (Studies 1-4) provide strong evidence against the emotion

recognition account of emotion understanding, illustrating that even perceptually rich

expressions are surprisingly uninformative in isolation. In this section (Study 5), we

make a positive case for emotion reasoning, arguing that observers make sense of oth-

ers’ emotional reactions by reasoning over latent emotion representations to infer what

hypothetical events provide the best causal explanation for the expressions observed.

In the view of emotion reasoning, perceptual information (players’ dynamic sponta-

neous expressions) and conceptual knowledge (hypotheses about what emotions are

likely) mutually constrain which explanations are probable. In this way, emotions

act as latent causal links between event and expressions. We formalize the guided

search for a causal explanation as a “Bayesian belief updating” model. Observers use

expressions to adjudicate between alternative causal hypotheses by comparing the

emotions a player appeared to express against the emotions hypothetical events were

predicted to elicit.

This model reflects the intuitive theory that emotions are reactions to antecedent

events, and that expressions are caused by emotions. This lay causal theory can

be written as a directed graph 𝑎 → 𝑒 → 𝑥. Outcome 𝑎 is defined by the tuple
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⟨𝑎1, 𝑎2⟩, where 𝑎1 and 𝑎2 are the actions of the focal player and the opposing player,

respectively, such that 𝑎 ∈
{︁
CC, CD, DC, DD

}︁
. Emotions 𝑒 is the vector of intensities

for the 20 emotions we collected. Expression 𝑥 is the dynamic expression of the

focal player. In this scenario (Figure 3-6), observers make an inference to the best

explanation: observers causally reason over a hierarchical mental model to make an

abductive inference of which outcome elicited a player’s nonverbal expression.

To build a Bayesian model of observers’ intuitive reasoning, we used the data from

the preceding studies (see Figure 3-1). Using the Study 1 data, we formed a distribu-

tion over the emotions players’ were predicted to experience given the game outcome

𝑝(𝑒 | 𝑎). From the data of Study 2, we formed a distribution over emotions attributed

to players’ dynamic expressions when no context was provided 𝑝(𝑒 | 𝑥no-context). From

the data of Study 3, we formed a distribution over emotions attributed to play-

ers’ dynamic expressions when observers knew the broad-context of the GoldenBalls

gameshow, but not what outcome occurred, 𝑝(𝑒 | 𝑥). Last, we used Study 4 to create

a distribution over the outcomes that observers inferred based on players’ dynamic

expressions 𝑝(𝑎 | 𝑥).

3.6.1 Abductive inference model

We simulated observers’ outcome predictions as inference in an intuitive theory of

mind, where observers use the emotions they infer from players’ dynamic expressions

𝑝(𝑒|𝑥), and the emotions they expect players to experience in the possible outcomes

𝑝(𝑒|𝑎), to infer which outcome was most likely to have generated the observed expres-

sions (Figure 3-6a). This corresponds to inferring the posterior probability 𝑝(𝑎|𝑥): the

probability that observers infer that a player’s dynamic expression 𝑥 was elicited by

the event 𝑎. Given a player’s expression, we assume that observers make a joint infer-

ence of the player’s emotions and which outcome the player was reacting to6, 𝑝(𝑎, 𝑒|𝑥).
6This formalization makes the simplifying assumption that the outcome is conditionally indepen-

dent of the pot size given a player’s expression. We therefore treat 𝑝(𝑎|𝑥) as an approximation of the
posterior probability 𝑝(𝑎|𝑥, 𝑝𝑜𝑡). This assumption is strictly a modeling convenience, not a hypoth-
esis about observers’ intuitive theory. How observers reason about an expression likely depends on
their knowledge of how much money was at stake, but for this model we assume that the variance
between outcomes is more important the effect of the pot size.
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The probability of observers guessing outcome 𝑎 can be computed by marginalizing

the joint distribution over emotions. In the graphical model of observers’ intuitive

theory (Figure 3-6a), actions and expressions are conditionally independent given

emotions, such that 𝑝(𝑎, 𝑒|𝑥) = 𝑝(𝑎|𝑒)𝑝(𝑒|𝑥).

𝑝(𝑎|𝑥) =
∫︁
𝑒

𝑝(𝑎, 𝑒|𝑥) d𝑒 =
∫︁
𝑒

𝑝(𝑎|𝑒)𝑝(𝑒|𝑥) d𝑒 = E
𝑒∼𝑝(𝑒|𝑥)

𝑝(𝑎|𝑒) (3.1)

We model observers’ mental distribution of emotions given expressions, 𝑝(𝑒|𝑥), as

the empirical distribution of emotion judgments 𝑒𝑖. To approximate the expectation

in equation (3.1), we sum over the responses from the 𝑁𝑥 participants (indexed by 𝑖)

who attributed emotions to expression 𝑥 in Study 3.

𝑝(𝑎|𝑥) = 1
𝑁𝑥

𝑁𝑥∑︁
𝑖

𝑝(𝑎|𝑒𝑖), where 𝑝(𝑎|𝑒𝑖) = 𝑝(𝑎) 𝑝(𝑒𝑖|𝑎)∑︀
𝑎 𝑝(𝑎) 𝑝(𝑒𝑖|𝑎)

(3.2)

We model observers’ mental distribution of emotions elicited by players’ actions,

𝑝(𝑒|𝑎), based on the emotion predictions 𝑒𝑗 from game descriptions (comprising an

outcome, pot size, and player photo). Responses from the 𝑁𝑎 participants (indexed by

𝑗) who were shown game descriptions 𝑐 with outcome 𝑎 in Study 1, were used to con-

struct a weighted Kernel Density Estimate (KDE) of the emotions observers expect.

We weight each response by 𝑤𝑗 = (𝑉𝑎𝑁𝑐𝑗
)−1 to account for the number of observers

who saw each description (𝑁𝑐𝑗
), and the number of videos 𝑉𝑎 with outcome 𝑎.

𝑝(𝑒|𝑎) =
𝑁𝑎∑︁
𝑗

𝑤𝑗𝒩 (𝑒; 𝜇 = 𝑒𝑗,𝜎I ) (3.3)

The KDE estimates the population’s marginal distribution 𝑝(𝑒|𝑎) (the emotions

players were predicted to experience) as a weighted mixture of Gaussian kernels,

where the vector 𝜎 is the kernel bandwidth corresponding to each emotion and I is

the 20-dimensional identity matrix. The kernel bandwidth was calculated for each

emotion based on the sample standard deviation using Scott’s Rule (Scott, 1992).

Observers’ prior over the actions chosen by a player dyad is given by 𝑝(𝑎). Ob-
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servers in Study 4 were asked to estimate how the population would judge the ex-

pressions, independent of their own judgments. We use observers’ guesses of the

population’s judgments to estimate the population’s action prior 𝑝(𝑎).

The critical juncture between the emotions observers infer given expressions, and

the emotions observers predict given event context, is given by the term 𝑝(𝑒𝑖|𝑎). This

is the probability that 𝑒𝑖, the emotion vector attributed to a player’s expression, was

sampled from the conditional distribution 𝑝(𝑒|𝑎), the emotions observers expected

players to experience when the outcome was 𝑎. The resulting posterior gives the dis-

tribution of responses over outcome-categories, i.e. 𝑝(𝑎|𝑥) is the simulated probability

of observers inferring that expression 𝑥 was a reaction to outcome 𝑎.

3.6.2 Results

Figure 3-6b shows the outcome judgments of human observers, and the outcome judg-

ments simulated by the Bayesian emotion reasoning model. Comparing the human

and emotion reasoning model judgments reveals a close match across all categories.

Videos belonging to the four outcomes elicited different classification patterns from

observers. Observers tended to infer the correct outcome from players’ expressions

in CC games, where a player won half the jackpot by mutually cooperating with the

opposing player. When CC videos were misclassified, observers tended to choose the

other outcome that would confer a financial reward (DC), more often than the out-

comes in which the player would receive nothing (CD or DD). Observers also tended to

classify CD videos correctly. The most common error was to misclassify CD video as

the financially similar DD outcome (the player achieves the minimum payoff in both

outcomes). In contrast with videos from CC and CD games, people did not tend to

correctly classify DC videos. Observers inferred that DC videos showed players in CD

games more often than the true outcome.

Observers overwhelmingly inferred that the expressions made by players in DD

games (where the two players defect on each other and leave with nothing) were pro-

duced by players experiencing CC outcomes (where the two players mutually cooperate

and share the jackpot). Interestingly, for DD videos, the correct outcome was the least
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Figure 3-6: Bayesian model of human causal reasoning. (a) Abductive inference of
outcomes from expressions. (b) Judgments of outcome grouped by ground-truth. Correct
judgments are indicated by asterisks in the label and are depicted with solid bars. E.g.
Observers incorrectly guessed that the expressions of players from DD games (bottom right
cell) were from CC games more than the correct outcome. Error bars give 95% bootstrap
CI. (c) Each point shows 𝑝(𝑎|𝑥) for a given outcome 𝑎 and expression 𝑥. E.g. a single
point shows the model estimate of how often a given expression video would be judged to
be CC versus the proportion of human observers who judged the video to be CC. (d) The
concordance and 95% bootstrap CI of the models. Bar color indicates which part of the
model in subfigure a was lesioned. The intact reasoning model is gray.

popular judgment. It may seem surprising that observers systematically misclassify

DD videos as CC, but this is precisely the pattern predicted by the model.

The model similarly predicted observers’ overall accuracy with respect to ground

truth. Human observers judged the correct outcome with an accuracy and 95%

bootstrap CI (estimated by resampling stimuli) of 36.6% [32.7, 40.3]. The reasoning

model predicted that observers would judge outcomes with an accuracy of 33.9%

[31.0, 36.8].

The aggregate data in Figure 3-6b is detailed at the stimulus-level in Figure 3-

6c. Each point shows how much the reasoning model versus humans judged that the
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specific expression video 𝑥 showed a player reacting to the specific outcome 𝑎, e.g. the

proportion of DD judgments that the reasoning model predicted versus the proportion

of DD judgments human observers made, for a given video (regardless of ground truth

outcome associated with the video). The reasoning model accurately captured the

empirical data (concordance correlation coefficient 𝑐𝑐𝑐 = 0.869 [0.841, 0.904]; Pearson

𝑟 = 0.876 [0.849, 0.909]; 95% bootstrap CI were estimated by resampling stimuli with

replacement across outcomes). Lin’s Concordance Correlation Coefficient penalizes

deviations from the identity line (perfect prediction), making it a more stringent

metric of explanatory power than Pearson’s correlation (Lin, 1989).

3.6.3 Lesion models

The emotion reasoning model simulates human causal judgments as Bayesian infer-

ence over three empirically-derived distributions: 𝑝(𝑒|𝑎) is the emotions players were

predicted to experience based on descriptions of events (Study 1); 𝑝(𝑒|𝑥) is the emo-

tions attributed to players based on their dynamic expressions (Study 3); and 𝑝(𝑎)

is the hyperprior over which actions players’ chose (Study 4). To test how important

these components were for capturing observers’ outcome inferences, we selectively

“lesion” the model by replacing each one with a less structured distribution (Fig-

ure 3-6d).

The first lesion model, the recognition model, simulates the outcome judgments

under the assumption that observers have an accurate understanding of what emo-

tions triggered player’s expressions. We replace the emotions observers predicted that

players would experience, 𝑝(𝑒|𝑎), with the emotions players appeared to experience

in those events 𝑝(𝑒|𝑥no-context). In the expressions lesion, we replace 𝑝(𝑒|𝑥), which was

attributed when observers knew that the dynamic expressions 𝑥 were made by players

on the GoldenBalls gameshow, with 𝑝(𝑒|𝑥no-context), which was attributed to the same

dynamic expressions in the absence of context. In the hyperpriors lesion, we replace

𝑝(𝑎), the distribution over outcomes, with a uniform distribution which assumes that

observers considered the four events equally likely. In the likelihood lesion, we replace

𝑝(𝑒|𝑎) with an uninformative distribution where the predicted emotions do not de-
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pend on the event, 𝑎. This represents the assumption that observers did not expect

the events to reliably elicit different emotions. Whereas the full model is parameter-

free, the lesion models are fit directly to the test data in order to estimate the upper

extent of how well each lesion can capture human behavior (see Methods 3.8).

Recognition model. A common (but often not explicit) assumption is that emo-

tion knowledge reflects a transitive network, where a shared embedding of statistical

associations allows observers to map between expressions, emotions, and events. The

recognition model simulates outcome judgments under the assumption that observers

have an accurate understanding of expression production. For each outcome, 𝑎, we

statistically match the predicted emotion distribution to the emotions that observers

judged from the perceptual information conveyed by players’ expressions during that

event.

𝑝(𝑒|𝑎) = E
𝑥∼𝑝(𝑥|𝑎)

𝑝(𝑒|𝑥no-context) (3.4)

The KDE is formed in the same fashion as equation (3.3). Responses were weighted

by the number of observers who saw each video and the number of videos in each out-

come. Outcome judgment simulated by the recognition model showed a concordance

and 95% bootstrap CI of 0.543 [0.474, 0.621]. The low fit to human behavior argues

against framing emotion understanding as embedded knowledge of accurate associa-

tions between expressions, emotions, and events that allow observers to perceptually

match patterns of expressive behavior with eliciting events.

Expressions lesion. Another assumption common in emotion recognition theories

is that expressions are inherently informative. In this view, observers can reliably

detect signals conveyed by patterns of expressive behavior, independent of context.

By contrast, emotion reasoning assumes that the interpretation of expressions is an ill-

posed inverse problem that observers solve by using hypotheses to constrain inference

over an intuitive theory. In Study 3, we showed that broad contextual knowledge
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shaped how observers interpreted players’ expressions. However, those results do not

address whether the effect of context is important for modeling how observers use

expressions during social cognition.

We now test if it is appropriate to assume that the inference of emotions from

expressions is independent of context. We replace the broadly contextualized emotion

attributions from Study 3, 𝑝(𝑒|𝑥), with the emotions attributed based exclusively on

the perceptual content of players’ expressions from Study 2, 𝑝(𝑒|𝑥no-context). Thus,

the posterior of the lesion model is given by:

𝑝(𝑎|𝑥) = E
𝑒∼𝑝(𝑒|𝑥no-context)

𝑝(𝑎|𝑒) (3.5)

Without conceptual knowledge about the broad context of the expressions, the

model fit is reduced to 0.679 [0.628, 0.739], demonstrating the necessity of capturing

how even broad contextual knowledge shapes the emotions people see in expressions.

The judgments simulated by the lesion model appear consistent with the empirical

changes observed from Study 2 to Study 3. For example, a lack of broad contextual

knowledge leads CC expressions to be interpreted as less excited, proud, joyful, and

relieved, and the lesion model correspondingly underestimated how often observers

correctly judge these expressions as CC.

Hyperprior lesion. Human observers show a statistical tendency to predict that

the focal player cooperated whereas the opposing player did not (CC = 0.30, CD = 0.31

vs. DC = 0.20, DD = 0.19). To test the extent to which simple response biases are a

factor in observers’ reasoning, we replace the empirical prior over outcomes 𝑝(𝑎) with

a uniform prior. Under the uniform action prior for both players in a dyad, the model

shows a reduced match with human reasoning, dropping to 𝑐𝑐𝑐 = 0.838 [0.804, 0.877].

This is evidence that, while contextually-independent response bias does factor into

observers’ decisions, it contributes less to the explained variance, relative to the other

components.
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Likelihood lesion. The core computational inference of the model compares the

emotions that a player was predicted to experience during hypothetical events, with

the emotions that the player appeared to express. Specifically, if an observer at-

tributed 𝑒𝑖 to expression 𝑥, the model infers the likelihood that the emotion vector

was sampled from 𝑝(𝑒|𝑎) for each outcome 𝑎. As a baseline, we completely lesion the

reasoning about how emotions depend on events 𝑝(𝑒|𝑎), making the comparison be-

tween expressions and predictions uninformative. In this lesion model, the predicted

emotions do not depend on 𝑎 so any emotion vector has the same likelihood in every

event. Thus, only the simple response bias 𝑝(𝑎) (the hyperprior) factors into the sim-

ulated outcome judgments. As expected, lesioning all reasoning greatly reduces how

well the model matches human judgments (𝑐𝑐𝑐 = 0.120 [0.096, 0.148], 95% bootstrap

CI estimated by resampling stimuli with replacement across outcomes).

3.6.4 Summary

The reasoning model accurately predicted that observers would systematically mis-

classify which events players were reacting to, and also accurately predicted how the

expressions would be judged. Put simply, the model was right to be wrong, and was

wrong in the right ways. The emotions that players were expected to experience,

and the emotions they appeared to express, were sufficient to capture key patterns

of how human observers causally reasoned about unseen events. The high agreement

between the predictions of the reasoning model and human behavior supports our

proposal that people use a flexible and sophisticated intuitive theory of emotions to

reason about other minds.

Importantly, no reference to emotion was made in Study 4 (the judgments to be

matched); observers guessed what outcomes players experienced and were not cued

to think about emotion. Yet, by treating the emotion judgments of independent

observers as the latent emotion representations of observers in Study 4, the reasoning

model successfully predicted their outcome judgments. Thus, the 20-dimensional

emotion judgments we collected contain richly structured social information sufficient

to capture participants’ reasoning about the causal connection between unobserved
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events and others’ emotional expressions.

3.7 General Discussion

We used four behavioral studies and a formal model to test the contrasting predictions

of two accounts of human emotion understanding. In the view of emotion recognition,

observers understand others’ emotions by matching patterns of perceived facial and

bodily configurations and gestures (Ekman, 1993; Izard, 1994). In the view of emo-

tion reasoning, observers use a causally-structured intuitive theory to predict what

emotions are likely in order to interpret the contextualized meanings of observed ex-

pressions (see Chapters 2 and 3); information from different sources are combined to

infer a posterior probability over hypothesized emotions (Anzellotti et al., 2021; Ong

et al., 2015). Our results support the emotion reasoning account.

Contrary to the predictions of emotion recognition, we find that in isolation peo-

ple’s spontaneous emotional expressions are quite non-diagnostic about the situation

that evoked them. Observers in Study 2 attributed remarkably similar emotions to

the expressions of players in situations that observers in Study 1 expected to evoke

highly dissimilar emotional experiences. Similarly, in Study 4, observers were strik-

ingly poor at using spontaneous expressions to recover the ground truth of situations.

Despite being shown stimuli designed to provide the maximum amount of visually

perceptible expression information, observers identified the correct events only slightly

better than random guesses. Moreover, the poor group performance was not driven

by a low-scoring sub-population. Rather, we found no evidence for high performance;

the highest accuracy achieved by any observer in this 4-way classification task was

52.3%. Also contrary to emotion recognition, we found that broad contextual cues

influenced how observers interpreted expressions in Study 3. Conceptual knowledge

about what events were possible had consequential effects on how expressions were

interpreted: in Study 5, ignoring the effects of broad conceptual knowledge led to a

marked reduction in how well observers’ outcome judgments could be explained by a

Bayesian model that simulates human causal reasoning.
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These results fit with a growing body of evidence that shows human observers are

surprisingly bad at decoding expressions spontaneously produced during known, real-

life events. To human observers, the facial expressions that people spontaneously

produce during highly desirable experiences, such as winning a point in an important

professional tennis match, receiving an extravagant prize, or the surprise homecom-

ing of a deployed family member, are indistinguishable from the expressions produced

during highly aversive experiences, such as losing an important point, attending a fu-

neral, or being a bystander to a terrorist attack (Israelashvili et al., 2019; Wenzler

et al., 2016). Although people intuitively expect that intensely positive and intensely

negative experiences should lead to highly distinctive facial expressions, spontaneous

expressions produced during intense, real-life events convey no diagnostic informa-

tion about valence to observers (Aviezer et al., 2012b). This unintuitive result is

highly replicable (Camerer et al., 2018). Consistent with this work, we found that

observers do not effectively differentiate expressions from events of opposing valence.

In Studies 2 and 4, we found high confusability of expressions from CC games (where

players mutually cooperate and split the pot) with expressions from DD games (where

both players defect and both lose the pot). We similarly found high confusability

of expressions from CD games (where the opposing player betrays the focal player,

stealing the entire pot) with expressions from DC games (where the focal player wins

the entire pot).

Why are spontaneous emotional expressions, occurring in real-world, high-stakes

social interactions, not diagnostic? One explanation of the prior findings might be

that the relevant information is not conveyed by facial configurations, but rather by

bodily postures and dynamic gestures. For instance, while observers find static photos

of facial expressions ambiguous, diagnostic valance information might be signaled by

bodily postures (Aviezer et al., 2012a, 2012b; Witkower & Tracy, 2019) or by the

temporal dynamics of facial expressions (Ambadar et al., 2005; Goldenberg et al.,

2022; Jack et al., 2014; Krumhuber & Scherer, 2016; Krumhuber et al., 2013; Sowden

et al., 2021). However, our stimuli included upper bodies, arms, and hands, and

contained dynamic transitions from before to after the emotion-evoking revelation.
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Yet, in Study 4, observers were still remarkably poor at distinguishing even whether

the evoking context was positive (winning money) or negative (losing money). Using

dynamic videos of facial expressions from a different gameshow, “Deal or No Deal”,

Albanie and Vedaldi (2016) similarly found that observers were only 62% accurate

at decoding whether players had won or lost money. Thus, human observers do

not effectively use spontaneous expressions to recover the eliciting event, whether the

stimuli are perceptually impoverished (face-only, static) or enriched (bodies and faces,

dynamic).

A second explanation might be that spontaneous expressions are muted or mixed,

leading observers to make noisy, unreliable, or uncertain inferences about emotions

from these stimuli. Substantial prior evidence rules out this interpretation. Cowen

and Keltner (2020) collected a corpus of 1,500 images of people by querying Google

for terms like “contemptuous teenager”, “yuck”, and “hot tub”. Online raters selected

which single emotion label, from 28 fixed choices, was the best match for facial ex-

pression isolated from these images. Using split-half canonical correlations analysis,

the facial expressions were reliably perceived on 27 significant dimensions (the maxi-

mum dimensionality possible). That is, observers agreed to an impressive extent on

which verbal labels corresponded with which images. Cordaro et al. (2020) found

that, when presented with descriptions of event antecedents, observers spanning 7 in-

dustrialized cultures reliably selected the posed prototypical expression in an 18-way

unforced-choice. This body of work offers ample evidence that isolated facial expres-

sions lead to fine-grained and reliable emotion judgments under conducive conditions.

Similarly, in our data, observers showed high inter-rater reliability in emotion attri-

butions (Studies 2 and 3) and in outcome judgments (Study 4), when given dynamic

expressions. Thus, we argue that spontaneous emotional expressions can be judged

reliably by observers, but that knowing how observers judge the isolated perceptual

information of an expression does not explain how observers interpret and use that

information for naturalistic social cognition.

Instead, we argue that spontaneous emotional expressions are not inherently in-

formative, but can be conditionally informative with respect to specific hypotheses.
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In our view, human emotion understanding should be thought of as causal reasoning

in an intuitive theory of other minds. When seeking to understand another person’s

emotions, human observers generate predictions of what emotions are likely under

different hypotheses about the situation. In our data, observers make specific pre-

dictions about what emotions people are likely to experience in each event of the

game (Study 1). Prior work has similarly shown that observers readily predict the

emotional reactions of people in different situations (Ong et al., 2015; Skerry & Saxe,

2015). Even when the target is not visible, much of the variance in the emotions

attributed to characters in films can be predicted based on the surrounding scene (Z.

Chen & Whitney, 2019, 2020).

Once a prediction is made, observers then interpret expressions they perceive in

light of their hypotheses. A wide variety of contextual sources have been shown

to affect interpretations of facial expressions (Atias & Aviezer, 2021; Barrett et al.,

2019; Hassin et al., 2013; Hess & Hareli, 2015; Russell, 2016). When events and

expressions are jointly available, emotion inferences depend heavily on what emotions

are likely given the context (Carroll & Russell, 1996; Kayyal et al., 2015; Le Mau et

al., 2021; Ong et al., 2015). The visual scene and the object someone is holding

can produce dramatic categorical shifts in the interpreted meaning of expressions

(Aviezer et al., 2008; Reschke et al., 2019; Righart & de Gelder, 2008a, 2008b).

Explicit cues as to a person’s mental contents can affect what emotion they appear to

express (Wieser et al., 2014). In addition to direct contextual cues about events and

mental states, interpretations are also affected by more abstract contexts, including

familiarity (Baudouin et al., 2000), group identity (Elfenbein & Ambady, 2003), and

experimental design (Barrett et al., 2019; Doyle et al., 2021; Hoemann et al., 2019;

Lecker & Aviezer, 2021; Russell, 1994). Even individual differences in observers’

emotion concepts can affect the processing of expressions (Brooks & Freeman, 2018;

Brooks et al., 2018, 2019).

Contextual cues that induce strong emotion predictions can produce dramatic cat-

egorical shifts in how expressions are interpreted. A facial expression that is reliably

judged to convey disgust can yield equally reliable judgments of anger when presented
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with objects and gestures associated with anger (Aviezer et al., 2008, 2012a). Com-

monly, though, the influence of emotion predictions is not in suggesting a specific

answer but in constraining the space of hypotheses. Partial or ambiguous informa-

tion about the context (“it’s the final point of a tennis game”) can shift the predicted

emotions while still allowing for very distinct possible situations (“she won the point”

or “she lost the point”) (Anzellotti et al., 2021). In Study 3, simply knowing the

videos were drawn from the GoldenBalls gameshow shifted observers’ interpretations,

illustrating the role of probabilistic hypotheses in inferring emotions from expressions.

So, when seeking to understand a person’s emotions in real-world social interac-

tions, we argue that observers generate a hypothesis space of likely emotions given

the context and then use perceived expressions to infer the posterior probability of

emotional experiences. In Study 5, we implement a formal model of how this pro-

cess supports social cognitive reasoning. In the Bayesian belief updating framework,

people infer antecedent events by reasoning about which hypothetical situation was

the most probable cause of the emotions a player appeared to experience. We show

that by combining one group of observers’ predictions of the emotions likely in each

possible outcome with the emotion attributions a second group of observers made to

each expression knowing the context of the game, we could capture the inferences

that a third group of observers made about the situation that caused the expressions.

We could predict the expressions and situations that would lead to accurate causal

inferences and those that would lead to systematically below-chance performance.

These results support the idea that conceptual knowledge plays a fundamental role

in how observers make sense of expressions by shaping the space of hypotheses about

what experiences are likely.

This formal model highlights a key difference between the views of emotion recog-

nition and emotion reasoning. Emotion recognition frames emotion understanding

as pattern matching where better access to richer perceptual expression information

should enable more accurate social inferences. By contrast, we suggest that situating

perceptual expression cues as information in an intuitive theory is a better model

than extending the domain of emotion recognition to include dynamic and multi-
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modal patterns of expressive behavior. In our view, understanding what subjective

experiences are implied by observed expressions is an ill-posed problem that humans

address by reasoning over an intuitive theory of other minds (de Melo et al., 2014;

Ong et al., 2019; Saxe & Houlihan, 2017; Wu et al., 2018). Framing the interpretation

of expressions as an ill-posed problem makes clear that some contexts7 will induce

structured priors under which certain expressions will be conditionally useful, whereas

other contexts will induce priors that render the expressions uninformative or mis-

leading. Therefore, including more and richer perceptual information can certainly

make expressions more informative but does not make the expressions informative in-

dependent of context—expressions acquire relevance and meaning in relation to their

role in a causal mental model.

There is enormous interest in building computer systems that emulate human

emotion understanding. While the major focus has been modeling how observers

interpret expressive behavior, our present work argues that expressions are a compo-

nent of what will be required. A stimulus-computable model will need to capture how

observers generate emotion predictions from event structure (Ong et al., 2015; Skerry

& Saxe, 2015), infer emotions from expressions (Jack et al., 2014; Ong et al., 2021),

and use this information in service of everyday social cognition, such as inferring what

events someone is reacting to.

In the present work, we provide a formal model of how observers causally rea-

son over latent emotion representations to infer events from expressions, but leave

aside how observers arrive at emotion representations. To understand how observers

make sense of expressions, future work should aim to model how expressions inform

inferences of others’ appraisals, as a function of inferences of their beliefs, desires,

constraints, and plans, using a computational theory of mind (Baker et al., 2009,

2017). This then needs to be integrated with perceptual cues like facial and bodily

expressions (Anzellotti et al., 2021).

Our results support the emotion reasoning account of human emotion understand-

ing, which argues that observers use a causally structured intuitive theory of other
7Where context includes the experimental design, culture, stimuli, previous experience, etc.
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minds. Perceptual information and conceptual knowledge mutually constrain which

explanations are probable. We show that formally modeling these mutual constraints

as inference in an intuitive theory can explain how observers infer which unseen events

evoked others’ expressions, and capture both what people get right about other minds,

and what they get wrong.

3.8 Methods

Stimulus generation

We generated 88 silent videos of players who participated in the final round of the 5th

season of the GoldenBalls gameshow, which aired in 20098. Videos were 5-seconds

in duration, depicting a single player’s reaction in the moments leading up to, and

following, the outcome of the Prisoner’s Dilemma (PD). The first 2 seconds consisted

of footage featuring the player immediately prior to both players revealing their de-

cisions, and the remaining 3 seconds was composed of footage of the player reacting

to the outcome. The raw footage was cropped and/or masked such that only a sin-

gle player was visible in a given video. Overt cues as to the players’ decisions were

occluded. The broadcast footage regularly cuts between the two players, so the 5

seconds of footage was gathered by taking the scenes of the player most temporally

proximal to the moment where the players simultaneously present their decisions to

each other, the crowd, and the cameras.

The four outcomes were represented equally in the stimuli (N=22 for each out-

come), reflecting the true distribution of play—across all 287 broadcast episodes,

players cooperated 53% of the time (van den Assem et al., 2012), and the decisions

of a player dyad (the two opposing players in a game) were statistically independent

of each other (Burton-Chellew & West, 2012) (see Appendix A.2.1). The size of the

jackpots were converted from British pounds to USD (1:1.533 USD:GBP) and scaled

by 1.12 to adjust for inflation. In the subset of episodes used, jackpots ranged between
8Footage of the show was provided by Endemol UK.
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the equivalent of $3.50 and $130,944 with a mean of $25,582.58 USD.

Empirical data collection

We collected all empirical data on Amazon Mechanical Turk (mTurk). Across all

experiments, workers were not permitted to participate more than once. Thus, the

number of responses contributed by workers is uniform within any dataset, and each

dataset was generated by mutually exclusive workers. Financial compensation to

workers targeted 12 USD/hr and was adjusted if the duration of an experiment was

misestimated. Workers who began but were unable to finish an experiment (for

instance, were unable to view the training video) were paid the full amount when

they could be identified. We restricted workers by geolocation to the United States

using mTurk credentials and asked workers to only begin the experiment if they were

fluent in English.

In Studies 1, 3, and 4, (but not 2) participants were informed about the gameshow

and the rules of the game. This included watching an example of a player dyad

negotiating before revealing their decisions. The total sum of the jackpot was also

presented, with British pounds converted to USD and adjusted for inflation to reflect

contemporary value. In the example negotiation video, the announcer explains the

rules of the game and the two players attempt to convince each other to cooperate

(Split). The example video ends before the players reveal their decisions. These two

players were not featured in 88 dynamic expression videos.

Every experiment included comprehension questions that were used to exclude

workers. Participants were asked 3 forced-choice validation questions: an attention

check following the example negotiation video and two comprehension checks for the

meaning of emotion labels. In addition, participants supplied a free response as to

whether they recognized any of the videos or images in the experiments. Participants

were excluded if they failed the validation, recognized that the videos were from the

GoldenBalls gameshow, or reported that they had technical difficulties that interfered

with them completing the task properly. In Study 2, the example training video was

not shown so there was no attention check question.
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In Studies 1, 2, and 3, participants judged what emotions the players experienced

based on different sources of information. All information provided to the participants

was veridical. Participants judged the intensities of 20 emotions on continuous scales

from not at all to extremely. Order of the emotion labels was randomized between

participants. The 20 emotion labels were: Annoyed, Apprehensive, Contemptuous,

Content, Devastated, Disappointed, Disgusted, Embarrassed, Excited, Furious, Grate-

ful, Guilty, Hopeful, Impressed, Jealous, Joyful, Proud, Relieved, Surprised, Terrified.

In Study 1, we recruited N=195 participants on mTurk. Participants were in-

formed about the context of the gameshow and viewed the example negotiation video.

In 12 trials, participants were presented with the value of the jackpot, both players’

decisions, the resulting payouts to the players, and asked to judge what emotions

one of the players (the focal player) would experience. Participants were shown a

static headshot of the focal player, which was taken from a frame in the 2 seconds

of anticipation footage in the 5-second dynamic expression videos. Participants were

informed that the photos were taken prior to the players revealing their decisions and

were not photos of the players’ reactions to the game outcomes. Of the participants

who completed the experiment, 5 reported technical issues and 26 failed the compre-

hension questions. A total of N=164 (74 female, 4 unreported) were included in the

analysis.

In Study 2, we recruited N=168 participants on mTurk. Participants viewed a

subset of the dynamic expression videos and judged what emotions they thought the

featured person was experiencing. In contrast to all other experiments, no contextual

information about the videos was provided: participants were not told that the people

shown were contestants on a gameshow nor told anything about the financial stakes.

Each participant viewed 12 videos and provided continuous judgments of 20 emo-

tions for each video. Of the participants who completed the experiment, 2 reported

prior familiarity with the GoldenBalls gameshow and 30 failed the comprehension

questions. A total of N=136 (55 female, 1 unreported) were included in the analysis.

In Study 3, we recruited N=168 participants on mTurk. Participants were in-

formed about the context of the gameshow and viewed the example negotiation video.
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In 12 trials, participants were presented with the value of the jackpot and a video

of a player’s dynamic expression, and asked to judge what emotions the player expe-

rienced. A static headshot of the player was visible while participants entered their

emotion judgments. Participants were informed that the photos were taken prior to

the players revealing their decisions and were not photos of the players’ reactions to

the game outcomes. Of the participants who completed the experiment, 10 reported

prior familiarity with the GoldenBalls gameshow and 23 failed the comprehension

questions. A total of N=135 (58 female, 4 unreported) were included in the analysis.

In Study 4, we recruited N=121 participants on mTurk. Participants were in-

formed about the context of the gameshow and viewed the example negotiation video.

Each participant responded to all 88 5-second expression videos. Dynamic expres-

sion videos played twice before any response could be made, after which participants

could freely rewatch the videos. The total sum of the jackpot was also presented with

each video and participants received visual feedback as to what payouts the players

would receive based on the different combinations of choices. Before beginning the

experiment, participants were incentivized with a bonus payment of 4 USD if they

correctly inferred the outcome of at least 85% of the videos. The order of the videos

was randomized between participants. Of the participants who completed the exper-

iment, 1 reported prior familiarity with the GoldenBalls gameshow and 27 failed the

comprehension questions. A total of N=93 (46 female, 3 unreported) were included

in the analysis.

In Study 5, we used empirical emotion judgments to construct Kernel Density

Estimates (KDEs) of population-level emotion distributions. In the full model, the

weighted standard deviation of observers’ emotion judgments determined the shape of

the Gaussian kernel. For each emotion, the variance of the corresponding dimension

of the kernel was calculated using Scott’s Rule (Scott, 1992):

𝜎 = 𝑠 𝑛−1/(𝑑+4) (3.6)

where 𝜎 is the variance for a given dimension, 𝑠 is the weighted sample standard
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deviation of judgments of the corresponding emotion, 𝑛 is the number of judgments,

and 𝑑 is the number of emotions. The kernel has zero covariance between the emotion

dimensions, i.e. the off-diagonal variance-covariance matrix of equation (3.3) are

all zero. Note that while the kernel is Gaussian and has zero covariance between

the emotion dimensions, the structure of the data used to fit the KDE can induce

multimodality and covariances between emotions. The KDE distribution of emotions

attributed given expressions, 𝑝(𝑒|𝑥), was transformed to match the KDE distribution

of emotions predicted given event context, 𝑝(𝑒|𝑎).

We measured model performance using Lin’s Concordance Correlation Coefficient

(𝑐𝑐𝑐), which is a metric of the agreement between predictions and a gold standard

or ground truth measure (Lin, 1989). Whereas Pearson’s correlation is insensitive to

whether samples differ in intercept or scale, Lin’s concordance correlation penalizes

deviations from the identity line (perfect prediction) making it a more stringent met-

ric of explanatory power. Lin’s concordance correlation gives the expected squared

perpendicular deviation from a 45 degree line through the origin (E[(𝑋 −𝑌 )2]), which

is computed for a sample as,

𝑐𝑐𝑐 = 2 𝑠𝑥𝑦

𝑠2
𝑥 + 𝑠2

𝑦 + (�̄� − 𝑦)2 (3.7)

where 𝑠𝑥𝑦 is the covariance of 𝑥 and 𝑦, 𝑠2
𝑥 is the variance of 𝑥 and �̄� is the mean of 𝑥.

Lesion Models. To be as generous as possible to the lesion models, we used grid

search to fit the KDE kernel. As in the full model, a single bandwidth factor (𝑏)

scaled the empirical standard deviation of each emotion. For the lesion models,

we chose the 𝑏 that maximized the concordance of the data, where 𝜎 = 𝑠 𝑏. We

fit the bandwidth factor for each lesion model using all of the data, without cross-

validation or left-out test data, so the performance of the lesion models are likely to

be inflated. Scott’s factor (𝑏 = 𝑛−1/(𝑑+4)), which was the bandwidth factor used in the

full model, was always included in the grid search. The lesion models follow the same

procedure to transform the distribution of emotions judged from expressions: the
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KDE distribution of each emotion was estimated using the given bandwidth, then

the expression distribution was transformed to statistically match the probability

density of the prediction distribution.

Classification of outcomes from emotions. In Studies 1, 2, and 3, we used

linear support vector machines (SVM) to classify outcomes from observers’ emotion

judgments. The SVM were implemented in scikit-learn (Pedregosa et al., 2011) with

the LinearSVC class, using a one-vs-rest scheme, squared hinge loss function, and

ℓ1 penalty. The emotion judgments corresponding to one stimulus corresponding to

each of the four outcomes were held out of the training data. The SVM was trained

to classify the outcome category from emotion judgments. One stimulus from each

outcome was held out for testing. The hold-out procedure was iterated to test the

out-of-sample classification performance for all of the data, using random sampling

of which combination of stimuli were included in the test set.

For each test set, the SVM hyperparameters were fit to the training data using

Bayesian optimization and k-fold cross-validation. The training data were resampled

with replacement such that the number of emotion vectors was balanced across stim-

uli. The training data were centered and scaled with emotion by removing the mean

and scaling to unit variance. The mean and variance of the test data were adjusted

according to the training data.
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Chapter 4

Generative model of inferred

appraisals

“And yet I have constructed in my mind a model city from which all
possible cities can be deduced,” Kublai said. “It contains everything
corresponding to the norm. Since the cities that exist diverge in
varying degree from the norm, I need only foresee the exceptions to
the norm and calculate the most probable combinations.”
“I have also thought of a model city from which I deduce all the
others,” Marco answered. “It is a city made only of exceptions, ex-
clusions, incongruities, contradictions. If such a city is the most
improbable, by reducing the number of abnormal elements, we in-
crease the probability that the city really exists. So I have only to
subtract exceptions from my model, and in whatever direction I pro-
ceed, I will arrive at one of the cities which, always as an exception,
exist. But I cannot force my operation beyond a certain limit: I
would achieve cities too probable to be real.”

— Italo Calvino, Invisible Cities

4.1 Introduction

Human social life depends on our ability to understand, and critically, anticipate,

other people’s emotions. Intense efforts in both basic science and industrial applica-

tions are currently directed towards building models of emotion recognition: identi-

fying the emotion that a person is or was feeling, typically based on facial or vocal
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expressions. Here we tackle a complementary aspect of emotion understanding: pre-

dicting how a person will emotionally react to an event. Emotion prediction is critical

as an input to planning in social interaction. People choose actions in order to cause

some emotional reactions in their partners (with variable success). Thus, any model

of human emotion understanding must incorporate the key capacity to predict how

others will feel in response to events in social interactions.

To illustrate the phenomenon we target, imagine watching an episode of the pop-

ular British game show, ‘Golden Balls’ (van den Assem et al., 2012). During the

episode, two players, Arthur and Bella, play a public one-shot social game called

‘Split or Steal’. On the table is a pot of 100,000 USD. Eventually, each player will

secretly choose to Split (Cooperate) or Steal (Defect). If both players choose to Split,

each takes home $50k. If both choose to Steal, they both leave with nothing. But

if one chooses to Split and the other chooses to Steal, the one who stole takes the

entire $100k and the other player leaves with nothing1. Before Arthur and Belle

make their choices, the game show host gives them a chance to talk to each other

(in front of the live studio audience and TV viewers at home); they both vehemently

promise to choose Split. Then they each make their secret choice. The choices are

revealed simultaneously—they both chose Split! What do you predict Arthur will

feel in this moment? Without seeing Arthur’s reaction, human observers nevertheless

generate systematic, specific predictions: for example, Arthur will feel joy, relief, and

gratitude. By contrast, if Arthur split but Bella stole, observers predict he will feel

disappointment, envy, and contempt.

The question for the current research is: How do human observers generate these

emotion predictions? Social games offer a simple but evocative space of emotionally

charged social interactions, that can be fully described in a simple set of quantitative

inputs but afford diverse and fine-grained predictions about the players’ emotions.

We develop a Bayesian framework to formalize the conceptual knowledge, and the
1This payoff structure is similar to a one-shot prisoner’s dilemma (PD): the payoffs are sym-

metrical for the players, the players make their decisions without knowledge of the other player’s
choice, and it is never in either player’s financial interest to cooperate. However, because both being
defected on (CD) and mutual defection (DD) confer the same payoff ($0), this game has been referred
to as a “weak” PD (Rapoport, 1988).
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inference process, that observers use to predict others’ emotions in social interactions.

Our model aims to capture three features of human emotion understanding: first, hu-

man observers make systematic, nuanced predictions of the emotional reactions others

have to specific events; second, human observers tailor their emotion predictions to

the specific player, knowing that individuals can react differently to the same event;

and third, human observers make fine-grained predictions of when, and how much,

people will experience distinctively social emotions—not just joy and disappointment,

but also gratitude, relief, envy, and guilt.

To build a model of human emotion prediction that captures people’s understand-

ing of others’ emotions, we integrate three key ideas about human social cognition

into a single computational model. First, human observers predict a person’s emo-

tional reaction to an external event by inferring how that person is likely to inter-

pret (or ‘appraise’) the event based on the person’s mental state (including values,

expectations, costs, etc., see Chapter 2; Figure 4-1). Thus, our model realizes a com-

putational implementation of Appraisal Theory (Barrett, 2014; Ellsworth & Scherer,

2003; Moors et al., 2013; Ortony et al., 1990) for observers’ third-party inferences.

Second, human observers infer an individual’s specific mental states from the person’s

actions, by assuming that his or her actions reflect approximately rational plans to

maximize a subjective utility function. Our model thus extends models that take a

Bayesian approach to Theory of Mind (BToM ) (Baker et al., 2009, 2017). This ex-

tension enables our model to predict emotional reactions by way of inferences about

the underlying preferences and beliefs which generated them. Third, observers know

that people value outcomes that go beyond their own monetary gain; people also

have higher-order social values, like equity and achieving a desirable reputation (De

Bruyn & Bolton, 2008; Dufwenberg & Gneezy, 2000; Kleiman-Weiner et al., 2017).

We hypothesize that observers use these non-monetary social values to predict social

emotions. To capture emotion predictions that depend distinctively on social val-

ues, we incorporate weighted utility terms like equity and reputation into observers’

mental model of how other people plan their actions. By inverting the planning

model with these additional utility terms, the model jointly infers a player’s social
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and monetary preferences given the player’s action in the game. It then combines

these inferred social values with an external event (the opposing player’s decision),

to derive inferred appraisals. Inferred appraisal loading are then combined to yield

quantitative predictions of emotion intensity judgments. This rich structure enables

our model, like human observers, to predict a player’s fine-grained emotional reac-

tions to hypothetical events and tailor those predictions to individual players. Since

the model aims to computationally recapitulate human emotion reasoning, we test if

the model’s emotion predictions match observers’ predictions across a broad range of

twenty nuanced emotions and twenty individual players.

The mental model that observers use to predict how others will experience events

reflects observers’ intuitive theory of other minds: a causally structured ontology

of concepts comprised of people’s lay knowledge (Gerstenberg & Tenenbaum, 2017;

Lake et al., 2017), which is typically not explicit or fully introspectable (Murphy

& Medin, 1985). Note that aim of this work is to build a formal scientific model

of people’s intuitive theory of emotion, not to test whether the intuitive theory is

accurate. That is, although people are often able to both sensitively perceive and

accurately predict others’ emotions, in some contexts people also make systematic

errors in emotion prediction, for example, over-estimating the duration or intensity

of emotional reactions (Gilbert et al., 1998; Pollmann & Finkenauer, 2009). Because

we are interested in capturing and characterizing people’s intuitive causal theory, we

do not here attempt to test the ground truth accuracy of either the observers’ or the

model’s predictions, only their similarity to each other.

4.2 Background

To predict what emotions Arthur will experience when he splits the pot with Belle,

observers employ an intuitive theory about the causal relationship between the events

described and emotion concepts like joy. Analogous to appraisal theories of actual

(first-person) emotions (Barrett, 2014; Ellsworth & Scherer, 2003; Moors et al., 2013;

Ortony et al., 1990), we suggest that observers predict another person’s emotional
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Figure 4-1: Emotion prediction as inference in an intuitive theory of mind. Hy-
potheses about how human observers reason about others’ emotions can be formalized as
probabilistic generative models. (A) The general inverse inference hypothesis about the
causal relationship of a target’s actions and emotions. We treat observers’ emotion pre-
dictions as a function of their inference of how the players will subjectively evaluate, or
“appraise” the game’s outcome. Inferring a player’s likely appraisals depends on an ill-
posed inverse inference of how beliefs and preferences explain players’ actions. This reflects
a hypothesis about observers’ lay theory of other people’s minds, not a scientific hypothesis
about people’s actual emotions. (B) The implementation of the general hypothesis for a
non-anonymous Prisoner’s Dilemma. Here, observers predict a player’s emotions by infer-
ring what preferences and beliefs motivated the player to cooperate or defect, and reason
about how those preferences and beliefs would cause the player to emotionally react to the
outcome of the game. The intuitive theories we test take the form of directed acyclic graphs,
where arrows indicate the causal relationship between variables. Shaded nodes are observ-
able variables and open nodes are latent variables. Round nodes are continuous variables,
rectangular nodes are discrete variables. Nodes with a single border are random variables.
The double border indicates that appraisals are calculated deterministically. Plans are
shown with a partial border because they are not explicitly represented in this model.

reactions by inferring how an external event relates to the person’s internal men-

tal states. This inference generates loadings on “appraisal variables”, which include

whether the situation is congruent with the person’s goals and values, and consistent

with their expectations (Scherer, 2005). Using these variables, simple classifiers can

pick human observers’ labels for many emotional events. For example, in one study

using 6000 real-life events, a classifier given human ratings of an event in terms of 25

appraisal variables picked the correct emotion label (from 14 choices) for 51% of 6000

events (Scherer & Meuleman, 2013), see also (Skerry & Saxe, 2015). Thus, Appraisal

87



Theory offers a promising framework for capturing observers’ third person emotion

predictions (de Melo et al., 2014; Ong et al., 2015; Saxe & Houlihan, 2017; Skerry &

Saxe, 2015; Van Kleef, 2010; Wondra & Ellsworth, 2015; Wu et al., 2018).

In contrast to earlier classifier models (Scherer & Meuleman, 2013; Skerry & Saxe,

2015), we aimed to make rational, situation-computable predictions for a player’s emo-

tional reaction to events. That is, rather than rely on human observers to manually

annotate appraisal variables, we aimed to infer them directly from a description of the

event itself, just as human observers do. Similarly, rather than rely on a researcher

generated list of qualitative event features specific to a particular domain, we aimed

to derive a more abstract space of appraisal variables that is more likely to apply

across domains. In particular, the space of appraisal variables is grounded in utility:

the accounting of the costs and benefits to oneself and others.

We were inspired by the success of a previous model: (Ong et al., 2015) studied

how human observers predict the emotional reactions of others while participating in

a lottery. Observers watched a single player spin a lottery wheel divided into three

sectors of variable area indicating fixed monetary rewards of $25, $60 and $100, and

predicted the player’s emotional reaction to the outcome. Because the probability

that the wheel lands on a reward is proportional to the area for that reward, each

wheel configuration confers an expected value. The difference between how much a

player won and the expected value of the wheel defines the reward prediction error.

A model based on the amount the player won, the prediction error, and the absolute

value of the prediction error, explained most of the reliable variance in observers’

predictions of 8 emotions (happy, content, surprised, afraid, disgusted, angry, sad, and

disappointed). For instance, the model (consistent with human observers) predicts

that a player will feel more happiness, more surprise, and less disappointment, if he

won $60 when he expected to win $30, than if he won $60 but expected to win $80.

While groundbreaking, (Ong et al., 2015)’s model has two major limitations. First,

the event context is heavily constrained. A lottery can evoke joy and disappointment,

but not emotions like guilt or gratitude, which depend on a player’s intentions, choices,

and social dynamics, since players make no decisions and have no social interactions.
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Indeed, this model implicitly assumes that players’ only goal is the maximization of

their own monetary payoff. Yet it is well known that once a situation involves decisions

that can impact other people, humans choose their actions to optimize additional

values (Falk et al., 2003; Hayashi et al., 1999; Kiyonari et al., 2000; Melo et al.,

2016). In a one-shot social dilemma like the ‘Split or Steal’ game described above,

a selfish monetary utility maximizing agent would always choose ‘Steal’ (Rapoport,

1988). By contrast, real humans playing ‘Split or Steal’ chose to cooperate about

half of time (van den Assem et al., 2012), suggesting that human players bring non-

monetary social values into these games. Indeed, it is the tension between social

values and the temptation to selfishly maximize monetary payoffs that makes social

strategy games so compelling to play and to watch.

Unlike passive lotteries, predicting others’ emotions in ‘Split or Steal’ is unlikely

to be fully explained by monetary reward and reward prediction error alone. If Bella

chooses ‘Steal’, for example, then Arthur’s monetary payoff is independent of his

choice (he leaves with nothing, regardless). Nevertheless, observers infer that Arthur

likely has different values and expectations, and thus predict that he will experience

different emotions, if Arthur chose ‘Split’ (e.g., more envy) versus if he chose ‘Steal’

(e.g., more guilt).

Furthermore, two observers might predict different emotions for the same person,

if one observer has additional background knowledge of a specific individual to in-

form their inferences. That is, since appraisals are constructed from agent-relative

expectations (in the form of priors and posteriors) background knowledge about an

actor can influence the emotions predicted. Thus, based on prior knowledge, Bella’s

friends might infer that she chose ‘Steal’ only because she expected Arthur to steal,

and not because she particularly values the money.

Our approach addresses these limitations. Our computational model of emotion

prediction is based on a model of how observers infer players’ specific values and

expectations in social strategy games; we hypothesized that these inferences would

provide the foundation for emotion predictions. We explicitly modeled how observers

update their estimates of players’ values and expectations from observations of the
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players’ actions in the game using an extension to BToM , and used those estimates

to make emotion predictions. Then we tested whether this model could generalize

to emotion predictions for a specific individual, when observers were given additional

background knowledge that informed inferences about the individual’s values and

expectations.

4.3 Inverse planning with social values

How do human observers infer a specific person’s preferences and beliefs? One clear

source of information is the person’s actions. People typically choose intentional ac-

tions that are likely to achieve their goals or maximize their rewards, given their

expectations and beliefs (the principle of rational action). As a result, even a single

sparse observation (e.g. observing one action) can lead observers to update estimates

of the person’s internal mental states such as beliefs, desires, costs, habits and in-

telligence, which cannot be directly observed (Baker et al., 2017; Evans et al., 2016;

Gershman et al., 2016; Jara-Ettinger et al., 2016; Jern & Kemp, 2015; Jern et al.,

2017; Kliemann & Adolphs, 2018; Kryven et al., 2016).

These inferences are well captured by ‘Bayesian Theory of Mind’ (BToM ) models

that probabilistically invert a forward model of rational planning. A forward model

simulates how approximately rational agents, imbued with rich cognitive structure,

perceive, plan, and act in a dynamic world. Probabilistic inversion of a forward model

can then enable ill-posed inverse inferences of what preferences and beliefs were likely

to have caused the observed behavior.

In our forward model we incorporate social equity utilities that account for people’s

actual decisions in social dilemmas (Bolton & Ockenfels, 2000; Fehr & Schmidt, 1999).

Fehr and colleagues proposed that humans are motivated, to varying degrees, by two

kinds of concerns for fairness in social interactions. Disadvantageous inequity aversion

(DIA), a preference not to end up worse off than others, is a powerful and culturally

conserved social preference (Blake et al., 2015; Henrich et al., 2005). In the context of

‘Split or Steal’, DIA is a preference not to be left with nothing while the other player
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Figure 4-2: Payoff functions. Decisions made by the two players jointly determine the
players’ relative payoffs in ‘Split or Steal’. Payoff functions reflect how relevant the out-
come is to a set of base values. The outcome’s relevance is scaled by the size of the
jackpot, which projects to outcome onto the dimensions of value, which are then weighted
by player 1’s preferences to yield subjective utilities; equation (4.1). With respect to mon-
etary value, the payoff function simply returns the proportion of the jackpot that player 1
wins. When player 1 defects and the opponent cooperates, player 1 takes the whole pot:
Money(𝑎1=D, 𝑎2=C) = 1·𝑝𝑜𝑡. Advantageous Inequity (AI ) returns how much more player 1
received than player 2, and Disadvantageous Inequity (DI ) returns how much more player 2
received than player 1. For the same decisions, 𝐴𝐼(DC) = 1·𝑝𝑜𝑡 and 𝐷𝐼(DC) = 0.

Steals the whole pot. In addition, Fehr and colleagues observe that people’s choices

reflect advantageous inequity aversion (AIA), a preference not to extract more than

one’s fair share of a resource (Fehr & Schmidt, 1999). In the context of ‘Split or

Steal’, AIA is a preference to share the pot with an opponent, rather than taking the

whole pot oneself.

In using Fehr’s parameterization of real choices as the basis for the intuitive the-

ory of others’ choices, we assume that observers have an intuitive grasp of the social

motives that account for people’s real-world behavior. Rational planning in the game

thus maximizes utility over both non-social (monetary) and social (interpersonal in-

equity aversion) preferences, given expectations for the opponent’s choice. Inverting

this planning model would allow an observer to jointly infer a player’s preference

for selfish profit and inequity aversion, as well as the player’s expectations for the
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opponent’s action, before the opponent’s choice is known. Many combinations of val-

ues and expectations are consistent with each choice a player can make; nevertheless

we propose that observers systematically change their estimates of player’s values

and expectations based on just a single observed action. So for example, given that

Arthur chose ‘Split’, it is more likely that Arthur valued a good outcome for Belle

(AIA) more than he valued avoiding exploitation (DIA), and more likely he expected

Belle to choose ‘Split’.

Once the opponent’s action and the outcome of the game is known, the player’s

inferred values and expectations can then be used to infer the player’s appraisal

variables, including values (did she get what she wanted?), prediction errors (did

she get what she expected?), and counterfactuals (how did this outcome compare to

what could have happened?). For example, when the choices are revealed, observers

predict Arthur will feel joy not only because he won more money than expected

given his action (traditional reward prediction error), but also because Belle won

money (better than expected with regards to AIA, which Arthur strongly prefers),

and because this outcome is better than other outcomes that were possible. Including

social values in inverse planning should thus allow the generative model to better fit

people’s predictions of social emotions, like guilt and envy, which are likely to depend

mostly on a player’s inferred social values and social prediction errors.

4.3.1 Modeling inverse planning with social values

We first simulate how players make decisions in an anonymous version of Split or

Steal. In this Anonymous Game model, players have preferences exclusively for

‘base’ features, i.e. variables that are situation-computable. We use the three base

features from Fehr and colleagues’ parameterization of utility (Fehr & Schmidt,

1999): player 1’s total monetary reward (𝑀𝑜𝑛𝑒𝑦), how much more player 1 re-

ceived than player 2 (advantageous inequity, 𝐴𝐼), and how much more player 2

received than player 1 (disadvantageous inequity, 𝐷𝐼); see Figure 4-2. Not all play-

ers pursue the same values in these games; some players might be more motivated

to maximize selfish gain, while others are more motivated to avoid unequal distri-
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butions. To generate this variability across simulated players, we included non-

negative preference weights (𝜔) that modulate the subjective utility players derive

for rewards. In dyadic interactions like the Split or Steal game, player 1’s utility is

𝑈 base
1 = 𝜔base

Money𝑀𝑜𝑛𝑒𝑦 − 𝜔base
AIA𝐴𝐼 − 𝜔base

DIA𝐷𝐼. The negative signs indicate that players

seek to minimize inequity, thus 𝜔base
AIA and 𝜔base

DIA reflect a player’s advantageous and dis-

advantageous inequity aversion. To adapt this utility function to simulate player 1’s

utility optimization under uncertainty, we express the utility features in terms of

the players’ possible actions, incorporate player 1’s beliefs, and transform the utility

features to accommodate a large range of possible rewards.

In the ‘Split or Steal’ game, players privately decide whether to split the pot by

cooperating (C), or try to steal the pot by defecting (D), and reveal their decisions

simultaneously. Payoffs are determined by the players’ actions (𝑎1 and 𝑎2 for player 1

and 2, respectively) and the pot size (Figure 4-2). The base features can therefore

each be expressed a function of the tuple (𝑎1, 𝑎2, 𝑝𝑜𝑡). Simulated players are endowed

with a weighted expectation about what choice their opponents will make (𝜋𝑎2), which

models player 1’s subjective belief about P(𝑎2). Players are also simulated as having

a prior belief about the expected value of the game, 𝜋Money. Human observers who

participated in our studies were informed that pot sizes in the Split or Steal game can

range from $1 to over $100K USD, and likely infer that contestants on a popular high-

rewards game show have expectations about how much they could win. We therefore

adjust monetary utility to reflect the difference between how much a simulated player

expected to win before learning the pot size. Rewards that fall short of the reference

point are perceived as negative utilities.

Since observers do not know a player’s actual motivations, we simulate how players

with different preferences and beliefs would act, then invert this forward simulation

to infer the individual player’s preferences and beliefs, given just a single observation

of her action (e.g. 𝑎1 = C). To test whether humans solve a similar inverse problem

when reasoning about others’ minds, we then compare the inverse inferences gener-

ated by this model to those of human observers. In the Anonymous Game model,

a player is defined by the tuple over preferences for the base features and beliefs
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⟨𝜔base, 𝜋𝑎2 , 𝜋Money ⟩. The expected utility of a player choosing 𝑎1 is the product of the

expected probability and the subjective utility of that decision, integrated over the

outcomes possible given 𝑎1:

E[𝑈 base(𝑎1)] =∑︁
𝑎2

𝜋𝑎2 ·
[︁
𝜔base

Money · 𝜈
(︁

Money −𝜋Money
)︁

− 𝜔base
AIA · 𝜈

(︁
𝐴𝐼

)︁
− 𝜔base

DIA · 𝜈
(︁
𝐷𝐼

)︁]︁ (4.1)

where 𝑀𝑜𝑛𝑒𝑦, 𝐴𝐼, and 𝐷𝐼 are functions of the tuple ⟨ 𝑎1, 𝑎2, 𝑝𝑜𝑡 ⟩, and 𝜈(·) applies

a transformation commonly used in behavioral economics to account for people’s

diminishing marginal utility (Balaz et al., 2013; Tversky & Kahneman, 1992). The

value function 𝜈 and the reference point 𝜋Money reflect insights from prospect theory

and the study of how people value uncertain rewards (Kahneman & Tversky, 1979).

For this model of people’s intuitive theory about others, we opt for a simple adaptation

of the theory and do not fit the value function or reference point to any data. The

𝜈 transformation amounts to a sign-adjusted logarithm that treats gains and losses

of utility symmetrically, and 𝜋Money is sampled from a normal distribution with the

mean fixed at 1,000 USD.

Simulated decisions follow probabilistically as samples from the softmax distri-

bution of the expected utility: P(𝑎1 |𝜔base, 𝜋𝑎2) ∝ exp(𝜆· E[𝑈 base(𝑎1)]). The softmax

decision function is a standard decision policy for modeling an agent’s planning and

decision-making in uncertain environments (see Luce, 1959) and for observers’ reason-

ing about others’ noisy choices (e.g. Baker et al., 2009, 2017; Evans et al., 2016; Jern

et al., 2017; Kleiman-Weiner et al., 2017). The thermodynamic parameter 𝜆 deter-

mines how rationally vs. noisily decisions reflect differences in the expected utilities

of the choices.

4.3.2 Comparison to human inverse planning

The first goal of our model is to capture the inferences observers make about players’

preferences and beliefs. We therefore tested (a) whether human observers systemat-

ically infer the players’ values and expectations from observing a single choice, and
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(b) whether we could capture these inferences by inverting our generative model of

players.

We presented Amazon mTurk participants with scenarios depicting one player’s

decision to cooperate or defect in an anonymous game, and asked them to judge

how much the observed player cared about: “acquiring as much money as possible”

(Money); “sharing with the other player, not getting more than them” (AIA); and

“having at least as much as the other player, not getting less than them” (DIA).

Observers also judged the player’s belief about the opposing player ( 𝜋𝑎2 ), “what did

this person expect the other player to choose (and how confident is this person in their

prediction about the other player’s decision)?”.

We find that human observers readily and consistently inferred the psychological

base features from under-specified input (Anonymous Game, Figure 4-3). Returning

to the example players Arthur and Belle from above, observers inferred that Arthur’s

(player 1’s) decision to cooperate means that he was likely to be less motivated by

Money, more averse to gaining an unequal and superior outcome (AIA), and less

adverse to receiving an inferior outcome (DIA), than if he had defected. Observers

also inferred that Arthur’s cooperation strongly implied that he believed Belle was

going to cooperate in kind. By contrast, if Arthur defected, observers were less

confident about what Arthur expected Belle to choose, likely reflecting that observers

found his choice consistent with multiple plausible explanations–he might defect in

order to steal the entire pot or to avoid the sucker’s payoff.

We then asked whether our model could capture these intuitive inferences. The

Anonymous Game model simulates agents that generate softmax decisions, 𝑎1 ∈

{C, D}, based on the expected utilities of the choices, with E
[︁
𝑈 base(𝑎1)

]︁
being a func-

tion of the agent’s base preferences, 𝜔base, and the agent’s belief about what decision

the other player will make, 𝜋𝑎2 . Since this generative formulation of play is invert-

ible, using Bayes’ rule we can infer the conditional joint distribution of a player’s

preferences and beliefs, given the player’s decision:

P
(︁
𝜔, 𝜋𝑎2 | 𝑎1

)︁
∝ P

(︁
𝑎1 |𝜔, 𝜋𝑎2

)︁
· P

(︁
𝜔, 𝜋𝑎2

)︁
(4.2)
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We ran the model in two ways to qualitatively and quantitatively test whether the

structure of the model captures human inverse inferences. We first placed uninforma-

tive priors on the player’s preferences and beliefs, which does not require fitting the

priors to the data. Even without calibrated priors, the pattern of inferences inferred

by the model captured the key qualitative patterns in the human data. We then

replaced the uninformative priors with independent empirical priors computed from

the human data (see BasePrior in Methods 4.7: Prior fitting). Player 1’s preference

weights and expectation of player 2’s choice, as inferred by the empirically informed

model, are shown in Figure 4-3 (Anonymous Game). This model closely matches

human inferences of player’s values.

In sum, a rational planning model can generate a plausible range of player choices,

and can be inverted (like BToM ) to make inferences about players’ values from the

observation of a single choice they made. Observers appear to make similar systematic

inferences of players’ values from the same observation. Both observers and our

models are thus successfully resolving an ill-posed inverse problem, to recover four

different mental states (values for selfish and social outcomes, and expectation for the

other player) from the observation of players’ behavior.

4.3.3 Second-order preferences: players’ motive to enhance

their reputation

The Anonymous Game model is missing a critical element of social strategy games:

players’ motive to enhance their reputation. In addition to preferences for certain

kinds of outcomes, players have preferences for how they will be perceived. For exam-

ple, Arthur may choose to cooperate primarily to signal his cooperativeness to future

social partners. We hypothesize that human observers also infer these second-order

preferences. Most importantly, for current purposes, inferences about the motive to

enhance one’s reputation likely underlie the prediction of key social emotions, like

pride and embarrassment. To capture observers’ reasoning about players decisions

in a highly public context, we extended the generative model of decision planning to
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Figure 4-3: Inverse planning. Human observers were shown a player’s decision to cooper-
ate (C) or defect (D) and judged the player’s likely preference and belief values. Preference
weights take continuous values between zero and one. Player 1’s belief about what player 2
will choose was rated on a 6-point confidence scale. Observers judged the player’s three
base preference weights and belief about player 2’s intended action, 𝜋(𝑎2=C). In the Public
Game, observers additionally judged the player’s reputation preference weights. Point esti-
mates give the expectation of each marginal distribution, conditioned on 𝑎1.

include players’ reputation concerns.

A standard way to incorporate reputation concerns might be to add additional

base utility components that define what reputation signals players expect of their

actions, which are not directly situation-computable and must therefore be specified

for each situation and action. We follow a more cognitively natural strategy, whereby

players apply their own theory of mind to anticipate how others will evaluate them
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(Kleiman-Weiner et al., 2017). To choose an action that is reputation enhancing, a

player must first infer how that action will be perceived by others. This requires an

embedded inference loop over the base features (Money, AIA, and DIA), which are

objectively defined by the event. We model reputation as a function of the inferences

a rational observer would make about the weights of a player’s base utility function.

Each of these inferences are themselves weighted and treated as “second-order” util-

ities: an agent’s preference for certain inferences that others would make about their

values.

For each feature we introduce a reputation consideration term consisting of a

weighted preference, 𝜔repu, and an expectation of what other people would infer about

the agent given her action, 𝑎1:

E
[︁
𝑈 base + repu (𝑎1)

]︁
=

E
[︁
𝑈 base (𝑎1)

]︁
− 𝜔repu

Money·𝜈
(︁
E

[︁
𝜔base

Money | 𝑎1
]︁

· pot
)︁

+ 𝜔repu
AIA ·𝜈

(︁
E

[︁
𝜔base

AIA | 𝑎1
]︁

· pot
)︁

+ 𝜔repu
DIA ·𝜈

(︁
E

[︁
𝜔base

DIA | 𝑎1
]︁

· pot
)︁

(4.3)

where E
[︁
𝜔base | 𝑎1

]︁
are the expectations of the preference weights inferred by the

Anonymous Game model, shown in Figure 4-3.

Note that the sign on the reputation utilities is opposite that of the base utili-

ties, reflecting the prediction that human observers believe that players desire to be

perceived as motivated to improve equality, and not motivated to selfishly maximize

their own monetary payoffs. Expected reputation utility is scaled by the pot size and

combined with the expected base utility to give an expected utility for each action.

Agents simulated by the Public Game model make probabilistic decisions from the

softmax of the expected utility, E
[︁
𝑈 b + r(𝑎1)

]︁
.

First, we simulated players with both base and reputation values. We find that

these players are more likely to cooperate than players with base values alone. Sim-

ulated players with only base values defected on 59% of trials, whereas simulated

players with both base values and reputation concerns defected in 48% of trials. Ac-
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tual humans playing ‘Split or Steal’ for real stakes in a televised game show defected

47% of the time (van den Assem et al., 2012).

Next, we modeled observers who see only a player’s choice, and infer both base

and reputational values simultaneously. Inverting the Public Game model gives a

joint inference of the distributions of 7 random variables conditioned on the agent’s

decision: 3 weights for the base preference of each feature, 3 weights for the reputation

preference of each feature, and one expectation for the other player’s action. We again

presented online participants with scenarios depicting one player’s decision, this time

in the highly public context of the Spit or Steal game show. The observers judged

players’ base and reputation preferences, and belief about the other player’s intended

decision. Observers’ judgments and the inverse inference of the Public Game model

are shown in Figure 4-3.

As a generative model of decision making, the Public Game model is much richer

than is necessary to predict players’ choices in a Prisoner’s Dilemma, which can be

captured by extremely simple models (Sally, 1995). Nevertheless, our interest is in

what observers infer about the latent mental contents that underlie the decisions

made by others. For this purpose, the richer model better captures the inferences

human observers make and supports the subsequent inference of players’ fine-grained

reactions. Most importantly for current purposes, we expect that this richness is

necessary to capture the predictions that observers make about players’ emotions.

4.4 Emotion predictions

Through the successive inversion of increasingly rich generative models of behavior,

we have built a model that uses a player’s choice in a social game to infer the joint

posterior probability of the player’s selfish, social, and reputational preferences and

belief about the opposing player’s intended action. We now return to the challenge

that we began with: testing whether our computational model can capture the con-

ceptual knowledge and intuitive reasoning that underlie human observers’ emotion

predictions.
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Figure 4-4: Generative structure. (A) Emotion predictions for the GenericPlayers. Cir-
cles show the expected intensity for each outcome, summing over pot sizes and the 8 photos.
Shading shows the density of judgments. Color indicates the outcome of the games. ℰ is
the matrix of the 20-dimensional emotion prediction vectors. (B) Expectations and densi-
ties of the normalized inferred appraisals. Ψ is the matrix of the 19-dimensional appraisal
vectors. (C, D) The leftmost correlation matrices shows the Pearson’s 𝑟 for ℰ and Ψ,
respectively, which reflect between-outcome, between-pot, and within-stimulus covariance.
The following matrices show the average within-stimulus correlation: a correlation matrix
was calculated for every stimulus and then averaged within outcome.

100



4.4.1 Human observers’ emotion predictions

We collected human observers’ predictions of the emotions players would experience

when the outcome was revealed in ‘Split or Steal’ games. We collected two data sets

from online participants. The training data (n=554) was used to learn a transfor-

mation between the latent space of the inverse model and the emotion predictions,

which was then used to predict emotions for the test data (n=1512). In the test data,

observers were presented with specific information about each focal player. Collection

of these data, referred to as the SpecificPlayers, will be described in Section 4.5.

In the training data (GenericPlayers), observers were briefed on the structure

of the Split or Steal game and watched a video taken from the show in which the

presenter explains the rules and two players negotiate in an attempt to convince the

other to choose ‘Split’ (cheap talk negotiation). The introductory video ends before

the players reveal their choices. Observers completed 8 trials, in which they saw a

photograph of the focal player (designated player 1), a pot size (ranging from 2 USD

to 207,365 USD), and the actions chosen by both players in that game. Observers

saw 2 games for each category of payoff: CC where both players cooperated and each

won half; CD where the player 1 cooperated and received nothing; DC where player 1

defected and took everything; and DD where both players defected and both got

nothing. Observers then predicted how much player 1 would experience 20 different

emotions: Devastation, Disappointment, Contempt, Disgust, Envy, Fury, Annoyance,

Embarrassment, Regret, Guilt, Confusion, Surprise, Sympathy, Amusement, Relief,

Respect, Gratitude, Pride, Excitement, and Joy.

To learn a transformation between the model and human emotion judgments, we

make use of the rich structure present in the observers’ emotion predictions. The

GenericPlayers data (Figure 4-4A) illustrate that, even from sparse event depictions,

human observers made systematically different emotion predictions for players in the

four different types of payoffs. At the coarsest qualitative level, observers predicted

that players who won money (CC and DC outcomes) would experience more positive

emotions and players leaving with nothing (CD and DD outcomes) would experience
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more negative emotions (Figure 4-4A). However, observers’ emotion predictions do

not just reflect the monetary outcomes of the game. For example, when player 2 de-

fects, player 1 necessarily receives no monetary reward, yet observers predicted that

player 1 would have different emotional reactions depending on whether he chose to

cooperate (more envy and contempt) versus defect (more guilt). Note that prefer-

ence/belief attributions and emotion attributions were collected from mutually ex-

clusive groups to avoid cueing observers to think about emotion attributions in terms

of the planning variables or vice versa.

4.4.2 Learning the latent structure of the intuitive theory

of emotions

We hypothesized that human observers infer players’ values and expectations from

their actions using inverse planning, and predict players’ emotional reactions to events

based on those inferred mental states. In this model, emotion predictions reflect the

observers’ inferences about how players would react to an event given their particular

beliefs and preferences. Critically, we assume that emotion prediction relies on inverse

planning. Mental contents inferred via the inversion of an intuitive theory of mind

generate the basis for inferring how a player will evaluate events. We use appraisal

to refer to the inferred process of emotion generation, and thus call our model of

emotion prediction based on mental states inferred from inverse planning, an Inferred

Appraisals model. First, the model uses the pot size and player 1’s chosen action to

update estimates of player 1’s preferences and beliefs. These preferences and beliefs

then affect how the player reacts to (appraises) the situation. To generate inferred

appraisals for the GenericPlayers, we ran the Public Game model in the same way as

Section 4.3.3: using the empirically-derived prior over the base preferences and beliefs,

we inverted the hierarchical generative model of behavior. Then, we estimated how an

agent would appraise the outcome of the game. Appraisals are derived as subjective

utilities, prediction errors, and counterfactuals, on a player’s beliefs, base preferences,

and reputation preferences. Methods 4.7 and Appendix B.1.4 detail how appraisals
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β Guilt β Joy

Figure 4-5: Appraisal structure of the intuitive theory of emotions. The 𝛽 weights
of the transformation were learned based on the joint distribution of appraisals and the
joint distribution of emotion predictions for the GenericPlayers. To determine the scale
of the Laplace prior, which induces a sparse solution, we cross-validated on subsets of
the SpecificPlayers. (left) Mean weights of the learned transformation. (right) Example
emotions glosses. We used gradient descent to discover modes, then variational inference to
approximate the joint posterior distribution over 𝛽 weights. These log-scale plots show the
expectation and 95% HPD (Highest Probability Density) interval of the weights for guilt
and joy. Color indicates that the HPD is above (red) or below (blue) zero.

are computed.

In order to generate specific emotion predictions, we need to learn the ‘meaning’

of each of the 20 emotion labels that human observers rated, in terms of the set of

appraisal variables. There are many possible ways to accomplish this step (essentially,

writing a dictionary of emotion labels in terms of the inferred appraisals computed by

our model). It might be possible to constrain these definitions manually, by consulting

formal and intuitive theories of the meanings of these emotion labels (Battigalli &

Dufwenberg, 2007; Battigalli et al., 2015; Houlihan et al., 2018; Scherer & Meuleman,

2013; Sell et al., 2017; Sznycer, 2019; Sznycer et al., 2021; van Baar et al., 2019), but

here we preferred to learn the transformation from appraisals to emotions.

To learn the function relating emotion labels to inferred appraisals, we made a

strong assumption about the generative structure of observers’ emotion predictions:
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when people are asked to predict a player’s emotions, they do not make twenty inde-

pendent inferences but rather infer a joint distribution over the player’s preferences

and beliefs, and reason about how these inferred mental contents would cause the

player to evaluate the situation (Figure 4-1). For instance, if player 1 cooperated

while player 2 defected (CD), how much an observer thinks that player 1 wanted to

avoid being disadvantaged will be reflected in that observer’s predictions of player 1’s

experience of both embarrassment and envy. Thus, the covariance patterns of ob-

servers’ emotion predictions reflect the latent structure of their intuitive theory of

psychology. We make use of this information to learn a mapping between people’s

empirical emotion predictions, found in the training data, and the joint distribution

over appraisal variables generated by the model.

Figure 4-4 shows the emotion predictions and inferred appraisals for the Generic-

Players. Figure 4-4A and B show the expected values by outcome. Figure 4-4C and

D each show the overall covariance, and the average within-stimulus covariance for

each outcome. Note that formalizing inferred appraisals as a probabilistic generative

model permits us to leverage within-stimulus covariance in latent structure discovery.

Based on the GenericPlayers data shown in Figure 4-4, we learn a sparse transfor-

mation between the joint distribution of inferred appraisals and the joint distribution

of emotion predictions. Specifically, we treat the empirical vectors of emotion pre-

dictions as observations from some function of the posterior distribution of inferred

appraisals. We find a transformation of the appraisal distribution that maximizes

the probability of observing the empirical data under a Laplace prior on the trans-

formation coefficients. This yields a sparse linear transformation between inferred

appraisals sampled from the Inferred Appraisals model and continuous quantitative

predictions for the player’s emotions (Figure 4-5).

Thus, the Inferred Appraisals model takes priors on players’ preferences and be-

liefs, inverts a cognitively structured generative model of behavior to infer a joint

distribution over inferred appraisals and transforms the distribution into emotion

predictions. This model of human emotion understanding generates predictions of

the emotions that human observers will attribute to players for arbitrary games (de-
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scribed by the actions of the two players in a dyad and the size of the jackpot). The

emotion glosses shown in Figure 4-5 reflect a computational hypothesis about the

intuitive theory of emotion. For example, when observers predict that a player will

experience guilt, this hypothesis says that the intensity prediction reflects an intuitive

computation about the players’ mental contents. Specifically, the player will expe-

rience more guilt when the player values his reputation of not being motivated by

selfish monetary gain, but believes that others will think he is (𝑈 repu Money). The

player will experience more guilt if he cares about his opponent’s welfare and could

have made a decision that would not have put his opponent in a disadvantageous

position, but chose not to (𝐶𝐹 base
𝑎1 AIA). The player will experience less guilt about

making a decision to take advantage of his opponent if he values being seen as a fierce

competitor (𝐶𝐹 repu
𝑎1 DIA). And the player will experience less guilt if his opponent

tried to steal the jackpot (𝑃𝐸𝜋𝑎2=C). We next test if the computational hypothesis

formalized by the Inferred Appraisals captures human emotion predictions.

4.4.3 Comparing the Inferred Appraisals model to human

observers

The Inferred Appraisals model generates a joint distribution over 20 emotions based

on a pot size, the two players’ actions (𝑎1, 𝑎2), and the prior P(𝜔, 𝜋𝑎2). Using the

transformation we learned based on the GenericPlayers, we generated emotion pre-

dictions for the SpecificPlayers (described in detail in Section 4.5). The Inferred

Appraisals model captures the overall pattern of human emotion judgments. Positive

emotions are predicted when players win money and negative emotions when players

lose money. In addition, the model captures some of the more nuanced features of the

empirical judgments. For example, consider the player shown in Figure 4-6. When

player 2 defects, causing her to leave with no money, the model (like human observers)

predicts more envy if she cooperated. When player 2 cooperates causing her to win

money, the model (like human observers) predicts more gratitude and respect if she

cooperated.
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Figure 4-6: Personalized inferences. Observers were given personalizing information and
a photo of a SpecificPlayer . These predicted that these abstract cues would induce priors
over mental state inferences that would translate into biases in emotion judgments. (A)
Human judgments of an example SpecificPlayer ’s preferences and belief, marginalized over
pot sizes. (B) Human judgments of the example player’s emotions, made by an independent
group of observers. Circles show the expected intensity for each outcome, summed over pot
sizes. Shading shows the density of judgments. Color indicates the outcome of the games.
(C) Personalized emotion predictions generated by the Inferred Appraisals model. The
model simulated emotion predictions for the example player based on the preference and
belief judgments shown in (A).

To assess the explanatory power of the model, we used Lin’s Concordance Corre-

lation Coefficient (𝑐𝑐𝑐), which is a metric of the agreement between predictions and

a ground truth measure (Lin, 1989). Whereas Pearson’s correlation is insensitive to

whether samples differ in intercept or scale, the 𝑐𝑐𝑐 penalizes the model’s deviations

from human judgements by the mean squared error. Across all players, emotions,

outcomes, and pot sizes, the Inferred Appraisals model fit the observer’s emotion
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predictions for the SpecificPlayers data well: 𝑐𝑐𝑐 = 0.869 [0.855, 0.872].

Predictions of different emotions depend on different types of information, making

it likely that a model’s latent representations will enable it to capture some emotions

better than others. Similarly, human observers can find a stimulus ambiguous with

regard to one emotion but unambiguous with regard to another. Figure 4-8B shows

the reliably of observers’ predictions and how well the Inferred Appraisals model

captures the empirical emotion predictions for the SpecificPlayers. To test whether

the rich generative structure of the Inferred Appraisals model significantly contributed

to its ability to capture observers’ emotion predictions in this task, we compared the

Inferred Appraisals model with two simpler alternatives.

4.4.4 Inverse planning lesion model

The Inverse Planning lesion selectively blocks inverse planning by inferring appraisal

variables based on the prior distribution of beliefs and preferences (before any player

acts), rather than the posterior distribution (based on the player’s choices). Thus,

the Inverse Planning lesion model generates emotion predictions using exactly the

same rich social features with informative priors as the Inferred Appraisals, but does

not update posterior estimates based on players’ actions (see Figure 4-7).

This lesion model tests the importance of the shape of the joint distribution of

appraisals. For example, if observers intuit the mental contents that would cause a

player to feel guilty about defecting are also involved in planning what action to take,

then observers might further infer that the players who would feel more guilt after

defecting are less likely to decide to defect. The full Inferred Appraisals model uses the

posterior distribution, P(𝜔, 𝜋 | 𝑎1), to derive appraisals which induces a conditional

dependence between planning and emotion prediction, whereas the Inverse Planning

lesion prevents updating the inference of a player’s beliefs and preferences based on

observing her action, 𝑎1. Without a causal link to behavior, the inverse inference

of players likely preferences and beliefs, reduces to the prior. Thus, the posterior

probability in equation (4.2) becomes: P(𝜔, 𝜋𝑎2 | 𝑎1) = P(𝜔, 𝜋𝑎2). We similarly lesion

the embedded inverse planning loop, which simulates how infer their behavior will
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Figure 4-7: Structure of lesion models. The notational schema is identical to Figure 4-1;
the full Inferred Appraisals model is reproduced in the first panel. The Inverse Planning le-
sion (middle) severs the causal link between simulated agents’ mental contents and decisions
in the game. Without the causal link, the inverse inference of players likely preferences and
beliefs reduces to the prior. Appraisals 𝜑 still depend on 𝑎1. The Social lesion (right) allows
simulated agents to plan and act identically to the Inferred Appraisals model using social
and reputational motivations. However, predicted emotions depend only on two inferred
appraisals, monetary utility, and reward prediction error on monetary utility.

be interpreted by others. Appraisal generation is identical to the Inferred Appraisals

model and still depends heavily on 𝑎1.

To illustrate the Inverse Planning lesion, consider the effect of agents’ beliefs about

their opponents’ actions (𝜋𝑎2) on the appraisals made by each model. In the full

Inferred Appraisals model, as for human observers, simulated agents only tend to co-

operate when they believe their opponent is also going to cooperate (see E[𝜋𝑎2 | 𝑎1=C]

in Public Game of Figure 4-3). Inverse Planning lesion model agents cannot select

actions based on their mental contents so the expectation of monetary utility reflects

the prior on belief, P(𝜋𝑎2), rather than what beliefs where likely given the agent’s

action, P(𝜋𝑎2 | 𝑎1). Thus, players simulated by the Inverse Planning lesion model end

up in situations that they would not self-select into if they had intentional agency.

These effects are relatively minor overall (𝑐𝑐𝑐 = 0.836 [0.835, 0.836]; Figure 4-8C),

but are evident in specific emotions. For instance, the Inverse Planning lesion caused

notable decrements in the capture of envy, fury, guilt, surprise, respect, and gratitude

(Figure 4-8B).
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4.4.5 Social lesion model

Whereas the Inferred Appraisals model infers appraisals that are functions of social

equity and second-order (reputation) preferences, which we found to capture predic-

tions of emotions like envy, embarrassment, guilt, and joy, in the Social lesion model

we removed all of the social (non-monetary) values attributed to players. This le-

sion allows us to test the importance of these social values for successfully generating

human-like emotion predictions.

The Social lesion model leaves forward-planning intact: generated game play,

inferred monetary utility and prediction error are all identical to the full Inferred

Appraisals model (see Figure 4-7). That is, in the Social lesion model, simulated

agents plan and act according to the same policy as in the Inferred Appraisals model,

but only two inferred appraisals are used as features for emotion prediction. This

can be likened to observers having an intuitive theory that players’ behavior de-

pends on social considerations but their emotional reactions depend only on their

monetary evaluations. The Social lesion model predicts 20 emotions from the trans-

formation of the joint distribution of monetary utility and monetary prediction error,

P(𝑈 base
Money, 𝑃𝐸base

Money). While low dimensional, this joint appraisal distribution is still a

richly structured posterior from an inverse planning model with informative priors.

Across all players, combinations of decisions, and pot sizes, the Social lesion model

showed a lower fit to human observers’ emotion predictions: 𝑐𝑐𝑐 = 0.641 [0.640, 0.641]

(Figure 4-8C). The poor fit of the Social lesion model to the current data contrasts

with prior research. In a lottery, how much money players won, and how much they

should have expected to win, explained the majority of observers’ predictions of eight

emotions (Ong et al., 2015). In the context of the highly social Split or Steal game,

social values were required to capture the patterns of human observers’ predictions,

including for the emotions that overlap between these studies (happy/joy, disgusted,

angry/furious, sad, disappointed), Figure 4-8B.

For example, observers’ predictions of players’ joy in this game have a positive

relationship with the pot size: players who win 13k USD by cooperating with their
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opponents are expected to experience more joy than if they win 6k USD by cooper-

ating. However, for any given pot size, observers predict approximately equivalent

intensities of joy for players who defected and took the entire jackpot, as for players

who cooperated and took half as much. This is true for large pot sizes, where half

the pot could be over 100,000 USD, as well as for small pot sizes, where the difference

could be tens or hundreds of dollars. Across games with jackpots spanning five orders

of magnitude, the expectation of observers’ predictions of joy have a positive rela-

tionship with the pot size but the expectation of joy given mutual cooperation (where

player 1 wins half the pot) does not reliably diverge from the expectation of joy given

successful defection (where player 1 wins the whole pot). With access to only mon-

etary appraisals, the Social lesion can capture the positive relationship between joy

and the pot size, but not the way in which joy seems to depend on a player’s choice.

With access to a broader set of appraisals, the Inferred Appraisals model infers that

joy additionally depends on social evaluations, which includes wanting to have a repu-

tation for not taking advantage of one’s opponent. Modeling the generative structure

of the intuitive theory enables us to discover these latent computations directly from

observers’ emotion predictions. Figure 4-5 shows the inferred appraisal structure for

joy reflects observers’ latent inference that the players won more money than they

expected to (𝑃𝐸base
Money) and enhanced their reputations for being considerate (𝑈 repu

AIA ).

The emotion best fit by the Social lesion model in the Split or Steal context was

disappointment. Human observers predicted that players would experience disap-

pointment when they do not win money, and the expected intensity does not vary

considerably by pot sizes, with expectations ranging from 0.6 to 0.9 for the CD and

DD payoffs. Observers also predict that players will experience disappointment when

they win small sums (i.e. the value of the game was low to start with). The Social

lesion model fit these prediction patterns because the model’s latent representations

are based on inverse planning of economic choices, informed by prospect theory.

By contrast, the Social lesion was largely unable to capture predictions of social

emotions like envy, guilt, and respect. Observers only systematically expect envy in

the CD payoff, where player 1 receives nothing and her opponent takes the entire
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jackpot. This is a difficult pattern to represent in terms of monetary reward since

player 1 also receives nothing in the mutual defection payoff (DD) but is not expected

to experience envy. Similarly, guilt is reliably predicted for players who defect and

is largely insensitive to whether the outcome of player 1’s decision to defect is that

she takes home the entire jackpot (DC), or nothing at all (DD). In sum, comparing the

full Inferred Appraisals model to the Social lesion model reveals the importance of

social values like inequity aversion and reputation concerns, in the structure of human

observers’ inferred appraisals and emotion predictions. Next, we tested a second

assumption of our Inferred Appraisals model: that human observers use the player’s

own inferred beliefs and desires (rather than objective features of the situation) to

predict the player’s emotions.

4.5 Personalizing emotion predictions

So far, we have investigated how human observers, and the Inferred Appraisals model,

predict emotional reactions for players after observing only a single action in the

game. However, the structure of the game means that single actions are highly

ambiguous. An observer who knows a specific player might be able to use prior

knowledge, from outside the game, to inform inferences about the player’s likely

values and expectations (Jenkins et al., 2018; Oosterhof & Todorov, 2008). If the

Inferred Appraisals model is a good approximation of how human observers reason

about players’ emotions, it should also be able to predict the emotions observers

predict specific players will experience.

To mimic prior knowledge of the players, we constructed 20 SpecificPlayers, each

composed of a unique headshot and brief description. The descriptions included,

“Janitor at an elementary school”, “Doctor, volunteering in South Africa with Doc-

tors Without Borders”, and “Investment analyst at a hedge fund” (Figure 4-8D. We

hypothesized that even such sparse information would evoke stereotypes that allow

human observers to update priors on the players’ likely preferences and beliefs.

To test this hypothesis, we asked human observers to rate how much each Specific-
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Player (e.g. the Eldercare worker, shown in Figure 4-6) actually valued, and valued

others believing they valued, Money, AIA, and DIA. For the reputation preferences,

observers judged how much the player wanted a reputation for: “not prioritizing

money (people believing that she values other things above maximizing her own per-

sonal financial gain)” (Money); “being considerate (people believing that she does not

want to take advantage of her opponent)” (AIA); and “being competitive (people be-

lieving that she does not want to be taken advantage of by her opponent)” (DIA).

Observers also rated what the players predicted their opponents would do, given the

players’ decisions in Split or Steal. After being familiarized with the ‘Split or Steal’

game, each observer made preference and belief attributes to 8 players, defined by

the player’s description (a photo and career), the player’s choice, and the pot size.

Confirming our hypothesis, human observers made consistent and distinct preference

and belief attributions to SpecificPlayers, which differ from the attributions made

to the unspecified GenericPlayers. For example, compared to the boxing coach, the

eldercare worker is viewed as being more trusting that her opponent will cooperate

and less motivated to be perceived as competitive. When these players were shown

to have cooperated, the eldercare worker is seen as being less motivated by personal

financial gain than the boxing coach.

Overall, the patterns of emotions observers predicted for the GenericPlayers were

replicated by the emotion predictions made for the SpecificPlayers in this experiment.

No player is expected to experience more fury after winning money than not winning,

for example, but how much fury observers expect a player to experience differs be-

tween players. For example, relative to the GenericPlayers, the Eldercare worker

to experience more joy when she cooperates mutually with her opponent and less

fury when she gets betrayed. That is, human observers made personalized emotion

predictions for each SpecificPlayer .

4.5.1 Simulation of the bias induced by personalizing cues

If a model has learned an accurate mapping from inferred appraisals to emotions,

then it should be sensitive to variation in the psychological characteristics attributed

112



Intensity Judgments

Relative Difference

BA

D

C

E
C
on

co
rd

an
ce

C
on

co
rd

an
ce

Sc
al

ed
 P

ea
rs

on

Sc
al

ed
 P

ea
rs

on

In
ve

rs
e 

P
la

nn
in

g 
Le

sio
n

In
fe

rr
ed

 A
pp

ra
isa

ls
So

ci
al

 L
es

io
n

Relative
Difference

Intensity
Judgments

ψ

a2

a1

e

ω

π

pot

ψ

a2

a1

e

ω

π

pot

a2

a1

e

ω

π

pot

PE[U$]
U$

Figure 4-8: Predicting specific player’s emotions. Human observers made preference
and belief attributions to the 20 SpecificPlayers, based on a photo, brief description, and
decision in the Split or Steal game. Based on what a SpecificPlayer was judged to care about
and to expect, the models in (A) generated predictions of that player’s emotion reaction in
24 Split or Steal games (4 outcomes x 8 pots). Bar colors correspond to the models in (A).
Grey windows give the 95% bootstrap CI the inter-rater reliability of the emotion predic-
tions. (B) Concordance between predictions generated by the models and human observers
for every emotion (collapsing across players, outcomes, and pot sizes). (C) Overall fit the
emotions observers predicted for the 20 SpecificPlayers. (D) The photos and descriptions
of SpecificPlayers biased human observers’ judgments of the players’ motivations, expecta-
tions, and emotional reactions. This plot shows how well the models were able to predict
the bias in emotion predictions based on observers’ judgments of a player’s preferences and
belief. Players are ordered based on how reliably observers’ emotion predictions differed
from the emotions predicted for the GenericPlayers (grey windows). The model score gives
the variance-scaled Pearson correlation. (E) Correlation between the relative difference
predicted by the models and the relative difference in observers’ emotion predictions.

to specific players, which are the bases for inferred appraisals. The key generalization

test is therefore whether the Inferred Appraisals model accurately predicts how emo-

tion predictions will differ between players in the same situation, based on observers’

ratings of each player’s preferences and beliefs.

The expected difference between emotions predicted for a SpecificPlayer and the
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GenericPlayers is given by Δ𝑒player =< 𝛿joy
CC , 𝛿joy

CD , . . . >, where

𝛿joy
CC = E [joy | CC ; player ] − E [joy | CC ; generic]

In similar fashion, the expected difference predicted by a model, given by Δ𝑒player ,

is the difference between the emotions a model predicted for a SpecificPlayer and

for the GenericPlayers. Since this difference is calculated relative to a model’s own

prediction of the GenericPlayers emotions, a model that fails to fit the absolute

expected emotion intensities can still capture how observers’ emotion predictions for

SpecificPlayers change relative to GenericPlayers.

The Inferred Appraisals model was able to capture some of the bias in human

observers’ emotion predictions for SpecificPlayers. Across all SpecificPlayers, the fit

between the predicted difference Δ𝑒 of the Inferred Appraisals model and the empir-

ical difference Δ𝑒 was: 𝑐𝑐𝑐 = 0.300 [0.254, 0.335], Pearson 𝑟 = 0.314 [0.266, 0.349].

However, human observers disagreed amongst themselves about how emotion predic-

tions should be personalized for each SpecificPlayer . The emotions predicted for some

players show more reliable differences from the GenericPlayers. We therefore sepa-

rated the correlations in emotion prediction bias for each SpecificPlayer in figure 4-

8D. Correlations are scaled by the total variation (see Methods 4.7: Variance-scaled

correlation). The Inferred Appraisals model was better able to capture the relative

difference in predicted emotions for the SpecificPlayers that evoked more reliably dif-

ferent emotion predictions. We hypothesize that the Inferred Appraisals model is

mimicking human observers’ adjustment of emotion predictions, based on inferred

appraisals with personalized values and expectations.

Neither Inverse Planning lesion model nor the Social lesion model were able to

generate personalized emotion predictions (Figure 4-8D and E). Despite predicting

the expected emotion intensities nearly as well as the Inferred Appraisals model

(Figure 4-8C), the Inverse Planning lesion model largely failed to predict how per-

sonalizing information biased emotion predictions relative to the generic players:

𝑐𝑐𝑐 = 0.112 [0.097, 0.126], Pearson 𝑟 = 0.127 [0.110, 0.142]. The Social lesion yielded
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a still lower correlation: 𝑐𝑐𝑐 = 0.058 [0.058, 0.058], Pearson 𝑟 = 0.071 [0.070, 0.071].

4.6 Conclusion

We propose that human observers predict what emotions others’ feel by reasoning

about how others’ mental contents would cause them to react to hypothetical events.

The central premise is that observers infer others’ likely appraisals by employing

a sophisticated intuitive theory of mind, where the mental contents responsible for

someone’s behavior also shape that person’s emotional reactions. We formalize the

theory as a probabilistic generative model and show that observers’ judgments about

what players in a social dilemma believe, and the utilities they are motivated to opti-

mize, can effectively capture the emotions that players were predicted to experience.

We find that the emotions players were predicted to experience depend on social

evaluations beyond the monetary utility that players derive. How much money players

were likely to win, and how much they actually won, can partially explain predictions

of emotions that covary with the size of the jackpot, including joy and disappointment,

but fail to capture emotions that show little dependence on monetary reward, such as

guilt and embarrassment. Even in the best cases, the predicted emotions are difficult

to represent with these monetary predictors. Holding monetary utility constant,

for instance, observers predict that the emotions players feel also depend on what

their opponents won. Modeling what observers infer about players’ social evaluations

increases how well a model can capture the 20 emotions observers judged.

The Split or Steal game offers an emotionally evocative yet highly structured

paradigm. While many naturalistic paradigms, such as people recounting emotional

memories, can offer emotional breadth, these tasks are not well suited for learning

quantitative logical structure. By contrast, highly constrained laboratory paradigms,

such as lotteries and constructed narratives, can be useful for learning formal structure

but typically support only a very limited space of emotion attributions. Rather than

proposing a specific formal definition of the intuitive theory of a small number of

related emotions, or describing the statistical regularities of a breadth of emotions,
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we aimed to capture the logical and structured inference of a range of emotions.

A mental model of other people not only allows observers to reason about people’s

typical reactions, but also allows observers to infer how a specific person’s reactions

are likely to differ from other people’s. Two players who made identical decisions

and ended up in identical situations might still react differently. Observers make

systematically different emotion predictions when presented with a photo and ver-

bal description of different players. But what about the player’s appearance and

career description causes observers to infer that the player is likely to have a different

emotional experience than other players? The Inferred Appraisals model proposes

that observers’ emotion predictions should be understood in terms of causally and

logically structured relations between inferred mental contents. The photo and de-

scription pairs changed observers’ inference about what preferences and beliefs where

likely to have motivated the players’ choices. The Inferred Appraisals model was

able to translate observers’ preference and belief attributions to predict the players’

emotions, and to some degree, how specific player’s emotions were expected to differ.

Rather than only inferring that a given player is likely to experience an emotion more

intensely or more frequently than another player (a statistical regularity), observers

can infer that the player’s fury has logical and causal structure: Relative to someone

else, a player who is inferred to be more competitive (to value his outcome relative

to his opponent more, and his absolute monetary reward less) is likely to experience

more fury when he trusted his opponent and was betrayed, and less fury when he

and his opponent both made decisions in their own self-interest. The model captured

these systematic effects, without being trained on the relationships between inferred

preferences and beliefs, and inferred emotions, for the individual players.

Capturing the differences between the emotions predicted for specific players relies

on the inverse inference of players’ likely preferences and beliefs. Thus, while lesion-

ing inverse planning only slightly reduced the overall fit, the inverse planning lesion

heavily impaired the model’s capture of how specific players’ emotions were expected

to differ. Observers use the available cues (in this case, players’ faces, career descrip-

tions, and decisions), to infer the players’ preferences and beliefs, and reason about
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how those latent mental contents would cause the players to react to hypothetical

situations. These results argue that an intuitive theory of emotions requires repre-

sentations with internal structure (Baker et al., 2009, 2017; Davidson, 1963; Skerry

& Saxe, 2015), understood in terms of their computational role within a coherent

explanatory theory (Carey, 2009; Gopnik & Wellman, 1994).

Despite our model’s success, there remain many avenues for future research. First,

notwithstanding its richness, ‘Split or Steal’ affords very limited and simplistic sample

of people’s emotional experiences. Some emotions are likely to occur only over much

longer time-scales (e.g. nostalgia) or only over more existential stakes (e.g. terror).

The four types of events create too much covariance between in principle separable

inferred appraisals (e.g. ‘fairness’ and ‘respect’ are likely to be better representations

of people’s intuitive theory of preferences (Engelmann & Tomasello, 2019; Starmans

et al., 2017), but are too coupled with outcome to be effectively modeled in this

paradigm). Even within the world of ‘Split or Steal’, here we have modeled only

emotions that occur in response to the opponent’s action, and not the emotions that

occur before, in anticipation (e.g. hope, anxiety). Second, the implementation of each

of the components of our model could be improved beyond what we have presented

here. For example, we use a simple, general prospect function to capture the non-

linearity in people’s utility derived from the pot size, but future research could replace

this with a more accurate empirically derived version of observers’ intuitive prospect

function. We emphasize that our theoretical commitment is to the computational level

relationships rather than the specific implementations. In summary, the integration of

appraisal theory, inverse planning, and social utility maximization, in a computational

model of people’s intuitive theory of mind offers a powerful framework to capture and

emulate humans’ detailed conceptual knowledge of how others feel.
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4.7 Methods

Empirical data collection

Empirical data were collected on Amazon mTurk. Across all experiments, workers

were not permitted to participate more than once. Thus, the number of responses

contributed by workers is uniform within any dataset, and each dataset was gener-

ated by mutually exclusive workers. Financial compensation to workers varied by

experiment and targeted 12 USD/hr and was adjusted if experiment duration was

misestimated. Workers who began but were unable to finish an experiment (for in-

stance, were unable to view the training video) were paid the full amount when they

could be identified. We restricted workers by geolocation to the United States using

mTurk credentials and asked workers only begin the experiment if fluent in English.

Every experiment included comprehension questions that were used to exclude work-

ers. The comprehension questions varied based on the content of the experiment.

We collected 2 sets of inverse planning attributions (Anonymous Game with

GenericPlayers and Public Game with SpecificPlayers) and 2 sets of emotion attri-

butions (Public Game with GenericPlayers and Public Game with SpecificPlayers).

Planning attributions and emotion attributions were collected from mutually exclusive

groups to avoid cueing observers to think about emotion attributions in terms of the

planning variables or vice versa. All attribution questions included a photo of player 1

(the target of attribution) that workers were told was taken prior to the contestants

revealing their decisions. We emphasized that the photo did not display the players’

reactions to the outcome of the game. Workers were told that the jackpots can range

from 1 to over 100k USD. For the Anonymous Game (one-shot weak PD), Amazon

mTurk workers estimated players’ three base preferences (𝜔base
Money, 𝜔base

AIA, 𝜔base
DIA) on

continuous scales ranging from the player caring not at all to a great deal about the

feature. Workers also estimated what players believed their opponents were going to

choose and how confident the players were (𝜋𝑎2) on a 6-point Likert-type scale, with

3 ordinal confidence values for each 𝑎2 (e.g. the player thinks her opponent is going
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to Steal and is very confident, somewhat confident, or not confident). A C/ D bias was

forced by the even number of response options. Workers completed 8 trials. Each

trial included a player’s face, the size of the jackpot (24 possible values ranging from

2–20,7365 USD), and the player’s decision 𝑎1 to Split (C) or Steal (D). Workers were

thoroughly informed about the game payoff structure.

For the SpecificPlayers we collected emotion attributions as well as preference and

belief judgments. Workers were told the payoff structure of the ‘Split or Steal’ game

and shown a video of an on-air negotiation by two real contestants. Preference and

belief attributions were collected for every combination of the 20 specific players, 8 pot

sizes, and 2 𝑎1 values, a total of 320 stimuli. The pots are a subset of the 24 collected

for the GenericPlayers: $124; $694; $1,582; $5,378; $12,121; $27,293; $61,430 and

$138,238. Workers made inverse planning attributions to 9 stimuli, judging the value

of all 7 features (3 base preferences, 3 reputation preferences and 1 belief) for each

stimulus. Following a practice trial, workers responded to 8 trials that were balanced

across the player’s action, the player’s gender, and the pot size. In each trial, workers

were shown a player’s face and occupation, the size of the jackpot, and the player’s

decision. Individual workers never saw the same player more than once. The initial

practice trial was identical for everyone (showing a female ‘Customer service assistant’

who defected with a 1,090 USD pot), and was excluded from analysis.

Emotion attributions were collected for the same players, pot sizes and 𝑎1 values,

with each combination now paired with a specific 𝑎2 value (C or D), a total of 640

stimuli. Workers made emotion attributions to 9 stimuli, judging the intensity of all 20

emotions for each stimulus. The order of emotions was randomized for each worker.

Following a practice trial, workers responded to 8 trials that were balanced across

outcome, player gender, and pot size. Individual workers never saw the same player

more than once. The initial practice trial was identical for everyone and excluded from

analysis. The discarded trailing trial showed the same ‘Customer service assistant’

won 1,090 USD by defecting (DC).
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Prior fitting

We integrate out player 1’s decision from observers’ judgments and smooth the

marginal distribution with a Gaussian kernel. For player 1’s belief about player 2, we

similarly sum over player 1’s decision P(𝑎2) = 1
2 P (𝑎2 | 𝑎1=C) + 1

2 P (𝑎2 | 𝑎1=D). From

observers’ empirical attributions of players’ preferences and beliefs, we derive 3 sets of

priors. In each case, the raw attribution values are smoothed with a Gaussian kernel

to yield a kernel density estimate (KDE).

1. The BasePrior was fit using the empirical data collected for the Anonymous-

Game, which uses the GenericPlayer set of photos (summing out player 1’s

decision and identity).

2. The GenericPrior was fit using the aggregate of all preference and belief at-

tributions, consisting of the base preferences and belief attributions from the

AnonymousGame, and the 7 feature attributions made to all 20 SpecificPlayers

in the Split or Steal game (summing out player 1’s decision and identity).

3. A set of priors was fit for each SpecificPlayer, conditioned by the player’s de-

cision. This produces 40 sets of priors on the 7 planning features. Each set

is used to estimate the posterior over appraisal features for that SpecificPlayer

and decision. For a given SpecificPlayer (player), inferred appraisals for every

pot in the CC and CD payoffs use the prior P (𝜔, 𝜋𝑎2 | 𝑎1=C ; player), with each

marginal probability being conditionally independent given 𝑎1 and player . For

more information, see Appendix B.2.

Probabilistic generative model of inferred appraisals

Additional information about the generative model and calculation of inferred ap-

praisals is given in Appendix B. For each game (a pot-outcome pair), we simulated

3,000 agents. Each agent reacts to the outcome based on its specific beliefs and

desires, generating appraisals. The posterior distributions generated based on these

variables aim to capture population-level human cognition. The appraisals generated

by one simulated agent are not supposed to reflect the inferred appraisals of a single
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observer. Rather the aim is for the model posteriors to reflect the combined posteriors

of a population of observers.

The model samples from the joint posterior distribution of 19 inferred appraisal

variables. These consist of 6 derivatives of each base feature and an updated belief

about the opponent. For each base feature, an agent’s first-order preference and belief

about player 2 give rise to an expected utility (𝐸𝑈) for the choice that the agent

makes (𝑎1). In combination with player 2’s choice (𝑎2), that determines an outcome,

which gives rise to an achieved utility (𝑈 ), a prediction error (𝑃𝐸), a counterfactual

calculation on what the achieved utility would have been had the agent made the

other choice (𝐶𝐹𝑎1), and what utility the agent would have achieved had player 2

made the other choice (𝐶𝐹𝑎2), which is what informs prediction error (which are

together quantitatively equivalent to the expected and achieved utility we formulate

prediction error as the difference between the expected and achieved utility). The

agent also incorporates 2nd order preferences on each base feature into its forward

planning process, the agent’s expected reputation utility (𝐸𝑈 repu, or equivalently

𝑈 repu since there is no update signal supplied by the outcome), which gives rise to

the agent’s calculation of the reputation utility it would have achieved had it made

the other choice (𝐶𝐹𝑎1repu). Finally, the latent inferred appraisal space includes the

expectation error about the opponent’s action, 𝑃𝐸[𝑎2=C].

We learn linear functions that translate the inferred appraisals generated by the

IA model into predictions of human observers’ emotion attributions. Prior to learn-

ing a linear transformation, the log-utilities are transformed with a sign-adjusted

exponential function. Let 𝜈−1 = sgn (𝑈) · (exp |𝑈 | − 1), where 𝑈 is a log-utility. For

example, the transformed expected utility for base Money is 𝐸𝑈*[base, Money] =

𝜈−1
(︁
E 𝑈 base

Money

)︁
, with the star indicating a utility that was exponentiated in this way.

An Inferred Appraisals agent’s forward planning procedure estimates the expected

utility of each planning feature E 𝑈 by integrating over the opponent’s possible de-

cisions and the agent’s belief about how likely the opponent is to make that choice.

After the opponent’s decision is revealed, the player’s achieved subjective utility 𝑈

follows from the same calculation given absolute certainty about the players’ deci-
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sions. The contrast between the utility an agent expected to receive, and the utility

actually received, gives the agent’s reward prediction error. To calculate the differ-

ence, utilities values are transformed out of log space while adjusting for the sign.

Prediction error is then the linear difference between the utility a player expected

verse achieved, 𝑃𝐸* = 𝜈−1
(︁
𝑈𝑞(𝑎1, 𝑎2)

)︁
− 𝜈−1

(︁
E 𝑈𝑞(𝑎1)

)︁
. This formulation of pre-

diction error reflects not just the difference between the absolute reward the agent

expected and received, but also how much that agent cares about the feature, such

that for the same absolute difference in reward and holding beliefs constant, agents

with a stronger preference (e.g. for DIA) will experience a prediction error of greater

magnitude than their counterparts with a less strong preference.

We calculate counterfactuals that reflect the utility an agent would have derived

if player 2 made a different choice (the difference between the achieved utility and the

utility that would have been achieved given a different 𝑎2), weighted by how much the

agent cares about the feature, and how likely the agent thought the counterfactual 𝑎2

was. This yields larger values for outcomes that player 1 thought were more likely:

𝐶𝐹𝑎2* = 𝜈−1
(︁
𝜋(¬𝑎2) · 𝑈 (𝑎1, ¬𝑎2)

)︁
We similarly calculate counterfactuals that reflect the utility an agent would have

derived if it had chosen something else, weighted by how much the agent cares about

the feature: 𝐶𝐹𝑎1* = 𝜈−1
(︁
𝑈 (¬𝑎1, 𝑎2)

)︁
For each base feature, these transformations yield 𝑈*, 𝑃𝐸*, 𝐶𝐹𝑎1* and 𝐶𝐹𝑎2*.

Reputation features depend on what an agent infers others will infer about its moti-

vations given its decision, but do not depend on what the other player chooses. Since

the expected and achieved utilities are identical, each reputation feature yields only

𝑈* and 𝐶𝐹𝑎1*.

We transform the appraisals with a prospect theory power function. While it is

common for prospect theory power functions to include one to three fit parameters,

we use the simplest form, which amounts to a sign-adjusted square root and treats

positives and negatives symmetrically: sgn(𝑥*)· |𝑥*|𝛼, where the prospect power term

is 𝛼 = 1/2 and 𝑥* could be 𝑃𝐸*[base, Money], 𝐶𝐹𝑎1* [repu, AIA], etc. Finally, we

include a belief prediction error, 𝑃𝐸[𝑎2] = P(𝑎2=C) − 𝜋(𝑎2=C). The probability of 𝑎2
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is certain after the opponent’s decision is known.

Maximizing the likelihood of people’s emotion attributions

under a probabilistic model

We collected empirical emotion attributions by systematically varying both players’

decisions and the pot size. For the same combination of independent variables, we

sample a vector from the posterior distribution over inferred appraisals. For each

combination of independent variables (𝑎1, 𝑎2, 𝑝𝑜𝑡), this gives a set of 20-dimensional

vectors of people’s emotion attributions ℰ and a set of 19-dimensional inferred ap-

praisal vectors Ψ.

We learn a sparse transformation of the joint distribution over inferred appraisal

variables into a joint distribution over emotion intensities. The transformation is

described by a weights matrix 𝛽 and a diagonal matrix of variances Σ, which we learn

by maximizing the likelihood of observing the empirical emotion vectors, ℰ , under

a uniformly weighted multivariate Gaussian mixture. Thus, we fit all the emotions

simultaneously and the 𝛽 weights are constrained by the empirical covariance between

emotions.

ℒ(𝛽, 𝑏, Σ ; ℰ) =
∏︁

𝑡

P(𝑒𝑡 |𝛽, 𝑏, Σ), where

P(𝑒𝑡 |𝛽, 𝑏, Σ) = E
P(𝜓 | 𝑎1,𝑎2,𝑝𝑜𝑡)

[︂
P(𝑒𝑡 |𝜓,𝛽, 𝑏, Σ)

]︂
= E

P(𝜓 | 𝑎1,𝑎2,𝑝𝑜𝑡)

[︂
𝒩

(︁
𝑒𝑡 ; 𝜇 = logit−1(𝛽·𝜓 + 𝑏), Σ

)︁]︂

≈ 1
𝑁

𝑁∑︁
𝑖

𝒩
(︁
𝑒𝑡 ; 𝜇 = logit−1(𝛽·𝜓𝑖 + 𝑏),𝜎I

)︁
(4.4)

Where 𝑇 is the total number of observed empirical emotion vectors 𝑒, and 𝑁 the

number of posterior samples of inferred appraisal vectors 𝜓 for a given stimulus. We

apply a logistic transformation to 𝛽·𝜓 to accommodate the [0,1] bounds of people’s

empirical judgments.
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Regularization and cross-validation

We fit the weights matrix, 𝛽, via gradient descent with ℓ1 regularization on every

weight. This contrasts with a common approach of seeking a sparse number of total

predictors. Rather, each 𝛽 weight is regularized independently, which allows emotion

generation functions to be defined by different sets of inferred appraisal variables. To

improve feature selection and the interpretability of 𝛽 weights, the inferred appraisal

variables are scaled to have unit standard deviation prior to model fitting.

To learn the scale of the Laplace prior, P(𝛽), we performed grid search and K-fold

cross-validated on subsets of the SpecificPlayers. For every scale of the Laplace prior,

the GenericPrior was used to generate inferred appraisal and the 𝛽 weights were fit

to the GenericPlayers emotion predictions. The SpecificPlayer priors were used to

generate inferred appraisals for 3/4 of the SpecificPlayers, and the 𝛽 weights were

used to transform the SpecificPlayer inferred appraisals into emotions. The Laplace

scale that provided the best fit to the cross-validation set was then used to predict

emotions for the 5 left-out SpecificPlayers. This was repeated to generate emotion

predictions for all of the SpecificPlayers.

Model performance

Concordance correlation

We assessed model performance using Lin’s Concordance Correlation Coefficient (𝑐𝑐𝑐)

(Lin, 1989). Lin’s concordance correlation penalizes deviations from the identity line

(perfect prediction) making it a more stringent metric than Pearson’s Correlation

Coefficient. Lin’s concordance correlation gives the expected squared perpendicular

deviation from a 45 degree line through the origin (E[(𝑋 − 𝑌 )2]), which is computed

for a sample as,

𝑐𝑐𝑐 = 2 𝑠𝑥𝑦

𝑠2
𝑥 + 𝑠2

𝑦 + (�̄� − 𝑦)2 (4.5)
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where 𝑠𝑥𝑦 is the covariance of 𝑥 and 𝑦, 𝑠2
𝑥 is the variance of 𝑥 and �̄� is the mean of 𝑥.

When no additional centering or scaling can improve the fit of a model, 𝑐𝑐𝑐 is equal

to the Pearson’s correlation, but the 𝑐𝑐𝑐 is reduced when the model does a poor job

of predicting the mean or scale of the empirical data.

Variance-scaled correlation

The variance-scaled correlation scales how well a model predicted observer bias by

how different observers expected a SpecificPlayer ’s emotions to be relative to the

GenericPlayers. Specifically, 𝑟′
player = Corr (Δ𝑒player , Δ𝑒player) ·

(︁
𝜎Δ𝑒player /𝜎Δℰ

)︁
where

𝑒player are the attributions made to a specific player and ℰ are the attributions to all

of the SpecificPlayers. This is a more useful representation of the model performance

because the correlation is normalized the variance of the whole data set. If a stimulus

is very different from the generic attributions and the model explains it well, the 𝑟′

will be high. If the stimulus is very different and the model explains it poorly, the

𝑟′ will be very negative. If the stimulus is not very different from the generic, the

correlation is not inflated by the small variance of the empirical deltas.
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Chapter 5

Stimulus-computable emotion

understanding

Generalization is thus a cognitive act, not merely a failure of sensory
discrimination.

— Roger Shepard (1987), Toward a Universal Law of
Generalization for Psychological Science

5.1 Introduction

A long-term goal of both psychology and machine learning is to build a model that

can match human emotion understanding, from rich naturalistic stimuli of people

reacting to emotional contexts. In Chapter 3, we showed that human judgements

of what happened, based on an emotional expression, can only be explained by in-

cluding predictions of emotions in context. In Chapter 4, we built a formal model

of predictions of emotions in context, using inverse appraisals as the latent space.

In this chapter, we ask whether combining our formal model of emotion prediction

in context, with off-the-shelf emotion recognition software, allows us to construct an

inferential pipeline to match human observers on tasks that depend on both emotion

prediction and expression recognition

We developed two novel tasks to measure how humans reason about others’ emo-
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tions and expressions in two naturalistic tasks. In the first task (Cue Integration,

CI), observers were shown video clips of players on a televised game show, reacting

to the outcome of a social strategy game. Based on both a description of the event

(the stakes, both players’ choices, and the outcomes) and the players’ emotional ex-

pressions, observers judged how much the player was experiencing each of 20 different

emotions. In the second task (Outcome Recovery, OR), observers were told the gen-

eral structure of the game show and then, based on the video of the players’ emotional

reactions, asked to guess to what outcome the player was reacting (i.e. what the vis-

ible player chose, what the opposing player chose, and the resulting payoffs). Each

of these tasks requires observers to combine their expectations for how players will

feel, in different game situations, with the players’ spontaneous, dynamic emotional

expressions, to make judgements similar to the inferences that human observers must

regularly make, in the course of social interactions. The overall goal of this project

was to measure how well a model can currently capture human performance on each

of these tasks, and to identify the most important directions for future improvement.

For both the CI and OR tasks, we introduce a stimulus-computable Bayesian model

that comprises a perception module, a context module, and an explanation module.

The perception module used off-the-shelf commercial emotion recognition mod-

els, Microsoft Azure Emotion Detector and Amazon Rekognition. For the context

module, we used a custom model of the causal structure of emotional reactions to

events, the Inferred Appraisals model (from Chapter 4), fit to human predictions

for events in the same gameshow. These modules feed into the explanation module

where Bayesian inference generates the social cognitive reasoning behavior required

by a task. The overall results show that the combined model performed moderately

well at capturing human observers’ performance on both the CI and the OR tasks.

For both tasks, combining the perceptual and predictive models is critical; models

that used only mappings from perceived expressions to inferred emotions performed

substantially worse. The results also illustrate that there remains substantial room for

improvement on both the specificity of the perceptual component, and the generality

of the prediction component.
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Figure 5-1: Stimulus-computable model of human emotion understanding.

5.1.1 Related work

Advances in deep learning have invigorated efforts to build multimodal models that

combine expressive and contextual cues. Multitask models endeavor to capture the

flexibility of human emotion understanding by learning a shared embedding that al-

lows partially-observable data to be shared across modalities in service of multiple

tasks (Liang et al., 2022). These advances are exciting in that they suggest ways

models can perform the variety of social cognitive tasks that humans readily perform

(inferring emotions, past events, future actions, personality traits) based on vari-

able and incomplete information from different sources (sometimes facial expressions,

sometimes event descriptions, sometimes scene information). These modeling efforts

are benefited by datasets that aim to sample human emotion understanding in con-

text (Kosti et al., 2017). Related work aims to learn statistical associations between

expressions, scenes, objects, and other people who are visible (Kosti et al., 2019;

Parry & Vuong, 2021). These models leverage, often is combination, state-of-the-art

deep language models that infer semantic content (Mittal et al., 2020), spatiotem-
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poral regularities to infer causal dependencies (Do et al., 2021; Mittal et al., 2021),

and graph networks to infer relationships between features (J. Chen et al., 2022; Gao

et al., 2021; Park et al., 2020).

In contrast with these models, which learn statistical associations between stimu-

lus features, we frame the problem of emotion understanding as hierarchical reasoning

over an intuitive theory of other minds. An intuitive theory is a richly-structured lay

theory of ontology, in this case, the generative structure of others’ emotions. We

build a model of the emotions that observers predict others will experience. Emotion

predictions are simulated by inverting a generative model of behavior—how observers

explain others’ intentional actions in terms of mental contents like wants and expec-

tations. When then model how observers reason about the observed expressions in

terms of their contextual knowledge. This theory-based approach treats human emo-

tion understanding as inference over a mental model of psychology, where observers

use emotions as latent explanations that connect expressions and events.

5.2 Task 1: Attribution of emotions to

expressions in context

In the Cue-Integration (CI) task, human observers attribute emotions to a person

based on joint perceptual and contextual cues. Observers viewed a players’ dynamic

expressions after being given detailed information about the events that the players

were reacting to.

5.2.1 Empirical data

In each trial, observers (N=161) were given information about the final round of a

GoldenBalls game: the size of the jackpot, the decisions of the two players, and how

much money each player won. Observers then saw the dynamic expressions of the

focal player. Based on joint knowledge of the events the player experienced and the

expressions that the player spontaneously produced, observers judged how much the
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player experienced each of 20 different emotions. These data provided a naturalistic

target for models of human emotion understanding.
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Figure 5-2: Empirical emotion judgments. Observers where told what event a player
experienced and watch a video of the player’s reaction, then rated the player’s experience of
20 emotions on continuous scales from “not at all” to “extremely”. Points show the expected
intensity given the outcome that the player experienced. Shading shows the density of
intensity judgments. Legend indicates the proportion of the jackpot that the focal player
and the opposing player won. E.g. CD (0, 1): the focal player Cooperated (𝑎1=C) and won
nothing, the opposing player Defected (𝑎2=D) and won the entire jackpot.

5.2.2 Model

To explain these human judgements, we built a stimulus-computable Bayesian model

(SC-BCI) that comprises a perception module, a context module, and an explanation

module. The perception and context modules process the emotion content from

a stimulus. The explanation module combines the latent emotion representations

output by the latent modules. For the CI task, the explanation model integrates the

emotions inferred from expressions and the emotions predicted given event context

to infer what emotion intensities are likely given joint access to the cues from both

sources.

Perception module: emotions attributed to expressions

To model how human observers interpret the perceptual information conveyed by

players’ expressions, we used two pre-trained computer vision models of how ob-

servers attribute emotions to others’ nonverbal expressions. Microsoft Azure Emo-
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tion Detector and Amazon Rekognition returned frame-wise emotion ratings for each

expression video, which we transformed into the space of emotions judged by human

observers. To learn this transformation, an independent group of human observers

(N=136) provided emotion judgments based the perceptual information conveyed by

players’ expressions. The group was told nothing about the GoldenBalls gameshow

and judged emotions based solely on the expression videos. We learned a transforma-

tion between the joint emotion ratings of Azure and Rekognition and human emotion

judgments by iteratively cross-validating on a subset of the expression videos to gen-

erate emotion ratings for the left-out players’ expressions (see Methods: Perception

Module). This results in a 20-dimensional Azure-Rekognition emotion rating for each

left-out expression video. Note that “perception” references the input to the module,

not the processing of the input. The inference of emotions from expressions involves

cognitive processes and is not a strictly perceptual process (Brooks & Freeman, 2018;

Brooks et al., 2019).

Context module: emotions predicted from events

To model how human observers interpret event context, we built a generative model

of how observers predict others’ emotional reactions to situations. The inferred ap-

praisals model predicts emotions from sparse representations of events. In the final

round of the GoldenBalls game, the event comprises the actions of two players, the

size of the jackpot, and the rules of the gameshow (a public one-shot “weak” pris-

oner’s dilemma). The model simulates human emotion predictions by inverting a

nested hierarchical model of observers’ intuitive theory of psychology. The model

presumes that when observers know what happened to a player, they predict the

player’s emotions by inferring how the player will cognitively evaluate, or “appraise”,

the situation on dimensions such as monetary reward, social equity, and public rep-

utation. Based on latent representations of what observers think that players want

and expect, the model generates a joint distribution over inferred utilities, prediction

errors, and counter-factual judgments.

To learn a transformation between the space of inferred appraisals and human
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emotion judgments, we assumed that the joint-distribution over inferred appraisals

generated by the model, and the joint distribution over emotions produced by hu-

man observers, share a common latent structure. An independent group of human

observers (N=164) provided emotion judgments based on descriptions of events that

players experienced. This group was told what choices players made, the size of the

jackpots, and the rules of the GoldenBalls game, but did not see videos of players’

expressions. We learned a transformation between the inferred appraisals and human

emotion judgments by iteratively cross-validating on a subset of the players and gen-

erated emotion predictions for the left-out players (see Methods: Context Module).

This results in a distribution of emotion predictions for each left-out player.
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Figure 5-3: Latent module fits. The perception and context modules predicted emotions
for left-out players. These plots show the expected intensity of the module vs. the empirical
data for each emotion of each player. For the perception module, observers attributed
emotions to expression videos. For the context module, observers predicted the emotions
players would feel based on depictions of the events: the rules of the gameshow (𝑐), the
players’ actions (𝑎), the size of the jackpot (pot), and a static photo of the player prior to
the decisions being revealed.

Explanation module: integration of perceptual and contextual cues

The explanation module is drawn from computational models of human psychology.

Ong et al. (2015) proposed that, when human observers have joint access to expres-

sions and event context, they optimally integrate emotion information from perceptual
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and contextual cues. In an analogous fashion, we combine the perception module and

the context module to build a stimulus-computable Bayesian cue-integration model.

The Bayesian cue-integration model predicts what emotion judgments observers

will make given joint access to expressions and event context. The distribution of

emotions attributed given joint access to expressions and context, P𝑐(𝑒 | 𝑥, 𝑎), is pro-

portional to the product of the emotions attributed given expressions, P(𝑒 | 𝑥), and

the emotions predicted given the events, P𝑐(𝑒 | 𝑎), and inversely proportional to the

prior over the emotions, P𝑐(𝑒):

P𝑐(𝑒 | 𝑥, 𝑎) ∝ P(𝑒 | 𝑥) P𝑐(𝑒 | 𝑎)
P𝑐(𝑒) , where P𝑐(𝑒) =

∑︁
𝑎

P𝑐(𝑒 | 𝑎) P𝑐(𝑎) (5.1)

Emotions, 𝑒, are 20-dimensional vectors, 𝑥 is the dynamic expression of a player,

and 𝑎 is the outcome determined by the players’ decisions. Distributions parame-

terized by 𝑐, as in P𝑐(·), indicate that the inference depends on knowledge of the

GoldenBalls game, including that it is a public one-shot prisoner’s dilemma with the

payoff matrix previously described, and the value of the jackpot. We estimate P(𝑒 | 𝑥)

using the perception module, which infers emotions given videos of players’ sponta-

neous expressions. We estimate P𝑐(𝑒 | 𝑎) using the context module, which generates

emotion predictions given the event context. The single-cue emotion distributions are

integrated to simulate P𝑐(𝑒 | 𝑥, 𝑎), emotion judgments based on joint access to percep-

tual expression information and conceptual situation information. The hyperprior,

P𝑐(𝑎), is calculated based on prior knowledge about the statistics of actual gameplay

(see Appendix A.2.1).

We also assessed the capacity of the single cue distributions to capture observers’

joint-cue emotion judgments. To test if a context-naive expression model can capture

observers’ behavior, we simulated emotion judgments for each player’s expressions

using the perception module. The simulated emotion judgments were used to learn a

Kernel Density Estimate (KDE) model of the distribution over emotions given each

expression video: P(𝑒 | 𝑥).
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We similarly tested how well a model of event context alone can capture observers’

joint-cue emotion judgments. The context module generates emotion predictions by

inferring players’ appraisals using a richly structured model of observers’ intuitive

theory of mind. Emotion predictions generated by the context module were used to

learn a KDE model of the distribution over emotions given the outcome that a player

experienced: P𝑐(𝑒 | 𝑎).

The Bayesian cue-integration model (SC-BCI), the expression-only model (SC-

Expression), and the context-only model (SC-Context) are stimulus-computable, mean-

ing that after training they simulate emotion judgments for novel stimuli without

requiring human input. We compare the performance of these models to a human-

in-the-loop Bayesian cue-integration model (HITL-BCI), which predicts observers’

joint-cue emotion judgments based on empirical emotion judgments of players’ ex-

pressions and events. Whereas the single-cue models test how well models of percep-

tual expression information alone and of contextual event information alone capture

human emotion understanding, the human-in-the-loop model tests how well Bayesian

cue-integration captures human cognition and provides a ceiling for the performance

of the stimulus-computable models.

5.2.3 Results

Across all videos, the cue-integration model performed only slightly better than the

context-only model and the expression-only model was worst overall. The overall

concordance correlation coefficient (𝑐𝑐𝑐) between emotion judgments simulated by

the Bayesian cue-integration model and human emotion judgments was 0.710. The

expression-only model showed a large decrement (𝑐𝑐𝑐 = 0.494), while the context-

only model showed less impairment (𝑐𝑐𝑐 = 0.703). All three models fell short of

the human-in-the-loop cue-integration model’s prediction of the empirical joint-cue

emotion judgments (𝑐𝑐𝑐 = 0.866).

However, Bayesian cue-integration was not beneficial in every situation. When

players experienced CD or DC outcomes, the SC-BCI model was less predictive of

observers’ emotion judgments than the context-only model. In games with these
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outcomes, the expression model showed particularly low performance. In contrast

with CC, CD, and DC games, where the context-only model performs well relative to

the human-in-the-loop model, the context-only model was largely unable to capture

how human observers understood the emotions of players in DD games. For these

stimuli, the expression-only model showed relatively better performance, and it was

beneficial to integrate the expression-only and context-only models.
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Figure 5-4: Model fit to human emotion judgments. The concordance between the
inferred emotion intensities and human joint-cue attributions. (top-left) Across all expres-
sion videos and emotions. (top-right) Based on which outcome the players experienced.
(bottom) Within emotion (across all videos). Shaded windows indicate the 95% bootstrap
CI of the HITL-BCI model.
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5.2.4 Discussion and Directions

While the SC-BCI model did not regularly outperform both single-cue models, for

no stimulus was it the lowest performing model, and it provided the best fit in a

number of cases. Emotions inferred by the SC-BCI model were a worse fit to hu-

man behavior than emotion inferred by the HITL-BCI model. The SC-BCI model

integrates the output of the perception and context modules whereas the HITL-BCI

model integrates human emotion judgments, indicating that the stimulus-computable

model would be improved if the processing of stimuli was a better match to human

cognition. This is particularly evident for the processing of perceptual input.

To measure the extent that more human-like interpretation of expressions would

improve the inference of emotions in context, we built a hybrid BCI model by replac-

ing the output of the perception module with the empirical emotion judgments used to

train the module. This yields substantially better performance (𝑐𝑐𝑐 = 0.794 [0.792, 0.795];

Figure 5-5a). Furthermore, how well the perception module predicted human emotion

ratings of expressions correlates with how well the SC-BCI model predicted human

emotion judgments of the expressions in context. Figure 5-5b shows the concor-
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Figure 5-5: BCI performance with human-level expression processing. (a)
Bayesian Cue-Integration using emotions that human observers attributed to expressions
and emotion predictions generated by the context module. Shaded windows indicate the
95% bootstrap CI of the HITL-BCI model. (b) Relationship between how well the ex-
pression module captured the emotions human observers attributed to expressions versus
how well the SC-BCI model captured the emotions humans inferred given joint access to
expressions and event context.
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Figure 5-6: Emotions inferred by humans and computer vision systems. Human
observers attributed similar emotions to these players’ expressions, despite the fact that
(unbeknownst to the observers), the top player had $19,025 stolen from her (CD) and the
bottom player stole $57,518 from his opponent (DC). Observers infer that the CD player
is very disappointed, whereas Azure and Rekognition infer that she is happy. For the DC
player, Azure and Rekognition exhibit more human-like attributions, inferring that he is
sad. These patterns are surprisingly common: human observers frequently infer that players
are experiencing very different emotions than the outcomes were expected to elicit, such as
being disappointed after winning $57,518. Similarly, the computer vision models frequently
deviate from human behavior (e.g. inferring that that the CD player is happy). Where the
computer vision models deviate from human behavior, there is no evidence that systems
are detecting players’ emotions more sensitively than human observers. For example, while
we cannot know what emotions the CD player was experiencing, it is exceedingly unlikely
that the computer vision models have accurately detected that she is happy about being
suckered out of half the jackpot.

dance between the perception module and observers’ interpretation of expressions

(x-axis) versus the concordance of the SC-BCI model and observers’ joint-cue emo-

tion judgments (y-axis). The correlation (Pearson 𝑟 = 0.508) suggests that stimulus-

computable prediction of naturalistic human emotion understanding would be sub-
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stantially improved by developing models that better match human judgments of

expressions. While the development of computer vision models that make human-

like emotion judgments of expressions is an active area of research, and many report

high levels of success (Ichimura & Kamada, 2022; Khaireddin & Chen, 2021), our

results indicate much room for improvement. Figure 5-6 gives examples of the emo-

tions inferred by the computer vision systems and human observers given the same

stimuli (i.e. emotion judgments made by observers who saw the expressions without

any context information).

5.3 Task 2: Causal inference of antecedent events

from expressions

In the second task, human observers see a person’s facial expression and infer the

unobserved event that elicited that expression. Our model reflects the hypothesis,

introduce in Chapter 2 and developed in Chapter 3, that observers predict what emo-

tions someone is likely to experience in each plausible situation and reason about

which emotion predictions provide the best causal explanation for someone’s expres-

sions. Here, we replace the human-generated perceptual recognition and contextual

prediction components in the Bayesian outcome recovery model of Chapter 3 with

the stimulus-computable perception and context modules, described above.

The Bayesian outcome recovery model aims to capture the causal structure of

how humans reason about expressions. We contend that it is essential to model the

emotions that situations are predicted to elicit. An alternative view is that human

emotion understanding should be modeled as a function of perceptual patterns of

expressive behavior, independent of context. In this view, patterns of expressive be-

havior are the primary source of information that observers use to understand the

emotions, intentions, and situations that caused others’ nonverbal reactions (Keltner

et al., 2019). Given the availability of powerful tools for building computer vision

models, and the challenges of building general models of event context, it is impor-
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tant to consider how much of human emotion understanding can be explained by

perceptually-available patterns of expressive behavior. As a test of whether human

causal reasoning in this task can be explained by perceptual pattern matching, we

built a model to classify which outcomes players were reacting to based on the sta-

tistical regularities of their expressions alone.

5.3.1 Empirical data

Observers (N=93) viewed players’ dynamic expressions and guessed which events the

players had experienced. In each trial, observers were told the size of the jackpot, but

not what decisions the players made, and then watched the focal player’s emotional

reaction. Each observer classified the outcome (CC, CD, DC, or DD) for all 88 videos.
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Figure 5-7: Human outcome judgments by stimulus. Observers guessed which out-
come (𝑎 ∈ {CC, CD, DC, DD}) a player was reacting to based on the player’s dynamic expres-
sion. Each observer viewed a balanced number of emotional reactions to the four outcome
categories, 88 players in total. The bars show the proportion of outcome judgments for
each player. Solid bars indicate the proportion of correct outcome judgments and hatches
indicate incorrect judgments, with respect to the ground true event. Asterisks indicate ex-
pression videos where the 95% binomial CI of the correct judgment is below uniform chance
accuracy (0.25).

5.3.2 Model

To explain human causal reasoning about which events the players were reacting to,

based on perception of the player’s expressions, I built a stimulus-computable model
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composed of a perception module, a context module, and an explanation module.

The perception module and the context module are identical to Task 1. The expla-

nation module makes abductive inferences about which events provide likely causal

explanations of the observed expressions.

Explanation module: abduction of outcomes from expressions

The Bayesian outcome recovery (BOR) model predicts what events observers will

infer to have caused players’ expressions. This model simulates outcome judgments

as abductive inference (Lombrozo, 2012). Observers infer the best explanations for

their observations by comparing the emotions players appear to experience against

the emotions that hypothetical events are predicted to elicit. The emotions players

appear to experience are inferred by the perception module. This yields a distribution

of emotions given an expression: P(𝑒 | 𝑥). The emotions that events are predicted to

elicit are generated by the context module. This yields a distribution of emotions

given an event: P𝑐(𝑒 | 𝑎). For simplicity, we write the two players’ actions (𝑎1 and 𝑎2)

as the outcome, 𝑎, and include the pot size as a component of the parameterization,

𝑐. The explanation module carries out abductive inference over the latent emotion

distributions to simulate which events, 𝑎, human observers will judged to have caused

expression 𝑥. This is formalized as a Bayesian belief-updating model, where the

probability of event given expression is:

P𝑐(𝑎 | 𝑥) =
∫︁

𝑒
P𝑐(𝑎 | 𝑒) P(𝑒 | 𝑥) d𝑒 = E

P(𝑒 | 𝑥)
P𝑐(𝑎 | 𝑒) = E

P(𝑒 | 𝑥)

P𝑐(𝑒 | 𝑎) P𝑐(𝑎)
P𝑐(𝑒)

where P𝑐(𝑒) =
∑︁

𝑎

P𝑐(𝑒 | 𝑎) P𝑐(𝑎)
(5.2)

Thus, the model infers the posterior distribution, P𝑐(𝑎 | 𝑥), by reasoning about the

likelihood that P(𝑒 | 𝑥) was sampled from the conditional distribution P𝑐(𝑒 | 𝑎). As

was the case with the SC-BCI model, the hyperprior, P𝑐(𝑎), is calculated based on

prior knowledge about the statistics of actual gameplay (see Appendix A.2.1).

We compare the performance of the SC-BOR model to human-in-the-loop Bayesian
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outcome recovery model (HITL-BOR), which predicts observers’ outcome judgments

based on empirical emotion judgments of players’ expressions and emotion predictions

based on the events. This human-in-the-loop outcome recovery model provides an

estimate of how well Bayesian outcome recovery can capture human causal reasoning

about the event antecedents of expressions and provides an estimate of the upper

limit that can be achieved by stimulus-computable models.

5.3.3 Results

The Bayesian abductive inference module predicts which events observers infer a play-

ers experienced, based on videos of the players’ spontaneous emotional expressions.

For a given expression video 𝑥, the model infers the probability that human observers

will judge that the player is reacting to outcome 𝑎. Model performance is calculated

by comparing the empirical and simulated P𝑐(𝑎 | 𝑥) for every combination of 𝑥 and

𝑎. For instance, we compare the proportion of human observers who judged that

player 𝑖 was reacting to outcome CC with the model inference of P𝑐(𝑎=CC | 𝑥=𝑖) (the

posterior probability that observers would judge CC given the dynamic expression

of player 𝑖). Across all outcomes and players, the outcome judgments simulated by

the model and the outcome judgements of human observers showed a concordance

correlation of 0.523 [0.503, 0.541].

5.3.4 Perceptual outcome classification

The expression model classifies which outcome a player experienced based on the ex-

pressions that players actually made. This simulates the outcomes human observers

would infer if they had an accurate understanding of what expressions players pro-

duce. A Support Vector Machine (SVM) was trained on the Microsoft Azure and

Amazon Rekognition emotion ratings of players’ expressions to predict which out-

come the players were reacting to. Since the SVM does not require the expression

information to be in the 20-dimensional empirical emotion space, we used the sum-

mary statistics of the Azure and Rekognition time series. Thus, the SVM bypasses
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Figure 5-8: Fit to human outcome judgments. Concordance between the inferred
probability of an outcome judgment and the proportion of observers who guessed that
outcome. (left) Across all expression videos. (right) Based on the ground truth of which
outcome the player experienced. Shaded windows indicate the 95% bootstrap CI of the
HITL-BOR model.

the transform step of the perception module.

Results

Perceptual classification proved to be a poor model of human behavior. Across all

outcomes and players, the outcome judgments simulated by the expression model

showed a concordance correlation of 0.289 [0.250, 0.352] with the outcome judgements

of human observers. Divergence between the expression model human behavior was

especially pronounced for the players reacting to DC and DD games (𝑐𝑐𝑐 = -0.142

[-0.202, -0.048] and -0.166 [-0.219, -0.035], respectively).

5.3.5 Discussion and Directions

The OR task is a useful test of model performance because it involves social cognition

about expressions, rather than only direct rating of expressions. Outcome judgments

simulated by the SC-BOR model were a much better fit to human behavior than

outcome judgments simulated by the expression model (SC-Expression-SVM). Thus,

incorporating contextual information and causal structure yields more human-like
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Figure 5-9: BOR performance with human-level expression processing. Bayesian
Outcome Recovery using emotions that human observers attributed to expressions and
emotion predictions generated by the context module. Shaded windows indicate the 95%
bootstrap CI of the HITL-BOR model.

expression judgments. Compared to the complicated, recursive, and unconstrained

social cognition that people naturalistically employ, the OR task is extremely simple.

It is likely that in most tasks of even moderate complexity, isolated expressions will

be insufficiently informative for stimulus-computable models to emulate human social

cognition.

Similar to the results in the CI task, performance of the SC-BOR model was

substantially lower than the human-in-the-loop comparison model, HITL-BOR. To

measure the extent that more human-like interpretation of expressions would im-

prove the inference of outcomes, we built a hybrid BOR model by replacing the

output of the perception module with the empirical emotion judgments used to

train the module. This improved the performance to nearly the level of the HITL-

BOR comparison model: Hybrid-BOR 𝑐𝑐𝑐 = 0.820 [0.811, 0.823]; HITL-BOR 𝑐𝑐𝑐 =

0.863 [0.849, 0.869]. Thus, the difference between the Perception Module and human

observers accounted for most of the error of the stimulus-computable model relative

to the human-in-the-loop model.

We now consider accuracy with respect to ground truth. Chapter 3 showed that

observers make cognitive model-based errors in their causal reasoning about these
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Figure 5-10: Accuracy with respect to the ground true events. Empirical-OR: The
F1-scores of human observers’ outcome judgments. Error bars give the 95% bootstrap CI on
the performance of individual observers. Empirical-Expression-SVM: trained to classify the
true outcome based on empirical emotion judgments of expression videos. SC-Expression-
SVM: trained to classify the true outcome based on summary statistics of the computer
vision systems ratings of expression videos.

players’ spontaneous emotional expressions. One possibility is that expressive be-

havior in simply uninformative. It is also possible that expressive behavior encodes

relevant information and humans are either insensitive to, or do not accurately inter-

pret, the relevant perceptual cues. Indeed, prior work has shown that observers fail to

utilize statistical regularities in expression production. Using static photos, Aviezer

et al. (2015) found that observers’ ratings of emotional valance were insensitive to

objective differences between expressions of tennis players who won or lost a point.

Thus, while supervised learning to classify veridical events from players’ expressions

yields a poor fit to human behavior (Figure 5-8), computer vision systems may be

able to recover the true outcomes better than humans.

We repeated the perceptual outcome classification analysis from above (Section 5.3.4),

but this time the SC-Expression-SVM model was trained to recover the ground-

true outcome rather than human outcome judgments. We trained another SVM,

the Empirical-Expression-SVM model, to recover the ground-true outcome from hu-

man emotion judgments of the expressions (the same empirical data used to train

the Perception Module). The macroaveraged F1-scores of the ground-truth super-

144



vised SVM models were comparable: 0.464 and 0.458 for SC-Expression-SVM and

Empirical-Expression-SVM, respectively (Figure 5-10). Both models outperformed

human observers in classifying which events elicited players’ spontaneous expressions

(macroaveraged F1-score and 95% CI of human observers: 0.350; Empirical-OR in

Figure 5-10).

The results indicate that these computer vision systems are not more sensitive

to diagnostic expressive signals than human observers, since both sets of emotion

judgments support similar classification performance. Additionally, the results indi-

cate that there are statistical regularities in spontaneous expressions that differentiate

which antecedent events players experienced, but that individual observers fail to use

this diagnostic information in their causal reasoning. Together this suggests that hu-

man observers could learn to interpret the diagnostic information to perform better

on the OR task, but that the computer vision systems should not be expected to

exceed human-level performance.

5.4 General Discussion

Our goals are to build a stimulus-computable model of emotion understanding, to

highlight the areas currently preventing computational models from achieving human-

like behavior, and to suggest directions for improvement. Emotion understanding is

likely to be an intermediate step in many aspects of social cognition. Others’ emotions

provide vital information about what they care about, what they are likely to do in

the future, what events have transpired previously, and how we should plan our own

actions (de Melo et al., 2014; Houlihan et al., 2022; Saxe & Houlihan, 2017; Wu et al.,

2021).

It follows that capturing how people use emotion information is likely to be a

meaningful test of whether models have captured the cognitive structure of human

emotion understanding. In this spirit, we examined two naturalistic tasks that hu-

mans regularly perform: inferring people’s emotions given joint access to their ex-

pressions and the events they are reacting to, and what events people are reacting to
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given their expressions. These tasks require observers to combine and reason about

emotion information. In the current work, we model human cognition by using a

perceptual front end to process expressions, a generative model of inferred appraisal

to process event context, and hierarchical Bayesian models to computationally rea-

son over latent emotion information in order to find likely explanations for what was

observed.

Our work argues that these components are crucial for any model of emotion

understanding that aims to simulate human behavior in naturalistically rich social

situations. Within limited domains, it is easy for individual components to perform

deceptively well. Current computer vision models are already reporting high levels

of success at predicting human annotator emotion labels for static facial expressions

scraped from search engines (Ichimura & Kamada, 2022; Khaireddin & Chen, 2021).

By contrast, when the contextual information is much richer than the expression in-

formation, context alone can appear to be a better predictor of emotion understanding

(Goel et al., 2022). The CI task illustrates that expressions can appear more infor-

mative in certain cases (e.g. for the expressions of players in DD games) while context

appears more informative in other cases (CC, CD, and DC games). Building artificial

systems that capture human emotion understanding will invariably require model-

ing both expressions and event context, as well their interactions. The challenges

involved in advancing the individual components may be locally distinct, but are

fundamentally interconnected (Saxe & Houlihan, 2017).

In the present work, the stimulus-computable model would be most improved by a

perception module that more closely matched human judgments of expressions. Sev-

eral factors would likely lead to better approximation of human emotion attributions

to expressions. Temporal integration of facial and bodily expressions is an active area

of research for computer vision, but remains a challenge (Do et al., 2021; Jin et al.,

2020). Humans show complex processing of spatiotemporal statistics of expressions

(Goldenberg et al., 2022; Jack et al., 2014; Sowden et al., 2021). The computer vision

models used in the current work processes video frames independently. While the

temporal integration strategy we used is common, it is likely a poor approximation of
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human cognition. Similarly, body posture can dramatically influence human emotion

judgments (Aviezer et al., 2012b; Israelashvili et al., 2019; Lecker et al., 2020). It

was not uncommon for players in our stimuli to bring their hands up to their mouths

and faces. Seeing someone bury her face in her hands is a meaningful gesture to hu-

man observers, which underscores the need for robust, multimodal computer vision

systems that can not only tolerate occlusions, but also interpret them. There is also

evidence that the space of emotions that observers reliably attribute to expressions

is larger than the low dimensional annotation sets typically used to supervise the

training of computer vision models (Cowen & Keltner, 2020). In the present work,

we learned a mapping between the eight-emotion time series output by the computer

vision models and observers’ intensity judgments of twenty fine-grained emotions,

but future computer vision models should aim to capture a much richer space of the

emotions that humans interpret in others’ expressions.

The emotions reported by Azure and Rekognition diverged strikingly and quali-

tatively from the emotion judgments of human observers. One possible explanation

is that our current stimuli are highly dissimilar from the distribution of images in the

training set. Data used to train computer visions models, which is often scraped from

internet search engines, can reflect potentially extreme selection biases (Peña et al.,

2020). Computer vision systems may be better able to generalize to spontaneous

expressions if training data more accurately reflected the distribution of naturalistic

expressions (Le Mau, 2019; McDuff et al., 2019) and if the models explicitly aimed

to learn observers’ knowledge of the naturalistic variability in expression production

(Abdíc et al., 2016; Anzellotti et al., 2021; Barrett et al., 2019; Lei & Gratch, 2019;

Martin et al., 2017). The especially poor fit to certain players’ expressions is likely

due in part to the players’ demographics. Even relative to human observers, computer

vision systems are prone to making emotion inference that are biased by race, gen-

der, and age (Bryant & Howard, 2019; Kyriakou et al., 2020; Xu et al., 2020). While

there is ongoing work to curate better training data (Y. Chen et al., 2021; Prabhu &

Birhane, 2020), mitigating these issues is a pressing ethical concern that will likely

require critical examination of the current approaches and practices (Birhane, 2021;
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Ong, 2021; Scheuerman et al., 2021).

The context module faces different challenges than the perception module. The

context module provided an excellent match to how observers predict the emotions

that players will experience in these tasks. In contrast to the computer vision models,

which aim to learn general mappings between expressions and emotions, the Inferred

Appraisals Agent model was narrowly designed to capture inferred appraisals in one-

shot, public Prisoner’s Dilemma games. Within the training and test sets of events,

the events and objective rewards were highly constrained: there was a limited set

of possible actions, and the objective rewards were known. A more general context

module would need to operate over complicated and abstract multimodal cues. For

instance, observers readily predict emotions from descriptions and depictions of sit-

uations (Le Mau et al., 2021; Skerry & Saxe, 2014, 2015). Recent advances in deep

learning have permitted language models to capture an impressive amount of rele-

vant social information from relative unconstrained stimuli like these (Bhagavatula

et al., 2019; Bosselut et al., 2019; Park et al., 2020). Conversely, there’s evidence

that the learned embeddings fail to capture human-like mental state representations

(Shu et al., 2021; Stojnic et al., 2022). In our view, theory-based symbolic reasoning

is an indispensable part of human-like emotion understand models and may also be

learnable with the right inductive biases. The path towards more human-like models

of context-based emotion understanding necessitates combining symbolic generative

models with deep learning and reinforcement learning frameworks (Le et al., 2021;

Ong et al., 2021; Tsividis et al., 2021).

Clearly, it will take a great deal of innovation to develop stimulus-computable

models that capture human emotion attributions to expressions and human emotion

predictions from situations. But on its own, this would not be sufficient to explain

human emotion understanding in the current tasks. Even the HITL models, which

directly used observers’ emotion attributions to expressions and emotion predictions

from events, did not perfectly capture the target data. In the present work, we

approximated the latent emotion distributions using the explicit emotion judgments

of observers given partial information. This framework presumes more independence
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between the perception module and the context module than human behavior implies.

Our current data indicate where modeling rich latent emotion representations are

likely necessary. We have previously argued that observers intuitively understand

some of the real-world variability in expression production (Anzellotti et al., 2021).

While observers might not be able to accurately introspect on their knowledge, there

is evidence that observers’ latent probabilistic representations are a significant factor

in how they combine and reason over emotion cues. In the CI task, the explanation

module uses the population-level judgments to approximate the latent emotion dis-

tributions of individual observers. For some combinations of expressions and context,

Bayesian integration of the single-cue emotion judgments clearly fails to capture how

human observers interpret expression cues in the light of event context. An example

is shown in Figure 5-11.

Similarly, in order to capture human causal reasoning in the OR task, a stimulus-

computable model would need predict how contextually-informed hypotheses shape

a1a2 = DC
jackpot: $1,652
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Figure 5-11: Limits of population-level Bayesian cue-integration. The blue line
shows the probability density of human observers’ attributions of guilt based on the per-
ception of the player’s expression. Given his expression alone, most observers inferred this
player was not experiencing much, if any, guilt. Similarly, when observers knew what hap-
pened (he Defected, his opponent Cooperated, the jackpot was $1,652) and saw this photo
of him (taken before the players revealed their choices), they did not predict that he would
experience much, if any, guilt (red line). Bayesian integration of these distributions predicts
that observers who saw his dynamic expression and knew what event he was reacting to,
would infer that he was experiencing a moderate amount of guilt (HITL-BCI, dashed purple
line). However, observers with joint access to his dynamic expression and the event context
inferred that he felt extremely guilty (solid purple line).
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the interpretation of expression cues. Future stimulus computable models will need

to not only capture the mean emotion judgments, or even the distribution of a popu-

lation’s judgments, but also the latent probabilistic representations that observers use

to reason about ambiguous information. In our view, this requires generative models

that computationally recapitulate the human intuitive theory of emotion.

5.5 Conclusion

Human emotion understanding is a theory-based solution to the problem of explain-

ing ambiguous observations with incomplete knowledge. From sparse, uncertain data,

observers make rich inferences and predictions about other people and the world.

We have argued that observers solve these ill-posed inverse problems using a rich,

causally-structured mental model. The structure of this mental model is echoed in

the emotions observers attributed to players’ expressions. Observers who knew what

space of events players could be reacting to made different emotion inferences than ob-

servers who knew nothing about the provenance of the expressions. Furthermore, this

shift in interpretation was important for capturing how observers causally reasoned

about the events that players experienced. We take this as evidence that hypotheses

about mental states constrain the search for likely explanations of the available data.

In this case, the highly constrained event structure leads to different interpretations

of facial and bodily musculature. When the situation is less constrained, observers al-

most certainly use expressions to guide the search for likely world states. Expressions

that seem incongruent with one set of contextual hypotheses likely impel observers

to search for alternative world states that can better explain the observed reaction.

Therefore, while treating the perception and context modules as independent and

parallel is a secondary concern for the current work, stimulus-computable models of

human emotion understanding will need to address how conceptual and perceptual

information mutually and recursively constrain the interpretation of expressions and

events.

It is possible that end-to-end multimodal models that learn joint embedding of
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Figure 5-12: Schematic of the intuitive theory of emotions. A causally-structured
framework for developing generative models of social cognition (for details, see Chapters 2
and 4). Formal models of intuitive psychology have traditionally relied on hand-coding
explicit symbolic representations (e.g. agents, goals, efficiency, appraisals). While such
structure is likely required for models to match the generality, sophistication, and adapt-
ability of human cognition, this structure may be learnable under the right inductive biases.

expressions and context will be able to capture how expressive behavior and contex-

tual information mutually constrain emotion understanding. However, in our view,

statistical associations between expressive behavior and contextual cues are a poor

approximation of how humans reason about other minds. Capturing the fine-grained

logical and causal reasoning that typifies social cognition will require the use of prob-

abilistic generative models of human’s intuitive theory of mind (Lake et al., 2017).

While generative models, like the Inferred Appraisals Agent model, have historically

relied on extensive hand-coding, advances in program induction indicate that proba-

bilistic programs of this type can be learned (Lake et al., 2015).

In our view, building human-like interpretation of expressions will require incor-

porating generative models of observers’ intuitive theory of emotions (Figure 5-12).

Rather than treating expression interpretation as a problem of perceptual pattern

matching, it should be treated as causal reasoning where observers invert an intuitive

theory of expression production to infer mental contents (appraisals, beliefs, desires,

motivations, costs). These latent theory of mind variables are the grammar of social

cognition. Models that aim to capture how humans combine, reason over, and act
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on emotion information, will invariably need to model computations in the space of

these latent mental contents.

5.6 Methods

Stimuli

The stimuli were generated from archival footage of a televised British gameshow

called GoldenBalls. Every episode of GoldenBalls culminates with two contestants

playing a dramatic one-shot instantiation of the Prisoner’s Dilemma. Each player

is given a choice to “Split” or “Steal” a jackpot (in standard Prisoner’s Dilemma

notation, to “Cooperate” or “Defect”, respectively). If both decide to “Cooperate”,

they each receive half of the jackpot. If one player instead chooses “Defect”, that

player wins the entire jackpot and the other player who chose “Cooperate” leaves

with nothing. If both players choose “Defect”, both get nothing1. Players negotiate

with each other in front of a live audience in an attempt to convince the other to

make the financially disadvantageous choice to Cooperate. Each player makes a de-

cision in private, then the two players simultaneously reveal their choices, all while

being filmed. The game is emotionally evocative by design. When the choices are

revealed, players discover whether they have won or lost real and often substantial

sums of money; and whether they have successfully cooperated, successfully duped,

been duped by, or failed to dupe the other player. The TV cameras capture their

spontaneous, unscripted expressions.

The stimuli for both novel tasks were depictions of 88 individual players’ experi-

ences in the Split of Steal game. The four outcomes were represented equally in the

stimuli (N=22 for each outcome), reflecting the true distribution of play (across all

287 broadcast episodes, players were 53% likely to cooperate (van den Assem et al.,

2012), and the decisions of a player dyad were statistically independent of each other
1Rapoport (1988) defines this payoff structure as a Weak Prisoner’s Dilemma because the CD

payoff confers the same monetary reward ($0) to player 1 as the DD payoff. Thus, with respect to a
player’s first-person financial payout, defecting is never harmful, but is only conditionally beneficial.
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(Burton-Chellew & West, 2012)). We decomposed these experiences into elements of

Expression and Context.

To convey the focal player’s expression, we created a 5-second video of each player,

by splicing together footage from the moments surrounding the climactic reveal. Each

silent video shows a single player’s expressions; the first 2-seconds show the player

before the decisions are revealed and the final 3-seconds show the player’s reaction

to learning the game outcome. The players’ decisions were masked so that observers

could not see what outcome the players were reacting to. The focal player (the player

visible in a video) is always coded as player 1. These 88 videos were used as stimuli

in both Task 1, attributing emotions to expressions in context, and Task 2, inferring

specific contexts from expressions.

To convey the focal player’s outcome, a static graphic depicted the pot size, the

focal player’s choice, the other player’s choice, and the outcome for each player.

Videos were presented with the ground-truth outcome display. This graphic was

presented along with the corresponding video to human observers in Task 1 only.

Perception Module

The module simulates emotions attributed based on the perception of a player’s

spontaneous expression, in the absence of contextual information: P(𝑒 | 𝑥). From

a 5-second expression video, 𝑥, still frames were extracted. For every video frame

⟨𝑥1, · · · , 𝑥𝑡=126⟩, the computer vision component returns an interpretation of the pixel-

level visual statistics ⟨𝑓1, · · · , 𝑓𝑡=126⟩. Microsoft Azure Emotion Detector and Amazon

Rekognition each return an 8-dimensional simplex vector reflecting the model’s con-

fidence of detecting 8 model-specific emotions. For each video, the time series of each

𝑓 feature is converted into a summary statistic: the mean of the anticipation expres-

sions (using frames from the first 2-seconds of a video), and the mean and the max

of the reaction expressions (using frames from the last 3-seconds of a video). This

yields a 48-dimensional summary feature vector for each 5-second expression video.

We learn a linear transformation between the summary feature vectors and the

empirical 20-dimensional emotion intensity judgments using Ridge regression. The
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data for 4 of the 88 expression videos (one from each outcome category) were held

out for testing. We fit the transformation parameters with 𝐿2-regularized linear

regression. The regularization hyperparameter was fit by K-fold cross-validating on

the training data using grid search. The process was iterated over data partitions to

simulate out-of-sample emotion attributions for every expression video.

Context Module

The module simulates emotion predictions based on the event context, in the ab-

sence of perceptual information about a player’s expressive reactions to the event:

P𝑐(𝑒 | 𝑎1, 𝑎2, pot). We generated emotion predictions following the method described

in Chapter 4. Given the actions of a player dyad and the size of the jackpot, the

model generated a joint distribution over inferred appraisals: P𝑐(𝜓 | 𝑎1, 𝑎2, pot).

Distributions parameterized by 𝑐, as in P𝑐(·), indicate that the inference depends

on knowledge of the GoldenBalls game, which corresponds with the “Public Game”

model in Chapter 4. Inferred appraisals were generated using empirically-derived

prior over players’ preferences and belief (the “GenericPrior”, Chapter 4)2.

We learn a sparse transformation between the joint distribution over inferred

appraisals and a joint distribution over empirical emotion intensity judgments (an

empirical KDE):

𝛽, 𝑏 = arg max
𝛽,𝑏

𝑀∏︁
𝑚

𝑁∏︁
𝑛

P(𝑒𝑚,𝑛 |𝜓𝑚 ; 𝛽, 𝑏, Σ) P(𝛽) (5.3)

where 𝑀 is the number of stimuli and 𝑚 specifies the stimulus. A stimulus is defined

by the event context, ⟨𝑎1, 𝑎2, pot⟩. 𝑁 is the number of empirical emotion judgments

of stimulus 𝑚. The likelihood function is described in Methods 4.7: Maximizing the

likelihood of people’s emotion attributions. Note that the 20 emotion labels for which

the Inferred Appraisals model predicts intensities are different than the 20 emotion
2In the present chapter, the Inferred Appraisal model generates emotion predictions for different

veridically stimuli, where the players’ actions, jackpots, and static photos of players’ faces reflect
the ground-true pairings in the GoldenBalls gameshow. However, the GenericPrior used here and
described in Chapter 4, P𝑐(𝜔base, 𝜔repu , 𝜋𝑎2), was estimated by marginalizing over combinations of
actions, pot sizes, and player identities that did not actually occur on the GoldenBalls gameshow.
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labels in Chapter 4.

The data for 8 stimuli (balanced by outcome category) were held out for testing.

The maximum a posteriori (MAP) estimate of the transformation parameters was

learned on the remaining data. We fit the weights matrix, 𝛽, via gradient descent

with 𝐿1 regularization on every weight. The scale of the Laplace prior, P(𝛽), was

learned through K-fold cross-validation on the training data using Bayesian optimiza-

tion (Snoek et al., 2012). The MAP estimate of the transformation parameters was

then used to generate emotion predictions for the held-out stimuli. The process was

iterated over data partitions to simulate out-of-sample emotion predictions for every

event description.

Models

Model Expression Processing Context Processing
Cue-Integration (CI) Task

HITL-BCI Humans Humans
SC-BCI Perception Module Context Module
SC-Expression Perception Module ✗

SC-Context ✗ Context Module
Hybrid-BCI Humans Context Module
Empirical-Expression Humans ✗

Outcome Recovery (OR) Task
HITL-BOR Humans† Humans
SC-BOR Perception Module Context Module
SC-Expression-SVM Perception Module‡ ✗

Hybrid-BOR Humans Context Module

Table 5.1: Key for models. Stimulus-computable (SC), human-in-the-loop (HITL),
Bayesian cue-integration (BCI), Bayesian outcome recovery (BOR). For the HITL-BOR
model, † indicates that observers knew the rules of the GoldenBalls gameshow when judg-
ing the emotional content of players’ expressions. For the SC-Expression-SVM model, the ‡

indicates that in the Perception Module, the summary statistics were not transformed into
to space of empirical emotion judgments.
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Appendix A

Appendix to Chapter 3

A.1 Limitations

Basing our experimental stimuli on a real-world, televised gameshow increases the

ecological validity of our results, but also presents methodological challenges. Our

experimental stimuli were constrained by what actually happened on the gameshow,

rather than being systematically varied. In particular, the pot-sizes were not balanced

between outcomes, presenting an experimental confound. However, our results show

that the variance in emotion ratings is much larger between outcomes than between

pot-sizes, particularly excluding the two smallest pot-sizes (3.5 and 30 USD), which

likely so small that they were conceptually dissimilar to the larger pot sizes.

Although our videos captured spontaneous, rich expressions, their televised nature

still differs from everyday emotional situations. First, our videos did not capture the

entirety of the expressions produced by the players. The videos do not depict fully

temporally contiguous expressions, since they were limited by the clips that were

chosen to be included on the show. The episodes of GoldenBalls typically switch

between views of a player and other material, so we edited together several sections

surrounding the reveal in order to gather video of five seconds featuring a player’s

expressions.

The contextual information was also not naturalistic in some respects. We required
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that the space of events could be well-characterized in order for us to elucidate the

effect of context. However, it is unclear how these results apply to everyday situations

where contexts can be more complex rather than discrete possibilities. It should be

noted that players on the game likely experienced a wide variety of considerations

that are not made explicit by the four outcome categories, such as the monetary

impacts of winning or losing given their personal financial situation, or their personal

social/reputational impacts of defecting in a public game.

One limitation of our data analysis and Bayesian model was our focus on average

emotion predictions across the population and across experiment stimuli, rather than

on a trial-by-trial basis. Anzellotti et al. (2021) showed that individual observers

represent a distribution over plausible emotions, and transform that distribution into

a judgment using a complex decision rule. Here, we use observers’ explicit judgments

to assemble a population-level distribution, but we acknowledge that the population-

level distribution need not be equivalent to any individual’s latent representations.

Indeed, our informal data exploration revealed reliable individual differences, and we

believe that not everyone shares the same intuitive theory. Exploring such differences

is likely to be a promising direction for future work.

A.2 Supplementary Analyses

A.2.1 Statistics of actual gameplay

In the 287 episodes provided by Endemol UK, players cooperated 53.0% of the time

(N=574). We found no evidence that players’ decisions contained information about

their opponents’ decisions. From the observed frequency of cooperation, we compared

the observed outcome frequencies to that predicted of independent decisions. Given

the observed frequency of cooperating (𝑃 = 53.0%) and defecting (𝑄 = 1 − 𝑃 ), the

Hardy-Weinberg equilibrium gives the ratios of outcomes that would be expected if

the decisions of the two players in a dyad were independent: 𝑝2 + 2𝑝𝑞 + 𝑞2 = 1. A

chi-square test indicated the distribution expected assuming independent assortment
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is indistinguishable from the observed distribution, which suggests that the decision

of one player in a dyad was statistically independent of the other player’s decision,

𝜒2
1 = 0.014, 𝑝 = 0.905.

A.2.2 Similarity structure of emotion judgments

The similarity matrices in Figure A-1 show the mean Pearson’s correlation between

observers’ emotion judgments for Studies 1, 2, and 3. We calculated the Pearson’s

correlation of every 20-dimensional emotion judgment vector with every other emotion

judgment vector within the same outcome (top row) and with the same stimulus

(bottom row). Correlations were z-transformed before averaging.
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Figure A-1: Similarity between emotion judgments of the same true outcome (top row) and
stimulus (bottom row).
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A.2.3 PCA of emotion judgments

We performed principal component analysis on the emotion judgments from Studies 1,

2, and 3. To determine the number of significant components, we cross-validated the

decomposition by censoring a random 10% of values, then determined when additional

PCs reduced the fit to the held-out data. The number of PCs was 4 for each dataset.

The proportion of variance explained by the first 4 PCs, and how the PCs load

onto the 20 emotions, are shown in Figure A-2. In the top row, emotions are ordered

according to the amount of variance explained by the first principal component. While

prior work has found that emotion judgments are effectively captured by using a two-

dimensional space of ‘valence’ and ‘arousal’ (e.g. Kuppens et al., 2013; Russell, 1980),

we find that four orthogonal bases are necessary to capture observers’ judgments of

the 20 fine-grained emotions collected. The third and fourth PCs explain only a small

proportion of the overall variance, but are especially important for social emotions

like guilty and embarrassed in Studies 1 and 3, and apprehensive and terrified in

Study 2.

The second row of Figure A-2 shows how the first two PCs load onto each emo-

tion. In all three studies, the first PC loads positively with the negatively-valenced

emotions, and negatively with surprised and the positively-valenced emotions. This

is consistent with the previous work on emotion judgments, which reliably finds that

the most important dimension organizing emotion judgments is emotional valence

(Kuppens et al., 2013; Ong et al., 2015; Russell, 1980). Unlike this previous work,

the second dimension in these data does not appear to reflect emotional arousal.
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Figure A-2: Principal component analysis of emotion judgments. Top row shows the pro-
portion of variance explained by the four PCs. Bottom row shows how the first two PCs
load on to each emotion.
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A.2.4 Reliability of emotion judgments

Inter-rater reliability was estimated by comparing the judgments on one observer to

the mean judgments of all other observers using Pearson’s correlation. Figure 3-1

gives the inter-rater reliability across emotions and players. We conducted the same

analysis within emotion, within stimulus, and within outcome. Figure A-3 shows the

inter-rater reliability within emotion (across players). Emotions are ordered according

to the median observer reliability. Figure A-4 shows the inter-rater reliability within

stimulus (across emotions). Stimuli are ordered by the outcome of the game and

the size of the pot in that game. Figure A-5 shows the inter-rater reliability within

outcome. This is a summary of A-4, i.e. each box plot reflects the median values of

each stimulus. As in that figure, colors correspond with the outcomes.
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Figure A-3: Inter-rater reliability within emotion (across stimuli). Study 1 (emotions pre-
dicted from event descriptions) define the order for Study 2 and Study 3.
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Figure A-4: Inter-rater reliability within stimulus (across emotions). Labels give the size of
the pot in the games and colors indicate the outcome of the game (CC =green, CD =blue,
DC =red, DD =black).
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Figure A-5: Inter-rater reliability by stimulus (across emotions), aggregated by outcome.
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A.2.5 Conceptual knowledge affects the interpretation of

expressions

In Study 3, we found that broad-contextual knowledge about the GoldenBalls gameshow

(not including what happened to the players) shifted how observers interpreted play-

ers’ spontaneous dynamic expressions. Figure A-6 shows the change in the mean

intensity judgments for every player’s emotions. Each plot depicts 22 lines corre-

sponding to the express videos taken from games of a given outcome. The lines

connect the mean intensity attributed to the player when observers had no knowl-

edge of the context and the mean intensity attributed to the player when observers

knew that the player was on the GoldenBalls gameshow. Thus, the slope of the line

reflects how broad-contextual knowledge shifted attributions of a given emotion to

that player’s dynamic expression. The boxplots summarize the mean intensities for

all players in games of that outcome.
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Figure A-6: Context-induced bias in the interpretation of expressions. Slope of a line
illustrates how judgments of an emotion changed for that expression video when observers
had informative event priors.
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A.2.6 Human causal reasoning

Table A.1 summarizes observers’ success at inferring the true outcome of games based

on players’ spontaneous dynamic expressions. We use the macro-averaged F-score as

the overall score across outcomes. The F-scores of observers were tested against

the chance-level F-scores that would be expected if each observer’s judgments were

generated based on the individual’s simple response bias, independent of the stimuli,

using a Wilcoxon signed-rank test. We also report the Wilcoxon statistic relative

to uniform chance (0.25), which ignores the observed subject-level response biases.

Figure A-7 shows the F-scores of individual observers for expression videos from each

game outcome.

Table A.1: Human Causal Reasoning - Ground Truth Metrics

Accuracy F-score Wilcoxon Wilcoxon (relative to uniform chance)
Overall 0.37 [0.35,0.38] 0.35 [0.33,0.36] 𝑧 = 7.945, 𝑝 < 0.001 𝑧 = 7.562, 𝑝 < 0.001
CC 0.54 [0.51,0.58] 0.52 [0.49,0.54] 𝑧 = 8.224, 𝑝 < 0.001 𝑧 = 8.347, 𝑝 < 0.001
CD 0.51 [0.47,0.55] 0.47 [0.44,0.49] 𝑧 = 8.201, 𝑝 < 0.001 𝑧 = 7.548, 𝑝 < 0.001
DC 0.25 [0.22,0.28] 0.27 [0.23,0.31] 𝑧 = 4.386, 𝑝 < 0.001 𝑧 = 1.301, 𝑝 = 0.193
DD 0.16 [0.13,0.19] 0.15 [0.12,0.18] 𝑧 = −4.041, 𝑝 < 0.001 𝑧 = −5.910, 𝑝 < 0.001
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Figure A-7: Blue lines connect the four F-scores of a single observer. Purple gives F-scores
of the maximally confident judgments, irrespective of the expression video. Green gives
F-scores of the most popular judgment for each expression video.
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Reliability of outcome judgments

In a fashion similar to Studies 1-3, we estimated the reliability of outcome judgments

by correlating each observer’s judgments with the population mean. To do this, the

categorical outcome judgments were expressed as one-hot encoded vectors. Across all

expression videos, observers’ outcome judgments showed a median correlation of 0.50

[0.48, 0.51]. Fleiss’ kappa = 0.203; Krippendorff’s alpha = 0.203

A.2.7 Simulation of collective outcome judgments

In many domains, aggregating non-expert judgments into a population average can

improve accuracy. When individual judgments are independent, noisy, and unbiased

estimates of a true value, pooling judgments increases the accuracy of judgments.

In this case, the collective classification accuracy increases with the number of judg-

ments, asymptotically reaching perfect accuracy (King & Cowlishaw, 2007). If the

judgments are not simply noisy, but biased, increasing the size of the pool can offer di-

minishing improvements to collective performance. We tested if participants showed

better collective performance by simulating different group sizes, iteratively sampling

participants without replacement. In each simulation, the collective judgment was

determined by simple majority. Across outcomes, the collective performance shows

relatively little variation with the number of participants. Larger group size improved

the collective classification for primarily the DC outcome. Classification of the CC and

CD outcomes showed only marginal improvements for group sizes larger than 15.

Pooling judgments did not improve the classification of DD outcomes at all. For the

full group, the collective macro-averaged F-score was 0.453, and the macro-averaged

ROC-AUC was 0.67.
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Figure A-8: Simulated group size versus collective outcome classification performance. Col-
ors of dotted lines indicate the true outcome of the videos that were judged (CC=green;
CD=blue; DC=red; DD=black). The solid yellow line gives the overall F-score (macroaver-
aged over outcomes) and 95% bootstrap CI.

A.2.8 Abductive inference model

In Study 5, the Bayesian belief updating model predicts the distribution of outcome

judgments for each expression video, i.e. the fraction of observers that will infer that

a given player’s dynamic expression was a reaction to a CC game, what fraction will

infer it was a reaction to a CD game, etc.

A useful way of visualizing the performance of the model results is to compare

the model’s predictions against human observers’ judgments for every combination of

inferred outcome and true outcome. The data shown in Figure 3-6c are the aggregate

of the data shown in Figure A-9. Here, each plot shows the proportion of model

predictions vs human judgments of the 22 videos of a given outcome. The four plots

in a row show the data corresponding to the same 22 videos from games of a given

outcome, with the color indicating the true outcome.
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Figure A-9: Emotion Reasoning model predictions vs human judgments. Colors correspond
to the true outcome of the stimuli. Each subplot shows 22 expression videos of a given true
outcome (subplot rows), and the proportion that those videos were inferred to be a given
outcome (subplot columns), by the Emotion Reasoning model (x-axis) and human observers
(y-axis).
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Appendix B

Appendix to Chapter 4

B.1 Methods

B.1.1 Mental content attribution prompts

Observers judged a player’s preferences and belief on continuous scales from “not at

all” to “a great deal”. For the generic players, observers rated a player’s base pref-

erences and belief, for the specific players, observers rated all seven items. Pronouns

updated dynamics based on the player.

“How much does she actually care about...”

base Money: “getting money (acquiring as much money as possible)”

base AIA: “not getting too much (sharing with the other player, not getting

more than them)”

base DIA: “not getting too little (having at least as much as the other player,

not getting less than them)”

“How much does he want a reputation for...”

repu Money: “not prioritizing money (people believing that she values other

things above maximizing her own personal financial gain)”

repu AIA: “being considerate (people believing that she does not want to

take advantage of her opponent)”
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repu DIA: “being competitive (people believing that she does not want to be

taken advantage of by her opponent)”

Belief about 𝑎2: “what does she expect the other player to choose (and how confi-

dent is she in her prediction about the other player’s decision)?”

B.1.2 Utilities

𝑎1

𝑎2

C D

C 1/2 0

D 1 0

Money

𝑎2

C D

C 0 0

D 1 0

𝐴𝐼

𝑎2

C D

C 0 1

D 0 0

𝐷𝐼

Figure B-1: Payoff functions. Decisions made by the two players jointly determine the
players’ relative payoffs in ‘Split or Steal’. Payoff functions reflect how relevant the out-
come is to a set of base values. The outcome’s relevance is scaled by the size of the
jackpot, which projects to outcome onto the dimensions of value, which are then weighted
by player 1’s preferences to yield subjective utilities; equation (4.1). With respect to mon-
etary value, the payoff function simply returns the proportion of the jackpot that player 1
wins. When player 1 defects and the opponent cooperates, player 1 takes the whole pot:
Money(𝑎1=D, 𝑎2=C) = 1·𝑝𝑜𝑡. Advantageous Inequity (AI ) returns how much more player 1
received than player 2, and Disadvantageous Inequity (DI ) returns how much more player 2
received than player 1. For the same decisions, 𝐴𝐼(DC) = 1·𝑝𝑜𝑡 and 𝐷𝐼(DC) = 0.

The base subjective utilities are defined as functions of the monetary rewards that

the two players in a dyad received. The rewards paid out to the players are, in turn,

a function of the players’ choices and the pot size. A simulated agent’s belief about

some variable 𝑥 is denoted as 𝜋(𝑥), or equivalently, 𝜋𝑥.

Let 𝜈(𝑥) = sgn(𝑥) · log(1 + |𝑥|) , and 𝜈−1(𝑥) = sgn(𝑥) ·
(︁
e|𝑥| − 1

)︁
𝑈 base

Money = 𝜔base
Money · 𝜈

(︂
Money(𝑎1, 𝑎2) − 𝜋(Money)

)︂
𝑈 base

AIA = −𝜔base
AIA · 𝜈

(︂
𝐴𝐼(𝑎1, 𝑎2)

)︂
𝑈 base

DIA = −𝜔base
DIA · 𝜈

(︂
𝐷𝐼(𝑎1, 𝑎2)

)︂
(B.1)

For each payoff function 𝑖 ∈ { Money, AIA, DIA }, the reputation utility is defined
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as:

𝑈 repu
𝑖 = 𝜔 repu

𝑖 · 𝜈
(︂

𝑝𝑜𝑡 · E𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝐺𝑎𝑚𝑒

[︁
𝜔 base

𝑖 | 𝑎1
]︁)︂

(B.2)

where the sign of 𝜔 repu
𝑖 is opposite that of 𝜔 base

𝑖 . Note that, unlike the base utilities,

the reputation utilities are not functions of 𝑎2.

B.1.3 Planning

Anonymous Game

P(𝑎1|𝜔base, 𝜋𝑎2) ∝ exp
(︂

𝜆
∑︁

𝑖

E
𝑎2∼𝜋(𝑎2)

𝑈 base
𝑖

)︂
, with 𝜆 = 2 (B.3)

Public Game

P(𝑎1|𝜔base,𝜔repu, 𝜋𝑎2) ∝ exp
(︂

𝜆
∑︁

𝑖

E
𝑎2∼𝜋(𝑎2)

𝑈 base
𝑖 + 𝑈 repu

𝑖

)︂
, with 𝜆 = 2 (B.4)

B.1.4 Appraisals

For each subject utility 𝑈 , let 𝑉 = 𝜈−1(𝑈) and 𝑇 (𝑢) = 𝑠𝑔𝑛(𝑢) · |𝑢|0.5. We define the

19 appraisal features, 𝜓, to be:

Appraisal type Definition �̃� base
𝑖 �̃� repu

𝑖

Utility �̃�𝑖(𝑎1, 𝑎2) = 𝑇
(︁
𝑉𝑖(𝑎1, 𝑎2)

)︁
✓ ✓ (6 features)

Prediction error 𝑃𝐸𝑖(𝑎1, 𝑎2) = 𝑇
(︁
𝑉𝑖(𝑎1, 𝑎2) − E𝜋(𝑎2) 𝑉𝑖(𝑎1, 𝑎2)

)︁
✓ ✗ (3 features)

Counterfactual on Player 1 𝐶𝐹𝑎1𝑖(𝑎1, 𝑎2) = 𝑇
(︁
𝑉𝑖( ¬ 𝑎1, 𝑎2)P( ¬ 𝑎1)

)︁
✓ ✓ (6 features)

Counterfactual on Player 2 𝐶𝐹𝑎2𝑖(𝑎1, 𝑎2) = 𝑇
(︁
𝑉𝑖(𝑎1, ¬ 𝑎2)𝜋( ¬ 𝑎2)

)︁
✓ ✗ (3 features)

Action prediction error 𝑃𝐸𝑎2(𝑎1, 𝑎2) = I[𝑎2=C] − 𝜋(𝑎2=C) (1 feature)

so
𝜓 = ⟨�̃� base,repu

Money,AIA,DIA, 𝑃𝐸 base,repu
Money,AIA,DIA, 𝐶𝐹𝑎1 base,repu

Money,AIA,DIA, 𝐶𝐹𝑎2base
Money,AIA,DIA, 𝑃𝐸𝑎2⟩
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B.2 Personalized priors

We fit priors to each player (20 SpecificPlayers, conditioned on whether the player

chose to cooperate or defect). This is different from the BasePrior and the Gener-

icPrior, where we integrated out the player’s decision and marginalized over player

identity. When modeling nonspecific players, we assumed that there was not a strong

population-level bias in what actions players chose (and actual players make near-

chance decisions; van den Assem et al., 2012; see Appendix A.2.1). However, the

personalized descriptions of the SpecificPlayers may induce stronger action priors.

Since observers may be more confident about which decision a stockbroker will make,

for example, we use priors that are conditional on both a player’s identity and decision,

P (𝜔, 𝜋𝑎2 | 𝑎1, 𝑝𝑙𝑎𝑦𝑒𝑟), where the priors for each planning variable is still condition-

ally independent. While preference and belief attributions to different SpecificPlayers

differ considerably, the priors induce the correct decision bias in the model. Every

set of preferences and beliefs attributed to players who were shown to have defected

biased simulated players towards defection, with a median probability and 95% CI of

81% [73, 85]. Similarly, observers’ preference and belief attributions to players who

cooperated induced a cooperation bias in simulated players, 67% [62, 73]. Observers’

inference of how these latent mental variables generate decisions in this game are sys-

tematic, sensitive to the picture and description, and congruent with the generative

process of the Inferred Appraisals model.
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